NASA/TP-20250010472

NDARC
NASA Design and Analysis of Rotorcraft

Input and Data Structures

Wayne Johnson
Ames Research Center
Moffett Field, California

November 2025

NASA STI Program ...

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain this
important role.

The NASA STI program operates under the auspices of
the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one of
the largest collections of aeronautical and space science
STI in the world. Results are published in both non-
NASA channels and by NASA in the NASA STI Report
Series, which includes the following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

e TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g., quick
release reports, working papers, and
bibliographies that contain minimal annotation.
Does not contain extensive analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

in Profile

CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include organizing and
publishing research results, distributing specialized

research announcements

and feeds, providing

information desk and personal search support, and
enabling data exchange services.

For more information about the NASA STI program,
see the following:

Access the NASA STI program home page at
http://www.sti.nasa.gov

E-mail your question to help@sti.nasa.gov

Write to:

NASA STI Information Desk
Mail Stop 148

NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TP-20250010472

NDARC
NASA Design and Analysis of Rotorcraft

Input and Data Structures

Wayne Johnson
Ames Research Center
Moffett Field, California

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, CA 94035-1000

November 2025

This report is available in electronic form at

http://ntrs.nasa.gov

Contents

Data Structures and Input 1
2. Input Based on CONfIGUIAtIONttt ettt et et e et et e e e e e e e e e e e e e e 13
3. Parameters and CONSLANESttt ettt ettt ettt ettt e e e e e e e e e 21

JOD 26

DI g . . 33

S . ..ttt e 35
T SHZE 39

SIZEPATAIN . . . o oo e 40

OFfDESINo 46
LO. OFffParamttt e e e 47
L1, PerfOrmAaNCettt et e e e e e e e 48
12, PerfParam 49
13, MapENGIne e 50
T4, IMAPACTO e 53
IS5, FIHCOMA ... 56
TO. MISSIOM . .. oottt e e e e e e 62
17, MISSPArAmM . . oo oot et e e e e 63
TRV T PP 71
1O, IS At e e e 80
20, FIAIICTATt . . .ot e e 81

Contents il

21, FIEUSE ... e 99
22, FIHGRAr .. o 101
23, FIIROIOT « .ttt 102
24, FIWING . ot e 109
TR L ¥ 1 P 112
20, FITaNK e e e e e e e 113
2T B P O .o 115
28, Bl BN g ..o 117
20, It .o 120
B0, FI O . ..ottt e e e e e e 123
31, SOIUEION . ..o 126
B 08t - 131
33, EIMISSIONSo e e e e 136
B AR CTaAlt 138
35 X AULCTALt ..o 156
T TR 4] 1) 1 1 158
37, WEIICONE . . ettt et e et e e e e e e e 165
B8, WDCICE . ..ottt 167
30, FUSelage . .. 168
Q0. AFUSE ..ottt e 172
AL, WU ..o e 175
42, Landin@Gear e 177
A3, AGRAT ..ottt e 179

A, WG AT . oottt e 180

Contents 1il

A5, ROOT . . oo e 181
46. PROEOTINA . . . oo e e 198
B g 0 o) 4 s ' T 202
A8, PROMOITAD ... 205
R I) 0 o) 207
0 R 0 o) 210
Sl W RO 0T ...ttt ettt et e e e 212
S WII g e e e 216
S AN oot e 227
S WD oot e e 230
5. W T R L e 232
50, LAl .. 235
ST ATl .. 238
S TR 1 1 PP 240
59, FUEITaNK e 242
00, W anK ... e e e e 246
O1. ProPuUISION e e e e 248
02, W DTIVE .ttt et e e e e e e e e 253
03, ENGINEGIOUD e e e e 255
04, DENESYS . ettt e e 265
05 . W B S S ..ottt 266
0. JEEGIOUPt e 268
07 Dot Y S ettt e 275
08, Wt Y S ..ttt 276
69. CRArZEGTOUPot et e e e e e e e 278
TO. DORIESYS .o 283

Contents iv

L. WO g Y S i 284
T2. ENGINEMOAEl e e e 285
T3, EngineParamN e 291
T4, Engine T able 293
T5. ReCIPMOUELot 295
T6. CompressorModel 299
TT. MOtOrMOodelt 302
T8. JetIMIOAeEL . . . 305
T9. FuelCellModelttt 308
80. SolarCellModel 311
8L, Battery M odel 313
82, LOCAtIONo o e 316
8. VIt . .. e e e 318

Chapter 1

Data Structures and Input

1-1 Overview

The NDARC code performs design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks
can include off-design mission performance analysis, flight performance calculation for point operating conditions, and generation of subsystem or component performance
maps. Figure 1-1 illustrates the tasks. The principal tasks (sizing, mission analysis, flight performance analysis) are shown in the figure as boxes with heavy borders. Heavy
arrows show control of subordinate tasks.

The aircraft description (figure 1-1) consists of all the information, input and derived, that defines the aircraft. The aircraft consists of a set of components, including fuselage,
rotors, wings, tails, and propulsion. This information can be the result of the sizing task; can come entirely from input, for a fixed model; or can come from the sizing task in
a previous case or previous job. The aircraft description information is available to all tasks and all solutions (indicated by light arrows).

The sizing task determines the dimensions, power, and weight of a rotorcraft that can perform a specified set of design conditions and missions. The aircraft size is characterized
by parameters such as design gross weight, weight empty, rotor radius, and engine power available. The relations between dimensions, power, and weight generally require
an iterative solution. From the design flight conditions and missions, the task can determine the total engine power or the rotor radius (or both power and radius can be fixed),
as well as the design gross weight, maximum takeoff weight, drive system torque limit, and fuel tank capacity. For each propulsion group, the engine power or the rotor
radius can be sized.

Missions are defined for the sizing task, and for the mission performance analysis. A mission consists of a number of mission segments, for which time, distance, and fuel
burn are evaluated. For the sizing task, certain missions are designated to be used for design gross weight calculations; for transmission sizing; and for fuel tank sizing. The
mission parameters include mission takeoff gross weight and useful load. For specified takeoff fuel weight with adjustable segments, the mission time or distance is adjusted
so the fuel required for the mission (burned plus reserve) equals the takeoff fuel weight. The mission iteration is on fuel weight or energy.

Flight conditions are specified for the sizing task, and for the flight performance analysis. For the sizing task, certain flight conditions are designated to be used for design gross
weight calculations; for transmission sizing; for maximum takeoff weight calculations; and for antitorque or auxiliary thrust rotor sizing. The flight condition parameters
include gross weight and useful load.

For flight conditions and mission takeoff, the gross weight can be maximized, such that the power required equals the power available.

A flight state is defined for each mission segment and each flight condition. The aircraft performance can be analyzed for the specified state, or a maximum effort performance
can be identified. The maximum effort is specified in terms of a quantity such as best endurance or best range, and a variable such as speed, rate of climb, or altitude. The
aircraft must be trimmed, by solving for the controls and motion that produce equilibrium in the specified flight state. Different trim solution definitions are required for
various flight states. Evaluating the rotor hub forces may require solution of the blade flap equations of motion.

Data Structures and Input

DESIGN

Sizing Task
size iteration -

fixed model or
previous job or
previous case

Y

ANALYZE

Airframe

Aircraft
Description

Aerodynamics Map

Engine
Performance Map

| Mission Analysis

Flight
Performance
Analysis

design)
conditions d.es1.gn
missions
Flight Condition
max GW

Mission
adjust & fuel wt iteration
max takeoff GW

\ v / each segment

max effort / trim aircraft / flap equations

Flight State

Figure 1-1

Outline of NDARC tasks.

Data Structures and Input

additional
output

additional
cases

INTERFACE
FILES

—
design

aircraft ————

description —
~—

geometry
solution
~—
performance
\—/

PRINT

airframe
aerodynamics

design and

performance

engine

——

performance

Figure 1-2 NDARC Interfaces.

COMPREHENSIVE
e

ANALYSIS

STRUCTURAL
—

DESIGN
LAYOUT DESIGN

COMPREHENSIVE
ANALYSIS

Data Structures and Input

&JOB INIT input=0,INIT data=0, &END

&DEFN action='ident’,created='time-date’,title='standard input’,b &END

L L L)) L))) L) g) 1L)) L) L)) Jf L g L) L) L) L) 1)) 1) dE)) 1)))) 1)) L g) 4)) 1)) 1)))

R (A (A (A (A (A (A (A (A (A (A A

&DEFN action='open file’,file='engine.list’,&END

&DEFN action='open file’,file='helicopter.list’,&END

&DEFN quant='Cases’, &END

&VALUE title='Helicopter’,TASK size=0,TASK mission=1,TASK perf=1, &END

&DEFN quant='Size’, &END
&VALUE nFltCond=0,nMission=0, &END

&DEFN quant='OffDesign’, &END

&VALUE title='mission analysis’,nMission=1,&END
&DEFN quant='OffMission’, &END

&VALUE

(one mission, mission segment parameters as arrays)
&END

&DEFN quant='Performance’ , &END

&VALUE title='performance analysis’,nFltCond=2, &END

&DEFN quant='PerfCondition’, &END

&VALUE
(one condition)
&END
&DEFN quant='PerfCondition’, &END
&VALUE
(one condition)
&END

&DEFN action='endofcase’,&END

O

&DEFN action='endofjob’,&END

Figure 1-3a Illustration of NDARC input (primary input).

Data Structures and Input

&DEFN action='ident’,created='time-date’,title='Helicopter’,b &END

L L L L)) L) L) gL) g) 1L)) L)))) g L g L) L 1)) Jf L) 1) 1) I g) 1))) 4))) L g) 4)) 1))))))
R (A (A (A (A (A (A (A (A (A (A (A A U (A (A A

! default helicopter
&DEFN action='configuration’, &END
&VALUE config='helicopter’,rotate=1,&END

&DEFN quant='Cases’, &END

&VALUE title='Helicopter’ ,FILE design='helicopter.design’, &END

&DEFN quant='Size’, &END

&VALUE
title='Helicopter’,
SIZE perf='none’,SET rotor='radius+Vtip+sigma’, 'radius+Vtip+sigma’,
FIX DGW=1,SET tank='input’,SET SDGW='input’, SET WMTO='input’,

&END

&DEFN quant='Solution’,&END

&VALUE &END

&DEFN quant='Aircraft’, &END
&VALUE (Aircraft parameters) &END
&DEFN quant='Geometry’, &END
&VALUE (geometry) &END

&DEFN quant='Rotor 1’ ,&END
&VALUE (Rotor 1 parameters) &END

(other parameters in other structures)

&DEFN quant='TechFactors’ , &END
&VALUE (technology factors) &END

T T T T T T T T T T T T TV T /N T I T TN T T T N]
R A (A ({0 ([(A (A (A (A (A A (A (A (A (A (A U (A U (A A (A (A A U

&DEFN action='endoffile’, &END

Figure 1-3b Illustration of NDARC input (secondary input file).

Data Structures and Input

1-2 NDARC Input and Output

Figure 1-2 illustrates the input and output environment of NDARC. Table 1-1 lists the possible input and output files. A job reads input from one or more files. The primary
input is obtained from standard input (perhaps redirected to a file). The primary input can direct the code to read other files, identified by file name or logical name. The
input data are read in namelist format. Unit numbers are part of the job input. Output file names are part of the case input. Input files names are defined in the input itself.

1-2.1 Input

Table 1-1. Input and output files.

file logical name

unit number (and default)

INPUT
Primary Input
Secondary Input File
Aircraft Description
Solution

OUTPUT
Output
Design
Performance
Airframe Aerodynamics
Engine Performance
Geometry
Aircraft Description
Solution
Sketch
Errors

standard input
FILE
FILE
FILE

standard output
DESIGNn
PERFn
AEROn
ENGINEn
GEOMETRYn
AIRCRAFTn
SOLUTIONN
SKETCHn
ERRORN

nuin =5

nufile = 40
nufile = 40
nufile = 40

nuout = 6
nudesign = 41
nuperf =42
nuaero =43
nuengine = 44
nugeom =45
nuacd = 46
nusoln =47
nusketch = 48
nuerror =49

Figure 1-3 illustrates NDARC input. The primary input starts with a JOB namelist, then DEFN namelists are read to define the action and contents of the subsequent
information. The job parameters include initialization control, error action, and input/output unit numbers. Job parameters can be read during case input using QUANT="Job'.
The initialization takes place before case input, so changed initialization parameters in QUANT="Job’ input take effect for the next case. The DEFN namelist has the following

parameters.

Data Structures and Input 7

a) ACTION: character string (length = 32; case independent).

b) QUANT: character string (length = 32, case independent); corresponds to data structure in input; string includes structure
number (1 or next condition/mission if absent).

¢) SOURCE: integer; for copy action.

d) FILE: file name or logical name (length = 256).

e) CREATED: character string of creation time and date (length = 20).
f) TITLE: character string of title identifying input file (length = 80).

g) VERSION: code version number as character string (Ilength = 6).

h) MODIFICATION: character string of code modification (length = 32).

Table 1-2 describes the options for the ACTION variable in the DEFN namelist. The code searches for the keyword in the ACTION character string. A solution file (text or
binary) can be written by an NDARC job and then read by a subsequent job, restoring the solution to the state that existed when the file was created. Then additional output
and additional cases can be obtained. An aircraft description file can be written by an NDARC job and then read by a subsequent job, restoring the aircraft model (but not the
solution). A secondary input file has DEFN namelists to define action and contents. When ACTION="end’ (or EOF) is encountered in a secondary input file, the file is closed
and the code returns to primary input.

A DEFN namelist with ACTION='ident’ identifies the file; probably there is only one identification per file, and only the last occurrence is stored. The identification consists
of the CREATED, TITLE, VERSION, MODIFICATION variables. CREATED and TITLE are written when a file is created by NDARC, and read and stored for each input file.
If present, VERSION and MODIFICATION are compared with the version and modification of the code, and input continues only if they match.

The parameter QUANT identifies the data structure to be read (namelist format), initialized, or copied. Table 1-3 describes the options. The input corresponds to the
data structures of the analysis. The QUANT string includes the structure number; if absent, the number is 1, or the next condition or mission. Note that each mission,
with the mission segment parameters as arrays, is input with QUANT='SizeMission’ or QUANT="OffMission’; and each condition is input with QUANT='SizeCondition" or
QUANT="PerfCondition’.

A case inherits input for flight conditions and missions from the previous case if INIT_input = last-case-input (default). A DEFN namelist with ACTION='"delete’ deletes
this input as specified by QUANT='"SizeCondition n', QUANT='"SizeMission n’, QUANT="OffMission n’, or QUANT="PerfCondition n’. ACTION="delete all’ deletes all (ignore
structure number); ACTION='delete one’ deletes structure n (all if number absent); ACTION="delete last’ deletes structure n and subsequent structures (all if number absent).

For ACTION='nosize’, input variables in the Size structure are set for no size iteration: SIZE_perf="none’, SIZE_engine="none’, SIZE_jet="none', SIZE_charge="none’,
SET_rotor="radius+Vtip+sigma', SET_wing="'area+span’, FIX_DGW=1, SET_tank='input’, SET_limit_ds='input’, SET_SDGW="input’, SET_WMTO="input’.

Data Structures and Input

Table 1-2. ACTION options.

ACTION keyword QUANT function

Primary Input Only

blank — blank open and read secondary input file, name = FILE
"open file’ file,open open and read secondary input file, name = FILE
'load aircraft’ aircraft,desc load aircraft description file, name = FILE
'read solution’ solution "text’ read complete solution file, name = FILE (text)
'read solution’ solution not ‘text’ read complete solution file, name = FILE (binary)
'end of case’ end+case stop case input, execute case

‘end of job’ end+job,quit stop job input, execute case, exit code

Primary or Secondary Input

blank — "structure’ read VALUE namelist

'read namelist’ list "structure’ read VALUE namelist

"‘copy input’ copy "structure’ copy input from source (same structure), SOURCE=SRCnumber
"initialize’ init "structure’ set structure variables to default values
"delete all’ del+all "structure’ delete all conditions or missions

'delete one’ del+one 'structure’ delete one condition or mission

‘delete last’ del+last "structure’ delete last conditions or missions
"‘configuration’ config set input based on aircraft configuration
‘nosize’ nosize set input for no size iteration
"identification’ ident identify file

"end’ end (or EOF) Secondary: close file, return to primary input
"end’ end (or EOF) Primary: same as ACTION="endofjob’

Data Structures and Input

Table 1-3. QUANT options.

QUANT data structures read maximum n
"Job’ Job

'Cases’ Cases

'Size’ SizeParam

'SizeCondition n’ one FltCond+FltState nFltCond
'SizeMission n’ one MissParam, MissSeg+FItState as array nMission
"OffDesign’ OffParam

'OffMission n’ one MissParam, MissSeg+FltState as array nMission
'Performance’ PerfParam

'PerfCondition n’ one FltCond+FltState nFltCond
'MapEngine’ MapEngine

'MapAero’ MapAero

'Solution’ Solution

"Cost’ Cost

'Emissions’ Emissions

'Aircraft’ Aircraft

'Systems’ Systems, WFItCont, WDelce

"Fuselage’ Fuselage, AFuse, WFuse

'LandingGear’ LandingGear, AGear, WGear

"Rotor n’ Rotor, PRotorInd, PRotorPro, PRotorTab, IRotor, DRotor, WRotor nRotor
'Wing n’ Wing, AWing, WWing, WWingTR nWing
"Tail n’ Tail, ATail, WTail nTail
"FuelTank n’ FuelTank, WTank nTank
"Propulsion n’ Propulsion, WDrive nPropulsion
'EngineGroup n’ EngineGroup, DEngSys, WEngSys nEngineGroup
'JetGroup n’ JetGroup, DJetSys, WletSys nJetGroup
'ChargeGroup n’ ChargeGroup, DChrgSys, WChrgSys nChargeGroup

'EngineModel n’
'EngineParamN n’
'EngineTable n’
'RecipModel n’
'CompressorModel n’
'MotorModel n’
"JetModel n’
'FuelCellModel n’
'SolarCellModel n’
'BatteryModel n’

EngineModel
EngineParamN
EngineTable
RecipModel
CompressorModel
MotorModel
JetModel
FuelCellModel
SolarCellModel
BatteryModel

nEngineModel
nEngineParamN
nEngineTable
nRecipModel
nCompressorModel
nMotorModel
nJetModel
nFuelCellModel
nSolarCellModel
nBatteryModel

'TechFactors’
'Geometry’

all TECH_xxx
all Location

Data Structures and Input 10

1-2.2 Formats
Namelist input has the following format (see also figure 1-3).

&DEFN action='IDENT’,created='time-date’,title='xxxX’,version='n.n’,modification='xxx’,&END
&DEFN quant='STRUCTURE n’, &END

&VALUE param=value, &END

&DEFN action='NAMELIST',quant='STRUCTURE n’, &END

&VALUE param=value, &END

&DEFN action=’'COPY’,quant=’STRUCTURE n’,source=#, &END

An aircraft description file is written in a separate file by NDARC, from theDesign(kcase):

&DEFN action='IDENT’,created='time-date’,title='xxxX’',version='n.n’,modification='xxx’,&END

&VALUE_ADIMEN nrotor=m,nwing=m,ntail=m,ntank=m,npropulsion=m,nenginegroup=m,njetgroup=m,nchargegroup=m,
nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m, nmotormodel=m,njetmodel=m,
nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m, &END

&VALUE theStructure$xxx, &END

&VALUE theStructure%xxx, &END

&VALUE theStructure$xxx, &END

This aircraft description file is read by identifying it in the primary input:

&DEFN action='AIRCRAFT’,file='aircraft.acd’,b &END

A solution file is written in a separate file by NDARC, from theDesign(kcase), in binary or text format:

&DEFN action='IDENT’,created='time-date’,title='xxX’',version='n.n’,modification='xxx’,&END

&VALUE_ADIMEN nrotor=m,nwing=m,ntail=m,ntank=m,npropulsion=m,nenginegroup=m,njetgroup=m,nchargegroup=m,
nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m, nmotormodel=m,njetmodel=m,
nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m, &END

&VALUE_SDIMEN nsizecond=m,nsizemiss=m,nperfcond=m,noffmiss=m, &END

&VALUE theStructure%$xxx,&END

&VALUE theStructure%$xxx, &END

&VALUE theStructure$xxx, &END

This solution file is read by identifying it in the primary input, with QUANT identifying the file as text or binary:

&DEFN action='SOLUTION,quant='TEXT’,file='aircraft.soln’&END

Data Structures and Input 11

1-2.3 Conventions
Each flight condition (F1tCond and F1tState variables) is input in a separate SizeCondition or PerfCondition namelist.

Each mission (MissParam, MissSeg, and F1tState variables) is input in a separate SizeMission or OffMission namelist. All mission segments are defined in
this namelist, so MissSeg and F1tState variables are arrays. Each variable gets one more dimension, with the first array index always segment number.

Geometry input includes Location variables, which are read as elements of the data structure (for example, loc_rotor%SL).

Variables can appear in more than one namelist. Specifically there are separate namelists for all technology factors (all TECH_xxx variables), and all geometry (all Location
variables), with corresponding options for output. A variable that is a scalar in the Rotor,Wing, Tail, Propulsion, EngineGroup, JetGroup, or ChargeGroup
input becomes an array in the TechFactors or Geometry input. Note that it is the Location variable that is the array (for example, loc_rotor(1)%SL).

Case is not important in character string input. Character string input consists of keywords; the code searches for the keywords in the string.
Default values are specified in the dictionary (blank implies a default of zero); all elements of arrays have the same default value.

Tasks, aircraft, and components have title variables. There are also notes variables (long character string) to record information about the input.

1-3 Software Tool

All information about data structures is contained in a dictionary file. This information includes the parameter name, dimension, type, default value, description, identification
as input, and formats for write of the parameter. A software tool was created to manage the data, including construction of the module of data structures. The software tool
reads this dictionary file and creates subroutines for the input process: namelist read, copy, print of input, initialization, set to default. This software tool is a program that
manipulates character strings, to produce compilable module and subroutines for NDARC.

1-4 Data Structures

Table 1-4 outlines the data structures used for NDARC. The following chapters describe the contents of each structure. Note that a ”+” sign in the column between the type
and description identifies input variables. Input variables can be changed by the analysis, so may not be the same at the end of a case as at the beginning. All variables, input
and other, are initialized to zero or blank. If default values exist (only for input variables), they supersede that initialization.

Data Structures and Input

Table 1-4. NDARC data structures.

12

Design
Cases
Size
SizeParam
FltCond(nfltmax)
FltState(nfltmax)
Mission(nmissmax)
MissParam
MissSeg(nsegmax)
FltState(nsegmax)
OffDesign
OffParam
Mission(nmissmax)
MissParam
MissSeg(nsegmax)
FltState(nsegmax)
Performance
PerfParam
FltCond(nfltmax)
FltState(nfltmax)
MapEngine
MapAero
Solution
Cost
Emissions
Aircraft
[Location]loc_cg
Weight
XAircraft
Systems
Weight
WFltCont
WhDelce

Fuselage
[Location]loc_fuselage
AFuse
Weight
WFuse

LandingGear
[Location]loc_gear
AGear
Weight
WGear

Rotor(nrotormax)
[Location]loc_rotor
[Location]loc_pylon
[Location]loc_pivot
[Location]loc_nac
PRotorInd
PRotorPro
PRotorTab
IRotor
DRotor
Weight
WRotor

Wing(nwingmax)
[Location]loc_wing
AWing
Weight
WWing
WWingTR

Tail(ntailmax)
[Location]loc_tail
ATail
Weight
WTail

FuelTank(ntankmax)
[Location]loc_auxtank(nauxtankmax)
Weight
WTank

Propulsion(npropmax)
Weight
WDrive

EngineGroup(nengmax)
[Location]loc_engine
DEngSys
Weight
WEngSys

JetGroup(njetmax)
[Location]loc_jet
DJetSys
Weight
WJetSys

ChargeGroup(nchrgmax)
[Location]loc_charger
DChrgSys
Weight
WChrgSys

EngineModel(nengmax)

EngineParamN(nengpmax)

EngineTable(nengmax)

RecipModel(nengmax)

CompressorModel(nengmax)

MotorModel(nengmax)

JetModel(njetmax)

FuelCellModel(nchrgmax)

SolarCellModel(nchrgmax)

BatteryModel(ntankmax)

FltState(nfltmax)

FltAircraft

FltFuse

FltGear
FltRotor(nrotormax)
FltWing(nwingmax)
FltTail(ntailmax)
FltTank(ntankmax)
FltProp(npropmax)
FItEngn(nengmax)
FltJet(njetmax)
FltChrg(nchrgmax)

13

Chapter 2

Input Based on Configuration

The rotorcraft configuration is identified by the variable config in the QUANT="Aircraft’ input. With ACTION='configuration’, the analysis defines a number of input parameters
in order to facilitate modelling of conventional configurations. The input required to execute ACTION="configuration’ is:

&DEFN action='configuration’, &END

&VALUE config='aaaa’,nRotor=#,rotate=#,#,overlap_tandem=#,#,ang multicopter=#,#, &END
The VALUE namelist contains only the parameters Aircraft%config (rotorcraft configuration), Aircraft%nRotor (number of rotors, only for multicopter), Rotor%rotate (direction
of rotation, each rotor), Rotor%overlap_tandem (each rotor, only for tandem helicopter), and Rotor%ang_multicopter (each rotor, only for multicopter). The convention is that
the first rotor is the main rotor for the helicopter or compound configuration; the front rotor for the tandem configuration; the right rotor for the tiltrotor configuration. This
capability has been implemented for rotorcraft, helicopter, tandem, coaxial, tiltrotor, compound, multicopter, and airplane configurations. There is common input for all
configurations, and special input for each except the rotorcraft. The analysis creates the following input, through information at the end of the NDARC structures file. Note
that default values are defined for all input quantities.

2-1 All Configurations

a) Components: nRotor=2 (except multicopter), nWing=0, nTail=2; nPropulsion=1, nEngineGroup=1, nEngineModel=1, nJetGroup=0, nChargeGroup=0

b) Aircraft

Aircraft controls: ncontrol=7, IDENT _control="coll’,'latcyc’,'Ingcyc’, pedal’, tailinc’,’elevator’,'rudder’
Control states: nstate_control=1

Trim states: nstate_trim=10, selected by FItAircraft%STATE_trim=IDENT_trim; compound state not active

IDENT_trim mtrim trim_quant trim_var
6-variable 'free’ 6 'force x','force y’','force z',’moment x’,’'moment y’',’'moment z’' ‘coll’,’lateyc’,’Ingcyc’, pedal’,"pitch’, "roll’
longitudinal 'long’ 4 "force x',’'force z','moment y','moment z' "coll’,’Ingeyc’, pitch’,'pedal’
symmetric 3-variable 'symm’ 3 "force x',"force z','moment y’ "coll’,"Ingcyc’,"pitch’
weight and drag "force’ 2 "force x','force z' "coll’,"pitch’
hover thrust and torque "hover’ 2 'force z',"moment 2z’ "coll’,"pedal’
hover thrust "thrust’ 1 "force z' "coll’
hover rotor Cr /o 'rotor’ 1 'CTs rotor 1’ "coll’
wind tunnel 'windtunnel’ 3 'CTs rotor 1',’betac 1','betas 1’ "coll’,"latcyc’, ' Ingeyc’
full power "power’ 1 'P margin 1’ "coll’
ground run "ground’ 1 "force x’ "coll’
compound 'comp’ 6 'force x’,"force y’,'force z',’'moment x’,’'moment y',"'moment z’ ‘coll’,’lateyc’,’Ingcyc’, pedal’,"prop’, 'roll’

Input Based on Configuration

¢) Systems: MODEL_FWfc=0, MODEL_CVfc=0 (no fixed wing flight controls, no conversion controls)
d) Landing Gear: KIND_LG=0 (fixed gear), Wgear%nLG=3
e) Fuel Tank: place=1 (internal tank), Mauxtanksize=1, WTank%ntank_int=1, WTank%nplumb=2

f) Rotor
First rotor is primary: kPropulsion=1, KIND_xmsn=1
Second and other rotors are dependent: kPropulsion=1, KIND_xmsn=0, INPUT_gear=1 (input quantity is tip speed)
Configuration: direction="main’
Drag: SET_aeroaxes=1 (helicopter), Idrag=0. (not tilt); DRotor%SET_Dspin=1, DRotor%DoQ_spin=0. (no spinner drag)
Weight: WRotor%MODEL_config=1 (rotor), WRotor%KIND_rotor=2 (not tilting)
Control:
INPUT coll=0, INPUT cyclic=0, INPUT _incid=0, INPUT _cant=0, INPUT_diam=0 (no connection to aircraft controls)
T coll=0., T _latcyc=0., T_Ingcyc=0., T_incid=0., T_cant=0., T_diam=0. (all controls, all states)
KIND_control=1 (1 for thrust and TPP command)
KIND_coll=2 (1 for thrust, 2 for C/o)
KIND_cyclic=1 (1 for TPP tilt, 2 for hub moment, 3 for lift offset)
KIND_tilt=0 (fixed shaft)

g) Wing

Control:
INPUT_flap=0, INPUT _flaperon=0, INPUT _aileron=0, INPUT _incid=0 (no connection to aircraft controls)
T_flap=0., T_flaperon=0., T_aileron=0., T_incid=0. (all controls, all states, all panels)

Drag: Idrag=0. (not tilt)

h) Tail

First tail is horizontal tail: KIND_tail=1, WTail%MODEL_Htail=1 (helicopter)

Second tail is vertical tail: KIND_tail=2, WTail%MODEL_Vtail=1 (helicopter)

Configuration: KIND_TailVol=2, TailVolRef=1 (rotor reference)

Control:
INPUT _cont=1 (tail control connection to aircraft controls), INPUT _incid=0 (no connection of tail incidence to aircraft controls)
T_cont=0., T_incid=0. (all controls, all states)

i) Propulsion: nGear=1, STATE_gear wt=1, INPUT_DN=0

14

Input Based on Configuration

j) Engine Group
Configuration: kPropulsion=1, INPUT_gear=1 (gear ratio from N_spec), SET_power=0 (sized), fPsize=1., direction="x', SET_geom=0 (standard position)
Drag: MODEL _drag=1, Idrag=0. (not tilt)

k) Engine Group, Jet Group, Charge Group

Control:
INPUT_amp=0, INPUT_mode=0, INPUT _incid=0, INPUT_yaw=0 (no connection to aircraft controls)
T_amp=0., T_incid=0., T_yaw=0. (all controls, all states)

2-2 Helicopter

a) Rotor
First rotor is main rotor: config='main’, fDGW=1., fArea=1., SET_geom='"standard’
rotation: r = 1; if (Rotor(1)%rotate < 0) r = —1
control: INPUT _coll=1, INPUT _latcyc=1, INPUT _Ingcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_latcyc(2,1)= — r, T_Ingcyc(3,1)=-1.
Second rotor is tail rotor: config="tail+antiQ’, fThrust=1., fArea=0., SET_geom="tailrotor’, mainRotor=1
direction="tail’, WRotor% MODEL_config=2 (tail rotor)
rotation: r = 1; if (Rotor(1)%rotate < 0) r = —1
control: KIND_control=2 (thrust and NFP command); INPUT _coll=1, T_coll(4,1)= — r (rotor collective connection to aircraft control 'pedal’)
Performance: PRotorlnd%MODEL_twin="none’
Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

b) Tail

Control: INPUT _incid=1 (tail incidence connection to aircraft controls)

Horizontal tail: T_incid(5,1)=1. (incidence connection to aircraft control 'tailinc’), T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(7,1)=1. (rudder direct control)

¢) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15
2-3 Tandem

a) Components: nTail=0 (no tail)

b) Fuel Tank: place=2 (sponson)

15

Input Based on Configuration

¢) Rotor
Configuration: config='main+tandem’, fDGW=.5, SET_geom="tandem’, fRadius=1.
fArea=1 — m/2, from m = (2/m)(cos~* h — hy/1 — h2), h = 1 — overlap_tandem
First rotor is front rotor: otherRotor=2
rotation: r = 1, if (Rotor(1)%rotate < 0) r = —1
control: INPUT _coll=1, INPUT _latcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(3,1)=-1., T_latcyc(2,1)= — r, T_latcyc(4,1)= —r
Second rotor is aft rotor: otherRotor=1, rotate=-Rotor(1)%rotate
rotation: r = 1, if (Rotor(1)%rotate < 0) r = —1;r = —r
control: INPUT _coll=1, INPUT _latcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(3,1)= 1., T_latcyc(2,1)= — r, T_latcyc(4,1)=r
Performance: PRotorlnd%MODEL_twin="tandem’, PRotorInd%Kh_twin=1., PRotorInd%Kf_twin=0.85, IRotor%MODEL _int_twin=2
Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

d) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

2-4 Coaxial

a) Rotor
Configuration: config="main+coaxial’, fDGW=.5, fArea=.5, SET_geom='coaxial’, fRadius=1.
First rotor is lower rotor: otherRotor=2
rotation: r = 1, if (Rotor(1)%rotate < 0) r = —1
control: INPUT _coll=1, INPUT _latcyc=1, INPUT_Ingcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(4,1)=r, T_latcyc(2,1)= — 7, T_Ingcyc(3,1)=-1.
Second rotor is upper rotor: otherRotor=1, rotate=-Rotor(1)%rotate
rotation: 7 = 1, if (Rotor(1)%rotate < 0) r = —1;r = —r
control: INPUT coll=1, INPUT latcyc=1, INPUT Ingcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(4,1)=r, T_latcyc(2,1)= — r, T_Ingcyc(3,1)=-1.
Performance: PRotorlnd%MODEL_twin="coaxial’, PRotorInd%Kh_twin=1., PRotorInd%Kf_twin=0.85, IRotor%MODEL _int_twin=2
Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

b) Tail
Horizontal tail: T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(7,1)=1. (rudder direct control)

¢) Propulsion: WDrive%ngearbox=1, WDrive%ndriveshaft=0, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

16

Input Based on Configuration

2-5 Tiltrotor

a) Components: nWing=1, nEngineGroup=2 (engine at each nacelle)

b) Aircraft

Aircraft controls: ncontrol=10, IDENT _control="coll’,'latcyc’,'Ingcyc’,'pedal’, tilt’, flap’, 'flaperon’,’elevator’, aileron’,'rudder’
Control states: nstate_control=2 (state 1 for helicopter mode, state 2 for airplane mode)

Control state in conversion: kcont_hover=1, kcont_conv=1, kcont_cruise=2

Drive state in conversion: kgear_hover(1)=1, kgear_conv(1)=1, kgear_cruise(1)=1

¢) Systems: MODEL_FWfc=1, MODEL_CVfc=1 (fixed wing flight controls, conversion control)
d) Landing Gear: KIND_LG=1 (retractable)
e) Fuel Tank: place=3 (wing), fFuelWing(1)=L1.

f) Rotor
Configuration: config='main+tiltrotor’, fDGW=.5, fArea=1.; SET_geom="tiltrotor’, KIND_TRgeom=1 (from clearance), fRadius=1., WingForRotor=1
First rotor is right rotor: otherRotor=2
helicopter mode control: INPUT_coll=1, INPUT _Ingcyc=1 (rotor control connection to aircraft controls)
helicopter mode control: T_coll(1,1)=1., T_coll(2,1)=-1., T_Ingcyc(3,1)=-1., T_Ingcyc(4,1)=1.
Second rotor is left rotor: otherRotor=1, rotate=-Rotor(1)%rotate; INPUT_gear=2 (input quantity is gear ratio)
helicopter mode control: INPUT _coll=1, INPUT _Ingcyc=1 (rotor control connection to aircraft controls)
helicopter mode control: T_coll(1,1)=1., T_coll(2,1)=1., T_Ingcyc(3,1)=-1., T_Ingcyc(4,1)=-1.
Airplane mode control state: T_coll(1,2)=1. (collective connection to aircraft control 'coll’)
Tilt: KIND_tilt=1 (shaft control = incidence), incid_ref=90. (helicopter mode reference), SET_Wmove=1, fWmove=1. (wing tip weight move)
control: INPUT _incid=1, T_incid(5,1)=1., T_incid(5,2)=1. (incidence connection to aircraft control 'tilt")
Performance: PRotorlnd%MODEL_twin="tiltrotor’, PRotorInd%Kh_twin=1., PRotorInd%Kf_twin=1., IRotor%MODEL _int_twin=2
Weight: WRotor%KIND_rotor=1 (tilting)
Drag: SET_aeroaxes=2 (tiltrotor), Idrag=90. (tiltrotor)
DRotor%SET_Dhub=1, DRotor%DoQ_hub=0., DRotor%CD_hub=0., DRotor%SET_Vhub=1, DRotor%DoQV_hub=0., DRotor%CDV_hub=0. (no hub drag)

g) Wing
Configuration: fDGW=1., nRotorOnWing=2, RotorOnWing(1)=1, RotorOnWing(2)=2, SET_ext=0
Control: KIND_flaperon=3 (independent), nVincid=1
INPUT _flap=1, INPUT _flaperon=1, INPUT _aileron=1 (wing control connection to aircraft controls)
T_aileron(2,2)=-1. (airplane mode aileron connection to aircraft control 'latcyc’)

17

Input Based on Configuration

T _flap(6,1)=1., T_flap(6,2)=1. (flap direct control)

T_flaperon(7,1)=1., T_flaperon(7,2)=1. (flaperon direct control)

T_aileron(9,1)=1., T_aileron(9,2)=1. (aileron direct control)
Weight: WWing%MODEL_wing=3 (tiltrotor)

h) Tail
Configuration: KIND_TailVol=1, TailVolRef=1 (wing reference); Wtail%MODEL_Htail=2, Wtail%MODEL_Vtail=2 (tiltrotor)
Horizontal tail control: nVincid=1
T_cont(3,2)=1. (airplane mode elevator connection to aircraft control 'Ingcyc’)
T_cont(8,1)=1., T_cont(8,2)=1. (elevator direct control)
Vertical tail control: nVincid=1
T_cont(4,2)=1. (airplane mode rudder connection to aircraft control 'pedal’)
T_cont(10,1)=1., T_cont(10,2)=1. (rudder direct control)

1) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

j) Engine Group

Configuration: fPsize=0.5, SET_geom=1 (tiltrotor)

First engine group: RotorForEngine=1

Second engine group: RotorForEngine=2

Control: INPUT _incid=1; T_incid(5,1)=1., T_incid(5,2)=1. (nacelle incidence connection to aircraft control 'tilt")
Drag: SET_Swet=1, Swet=0., MODEL_drag=0, ldrag=90. (no engine nacelle drag)

DEngSys%SET_drag=1, DEngSys%DoQ=0., DEngSys%CD=0.; DEngSys%SET_Vdrag=1, DEngSys%DoQV=0., DEngSys%CDV=0.

2-6 Compound

a) Components: nRotor=3, nWing=1

b) Aircraft
Aircraft controls: ncontrol=10, IDENT _control="coll’,'latcyc’,'Ingcyc’, pedal’, tailinc’,"elevator’, rudder’,'prop’, aileron’, flap’
Trim states: nstate_trim=11; compound state active

¢) Rotor
First rotor is main rotor: config='main’, fDGW=1., fArea=1., SET_geom='"standard’
rotation: 7 = 1; if (Rotor(1)%rotate < 0) r = —1
control: INPUT _coll=1, INPUT _latcyc=1, INPUT _Ingcyc=1 (rotor control connection to aircraft controls)

18

Input Based on Configuration

control: T_coll(1,1)=1., T_latcyc(2,1)= — r, T_Ingcyc(3,1)=-1.
Second rotor is tail rotor: config="tail+antiQ’, fThrust=1., fArea=0., SET_geom="tailrotor’, mainRotor=1

direction="tail’, WRotor%MODEL_config=2 (tail rotor)

rotation: r = 1; if (Rotor(1)%rotate < 0) r = —1

control: KIND_control=2 (thrust and NFP command); INPUT _coll=1, T_coll(4,1)= — r (rotor collective connection to aircraft control 'pedal’)
Third rotor is propeller: config="prop+auxT’, fThrust=1., fArea=0., SET_geom="standard’

direction="prop’, WRotor%MODEL _config=3 (auxiliary thrust)

control: KIND_control=2 (thrust and NFP command); INPUT _coll=1, T_coll(8,1)=1. (rotor collective connection to aircraft control 'prop’)
Performance: PRotorlnd%MODEL_twin="none’
Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

d) Wing

Configuration: fDGW=1.

Control: nVincid=1
INPUT _flap=1, INPUT _flaperon=1, INPUT _aileron=1 (wing control connection to aircraft controls)
T_aileron(9,1)=1. (aileron direct control)
T_flap(10,1)=1. (flap direct control)

Weight: WWing%MODEL_wing=2 (parametric)

e) Tail

Control: INPUT _incid=1 (tail incidence connection to aircraft controls)

Horizontal tail: T_incid(5,1)=1. (incidence connection to aircraft control 'tailinc’), T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(7,1)=1. (rudder direct control)

f) Propulsion: WDrive%ngearbox=3, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15

2-7 Multicopter

a) Components: nTail=0 (no tail)

b) Rotor
Configuration: config="main+multirotor’, fDGW=1/nRotor, fArea=1., SET_geom="multicopter’
Control: KIND_control=2 (thrust and NFP command); INPUT _coll=1
rotation: 7 = 1; if (rotate < 0) r = —1; a =ang_multicopter
T _coll(1,1)=1., T_coll(2,1)=—sin(a), T_coll(3,1)=cos(a), T_coll(4,1)=r (rotor collective connection to aircraft controls)

Input Based on Configuration 20

Performance: PRotorInd%MODEL_twin="multirotor’; xh_multi=0., xp_multi=0., xf_multi=0., except 1.0 for this rotor
Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

¢) Propulsion: WDrive%ngearbox=nRotor, WDrive%ndriveshaft=nRotor-1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

2-8 Airplane

a) Components: nRotor=1, nWing=1
b) Solution: KIND_Lscale=2 (wing span reference)

¢) Aircraft
Geometry: INPUT_geom=2, KIND_scale=2, kScale=1 (geometry scaled with wing span); KIND_Ref=2, kRef=1 (wing reference)
Aircraft controls: ncontrol=9, IDENT_control="coll’,'latcyc’, Ingcyc’,'pedal’, tailinc’,’elevator’,'rudder’, "aileron’, flap’

coll = propeller, latcyc = lateral stick, Ingcyc = longitudinal stick

d) Systems: MODEL_FWfc=1 (fixed wing flight controls)

e) Rotor
Propeller: config="prop+auxT’, fThrust=1., fDGW=0., SET_geom="standard’
direction="prop’, WRotor%MODEL _config=3 (auxiliary thrust)
Control: KIND_control=2 (thrust and NFP command); INPUT _coll=1, T_coll(1,1)=1. (rotor collective connection to aircraft control 'coll")

f) Wing

Configuration: fDGW=1.

Control: nVincid=1
INPUT _flap=1, INPUT _aileron=1 (wing control connection to aircraft controls)
T_aileron(2,1)=1. (lateral stick), T_aileron(8,1)=1. (aileron direct control)
T_flap(9,1)=1. (flap direct control)

Weight: WWing%MODEL_wing=2 (parametric)

g) Tail: KIND_TailVol=1, TailVolRef=1 (wing reference)

Control: INPUT _incid=1 (tail incidence connection to aircraft controls)

Horizontal tail: T_incid(5,1)=1. (incidence connection to aircraft control 'tailinc’), T_cont(3,1)=1. (longitudinal stick), T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(4,1)=1. (pedal), T_cont(7,1)=1. (rudder direct control)

h) Propulsion: WDrive%ngearbox=1, WDrive%ndriveshaft=1, WDrive%fShaft=0.1

Chapter 3

Parameters and Constants

Parameters Value

ncasemax 10 nfltmax 21 nauxtankmax 4
nfilemax 40 ndesignmax 41 ngearmax 8
nrotormax 16 ncontmax 20 nratemax 20
npropmax 16 nsweepmax 200 nengtmax 20
nengmax 16 gsweepmax 4 nengkmax 6
njetmax 4 ntrimstatemax 20 nengrmax 40
nchrgmax 4 mtrimmax 16 nengpmax 20
nstatemax 10 nvelmax 20 nengcmax 80
nwingmax 8 ntablemax 32 nspeedmax 8
ntailmax 6 nrmax 51 nrowmax 4000
ntankmax 4 mrmax 40 naeromax 100
nmissmax 20 mpsimax 36

nsegmax 40 npanelmax 5

Constants Value

ACTION_error 0 SET_takeoff_transition 6 TRIM_QUANT _tank 21
ACTION_file 1 SET_takeoff_climb 7 TRIM_QUANT_Bmargin 22
ACTION_ident 2 SET_takeoff_brake 8 TRIM_QUANT _rotorL 23
ACTION_list 3 MAX_QUANT _none 0 TRIM_QUANT _rotorfL 24
ACTION_copy 4 MAX_QUANT end 1 TRIM_QUANT CLs 25
ACTION_ init 5 MAX_QUANT _range 2 TRIM_QUANT _rotorV 26
ACTION_delete 6 MAX_QUANT _rangelow 3 TRIM_QUANT _rotorX 27
ACTION_delone 7 MAX_QUANT _range100 4 TRIM_QUANT _rotorfX 28
ACTION_dellast 8 MAX_QUANT rangeVg 5 TRIM_QUANT _CXs 29
ACTION_config 9 MAX_QUANT _rangelowVg 6 TRIM_QUANT_XoQ 30

Parameters and Constants

ACTION_nosize
ACTION_desc
ACTION soln
ACTION_endfile
ACTION_ endcase
ACTION_endjob
STATE_newcase
STATE_onecase
STATE endofjob
STATE_init
STATE size
STATE_miss
STATE_perf
STATE maps
STATE out
SIZE_perf_engine
SIZE_perf_rotor
SIZE_perf_none
SIZE_engine_engn
SIZE_engine_none
SIZE_jet_jet
SIZE_jet_none
SIZE_charge_chrg
SIZE_charge_none
SIZE_rotor_none
SIZE_rotor_radius
SIZE_rotor_thrust
SET _rotor_radius
SET _rotor_ DL
SET rotor_ratio
SET rotor_scale
SET rotor_not_radius
SET_wing_area
SET_wing_WL

Ptk ke
Db W= O

N — N B W~ W =N RN~~~ WD~ R WD~ W

MAX_QUANT _rangel00Vg
MAX_QUANT _climb
MAX_QUANT _angle
MAX_QUANT_power
MAX_QUANT_PoV
MAX_QUANT _alt
MAX_QUANT_Pmargin
MAX_QUANT_Qmargin
MAX_QUANT_PQmargin
MAX_QUANT _Jmargin
MAX_QUANT_PJmargin
MAX_QUANT_QJmargin
MAX_QUANT_PQJmargin
MAX_QUANT_Bmargin
MAX_QUANT_Lmargin
MAX_QUANT_Tmargs
MAX_QUANT_Tmargt
MAX_QUANT_Tmarge
MAX_VAR_none
MAX_VAR_vel
MAX_VAR_ROC
MAX_VAR_side
MAX_VAR_alt

MAX VAR _turn
MAX_VAR_pullup
MAX_VAR_xaccF
MAX_VAR_yaccF

MAX VAR_zaccF

MAX VAR xaccl
MAX_VAR_yaccl

MAX _VAR_zaccl
MAX_VAR_xaccG
MAX_VAR_yaccG
MAX_VAR_zaccG

O o0

-15

TRIM_QUANT _CTs
TRIM_QUANT_Tmargs
TRIM_QUANT_Tmargt
TRIM_QUANT _Tmarge
TRIM_QUANT _rotorP
TRIM_QUANT _betac
TRIM_QUANT _betas
TRIM_QUANT_hubMx
TRIM_QUANT _hubMy
TRIM_QUANT _hubQ
TRIM_QUANT _wingL
TRIM_QUANT _wingfL
TRIM_QUANT_CL
TRIM_QUANT _Lmargin
TRIM_QUANT tailL
TRIM_VAR_not_found
TRIM_VAR_pitch
TRIM_VAR _roll
TRIM_VAR_ROC
TRIM_VAR side
TRIM_VAR_speed
TRIM_VAR_turn
TRIM_VAR_ pullup
TRIM_VAR_Vtip
TRIM_VAR_Nspec
AERO_VAR none
AERO_VAR not_found
AERO_VAR_alpha
AERO_VAR_beta
RCCONFIG_rotorcraft
RCCONFIG_helicopter
RCCONFIG_tandem
RCCONFIG_coaxial
RCCONFIG_tiltrotor

31
32
33
34
35
36
37
38
39
40
41
42
43
44

22

Parameters and Constants

SET_wing_not_area
SET_wing_span
SET_wing_ratio
SET_wing_radius
SET_wing_width
SET_wing_hub
SET_wing_panel
SET_wing_not_span
SET tank_input
SET_tank_miss
SET_tank_fmiss
SET_tank_used
SET_tank_nopower
SET tank_power
SET_SDGW input
SET_SDGW_fDGW
SET_SDGW_fWMTO
SET_SDGW_maxfuel
SET_SDGW._perf
SET_WMTO _input
SET_ WMTO_fDGW
SET_WMTO_fSDGW
SET_WMTO_maxfuel
SET_WMTO_perf
SET limit_input
SET_limit_Ratio
SET_limit_Pav

SET _limit_Preq
SET_GW_none
SET_GW_DGW
SET_GW_SDGW
SET_GW_WMTO
SET_GW_fDGW
SET_GW_fSDGW

N PHA LD RP,OPRWND—~, ULV, AN WDVND~R, P, ORNRWND—R—=OOIOWNPA~W

MAX_VAR_pitch
MAX_VAR_roll
MAX_VAR_Vtip
MAX_VAR_Nspec

SET _vel_general
SET_vel_hover

SET _vel_vert
SET_vel_right
SET vel left

SET _vel_rear

SET _vel_Vfwd
SET_vel_Vmag
SET_vel_climb

SET_vel _VNE

SET _vel_takeoff

SET _vel2_TAS

SET _vel2_CAS
SET_vel2_Mach
SET_atmos_input
SET_atmos_dens

SET _atmos_notair

SET atmos_std
SET_atmos_std_dtemp
SET_atmos_std_temp
SET _atmos_polar
SET_atmos_polar_dtem
SET_atmos_polar_temp
SET_atmos_trop
SET_atmos_trop_dtemp
SET _atmos_trop_temp
SET _atmos_hot
SET_atmos_hot_dtemp
SET_atmos_hot_temp
SET_atmos_hot_table

)

W= == \O0 0NN h WN —
—

b L

0NN AW~

—_— = = O
o = O

13

RCCONFIG_compound
RCCONFIG_multicopter
RCCONFIG_airplane
ROTORCONFIG_main
ROTORCONFIG_tail
ROTORCONFIG_prop
ROTORCONFIG_tandem
ROTORCONFIG_coaxial
ROTORCONFIG_tiltrotor
ROTORCONFIG_not_twin
SET_geom_standard
SET_geom_tiltrotor
SET_geom_coaxial

SET _geom_tandem
SET_geom_tailrotor
SET_geom_multicopter
MODEL_twin_none
MODEL_twin_sidebyside
MODEL_twin_coaxial
MODEL_twin_tandem
MODEL_twin_multirotor
tablevar_none
tablevar V

tablevar_Vh

tablevar_ mu
tablevar_muz
tablevar_alpha

tablevar muTPP
tablevar muzTPP
tablevar_alphaTPP
tablevar CTs
tablevar_Mx
tablevar_Mtip
tablevar_Mat

O AN W= O PR WL, OWUPEAEWNRFRFONANWUMEAWN=JO W

—_ = = \O
NN = O

23

Parameters and Constants

SET_GW_fWMTO
SET_GW._input
SET_GW_maxP
SET_GW_maxQ
SET_GW_maxPQ
SET_GW_maxJ
SET_GW_maxPJ
SET_GW_maxQJ
SET_GW_maxPQJ
SET_GW source
SET_GW fsource
SET_GW_payfuel
SET_GW_paymiss
SET_UL_pay

SET_UL fuel
SET_UL_payfuel
SET_UL_miss
SET_UL_paymiss
SET_pay_none

SET _pay_input
SET_pay_delta
SET_pay_scale
KIND_MissSeg_taxi
KIND_MissSeg_dist
KIND_MissSeg_time
KIND_MissSeg_hold
KIND_MissSeg_climb
KIND_MissSeg_spiral
KIND_MissSeg_fuel
KIND_MissSeg_burn
KIND_MissSeg_takeoff
SET_takeoff_none
SET_takeoff_start
SET_takeoff_groundrun

— = = s e = = e = = O 00) N
01NNk W~ O

N~ OO XTI WD~ PR WD~ OURA WD

SET_Vtip_input
SET_Vtip_ref
SET_Vtip_speed
SET_Vtip_conv
SET_Vtip_hover

SET Vtip_cruise
SET_Vtip_man
SET_Vtip_OEI

SET Vtip_xmsn
SET_Vtip_mu
SET_Vtip_Mtip
SET_Vtip_Mat
SET_Vtip_Nrotor
STATE_LG_default
STATE _LG_extend
STATE_LG_retract
TRIM_QUANT _not_found
TRIM_QUANT _forcex
TRIM_QUANT _forcey
TRIM_QUANT _forcez
TRIM_QUANT_momentx
TRIM_QUANT_momenty
TRIM_QUANT_momentz
TRIM_QUANT _nz
TRIM_QUANT _nx
TRIM_QUANT _ny
TRIM_QUANT_power
TRIM_QUANT_Pmargin
TRIM_QUANT_Qmargin
TRIM_QUANT_powerEG
TRIM_QUANT_Emargin
TRIM_QUANT_FEmargin
TRIM_QUANT _thrust
TRIM_QUANT_Jmargin

0NN AW~

O = = = = O
[SSIN S)

O 0 JANUNh WD~ O~

e e e T T T e S S
NN kWD~ O

SET_panel_free
SET_panel_span
SET_panel_bratio
SET_panel_edge
SET_panel_station
SET_panel_radius
SET_panel_width
SET_panel_hub

SET panel_adjust
SET_panel_area
SET_panel_Sratio
SET_panel_chord
SET_panel_cratio

SET panel_taper

SET tail area

SET _tail_vol

SET _tail_span
SET_tail_AR
SET_tail_chord
MODEL_engine_ RPTEM
MODEL_engine_table
MODEL_engine_recip
MODEL_engine_comp
MODEL_engine_compreact
MODEL_engine_compflow
MODEL_engine_motor
MODEL_engine_gen
MODEL_engine_motorgen
MODEL_engine_simpleeng
MODEL_engine_simplemot
MODEL_jet RPJEM
MODEL_jet_react
MODEL_jet_flow
MODEL_jet_simple

O 0 JNUNn B~ W —O

—
W N = O

—_

)

A OWONRR, P, =2, OO0V WNDR~RWOUERA W
[a—

24

Parameters and Constants

SET_takeoff_enginefail
SET_takeoff_liftoff
SET_takeoff_rotation

N

TRIM_QUANT_FJmargin
TRIM_QUANT _charge
TRIM_QUANT_Cmargin

18
19
20

MODEL_charge_fuelcell
MODEL_charge_solarcell
MODEL_charge simple

—

25

Chapter 4

26

Common: Job

Variable Type Description Default
NDARC
Version (set by main program)
version c*6 number n.n
modification c*32 modification
versionout c*64 string for headers (Version n.n, modification "xxx"
+ Initialization
INIT _input int + input parameters (0 default, 1 last case input, 2 last case solution) 1
INIT_data int + other parameters (0 default, 1 start of last case, 2 end of last case) 0
INIT _input:
if default, all input variables set to default values
if last-case-input, then case inherits input at beginning of previous case
if last-case-solution, then case inherits input at end of previous case
use INIT_input=2 to analyze case #1 design in subsequent cases
INIT_data: if always start-last-case, then case starts from default
if default, all other variables set to default values
+ Errors
ACT _error int + action on error (0 none, 1 exit) 1
ACT _version int + action on version mismatch in input (0 none, 1 exit) 0
+ File open
OPEN_status int + status keyword for write (0 unknown, 1 replace, 2 new, 3 old) 2

Common: Job

nuin
nufile

nuout
nudesign
nuperf
nuaero
nuengine
nugeom
nuacd
nusoln
nusketch
nuerror

kcase
ncase
case_state
job_state

out_design_state

out_perf_state
out_geom_state
out_error_state
nuinit

fscratch

kind_input
nread

int
int

int
int
int
int
int
int
int
int
int
int

int
int
int
int
int
int
int
int
int
FltState

int
int

+ A+ o+

Input/output unit numbers

input
standard input
secondary file input

output
standard output
design (DESIGNn)
performance (PERFn)
airframe aerodynamics (AEROn)
engine performance (ENGINEnR)
geometry output (GEOMETRYn)
aircraft description (AIRCRAFTn)
solution (SOLUTIONN)
sketch output (SKETCHn)
errors (ERRORnN)

default input/output unit numbers usually acceptable
default OPEN_status can be changed as appropriate for computer OS

Analysis
current case number
number of cases (maximum ncasemax)
case state
job state
design output state (1 file open)
performance output state (1 file open)
geometry output state (1 file open)
errors output state (1 file open)
nuout or nuerror
scratch structure

Input

file input status (O for primary file, 1 for secondary file, 2 for aircraft or solution file)

unit number for input (nuin for primary file, nufile for secondary file)

27

40

41
42
43
44
45
46
47
48
49

Common: Job

ninputfile
input_title(nfilemax)
input_created(nfilemax)

theDesign(ncasemax)
thelnput
theLastCaselnput

CPUtime_case_start(ncasemax)

int
c*80
c*20

Design
Design
Design

real

CPUtime_case_end(ncasemax) real

CPUtime_case(ncasemax)
CPUtime_job

real
real

DateTime_case_start(8,ncasemax)

int

DateTime_case_end(8,ncasemax)

Elapsed Time_case(ncasemax)
ElapsedTime_job

nrotor_case
nwing_case

nt
real
real

int
int

Input file identification (stored from action=IDENT data)
number of identifications (maximum nfilemax; first is standard input)
title
creation date

Design
Input
Input from last case

system data = Job + theDesign(ncase) + thelnput + theLastCaselnput

all data structure parameters = input (can be changed by analysis) or other (generated by analysis)
thelnput used for input (not changed by analysis)

theLastCaselnput used to print only what changed from last case

after case input concluded, kcase incremented and thelnput copied to theDesign(kcase)

CPU time

case start

case end

case

job
Clock time

case start

case end
case
job

Case dimensions

number of rotors (Aircraft)
number of wings (Aircraft)

28

Common: Job

ntail_case

ntank_case
npropulsion_case
nenginegroup_case
njetgroup_case
nchargegroup_case
nenginemodel_case
nengineparamn_case
nenginetable_case
nrecipmodel_case
ncompressormodel_case
nmotormodel_case
njetmodel case
nfuelcellmodel_case
nsolarcellmodel case
nbatterymodel_case
ncontrol_case
nstate_control_case
npanel_case(nwingmax)

mauxtanksize_case(ntankmax)

ngear_case(npropmax)
nstate_trim_case

mtrim_case(ntrimstatemax)

nwoful_case

pi
twopi
halfpi
degrad
raddeg

int number of tails (Aircraft)

int number of fuel tank systems (Aircraft)

int number of propulsion groups (Aircraft)

int number of engine groups (Aircraft)

int number of jet groups (Aircraft)

int number of charge groups (Aircraft)

int number of engine models (Aircraft)

int number of engine model parameters (Aircraft)
int number of engine tables (Aircraft)

int number of reciprocating engine models (Aircraft)
int number of compressor models (Aircraft)

int number of motor models (Aircraft)

int number of jet models (Aircraft)

int number of fuel cell models (Aircraft)

int number of solar cell models (Aircraft)

int number of bettery models (Aircraft)

int number of controls (Aircraft)

int number of control states (Aircraft)

int number of wing panels (Wing)

int number of aux tank sizes (FuelTank)

int number of drive system states (Propulsion)

int number of trim states (Aircraft)

int number of trim variables (Aircraft)

int number of other fixed useful load categories (System)

Job constants

real 0

real 2m

real /2

real degree/radian = 180/

real radian/degree = 7/180

29

Common: Job

gravity
density_sls
csound_sls

powerconv
knotsconv
nmconv
massconv
volumeconv

DoQconv23
DoQconv12

uconv_vel
uconv_alt
uconv_pay
uconv_time
uconv_dist
uconv_drag
uconv_ROC
uconv_en

wtconv_hp
wtconv_|Ib
wtconv_frc
wtconv_ft
wtconv_ft2
wtconv_gal
wtconv_slug
wtconv_in
wtconv_kW
wtconv_m

real
real
real

real
real
real
real
real

real
real

real
real
real
real
real
real
real
real

real
real
real
real
real
real
real
real
real
real

30

Case constants

gravity g (ft/sec® or m/sec?)

SLS density po (slug/ft3 or kg/m?)

SLS speed of sound c; (ft/sec or m/sec)
Conversion factors

power (hp from ft-lb/sec; kW from m-N/sec)

speed (knots from ft/sec or m/sec)

range (nm from ft or m)

mass (slug from 1b; kg from kg)

volume (gal from ft; liter from m?)
Conversion factors for scaled D /q

D/q = kW?/3 (ft? from k=m?/kg?/?; m? from k=ft?>/1b>/3; depending on Units_Dscale)

D/q = kW1/2 (ft? from k=m?/kg'/?; m? from k=ft?>/Ib'/2; depending on Units_Dscale)
Conversion factors for mission and flight condition input

velocity (knots from input)

altitude (ft or m from input)

payload (Ib or kg from input)

time (minutes from input)

distance (nm from input)

drag (ft> or m? from input)

rate of climb (ft/sec or m/sec from input)
Conversion factor for energy (MJ from input)
Conversion factors for weight equations

power (hp from hp or kW)

weight (Ib from Ib or kg)

force (Ib from 1b or N)

length (ft from ft or m)

area (ft2 from ft% or m?)

fuel (gal from gal or liter)

slug (slug/Ib or kg/kg)

inches (in/ft or m/m)

power (kW from hp or kW)

meter (m from ft or m)

Common: Job

Econv_kg
Econv L
Econv_dE

DLconv
tonconv
rangeconv

WRITEenergy case

Uwrite
Uwrite_temp
Ukts
UROC
Udist
Utime
UDoQ
Upay

Ualt

Ulen

Uarea

Uvol

Uvel

Utemp

Uwt

Upwr
Ufuelflow
Umassflow
Usfc

Utsfc
Uspecrange
Ufueleff
Uproductivity

real
real
real

real
real
real

int

int

int

c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10

Conversion factors for energy
weight (kg from Ib or kg)
volume (liter from gal or liter)
energyflow (MJ/hr from hp or kW)
Conversion factors
disk loading (Ib/ft? from Ib/ft? or N/m?)
ton (from Ib or kg)
range for fuel=1%GW (nm from 1/(Ib/hp-hr) or 1/(kg/kW-hr), times In(1/.99))

Output
write fuel energy for burn weight

Units for output
analysis units (from Cases)
mission units, temperature (from Cases)
speed (knots, mph, kph, ft/sec, m/sec); uconv_vel
rate of climb (ft/min, ft/sec, m/sec); uconv. ROC
distance (nm, mile, km); uconv_dist
time (min, hr); uconv_time
drag (ft?, m?); uconv_drag
payload (Ib, kg); uconv_pay
altitude (ft, m); uconv_alt
length
area
volume
velocity
temperature
weight
power
fuel flow
mass flow
sfc
thrust sfc
specific range
fuel efficiency
productivity

31

Common: Job

Ufrc

Umom

Uque

Udens
Udiskload
Uenergy
UspecrangeE
UfueleffE
UproductivityE

c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10
c*10

force
moment

dynamic pressure

density

disk loading
energy
specific range
fuel efficiency
productivity

Chapter 5

33

Structure: Design

Variable Type Description Default
Cases Cases Cases

Size Size Size Aircraft for Design Conditions and Missions
OffDesign OffDesign Mission Analysis

Performance Performance Flight Performance Analysis

MapEngine MapEngine Map of Engine Performance

MapAero MapAero Map of Airframe Aerodynamics

Solution Solution Solution Procedures

Cost Cost Cost

Emissions Emissions Emissions

Aircraft Aircraft Aircraft

Systems Systems Systems

Fuselage Fuselage Fuselage

LandingGear LandingGear Landing Gear

Rotor(nrotormax) Rotor Rotors

Wing(nwingmax) Wing Wings

Tail(ntailmax) Tail Tails

FuelTank(ntankmax)
Propulsion(npropmax)
EngineGroup(nengmax)
JetGroup(njetmax)
ChargeGroup(nchrgmax)
EngineModel(nengmax)
EngineParamN(nengpmax)
EngineTable(nengmax)
RecipModel(nengmax)
CompressorModel(nengmax)
MotorModel(nengmax)
JetModel(njetmax)

FuelTank Fuel Tank Systems
Propulsion Propulsion Groups
EngineGroup Engine Groups

JetGroup Jet Groups

ChargeGroup Charge Groups
EngineModel Engine Models
EngineParamNMEngine Model Parameters
EngineTable Engine Tables
RecipModel Reciprocating Engine Models
CompressorMé&dupressor Models
MotorModel Motor Models

JetModel Jet Models

Structure: Design

FuelCellModel(nchrgmax)
SolarCellModel(nchrgmax)
BatteryModel(ntankmax)

FuelCellModelFuel Cell Models
SolarCellModd&olar Cell Models
BatteryModelBattery Models

34

Chapter 6

35

Structure: Cases

Variable Type Description Default
+ Case Description
title c*100 + title
subtitlel c*100 + subtitle
subtitle2 c*100 + subtitle
subtitle3 c*100 + subtitle
notes c*1000 + notes
ident c*32 + identification
timedate c*20 time-date identification
+ Case Tasks (0 for none)
TASK_Size int + size aircraft for design conditions 1
TASK_Mission int + mission analysis 1
TASK_Perf int + flight performance analysis 1
TASK_Map_engine int + map of engine performance 0
TASK_Map_aero int + map of airframe aerodynamics 0
Turn off all tasks to just initialize and check the model, including geometry and weights
+ Write Input Parameters
WRITE_input int + selection (0 none, 1 all, 2 first case) 2
WRITE_input_TechFactors int + TechFactors (0 for none) 1
WRITE_input_Geometry int + Geometry (0 for none) 1

Structure: Cases

OUT _design
OUT_perf
OUT_geometry
OUT _aircraft
OUT _solution
OUT _sketch
OUT _error

FILE_design
FILE perf
FILE_geometry
FILE_aircraft
FILE_solution
FILE_sketch
FILE_engine
FILE aero
FILE error

WRITE_page
WRITE_design
WRITE_wt_level
WRITE_wt_long
WRITE_energy
WRITE_flight
WRITE_files

WRITE_sketch_load
WRITE_sketch_cond

ksketch

int
int
int
int
int
int
int

c*256
c*256
c*256
c*256
c*256
c*256
c*256
c*256
c*256

int
int
int
int
int
int
int
int
int
int

SR T T T T S S S S S S S e R T T e T T T T T i o e

Output

selection (0 for none)

design file

performance file

geometry file

aircraft description file
solution file (1 text, 2 binary)
sketch file

errors file

file name or logical name (blank for default logical name)

design file (DESIGNn)

performance file (PERFn)

geometry file (GEOMETRYn)

aircraft description file (AIRCRAFTn)
solution file (SOLUTIONnN)

sketch file (SKETCHn)

engine performance file (ENGINEnN)
airframe aerodynamics file (AEROnN)
errors file (ERRORnN)

formats

page control (0 none, 1 form feed, 2 extended Fortran)
design (1 first case only, 2 all cases)

weight statement, max level (1 to 5)

weight statement, style (0 omit zero lines, 1 all lines)

fuel energy for burn weight (0 for none)

flight state, component loads (0 for none)

design, performance, or geometry (1 single file of all cases)
sketch component forces (0 none)

sketch flight condition (0 none, 1 design, 2 performance)
flight condition number

selected files are generated for each case (n = case number in default name)

option single file of all cases for design, performance, or geometry (form feed between cases)

size and analysis tasks can produce design and performance files

same information as in standard output, in tab-delimited form

36

O OO o o oo

OO H OO, OO N -

Structure: Cases

SET_grav
grav

density_ref
csound_ref

Units

Units_miss
Units_vel
Units_alt
Units_pay
Units_time
Units_dist
Units_temp
Units_drag
Units_ ROC

Units_Dscale
Units_energy

int
real

real
real

int

int
int
int
int
int
int
int
int
int

int
int

+ 4+ + + + +

+ 4+ + A+ A+ +

aircraft or solution file can be read by subsequent case or job
geometry file has information for graphics and other analyses
sketch file has information to check geometry and solution (DXF format)

flight condition required to use Euler angles, control and incidence, component forces
engine map task (TASK_Map_engine) produces engine performance file
airframe aerodynamics map task (TASK_Map_aero) produces airframe aerodynamics file
error messages to standard output (OUT _error=0) or separate file (OUT _error=1)

Gravity
specification (0 standard, 1 input)
input gravitational acceleration g
Environment
reference density (0. for air at SLS)
reference speed of sound (0. for air at SLS)

Units
analysis units (1 English, 2 SI)
units for input of missions and flight conditions
override default units (0 no, 1 yes)
velocity units (0 knots; 1 mile/hr, 2 km/hr, 3 ft/sec, 4 m/sec)
altitude units (O ft or m; 1 ft, 2 m)
payload units (0 1b or kg; 1 Ib, 2 kg)
time units (0 minutes; 1 hours)
distance units (0 nm; 1 miles; 2 km)
temperature (0 For C; 1 F, 2 C)
drag units (0 ft? or m?; 1 ft2,2 m?)
rate of climb units (0 ft/min; 1 ft/sec, 2 m/sec)
units for parameters
input D/q scaled with gross weight (0 analysis default, 1 English, 2 SI)
units for energy input and output (1 MJ, 2 kWh)

Analysis units: must be same for all cases in job
English: ft-slug-sec-F; weights in 1b, power in hp (internal units)
SI: m-kg-sec-C; weights in kg, power in kW (internal units)

37

O OO OO0 oOo oo

Structure: Cases

inCases

inSize
inSizeCondition(nfltmax)
inSizeMission(nmissmax)
inOffDesign
inOffMission(nmissmax)
inPerformance
inPerfCondition(nfltmax)
inMapEngine

inMapAero

inSolution

lastSizeCondition
lastSizeMission
lastOffMission
lastPerfCondition

Units_ ACD
inAircraftFile
inSolutionFile

int
int

int
int
int
int
int
int
int
int

int
int
int
int
int
int
int

Weight in the design description is actually mass
pounds converted to slugs using reference gravitational acceleration
Default units for flight condition and mission: override with Units_xxx
speed in knots, time in minutes, distance in nm, ROC in ft/min
Input Efuel_cap, Eaux_cap always MJ; internal energy units MJ
If load aircraft description or solution file, checked that Units not changed

Input for case
Cases
Size
SizeCondition
SizeMission
OffDesign
OffMission
Performance
PerfCondition
MapEngine
MapAero
Solution
Last input
SizeCondition
SizeMission
OffMission
PerfCondition
Units
Units from aircraft description or solution file
aircraft description file (0 not loaded)
solution file (0 not read)

case input of other structures recorded in Aircraft structure
there must be input for systems, fuselage, landing gear, fuel tank
there must be input for all structures used

38

Chapter 7

39

Structure: Size

Variable Type Description Default
Size Aircraft for Design Conditions and Missions

SizeParam SizeParam Parameters
Sizing Flight Conditions

FltCond(nfltmax) FltCond conditions

FltState(nfltmax) FltState conditions
Design Missions

Mission(nmissmax) Mission missions

Chapter 8

40

Structure: SizeParam

Variable Type Description Default
+ Size Aircraft for Design Conditions and Missions
title c*100 + title
notes c*1000 + notes
+ Sizing Method
SIZE_perf(npropmax) c*16 + quantity sized from performance ‘engine’
SIZE_engine(nengmax) c*16 + engine group sized from performance 'none’
SIZE_jet(njetmax) c*16 + jet group sized from performance jet’
SIZE_charge(nchrgmax) c*16 + charge group sized from performance 'none’
SIZE_param int + parameter iteration (0 not required) 0
SET_rotor(nrotormax) c*32 + rotor parameters 'DL+Vtip+CWs'
SET_wing(nwingmax) c*16 + wing parameters "WL+aspect’
FIX_DGW int + design gross weight (0 calculated, 1 fixed) 0
FIX_WE int + weight empty (0 calculated, 1 fixed, 2 scaled) 0
SET_tank(ntankmax) c*16 + fuel tank capacity "miss’
SET_SDGW c*16 + structural design gross weight "f(DGW)'
SET_WMTO c*16 + maximum takeoff weight 'f(DGW)'
SET_limit_ds(npropmax) c*16 + drive system torque limit 'ratio’

size task (Cases%TASK_Size=1): at least one nFltCond or nMission
no size task (Cases%TASK_Size=0): size input specifies how fixed aircraft determined

SIZE_perf: size power-producing engines of propulsion group
‘engine’ = power from maximum of power required for all designated conditions and missions
"rotor’ = radius from maximum of power required for all designated conditions and missions
'none’ = power required not used to size engine/rotor
flight conditions and missions (max GW, max effort, or trim)
that have zero power margin are not used to size engine or rotor
that have zero torque margin are not used to size transmission

Structure: SizeParam

41

SIZE_engine: size power-consuming engines of engine group
‘engine’ = power from maximum of power required for all designated conditions and missions
flight conditions and missions (max GW, max effort, or trim)
that have zero power margin are not used to size engine group
designated only for engine groups that consume power
engine groups that produce power sized with propulsion group (SIZE_perf)
'none’ = power required not used to size engine group
SIZE jet:
"jet’ = thrust from maximum of thrust required for all designated conditions and missions
'none’ = thrust required not used to size jet group
flight conditions and missions (max GW, max effort, or trim)
that have zero thrust margin are not used to size jet group
SIZE_charge:
"charge’ = power from maximum of power required for all designated conditions and missions
'none’ = power required not used to size charge group
'SIZE_param’: use to force parameter iteration

SET_rotor, rotor parameters: required for each rotor

rotor parameters: input three or two quantities, others derived
SET_rotor = input three of ('radius’ or disk loading 'DL’ or 'ratio’), '"CWSs', 'Vtip', 'sigma’
except if SIZE_perf="rotor’: SET_rotor = input two of 'CWSs', 'Vtip’, 'sigma’ for one or more main rotors
SET _rotor = 'ratio+XX-+XX' to calculate radius from radius of another rotor
tip speed is Vtip_ref for drive state #1

rotor parameters for an antitorque or aux thrust rotor:
SET_rotor = input three of ('radius’ or 'DL’ or 'ratio’ or 'scale’), 'CWs', 'Vtip', 'sigma’
SET_rotor = 'scale+XX+XX' to calculate tail rotor radius from parametric equation,

using main rotor radius and disk loading

thrust from designated sizing conditions and missions (DESIGN_thrust)

SET_wing, wing parameters: for each wing; input two quantities, other two derived
SET_wing = input two of (‘area’ or wing loading 'WL'), ('span’ or 'ratio’ or 'radius’or 'width’ or 'hub’ or 'panel’),
"chord’, aspect ratio 'aspect’
SET_wing = 'ratio+XX' to calculate span from span of another wing
SET_wing = 'radius+XX’ to calculate span from rotor radius
SET_wing = 'width+XX’ to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)

Structure:

SizeParam

SET_wing = 'hub+XX’ to calculate span from rotor hub position (tiltrotor)
SET_wing = 'panel+XX’ to calculate span from wing panel widths

FIX_DGW: input DGW restricts SIZE_perf, SET_GW parameters
FIX_WE: fixed or scaled weight empty obtained by adjusting contingency weight

scaled with design gross weight: Wgp=dWE+WE*W

SET_tank, fuel tank sizing: usable fuel capacity Wfuel_cap (weight) or Efuel_cap (energy)

'input’ = input Wfuel_cap or Efuel_cap
'miss’ = calculate from mission fuel used
Wfuel_cap or Efuel_cap = max(fFuel_cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))
"f(miss)’ = function of mission fuel used
Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*((maximum mission fuel)+(reserve fuel))
'used’ = calculate from maximum fuel quantity in tank during mission
Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*(maximum fuel in tank)

"XX+power' = and calculate from mission battery discharge power

SET_SDGW, structural design gross weight:

"input’ = input
'f(DGW)' = based on DGW; W p=dSDGW+SDGW*Wp,

'f(WMTO)' = based on WMTO; Wgp=dSDGW+HSDGW*W ;10
'maxfuel’ = based on fuel state; Wsp=dSDGW+HSDGW*W s, W5 = Wp-Wfuel DGW+fFuelSDGW*Wiiel—cap

'perf’ = calculated from maximum gross weight at SDGW sizing conditions (DESIGN_sdgw)
Aircraft input parameters: dSDGW, fSDGW, fFuelSDGW
SET_WMTO, maximum takeoff weight:

"input’ = input
'f(DGW)' = based on DGW; W;70=dWMTO+WMTO*W p

'f(SDGW)' = based on SDGW; W ;70=dWMTO+HWMTO*Wgsp
'maxfuel’ = based on maximum fuel; W70=dWMTO+HWMTO*W g, Wg = Wp-Wfuel DGW+Wiyel—cap

'perf’ = calculated from maximum gross weight at WMTO sizing conditions (DESIGN_wmto)

Aircraft input parameters: dWMTO, fWMTO

Structure: SizeParam

iSIZE_perf(npropmax)
iSIZE_engine(nengmax)
iSIZE_jet(njetmax)
iSIZE_charge(nchrgmax)
iSIZE_rotor(nrotormax)

iSET _rotor_radius(nrotormax)

FIX_rotor_CWSs(nrotormax)
FIX_rotor_Vtip(nrotormax)
FIX_rotor_sigma(nrotormax)
iSET_wing_area(nwingmax)
iSET_wing_span(nwingmax)
FIX_wing_chord(nwingmax)

int

int
int
int

int
int
int
int
int
int
int

SET_limit_ds, drive system torque limit: input (use Plimit_xx) or calculate (from fPlimit_xx)
"input’ = Plimit_ds input
'ratio’ = from takeoff power, fPlimit_ds) (Neng Peng)
'Pav’ = from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Qret/Qprim) Y (Neng Pav)
'Preq’ = from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Qrer/Qprim) Y (Neng Preq)
engine shaft limit also uses EngineGroup%SET_limit_es
rotor shaft limit also uses Rotor%SET_limit_rs, rotor limits only use power required (or input)

input required to transmit sized rotorcraft to another job (through aircraft description file) or to following case:

turn off sizing: Cases%TASK_size=0, Cases%TASK_mission=1, Cases% TASK_perf=1
fix aircraft: use ACTION="nosize’, or
SIZE_perf="none’, SIZE_engine="none’, SIZE_jet="none’, SIZE_charge="none’
SET_rotor="radius+Vtip+sigma’, SET_wing='area+span’, FIX_DGW=1
SET tank='input’, SET _limit_ds='input’, SET_SDGW='"input', SET_WMTO='"input’
with wing panels: SET_wing="WL+panel’, Wing%SET_panel="width-+taper’,’span-+taper’

Specification

performance (SIZE_perf_engine, rotor, none)
performance (SIZE_engine_engn, none)
performance (SIZE_jet_jet, none)
performance (SIZE_charge_chrg, none)
rotor sized (SIZE_rotor_radius, thrust, none)

rotor radius (SET _rotor_radius, DL, ratio, scale, not_radius)

rotor Cyy /o (1 fixed, O not)

rotor Viip (1 fixed, O not)

rotor o (1 fixed, O not)

wing area (SET_wing_area, WL, not_area)

wing span (SET_wing_span, ratio, radius, width, hub, panel, not_span)
wing chord (1 fixed, 0 not)

43

Structure: SizeParam

FIX_wing_AR(nwingmax) int wing aspect ratio (1 fixed, O not)
iSET_tank(ntankmax) int fuel tank (SET_tank_input, miss, fmiss, used)
iSET_tank_power(ntankmax) int fuel tank (SET_tank_nopower, power)
iSET_SDGW int SDGW (SET_SDGW _input, fDGW, fWMTO, maxfuel, perf)
iISET_WMTO int WMTO (SET_WMTO _input, fDGW, fSDGW, maxfuel, perf)
iSET_limit_ds(npropmax) int drive system torque limit (SET_limit_input, ratio, Pav, Preq)

Number of conditions and missions
nSIZE_perf(npropmax) int conditions and missions for size engine or rotor
nSIZE_engine(nengmax) int conditions and missions for size engine group
nSIZE_jet(njetmax) int conditions and missions for size jet group
nSIZE_charge(nchrgmax) int conditions and missions for size charge group
nDESIGN_GW int design conditions and missions for DGW
nDESIGN_xmsn(npropmax) int design conditions and missions for transmission
nDESIGN_sdgw int design conditions for SDGW
nDESIGN_wmto int design conditions for WMTO
nDESIGN_tank int design missions for fuel tank
nDESIGN_thrust int design conditions and missions for rotor thrust

Size aircraft
kind_iter_size int kind iteration, performance (0 none, 1 size engine or radius, or engine group, or jet group, or charge group)
kind_iter_param int kind iteration, parameters (0 none, 1 calculate parameters)
issizeconv int converged (0 not)
count_size int number of iterations, performance loop
count_param int number of iterations, parameter loop
count_total int total number of iterations

error ratio

error_engine(nengmax) real engine
error_jet(njetmax) real jet
error_charge(nchrgmax) real charge
error_rotor(nrotormax) real rotor
error DGW real DGW
error_xmsn(npropmax) real Plimit
error_sdgw real structural design gross weight
error_wmto real maximum takeoff weight

error_tank real Wfuelcap (rms all tanks)

Structure: SizeParam

error_thrust(nrotormax)
error WE

resid_engine(nengmax)
resid_jet(njetmax)
resid_charge(nchrgmax)
resid_rotor(nrotormax)
resid_DGW
resid_xmsn(npropmax)
resid_sdgw

resid wmto
resid_tank(ntankmax)
resid_thrust(nrotormax)
resid WE
Pratio(npropmax)
Eratio(nengmax)
Jratio(njetmax)
Cratio(nchrgmax)
nFltCond_out
nMission_out

nFltCond

nMission

real
real

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
int

int

int

int

+ 4+ + +

thrust

WE
residual (difference after one size iteration)

engine power Peng = P

jet thrust Tjet = Tjes

charge power Pchrg = Py

rotor radius R

design gross weight DGW

transmission limit Plimit_ds = Ppsiimit

structural design gross weight SDGW

maximum takeoff weight WMTO

fuel capacity Wfuel_cap = Wryel—cap Or Efuel_cap = Efyel—cap

rotor design thrust Tdesign

weight empty WE
ratio Peqpc/Pavpe (max all sizing conditions and missions)
ratio Pregrc/Pavec (max all sizing conditions and missions)
ratio Treqsc/Tavsc (max all sizing conditions and missions)
ratio Preqoc/Pavce (max all sizing conditions and missions)
number of conditions for output
number of missions for output

Sizing Flight Conditions

number of conditions (maximum nfltmax)
Design Missions

number of missions (maximum nmissmax)

input one condition (FltCond and FltState variables) in SizeCondition namelist

input one mission (MissParam, MissSeg, and FltState variables) in SizeMission namelist
all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays
each variable gets one more dimension, first array index is always segment number

45

Chapter 9

46

Structure: OffDesign

Variable Type Description

Default

Mission Analysis
OffParam OffParam Parameters
Mission(nmissmax) Mission Missions

47

Chapter 10

Structure: OffParam

Variable Type Description Default
+ Mission Analysis

title c*100 + title

notes c*1000 + notes

Analyze mission

nMission_out int number of missions for output
+ Missions
nMission int + number of missions (maximum nmissmax) 0

mission analysis input required if Cases% TASK_Mission=1

input one mission (MissParam, MissSeg, and FltState variables) in OffMission namelist
all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays
each variable gets one more dimension, first array index is always segment number

Chapter 11

48

Structure: Performance

Default

Variable Type Description

Flight Performance Analysis
PerfParam PerfParam Parameters

Performance Flight Conditions
FltCond(nfltmax) FltCond conditions

FltState(nfltmax) FltState conditions

Chapter 12

49

Structure: PerfParam

Variable Type Description Default
+ Flight Performance Analysis
title c*100 + title
notes c*1000 + notes
Analyze performance
nFltCond_out int number of conditions for output (including sweeps)
nsweep_total int total number of sweep conditions
+ Performance Flight Conditions
nFltCond int + number of conditions (maximum nfltmax) 0

flight performance analysis input required if Cases% T TASK_Perf=1

input one condition (FltCond and FltState variables) in PerfCondition namelist

Chapter 13

50

Structure: MapEngine

Variable Type Description Default
+ Map of Engine Performance
title c*100 + title
notes c*1000 + notes
+ Identification
kEngineGroup int + engine group 1
KIND_map int + Kind (1 performance, 2 model) 1
engine map only available for RPTEM model and reciprocating engine model (performance only)
engine map input required if Cases%TASK_Map_engine=1
only performance parameters or only model parameters used
+ Performance
+ independent variables (0 none, 1 altitude, 2 temperature, 3 flight speed, 4 engine speed, 5 power)
SET _var(5) int + first set 0
SET _var2(5) int + second set 0
WRITE_header int + output format (1 single header, 2 header for inner variable) 2
SET_atmos c*12 + atmosphere specification "std’
+ altitude h (Units_alt)
altitude_min real + minimum 0.
altitude_max real + maximum 20000.
altitude_inc real + increment 1000.
altitude_base real + baseline 0.

Structure: MapEngine

temp_min
temp_max
temp_inc
temp_base

Vkts_min
Vkts_max
Vkts_inc
Vkts_base
SET_rpm
Nturbine_min
Nturbine_max
Nturbine_inc
Nturbine_base
SET_power
power_min
power_max
power_inc
power_base
STATE_IRS
KIND_loss

real
real
real
real

real
real
real
real
int

real
real
real
real
int

real
real
real
real
int

int

R i T o S S I T S A

temperature 7 or temperature increment A7" (Units_temp)
minimum
maximum
increment
baseline
flight speed V' (TAS, Units_vel)
minimum
maximum
increment
baseline
engine speed N (1 rpm, 2 percent)
minimum
maximum
increment
baseline
power required (1 power, 2 fraction of power available (0. to 1.+)
minimum
maximum
increment
baseline
IR suppressor system state (O off, hot exhaust; 1 on, suppressed exhaust)
installation losses (0 for none)

51

100.
10.

200.

independent variables: 1 to 5 variables, last is innermost loop; outer loop is always rating
quantities not identified as independent variables fixed at baseline values

SET_atmos, atmosphere specification:
determines whether temp_xxx is temperature or temperature increment
'std’ = standard day at specified altitude (use altitude_xxx)
"temp’ = standard day at specified altitude, and specified temperature (use altitude_xxx, temp_xxx)
'dtemp’ = standard day at specified altitude, plus temperature increment (use altitude_xxx, temp_xxx)
see FltState%SET_atmos for other options (polar, tropical, and hot days)

Structure: MapEngine

nV_model
V_model(10)
V_min
V_max

V inc

ntheta_model
theta_model(10)
theta_min
theta_max

theta _inc

fN_min
fN_max
fN _inc

fP_min
fP_max
fP_inc

kEngineModel
iSET_atmos
nSET _var

int

real
real
real
real

int

real
real
real
real

real
real
real

real
real
real

int
int
int

T T i S S S S e S e e T

Model
flight speeds V(TAS, Units_vel)

52

number (maximum 10) 1
values 0.
minimum 0.
maximum 400.
increment 50.
temperature ratio 7'/7;
number (maximum 10) 1
values 1.
minimum .8
maximum 1.1
increment .02
engine speed, N/Ngpec (percent)
minimum 90.
maximum 110.
increment 5.
fraction static MCP power, P/ Pyc
minimum 1
maximum 2.
increment 1
RPTEM model

performance: fuel flow, mass flow, net jet thrust, optimum turbine speed

vs power fraction and airspeed (use fP and V_model)
turbine speed: power ratio vs turbine speed and airspeed (use fN and V_model)
power available: specific power, mass flow, power, fuel flow

vs temperature ratio (use theta and V_model)

vs airspeed (use V and theta_model)

Specification
engine model
atmosphere (SET_atmos_xxx)
number of independent variable sets

53

Chapter 14

Structure: MapAero

Variable Type Description Default
+ Map of Airframe Aerodynamics
title c*100 + title
notes c*1000 + notes
+ Tables
KIND_table int + kind (1 one-dimensional, 2 multi-dimensional) 1
+ aerodynamic loads (0 for components off)
SET_fuselage int + fuselage and landing gear 1
SET _tail int + tails 1
SET_wing int + wings 1
SET _rotor int + rotors 1
SET_engine int + engines and fuel tank 1
airframe aerodynamics map input required if Cases%TASK_Map_aero=1
multi-dimensional: generate 6 files of three-dimensional tables
one file for each load=DRAG, SIDE, LIFT, ROLL, PITCH, YAW
filename=FILE aero//load or AEROn//load
one-dimensional: generate 1 file of all six loads
function of single independent variable = var_lift(1)
+ Operating Condition
STATE_control int + aircraft control state 1
STATE_LG c*12 + landing gear state "retract’

Nauxtank(nauxtankmax,ntankmax)
int + number of auxiliary fuel tanks N,yxtank (€ach aux tank size) 0

Structure: MapAero

SET_extkit

KIND _alpha
SET_comp_control
control(ncontmax)
tilt

alpha

beta

var_lift(3)
var_drag(3)
var_side(3)
var_pitch(3)
var_roll(3)
var_yaw(3)

angle_lowinc
angle_highinc
angle_low
angle_max

control_lowinc
control_highinc
control_low
control_max

gamma_lowinc
gamma_highinc
gamma_low
gamma_max

int
int
int
real
real
real
real

c*16
c*16
c*16
c*16
c*16
c*16

real
real
real
real

real
real
real
real

real
real
real
real

+ 4+ + + + + +

I T T T S S S S S e I T I I I s

wing extension kit on aircraft (O none, 1 present)

angle of attack and sideslip angle representation (1 conventional, 2 reversed)
use component control (0 for ¢ = T'cac; 1 forc = Teac + o)

aircraft controls

tilt

angle of attack a

sideslip angle

54

o = o=

co oo

landing gear state: STATE_LG="extend’, 'retract’ (keyword = ext, ret)

Independent variables

lift

drag

side force
pitch moment
roll moment
yaw moment

Variable range

angle of attack and sideslip variation
low range increment (deg)
high range increment (deg)
low range value (deg)
maximum value (deg)

control variation
low range increment (deg)
high range increment (deg)
low range value (deg)
maximum value (deg)

third independent variable
low range increment (deg)
high range increment (deg)
low range value (deg)
maximum value (deg)

40.
180.

45.
90.

20.
20.
60.
60.

Structure: MapAero

iISTATE LG

nvar(6)
ivar(3,6)

nang
ang(naeromax)
ncnt
cnt(naeromax)
ngam
gam(naeromax)

int

int
int

int
real
int
real
int
real

var_load identify independent variables
only var_lift(1) used for KIND_table=one-dimensional
values: 'alpha’, 'beta’, IDENT_control(ncontrol)
var_load(2) blank for 1D table, var_load(3) blank for 2D table
alpha/beta/controls/tilt fixed if not independent variable (tilt replace control(ktilt))
assume control system defined so aircraft controls connected to flaperon, elevator, aileron, rudder

angle, control, gamma variation: by lowinc for -low to +low; by highinc to -max and +max
maximum total values = naeromax

Operating Condition
landing gear state (STATE_LG_extend, retract)
Independent variables (AERO_VAR_none, alpha, beta, or control number)
number of independent variables
variables (drag, side, lift, roll, pitch, yaw)
Tables
number of angles (maximum naeromax)
angle values
number of controls (maximum naeromax)
control values
number of gamma (maximum naeromax)
gamma values

55

Chapter 15

56

Structure: FltCond

Variable Type Description Default
+ Sizing or Performance Flight Condition
title c*100 + title
label c*8 + label
+ Specification
SET_GW c*12 + gross weight 'DGW’
GW real + input gross weight Wg 0.
dGW real + gross weight increment 0.
fGW real + gross weight factor 1.
dPav(npropmax) real + power increment, each propulsion group 0.
fPav(npropmax) real + power factor, each propulsion group 1.
dTav(njetmax) real + thrust increment, each jet group 0.
fTav(njetmax) real + thrust factor, each jet group 1.
SET_WIlimit c*12 + gross weight limit 'none’
Wilimit real + input gross weight limit 0.
SET alt int + altitude (O input, 1 from KIND_source) 0
+ source for gross weight and altitude
KIND_source int + kind (1 size mission, 2 size condition, 3 off design mission, 4 performance condition) 1
kSource int + mission or condition number 0
kSegment int + segment number 0
seg_source int + segment (1 start, 2 midpoint) 1
SET_UL c*12 + useful load 'pay’
Whpay real + input payload weight W, (Units_pay) 0.
Npass int + number of passengers Npaqs 0
Wpay_cargo real + cargo Weargo (Units_pay) 0.
Wopay_extload real + external load Wy _10aq (Units_pay) 0.
Wpay _ammo real + ammunition W mo (Units_pay) 0.
Wpay_weapons real + weapons Wieapons (Units_pay) 0.

Structure: FltCond

dFuel(ntankmax)
fFuel(ntankmax)
SET_auxtank(ntankmax)
mauxtank(ntankmax)
dNauxtank(ntankmax)

real
real
int
int
int

Nauxtank(nauxtankmax,ntankmax)

dWcrew
dNcrew
dWoful(10)
dWequip
dNcrew_seat
dNpass_seat

SET_foldkit
SET_extkit(nwingmax)
SET_wingkit(nwingmax)
SET otherkit
DESIGN_engine
DESIGN_jet
DESIGN_charge
DESIGN_GW
DESIGN_xmsn
DESIGN_sdgw
DESIGN_wmto
DESIGN_thrust

int

real
int
real
real
int
int

int
int
int
int
int
int
int
int
int
int
int
int

+ 4+ + + + +

T i T i S S e e S A

fuel tank system
fuel weight or energy increment
fuel capacity factor
auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 0 no change)
tank size changed (-1 first, -2 first size already used, m for m-th size)
number tanks added or dropped

number of auxiliary fuel tanks N,yxtank (€ach aux tank size)
fixed useful load
crew weight increment
number of crew increment ¢ N ew
other fixed useful load increment (nWoful categories)
equipment weight increment
crew seat increment 0 Nerew—scat
passenger seat increment 6 Npags—scat
kits on aircraft (0 none, 1 present)
folding kit
wing extension kit
wing kit on aircraft
other kit on aircraft
design condition for power (1 to use for engine sizing)
design condition for jet thrust (1 to use for jet group sizing)
design condition for charge power (1 to use for charge group sizing)
design condition for DGW (1 to use for DGW calculation)
design condition for transmission (1 to use for transmission sizing)
design condition for SDGW (1 to use for SDGW calculation)
design condition for WMTO (1 to use for WMTO calculation)
design condition for antitorque or aux thrust (1 to use for rotor sizing)

label is short description for output
sizing flight condition: use all parameters except sweep
fixed gross weight conditions not used to determine DGW, SDGW, WMTO
(set DESIGN_GW=0, DESIGN_sdgw=0, DESIGN_wmto=0)
condition not used to size engine or rotor if power margin fixed (max GW, max effort, or trim)
condition not used to size transmission if zero torque margin (max GW, max effort, or trim)

57

co0o PP

e e = e T = O = S G S o S ST SRR T

Structure: FltCond

performance flight condition: not use DESIGN_xx
SET_GW, SET_UL values determine which input parameters used

SET_GW, set gross weight Wg:

'DGW’ = design gross weight Wp; input (FIX_DGW) or calculated

'SDGW' = structural design gross weight Wgp (may depend on DGW)

'WMTO’ = maximum takeoff gross weight W ;o (may depend on DGW)

'f(DGW)' = function DGW: fGW*W p+dGW

'f(SDGW)' = function SDGW: fGW*Wgp+dGW

"f(WMTO)' = function WMTO: fGW*Wj;ro+dGW

"input’ = input (use GW)

'source’ = gross weight from specified mission segment or flight condition (KIND_source)

"f(source)’ = function of source: fGW*Wyoyrce+dGW

'maxP’, 'max’ = maximum GW for power required equal specified power: Py, = fPavP,, + dPav
min((f Pawpe + d) — Pregpa) = 0, over all propulsion groups

'maxQ’ = maximum GW for transmission torque equal limit: zero torque margin
min(Piyis — Preq) = 0, over all propulsion groups, engine groups, and rotors

'maxPQ’, 'maxQP’ = maximum GW for power required equal specified power and transmission torque equal limit
most restrictive of power and torque margins

'maxJ’ = maximum GW for jet thrust required equal specified thrust: T}, = fTavly, + dTav
min((fTpwsc + d) — Treqia) = 0, over all jet groups

'maxPJ’, 'maxQJ’, 'maxPQJ’ = maximum GW for most restrictive of power, torque, and thrust margins

'pay+fuel’ = input payload and fuel weights; gross weight fallout

SET_WIlimit: weight limit for SET_GW="max’

'none’ = no limit

'f(DGW)' = function DGW: fGW*W p+dGW

'f(SDGW)’ = function SDGW: fGW*Wgp+dGW

"f(WMTO)' = function WMTO: fGW*Wj;70+dGW

'input’ = input (use Wlimit)

SET_UL, set useful load: with fixed useful load adjustments in fallout weight
'pay’ = input payload weight (Wpay); fuel weight fallout
"fuel’ = input fuel weight (dFuel, fFuel, Nauxtank); payload weight fallout
'pay+fuel’ = input payload and fuel weights; gross weight fallout

if SET_GW="pay+fuel’, assume SET_UL same (actual SET_UL ignored)

58

Structure: FltCond

SET_sweep int
KIND_sweep int
INIT_sweep int
nquant_sweep int
quant_sweep(gsweepmax) c*12
sweep_first(qsweepmax) real
sweep_last(qsweepmax) real
sweep_inc(gsweepmax) real
nsweep(gsweepmax) int

sweep(nsweepmax,qsweepmax) real

+ 4+ 4+ A+ A+ o+ +

59

KIND_source, source for gross weight or altitude: source must be solved before this condition
calculation order: size missions, size conditions, off design missions, performance conditions

input fuel weight: W1 = min(dFuel+fFuelsWiyel—cap, Wruel—cap) + > NauxtanksWaux—cap

auxiliary fuel tanks: SET_auxtank used for fallout fuel weight (SET_UL='"pay’)
adjust Nauxtank for first fuel tank system with SET_auxtank >0
otherwise number of auxiliary fuel tanks fixed at input value

payload: only Wpay used if SET_Wpayload = no details
crew: only dWcrew used if SET_Wocrew = no details
equipment: dNcrew_seat and dNpass_seat require non-zero weight per seat

Parameter sweep

sweep (0 for none, 1 from list, 2 from range)
kind (1 single sweep sequence, 2 nested sweeps)
initialize trim (O for not)
number of swept quantities (1 to gsweepmax)
quantity (parameter name)
range
first parameter value
last parameter value
parameter increment
list
number of values (maximum nsweepmax)
parameter values

= O = O

Parameter sweep: only for performance flight conditions, not sizing flight conditions
maximum total number of values for all conditions is nsweepmax
KIND_sweep: single sweep, simultaneously varying nquant_sweep quantities; or nquant_sweep nested sweeps
Sweeps executed from sweep_last to sweep_first
sweep analyzed using single data structure, only solution for sweep_first saved (last value executed)
sweep_last (first value executed) should be condition that will converge
sign of parameter step determined by sign of (sweep_last-sweep_first); sign of sweep_inc ignored

Structure: FltCond

parent
kFitCond
kcol_out

iSET_GW

iSET_maxGW
iSET_WIlimit

iSET UL
iSETPmargin(npropmax)
iSETQmargin(npropmax)
iSETEmargin(nengmax)
iSET Jmargin(njetmax)
iSETCmargin(nchrgmax)
iSETBmargin(ntankmax)
isFIX_GW

int
int
int

int
int
int
int
int
int
int
int
int
int
int

Single sweep sequence: only use nsweep(1)
sweep_inc of first quantity determines number of values, sweep_inc of other quantities not used
INIT_sweep: control/pitch/roll values of trim iteration initialized from previous condition of sweep
Auvailable parameters: quant_sweep = parameter name
GW, dGW, fGW, dPavn, fPavn, dTavn, fTavn, Wpay, dFueln, fFueln, dWcrew, dWequip
Vkts, Mach, ROC, climb, side, pitch, roll, rate_turn, nz_turn, bank_turn, rate_pullup, nz_pullup
ax_linear, ay_linear, az_linear, nx_linear, ny_linear, nz_linear
altitude, dtemp, temp, density, csound, viscosity, HAGL
controln, coll, latcyc, Ingcyc, pedal, tilt, Vtipn, Npecn, fPower, fThrust, fCharge, fTorque
DoQ_pay, fDoQ_pay, DoQV_pay, dSLcg, dBLcg, dWLcg, trim_targetn
n = propulsion group (Vtip, Nspec, dPav, fPav), jet group (dTav, fTav), fuel tank system, control number, or trim quantity
n = 1 if absent from quant_sweep
for fPower, value is factor on input fPower for all engine groups, all propulsion groups
for fThrust, value is factor on input fThrust for all jet groups
for fCharge, value is factor on input fCharge for all charge groups
for fTorque, value is factor on input fTorque for for all propulsion groups

parent (1 Size, 2 Performance)
FltCond number
performance output column (first for sweep)

Specification
gross weight (SET_GW_xxx)
max gross weight (0 no iteration; SET_GW_maxP, maxQ, maxPQ, maxJ, maxPJ, maxQJ, maxPQJ)
max gross weight limit (0 none, SET_GW_xxx)
useful load (SET_UL_pay, fuel, payfuel)
power margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size engine or rotor
torque margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size transmission
power margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size engine group
jet thrust margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size jet group
charger power margin as quantity (1 trim); not used to size charge group
battery power margin as quantity (2 max effort, 1 trim); not used to size fuel tank
fixed gross weight; DESIGN_GW=0, DESIGN_sdgw=0, DESIGN_wmto=0

60

Structure: FltCond

kquant_sweep(gsweepmax) int
label sweep c*8
msweep(gsweepmax) int
vsweep(nsweepmax,gsweepmax)
real
fPower_original(nengmax) real
fThrust_original(njetmax) real

fCharge_original(nchrgmax) real
fTorque_original(npropmax) real

Parameter sweep
quantity number
quantity column label (first parameter)
number of values

parameter values

fraction of rated engine power available
fraction of rated jet thrust available
fraction of rated charger power available
fraction of rated drive system torque limit

61

Chapter 16

62

Structure: Mission

Variable

Type Description Default
Mission Profile
MissParam MissParam Parameters

MissSeg(nsegmax)
FltState(nsegmax)

Mission Segments
MissSeg mission segments
FltState flight conditions

Chapter 17

63

Structure: MissParam

Variable Type Description Default

+ Mission Profile
title c*100 + title
label c*8 + label

+ Specification
SET_GW c*16 + mission takeoff gross weight W 'pay+miss’
GW real + input gross weight 0.
dGW real + gross weight increment 0.
fGW real + gross weight factor 1.
SET_WIlimit c*16 + gross weight limit 'none’
Wilimit real + input gross weight limit 0.
SET_UL c*¥16 + useful load 'pay+miss’
Whpay real + input takeoff payload weight W, (Units_pay) 0.
Npass int + number of passengers Ny 0
Wpay_cargo real + cargo Weargo (Units_pay) 0.
Whpay_extload real + external load Wy _10aq (Units_pay) 0.
Wpay ammo real + ammunition W nmo (Units_pay) 0.
Wpay_weapons real + weapons Wieapons (Units_pay) 0.
SET_pay c*16 + payload changes "delta’

+ fuel tank systems
FIX_missfuel(ntankmax) int + mission fuel weight (O calculated, 1 fixed) 0
dFuel(ntankmax) real + fuel weight or energy increment 0.
fFuel(ntankmax) real + fuel capacity factor 1.
SET_auxtank(ntankmax) int + auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 3 increase at start and drop, 0 no change) 1
mauxtank(ntankmax) int + tank size changed (-1 first, -2 first size already used, m for m-th size) -1
dNauxtank(ntankmax) int + number tanks added or dropped 1
Nauxtank(nauxtankmax,ntankmax)

int + number of auxiliary fuel tanks N, yxtank (€ach aux tank size)

Structure: MissParam

SET foldkit
SET _reserve
fReserve

dist_inc
time_inc

alt_inc

VTO inc
hTO_inc
DESIGN_engine
DESIGN_jet
DESIGN_charge
DESIGN_GW
DESIGN_xmsn
DESIGN_tank
DESIGN_thrust

int
int
real

real
real
real
real
real
int
int
int
int
int
int
int

+ 4+ F o+

fixed useful load
folding kit on aircraft (O none, 1 present)
fuel reserve (1 fraction mission fuel, 2 fraction fuel capacity, 3 only mission segments)
fuel reserve fraction fies
split segments
distance increment (Units_dist)
time increment (Units_time)
altitude increment (Units_alt)
takeoff velocity increment
takeoff height increment
design mission for power (1 to use for engine sizing)
design mission for jet thrust (1 to use for jet group sizing)
design mission for charge power (1 to use for charge group sizing)
design mission for DGW (1 to use for DGW calculation)
design mission for transmission (1 to use for transmission sizing)
design mission for fuel tank (1 to use for fuel tank capacity)
design mission for antitorque or aux thrust (1 to use for rotor sizing)

64

100.
30.
2000.
10.
10.

e el e e e e

label is short description for output

sizing mission: use all parameters
fixed gross weight missions not used to determine DGW (set DESIGN_GW=0)
mission segment not used to size engine or rotor if power margin fixed (max GW, max effort, or trim)
mission segment not used to size transmission if zero torque margin (max GW, max effort, or trim)
mission segment not used for sizing if set MissSeg%SizeZZZ=0

off design mission: not use DESIGN_xx

SET_GW, SET_UL values determine which input parameters used

SET_GW, set mission takeoff gross weight Wg:
'DGW’ = design gross weight Wp; input (FIX_DGW) or calculated
'SDGW' = structural design gross weight Wsp (may depend on DGW)
'WMTO'’ = maximum takeoff gross weight W7o (may depend on DGW)
'f(DGW)' = function DGW: fGW*W p+dGW
'f(SDGW)’ = function SDGW: fGW*Wgp+dGW
"f(WMTO)' = function WMTO: fGW*Wjy;ro+dGW

Structure: MissParam

65

'input’ = input (use GW)

'maxP’, 'max’ = maximum GW for power required equal specified power: P,.., = fPavF,, + dPav
at mission segment MaxGW, minimum gross weight of designated segments
min((fPyvpa + d) — Pregpa) = 0, over all propulsion groups

'maxQ’ = maximum GW for transmission torque equal limit: zero torque margin
at mission segment MaxGW, minimum gross weight of designated segments
min(Piimit — Preq) = 0, over all propulsion groups, engine groups, and rotors

'maxPQ’, 'maxQP’ = maximum GW for power required equal specified power and transmission torque equal limit
at mission segment MaxGW, minimum gross weight of designated segments
most restrictive of power and torque margins

'maxJ’ = maximum GW for jet thrust required equal specified thrust: T}.., = fTavTy, + dTav
at mission segment MaxGW, minimum gross weight of designated segments
min((fTawsc + d) — Treqra) = 0, over all jet groups

'maxPJ’, 'maxQJ’, 'maxPQJ’ = maximum GW for most restrictive of power, torque, and thrust margins

'pay—+fuel’ = input payload and fuel weights; gross weight fallout

'pay+miss’ = input payload, fuel weight from mission; gross weight fallout

SET_WIlimit: weight limit for SET_GW="max’

'none’ = no limit

'f(DGW)' = function DGW: fGW*W p+dGW

'f(SDGW)' = function SDGW: fGW*Wgp+dGW

"f(WMTO)' = function WMTO: fGW*Wj;ro0+dGW

'input’ = input (use Wlimit)

SET_UL, set useful load:
'pay’ = input payload weight (Wpay); fuel weight fallout
"fuel’ = input fuel weight (dFuel, fFuel, Nauxtank); initial payload weight fallout
'miss’ = fuel weight from mission; initial payload weight fallout
'pay+fuel’ = input payload and fuel weights; gross weight fallout
'pay+miss’ = input payload, fuel weight from mission; gross weight fallout

if SET_GW="pay+fuel’ or 'pay+miss’, assume SET_UL same (actual SET_UL ignored)
FIX_missfuel only used for SET_UL='miss’ or 'pay+miss’, with more than one fuel tank system

Structure: MissParam

KIND_Segint

relax_miss
relax_range
relax_gw
toler_miss
trace_miss

int

real
real
real
real
int

+ 4+ 4+ + + + + +

SET_pay, set payload changes: mission segment payload (use of MissSeg%xWpay)

'none’ = no changes

'input’ = value; payload = xWpay (not use Wpay)

'delta’ = increment; payload = (initial payload weight)+(xWPay—xWpay(segl))

'scale’ = factor; payload = (initial payload weight)*(xWPay/xWpay(segl))
when SET_GW="max’ and SET_UL="fuel’ or 'miss’ (so payload is fallout), payload (from SET_pay and xWpay) must
not be zero at the maximum GW segments

payload: only Wpay and xWpay used if SET_Wpayload = no details

input fuel weight: Wiyer = min(dFuel+fFuel«Weuel—cap; Wiuel—cap) + 2 Nauxtank«Waux—cap
for fallout fuel weight, this is the initial value for the mission iteration

auxiliary fuel tanks:
SET_auxtank options: fixed; or adjust Nauxtank for each segment; or
increase at mission start, then constant; or increase at start, then drop
for input fuel (SET_UL = 'fuel’ or 'pay+fuel’), start with input Nauxtank, then drop
for mission fuel (SET_UL = 'miss’ or 'pay+miss’), fixed Wiye or Fyye at start
for fallout (SET_UL = "pay’), adjust Wy,e1 with change in Nauxtank (fixed Wg — Whay = Wo + Weyel)
for all SET_UL, adjust W with change in Nauxtank
fuel tank design mission: Nauxtank=0, allow Wt or Et,e1 to exceed tank capacity

SET _reserve: maximum of fuel for designated reserve mission segments
and fraction of fuel (fresWhurn OF fres Eburn) Or fraction of fuel capacity (fres Weuel—cap OF fres Ffucl—cap)

Segment integration

method (0 segment start, 1 segment midpoint, 2 trapezoidal)
Mission iteration (supersede Solution input if nonzero)

relaxation factor (mission fuel)

relaxation factor (range credit)

relaxation factor (max takeoff GW)

tolerance (fraction reference)

trace iteration (0 for none)

66

cooo

o

Structure: MissParam

nSeg

parent
kMission
kcol_out

iSET_GW

iSET_maxGW
nSET_maxGW

iSET Wlimit

iSET UL

iSET_pay
iSETPmargin(npropmax)
iSETQmargin(npropmax)
iSETEmargin(nengmax)
iSETJmargin(njetmax)
iSETCmargin(nchrgmax)
iSETBmargin(ntankmax)
isFIX_GW

nreserve
nadjust
kind_adjust
kind_range
ntakeoff

kind_iter

int

int
int
int

int
int
int
int
int
int
int
int
int
int
int
int
int

int
int
int
int
int

int

67

+ Mission Segments
+ number of mission segments (maximum nsegmax) 1

input all mission segments as arrays in single mission namelist

parent (1 Size, 2 OffDesign)
Mission number
performance output column

Specification
gross weight (SET_GW_xxx)
max gross weight (SET_GW_maxP, maxQ, maxPQ, maxJ, maxPJ, maxQJ, maxPQJ)
number max gross weight segments
max gross weight limit (0 none, SET_GW_xxx)
useful load (SET_UL_pay, fuel, payfuel, miss, paymiss)
payload changes (SET_pay_none, input, delta, scale)
power margin as quantity (all mission segments); not used to size engine or rotor
torque margin as quantity (all mission segments); not used to size transmission
power margin as quantity (all mission segments); not used to size engine group
jet thrust margin as quantity (all mission segments); not used to size jet group
charger power margin as quantity (all mission segments); not used to size charge group
battery power margin as quantity (all mission segments); not used to size fuel tank
fixed gross weight; DESIGN_GW=0

Segments
number reserve segments
number adjustable segments
kind adjustable (0 none, 1 distance, 2 time)
kind range credit (0 none, 1 all forward, 2 all backward, 3 both)
number takeoff segments
Iteration
kind iteration (0 none, 1 calculate mission fuel, 2 adjust mission, 3 only range credit or integration)

Structure: MissParam

ismissconv
count_miss
error_miss(3)

resid_fuel(ntankmax)
resid_rangecredit
resid_ TOGW

isFirstSol

GW _to

GW_endmiss

GW _end
WHuel_to(ntankmax)
Wrfuel_add(ntankmax)
Wrfuel_endmiss(ntankmax)
Wfuel_end(ntankmax)
Wfuel_max(ntankmax)
Wruel_net(ntankmax)
Whburn(ntankmax)
Wres(ntankmax)
Wfuel_miss(ntankmax)
Efuel_to(ntankmax)
Efuel_add(ntankmax)
Efuel_endmiss(ntankmax)
Efuel_end(ntankmax)
Efuel_max(ntankmax)
Efuel_net(ntankmax)
Eburn(ntankmax)
Eres(ntankmax)
Efuel_miss(ntankmax)
exceedP

exceedQ

exceedJ

exceedC

int
int
real

real
real
real

int

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
int

int

int

int

converged (0 not)
number of iterations
error ratio (Wfuel, range credit, takeoff GW)
residuals (difference after one mission iteration)
fuel Wfuel or Efuel
range credit
takeoff gross weight

Mission quantities

first solution (initialize GW_to and Wfuel_to)

takeoff gross weight (start of mission)

gross weight (end of mission, excluding reserve segments; last non-reserve segment)
gross weight (end of mission; last segment)

takeoff fuel weight (start of mission)

added fuel weight (fill/add/drop during mission)

fuel weight (end of mission, excluding reserve segments; last non-reserve segment)
fuel weight (end of mission; last segment)

maximum fuel weight in tank (all segments)

maximum net (burn-add) fuel used (all segments)

weight fuel burned Wi,y

weight reserve fuel W5 (maximum of fraction or reserve segments)

calculated mission fuel weight (Whurn + Wies)

takeoff fuel energy (start of mission)

added fuel energy (fill/add/drop during mission)

fuel energy (end of mission, excluding reserve segments; last non-reserve segment)
fuel energy (end of mission; last segment)

maximum fuel energy in tank (all segments)

maximum net (burn-add) fuel energy used (all segments)

energy fuel burned Eypp

energy reserve fuel E,.s (maximum of fraction or reserve segments)

calculated mission fuel energy (Epum + Eres)

exceed power available: any mission segment Preqpc > (1 + €) Py pc

exceed torque available: any mission segment P,.qpg > (1 + €) Ppsiimit

exceed jet thrust available: any mission segment T}cqyc > (1 + €)Tuvic

exceed charger power available: any mission segment P,cqcc > (1 + €)Pavca

68

Structure: MissParam

exceedWf
exceedB

endurance
range

airdist
blockspeed
range_factor
range_factorE
fuel eff
fuel_effE
productivity_o
productivity f
productivity fE
fuelflow
energyflow
spec_range
spec_rangeE

Ttrip
Ndep

TF

ASM
COP
COPmaint
COPfuel
COPlabor
COPcrew
COPpers
COPdep
COPins
COPfin
COPETS
Ctrip

int
int

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

exceed fuel capacity: any mission segment Wiyer > (1 + €)Wiyel—cap OF Etyel > (1 + €) Efyel—cap

exceed battery power: any mission segment |Ebatt| > (1 + €)Pax

Total mission, excluding reserve segments

endurance £/, block time (min)

range R (nm)

air distance (nm)

block speed (kts; range/endurance)

range factor RF = R/ In(W;, /(Wi — Whurn)) (nm)
range factor RF' = R/ Epym (nm/MJ)

fuel efficiency e = Wpay R/ Whurn (ton-nny/Ib or ton-nm/kg)
fuel efficiency e = Wyay R/ Ebyrn (ton-nm/MJ)
productivity p = Wiy V/Wo (ton-kt/lb or ton-kt/kg)
productivity p = Wyay V/Whurn (ton-kt/Ib or ton-kt/kg)
productivity p = Wyay V/ Ebyrn (ton-kt/MJ)

average fuel flow Wy, /E (Ib/hr or kg/hr)

average energy flow Ey. /E (MJ/hr)

average specific range R/Whym (nm/1b or nm/kg)
average specific range R/ Epyn (nm/MJ)

Cost

trip time Tiyip = Tiniss + INF
number of depatures per year B/T},ip,
flight hours per year Tr = Tiniss Ndep
available seat miles

yearly operating cost Co p (maintenance + fuel + crew + depreciation + insurance + finance + ETS)

yearly operating cost, maintenance
yearly operating cost, fuel
yearly operating cost, labor
yearly operating cost, crew
yearly operating cost, personnel
yearly operating cost, depreciation
yearly operating cost, insurance
yearly operating cost, finance
yearly operating cost, ETS

trip operating cost Cop/Naep

69

Structure: MissParam

Cpass real passenger operating cost Clyip / (INVpass LoadFactor,/100)
xmaint real operating cost fraction, maintenance
xfuel real operating cost fraction, fuel
xcrew real operating cost fraction, crew or personnel
xdep real operating cost fraction, depreciation
xins real operating cost fraction, insurance
xfin real operating cost fraction, finance
xETS real operating cost fraction, ETS
DOC real direct operating cost 100Cop/ASM
Emissions Trading Scheme (kg CO2, per mission)
ETS real total
ETS_fuel real fuel burned
ETS_energy real energy used
Weight of emissions (kg, per mission)
W_CO2 real carbon dioxide
W_NOx real NO,.
W_H20 real water vapor
W_soot real soot
W_S04 real sulphates
Average Temperature Response (deg C)
ATR real total
ATR_noAIC real total without AIC
ATR_CO2 real carbon dioxide
ATR_CH4 real NO,. - methane
ATR_O3L real NO,, - ozone (long life)
ATR_03S real NO,, - ozone (short life)
ATR_H20 real water vapor
ATR_soot real soot
ATR_SO4 real sulphates

ATR_AIC real aviation induced cloudiness

70

Chapter 18

71

Structure: MissSeg

Variable Type Description Default
+ Segment definition
label_seg c*8 + label N
kind c*12 + kind "dist’
dist real + distance D (Units_dist) 0.
time real + time T" (Units_time) 0.
+ segment
reserve int + reserve (0 for not) 0
adjust int + adjustable for flexible mission (0 for not) 0
range_credit int + segment number for range credit (0 for no reassignment) 0
ignore int + ignore segment (0 for not) 0
copy int + copy segment (source segment number) 0
split int + split segment (number segments; —1 calculated; O for not split) 0
SET_tank(ntankmax) int + segment fuel use or replace 0
dTank(ntankmax) real + fuel increment 0.
fTank(ntankmax) real + fuel factor 1.
SET _refuel(ntankmax) int + refuel (0 not, 1 fill all tanks, 2/8 add fuel, 3/9 drop fuel, 4-5 fill/add below rWfuel, 6-7 fill/add below mWfuel) 0
xWfuel(ntankmax) real + fuel weight or energy change 0.
rWfuel(ntankmax) real + threshold fraction 0.
mWfuel(ntankmax) real + threshold weight or energy 0.
+ gross weight
MaxGW int + maximize gross weight (0 not) 0
dPav(npropmax) real + power increment, each propulsion group 0.
fPav(npropmax) real + power factor, each propulsion group 1.
dTav(njetmax) real + thrust increment, each jet group 0.
fTav(njetmax) real + thrust factor, each jet group 1.
+ useful load
xWpay real + payload weight change (Units_pay) 0.
xNpass int + number of passengers increment § Npags 0

Structure: MissSeg

+ fixed useful load
dWecrew real + crew weight increment
dNcrew int + number of crew increment 6 N¢pow
dWoful(10) real + other fixed useful load increment (nWoful categories)
dWequip real + equipment weight increment
dNcrew_seat int + crew seat increment 0 Nerow—seat
dNpass_seat int + passenger seat increment 6 Npass—seat
+ kits on aircraft (O none, 1 present)
SET_extkit(nwingmax) int + wing extension kit
SET_wingkit(nwingmax) int + wing kit
SET otherkit int + other kit
SET _alt int + altitude at start of segment (0 input, 1 from previous segment, 2 from kSeg_alt)
kSeg_alt int + source of altitude
+ design mission (0 to not use segment for sizing)
SizeEngine int + power
SizeJet int + jet thrust
SizeCharge int + charger power
SizeGW int + DGW
SizeXmsn int + transmission
SizeThrust int + antitorque or aux thrust

segment kind
kind="taxi’, 'idle’: taxi/warm-up mission segment (use time)
kind="dist’: fly segment for specified distance (use dist)
kind="time': fly segment for specified time (use time)
kind="hold’, 'loiter’: fly segment for specified time (use time), fuel burned but no distance added to range
kind="climb’: climb/descend from present altitude to next segment altitude
kind='spiral’: climb/descend from present altitude to next segment altitude, fuel burned but no dist added to range
kind="fuel’: use or replace specified fuel amount, calculate time and distance
kind="burn’, 'charge’: use or replace specified fuel amount, calculate time but no distance added to range
kind="takeoff’, 'TQ': takeoff distance calculation

only one of reserve, adjust, range_credit designations for each segment
reserve: time and distance not included in block time and range

[== co PP o e

Y e e e

Structure: MissSeg

range credit: to facilitate specification of range
range calculated for this segment credited to segment = range_credit
range_credit segment must be kind="dist’, specified distance is for group of segments
actual distance flown in range_credit segment is specified dist less distances from other segments
if credit to earlier segment, iteration required
adjustable: for SET_UL not 'miss’, can adjust one or more segments
if more than one segment adjusted, must be all kind="dist’ or all kind="time’/"hold’
adjust time or distance based on fuel burn (proportional to initial values)

split segment: number specified, or calculated from MissParam%dest_inc, time_inc, alt_inc
ignore segment: removed from input; segments using MaxGW, range_credit, FltCond%KIND_source can not be ignored

SET_tank: segment fuel use or replace for kind="fuel’ or 'burn’; distance and time calculated
SET_tank = 0: no requirement
SET _tank = 1: target dTank+fTank*Wpye1—cap Or dTank+fTank* Eyel—cap
SET_tank = 2: target dTank+fTank™* Wy or dTank+fTank™® Ef,e
SET_tank = 3: increment dTank+fTank™Wyel—cap OF dTank+fTank™ Eryel—cap
SET tank = 4: increment dTank+fTank*Wjyye or dTank+fTank* Eye
charge if E < 0 (not based on keyword, increment always positive)
target limited by capacity, if target already achieved then no requirement
increment limited by current fuel (use) or capacity minus current fuel (replace)

SET _refuel, refuel: change at start of segment; weight or energy; no contribution to distance or time
SET_refuel = 1: fill all tanks (including any auxiliary tanks installed)
SET refuel = 2: add fuel xWfuel
SET _refuel = 3: drop fuel xWfuel
SET _refuel = 4: if below fraction rWfuel of fuel capacity (including auxiliary tanks), fill all tanks
SET _refuel = 5: if below fraction rWfuel of fuel capacity (including auxiliary tanks), add xWfuel
SET refuel = 6: if below mWfuel, fill all tanks
SET refuel = 7: if below mWfuel, add xWfuel
SET_refuel = 8: add fraction rWfuel of fuel capacity (including auxiliary tanks)
SET_refuel = 9: drop fraction rWfuel of fuel capacity (including auxiliary tanks)
added fuel limited by capacity (unless sizing fuel tank); not used for first segment
xWfuel positive (add or drop determined by SET _refuel)

73

Structure: MissSeg

SET _takeoff
Vkts_takeoff
climb_takeoff
height_takeoff
slope_ground
friction
t_decision
t_rotation
nz_transition

c*12
real
real
real
real
real
real
real
real

+ 4+ + + + ++ + o+

74

maximize gross weight: MaxGW designate segments if SET_GW="maxP’ or 'maxQ’ or 'maxPQ’

climb/descend or spiral segment: end altitude is that of next segment; last segment kind can not be climb or spiral
begin altitude is that input for this segment (SET_alt=0), or altitude of previous segment (SET _alt=1),

payload: only Wpay and xWpay used if SET_Wpayload = no details
xNpass is change from MissParam%Npass

crew: only dWcrew used if SET_Wcrew = no details

equipment: dNcrew_seat and dNpass_seat require non-zero weight per seat

Takeoff distance calculation

takeoff segment kind 'none’
ground speed or climb speed (knots, CAS) 0.
climb angle relative ground v (deg) 0.
height during climb £ (ft or m) 0.
slope of ground ¢ (+ for uphill; deg) 0.
friction coefficient p 0.04
decision delay after engine failure ¢; (sec) 15
rotation time £ (sec) 2.0
transition load factor ntpr 1.2

takeoff distance calculation: set of consecutive kind="takeoff’ segments
first segment identified by SET_takeoff='"start’ (V' = 0)
last segment if next segment is not kind="takeoff’, or is SET_takeoff="start’

takeoff segment kind
SET_takeoff='start’, 'ground run’ (keyword = ground or run), 'engine fail’ (keyword = eng or fail)
SET takeoff='liftoff’, 'rotation’, 'transition’, 'climb’, 'brake’

each segment requires appropriate configuration, trim option, max effort specification
not use dist, time, reserve, adjust, range_credit, SET_refuel, MaxGW, SET _alt
max_var="alt’ not allowed in maximum effort
velocity specification (SET_vel) and HAGL superseded; SET_turn=SET_pullup=0

can split segment (except start, rotation, transition): split height for climb, velocity for others
splitting liftoff or engine failure segment produces additional ground run segments

Structure: MissSeg

parent
kMission
kMissSeg
kcol_out

ikind
SET _foldkit

int
int
int
int

int
int

75

separate definition of multiple ground run, climb, brake segments allows configuration variations
define takeoff profile in terms of velocities

integrate acceleration vs velocity to obtain time and distance

segments correspond to ends of integration intervals

analysis checks for consistency of input velocity and calculated acceleration

analysis checks for consistency of input height and input/calculated climb angle

takeoff distance definition: includes SET_takeoff='liftoff’ segment
order: start, ground run, engine failure, ground run, liftoff, rotation, transition, climb
only one liftoff; only one engine failure, rotation, transition (or none)
engine failure before liftoff; all ground run before liftoff, all climb after liftoff
accelerate-stop distance definition: does not have SET_takeoff="liftoff’ segment
order: start, ground run, engine failure, brake
only one engine failure (or none)

engine failure segment (if present) identifies point for decision delay
until t_decision after engine failure segment, use engine rating, fPower, fraction of engine failure segment
so engine failure segment corresponds to conditions before failure

number of inoperative engines specified by nEnglnop for each segment
if engine failure segment present, nEnglnop specification must be consistent

parent (1 Size, 2 OffDesign)
Mission number

MissSeg number
performance output column

Specification

kind (MissSeg_kind_taxi, dist, time, hold, climb, spiral, fuel, burn)
folding kit on aircraft (O none, 1 present)

Structure: MissSeg

Segments
kind_range int this segment receives range credit (0 not, 1 source forward, 2 source backward, 3 both)
fadjust real adjustment ratio (initial time or dist ratio)
wassplit int split segment (number segments; O for not split)
ksplit_first int first segment after split
ksplit_last int last segment after split
dWpay real payload increment (xWpay—xWpay(segl)) or factor (xWpay/xWpay(segl))
iISET_maxGW int max gross weight (0 no iteration; SET_GW_maxP, maxQ, maxPQ, maxJ, maxPJ, maxQJ, maxPQJ + maxGW)
iSETPmargin(npropmax) int power margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETQmargin(npropmax) int torque margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETEmargin(nengmax) int power margin as quantity (3 max GW, 2 max effort, 1 trim)
iSET Jmargin(njetmax) int jet thrust margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETCmargin(nchrgmax) int charger power margin as quantity (1 trim)
iSETBmargin(ntankmax) int battery power margin as quantity (2 max effort, 1 trim)
Maximum gross weight
ismaxgwconv int converged (0 not)
count_maxgw int number of iterations
error_maxgw real error ratio
GW._inc real gross weight increment

Takeoff distance calculation

iSET_takeoff int takeoff segment kind (SET_takeoff_xxx)
VCAS_TO real ground speed or climb speed (CAS)
V_TO real ground speed (ft/sec or m/sec)
climb_TO real angle relative ground (deg)
isConsistent_TO int consistent acc and V change, climb and h change
FxG_TO real net force ' — D (ground axes)
FzG_TO real net force W — L (ground axes)
FzGmu_TO real friction drag puF.q

acc_TO real acceration (ground axes)

h_TO real height (ft or m)

t TO real time (sec)

s TO real distance (ft or m)

time_ TO real cumulative time (sec)

dist_ TO real cumulative distance (ft or m)

Structure: MissSeg

rating_original(nengmax)
krate_original(nengmax)
fPower_original(nengmax)
rating_jet_original(njetmax)

krate_jet_original(njetmax)

fThrust_original(njetmax)

c*12

nt
real

c*12

int
real

rating_charge_original(nchrgmax)

c*12

krate_charge_original(nchrgmax)

fCharge_original(nchrgmax)
friction_original
kSegEF_TO

speed

Vclimb
fuelflow(ntankmax)
energyflow(ntankmax)

speed_start

Vclimb_start
fuelflow_start(ntankmax)
energyflow_start(ntankmax)
speed_end

Vclimb_end
fuelflow_end(ntankmax)
energyflow_end(ntankmax)
alt_start

alt_end

Wind

groundspeed

nt
real
real
int

real
real
real
real

real
real
real
real
real
real
real
real
real
real
real
real

original value for engine failure decision (from FltAircraft)
engine rating
engine rating
fraction of rated engine power available

jet rating

jet rating
fraction of rated jet thrust available

charger rating

charger rating
fraction of rated charger power available
friction coefficient

engine failure segment (0 for none)

Performance (from FltState; at start or midpoint)
horizontal speed V}, (knots)
climb velocity V, (ft/sec or m/sec)
fuel flow w (Ib/hr or kg/hr)
energy flow E (MJ/hr)
trapezoidal integration
horizontal speed V},
climb velocity V.
fuel flow w
energy flow E
horizontal speed V},
climb velocity V,
fuel flow w
energy flow E
altitude h at start of segment (ft or m)
altitude h at end of segment (from start of next segment, only used for kind="climb’ or 'spiral’)
Headwind V,, (knots)
Ground speed V; =V}, — V,, (knots)

77

Structure: MissSeg

T
D

otherDpast
otherDfuture

dR

airdist
Whburn(ntankmax)
WHfuel_add(ntankmax)
Wrfuel_start(ntankmax)
Eburn(ntankmax)
Efuel_add(ntankmax)
Efuel_start(ntankmax)
GW _start

ETS
ETS_fuel
ETS_energy

W_CO2
W_NOx
W_H20
W _soot
W_S04

ATR
ATR_noAIC
ATR_CO2
ATR_CH4
ATR_O3L
ATR_03S
ATR_H20
ATR soot
ATR_SO4

real
real
real
real
real
real
real
real
real
real
real
real
real

real
real
real

real
real
real
real
real

real
real
real
real
real
real
real
real
real

Mission segment quantities

time 71" (minutes)

ground distance D (nm)

distance from past range credit (nm)
distance from future range credit (nm)
range contribution d R (nm)

air distance (nm)

fuel burned Wy (Ib or kg)

fuel added or dropped at start of segment
fuel weight Wiy (segment start)

fuel burned Eyyrn (MJ)

fuel added or dropped at start of segment
fuel energy E'ye (segment start)

gross weight W (segment start)

Emissions Trading Scheme (kg CO2, per mission)

total
fuel burned
energy used

Weight of emissions (kg, per mission)

carbon dioxide
NO,.

water vapor
soot

sulphates

Average Temperature Response (deg C)

total

total without AIC
carbon dioxide

NO,. - methane

NO,, - ozone (long life)
NO,, - ozone (short life)
water vapor

soot

sulphates

78

Structure: MissSeg

ATR_AIC
El_NOx(ntankmax)
fPto(nengmax)

real
real
real

aviation induced cloudiness
Elno, =Y. EIw/ Y w, input or turboshaft calculated, weighted for engine group
fp = Py/P,, for w

79

Chapter 19

80

Structure: FltState

Variable Type Description Default
Flight State
FltAircraft FltAircraft Aircraft
Components
FltFuse FltFuse fuselage
FltGear FltGear landing gear
FltRotor(nrotormax) FltRotor rotors
FltWing(nwingmax) FltWing wings
FltTail(ntailmax) FltTail tails
FltTank(ntankmax) FltTank fuel tank systems
FltProp(npropmax) FltProp propulsion groups
FItEngn(nengmax) FItEngn engine groups
FltJet(njetmax) FltJet jet groups
FltChrg(nchrgmax) FltChrg charge groups

81

Chapter 20

Structure: FltAircraft

Variable Type Description Default

+ Flight State

+ Specification
SET_max int + maximum effort performance (maximum 2, 0 to analyze specified condition) 0
max_quant(2) c*12 + quantity N
max_var(2) c*¥12 + variable
max_limit(2) int + switch quantity if exceed limit (0 not, 1 power margin, 2 torque margin, 3 both) 0
max_Vlimit(2) int + velocity limited by Vg (0 not) 0
fVel(2) real + flight speed factor 1.
SET _vel c*12 + flight speed "general’
Vkts real + horizontal velocity V}, (TAS or CAS, Units_vel) 0.
Mach real + horizontal velocity M (Mach number) 0.
ROC real + vertical rate of climb V. (Units_ROC) 0.
climb real + climb angle 8y (deg) 0.
side real + sideslip angle ¥y (deg) 0.

+ aircraft motion
SET_pitch int + pitch motion specification (0 Aircraft value, 1 FltState input) 1
SET _roll int + roll motion specification (0 Aircraft value, 1 FltState input) 1
pitch real + pitch 0.
roll real + roll ¢ 0.
SET turn int + turn specification (0 zero, 1 turn rate, 2 load factor, 3 bank angle) 0
rate_turn real + turn rate 1/) r (deg/sec) 0.
nz_turn real + load factor n (g) 1.
bank_turn real + bank angle ¢ (deg) 0.
SET_pullup int + pullup specification (0 zero, 1 pitch rate, 2 load factor) 0
rate_pullup real + pitch rate Op (deg/sec) 0.
nz_pullup real + load factor n (g) 1.
SET acc int + linear acceleration specification (0 zero, 1 acceleration, 2 load factor) 0
ax_linear real + x-acceleration a ¢ (ft/sec? or m/sec?) 0.

Structure: FltAircraft

ay_linear
az_linear
nx_linear
ny_linear
nz_linear
altitude
SET_atmos
temp

dtemp

density

csound
viscosity
SET_wind
dWind

fWind

SET_GE
HAGL
STATE_LG
STATE_control
SET_control(ncontmax)
SET_coll

SET _latcyc
SET _Ingcyc
SET_pedal

SET _tilt
control(ncontmax)
coll

latcyc

Ingcyc

pedal

tilt
SET_comp_control
SET cg

dSLcg

real
real
real
real
real
real
c*12
real
real
real
real
real
int
real
real
int
real
c*12
int
int
int
int
int
int
int
real
real
real
real
real
real
int
int
real

I T i i S S S S e e e e e S e Tk Tk Tt T Sk 2k S i S o S S

y-acceleration a ¢y, (ft/sec® or m/sec?)
z-acceleration a4c» (ft/sec? or m/sec?)
x-load factor increment ny,. (g)
y-load factor increment nr,, (g)
z-load factor increment ny,, (g)
altitude h (Units_alt)
atmosphere specification
temperature 7 (Units_temp)
temperature increment AT (Units_temp)
density p
speed of sound c,
viscosity p
wind specification (0 none, 1 headwind, 2 tailwind)
wind increment, knots (dWind+fWind*altitude)
wind gradient, knots (dWind+fWind*altitude)
ground effect (0 OGE, 1 IGE)
height of landing gear above ground level hp ¢
landing gear state
aircraft control state
control specification (0 Aircraft value, 1 FltState input)
collective stick
lateral cyclic stick
longitudinal cyclic stick
pedal
tilt (O Aircraft value, 1 FltState input, 2 Aircraft conversion schedule)
aircraft controls
collective stick cac0
lateral cyclic stick c4c.
longitudinal cyclic stick c4cs
pedal CACp
tilt cvgine
use component control (0 for ¢ = Tcac; 1 forc = Tcac + ¢p)
center of gravity specification (0 baseline plus increment, 1 input)
stationline

82

oL Lo

999.
"default’

e e e = = =

CorLCLOOo0Oo

Structure: FltAircraft

dBLcg
dWlLcg

SET_Vtip(npropmax)
Vtip(npropmax)
Mtip(npropmax)
mu_Vtip(npropmax)
Mat_Vtip(npropmax)
Nrotor(npropmax)
Nspec(npropmax)
STATE_gear(npropmax)
rating_ds(npropmax)
fTorque(npropmax)
SET_Plimit(npropmax)
SET_QIlimit_rs(npropmax)
SET_Pmargin(npropmax)
dPacc(npropmax)

rating(nengmax)
fPower(nengmax)
nEnglnop(nengmax)
SET_Preq(nengmax)
STATE_IRS(nengmax)

rating_jet(njetmax)
fThrust(njetmax)
nJetlnop(njetmax)
SET_Jreq(njetmax)
STATE_IRS_jet(njetmax)

rating_charge(nchrgmax)
fCharge(nchrgmax)
nChrglnop(nchrgmax)
SET_Creq(nchrgmax)

real
real

c*12
real
real
real
real
real
real
int
c*12
real
int
int
int
real

c*12
real
int
int
int

c*12
real
int
int
int

c*12
real
int
int

I T i i S S S S e e e e e S I e Tk Tt Tk T ik 2k S T o o S S

buttline
waterline

Specification, each propulsion group

rotor tip speed specification

tip speed

tip Mach number Mj;,,

tip speed from p

tip speed from M

rotor speed (rpm)

engine speed (rpm)
drive system state
drive system rating
fraction of rated drive system torque limit fg (0. to 1.4)
drive system limit (O not applied to power available)
rotor shaft limit (0 not used for torque margin)
power and torque margin (0 not used for maximum effort)
accessory power increment d P,

Specification, each engine group

engine rating

fraction of rated engine power available fp (0. to 1.4+)

number of inoperative engines Ninop

power required (1 distributed, 2 fixed A, 3 fixed AP,,,, 4 fixed APe,,)
IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)

Specification, each jet group

jet rating

fraction of rated jet thrust available f (0. to 1.+)

number of inoperative jets Nipop

thrust required (1 from component, 2 fixed A4, 3 fixed AT, , 4 fixed ATjet)
IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)

Specification, each charge group

charger rating

fraction of rated charger power available f (0. to 1.+)
number of inoperative chargers Ny o,

power required (2 fixed A, 3 fixed AP,,, 4 fixed APchrg)

83

"hover’

"MCP’

o~ O

'MCT’

o N O

'MCP’

Structure: FltAircraft

dPeqg(ntankmax)

ffade(ntankmax)
Tcell(ntankmax)
fcurrent(ntankmax)

STOP_rotor(nrotormax)
STATE_deice

DoQ_pay
fDoQ_pay
DoQV_pay

Ki(nrotormax)
cdo(nrotormax)
MODEL_Ftpp(nrotormax)
MODEL_Fpro(nrotormax)
KIND_control(nrotormax)

sfc_engine(nengmax)
Kffd_engine(nengmax)
eta_motor(nengmax)

sfc_jet(njetmax)
Kffd_jet(njetmax)

STATE_trim
trim_target(mtrimmax)

relax_rotor
relax_trim
relax_fly(2)
relax_maxgw

real

real
real
real

int
int

real
real
real

real
real
int
int
int

real
real
real

real
real

c*12
real

real
real
real
real

I T i i T ST S S S S E T T S S T S o SR S S S ST S

Equipment power increment d P, each fuel tank
Specification, each fuel tank (battery)
battery capacity fade factor
cell temperature (deg C)
maximum current (fraction x,,pq OF L Cmax)
Specification, each rotor
rotor stop/stow (0 not, 1 stop, 2 stop and stow, 3 stop as wing)
Deice system state (0 off)
Performance
payload forward flight drag increment D /¢ (Units_drag)
payload drag increment scaling with weight A(D/q)/Wyay (Units_drag)
payload vertical drag increment D /q (Units_drag)
Rotor (nonzero to supersede rotor model)
induced power factor x
profile power mean cq
inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory)
inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect)
control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP)
Engine group (nonzero to supersede engine model)
specific fuel consumption
deterioration factor
motor-generator efficiency
Jet group (nonzero to supersede jet model)
specific fuel consumption
deterioration factor
Trim solution
aircraft trim state (match IDENT_trim, 'none’ for no trim)
trim quantity targets
Iterations (supersede Solution input if nonzero)
relaxation factor
all rotors
trim
maximum effort
maximum gross weight

84

©

© o co oL

'none’

co oo

Structure: FltAircraft

toler_rotor
toler_trim
toler_fly(2)
toler_maxgw

init_trim
init_fly

perturb_trim
perturb_fly(2)
perturb_maxgw

maxderiv_fly(2)
maxderiv_maxgw

maxinc_fly(2)
maxinc_maxgw

method_flymax(2)

trace_rotor
trace_trim
trace_fly(2)
trace_maxgw

real
real
real
real

int
int

real
real
real

real
real

real
real

int
int
int
int
int

Ik Tk T T T T T S e S e R N T I T T I

tolerance (fraction reference)
all rotors
trim
maximum effort
maximum gross weight
reinitialize aircraft controls (0 no, 1 force retrim)
trim
maximum effort
variable perturbation amplitude (fraction reference, 0. for no limit)
trim
maximum effort
maximum gross weight
maximum derivative amplitude (0. for no limit)
maximum effort
maximum gross weight
maximum increment fraction (0. for no limit)
maximum effort
maximum gross weight
solution method
maximum effort
trace iteration (0 for none)
all rotors
trim (2 for component controls)
maximum effort
maximum gross weight

maximum effort performance: one or two quantity/variable identified; first is inner loop
two variables must be unique
two variables can be identified for same maximized quantity (endurance, range, climb)
quantity identified by max_quant maximized for endurance, range, climb, or ceiling; otherwise driven to zero

ROC or altitude can be outer loop quantity only if it is also inner loop variable

fVel is only used for max_var="speed’ or 'ROC’

ceiling calculation should use 'Pmargin’/alt’ as inner loop, 'power’/'speed’ as outer loop
best range calculation often requires maxinc_fly=0.1 for convergence

85

cocoo

o

O O O o

Structure: FltAircraft

86

ROC for zero power margin initialized based on level flight power margin if input ROC=0
max_quant="rotor(s) n' uses Rotor%CTs_steady, max_quant="rotor(t) n’ uses Rotor%CTs_tran
max_quant='rotor(e) n' uses equation for rotor thrust capability (Rotor%KO0_limit and Rotor%K1_limit)

if energy burned (not weight) or multiple fuels, use equivalent fuel flow obtained from weighted energy flow
max_var="Vtip' or 'Nspec’ requires FltAircraft%SET_Vtip='input’

w9

if trailing “n” is absent, use first component (n=1)

max_limit: switch quantity to power and/or torque margin if margin negative; useful for best range

description max_quant

endurance 'end’ maximum (1/fuelflow)

range (high side) "range’ 0.99 maximum (V /fuelflow)

range "range(100)’ maximum (V/fuelflow)

range (low side) "range(low)’ 0.99 maximum (V /fuelflow), low side
range (high side), ground speed 'rangeVg' 0.99 maximum (V;/fuelflow)

range, ground speed "range(100)Vg' maximum (V,/fuelflow)

range (low side), ground speed "range(low)Vg' 0.99 maximum (Vg /fuelflow), low side
climb or descent rate "climb’, 'ROC’ maximum (ROC)

climb rate (power) 'power’ maximum (1/Power)

climb or descent angle "angle’ maximum (ROC/V)

climb angle (power) "power/V' maximum (V' /Power)

ceiling "alt’ maximum (altitude)

power margin 'P margin’ min(Py, — Preq) = 0 (all propulsion groups)
torque margin 'Q margin’, min(Qiimit — @req) = 0 (all limits)
jet thrust margin 'J margin’, min(T,, — Treq) = 0 (all jet groups)
power and torque margin 'PQ margin’, most restrictive

power and thrust margin 'PJ margin’, most restrictive

torque and thrust margin 'QJ margin’, most restrictive

power, torque, thrust margin 'PQJ margin’, most restrictive

battery power margin 'B margin’ min(Ppax — |Ebatt|) = 0 (all fuel tanks)
rotor thrust margin rotor(t) n’ (Cr/0)max — |Cr/o| = 0 (transient)
rotor thrust margin 'rotor(s) n’ (C1/0)max — |Cr /0| = 0 (sustained)
rotor thrust margin 'rotor(e) n' (C7/0)max — |Cr/c| = 0 (equation)

wing lift margin 'stall n’' Crmax —CL =0

Structure: FltAircraft

87

description max_var

horizontal velocity "speed’ times fVel

vertical rate of climb 'ROC’ times fVel

aircraft velocity 'side’ sideslip angle
altitude "alt’

aircraft angular rate "pullup’, "turn’ Euler angle rates
aircraft acceleration 'xacc’, 'yacc’, 'zacc’ linear, airframe axes
aircraft acceleration "xaccl’, 'yaccl’, 'zaccl’ linear, inertial axes
aircraft acceleration 'xaccG', 'yaccG’, 'zaccG’ linear, ground axes
aircraft control match IDENT_control

aircraft orientation "pitch’, 'roll’ body axes relative inertial axes
propulsion group tip speed "Vtip n’

propulsion group engine speed "Nspec n’

SET _vel, velocity specification:
'general’ = general (use Vkts=horizontal, ROC, side)
"hover’ = hover (zero velocity)
'vert’ = hover or VROC (use ROC; Vkts=0, climb=0/+90/-90)
'right’ = right sideward (use Vkts, ROC; side=90)
"left’ = left sideward (use Vkts, ROC; side=—90)
"rear’ = rearward (use Vkts, ROC, side=180)
"Vfwd' = general (use Vkts=forward velocity, ROC, side)
'Vmag' = general (use Vkts=velocity magnitude, ROC, side)
‘climb’ = general (use Vkts=velocity magnitude, climb, side)
'VNE' = never-exceed speed
'+Mach’ = use Mach not Vkts
'+CAS’ = Vkts is CAS not TAS

velocities: forward Vy = V}, cos(side), side V = V}, sin(side), climb V, = V}, tan(climb)

Structure: FltAircraft

aircraft motion:

orientation velocity relative inertial axes defined by climb and sideslip angles (8, ¥y/)
sideslip positive aircraft moving to right, climb positive aircraft moving up
specify horizontal velocity, vertical rate of climb, and sideslip angle
orientation body relative inertial axes defined by Euler angles, yaw/pitch/roll (Y g, 0, ¢r)
yaw positive to right, pitch positive nose up, roll positive to right
SET_PITCH and SET _roll, pitch and roll motion specification:
Aircraft values (perhaps function speed) or flight state input
initial values specified if motion is trim variable; otherwise fixed for flight state
SET_turn, bank angle and load factor in turn: use turn rate, load factor, or bank angle
tan(roll) = v/n? — 1 = (turn)V/g; calculated using input Vkts for flight speed
SET_pullup, load factor in pullup: use pullup rate or load factor
n = 1+ (pullup)V/g; calculated using input Vkts for flight speed
SET acc, linear acceleration: use acceleration or load factor

SET_atmos, atmosphere specification:
'std’ = standard day at specified altitude (use altitude)
'polar’ = polar day at specified altitude (use altitude)
"trop’ = tropical day at specified altitude (use altitude)
'hot’ = hot day at specified altitude (use altitude)
'xxx+dtemp’ = specified altitude, plus temperature increment (use altitude, dtemp)
'xxx+temp’ = specified altitude, and specified temperature (use altitude, temp)
'hot+table’ = hot day table at specified altitude (use altitude)
'dens’ = input density and temperature (use density, temp)
'input’ = input density, speed of sound, and viscosity (use density, csound, viscosity)
'notair’ = input, not air on earth (use density, csound, viscosity)

SET_GE: use HAGL; out-of-ground-effect (OGE) if rotor more than 1.5Diameter above ground
height rotor = landing gear above ground + hub above landing gear = HAGL + (WL_hub—WL_gear+d_gear)

STATE_LG: 'default’ (based on retraction speed), 'extend’, 'retract’ (keyword = def, ext, ret)

88

Structure: FltAircraft

&9

STATE_control, aircraft control state: identifies control matrix
STATE_control=0 to use conversion schedule, STATE_control=n (1 to nstate_control) to use state#n
SET_control, control specification: Aircraft values (perhaps function speed) or flight state input
coll/latcyc/Ingeyc/pedal/tilt specification and values put in SET_control and control, based on IDENT_control
initial values specified if control is trim variable; otherwise fixed for flight state
SET _control=0 to use Aircraft%cont and Aircraft%Vcont; 1 to use FltState%control
SET _tilt: O to use Aircraft%tilt and Aircraft%Vtilt; 1 to use FltState%itilt
2 to use conversion speeds Aircraft%Vconv_hover and Aircraft%Vconv_cruise

SET_cg, center of gravity position: input for this flight state; or
baseline cg position plus shift due to nacelle tilt, plus input cg increment

tip speed, engine, transmission: for each propulsion group
SET_Vtip, primary rotor tip speed: for primary rotor of propulsion group
'input’ = use input Vtip for this flight state
"Mtip’ = use input Mtip for this flight state
"Nrotor’ = use input Nrotor (rpm) for this flight state
'ref’ = use Vtip_ref (for drive state STATE_gear)
'speed’ = use default Vtip(speed)
'conv’ = use conversion schedule (Vtip_hover or Vtip_cruise)
"hover’ = use default Vtip_hover = Vtip_ref(1)
"cruise’, 'man’, 'OEI’, 'xmsn’ = use default Vtip_cruise, Vtip_man, Vtip_oei, Vtip_xmsn
'mu’ = use tip speed from g (mu_Vtip)
'Mat’ = use tip speed from M,; (Mat_Vtip)
'xxx+Mat’ = for tip speed limited by M,; (Mat_Vtip)
"xxx+diam’ = for variable diameter rotor, scale V};;, with radius ratio
without rotors, specify engine group speed by SET_Vtip='input’ (use input Nspec) or 'ref’
STATE_gear, drive system state: identifies gear ratio set for multiple speed transmissions
state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n
drive system rating: match rating designation in propulsion group; blank for same as rating of first engine group
rating_ds='"speed’ to use schedule with speed
if Propulsion%nrate_ds< 1, drive system rating not used
fTorque reduces drive system torque limit (fTorque = 0. to 1.;> 1 is an acceptable input)
SET_Plimit: usually should not be applied for flight conditions and mission segments that size transmission

Structure: FltAircraft

90

engine rating: match rating designation in engine model; e.g. '"ERP’,MRP’,IRP’,MCP’
or rating="idle’ or rating="takeoff’
fPower reduces engine group power available (fPower = 0. to 1.; > 1 is an acceptable input)
the engine model gives the power available, accounting for installation losses and mechanical limits
then the power available is reduced by the factor fPower
next torque limits are applied (unless SET_Plimit=off), first engine shaft limit and then drive system limit
for SET_GW="maxP’ or 'maxPQ’ (flight condition or mission), the gross weight is determined
such that Preqpq = fPavprc +d
either fPower or fPav can be used to reduce the available power
with identical results, unless the engine group is operating at a torque limit
nEnglnop, number inoperative engines: 1 for one engine inoperative (OEI), maximum nEngine

SET_Preq: distribution of propulsion group power required among engine groups
distributed (SET_Preq=1): P..qrqg from P,.,pq, proportional Pep,g
except for rotor reaction drive, P,..qrc from power needed to supply reaction force
and for fuselage or wing flow control, P,.,rc from power needed to supply momentum flux
fixed options use engine group amplitude control variable A, for each operable engine
engine group that consumes shaft power (generator or compressor) only uses fixed option
engine group that produces no shaft power (converted to turbo jet or reaction drive) only uses fixed option
EngineGroup%SET_Power, fPsize defines power distribution for sizing

jet rating: match rating designation in jet model; or rating_jet="idle’ or rating_jet="takeoff’
fThrust reduces jet group thrust available (fThrust =0 to 1; > 1 is an acceptable input)
nJetlnop, number inoperative jets: 1 for one jet inoperative (OEI), maximum nJet
SET_Jreq: fixed options use jet group amplitude control variable A, for each operable jet
from component (SET_Jreq=1): only for reaction drive or flow control, T}..4 ;¢ from required Fig,eq

charger rating: match rating designation in charger model; or rating_charge='idle' or rating_charge="takeoff’
fCharge reduces charger group power available (fCharge = 0 to 1; > 1 is an acceptable input)

nChrglnop, number inoperative chargers: 1 for one charger inoperative (OEI), maximum nCharge
SET_Creq: use charge group amplitude control variable A, for each operable charger

STOP_rotor: only for stoppable rotor; if stopped, model sets KIND_control=1, MODEL_Ftpp=1, MODEL_Fpro=3
it is neither required nor appropriate to set small or zero tip speed for a stopped rotor

Structure: FltAircraft

STATE_trim, aircraft trim state: match IDENT _trim, 'none’ for no trim
identifies trim variables and quantities
ACTION="configuration’ defines trim states with following identification:
IDENT _trim="free’, 'symm’, 'hover’, 'thrust’, 'rotor’, 'windtunnel’, 'power’, 'ground’, 'comp’
requirement for trim_target depends on designation of Aircraft%trim_quant

parent int parent (1 SizeCond, 2 SizeMiss, 3 OffMiss, 4 PerfCond)
kMission int Mission number

kMissSeg int MissSeg number

kFltState int FltState number

kcol_out int performance output column

Maximum effort

imax_quant(2) int quantity (MAX_QUANT _xxx)
imax_quantn(2) int quantity structure number
imax_isslope(2) int quantity is slope (maximize)
imax_var(2) int variable (MAX_VAR_xxx, or control number)
imax_varn(2) int variable structure number

Specification
iSET _vel int velocity (SET_vel_xxx)
iSET _vel2 int velocity (SET_vel2_TAS, SET_vel2_CAS, SET_vel2_Mach)
isSideward int sideward flight (1 for sideward flight)
iSET_atmos int atmosphere (SET_atmos_xxx)
iISTATE_LG int landing gear state (STATE_LG_default, extend, retract)
iISTATE_trim int aircraft trim state (number, O for no trim)

Specification, each propulsion group
iSET_Vtip(npropmax) int rotor tip speed (SET_Vtip_input, Nrotor, ref, speed, conv, hover, cruise, man, OEIl, xmsn, mu, Mat, Mtip)
iSET_Vtip_Mat(npropmax) int rotor tip speed limited by M,
iSET_Vtip_VarDiam(npropmax)

int rotor tip speed for variable diameter rotor (1 to scale V;;;, with radius ratio)

iSETPmargin(npropmax) int power margin as quantity (2 maximum effort, 1 trim)
iSETQmargin(npropmax) int torque margin as quantity (2 maximum effort, 1 trim)
krate_ds(npropmax) int drive system rating number

XSET_Plimit(npropmax) int drive system limit (SET_Plimit, superseded for sizing by Propulsion%SET_Plimit_size)

Structure: FltAircraft

krate(nengmax)

krate_jet(njetmax)
krate_charge(nchrgmax)
iSETEmargin(nengmax)
iSET Jmargin(njetmax)
iSETCmargin(nchrgmax)
iSETBmargin(ntankmax)

GW
WrHuel_total
Wrfuel(ntankmax)

WHuel_std(ntankmax)
WHuel_aux(ntankmax)

Whpayload
Wopay_pass
Wopay_cargo
Wopay_extload
Wpay ammo
Whpay_weapons
Wopay_other
WFixUL
dW_fixUL
Wocrew
Wauxtank
W_fixUL_other
Woful(10)
Wequip
Wfoldkit
Wextkit
Wwingkit
Wotherkit

WO

Ncrew

int
int
int
int
int
int
int

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
int

Specification
engine rating number
jet rating number
charger rating number
power margin as quantity (1 trim)
jet thrust margin as quantity (2 maximum effort, 1 trim)
charger power margin as quantity (1 trim)
battery power margin as quantity (2 maximum effort, 1 trim)

Weight
gross weight W
usable fuel weight Wiy
usable fuel weight
standard tanks
auxiliary tanks
payload weight Wy,
passengers Wias
cargo Weargo
external load Weyxt—10ad
ammunition W nmo
weapons Wieapons
other Wother
fixed useful load Wry
fixed useful load increment (relative weight statement W_fixUL)
crew (replace weight statement W_fixUL_crew)
auxiliary fuel tanks (replace weight statement W_fixUL_auxtank)
other fixed useful load (replace weight statement W_fixUL_other)
categories
equipment increment (replace weight statement W_fixUL_equip)
folding kit (replace weight statement W_fixUL_foldkit)
wing extension kit (replace weight statement W_fixUL_extkit)
wing kit (replace weight statement W_fixUL_wingkit)
other kit (replace weight statement W_fixUL_otherkit)
operating weight Wo
number of crew

Structure: FltAircraft

Npass

Ncrew seat
Npass_seat
Efuel_total
Efuel(ntankmax)
Efuel_std(ntankmax)
Efuel_aux(ntankmax)

GW _start
Wrfuel_start(ntankmax)
Wrfuel_std_start(ntankmax)
WHuel_aux_start(ntankmax)
Efuel_start(ntankmax)
Efuel_std_start(ntankmax)
Efuel_aux_start(ntankmax)
zcg(3)

SlLcg

Blcg

Wlcg

Ixx

int
int
int
real
real
real
real

real
real
real
real
real
real
real
real
real
real
real

real
real
real
real
real
real

number of passengers
number of crew seats
number of passenger seats
usable fuel energy Efyel
usable fuel energy
standard tanks
auxiliary tanks
Weight at mission segment start
gross weight W
usable fuel weight Wi
standard tanks
auxiliary tanks
usable fuel energy FEryel
standard tanks
auxiliary tanks
Center of gravity position
stationline
buttline
waterline
Moments of inertia
I TT
Ly
1 zz
Ly
I,

Iy

8

33

weight statement defines fixed useful load and operating weight for design configuration
so for flight state, additional fixed useful load = auxiliary fuel tank and kits and increments
gross weight = weight empty + useful load = operating weight + payload + usable fuel
useful load = fixed useful load + payload + usable fuel
operating weight = weight empty + fixed useful load

93

Structure: FltAircraft

alt

tmp
dtmp
sigma
theta
delta
kinvis
altdens
altpress

radius(nrotormax)
VNE

Vtip_trim(nrotormax)
rpm_trim(nrotormax)
rN_trim_rotor(nrotormax)
N_trim(nengmax)
rN_trim_eng(nengmax)
rN_trim_ref(npropmax)

speed
Vclimb
side_trim

Vhoriz
Mhoriz
climb_trim
Vside
Vmag
Viwd
VCAS
VAC(3)
ed(3)

real
real
real
real
real
real
real
real
real

real
real

real
real
real
real
real
real

real
real
real

real
real
real
real
real
real
real
real
real

Atmosphere
altitude h
temperature 7
temperature increment AT’
density ratio p/po
temperature ratio 7'/ Ty
pressure ratio p/po
kinematic viscosity v = u/p
density altitude hqy
pressure altitude h,,

Flight condition
rotor radius R
never-exceed speed Vg (knots TAS)
rotational speeds
rotor tip speed QR
rotor rpm €2
rotor /et
engine rpm N
engine N/Ngpec
propulsion group reference speed ratio
flight speed
horizontal speed V}, (knots)
climb velocity V. (ft/sec or m/sec)
sideslip angle ¥y (deg)
derived
horizontal velocity V}, (ft/sec or m/sec)
horizontal Mach number V}, /c;
climb angle 6y (deg)
sideward velocity V; (ft/sec or m/sec)
velocity magnitude |V|
forward velocity V (ft/sec or m/sec)
calibrated airspeed Vo1 (knots) (V\/a f (6, M))
velocity v ¢ in F axes
drag vector, —vac/|vac|in F axes

94

Structure: FltAircraft

qAC
Wind
groundspeed

turn_trim
pullup_trim
turnRadius

wAC(3)

aAC(3)
nAC(3)
KIND _alpha

pitch_trim
roll_trim

CFI(3,3)

CVI(3,3)

CFV(3,3)
control_trim(ncontmax)

real
real
real

real
real
real
real

real
real
int

real
real

real
real
real
real

Nauxtank(nauxtankmax,ntankmax)

SET _extkit(nwingmax)

SET_wingkit(nwingmax)

Wfuel_cap(ntankmax)
Efuel_cap(ntankmax)
slope_ground
SET_sweep

int
int
int
real
real
real
int

dynamic pressure gac

headwind V,,, (knots)

ground speed V, =V}, — V,, (knots)
angular velocity

turn 1/) r (yaw rate)

pullup Op (pitch rate)

turn radius Ry

wac in F axes
acceleration

aac in F axes (linear)

load factor n 4 (linear acc and angular rate)
angle of attack and sideslip angle representation (1 conventional, 2 reversed)
orientation of body axes relative inertial axes

pitch angle 6 (deg)

roll angle ¢ (deg)
rotation matrices

cFI, velocity axes relative inertial axes

CVT, body axes relative inertial axes

CFV body axes relative velocity axes
aircraft controls

number of auxiliary fuel tanks N,uxtank (€ach aux tank size), from FltCond or MissSeg
wing extension kit on aircraft (O none, 1 present)

wing kit on aircraft (O none, 1 present)

total fuel capacity Weyel—cap, including auxiliary tanks

total fuel capacity Efyel—cap, including auxiliary tanks

slope of ground v (+uphill; deg), from MissSeg

parameter sweep, from FltCond

angle of attack and sideslip angle representation: from Aircraft and isSideward

orientation body relative inertial axes defined by Euler angles, with yaw/pitch/roll sequence (¢, 0, o)
yaw positive to right, pitch positive nose up, roll positive to right
CcFl = Xroll Ypitch Zyaw, yaw angle = (turn)*time

95

Structure: FltAircraft

orientation velocity relative inertial axes defined by climb and sideslip angles (6, 1)
sideslip positive aircraft moving to right, climb positive aircraft moving up
CVI = Y—climesideZyaw

orientation body relative velocity axes: C*V = X,onYpiteh Z—side Y- climb

Trim (last)
istrimconv int converged (0 not)
count_trim int number of iterations
error_trim(mtrimmax) real error ratio
resid_trim(mtrimmax) real residual (difference after one trim iteration)
gain_trim(mtrimmax,mtrimmax)

real gain matrix

Maximum effort (principal iteration, 99% range iteration; inner, outer loops)
isflyconv(2,2) int converged (0 not)
count_fly(2,2) int number of iterations
error_fly(2,2) real error ratio
isSwitched(2) int quantity switched (1 P margin, 2 Q margin, 3 both)

Maximum gross weight (flight condition or mission takeoff)
ismaxgwconv int converged (0 not)
count_maxgw int number of iterations
error_maxgw real error ratio

Rotor flap equation (all converged or any not converged)
isrotorconv int converged (0 not, —1 no iteration)

Solution state
count_control int count of solution (0 at start, get aircraft controls)
trim_deriv_exist int trim derivative matrix exist (0 for not)

Loads

forces (F axes, about cg)

Faero(3) real aerodynamic Ff (fuselage, rotor, wing, tail, tank, engine, jet, charger)
Frotor(3) real rotor FE,

Ftank(3) real fuel tanks FtF

ank

Structure: FltAircraft

Fengine(3)
Fiet(3)
Fchrg(3)
Fgrav(3)
Finertia(3)

Maero(3)
Mrotor(3)
Mtank(3)
Mengine(3)
Mijet(3)
Mchrg(3)
Minertia(3)
Ftotal(3)
Mtotal(3)
Download
Thrust
DLoT
DLoW
diskloadT
diskloadW
Aref

Preq

Pmargin
Qmargin
exceedP
exceedQ

Tjet
Jmargin
exceedJ

real
real
real
real
real

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

real
real
real
int
int
real

real
int

engine groups
jet groups FJI;
charge groups

gravitational FX

inertial F¥

F
rotor M, o,

fuel tanks ME
engine groups

jet groups ML

inertial
moments (F axes, about cg)

aerodynamic ML,

FF (jet thrust, momentum drag)

eng
F
Fcharge

grav

(turn)

aero

nk
ME

engine

jet

charge groups

. . F
inertial M) _

MF

charge

o (turn)

(fuselage, rotor, wing, tail, tank, engine, jet, charger)

(jet thrust, momentum drag)

total force (F axes, about cg); ' + Fgray — Finertia
total moment (F axes, about cg); M — Miyertia
download, aero F’, (I axes); set to O if V>10 knots
rotor thrust, rotor —F, (I axes; sum Fvert)

download/thrust D

L/T

download/weight DL /W
aircraft disk loading T'/A¢ (Ib/ft?> or N/m?)
aircraft disk loading W /Aot (Ib/ft? or N/m?)
reference rotor area A,of = > faA

Aircraft performance
power

power required P, (engine groups)

power margin, min(P,, — Preq) (propulsion groups and converted engine groups)
torque margin, min(Pimis — Preq)

exceed power available: any propulsion group Prcqpg > (1 + €)Paypc

exceed torque available: any propulsion group Prcqpa > (1 + €) Ppsiimit

thrust

thrust required Tje;, (jet groups)
jet thrust margin, min (T, — Treq)
exceed jet thrust available: any jet group Tcqic > (1 + €)Tavic

97

Structure: FltAircraft

Pchrg

Cmargin

exceedC

Pequiv

Pclimb
fuelflow(ntankmax)
fuelflow_total
fuelflow_equiv
energyflow(ntankmax)
energyflow_total
exceedWf

Bmargin
exceedB
sfc
efficiency
spec_range

spec_rangeE

FM

LoDe

Drage

DragAC
DoQAC

WoP
range_onepcW
fuel_eff
productivity

length_op
width_op
area_op

real
real
int

real
real
real
real
real
real
real
int

real
int

real
real
real
real

real
real
real
real
real
real
real
real
real

real
real
real

charging
power required FPeyrg (charge groups)
charger power margin, min(Pyy — Preq)
exceed charger power available: any charge group Pc,cc > (1 + €)Pavcc
equivalent aircraft power required P = P,..; + Ve
climb power, Vejimp W
fuel flow w
total fuel flow w
equivalent fuel flow wWequiv, from energy flow
energy flow E
total energy flow E
exceed fuel CapaCity: Wiyel > (1 + 6)I/Vfuelfcap or Efyel > (1 + 6)E‘fuelfcap
battery
battery power margin, min(Py,q. — \Ebatt |) (MJ/hr)
exceed battery power: any fuel tank \Ebatt\ > (14 €)Prax
sfc, Wequiv/ Pequiv (lb/hp-hr or kg/kW-hr)
efficiency, Pequiv/E
specific range, V/tequiv (nmy/1b or nm/kg)
specific range, V/E (nm/MJ)

Performance indices

aircraft figure of merit M = W+/W/(2pA.et)/ P

aircraft effective lift-to-drag ratio L/ D, = WV/P

aircraft effective drag D, = P/V

aircraft drag D 4¢

aircraft drag area D/q = D ac/qac; set to 0 if V<10 knots
power loading W/ P

range for fuel=1%GW (nm)

fuel efficiency e = Wpyay V/tequiv (ton-nm/Ib or ton-nm/kg)
productivity p = Whyay V/Wo (ton-kt/Ib or ton-kt/kg)

Operating size

length
width
area

98

Chapter 21

99

Structure: FltFuse

Variable Type Description Default
Flight State - Fuselage
controls
flow real momentum coefficient C,,
aerodynamics
VintR(3,nrotormax) real interference velocity v, , from rotors (F axes)
Vaero(3) real total velocity relative air v (F axes)
VB(3) real total velocity relative air v? (B axes)
alpha real angle of attack « (deg)
beta real sideslip angle 3 (deg)
CBA(3,3) real cBA
Vmag real velocity magnitude
q real dynamic pressure
FGreq real flow control momentum flux required Fgreq
PEGreq real engine group power required to supply Fgreq
DoQ_pay real payload D/q
DoQ_cont real contingency D/q
CL real lift coefficient C,
CM real pitch moment coefficient C'ys
CD real drag coefficient C'p
cY real side force coefficient C'y
CN real yaw moment coefficient Cy
L real lift
M real pitch moment
D real drag
Y real side force
N real yaw moment
loads
Faero(3) real aerodynamic force FE (F axes, about cg)

Structure: FltFuse 100

Maero(3) real aerodynamic moment ME (F axes, about cg)

Drag real drag el FE

Download real download, aero F’, (I axes)

Chapter 22

101

Structure: FltGear

Variable Type Description Default
Flight State - Landing Gear
aerodynamics
iISTATE_LG int landing gear state (STATE_LG_extended, retracted)
Vaero(3) real total velocity relative air v (F axes)
Vmag real velocity magnitude
q real dynamic pressure
ed(3) real drag vector, —v/|v| in F axes
Faero(3) real aerodynamic force FE, (F axes, about cg)
Maero(3) real aerodynamic moment ML (F axes, about cg)
Drag real drag e] FE
Download real download, aero F, (I axes)

Chapter 23

102

Structure: FltRotor

Variable

Type Description

Default

KIND_control_coll
KIND_control_cyc
Scoll
Scyc

coll
Ingcyc
latcyc
incid
cant
diam
fgear
Freact

Ccont(3,3)
CSF(3.3)
zhub(3)
zpylon(3)
znac(3)
CBF(3,3)

radius
Vitip
Omega
Mtip
Mat

Flight State - Rotor
control mode

int collective control mode (1 thrust command, 2 pitch command)
int cyclic control mode (1 TPP command, 2 NFP command)
real collective T matrix scale factor S (1, a/6, th?pAbladea /6)
real cyclic T matrix scale factor S (—1 TPP command, 1 NFP command)
controls
real collective
real longitudinal cyclic
real lateral cyclic
real incidence
real cant
real diameter
real gear ratio factor
real reaction drive net force Fleact
geometry
real shaft control, Copg
real shaft relative airframe, C'S¥
real hub position, zpyp
real pylon position, zpyion
real nacelle cg position, zyc
real pylon relative airframe, C2¥
condition
real radius R
real tip speed Vi, = QR
real rotational speed €2
real tip Mach number M;,

real maximum Mach number M, (advancing tip or helical)

Structure: FltRotor

sigma
gamma
Iblade
flapfreq
conefreq
Khub

X
y

oZIZI<ITAH

CcT
CH
cY
CMx
CMy
cQ

theta75
thetas
thetac
betal
betac
betas
lambda0
CPS(3,3)

VoVtip
VF(3)
VS(3)

mux

real
real
real
real
real
real

real
real
real
real
real
real
real
real
real
real
real
real

real
real
real
real
real
real
real
real

real
real
real
real

solidity o (thrust weighted)
Lock number v

blade moment of inertia I,4c
flap frequency v

coning frequency v

hub stiffness Kyyp,

performance
shaft axis loads
thrust
drag force
side force
roll moment
pitch moment
torque
thrust coefficient Cr
drag force coefficient C'y
side force coefficient Cy
roll moment coefficient C'y;,,

pitch moment coefficient Cay

torque coefficient Cg
control and motion

collective pitch 6y 75 (0.75R)

longitudinal cyclic pitch 6,

lateral cyclic pitch 6,

coning [y

longitudinal flapping (.

lateral flapping [

inflow A\g = K\;
tip-path plane relative shaft, C*°
velocity and inflow

V/ ‘/tip

total velocity relative air v (F axes)
total velocity relative air 05 (S axes)

[

103

Structure: FltRotor

muy
muz
omegaS(3)
dax

day

mu

alphas
fDuctA
fDuctT
fDuctW
fDuctD
zg

zge

fg
kappag
CTe
lambdah
lambda_ideal
CPideal
kappax
kappay
kappam
diskload
CTs
FPpro
FHpro

CHtpp
CYtpp
CHo
CYo
fB

isrotorconv

real
real
real
real
real

real

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

real
real
real
real
real

int

104

Hy
Mz
angular velocity w” (S axes)
A
dy
po= g
a = tan~ ! (us/p)
ducted fan area ratio f4
ducted fan thrust ratio f1
ducted fan far wake ratio fy
ducted fan power ratio fp = fw /21p
height rotor hub above ground, z,/D
effective height, z,C, /(D cose)
ground effect inflow ratio f; = P/ Py
ground effect thrust ratio kg = T/ T
Cr for inflow solution
reference A\, = /Cr/2
ideal induced velocity \;
ideal induced power C'pigeal = CT\;
inflow gradient x,,
inflow gradient x,
inflow gradient x,, = (ca/8) fin /U
disk loading 7'/ A (Ib/ft?> or N/m?)
thrust coefficient/solidity, |Cr /o
profile power factor F'p
profile drag factor Figy
inplane forces
drag force C'yz, tpp
side force C'y-, tpp
drag force C'yy, profile
side force Cy, profile
blockage factor fp
rotor flap equations
converged (0 not, —1 no iteration)

Structure: FltRotor

count_rotor
error_rotor(3)
resid_rotor(3)
rotor_deriv_exist

Frotor(3)
Mrotor(3)

L

X

CL

X

Fvert
CTs_rotor
CTs_steady
CTs_tran
CTs_eqn
Tmargin_steady
Tmargin_tran
Tmargin_eqn
Plimit_rs
Qmargin_rs
exceedQ rs

P

Pind
Ppro
Ppar
CcpP
CPind
CPpro
CPpar
lambda
Ki

Pint_wing(nwingmax)

int
real
real
int

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
int

real
real
real
real
real
real
real
real
real
real
real

iteration count

error ratio (&, E., E)

residual (E;, E., Ey)

rotor derivative matrix exist (O for not)
loads

rotor force F.X, . (F axes, about cg)

rotor moment ML, (F axes, about cg)

lift (wind axis)

drag (wind axis)

lift coefficient C7,

drag coefficient C'x

vertical force (inertia axes)

rotor blade loading, Cr /o fr

max Crp /o (sustained)

max Cr /o (transient)

max Cr /o (equation)

thrust margin, (C7/0)max — |Cr /0| (sustained)

thrust margin, (C7/0)max — |Cr /0| (transient)

thrust margin, (C7/0)max — |Cr /0| (equation)

drive system limit Prgiimit (at rpm_trim and rating_ds)

torque margin, Prslimit — P

exceed torque available: P > (1 + €) Prslimit
power

rotor power P

induced power P; (include interference)

profile power P,

parasite power P,

rotor power coefficient C'p

induced power coefficient C'p; (include interference)

profile power coefficient C'p,

parasite power coefficient Cp,

induced velocity A

induced power factor x

wing interference power Pty

105

Structure: FltRotor

CPint_wing(nwingmax)
lambdaint_wing(nwingmax)

cdmean
cdmean_basic
cdmean_stall
cdmean_comp
cdmean_table
FM

etaprop
etamom

CDe

LoDe

Pshaft
Preact
rOmegareact
mdotreact
STreact
FGreq
PEGreq

Vaero_hub(3)
Vmag_hub
q_hub
ed_hub(3)
VB_hub(3)
alpha_hub

Vaero_pylon(3)
Vmag_pylon
q_pylon
ed_pylon(3)
VB_pylon(3)

real
real
real
real
real
real
real
real
real
real
real
real

real
real
real
real
real
real
real

real
real
real
real
real
real

real
real
real
real
real

wing interference power coefficient Cpiptq,
equivalent induced velocity Aintq,
mean drag coefficient ¢gmean
mean drag coefficient, basic (without TECH_drag or Re scale)
mean drag coefficient, stall (without TECH_drag or Re scale)
mean drag coefficient, compressible (without TECH_drag or Re scale)
mean drag coefficient, table term
hover figure of merit, T fpv/ P
propulsive efficiency, TV/P
momentum efficiency, T'(V + fpv)/P
effective drag, (Cp; + Cpo)/(V/Viip)
effective lift-to-drag, C, /Cpe
shaft power and reaction drive
shaft power Pypart
reaction drive power Proact = Q7 react Freact
blade velocity Qrpeact
mass flow 1 eact
specific thrust ST = Fgreq/Mreact
gross thrust (momentum flux) required Figreq = Freact + Mreact 2T react
engine group power required to supply Fgreq

aerodynamics

hub
total velocity relative air v (F axes)
velocity magnitude
dynamic pressure
drag vector, —v/|v| in F axes
total velocity relative air vB (B axes)
angle of attack o (deg)

pylon
total velocity relative air v*" (F axes)
velocity magnitude
dynamic pressure
drag vector, —v/|v| in F axes
total velocity relative air vB (B axes)

106

Structure: FltRotor

alpha_pylon
CDhub
CDpylon
CDduct
CDspin
CDbldstop
Dhub
Dpylon
Dduct
Dspin
Dbldstop

Faero(3)
Maero(3)
Drag
Download

lambda_int
vind(3)
eind(3)
chi_wake
Fint_fus

real
real
real
real
real
real
real
real
real
real
real

real
real
real
real

real
real
real
real
real

Fint_wingLp(nwingmax,npanelmax)

real

Fint_wingRp(nwingmax,npanelmax)

Fint_tail(ntailmax)
isinWake_fus

islnWake_wingLp(nwingmax,npanelmax)
islnWake_wingRp(nwingmax,npanelmax)

islnWake_tail(ntailmax)

ftwin

real
real
int

nt
nt

int
real

angle of attack o (deg)
drag coefficient, hub Cppyp
drag coefficient, pylon Cppyion
drag coefficient, duct C'pgyct
drag coefficient, spinner Cpgpin
drag coefficient, stopped blade Cpplade—stop
drag, hub Dy,
drag, pylon Dyyion
drag, duct Dgyct
drag, spinner Dgpiy,
drag, stopped blade Dyjade—stop

loads

aerodynamic force X (F axes, about cg)

aerodynamic moment ML (F axes, about cg)
drag e} FE
download, aero F, (I axes)

interference

ideal induced velocity A\; (from C'r)
induced velocity viﬁ q (F axes)

direction induced velocity —C*F kP
wake angle x

interference factor fyy f. f, f+ at fuselage

interference factor fyy f. f, fi at wing, left panel

interference factor fyy f. f f: at wing, right panel

interference factor fyy f. f, f; at tail
fuselage inside wake

wing inside wake, left panel
wing inside wake, right panel

tail inside wake
twin rotor factor f;

107

Structure: FltRotor 108

Aint_wing(nwingmax) real induced power interference at wing oy,
vint_wing(nwingmax) real interference velocity from wing viytq,

Chapter 24

109

Structure: FItWing

Variable Type Description Default
Flight State - Wing
controls

flap(npanelmax) real flap o

flaperon(npanelmax) real flaperon 4 ¢

aileron(npanelmax) real aileron 6,

incid(npanelmax) real incidence ¢

flow(npanelmax) real momentum coefficient C),
geometry

zac(3) real aerodynamic center position, 2.

zcg(3) real center of gravity position, z.4

VintR_Lp(3,nrotormax,npanelmax)

real

VintR_Rp(3,nrotormax,npanelmax)

VintR(3,nrotormax)
VintW(3,nwingmax)
AintW(nwingmax)
AintR(nrotormax)

Vaero(3)
VB(3)
alpha
beta
CBA(3,3)
Vmag

q

real
real
real
real
real

real
real
real
real
real
real
real

aerodynamics
interference velocity Uifu; at left wing panel, from rotors (F axes)

interference velocity v, at right wing panel, from rotors (F axes)
interference velocity Uiit (panel area weighted), from rotors (F axes)
interference velocity v , from other wings (F axes)
interference angle a;yt, from other wings
induced power interference oy, from rotors
with mean interference

total velocity relative air v*" (F axes)

total velocity relative air v” (B axes)

angle of attack o (deg)

sideslip angle 3 (deg)

CBA

velocity magnitude

dynamic pressure

Structure: FltWing

alpha_int
CDV

Vaero_Lp(3,npanelmax)
VB_Lp(3,npanelmax)
alpha_Lp(npanelmax)
beta_Lp(npanelmax)
CBA_Lp(3,3,npanelmax)
Vmag_Lp(npanelmax)
q_Lp(npanelmax)
CL_Lp(npanelmax)
CDp_Lp(npanelmax)
CM_Lp(npanelmax)
CR_Lp(npanelmax)
L_Lp(npanelmax)
Dp_Lp(npanelmax)
M_Lp(npanelmax)
R_Lp(npanelmax)

Vaero_Rp(3,npanelmax)
VB_Rp(3,npanelmax)
alpha_Rp(npanelmax)
beta_Rp(npanelmax)
CBA_Rp(3,3,npanelmax)
Vmag_Rp(npanelmax)
q_Rp(npanelmax)
CL_Rp(npanelmax)
CDp_Rp(npanelmax)
CM_Rp(npanelmax)
CR_Rp(npanelmax)
L_Rp(npanelmax)
Dp_Rp(npanelmax)
M_Rp(npanelmax)
R_Rp(npanelmax)

real
real

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

angle of attack «, with interference (deg)
vertical drag coefficient Cpy
left panel

total velocity relative air v" (F axes)
total velocity relative air vB (B axes)
angle of attack o (deg)

sideslip angle (3 (deg)

CBA

velocity magnitude

dynamic pressure

lift coefficient C'r,,

drag coefficient, parasite Cpyp,

pitch moment coefficient Cysp,

roll moment coefficient Cy,

lift

drag, parasite

pitch moment

roll moment

right panel

total velocity relative air v" (F axes)
total velocity relative air vB (B axes)
angle of attack o (deg)

sideslip angle (3 (deg)

CBA

velocity magnitude

dynamic pressure

lift coefficient C'r,

drag coefficient, parasite Cpyp,

pitch moment coefficient Cyrp,

roll moment coefficient Cy,

lift

drag, parasite

pitch moment

roll moment

110

Structure: FltWing

qS

qeff
dCLda3D
AoA_max
CL

CDp

CDi

CM

CR
CLmax

L

Dp

Di

D

M

R
Lmargin
FGreq
PEGreq

Faero(3)
Maero(3)
Drag
Download

Vint_tail(3,ntailmax)
vind(3)

eind(3)
Vint_wing(3,nwingmax)
Aint_wing(nwingmax)
vind_rotor

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

real
real
real
real

real
real
real
real
real
real

@S (sum over panels)

(¢S)/S (weighted by panel area)

compressible 3D lift curve slope C'r,,

Omax

lift coefficient C,

drag coefficient, parasite C'p,,

drag coefficient, induced Cp;

pitch moment coefficient C's

roll moment coefficient C)

maximum lift coefficient C',max

lift

drag, parasite

drag, induced

drag

pitch moment

roll moment

stall margin, Cppax — Cp,

flow control momentum flux required Figroq (all panels)
engine group power required to supply Figreq (all panels)

loads

aerodynamic force FE (F axes, about cg)

aerodynamic moment ME (F axes, about cg)
T pF

drag €q F, aero

download, aero F, (I axes)

interference

velocity at tail v, (F axes)

induced velocity v’ (F axes)

direction induced velocity C* B kBsign(C7)

velocity at other wing v, (F axes)

angle at other wing (Qting = Vint/v? = Kingving /v?)
velocity for rotor interference |vf[sign(Cy,)

111

Chapter 25

112

Structure: FltTail

Variable Type Description Default
Flight State - Tail
controls
cont real control §
incid real incidence
aerodynamics
VintR(3,nrotormax) real interference velocity v{ , from rotors (F axes)
VintW(3,nwingmax) real interference velocity v, , from wings (W axes)
Vaero(3) real total velocity relative air v*" (F axes)
VB(3) real total velocity relative air v? (B axes)
alpha real angle of attack « (deg)
beta real sideslip angle 3 (deg)
CBA(3,3) real cBA
Vmag real velocity magnitude
q real dynamic pressure
dCLda3D real compressible 3D lift curve slope C'r,,
AoA_max real Olmax
CL real lift coefficient C7,
CDp real drag coefficient, parasite Cp,,
CDi real drag coefficient, induced Cp;
CLmax real maximum lift coefficient C'p, i ax
L real lift
D real drag
loads
Faero(3) real aerodynamic force FE (F axes, about cg)
Maero(3) real aerodynamic moment ML (F axes, about cg)
Drag real drag el FE
Download real download, aero F’, (I axes)

Chapter 26

113

Structure: FltTank

Variable Type Description Default
Flight State - Fuel Tank Systems
all tanks (standard plus auxiliary)

WrHuel real usable fuel weight

Efuel real usable fuel energy

Wfuel_cap real fuel weight capacity

Efuel_cap real fuel energy capacity

rWfuel real fraction weight capacity

rEfuel real fraction energy capacity = state-of-charge = 1 - depth-of-discharge
battery (E>0 discharge, E<0 charge; power and current positive)

Pfuel_cap real power capacity Peap = Tmbd Erucl—cap/(dmax — dmin) (MJI/hr)

state int state (1 discharging, -1 CC charge, -2 CV charge)

dact real actual depth-of-discharge dact = dmin + (dmax —

X real current z (1/hr)

Xi real current £ = x/Typa

\ real cell voltage V'

Edotcomp real component energy flow Ecomp (MlJ/hr)

etabatt real battery efficiency npats

Ploss real power loss Pjoss (MJ/hr)

etasys real system efficiency 7y

Edotbatt real battery energy flow Ebatt (MlJ/hr)

derit real effective capacity factor dy;s

Edoteff real effective energy flow FEg (MJ/hr)

xmax real maximum current &,y (1/hr)

Pmax real maximum power (for T,,x) (MJ/hr)

Bmargin real battery power margin Py . — |Ebatt\ (MlJ/hr)

exceedB int exceed battery power: \Ebatt\ > (14 €)Prax

Structure: FltTank

Peq
Pdist

Prej

mdot

FG

FN

Fjet(3)
Mijet(3)
PTMS
fuelflow
energyflow
fuelflow_equiv

Vaero(3)
Vmag

q

ed(3)
Dcool
DL

Vaero_aux(3,nauxtankmax)
Vmag_aux(nauxtankmax)

g_aux(nauxtankmax)

ed_aux(3,nauxtankmax)
D_aux(nauxtankmax)
DL_aux(nauxtankmax)

Faero(3)
Maero(3)
Drag
Download

real
real

real
real
real
real
real
real
real
real
real
real

real
real
real
real
real
real

real
real
real
real
real
real

real
real
real
real

system losses

equipment power loss P.q (hp or kW)
distribution power loss Pyis¢ (MJ/hr)
thermal management system

battery rejected power Pe; (MJ/hr)

mass flow 1

gross jet thrust Fig

net jet thrust Fiy

jet thrust force ijt (F axes, about cg)

jet thrust moment M]-Zt (F axes, about cg)

thermal management system loss Pryig (MJ/hr)

fuel flow w)
energy flow £
equivalent fuel flow equiv, from energy flow

aerodynamics

total velocity relative air v (F axes)
velocity magnitude

dynamic pressure

drag vector, —v/|v| in F axes
cooling drag D

download, aero F’, (I axes)

auxiliary tanks

total velocity relative air v (F axes)
velocity magnitude

dynamic pressure

drag vector, —v/|v]| in F axes

drag D

download, aero F’, (I axes)

loads

aerodynamic force X (F axes, about cg)

aerodynamic moment ML (F axes, about cg)
drag e? FE
download, aero F, (I axes)

114

115

Chapter 27

Structure: FltProp

Variable Type Description Default
Flight State - Propulsion Group
STATE_gear int drive system state
control
DN_trim real rotational speed increment, primary rotor or primary engine (rpm)
power
Pcomp real power required Peomp, all components
Pcomp_rotor real rotor
Pcomp_eng real engine groups
Pxmsn real transmission losses Pysn
Pacc real accessory power P, cc
PreqPG real power required Prcqpc = Peomp + Pxmsn + Pacc, propulsion group
PavPG real power available P,,pq, propulsion group (sum all engine groups producing shaft power)
PavElsum real engine installed power available P,, z; (sum all engine groups producing shaft power)
PavEGsum real engine group power available P,, g (sum all engine groups producing shaft power)
Pratio real Pyeqprc/Pavpa, propulsion group
Plimit_ds real drive system limit Ppgiimi¢ (at rpm_trim(primary) and rating_ds, including fTorque)
atPlimit_ds int at drive system limit (Py, pg limited by Ppsiimit)
Qmargin_ds real torque margin, Ppgsiimit — PreqPc
Pmargin real power margin, Py, pg — Pregra
exceedP int exceed power available: Pr.cqpg > (1 + €)Pyypc
exceedQ ds int exceed torque available: Prcqpc > (1 + €) PpStimit
Qmargin real torque margin, min(propulsion group, engine groups, rotors)
exceedQ int exceed torque available: any propulsion group, engine groups, rotors
propulsion group engines
fuelflow(ntankmax) real fuel flow w
fuelflow_total real total fuel flow w
fuelflow_equiv real equivalent fuel flow equiv, from energy flow

energyflow(ntankmax) real energy flow E

Structure: FltProp

energyflow_total
sfc

Fprop(3)
Mprop(3)
Faero(3)
Maero(3)

Drag

Download

real
real
real
real
real
real
real
real

total energy flow E

specific fuel consumption sfc = Wequiv/Preq

jet thrust and momentum drag force F| 15;01) (F axes, about cg)

jet thrust and momentum drag moment M;;op (F axes, about cg)
aerodynamic force FX (F axes, about cg)

aerodynamic moment ML (F axes, about cg)

drag eI FE

download, aero F’, (I axes)

116

117

Chapter 28

Structure: FItEngn

Variable Type Description Default
Flight State - Engine Group
controls
amp real amplitude A
mode real mode B
incid real incidence ¢
yaw real yaw
fgear real gear ratio factor fgear
geometry
CBF(3,3) real engine relative airframe, CBF
ef(3) real engine direction, ey
engine
Pq real uninstalled power required, P,
Plossq real installation loss Pj,ss Or Pryig
etalossq real installation efficiency 7joss
Preq_eng real installed power required, Prcq—cng
N_trim real engine rpm N
mdot real mass flow 7
wdot real fuel flow w
Edot real energy flow E
FG real gross installed jet thrust Fig
Fmom real momentum thrust F,o,m = mV
FGreq real gross thrust (momentum flux) required Fgreq = Freact + Mreact 2 react OF flow control (all components)
FGq real Faq = FGreq/(Nengine—NEngInOp)
FN real net installed jet thrust Fiy
Daux real momentum drag of auxiliary air flow D,
Pa real uninstalled power available, P,

Plossa real installation loss Poss Or Prvs

Structure: FltEngn

etalossa
Pav_eng
Pmech
atPmech
™

SM
etamotor
Prej

ReactionMode
Converted
ProducePower
Pcomp

Preq

PavEl

Pav

Qreq

Pratio
Pmargin
Plimit_es
atPlimit_es
Qmargin_es
exceedQ es
Fmargin
exceedF
fuelflow
energyflow
fuelflow_equiv
sfc

FNEG
DauxEG
Fjet(3)
Mjet(3)
Faux(3)

real
real
real
int

real
real
real
real

int

int

int

real
real
real
real
real
real
real
real
int

real
int

real
int

real
real
real
real
real
real
real

real
real

installation efficiency 7joss

installed power available, Pyy_cng

engine mechanical limit P ecp, (at N_trim)

at mechanical limit (Pyy—eng limited by Prech)
motor/generator torque margin

motor/generator speed margin

motor/generator efficiency Nmotor
motor/generator rejected power Pej (hp or kW)

engine group

reaction drive mode (MODEL_engine_compreact or converted)
converted (KIND=RPTEM with mode=1; O shaft power, 1 reaction, 2 jet)
shaft power (O consumed (generator or compressor), 1 produced)
component power Peomp (generator or compressor); (Nengine—-NEngInOp) Py K s ¢q
power required Pr.cqrc

engine installed power available Py, rr; (Nengine-NEngInOp) Py, _eng
power available, P, g ; fPower(Nengine—NEngInOp) Py —cng

torque required Qr¢q (at N_trim)

PrquG/PavEG

power margin, Pyypc — Preqec

drive system limit Pggjimis (at N_trim and rating_ds)

at drive system limit (P,, pg limited by Pgsiimit)

torque margin, PE‘Slimit - P’r‘quG

exceed torque available: Prcopc > (1 + €)Pesiimit

momentum margin, Fg — Freq

exceed momentum available: Fg,eq > (1 + €)Fg

fuel flow w (negative if generated)

energy flow F (negative if generated)

equivalent fuel flow tWequiv , from energy flow

specific fuel consumption sfc = Wequiv/Preg

net installed jet thrust Fiy

momentum drag of auxiliary air flow D,

jet thrust force FJQ (F axes, about cg)

jet thrust moment M. jft (F axes, about cg)

momentum drag force FZ (F axes, about cg)

118

Structure: FltEngn

Maux(3)

Vaero(3)
Vmag

q

ed(3)
VB(3)
alpha
CD

D

Dcool

Faero(3)
Maero(3)
Drag
Download

real

real
real
real
real
real
real
real
real
real

real
real
real
real

momentum drag moment MY, (F axes, about cg)

aerodynamics
total velocity relative air v (F axes)
velocity magnitude
dynamic pressure
drag vector, —v/|v| in F axes
total velocity relative air vB (B axes)
angle of attack o (deg)
drag coefficient C'p
drag
cooling drag
load
aerodynamic force X (F axes, about cg)
aerodynamic moment ML (F axes, about cg)
drag el FE
download, aero F, (I axes)

119

120

Chapter 29

Structure: FltJet

Variable Type Description Default
Flight State - Jet Group
controls
amp real amplitude A
mode real mode B
incid real incidence ¢
yaw real yaw
geometry
CBF(3,3) real jet relative airframe, CBF
ef(3) real jet direction, e
jet
Tq real uninstalled thrust required 77,
Tlossq real installation 10ss Tjogs
etalossq real installation efficiency 7joss
Treq_jet real installed thrust required 7.¢q—jet
mdot real mass flow 7
wdot real fuel flow w
Edot real energy flow F
ST real specific thrust ST = T,/
FG real gross installed jet thrust Fig
Fmom real momentum thrust Fp,op = (1 +)V
FGreq real gross thrust (momentum flux) required Fgreq = Freact + Mreact 27react OF flow control (all components)
FGq real Faq = FGreq/(Njet—NJetInOp)
FN real net installed jet thrust Fly
Daux real momentum drag of auxiliary air flow D,,x
Ta real uninstalled thrust available T},
Tlossa real installation 108s T]oss

etalossa real installation efficiency 7oss

Structure: FltJet

Tav_jet
Tmech
atTmech

ReactionMode
Converted
Treq

TavlJl

Tav

Jratio
Jmargin
exceed]
Fmargin
exceedF
fuelflow
energyflow
fuelflow_equiv
sfc

FNJG
DauxJG
Fjet(3)
Mjet(3)
Faux(3)
Maux(3)

F(3)
M(3)

Vaero(3)
Vmag

ed(3)
VB(3)
alpha

real
real
int

int

int

real
real
real
real
real
int

real
int

real
real
real
real
real
real
real
real
real
real

real
real

real
real
real
real
real
real

installed thrust available 17, _jes

jet mechanical limit 7} ech

at mechanical limit (75, —jet limited by Tinech)
jet group
reaction drive mode (MODEL _jet react or converted)
converted (RPJEM with mode=1; O jet, 1 reaction)

thrust required T’.cq ¢

jet installed thrust available T}, 77; (Njet—NJetInOp)T g, —jet
thrust available, T4, s; fThrust(Njet—NJetInOp) T, —jet

TrquG/TavJG

thrust margin To 56 — Treqic

exceed thrust available: Tp.cq7c > (1 + €)Tyuic
momentum margin Fg — Freq

exceed momentum available: Fgreq > (1+€)Fg
fuel flow w (negative if generated)

energy flow F (negative if generated)

equivalent fuel flow tequiv, from energy flow
specific fuel consumption sfc = Wequiv/Treq

net installed jet thrust Fiy

momentum drag of auxiliary air flow Dy,x

jet thrust force FJ’; (F axes, about cg)

jet thrust moment M. jft (F axes, about cg)
momentum drag force £ (F axes, about cg)
momentum drag moment MY (F axes, about cg)
loads

F
force Fo

aerodynamics
total velocity relative air vF (F axes)
velocity magnitude

dynamic pressure

drag vector, —v/|v| in F axes
total velocity relative air v2 (B axes)
angle of attack « (deg)

(F axes)
moment M (F axes)

121

Structure: FltJet

CD
D
Dcool

Faero(3)
Maero(3)
Drag
Download

real
real
real

real
real
real
real

drag coefficient C'p
drag
cooling drag
load
aerodynamic force FE (F axes, about cg)
aerodynamic moment ME (F axes, about cg)
drag el FE
download, aero F’, (I axes)

122

123

Chapter 30

Structure: FltChrg

Variable Type Description Default
Flight State - Charge Group
controls

amp real amplitude A

mode real mode B

incid real incidence ¢

yaw real yaw
geometry

CBF(3,3) real charger relative airframe, CBF

ef(3) real charger direction, ey
charger

Pacell real power available P,, = Pyl = Eacell

Pqcell real cell power required Pycenn = chell

Preq real installed power required Preq = Preqcc/(Ncharge—NChrgInOp)
charger, fuel cell

deltac real compressor pressure ratio J..

iratio real power required current ratio i, /iq

sfc_burn real cell specific fuel consumption w/ P,

mdot_burn real mass flow m

wdot_burn real fuel flow w

FG real gross installed jet thrust Fig

Fmom real momentum thrust Fom

FN real net installed jet thrust Fiy

Daux real momentum drag of auxiliary air flow D,
charger, solar cell

etachrg real charger efficiency 7chrg

charge group)
Pchrg real power required Prcqca = Ereqca

Structure: FltChrg

Preqtotal
PavCG

Cratio
Cmargin
exceedC
energyflow
fuelflow_equiv

fuelflow_burn
energyflow_burn
fuelflow_equiv_burn
sfc

FNCG

DauxCG

Fjet(3)

Mijet(3)

Faux(3)

Maux(3)

F(3)
M(3)

Vaero(3)
Vmag

q

ed(3)
VB(3)
alpha
CD

D

Dcool

real
real
real
real
int

real
real

real
real
real
real
real
real
real
real
real
real

real
real

real
real
real
real
real
real
real
real
real

total cell power required P;.cqtotal; (Ncharge—NChrginOp) Pycen
power available P,,c¢q; fCharge(Ncharge—NChrgInOp) P,
PTeqCG/PavCG

power margin, Pyyca — Pregea

exceed power available: Preqcq > (14 €)Pavca

energy flow E (negative if generated)

equivalent fuel flow wWequiv, from energy flow

charge group, fuel cell

fuel burn
fuel flow w
energy flow E
equivalent fuel flow wWequiv, from energy flow
specific fuel consumption sfc = Wequiv/Preq
net installed jet thrust Fiy
momentum drag of auxiliary air flow D«
jet thrust force %, (F axes, about cg)
jet thrust moment M. jit (F axes, about cg)
momentum drag force £ (F axes, about cg)
momentum drag moment MZ (F axes, about cg)

loads

force Fclflrg (F axes)

moment ME _ (F axes)

chrg

aerodynamics

total velocity relative air v (F axes)
velocity magnitude

dynamic pressure

drag vector, —v/|v| in F axes

total velocity relative air v (B axes)
angle of attack o (deg)

drag coefficient Cp

drag

cooling drag

124

Structure: FltChrg

Faero(3)
Maero(3)
Drag
Download

real
real
real
real

load
aerodynamic force X (F axes, about cg)
aerodynamic moment ML (F axes, about cg)
drag el FE
download, aero F, (I axes)

125

Chapter 31

126

Structure: Solution

Variable Type Description Default
+ Solution Procedures
title c*100 + title
notes c*1000 + notes
+ Rotor
+ convergence control
niter_rotor(nrotormax) int + maximum number of iterations 40
toler_rotor(nrotormax) real + tolerance (deg) .01
relax_rotor(nrotormax) real + relaxation factor 5
deriv_rotor(nrotormax) int + derivative (1 first order, 2 second order) 1
maxinc_rotor(nrotormax) real + maximum increment amplitude (0. for no limit) 4.
trace_rotor(nrotormax) int + trace iteration (0 for none) 0
+ Trim
+ convergence control
niter_trim int + maximum number of iterations 40
toler_trim real + tolerance (fraction reference) .001
relax_trim real + relaxation factor .5
+ perturbation identification of derivative matrix
deriv_trim int + perturbation (1 first order, 2 second order) 1
mpid_trim int + number of iterations between identification (O for never recalculated) 0
perturb_trim real + variable perturbation amplitude (fraction reference) .002
init_trim int + reinitialize aircraft controls in maximum effort iteration (0 no, 1 force retrim) 0
start_trim int + initialize controls from solution of previous case (0 no) 0
trace_trim int + trace iteration (0 for none, 2 for component controls) 0

start_trim=1: initialize FltAircraft%control from FltAircraft%control_trim of previous case
require INIT_input=INIT_data=2 or read solution file; and same missions and conditions as previous case

requirements not checked

Structure: Solution

method_fly
method_flymax

niter_fly
toler_fly
relax_fly
perturb_fly
maxderiv_fly
maxinc_fly
rfit_fly
nfit_fly
init_fly

trace fly

method_maxgw

niter_maxgw
toler_maxgw
relax_maxgw
perturb_maxgw
maxderiv_maxgw
maxinc_maxgw
trace_maxgw

niter_miss
toler_miss
relax_miss
relax_range
relax_gw
trace_miss

int
int

int
real
real
real
real
real
real
int
int
int

int

int

real
real
real
real
real
int

int
real
real
real
real
int

+ 4+ A+ A+ +

+ 4+ 4+ + + + + + + o+

+ 4+ 4+ 4+ + + + o+

Maximum effort
method (1 secant, 2 false position)
maximization method (1 secant, 2 false position, 3 golden section search, 4 curve fit)

convergence control

maximum number of iterations

tolerance (fraction reference)

relaxation factor
variable perturbation amplitude (fraction reference)
maximum derivative amplitude (0. for no limit)
maximum increment fraction (0. for no limit)
extent of curve fit (fraction maximum)
order of curve fit (2 quadradic, 3 cubic)
reinitialize aircraft controls (0 no, 1 force retrim)
trace iteration (O for none)

Maximum gross weight (flight condition or mission takeoff)
method (1 secant, 2 false position)

convergence control

maximum number of iterations

tolerance (fraction reference)

relaxation factor
variable perturbation amplitude (fraction reference)
maximum derivative amplitude (0. for no limit)
maximum increment fraction (0. for no limit)
trace iteration (0 for none)

Mission

convergence control

maximum number of iterations

tolerance (fraction reference)

relaxation factor (mission fuel)

relaxation factor (range credit)

relaxation factor (max takeoff GW)
trace iteration (O for none)

127

80

.002

.05

e

.98

O O W

40

.002

o .
[S I

o A
o PP a5

Structure: Solution

niter_size
niter_param
toler_size

relax_size
relax DGW
relax_xmsn
relax_wmto
relax_tank
relax_thrust

maxinc_size
maxinc_ DGW
maxinc_xmsn
maxinc_wmto
maxinc_tank
maxinc_thrust
trace_size

trace_case
trace_start
trace count

int
int
real

real
real
real
real
real
real

real
real
real
real
real
real
int

int
int
int

R I T T T e T S S e e e e S e A

+ 4+ +

128

Size aircraft
convergence control

maximum number of iterations (performance loop) 40
maximum number of iterations (parameter loop) 40
tolerance (fraction reference) .01
relaxation factors

power or radius

gross weight

drive system limit

WMTO and SDGW

fuel tank capacity

rotor thrust
maximum increment fraction (0. for no limit)

power or radius

gross weight

drive system limit

WMTO and SDGW

fuel tank capacity

rotor thrust

trace iteration (O for none, 2 for power)

Ll

coococoo

o

with niter_param=1, parameter iteration is part of performance loop (can be faster than niter_param > 1)

Case
trace operation (O for none, 1 trace, 2 for all iterations) 1
counter at start trace of iterations 0
counter

use trace_case=2 to identify point at which analysis diverges
counter written if trace_case=1 or 2; trace of iterations suppressed until counter > trace_start
then turn on trace selectively for mission/segment/condition

Structure: Solution

toler_check

KIND_Wscale
KIND_Pscale
KIND_Lscale
scaleRotor
scaleWing

Wscale
Pscale
Lscale
Ascale
Fscale
Mscale
Vscale
Rscale
Oscale
Tscale
Cscale
Hscale
Gscale
Xscale

real

int
int
int
int
int

real
real
real
real
real
real
real
real
real
real
real
real
real
real

+

+ 4+ + + + +

Flight condition and mission segment

check Preq, Qlimit, Wfuel (fraction reference)

Tolerance and perturbation scales

weight scale (1 design gross weight, 2 nominal Cr /o)
power scale (1 aircraft power, 2 derived from weight scale)
length scale (1 rotor radius, 2 wing span, 3 fuselage length)
rotor number

wing number

Derived tolerance and perturbation scales

weight scale

power scale

length scale

angle scale

force scale

moment scale
horizontal velocity scale
vertical velocity scale
angular velocity scale
Cr/o scale

Cy, scale

altitude scale
acceleration scale
range scale

129

.005

N

Structure: Solution

SETextsol_size
SETextsol_miss
SETextsol_trim
SETextsol_rotor

int
int
int
int

+ + + + +

130

External solution procedure (O for internal)
size iteration
mission iteration
trim iteration
rotor iteration

O O O o

for external solution procedure (SETextsol = 1), suppress iteration and calculate residual

the solution problem (such as size parameters, trim variables) must still be defined

residuals (and error ratios) are in structures SizeParam, MissParam, FltAircraft, FltRotor
with external solution for maximum gross weight or maximum effort, there is no residual; do not specify internal
iteration

Chapter 32

131

Structure: Cost

Variable Type Description Default
+ Cost
title c*100 + title
notes c*1000 + notes
+ Inflation
MODEL _inf int + model (1 only input factor, 2 CPI, 3 DoD) 3
year_inf int + year for internal inflation factor (O for current year) 0
inflation real + inflation factor (per cent, relative 1994 or year_inf) 100.00
EXTRAP_inf int + year beyond CPI/DoD table data (O error, 1 extrapolate factor) 1
inflation: F; multiplies airframe purchase price and maintenance cost
factor inflation always used, even with internal table
CPI or DoD table: F; = inflationx (Ftable (year_inf)/Ftable(1994))
input factor: F; = inflation (relative 1994)
cost factors and rates include technology and inflation, correspond to year_inf
+ Cost
MODEL_cost int + model (0 none, 1 cost, 2 only CTM purchase price) 1
FuelPrice(ntankmax) real + fuel price Gyyel ($/gallon or $/liter) 5.0
EnergyPrice(ntankmax) real + energy price Genergy ($/MJ or $/kWh, Units_energy) 0.04
EnergyCredit(ntankmax) real + credit for generated energy ($/MJ or $/kWh, Units_energy) 0.
Npass int + number of passengers Npaqs 100
+ Purchase Price, airframe composite construction
rComp real + additional cost rate 7comp for composite construction ($/1b or $/kg) 0.
fWcomp_body real + composite weight in body (fraction body weight) 0.

Structure: Cost

fWcomp _tail
fWcomp_pylon
fWcomp_wing
KIND_maint

rBatt
Mbatt

BlockHours
NonFlightTime
DepPeriod
LoanPeriod
IntRate
ResidValue
Spares
LoadFactor

MODEL_DOC_price
MODEL_DOC_maint
MODEL_DOC_cdi

Kcdi
Kcrew

real
real
real
int

real
real

real
real
real
real
real
real
real
real

int
int
int
real
real

+ 4+ + + + + +

+ 4+ A+ A+t

composite weight in tail (fraction tail weight)
composite weight in pylon (fraction pylon weight)
composite weight in wing (fraction wing weight)

Maintenance factors (0 input, 1 best practice, 2 average practice)
Battery

purchase cost factor 7,4, battery ($/MJ or $/kWh, Units_energy)
battery maintenance factor My,,¢¢ ($/MJ or $/kWh per flight hour, Units_energy)

132

e

50.
.10

equivalent energy price for fuel burned: $/MJ=($/gal)/126.2 (based on 42.8 MJ/kg and 6.5 1b/gal of JP-4/JP-8)
EnergyCredit=0. if no credit for generated energy

cost factors and rates include technology and inflation, correspond to year_inf
rComp negative for cost reduction

battery: rBatt and Mbatt are for actual tank capacity (including unusable SOC)
maintenance includes replacement, for just replacement Mbatt=rBatt/(time-between-replacement)

Direct Operating Cost

available block hours per year B
non-flight time per trip Ty r (min)
depreciation period D (years)

loan period L (years)

interest rate 7 (%)

residual value V' (%)

spares per aircraft S (% purchase price)
passenger load factor (%)

DOC model

purchase price model for DOC (1 CTM, 2 Scott)

maintenance cost model for DOC (1 CTM, 2 Scott)
crew+depreciation+insurance estimate (1 total only, 2 separate components)
crew+depreciation+insurance factor K g;

crew cost factor K. ew

3751.
12.
15.
15.

10.
25.
75.

1.0
1.0

Structure: Cost

Kins
KETS

TECH cost_af
TECH_cost_maint
TECH_cost_cmpnt

MODEL_CTM
KIND_engine
fmotor

rFCE
rMEP

MODEL_maint
rLabor
MMHperFH
Milabor

Mparts
Mengine
Mmajor

real
real

real
real
real

int
int
real

real
real

int

real
real
real
real
real
real

+ +

+ + + +

R T T S S S S S S S e

insurance cost K, (fraction aircraft cost)
emissions trading scheme cost Kgrg ($/kg CO2)

Technology Factors
airframe x 4 r
maintenance Xmaint
components Xcmpnt

CTM rotorcraft cost model
Purchase Price
CTM model (1 original, 2 original with Scott Modern Complexity factor, 3 revisited)
engine (1 turbine, 2 piston)
weighting factor for electric motor or generator
systems (fixed useful load)
cost factor rpcg, flight control electronics ($/1b or $/kg)
cost factor rypp , mission equipment package ($/1b or $/kg)
Maintenance
maintenance cost estimate (1 total only, 2 separate components)
labor rate ($ per hour)
maintenance man hours per flight hour
MMH/FH factor M)apor
parts factor Mparts
engine overhaul factor Mepgine
major periodic maintenance factor My, jor

133

.0056
.02

0.87
1.0
1.0

10000.
10000.

160.

0.0017
34.
1.45
18.

labor rate includes inflation, corresponds to year_inf

cost factors and rates include technology and inflation, correspond to year_inf
current best practice: Mlabor=0.0017, Mparts=34, Mengine=1.45, Mmajor=18
current average practice: Mlabor=0.0027, Mparts=56, Mengine=1.74, Mmajor=28

maintenance man hours per flight hour calculated from sum of fixed term (MMHperFH) and term scaling with weight

empty (Mlabor)

Structure: Cost

year_proc
Nprod

Nlot
Nprod_eng

drFCE
drMEP

f sec

KIND fuse boom
KIND fuse dev
Pr_avg

TBO_eng
KIND_eng_mar
KIND_eng_FADEC
KIND_motor_PM
Kcompress

Kjet

Kchrg
KIND_xmsn_rg
KIND_xmsn_mar
KIND av_dev
KIND_av_UAV
f_env

f arm_furn_LH
KIND_int_SE_prof
f int SE_prof

Xwing
xrotor
xfuse

int
int
int
int

real
real

real
int
int
real
real
int
int
int
real
real
real
int
int
int
int
real
real
int
real
real

real
real

I T i i S S S S e e e e e S e T Ik Tk T T T S T i i o

Scott rotorcraft component cost model
Flyaway Price
production

year of procurement (0 same as year_inf, not used if <1955)
aircraft production number (0 not used)

number aircraft in this production lot (0 not used)

engine production number (0 not used)

systems

cost factor Argcg, additional flight control electronics ($/1b or $/kg)
cost factor Arygp, additional mission equipment package ($/1b or $/kg)

component cost models

fuselage, fraction of secondary fuselage weight
fuselage, includes tail boom (0 not)

fuselage, early LRIP of new design (0 not)

engine, stage-averaged compressor pressure ratio
engine, time between overhaul (hours)

engine, marinized (0 not)

engine, FADEC equipped (0 not)

motor, complexity (1 induction, 2 permanent magnet)
compressor cost factor

jet cost factor

charger cost factor

transmission, engine group includes reduction gearbox (0 direct drive)
transmission, marinized (0 not)

avionics, early LRIP of new package (0 not)

avionics, unmanned medium to long endurance aircraft (0 not, 1 LOS, 2 BLOS)

environmental group, fraction prime equipment cost

armament provisions, furnishings, and load and handling groups, fraction fuselage cost

integration and assembly, systems engineering, and profit (1 government, 2 commercial)

integration and assembly, systems engineering, and profit (commercial), fraction prime equipment cost
cost adjustment factors

wing
all rotors
fuselage

134

o O O o

©

0.35

1.6
2000.

Structure: Cost

xeng(nengmax)
xjet(njetmax)
xchrg(nchrgmax)
Xxmsn

xav

PES

Xpropsys

xfc

xelec

Slabor
KIND_labor_UAV
Scsi

Srotor
Sxmsn(npropmax)
Seng(nengmax)
Sjet(njetmax)
Schrg(nchrgmax)
Sacsys

Sinspect
TBR_motor
funsched

real
real
real
real
real
real
real
real
real

real
int

real
real
real
real
real
real
real
real
real
real

I T T T S S S S S R I Ik T s

engine group

jet group

charge group

drive system
avionics

small structures
propulsion systems
flight controls
electrical

Maintenance
maintenance cost factors

personnel

personnel cost factor, UAV (0 not)
continuing system improvements
all rotors

drive system

engine group

jet group

charge group

aircraft systems

inspections

motor time-between-replacement (hours)

unscheduled maintenance fraction

135

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1.0

0.0621
0.0219
0.0178
0.1412
01
0.1
0.0978
0.1234
5000.
0.25

Crrew not used in DOC with Scott maintenance model (included in personnel cost)

maintenance cost factors
current best practice: Srotor=0.0219, Sxmsn=0.0178, Seng=0.1412 (turboshaft), Seng=0.0941 (reciprocating)

Sacsys=0.0978, Sinspect=0.1234

current average practice: Srotor=0.0514, Sxmsn=0.0417, Seng=0.2256 (turboshaft), Seng=0.1506 (reciprocating)

Sacsys=0.1983, Sinspect=0.3086

continuing system improvements: Scsi=0.1071 (UAV), Scsi=0.0621 (other)

Chapter 33

136

Structure: Emissions

Variable Type Description Default
+ Emissions

title c*100 + title

notes c*1000 + notes

MODEL_emissions int + Emissions model (0 none, 1 ETS and ATR, 2 only ETS) 1
+ Emissions Trading Scheme (ETS)

Kfuel(ntankmax) real + COs emissions from fuel used, Ky, (kg/kg) 3.75

Kenergy(ntankmax) real + CO; emissions from energy used, Kepergy (kg/MIJ or kg/kWh, Units_energy) 0.14
+ Average Temperature Response (ATR)

H real + aircraft operating lifetime H (yr) 30.

U real + aircraft utilization rate U (missions/yr) 350.

r real + ATR discount rate 0.03

tmax real + ATR integration period tyax (Y1) 500.
+ emission index (kg/kg)

El_CO2(ntankmax) real + carbon dioxide, Flco, 3.16

El_H20(ntankmax) real + water vapor, Ely,0 1.26

El_SO4(ntankmax) real + sulphates, Elg0, 0.0002

El_soot(ntankmax) real + soot, F'lgoot 0.00004

EI_NOx(ntankmax) real + nitrogen oxides, EIno, 0.01

MODEL_NOx(ntankmax) int + turboshaft engine NOx emission model (0 input Elno, , 1 DLR, 2 Swiss) 1

KIND_NOx(ntankmax) int + model parameters (0 input, 1 low emissions, 2 high emissions) 1

KEIO(ntankmax) real + DLR model, Kgo 0.0036739

KEI1(ntankmax) real + DLR model, Kg 0.00748

KEls(ntankmax) real + Swiss model, Ky 0.004

fAIC real + aviation induced cloudiness factor, faic 1.0
+ energy emission factor (kg/MJ or kg/kWh, Units_energy)

K_CO2(ntankmax) real + carbon dioxide, Kco, 0.14

K_H20(ntankmax) real + water vapor, Ki,0 0.

Structure: Emissions

K_SO4(ntankmax)
K_soot(ntankmax)
K_NOx(ntankmax)
SET credit

ZC02
ZNOx
Zs

fPower(11,nengmax)
wdot(11,nengmax)

real
real
real
int

real
real
real

real
real

+ 4+ + +

sulphates, Kgo,
soot, Koot
nitrogen oxides, Kno,
Emissions credit for energy generated (0O for none)

E'T default values are for turboshaft engine

emission index (£ and Kf,e1) only used for tanks that store and use fuel as weight (SET_burn=1)
energy emission factor (K and Kepergy) only used for tanks that store and use fuel as energy (SET_burn=2)

ATR discount rate: » > 100000 evaluated as » = oo

ATR factors
CO,
NOm (CH4 and OSL)
short life

turboshaft NO, model
power factor, P, = fpPy,
fuel flow, w

137

©

Chapter 34

138

Structure: Aircraft

Variable Type Description Default

+ Aircraft
title c*100 + title
notes c*1000 + notes
config c*16 + Configuration "helicopter’
RCconfig int configuration (RCconfig_rotorcraft, helicopter, tandem, coaxial, tiltrotor, compound, multicopter, airplane)
nRotor_main int number of main rotors

config: identifies rotorcraft configuration
config = 'rotorcraft’, 'helicopter’, 'tandem’, 'coaxial’, 'tiltrotor’, 'compound’, 'multicopter’, "airplane’

+ Aircraft Controls
ncontrol int + number of aircraft controls (maximum ncontmax) 4
IDENT_control(ncontmax) c*16 + labels of aircraft controls
nstate_control int + number of control states (maximum nstatemax) 1

pilot’s controls (control number)

keoll int collective stick
klatcyc int lateral cyclic stick
kingcyc int longitudinal stick
kpedal int pedal
ktilt int tilt

+ control values (function speed)
nVcont(ncontmax) int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
nVcoll int + collective stick 0
nVlatcyc int + lateral cyclic stick 0
nVingcyc int + longitudinal stick 0

Structure: Aircraft

nVpedal

nVtilt
cont(nvelmax,ncontmax)
coll(nvelmax)
latcyc(nvelmax)
Ingcyc(nvelmax)
pedal(nvelmax)
tilt(nvelmax)
Vcont(nvelmax,ncontmax)
Veoll(nvelmax)
Vlatcyc(nvelmax)
Vingcyc(nvelmax)
Vpedal(nvelmax)
Vtilt(nvelmax)

int

int

real
real
real
real
real
real
real
real
real
real
real
real

+ 4+ A+ o+

pedal
tilt

values
collective stick caco
lateral cyclic stick cac.
longitudinal cyclic stick cacs
pedal cacyp
tilt Qltilt

speeds (CAS or TAS, knots)
collective stick
lateral cyclic stick
longitudinal cyclic stick
pedal
tilt

control system: set of aircraft controls c4¢ defined
aircraft controls connected to individual controls of each component, ¢ = T'cac + ¢o
for each component control, define matrix 7' (for each control state) and value ¢
flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
use of component control ¢y can be suppressed for flight state using SET_comp_control
aircraft controls: identified by IDENT_control
typical aircraft controls are pilot’s controls; default IDENT_control="coll’,'latcyc’,’ Ingcyc’, pedal’, "tilt’
available for trim (flight state specifies trim option)
initial values specified if control is trim variable; otherwise fixed for flight state
each aircraft control can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
coll/latcyc/Ingecyc/pedal/tilt input put in appropriate nVcont-cont-Vcont, based on IDENT_control
flight state input can override
by connecting aircraft control to component control, flight state can specify component control value
sign conventions for pilot’s controls: collective + up, lat cyclic + right, long cyclic + forward, pedal + nose right
rotor controls are positive Fourier series, with azimuth measured in direction of rotation

139

Structure: Aircraft

nVpitch
pitch(nvelmax)
Vpitch(nvelmax)

nVroll
roll(nvelmax)
Vroll(nvelmax)

Vconv_hover
Vconv_cruise

kcont_hover
kcont_conv
kcont_cruise

kgear_hover(npropmax)
kgear_conv(npropmax)
kgear_cruise(npropmax)

int
real
real

int
real
real

real
real

int
int
int
int
int
int

+ 4+ 4+ + + + + + o+

+ 4+ 4+ + + + + +++ o+

140

Aircraft Motion

aircraft pitch angle 6
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

aircraft roll angle ¢
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

aircraft motion
available for trim (depending on flight state)
each motion can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
flight state input can override; initial value if trim variable

Conversion

maximum speed for hover and helicopter mode (CAS or TAS, knots)

minimum speed for cruise (CAS or TAS, knots)

control state
hover and helicopter mode (V' < Vieonv—hover)
conversion mode (Veonv—nhover < V' < Veonv—cruise) 1
cruise mode (V > V::onvfcruise)

drive system state (each propulsion group)
hover and helicopter mode (V' < Vionv—hover)
conversion mode (Veonv—hover < V' < Veonv—cruise)
cruise mode (V > ‘/convfcruisc) 1

conversion control: use depends on STATE_control, SET _tilt, SET_Vtip of FltState
hover and helicopter mode (V' < Viony—hover): Use tilt=90, Vtip_hover, kgear_hover, kcont_hover
cruise mode (V' > Vionv—cruise): Use tilt=0, Vtip_cruise, kgear_cruise, kcont_cruise
conversion mode: tilt linear with V', use Vtip_hover, kgear_conv, kcont_conv
nacelle tilt angle: O for cruise, 90 deg for helicopter mode flight

Structure: Aircraft 141

+ Never-exceed speed
SET_VNE c*32 + model 'none’
iISET_VNE int limits defined (O for none)
iSET_VNE_TAS int TAS
iISET_VNE_CAS int CAS
iISET_VNE_stall int stall
iISET_VNE_comp int compressibility
VNE_TAS real + TAS limit (knots)
VNE_CAS real + CAS limit (knots)
KIND_VNE_stall(nrotormax) int + stall model, each rotor (0 for no limit, 1 steady, 2 transient, 3 equation) 3
Mat_VNE(nrotormax) real + advancing tip Mach number M,;, each rotor (0. for no limit) 1.
never-exceed speed: calculate Vg in knots TAS

SET_VNE = 'none’, or one to four of ('TAS’, 'CAS’, 'stall’, "comp’)

stall limit: Vg from rotor thrust capability (Cr/o vs)

compressibility limit: Vxg. from advancing tip Mach number M,
SET_Vschedule int + Velocity schedules (1 CAS, 2 TAS) 1

velocity schedules: all described as function CAS or TAS (knots)
conversion, controls and motion, rotor tip speed, landing gear retraction, trim targets, drive system ratings

Structure: Aircraft

+ Trim states

nstate_trim int + number of trim states (maximum ntrimstatemax)
IDENT_trim(ntrimstatemax) c*12 + label of trim state
mtrim(ntrimstatemax) int + number of trim variables (maximum mtrimmax)
trim_quant(mtrimmax,ntrimstatemax)

c*16 + trim quantity name
trim_var(mtrimmax,ntrimstatemax)

c*l6 + trim variable name
trim_target(mtrimmax,ntrimstatemax)

int + target source (1 FltState, 2 component)

Derived trim states
itrim_quant(mtrimmax,ntrimstatemax)

int trim quantity name (TRIM_QUANT _xxx)
itrim_quantn(mtrimmax,ntrimstatemax)
int trim quantity structure number

itrim_quantk(mtrimmax,ntrimstatemax)

int trim quantity kind (O other, 1 rotor, 2 rotor lift, 3 rotor prop, 4 wing, 5 wing lift)

itrim_var(mtrimmax,ntrimstatemax)

int trim variable name (TRIM_VAR_xxx, or control number)

itrim_varn(mtrimmax,ntrimstatemax)
int trim variable structure number

trim state: one or more set of quantities and variables for trim iteration

FltState identifies trim state (STATE_trim match IDENT _trim),

trim variable:

description

trim_var

aircraft control

aircraft orientation

aircraft velocity

aircraft velocity

aircraft angular rate
propulsion group tip speed
propulsion group engine speed

match IDENT _control

'pitch’, "roll’
'speed’, 'ROC’
'side’

"pullup’, "turn’
'Vtip n’
'Nspec n’

body axes relative inertial axes
horizontal, vertical flight speed
sideslip angle

Euler angle rates

142

Structure: Aircraft

trim quantity:

description trim_quant target
aircraft total force 'force x', 'force y’, 'force z' Zero
aircraft total moment 'moment x', 'moment y', 'moment z’' Zero

aircraft load factor
propulsion group power
power margin

torque margin

engine group power
power margin
momentum margin
jet group thrust

jet thrust margin
momentum margin
charge group power
charge power margin
fuel tank energy flow
battery power margin
rotor lift

rotor lift

rotor propulsive force
rotor propulsive force
rotor thrust

rotor thrust margin
rotor thrust margin
rotor shaft power
rotor flapping

rotor flapping

rotor hub moment
rotor hub moment
rotor torque

wing lift

wing lift coefficient
wing lift margin

tail lift

’ [

nx', 'ny’, 'nz’

'power n'

'P margin n’

'Q margin n’

'power EG n’

'E margin n’

'FE margin n’

'jet n’

'J margin n’

'FJ margin n’

'charge n’

'C margin n’

"tank n’

'B margin n’

'lift rotor n’, 'flift rotor n’
'CLs rotor n’, 'vert rotor n’

'prop rotor n’, 'fprop rotor n’

'CXs rotor n', 'X/q rotor n’'
'CTs rotor n'
"T margin n’

"T margin tran n','T margin eqn n’

'power rotor n’

'betac n’, 'Ingflap n’
'betas n’, 'latflap n’

'hub Mx n’, 'roll n’

'hub My n’, 'pitch n’
'hub Mz n’, 'torque n’
'lift wing n’, 'flift wing n’
'CL wing n’

'L margin n’

'lift tail n’

FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target

FltState%trim_target, Rotor%KIift
FltState%trim_target, Rotor%KiIift
FltState%trim_target, Rotor%Kprop
FltState%trim_target, Rotor%Kprop
FltState%trim_target, Rotor%KiIift

FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target

FltState%trim_target, Wing%Klift
FltState%trim_target, Wing%Klift

FltState%trim_target
FltState%trim_target

143

Structure: Aircraft 144

if trim_target=1, trim quantity target value is FltState%trim_target; otherwise component Klift or Kprop used

[N 1]

if trailing “n” is absent, use first component (n=1)

trim_quant="flift rotor n’ or trim_quant="flift wing n': target is fraction total aircraft lift (GW*nAC(3))
trim_quant="fprop rotor n': target is fraction total aircraft drag (qAC*DoQ)

trim_quant='T margin n' uses Rotor%CTs_steady, trim_quant="T margin tran n’ uses Rotor%CTs_tran
trim_quant="T margin eqn n’ uses equation for rotor thrust capability (Rotor%KO0_limit and Rotor%K1_limit)

trim_var="Vtip' or 'Nspec’: requires FltAircraft%SET_Vtip="input’

+ Geometry
INPUT_geom int + input (1 fixed, SL/BL/WL; 2 scaled, from XoL/YoL/ZoL) 2
+ scaled geometry
+ reference length
KIND_scale int + kind (1 rotor radius, 2 wing span, 3 fuselage length) 1
kScale int + identification (component number) 1
+ reference point
KIND_Ref int + kind (O input, 1 rotor, 2 wing, 3 fuselage, 4 center of gravity) 0
kRef int + identification (component number) 1
SL_Ref real + stationline
BL_Ref real + buttline
WL_Ref real + waterline
calculated reference point (input or component)
SLref real stationline
BLref real buttline
WLref real waterline
loc_cg Location + baseline center of gravity location

Geometry: Location for each component
fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL
stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m

Structure: Aircraft

SET_atmos
temp
dtemp
density
csound
viscosity
altitude

iISET_atmos
density_to
sigma_to
theta_to
delta_to

c*12
real
real
real
real
real
real

int

real
real
real
real

+ 4+ 4+ 4+ + + o+

145

scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale)
XoL + aft, YoL + right, ZoL + up; from reference point
option to fix some geometry (FIX_geom in Location override INPUT_geom)
option to specify reference length (KIND_scale in Location override this global KIND_scale)

reference point: KIND_Ref, kRef; input dimensional XX_Ref, or position of identified component
component reference must be fixed

certain Locations can be calculated from other parameters (configuration specific)

center of gravity: baseline is for nacelle angle = 90
flight state has calculated or input actual cg location

Takeoff flight condition

atmosphere specification 'std’
temperature T
temperature increment AT 0.
density p

speed of sound c;
viscosity p
altitude
Derived takeoff flight condition
atmosphere (SET_atmos_xxx)
density p
density ratio p/pg
temperature ratio T'/ Ty
pressure ratio p/po

takeoff condition (density) used for C' /o in rotor sizing
SET_atmos, atmosphere specification:
'std’ = standard day at specified altitude (use altitude)
'dtemp’ = standard day at specified altitude, plus temperature increment (use altitude, dtemp)
"temp’ = standard day at specified altitude, and specified temperature (use altitude, temp)
'dens’ = input density and temperature (use density, temp)
"input’ = input density, speed of sound, and viscosity (use density, csound, viscosity)
'notair’ = input, not air on earth (use density, csound, viscosity)
see FltState%SET_atmos for other options (polar, tropical, and hot days)

Structure: Aircraft

diskload
Aref
wingload
Sref

Pav
powerload
Tav
thrustload

nWingExt
nWingExtKit
nWingKit
nWotherkit
SET_fold

SLna
length_op
width_op

area_op

burnweight
eref

real
real
real
real
real
real
real
real

int
int
int
int
int
real
real
real

real

int
real

Size
aircraft disk loading (Ib/ft?> or N/m?)
reference rotor area
aircraft wing loading (Ib/ft? or N/m?)
reference wing area
total takeoff power available
aircraft power loading
total takeoff thrust available
aircraft weight-to-thrust

aircraft disk loading = Wp /Aver, Arer = Y, faA; rotor disk loading = fiy Wp /A

aircraft wing loading = Wp /Sief, Sret = D, S; individual wing loading = fy Wp /S
aircraft power loading = Wp /Py, Poy = > Neng Peng (each engine group at takeoff rating)
aircraft thrust-to-weight = Wp /Toy, Top = D NjetTietr (each jet group at takeoff rating)

Configuration
wing extensions (0 for none)
wing extension kits (O for none)
wing kits (O for none)
other kit (O for none)
folding (0 none, 1 fold weights, 2 with kit) (from Systems)
Neutral point
stationline SL,,,
Operating size (hover; controls = 0 except tilt = 90)
length
width
area
Fuel tank system
first fuel tank that burns weight (0 none)
reference specific energy (MJ/kg)

146

Structure: Aircraft

factor_inf
factor_inf2011
factor_inf2018
factor_inf2021
factor_inf2024
fecmplx

Cbatt

Whatt

Ebatt
Cbattmaint

CAC
CAC_nokit
Cmaint
Cmaint_nokit
Ccomp
CMEP
CFCE
Wcomp
WMEP
WFCE
Kconfig
rAF

rAC

WAF cost
WEKcost
Pcost

Clabor
Cparts
Cengine
Cmajor
MMHperFH

real
real
real
real
real
real
real
real
real
real

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

real
real
real
real
real

Cost

inflation factor F; (year_inf relative 1994, including factor inflation)
inflation factor F; (2011 relative 1994, CPI)

inflation factor F; (2018 relative 1994)
inflation factor F; (2021 relative 1994)
inflation factor F; (2024 relative 1994)

Scott Modern Complexity factor fempix = 2.366 /Fio4

battery cost Chayt

battery weight Wi,

battery capacity Ehazt

battery maintenance cost Chatt—maint
CTM purchase price

aircraft C s

aircraft C'4¢, folding kit not installed

maintenance Cryaint

maintenance Ciyaint, folding kit not installed

composite cost increment Ceomp

mission equipment package cost Cvigp
flight control electronics cost Crcg
composite weight increment Weomp,
mission equipment package weight Wyigp
flight control electronics weight Wrcg
configuration factor, Kpr Kpn Krg KR
airframe Cap/Wap ($/1b or $/kg)

total aircraft Cyc/Wgx ($/1b or $/kg)
airframe weight Wsp

Wgk = weight empty + airframe kits = Wap + Wyrp + Wrer + Whats

rated takeoff power P
CTM maintenance
labor cost Clapor
parts cost Charts
engine overhaul cost Cepgine
major periodic maintenance cost Cpajor
maintenance man hours per flight hour

147

Structure: Aircraft

Ccrew
Cdep
Cins
Cfin

CACcomp
rACcomp
rAFcomp
rPQcomp
dCMEP
dCFCE

c FA

c_pq

c int SE
c_profit
c_wing
c_rotor

c fuselage
c_emp_nac LG
c_engine

c_jet

c_chrg

c_prop

c_xmsn

c_FC inst_hyd
c_aux_fuelsys
c_elect
C_avionics
c_arm_furn_load
c_env

Cmaintcomp
cm_csi

real
real
real
real

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

real
real

DOC

crew cost Cirow
depreciation cost Cyep
insurance cost Cipg
finance cost Cf,

Scott flyaway price

aircraft C'4¢ from components

total aircraft Cac/Wgk ($/1b or $/kg)

airframe flyaway C'r4/War ($/1b or $/kg)

prime equipment c,, /W4 ($/1b or $/kg)

mission equipment package cost increment AC\gp
flight control electronics cost increment ACycg

aircraft flyaway

prime equipment (including inflation and technology factor)
integration/assemmbly and systems engineering

profit

wing

rotor

fuselage

empennage, nacelle, and landing gear

engine group

jet group

charger group

propeller

transmission

flight controls, instruments, and hydraulic systems
auxiliary power system, fuel system, exhaust, propulsion controls and accessories
electrical

avionics

armament provisions, furnishings, and load and handling
environmental

Scott maintenance

maintenance Cyyaint from components (excluding labor)
continuing system improvements

148

Structure: Aircraft

cm_rotor
cm_xmsn
cm_eng
cm_jet
cm_chrg
cm_acsys
cm_inspect
cm_unsched

DGW

Wfuel DGW
Wpay_DGW
WE

dWE

fWE

SDGW
dSDGW
fSDGW
fFuelSDGW

WMTO
dWMTO
fWMTO
nz_ult

real
real
real
real
real
real
real
real

real
real
real
real
real
real

real
real
real
real

real
real
real
real

+ 4+ 4+ + A+ o+

rotor

drive system
engine group
jet group
charger group
aircraft systems
inspections
unscheduled

Weight

design gross weight Wp
mission fuel Wy, corresponding to DGW
payload W,y corresponding to DGW
weight empty Wg
weight increment
weight factor
structural design gross weight
structural design gross weight Wsp
weight increment
weight factor
fraction main fuel tanks filled at SDGW
maximum takeoff weight
maximum takeoff weight Wj,ro
weight increment
weight factor

design ultimate flight load factor n ., at SDGW

input or calculated: design gross weight Wp, (FIX_DGW), structural design gross weight Wgp (SET_SDGW), maximum
takeoff weight Wy,ro (SET_WMTO), weight empty W (FIX_WE)
if calculated, then input parameter is initial value

DGW, design gross weight: used for rotor disk loading and blade loading, wing loading, power loading, thrust loading
to obtain aircraft moments of inertia from radii of gyration
for tolerance and perturbation scales of the solution procedures
optionally to define structural design gross weight and maximum takeoff weight

149

= o

Structure: Aircraft

Weight
WO
growth_factor

kx

ky
kz

Ixx
lyy

Weight
real
real

real
real
real

real
real

+ 4+ + +

optionally to specify the gross weight for missions and flight conditions
Wrfuel_DGW and Wpay_DGW usually calculated (identified as input so inherited by next case)

FIX_WE: fixed or scaled weight empty obtained by adjusting contingency weight
scaled with design gross weight: Wg=dWE+WE*Wp,

SET_SDGW, structural design gross weight:
"input’ = input
'f(DGW)' = based on DGW; W p=dSDGW+SDGW*W p
"f(WMTO)' = based on WMTO; W p=dSDGW+SDGW*W ;10
'maxfuel’ = based on fuel state; Wsp=dSDGW+SDGW*Wq, Wg = Wp—-Wfuel DGW+{FuelSDGW*Wiyel—cap
'perf’ = calculated from maximum gross weight at SDGW sizing conditions (DESIGN_sdgw)
SET_WMTO, maximum takeoff weight:
"input’ = input
'f(DGW)’ = based on DGW; W;70=dWMTO+WMTO*W
'f(SDGW)' = based on SDGW; W;70=dWMTO+WMTO*Wsp
'maxfuel’ = based on maximum fuel; W70=dWMTO+HWMTO*Wg, Wg = Wp-Wfuel DGW+Wiyel—cap
'perf’ = calculated from maximum gross weight at WMTO sizing conditions (DESIGN_wmto)
SDGW used for weights (fuselage, rotor, wing)
WMTO used for cost, drag (scaled aircraft and hub drag), and weights (system, fuselage, landing gear, engine group)
nz_ult, design ultimate flight load factor at SDGW: used for weights (fuselage, rotor, wing)

Weight

aircraft weight statement (operating weight, without payload and usable fuel)
operating weight Wo
growth factor = Wp /(Wp — Wscated — Wiuel)

moments of inertia (based on design gross weight, scaled with reference length)
roll radius of gyration k,, /L
pitch radius of gyration k, /L
yaw radius of gyration k, /L

Derived moments of inertia (corresponding to aircraft weight statement)

Ia::p
I

vy

150

Structure: Aircraft

lzz
Ixy
lyz
Ixz

Whbattery
WBMS
WTMS
Wwire
Whbattsys

FIX drag
DoQ

CD
kDrag
FIX_DL
DoQV
kDL

real
real
real
real

real
real
real
real
real

int

real
real
real
int

real
real

+ 4+ + + + + o+

151

IZZ
I,
I
I(EZ

Battery weight (W_fuel_tank=TECH_tank*(Wbatt+WBMS+WTMS)+dWtank, W_fuel_plumb=TECH_plumb*Wwire+dWplumb)
battery (Efuel_cap/eWtank)
battery management system (fBMS*Whbattery)
thermal management system
power distribution (wiring) (Wwire=Uwire*xwire+fwire*Whbattery)
battery system (W_fuel_tank + W_fuel_plumb)

<

W

weight empty = structure + propulsion + systems and equipment + vibration + contingency

operating weight = weight empty + fixed useful load

weight statement defines fixed useful load and operating weight for design configuration
so for flight state, additional fixed useful load = auxiliary fuel tank and kits and increments
flight state can also increment crew weight or equipment weight

flight state: gross weight, useful load (payload, usable fuel, fixed useful load), operating weight
gross weight = weight empty + useful load = operating weight + payload + usable fuel
useful load = fixed useful load + payload + usable fuel

Drag
total aircraft D/q (O calculated; 1 fixed, input D/g; 2 scaled, input Cp; 3 scaled, from k) 0
area D /q 0.
coefficient C'p (based on rotor area, D/q = A,etCp) 0.008
k= (D/q)/(Whrro/1000)%/3 (Units_Dscale) 2.5
total aircraft download (0 calculated; 1 fixed, input D /qy; 2 scaled, from kpy,) 0
area (D/q)v 0

kpr = (D/q)v [Axret 0.05

Structure: Aircraft

KIND_alpha

DoQC_comp
DoQH_comp
DoQV_comp
DoQC_AC
DoQH_AC
DoQV_AC
CDC_AC
CDH_AC
kDragC_AC
kDragH_AC
kDL_AC
DoQwet_AC
Swet AC
CD_AC

int

real
real
real
real
real
real
real
real
real
real
real
real
real
real

fixed drag or download: obtained by adjusting contingency D/q or (D/q)y
FIX_drag: minimum drag, excludes drag due to lift and angle of attack
use only one of input DoQ, CD, kDrag (others calculated)
A,..¢ = reference rotor area; units of kDrag are ft?/kIb®/3 or m?/Mg
CD = 0.02 for old helicopter, 0.008 for current low drag helicopters
kDrag =9 for old helicopter, 2.5 for current low drag helicopters,
1.6 for current tiltrotors, 1.4 for turboprop aircraft (English units)
FIX_DL, download: A, = reference rotor area, kDL ~ DL /T
use only one of DoQV, kDL (other calculated)

2/3

+ Aerodynamics
+ angle of attack and sideslip angle representation (1 conventional, 2 reversed for sideward flight)

angle of attack and sideslip angle: reversed definition best for sideward flight

Derived aircraft drag
sum component cruise drag, area (D/q)comp (Without contingency)
sum component helicopter drag, area (D/q)comp (Without contingency)
sum component vertical drag, area (D/q)comp (Without contingency)
total cruise drag, area (D/q) ac
total helicopter drag, area (D/q) ac
total vertical drag, area (D/q) ac
total cruise (D/q) ac/Aret
total helicopter (D/q) ac/Aret
total cruise (D/q)/(Warro/1000)%/3
total helicopter (D/q)/(Warro,/1000)%/3
total vertical (D/q)v /Aret
total cruise wetted drag, area (D/q)wet
total wetted area Syet
total cruise (D/q)wet/Swet

152

Structure: Aircraft

nRotor

nWing

nTail

nTank
nPropulsion
nEngineGroup
nJetGroup
nChargeGroup
nEngineModel
nEngineParamN
nEngineTable
nRecipModel
nCompressorModel
nMotorModel
nJetModel
nFuelCellModel
nSolarCellModel
nBatteryModel

inAircraft
inSystems
inFuselage
inLandingGear

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int
int
int
int

+ 4+ 4+ A+ A+ o+

Number of Components
rotors (maximum nrotormax)
wings (maximum nwingmax)
tails (maximum ntailmax)
fuel tank systems (maximum ntankmax)
propulsion groups (maximum npropmax)
engine groups (maximum nengmax)
jet groups (maximum njetmax)
charge groups (maximum nchrgmax)
engine models (maximum nengmax)
engine model parameters (maximum nengpmax)
engine tables (maximum nengmax)
reciprocating engine models (maximum nengmax)
compressor models (maximum nengmax)
motor models (maximum nengmax)
jet models (maximum njetmax)
fuel cell models (maximum nchrgmax)
solar cell models (maximum nchrgmax)
battery models (maximum ntankmax)

propulsion group is set of components and engine groups, connected by drive system

engine model or engine table or reciprocating engine or motor model describes particular engine,
used in one or more engine groups

jet model describes particular jet, used in one or more jet groups

fuel cell model or solar cell model describes particular charger, used in one or more charge groups

battery model describes particular battery, used in one or more fuel tanks

Aircraft Input for case
Aircraft
Systems
Fuselage
LandingGear

153

O 0O 0O 000000 OOFFEFEFEFEFEFON

Structure: Aircraft

inRotor(nrotormax)
inWing(nwingmax)
inTail(ntailmax)
inFuelTank(ntankmax)
inPropulsion(npropmax)
inEngineGroup(nengmax)
inJetGroup(njetmax)
inChargeGroup(nchrgmax)
inEngineModel(nengmax)
inEngineParamN(nengpmax)
inEngineTable(nengmax)
inRecipModel(nengmax)

inCompressorModel(nengmax) i

inMotorModel(nengmax)
inJetModel(njetmax)
inFuelCellModel(nchrgmax)
inSolarCellModel(nchrgmax)
inBatteryModel(ntankmax)
inCost

inEmissions

iSIZE_perf(npropmax)
iSIZE_engine(nengmax)
iSIZE_jet(njetmax)
iSIZE_charge(nchrgmax)
iSIZE_rotor(nrotormax)
iSET_rotor_radius(nrotormax)

FIX_rotor_CWSs(nrotormax)
FIX_rotor_Vtip(nrotormax)
FIX_rotor_sigma(nrotormax)
iSET_wing_area(nwingmax)
iSET_wing_span(nwingmax)
FIX_wing_chord(nwingmax)

int
int
int
int
int

int
int
int
int
int
int
int

Rotor
Wing
Tail
FuelTank
Propulsion
EngineGroup
JetGroup
ChargeGroup
EngineModel
EngineParamN
EngineTable
RecipModel
CompressorModel
MotorModel
JetModel
FuelCellModel
SolarCellModel
BatteryModel
Cost
Emissions
Design specification (from Size)
performance (SIZE_perf_engine, rotor, none)
performance (SIZE_engine_engn, none)
performance (SIZE_jet_jet, none)
performance (SIZE_charge_chrg, none)
rotor sized (SIZE_rotor_radius, thrust, none)

rotor radius (SET_rotor_radius, DL, ratio, scale, not_radius)

rotor Cyy /o (1 fixed, O not)

rotor Vijp (1 fixed, O not)

rotor o (1 fixed, O not)

wing area (SET_wing_area, WL, not_area)

wing span (SET_wing_span, ratio, radius, width, hub, panel, not_span)
wing chord (1 fixed, 0 not)

154

Structure: Aircraft

FIX_wing_AR(nwingmax)
FIX_DGW

FIX_ WE
iSET_tank(ntankmax)
iSET_tank_power(ntankmax)
iSET_SDGW

iSET_WMTO
iSET_limit_ds(npropmax)
kind_iter_size
kind_iter_param
nSIZE_perf(npropmax)
nSIZE_engine(nengmax)
nSIZE_jet(njetmax)
nSIZE_charge(nchrgmax)
nDESIGN_GW
nDESIGN_xmsn(npropmax)
nDESIGN_wmto
nDESIGN_tank
nDESIGN_thrust

DGW source
DGW_kState
DGW_kSeg
nDesignState
XAircraft(ndesignmax)

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int
int
int
int
XAircraft

wing aspect ratio (1 fixed, O not)

design gross weight (0 calculated, 1 fixed)

weight empty (0 calculated, 1 fixed, 2 scaled)

fuel tank (SET_tank_input, miss, fmiss, used)

fuel tank (SET_tank_nopower, power)

SDGW (SET_SDGW _input, fDGW, fWMTO, maxfuel, perf)
WMTO (SET_WMTO_input, fDGW, fSDGW, maxfuel, perf)
drive system torque limit (SET _limit_input, ratio, Pav, Preq)
kind iteration, performance (0 none, 1 size engine or radius or jet group or charge group)
kind iteration, parameters (0 none, 1 calculate parameters)
conditions and missions for size engine or rotor

conditions and missions for size engine group

conditions and missions for size jet group

conditions and missions for size charge group

design conditions and missions for DGW

design conditions and missions for transmission

design conditions for WMTO

design missions for fuel tank

design conditions and missions for antitorque or aux thrust rotor

Design data (from sizing)

design gross weight source (1 condition, 2 mission)

design gross weight source number

design gross weight segment number

number design of conditions and missions (maximum ndesignmax)
design data

155

156

Chapter 35

Structure: XAircraft

Variable Type Description Default

Design Data
source int source (1 condition, 2 mission)
kState int source number
kSeg int segment number
title c*100 title
kind c*12 kind (condition or mission)
number c*12 number (condition or mission/segment)
label c*12 label
setgw c*12 Set Gross Weight
setul c*12 Set Useful Load
design c*12 design
Nauxtank(nauxtankmax,ntankmax)

int number of auxiliary fuel tanks N,yxtank (€ach aux tank size)

Ncrew int number of crew
Npass int number of passengers
Ncrew_seat int number of crew seats
Npass_seat int number of passenger seats
kits c*12 kits

Weights (from FltAircraft)
GW real gross weight Wg; at segment start
Whpayload real payload weight W,y
Whpay_pass real passengers Wiass
Whpay_cargo real cargo Weargo
Whpay_extload real external load Wyt _10ad
Wpay _ammo real ammunition Wmo
Wpay_weapons real weapons Wieapons
Wopay_other real other Wother

Wfuel_total real usable fuel weight Wh,e1; at segment start

Structure: XAircraft

Wfuel(ntankmax)
WHuel_std(ntankmax)
Wruel_aux(ntankmax)
WO

WE

WFixUL

Werew

W_fixUL_fluid
Wauxtank
W_fixUL_other
Woful(10)

Wequip

Wroldkit

Wextkit

Wwingkit

Wotherkit

WUL

WML

Efuel_total
Efuel(ntankmax)
Efuel_std(ntankmax)
Efuel_aux(ntankmax)

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

real
real
real
real

usable fuel weight
standard tanks
auxiliary tanks
operating weight Wo
weight empty Wg (from Aircraft)
fixed useful load Wryp,
crew
fluids (from Aircraft%Weight)
auxiliary fuel tanks
other fixed useful load
catagories
equipment increment
folding kit
wing extension kit
wing kit
other kit
useful load Wy,
military load
Energy (from FltAircraft)
usable fuel energy E',e1; at segment start
usable fuel energy
standard tanks
auxiliary tanks

157

158

Chapter 36

Structure: Systems

Variable Type Description Default
+ Systems
title c*100 + title
notes c*1000 + notes
+ Weight
Weight Weight weight statement (systems)
SET_Wopayload int + payload (1 no details; 2 all terms) 1
Upass real + weight per passenger
+ fixed useful load
SET_Wecrew int + crew weight (1 no details; 2 all terms) 1
Werew real + weight or adjustment
Ucrew real + weight per crew
Ncrew int + number of crew
Wtrap real + trapped fluids and engine oil weight 0.
+ other fixed useful load
nWoful int + number of categories (0 for one value without name; maximum 10) 0
Woful_name(10) c*24 + category name v
Woful(10) real + baseline weight 0.
Wotherkit real + other kit 0.

SET_Wpayload: payload specified by flight condition or mission
SET_Wcrew: no details (only Wcrew) or all terms (Ucrew*Ncrew+Wcrew)

other fixed useful load: can include baggage, gun installations, weapons provisions, aircraft survivability equipment,
survival kits, life rafts, oxygen

Structure: Systems

SET fold

fWfoldkitW (nwingmax)
fWfoldkitR(nrotormax)
fWfoldkitT (ntailmax)
fWfoldkitFw
fWfoldkitFt

SET Wvib
Whvib

fWvib

SET Wcont
Wocont
fWcont

Wauxpower
Winstrument
Wpneumatic
Wenviron
SET_Welectrical
Welectrical
Welect_supply

int

real
real
real
real
real

int
real
real
int
real
real

real
real
real
real
int

real
real

+ 4+ + + + + +

+ 4+ + + + +

+ 4+ + + + + + o+

folding (0 none, 1 fold weights, 2 with kit)
folding weight in kit ff,qkit (fraction wing/rotor/tail/body fold weight)
wing
rotor
tail
body (wing and rotor fold)
body (tail fold)

vibration treatment weight (1 fraction weight empty, 2 input)
weight Wi,
fraction weight empty fyip

contingency weight (1 fraction weight empty, 2 input)
weight Weont
fraction weight empty feont

WEg = (structure + propulsion group + systems and equipment) + Wb + Weont
SET_Wvib: Wy, input or Wy, = foibWe
SET_Wecont: Weont input or Weont = feont Wg; or adjust Wyt for input or scaled Wy (FIX_WE=1 or 2)

SET _fold, folding:
set component dWxxfold=0 and fWxxfold=0 for no rotor/wing/tail/body fold weight
fraction fWfoldkit of fold weight in fixed useful load as kit, remainder kept in component weight
kit weight removable, absent for specified flight conditions and missions

systems and equipment

auxiliary power group (APU)

instruments group

pneumatic group

environmental control group

electrical group (1 no details; 2 all terms)
aircraft
power supply

159

0.5
0.5
0.5
0.5
0.5

co oo

© o

Structure: Systems

Welect_conv
Welect_distrib
Welect_lights
Welect_support
SET_WMEQ
WMEQ
Wavionics_com
Wavionics_nav
Wavionics_ident
Wavionics_disp
Wavionics_survive
Wavionics_mission

SET_Warmor
Warmor
Uarmor_floor
Uarmor_wall
Uarmor_crew
SET_Warmprov
Warmprov
Warmprov_gun
Warmprov_turret
Warmprov_expend
Warm_elect
SET_Wfurnish
Wfurnish

Useat_crew
Useat_pass
Uaccom_crew
Uaccom_pass
Uox_crew
Uox_pass
Wrfurnish_misc

real
real
real
real
int

real
real
real
real
real
real
real

int

real
real
real
real
int

real
real
real
real
real
int

real

real
real
real
real
real
real
real

I T i i T o S S e e e e e S R e Tk Tk Tt T ik 2 S T S o S S

power conversion

power distribution and controls
lights and signal devices
equipment supports

avionics group (1 no details; 2 all terms)

avionics

communications
navigation

identification

control and display
aircraft survivability
mission system equipment

armament group

armor (1 no details; 2 all terms)
armor
cabin floor armor weight per area
cabin wall armor weight per area
armor weight per crew
armament provisions (1 no details; 2 all terms)
armament provisions
gun provisions
turret systems
expendable weapons provisions
armament electronics (avionics group)

furnishings and equipment group (1 no details; 2 all terms)

furnishings and equipment

accommodations for personnel
each crew seat
each passenger seat
miscellaneous accommodation per crew seat
miscellaneous accommodation per passenger seat
oxygen system per crew seat
oxygen system per passenger seat

miscellaneous equipment

160

cocoe o

sy

Cococoo0oe

ISR

[y

Structure: Systems

Wfurnish_trim
Uinsulation

Wemerg_fire
Wemerg_other
SET_Wload

Wload
Whandling_aircraft

Uhandling_cargo
Wload_hoist
Wload_extprov

Ncrew seat
Npass_seat
Ucrew_seat_inc
Upass_seat_inc

real
real

real
real
int

real
real

real
real
real

int
int
real
real

+ 4+ A+ F o+

161

furnishings
trim 0.
acoustic and thermal insulation weight per cabin area

emergency equipment

fire detection and extinguishing 0.
other emergency equipment 0.
load and handling group (1 no details; 2 all terms) 1
load and handling 0.
aircraft handling 0.
load handling
cargo handling weight per cabin floor area
hoist 0.
external load provisions 0.
systems and equipment
number of crew seats 0
number of passenger seats 0
equipment weight increment per crew seat (0. for default) 0.
equipment weight increment per passenger seat (0. for default) 0.

SET_Welectrical=1: only Welectrical+WDlelect
SET_WMEQ=1: only WMEQ; equipment weights include installation
SET_Warmor=1: only Warmor
SET_Warmprov=1: only Warmprov
SET_Wfurnish=1: only Wfurnish
miscellaneous accommodation includes galleys and toilets
miscellaneous equipment includes cockpit displays
trim includes floor covering, partitions, crash padding, acoustic and thermal insulation
excluding vibration absorbers
other emergency equipment includes first aid, survival kit, life raft
SET_Wload=1: only Wload

equipment weight increment is for flight condition and mission; default (if SET_furnish=2 and SET_armor=2):
Ucrew_seat_inc=Useat_crew+Uaccom_crew-+Uox_crew-+Uarmor_crew
Upass_seat_inc=Useat_pass+Uaccom_pass+Uox_pass

Structure: Systems

W_fixUL_foldkit_fus
W_fixUL_foldkit_rotor
W_fixUL_foldkit_wing
W_fixUL_foldkit_tail

Warmor _floor
Warmor_wall
Warmor_crew

Wseat

Waccom

Wox

Winsulation
Whandling_cargo
Ucrewseatinc
Upassseatinc
Witip(nrotormax)

MODEL_fc
MODEL_RWfc

refRotor
KIND_RWfc(nrotormax)
TF_RWfc_coll(nrotormax)
TF_RWfc_b(nrotormax)
TF_RWfc_mb(nrotormax)
TF_RWfc_nb(nrotormax)
TF_RWfc_hyd(nrotormax)
MODEL_FWfc
MODEL_CVfc

real
real
real
real

real
real
real

real
real
real
real
real
real
real
real

int
int
int
int
real
real
real
real
real
int
int

T T i S S S S S S R R

Derived weights
fixed useful load, fold kit
fuselage
rotors
wings
tails
armament group
cabin floor armor weight
cabin wall armor weight
crew armor weight
furnishings and equipment group
seats
miscellaneous accommodation
oxygen system
acoustic and thermal insulation weight
cargo handling weight
equipment weight increment per crew seat
equipment weight increment per passenger seat
weight on wing tip

Weight
systems and equipment
flight control group and hydraulic group

model (0 input, I NDARC, 2 custom)

rotary wing flight controls (0 not present, 1 global, 2 for each rotor)
reference rotor number for global
kind control for each rotor (O fixed pitch, 1 swashplate, 2 collective only)
addition weight factor, collective control only
addition weight factor, boosted
addition weight factor, control boost mechanisms
addition weight factor, non-boosted
addition weight factor, hydraulic

fixed wing flight controls (O for not present)

conversion controls (0 for not present)

162

==

1.0
1.0
1.0
1.0

Structure: Systems

dWRWfc_b
dWRWfc_mb
dWRWfc_nb
dWFWfc_mb
dWFWfc_nb
dWCVfc_mb
dWCVfc_nb

Wrifc_cc
Wrfc_afcs

dWRWhyd
dWFWhyd
dWCVhyd
WEQhyd
WFltCont

MODEL_DI
dWDlelect

dWDlsys
WDelce

real
real
real
real
real
real
real

real
real

real
real
real
real
WFItCont
+

+ 4+ A+ A+ o+

int

real
real
WDelce

+
+
+
+

flight control weight increment
rotary wing, boosted
rotary wing, control boost mechanisms
rotary wing, non-boosted
fixed wing, control boost mechanisms
fixed wing, non-boosted
conversion, boosted
conversion, control boost mechanisms
fixed flight controls
cockpit controls
automatic flight control system
hydraulic weight increment
rotary wing
fixed wing
conversion
equipment hydraulics
NDARC model
anti-icing group
model (0 input, 1 NDARC, 2 custom)
weight increment
electrical system
anti-ice system
NDARC model

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

MODEL_RWfc=1: global option is based on just main rotor (refRotor)
MODEL_RWfc=2: sums separate contributions from all rotors; uses KIND_RWfc and TF_RWfc_xxxx
each rotor designated fixed pitch (no weight), swashplate (collective and cyclic), or collective control only

tiltrotor wing weight model requires weight on wing tip: distributed to designated rotor;
sum rotary wing and conversion flight controls, hydraulic group, trapped fluids

163

cCoocooco0o00o

© o

cocoee

Structure: Systems

TECH_RWfc b
TECH_RWfc_mb
TECH_RWfc_nb

TECH_FWfc_mb
TECH_FWfc_nb

TECH_CVfc_mb
TECH_CVfc_nb

TECH_RWhyd
TECH_FWhyd
TECH_CVhyd

TECH_Dlelect
TECH_Dilsys

real
real
real

real
real

real
real

real
real
real

real
real

+ 4+ 4+ A+ A+ o+

Technology Factors

rotary wing flight control weight
boosted x rb
control boost mechanisms X pywmb
non-boosted X rivnb

fixed wing flight control weight
control boost mechanisms X ryymp
non-boosted X Finp

conversion flight control weight
control boost mechanisms X cvmp
non-boosted X cvnp

flight control hydraulics
rotary wing X rwhyd
fixed wmg XFWhyd
CONVETSion X CVhyd

anti-icing
electrical system X prelect
anti-ice system X prsys

164

1.0
1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0
1.0

1.0
1.0

165

Chapter 37

Structure: WFItCont

Variable Type Description Default
+ Flight Control Group, NDARC Weight Model
+ rotary wing flight controls
MODEL_WRWfc int + model (1 fraction, 2 parametric, 3 Boeing, 4 GARTEUR, 5 Tishchenko, 6 generic) 1
fRWfc_nb real + AFDD: non-boosted control weight fryy . (fraction boost mechanisms weight) 0.6
xRWfc_red real + AFDD: hydraulic system redundancy/complexity factor fru req 3.0
KIND_WRWfc int + AFDD: survivability (1 baseline, 2 UTTAS/AAH level of survivability) 2
fRWfc_b real + Boeing, GARTEUR, Tishchenko, or generic: boosted weight fryy, (fraction boosted + boost mech, or total) 0.2
fRWfc_mb real + GARTEUR, Tishchenko, or generic: boost mechanisms weight fry.,p (fraction total weight) 0.2
KRW real + generic: factor K gy 0.
XRWN real + exponent X gy v 0.
XRWR real + exponent X pw r 0.
XRWc real + exponent X pyyc 0.
XRWW real + exponent X gy w 0.
XRWb real + exponent X rivp 0.
+ fixed wing flight controls
MODEL_WFWfc int + model (1 full controls, 2 only on hor tail, 3 GARTEUR, Raymer (4 transport, 5 general aviation), 6 generic) 1
fFWfc_nb real + non-boosted weight fryy ., (fraction total fixed wing flight control weight) 0.10
nfunction int + Raymer: number of control functions 6
fmech real + Raymer: number of mechanical functions (fraction total) 0.2
KFW real + generic, factor K gy 0.
XFW real + exponent X gy 0.
+ conversion controls
fCVfc_mb real + boost mechanisms weight foy,p (fraction maximum takeoff weight) 0.02
fCVfc_nb real + non-boosted weight foy,,p (fraction boost mechanisms weight) 0.10
+ cockpit controls
MODEL _cc int + model (1 fixed Wfc_cc, 2 scaled with DGW) 1
Kcc real + factor K. 1.7
Xcc real + exponent X .. 0.41

Structure: WFItCont

fRWhyd
fFWhyd
fCVhyd

WtParam_fc(8)

WMTO_rw
Whbld_rw
Nrotor_rw
NrNb_rw
chord_rw
Vtip_rw
radius_rw

WMTO_fw
Sht_fw

WMTO_cv

DGW cc

real
real
real

real

real
real
int

int

real
real
real

real
real

real

real

+ + + + +

+
+

Hydraulic Group, NDARC Model
flight control hydraulics
rotary wing frwnyd (fraction rotary wing boost mechanisms + hydraulic weight)
fixed wing frwnyd (fraction fixed wing boost mechanisms weight)
conversion fcoynya (fraction conversion boost mechanisms weight)

166

0.40
0.10
0.10

flight controls = non-boosted (do not see aero surface or rotor loads) + boost mechanisms (actuators) + boosted
MODEL_WRWfc = fraction: parametric except for non-boosted controls (from fRWfc_nb)

typically fRWfc_nb = 0.6 (data range 0.3 to 1.8), fRWhyd = 0.4
xRWfc red=1.0t0 3.0

Custom Weight Model
parameters

Weight Model Input
Rotary wing
maximum takeoff weight
blade weight
number of rotors
total number of blades, Nrotor*Nblade
blade mean chord
hover tip speed
blade radius
Fixed wing
maximum takeoff weight
horizontal tail area (fixed wing)
Conversion
maximum takeoff weight
Cockpit controls
design gross weight

Chapter 38

167

Structure: WDelce

Variable Type Description Default
+ Anti-Icing Group, NDARC Weight Model

kDelce_elec(nrotormax) real + weight factor for electrical system Ko (Ib/ft? or kg/m?) 0.25

kDelce_rotor(nrotormax) real + weight factor for main rotor Kooy (Ib/ft? or kg/mz) 0.25

kDelce_wing(nwingmax) real + weight factor for wing King (Ib/ft or kg/m) 0.

kDelce_air(nengmax) real + weight factor for engine air intake K,;, (Ib/lb or kg/kg) 0.006

kDelce_jet(njetmax) real + weight factor for jet air intake Kj; (Ib/Ib or kg/kg) 0.006
+ Custom Weight Model

WtParam_DI(8) real + parameters 0.

Weight Model Input

Ablade(nrotormax) real blade area

Lwing(nwingmax) real wing length

Weng(nengmax) real engine weight

Wijet(njetmax) real jet weight

168

Chapter 39

Structure: Fuselage

Variable Type Description Default
+ Fuselage
title c*100 + title
notes c*1000 + notes
+ Geometry
loc_fuselage Location + fuselage location
SET_length int + fuselage length (1 input, 2 calculated, 3 from rotor and tail only, 4 from rotor only) 1
Length_fus real + length £,
SET_nose int + nose length (distance forward of hub; 1 input, 2 calculated) 1
Length_nose real + nose length £, e
fLength_nose real + nose length (fraction reference length)
SET aft int + aft length (distance aft of hub; 1 input, 2 calculated) 1
Length_aft real + aft length £,
fLength_aft real + aft length (fraction reference length)
fRef_fus real + fuselage SL location relative nose f,o (fraction fuselage length)
Length_rotors real rotor-rotor longitudinal separation
Length_tail real tail length (wing to horizontal tail)
Width_fus real + fuselage width weys
SET_Swet int + fuselage wetted area (1 input, 2 input plus boom, 3 from nose length, 4 from fuselage length, 5 from weight) 2
Swet real + wetted area Syet
Sproj real + projected area Spyo;
fSwet real + factor for wetted area fyet OF Kot 1.
fSproj real + factor for projected area fp,roj OF Kproj 1.
Height_fus real + fuselage height hg,s
Circum_boom real + tail boom effective circumference Cpoom
Width_boom real + tail boom effective width wyoom
Swet _in real input wetted area Syet

Sproj_in real input projected area Sp;oj

Structure: Fuselage

SET_Scabin
Scabin
Scabin_floor
Scabin_wall
fScabin
fScabin_floor
fScabin_wall
KIND_scale
refRotor
refWing

Height_ramp
fLength_cargo

int
real
real
real
real
real
real
int
int
int

real
real

+ 4+ + + o+

cabin area (1 input, 2 calculated)
total cabin surface area Scapin
cabin floor area Scapin—floor
cabin wall area S.apin—wall
factor for total cabin surface area fc.pin
factor for cabin floor area fcabin—fioor
factor for cabin wall area fc.bin_wall
reference length (1 rotor radius, 2 wing span, 3 fuselage length)
rotor number (for rotor radius)
wing number (for wing span)

169

0.6
0.6
0.6

SET_length: input (use Length_fus) or calculated (from nose and aft lengths)
calculated uses rotor, tail, wing locations; or just rotor and tail, or just rotor
which can not then be scaled with fuselage length
SET _nose: input (use Length_nose) or calculated (from fLength_nose); used for Length_fus and Swet
SET_aft: input (use Length_aft) or calculated (from fLength_aft); used for Length_fus
fRef_fus=(SL_fuselage—SL_nose)/Length_fus; used for operating length and sketch
input required if SET_length = input, otherwise calculated

SET_Swet: both wetted area and projected area; input (use Swet, Sproj),
or calculated (from fSwet, fSproj, Width_fus, Height_fus, and fuselage or nose length)
or from weight, units of kye = fSwet and kyy0; = fSproj are ft2/klb%/3 or m?/Mg?/3
boom circumference and width used if SET_Swet not input and not from weight (set to zero if no boom)

SET_Scabin: cabin areas used for systems and equipment weights

+ Geometry (for graphics)

+
+

height of cargo ramp
fraction of fuselage length used for cargo

0.60

Structure: Fuselage 170

+ Controls
+ flow control momentum coefficient C,
INPUT_flow int + connection to aircraft controls (0 none, 1 input 7" matrix) 1
T_flow(ncontmax,nstatemax) real + control matrix
nVflow int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax) 0
flow(nvelmax) real + values
Vflow(nvelmax) real + speeds (CAS or TAS, knots)
aircraft controls connected to individual controls of component, ¢ = T'cac + ¢
for each component control, define matrix 7" (for each control state) and value ¢,
flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state
+ Aerodynamics
MODEL_aero int + model (0 none, 1 standard) 1
AFuse AFuse standard model
DoQ cont real + contingency drag, area (D/q)cont 0.
DoQV_cont real + contingency vertical drag, area (D/q)v cont 0.
Derived drag
DoQ_fus real fuselage drag, area (D/q)sus
DoQV _fus real fuselage vertical drag, area (D/q)vus
DoQ_fit real fittings and fixtures drag, area (D/q)st
DoQ_rb real rotor-body interference drag, area (D /q)p
prop_flow(3) int propulsion for flow control (group (1 engine, 2 jet), number, model)

DoQ_cont calculated if total drag fixed (Aircraft FIX_drag); otherwise input
DoQV_cont calculated if total download fixed (Aircraft FIX_DL); otherwise input

Structure: Fuselage

Weight
MODEL_weight

dWhbody
dWmar
dWopress
dWocrash
dWftfold
dWfwfold
WFuse

TECH_body
TECH_mar
TECH_press
TECH_crash
TECH_ftfold
TECH_fwfold

Weight
int

real
real
real
real
real
real
WFuse

real
real
real
real
real
real

+

+ 4+ + + + + + + o+

+ 4+ 4+ + + + +

Weight
weight statement (component)

fuselage group

fuselage group model (0 input, 1 NDARC, 2 custom)

weight increment
basic body

body marinization
pressurization
body crashworthiness

tail fold
wing fold
AFFD model

Technology Factors

basic body Xpasic

body marinization X mar

pressurization Xpress

body crashworthiness xcw

tail fold xfo1a
wing fold Xwfold

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

171

e o

1.0
1.0
1.0
1.0
1.0
1.0

172

Chapter 40

Structure: AFuse

Variable Type Description Default
+ Aerodynamics, Standard Model
AoA _zl real + zero lift angle of attack a,; (deg) 0.
AoA_max real + angle of attack for maximum lift avy .y (deg) 10.
+ lift
SET lift int + specification (1 fixed, L/q; 2 scaled, Cf,) 2
dLoQda real + lift slope, d(L/q)/dc (per rad) 0.
dCLda real + lift slope, CL, = dC'r, /dc (per rad; based on wetted area, L/q = SCp) 0.
+ pitch moment
SET_moment int + specification (1 fixed, M/q; 2 scaled, Cs) 2
MoQO real + moment at zero lift, (M/q)o 0.
CMO real + moment at zero lift, Cyso (based on wetted area and fuselage length, M/q = SLC)y) 0.
dMoQda real + moment slope, d(M/q)/do (per rad) 0.
dCMda real + moment slope, Cpro = dCh/da (per rad; based on wetted area and fuselage length, M /q = S¢C)y) 0.
SS_zy real + sideslip angle for zero side force 3., (deg) 0.
SS_max real + sideslip angle for maximum side force By ax (deg) 10.
+ side force
SET side int + specification (1 fixed, Y/q; 2 scaled, Cy) 2
dYoQdb real + side force slope, d(Y/q)/dg (per rad) 0.
dCYdb real + side force slope, Cyg = dCy /d3 (per rad; based on wetted area, Y /g = SCy) 0.
+ yaw moment
SET yaw int + specification (1 fixed, N/q; 2 scaled, Cy) 2
NoQO real + moment at zero lift, (N/q)o 0.
CNO real + moment at zero lift, Cyo (based on wetted area and fuselage length, N/q = S¢Cx) 0.
dNoQdb real + moment slope, d(N/q)/df (per rad) 0.
dCNdb real + moment slope, Cyg = dCn /d (per rad; based on wetted area and fuselage length, N/q = S¢Cn) 0.

Structure: AFuse

SET drag
DoQ
CD

SET_Dfit
DoQ fit
CD_fit

SET Drb
DoQ_rb(nrotormax)
CD_rb(nrotormax)
CD_rb_total

SET_Vdrag
DoQV

CDV

CDVs

SET_Sdrag
DoQS
CDS

MODEL_drag
AoA_Dmin
Kdrag

Xdrag

int
real
real

int
real
real

int

real
real
real

int

real
real
real

int
real
real

int

real
real
real

+ 4+ + o+

+ 4+ + + + + + o+

+ 4+ + + +

173

SET_xxx: fixed (use XoQ) or scaled (use CX); other parameter calculated

Drag, Standard Model

forward flight drag

specification (1 fixed, D/q; 2 scaled, Cp)

area (D/q)o

coefficient Cpg (based on wetted area, D/q = SCp)
fixtures and fittings

specification (1 fixed, D/q; 2 scaled, Cp)

area (D/q)qt

coefficient Cpg (based on wetted area, D/q = SCp)
rotor-body interference

specification (1 fixed, D/q; 2 scaled, Cp)

area (D/q) b

coefficient Cp,;, (based on wetted area, D/q = SCp)

total rotor-body interference drag, C'p,

vertical drag
specification (1 fixed, D/q; 2 scaled, Cp)
area (D/q)v
coefficient Cpy (based on projected area, D/q = Spr0iCp)
C'D\/'Sproj /cht
sideward drag
specification (1 fixed, D/q; 2 scaled, Cp)
area (D/q)s
coefficient Cpg (based on wetted area, D/q = SCp)

drag variation with angle of attack
model (0 none, 1 general, 2 quadratic)
angle of attack for fuselage minimum drag C'pmin (deg)
drag increment K4, ACp = CpoKg|a.|X?
drag increment X4, ACp = CpoK g|ae|X¢

0.005

N O oo

Structure: AFuse

MODEL_trans
AoA tran

at

Xd

MODEL_flow
Lmus

Lmul

Lmu2

Xmu

Mmu

Dmu
Cmu_limit

int

real
real
real

int

real
real
real
real
real
real
real

+

+ 4+ 4+ + + + + + +

transition from forward flight drag to vertical drag
model (1 input transition angle of attack, 2 calculate for quadratic)
angle of attack for transition «; (deg)

angle of attack for transition o, (deg) (derived)

exponent X, (derived)

Flow Control; ACL, = Cra(Lus+/Cy + LuiCy + LM2C3), ACpmax = X,C,, ACy = M,,C,, ACp = D,C,,

model (0 none)
lift L,

lift L4

lift L0
maximum lift X,
moment M),

drag D,

flow limit C,ulimit

174

25.

0.0
0.0
0.0
1.0
0.0
0.0
1.0

Chapter 41

175

Structure: WFuse

Variable Type Description Default
+ Fuselage Group, NDARC Weight Model

MODEL_body int + model (1 AFDD84,2 AFDD82, 3 other) 1
MODEL_other int + model (1 Boeing, GARTEUR (2 air, 3 hel), 4 Tishchenko, 5 Torenbeek, Raymer (6 transport, 7 gen av), 8 generic)

KIND ramp int + AFDD: rear cargo ramp (0 none) 0
fLength_crg real + Boeing: cabin length + ramp length + cg range (fraction fuselage length) 0.6
Vdive real + Boeing or Torenbeek or Raymer: design dive speed Vyive (knots) 200.
ndoor int + Raymer: number of cargo doors 0
Pdelta real + Raymer: cabin pressure differential (psi) 8.
Kfus real + generic: factor Ky, 0.
XfusW real + exponent Xy s 0.
Xfusn real + exponent Xus, 0.
XfusS real + exponent Xg,ss 0.
Xfusl real + exponent Xgygp 0.
fWbody_mar real + body weight for marinization f,,, (fraction basic body weight) 0.
fWhbody_press real + body weight for pressurization fp,;ess (fraction basic body weight) 0.
fWbody_crash real + body weight for crashworthiness f.,, (fraction body weight) 0.
fWbody tfold real + tail fold weight fio1q (fraction tail (AFDD84 or other) or body (AFDD82) weight) 0.
fWbody_wfold real + wing fold weight fyt01q (fraction wing+tip (AFDD84 or other) or body+tailfold (AFDDS82) weight) 0.

AFDD84 (UNIV) is universal body weight model, for tiltrotor and tiltwing as well as for helicopters
AFDD82 (HELO) is helicopter body weight model, should not be used for tiltrotor or tiltwing

dive speed: Vi,ax = SLS max speed, Vdive = 1.25V 1.5

fLength_crg = (¢ + ¢, + ACG)/lp0ay = 1.0 for tandem, 0.3-0.6 for single main rotor (0.7-0.8 with ramp)

typically fWbody_crash = 0.06
typically fWbody_tfold = 0.30 (AFDD84 or other) or 0.05 (AFDDS82) for folding tail

Structure: WFuse

WtParam_fuse(8)

WMTO
SDGW
nz
Sbody
Lbody
place_LG
kind_LG
WtTail
WitWing

real

real
real
real
real
real
int

int

real
real

+ Custom Weight Model
+ parameters

Weight Model Input
maximum takeoff weight
structural design gross weight
design ultimate flight load factor at SDGW
body wetted area
fuselage length
landing gear placement (1 on body, 2 on wing)
landing gear (0 fixed, 1 retracts)
tail weight (for fold)
wing weight (for fold)

176

177

Chapter 42

Structure: LandingGear

Variable Type Description Default
+ Landing Gear

title c*100 + title

notes c*1000 + notes

+ Geometry

loc_gear Location + landing gear location
d_gear real + distance from bottom of landing gear to WL_gear dr.¢ 0.
place int + placement (1 located on body, 2 located on wing)
KIND_LG int + retraction (0 fixed, 1 retracts)
speed real + retraction speed (CAS or TAS, knots)

landing gear location: with HAGL (FItState) determines rotor height above ground level

height rotor = landing gear above ground + hub above landing gear = HAGL + (WL_hub—WL_gear+d_gear)
place: used for weight (fuselage and wing)
+ Aerodynamics
MODEL_aero int + model (0 none, 1 standard) 1
AGear AGear standard model
Derived drag

DoQC_LG real landing gear cruise drag, area D /q (0 for retractable gear)

DoQH_LG real landing gear helicopter drag, area D /q

Structure: LandingGear

Weight
MODEL_weight

dWLG
dWLGret
dWLGcrash
WGear

TECH_LG
TECH_LGret
TECH_LGcrash

Weight
int

real
real
real
WGear

real
real
real

+

+ 4+ + + + +

+ 4+ + +

Weight
weight statement (component)
alighting gear group
alighting gear group model (0 input, 1 NDARC, 2 custom)
weight increment
basic landing gear
retraction
crashworthiness
AFFD model
Technology Factors
basic landing gear x g
retraction X 1,Gret
crashworthiness X 1.Gew

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

178

e

1.0
1.0
1.0

Chapter 43

179

Structure: AGear

Variable Type

Description Default
+ Drag, Standard Model
DoQ real + drag area extended, D /q

Chapter 44

180

Structure: WGear

Variable Type Description Default
+ Landing Gear Group, NDARC Weight Model
MODEL_LG int + model (1 fraction, 2 parametric rotary wing (wheel), 3 parametric fixed wing, 4 parametric skid) 2
nLG int + number of landing gear assemblies N1 3
fWLG_basic real + basic landing gear weight f7. (fraction maximum takeoff weight) 0.0325
fWLG_ret real + landing gear weight for retraction f7gret (fraction basic weight) 0.08
fWLG_crash real + landing gear weight for crashworthiness f,ccw (fraction basic+retraction weight) 0.14
MODEL_LG=fraction: uses fWLG_basic; typically fWLG_basic = 0.0325 (wheel) or 0.014 (skid)
MODEL_LG=skid: for tall gear, technology factor TECH_LG should include form factor 1.11
design ultimate flight load factor nz_ult used for landing gear design load factor n,,
typically fWLG_ret = 0.087, fWLG_crash =0.14
+ Custom Weight Model
WtParam_gear(8) real + parameters 0.
Weight Model Input
WMTO real maximum takeoff weight
wingload real wing loading
nz real design load factor for landing gear

Chapter 45

181

Structure: Rotor

Variable Type Description Default
+ Rotor

title c*100 + title

notes c*1000 + notes

config c¢*32 + Configuration 'main’

rotorconfig int configuration (ROTORCONFIG_main, tail, prop)

isMainRotor int main rotor (0 not)

isAntiQRotor int antitorque rotor (0 not)

isAuxTRotor int auxiliary thrust rotor (0 not)

isVariableDiam int variable diameter rotor (O not)

isDuctedFan int ducted fan (0 not)

isReactionDrive int reaction drive (0 not)

isMultiRotor int multiple rotors (0 not)

isStoppable int stopped rotor (0 not)

twinrotor int configuration (ROTORCONFIG_tandem, coaxial, tiltrotor, not_twin)

configuration designation: principal designation required, rest identify special characteristics
principal designation = 'main’, 'tail’, "prop’
antitorque = 'antiQ’, "auxT’
twin rotor = 'coaxial’, 'tandem’, 'tiltrotor’ (keyword = tan, coax, tilt)
others = 'variable diameter’, 'stop’, 'ducted fan’, 'reaction drive’, 'multirotor’ (keyword = var, stop, duct, react, multi)
principal designation determines where weight put in weight statement, and designates main rotors (isMainRotor)
separately specify appropriate performance and weight models
multiple rotor configurations have special options for geometry and performance
options defined by variables SET_geom, MODEL_twin, MODEL _int_twin
antitorque or aux thrust rotor has special options for sizing
options defined by variables SET_rotor, fThrust, Tdesign
reaction drive still requires propulsion group

Structure: Rotor

kRotor

kPropulsion
KIND_xmsn
Vtip_ref(ngearmax)
rVtip_ref(ngearmax)
Omega_ref

INPUT _gear
gear(ngearmax)

r_react
prop_react(3)

INPUT Vtip

nVrpm
Vrpm(nvelmax)

Vtip_cruise

int

int
int
real
real
real
int
real

real
int

int

int
real

real

+ + + +

+ + + +

+ 4+ + + + + +

rotor number

Propulsion group
group number
drive system branch (1 primary, O dependent)
reference tip speed
ratio to state #1
reference rotational speed (state #1)
gear ratio input for dependent branch (1 Vtip_ref, 2 gear)
gear ratio 7 = Qqep/Qprim (ratio rpm to rpm of primary rotor)
Reaction drive
effective radial station of force (fraction Radius)
propulsion for reaction drive (group (1 engine, 2 jet), number, model)

drive system branch: only one primary rotor per propulsion group
tip speed and gear ratio required for each drive system state
primary: specify Vtip_ref and default tip speeds; Viip—nhover = Vtip_ref(1)
dependent: specify gear ratio, or specify Vtip_ref and calculate gear (depend on rotor radius)
can not specify gear ratio if sizing changes dependent rotor Vi, (SET _rotor)
if size task changes Vtip_ref(1), then rVtip_ref used to change Vtip_ref(n) for n>1
variable speed transmission: for drive system state STATE_gear_var, gear ratio factor fgear (control) included
when evaluate rotational speed of dependent rotor

reaction drive requires one and only one propulsion system (engine group or jet group)

Default rotor tip speeds (primary rotor)
input form (1 tip speed, 2 hover V;;, and rpm ratio)
function of flight speed
number of speeds (1 constant; > 2 piecewise linear, maximum nvelmax)
speeds (CAS or TAS, knots)
tip speed
cruise

182

1.0

Structure: Rotor

Vtip_man
Vtip_oei
Vtip_xmsn
Vtip(nvelmax)

fRPM_cruise
fRPM_man
fRPM_oei
fRPM_xmsn
fRPM(nvelmax)

SET _limit_rs
Plimit_rs
fPlimit_rs
Qlimit_rs

real
real
real
real

real
real
real
real
real

int

real
real
real

+ 4+ + o+

+ 4+ + +

maneuvering flight

OEI

transmission sizing

function of flight speed
rpm ratio (V:cip/vjcip—hover)

cruise

maneuvering flight

OEI

transmission sizing

function of flight speed

default rotor tip speeds (including conversion): selectable by SET_Vtip of FltState
only for primary rotor; V4, calculated from gear(state) for dependent branch

Drive system torque limit
rotor shaft (O input, 1 fraction power, 2 fraction drive system limit)
rotor shaft power limit Prgsimit
rotor shaft power limit factor
rotor shaft torque limit (Prgsiimit at yret)

drive system torque limit: Size%SET _limit_ds = input (use Plimit_rs) or calculated (from fPlimit_rs)
SET_limit_ds='input’: Plimit_rs input
SET _limit_ds#'input’: from rotor power required at transmission sizing flight conditions (DESIGN_xmsn)
rotor shaft: options for SET_limit_ds#'input’
SET_limit_rs=0: Plimit_rs
SET _limit_rs=1: fPlimit_rs x (rotor P,,)
SET limit_rs=2: fPlimit_rs X Ppgiimit
rotor shaft power limit: corresponds to one rotor
can be used for max effort in flight state (max_quant='Q margin’)
can be used for max gross weight in flight condition or mission (SET_GW="maxQ’ or 'maxPQ’)
always check and print whether exceed torque limit

183

e

Structure: Rotor

diskload
fArea
fDGW
fThrust
Radius
CWs

sigma
Tdesign
Pdesign
Ndesign
SET _thrust
iSET_thrust

SET_geom
KIND_TRgeom

fRadius
otherRotor

real
real
real
real
real
real
real
real
real
real
int

int

c*12
int

real
int

+ 4+ + + + + + +++ o+

+ 4+ + + + +

184
Parameters
disk loading (Ib/ft> or N/m?)
fraction rotor area for reference disk area f4
fraction DGW fy (for disk loading and blade loading)
thrust factor (antitorque or aux thrust rotor) 1.0

radius R

blade loading Cy /o (thrust-weighted)

solidity o = N¢/m R (thrust-weighted)

thrust for antitorque or aux thrust rotor

power for antitorque or aux thrust rotor

rotor speed (rpm) at Pdesign

rotor thrust for disk loading and blade loading (0 default; 1 fDGW*DGW, 2 fThrust*Tdesign) 0
rotor thrust for disk loading and blade loading (1 from DGW, 2 from Tdesign)

rotor disk loading = T/ A; aircraft disk loading = Wp /Ayet, Aret = Y, (faA)
W = fyww Wp (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor); can specify using SET_thrust
Tdesign and Pdesign obtained from thrust design conditions and missions (DESIGN_thrust)

if rotor sized from disk loading (SET_rotor="DL+xx+xx"), area = T"/diskload

if SET_rotor specify 'Vitip', use Vtip_ref(1)

if SET_rotor not specify 'Vtip’, calculate Vtip_ref(1), and then Vtip_ref for dependent rotors

if SET_rotor="CWs-+xx+xx', then Cyy /o from fDGW*DGW, takeoff condition, Vtip_ref, and thrust-weighted solidity

for antitorque or aux thrust rotor, need design conditions and missions (DESIGN_thrust) to identify Tdesign
otherwise use fDGW and design gross weight
Tdesign and Pdesign generally calculated (identified as input so inherited by next case)

Geometry
position (standard, tiltrotor, coaxial, tandem, tailrotor, multicopter) 'std’
tiltrotor (1 from clearance, 2 at wing tip, 3 at wing panel edge) 0
twin rotors
ratio rotor radius to that of other rotor 1.0

other rotor number

Structure: Rotor

positionOfRotor
WingForRotor
PanelForRotor
clearance fus
fclearance_fus
sep_coaxial
overlap_tandem

iSET_geom
clearance calc
Hsep_twin
Vsep_twin
overlap_twin
m_twin

mainRotor
fRadius_tr
clearance tr

ang_multicopter
len_multicopter

SET_VarDiam
fRcruise

StopAsWing

int
int
int
real
real
real
real

int

real
real
real
real
real

int
real

real

real
real

int
real

int

+ 4+ + + + + +

+ 4+ A+ ++

rotor position (+1/-1 for right/left, lower/upper, front/aft)
wing number
wing panel number
tiltrotor clearance between rotor and fuselage dg,s
tiltrotor clearance factor
coaxial rotor separation s (fraction Diameter)
tandem rotor overlap o (fraction Diameter)
derived
position (SET_geom_standard, tiltrotor, coaxial, tandem, tailrotor, multicopter)
clearance between rotor and fuselage dg,s
horizontal separation ¢ (fraction Diameter)
vertical separation s (fraction Diameter)
overlap o (1 — separation/Diameter)
overlap area fraction m
tail rotor
main rotor number
radius scale factor
clearance between tail rotor and main rotor d;,
multicopter
angle 1 (clockwise from forward, deg)
arm length ¢ (fraction Radius)
variable diameter rotor
set diameter (1 conversion schedule, 2 function speed)
ratio cruise radius to hover radius (variable diameter only)
rotor stopped as wing
wing number (0 not)

185

= O

1.0
0.08
0.25

1.0
0.5

SET_geom: calculation override part of location input
SET_geom="tiltrotor": calculate lateral position (BL)
KIND_TRgeom=clearance: from WingForRotor, Width_fus, clearance_ fus, fclearance fus
KIND_TRgeom=wing tip: from WingForRotor, wing span
KIND_TRgeom=wing panel edge: from WingForRotor, PanelForRotor, panel edge and wing span
positionOnRotor specifies right or left position
BL or Yol in loc_pylon, loc_pivot, loc_naccg is relative calculated loc_rotor BL

Structure: Rotor

186

SET_geom='coaxial’: calculate position from sep_coaxial
same sep_coaxial for otherRotor, positionOnRotor specifies lower or upper position
loc_rotor (SL,BL,WL or XoL,YoL,ZoL) is midpoint between hubs
loc_pylon (SL,BL,WL or XoL,YoL,Zol) is relative calculated loc_rotor
SET_geom='"tandem’: calculate longitudinal position (SL) from overlap_tandem
same overlap_tandem for otherRotor, positionOnRotor specifies front or aft position
loc_rotor (SL or XoL only) is midpoint between hubs
loc_pylon SL or Xol is relative calculated loc_rotor
SET_geom="tailrotor": calculate longitudinal position (SL) from clearance_tr, mainRotor
loc_pylon SL or XolL is relative calculated loc_rotor
SET_geom='multicopter’: calculate longitudinal and lateral position from ang_multicopter, len_multicopter
loc_rotor (SL,BL or XoL,Yol) is center of rotors
loc_pylon (SL,BL,WL or XoL,YoL,ZoL) is relative calculated loc_rotor
ang_multicopter also used for Aircraft%config="multicopter’ to define control
if rotor number < 2 and positionOnRotor=0: first rotor is right/lower/front, second rotor is left/upper/aft

sizing:

if SET_rotor='ratio’, Radius=fRadius*Radius(otherRotor); otherRotor not SET_rotor="ratio’

twin rotors: config identify as twin rotor
antitorque: config identify as antitorque rotor

if SET rotor='scale’, Radius=fRadius_tr*(main rotor Radius)*function(DiskLoad)

variable diameter: Radius is hover or reference radius; can be commanded by aircraft controls

conversion schedule: R =Radius in hover and helicopter mode (V' < V_onv—hover)
R =Radius*fRcruise in cruise mode (V' > Vi onv—_cruise); linear with V' in conversion mode
function of speed: use nVdiam, fdiam, Vdiam to calculate R

stoppable rotor: zero rotor flapping, forces, and power when stopped

stopped (FltAircraft%STOP_rotor=1) uses stopped rotor hub and blade drag
stopped and stowed (FltAircraft%STOP_rotor=2) uses stowed rotor hub drag
stopped as wing (FltAircraft%STOP_rotor=3) uses wing aero (wing number StopAsWing) with zero hub drag

Structure: Rotor

rotate
nBlade

SET chord
fTWsigma
taper

SET twist
twistL

nprop
rprop(nrmax)
fchord(nrmax)
twist(nrmax)

KIND_hub
flapfreq
conefreq
gamma
precone
delta3

dclda

tiploss

Xroot
Blockage
mu_blockage

int
int

int
real
real
int
real
int
real
real
real

int

real
real
real
real
real

real
real
real
real
real

R T T e S S S e T Tk T 2 S S SRS S S

Geometry, Dynamics, Aerodynamics
direction of rotation (1 counter-clockwise, —1 clockwise)
number of blades NV
planform and twist
chord distribution (1 linear from fTWsigma, 2 linear from taper, 3 nonlinear from fchord)
ratio thrust-weighted solidity to geometric solidity f = o/,
taper ratio ¢ (tip chord/root chord)
twist distribution (1 linear from twistL, 2 nonlinear from twist)
linear twist 0, (deg, root to tip)
number of radial stations (maximum nrmax)
radial stations (r1o0t/R)
chord distribution ¢(7) /cyet
twist 0, (1) (deg)
flap dynamics
hub type (1 articulated, 2 hingeless)
first flapwise natural frequency v (per-rev at hover tip speed)
coning natural frequency v (0. to use flapfreq)
blade Lock number ~y
precone 3, (deg)
pitch-flap coupling 63 (deg)
aerodynamics
blade section 2D lift-curve slope a = ¢y, (per-rad)
tip loss factor B (lift zero from BR to tip)
root cutout (r'yoot/R)
blockage factor B = AT/T
advance ratio g (0. for no correction)

187

=
o
=

© o ®®o

0.97

SET_chord: use one of fTWsigma, taper, or fchord(r); others calculated (including root cutout)
fTWsigma = sigma_tw/sigma_geom
from fTWsigma: calculate equivalent linear taper, and f. = ¢/cyef
from taper (linear): calculate fTWsigma, and f. = ¢/cyet
from fchord(r): integrate for ¢, and c;, fTWsigma= ct/cg, calculate taper, f. = scaled fchord

SET _twist: use one of twistL or twist(r); other calculated
for nonlinear distribution, twist relative 0.75 R obtained from input

Structure: Rotor

thick

frotate
Arotor
chord
sigma_geom
chord_geom
AspectRatio
Ablade
Ablade_geom
KP
fc(nrmax)
tw(nrmax)
gamma_calc
Al_calc
Iblade

Kflap

eflap

Kcone

Khub

real

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

flap frequency and Lock number are used for flap dynamics and hub moments due to flap

specified for hover radius and rotational speed

KIND_hub determines how flap frequency and hub moment spring vary with rotor speed and R
weight models can have separate blade and hub values for flap frequency

blade Lock number gamma: for SLS density, a = 5.7, thrust-weighted chord

SET_Iblade determines whether Lock number input or calculated

blockage: force acting on aircraft includes fgT opposing rotor thrust
blockage B is for hover, blockage factor zero for 1 > up

188

+ Geometry (for graphics)

blade thickness-to-chord ratio

Geometry and dynamics (derived)

direction of rotation (1 counter-clockwise, —1 clockwise)
rotor area (1 R2)

thrust-weighted chord

solidity o = N¢/mR; mean geometric chord

mean geometric chord

aspect ratio, R/chord_geom

thrust-weighted blade area

geometric blade area

tan(53)

chord distribution f. = ¢(r)/crer (scaled to unit thrust-weighted chord)
twist Oz, (1) (relative 0.75R)

blade Lock number ~

autorotation index K E /P

blade moment of inertia Ip),4e

flap stiffness K'qap (KIND_hub = hingeless)

flap hinge offset e (KIND_hub = articulated)

cone stiffness K one (conefreq input)

hub moment spring Ky,

0.12

Structure: Rotor

mr
mpsi

dr
cspsi(mpsimax)
snpsi(mpsimax)

loc_rotor
loc_pylon
loc_pivot
loc_naccg
direction
KIND _tilt

incid_hub
cant_hub

dihedral_pivot
pitch_pivot
sweep_pivot

incid_ref
cant_ref

SET_Wmove
fWmove
dz_hub(3)

iDirection
axis_incid
axis_cant
KIND_incid
KIND_cant

int
int
real
real
real

Location
Location
Location
Location
c*16

int

real
real

real
real
real

real
real

int
real
real

int
int
int
int
int

+ 4+ + +

T i T S S S S S

Blade element theory solution

integration
number of radial stations (xroot to 1; maximum mrmax)
number of azimuth angles (maximum mpsimax)
radial increment dr = (1 — xroot) /mr
cos(y;), ¥ = j A, j = 1to mpsi (A = 2w /mpsi)
sin(v;),v; = j Ay, j =1 to mpsi (A = 27 /mpsi)

Geometry

hub location
pylon location
pivot location
nacelle cg location

nominal orientation ('+x’, '-x’, '+y’, '=y’, '+z', '=z'; 'main’ (-=2z), 'tail’ (ry), 'prop’ (X))
shaft control (0 fixed shaft, 1 incidence, 2 cant, 3 both controls)

orientation of rotor shaft
incidence 6, (deg)
cant angle ¢y, (deg)
orientation of pivot axes
pivot dihedral angle ¢,, (deg)
pivot pitch angle 6,, (deg)
pivot sweep angle 1, (deg)
reference shaft control
incidence 7,0 (deg)
cant angle c,¢f (deg)
moving weight for cg shift
weight (1 wing tip weight, 2 Wy, 3 Wyprs and Weg)
fraction moving weight
hub position increment due to tilt Az{ | (SL/BL/WL)

Derived geometry

nominal orientation (1,-1,2,-2,3,-3,-3,12, 1)
axis incidence (£123)

axis cant (+123)

incidence (0 fixed, 1 controlled)

cant angle (0 fixed, 1 controlled)

189

’ e
main

Structure: Rotor

CPF(3,3) real
CFP(3,3) real
WCHF(3,3) real
CSF(3.3) real
KIND_control int
KIND_cyclic int
KIND_coll int
SCALE_coll int
INPUT _coll int
T_coll(ncontmax,nstatemax) real
nVcoll int
coll(nvelmax) real
Veoll(nvelmax) real
INPUT _Ingcyc int
T_Ingcyc(ncontmax,nstatemax)
real
nVingcyc int
Ingcyc(nvelmax) real

Vingcyc(nvelmax) real

+ 4+ + o+

+ + + +

pivot axes relative airframe, C el

pivot axes relative airframe, C rp
WCHE (CSF for reference control)
rotor shaft relative airframe, C'5¥ (zero shaft control)

loc_naccg, loc_pivot, orientation of pivot axes, and reference shaft control angles not used for KIND_tilt=fixed shaft
for tiltrotor, locations and orientation specified in helicopter mode, so incid_ref = 90
SET_Wmove: cg shift calculated using incidence and cant rotation of loc_naccg relative loc_pivot

moving weight fWmove*Wmove, Wmove = Wtip_total/nRotorOnWing or w/Nyotor

w = Wpyps (drive system) or Wy,s + > (Wgs) (drive system and engine system)

Controls

rotor control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP)
cyclic input (1 tip-path-plane tilt, 2 hub moment, 3 lift offset)
collective input (1 thrust,2 Cr /o)
scale collective T" matrix (O for none)

collective (magnitude of thrust vector)
connection to aircraft controls (0 none, 1 input 7" matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

longitudinal cyclic (tip-path plane tilt or no-feathering plane tilt)
connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

190

=N ==

Structure: Rotor

INPUT _latcyc int
T_latcyc(ncontmax,nstatemax)

real
nVlatcyc int
latcyc(nvelmax) real
Vlatcyc(nvelmax) real
INPUT _incid int
T_incid(ncontmax,nstatemax)

real
nVincid int
incid(nvelmax) real
Vincid(nvelmax) real
INPUT _cant int
T_cant(ncontmax,nstatemax) real
nVcant int
cant(nvelmax) real
Vcant(nvelmax) real
INPUT _diam int
T_diam(ncontmax,nstatemax) real
nVdiam int
fdiam(nvelmax) real
Vdiam(nvelmax) real
INPUT_fgear int
T_fgear(ncontmax,nstatemax)

real
nVfgear int
fgear(nvelmax) real

Vfgear(nvelmax) real

+

+ 4+ 4+ 4+ 4+

+ 4+ A+ A+ +

+ 4+ + +

lateral cyclic (tip-path plane tilt or no-feathering plane tilt)
connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
incidence 7 (nacelle tilt)
connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
cant ¢
connection to aircraft controls (0 none, 1 input 7" matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
diameter fqiam, (variable diameter only)
connection to aircraft controls (0 none, 1 input 7" matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
gear ratio factor fgea, (variable speed transmission only)
connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

191

Structure: Rotor 192

+ reaction drive net force Fleact
INPUT_Freact int + connection to aircraft controls (0 none, 1 input 7" matrix) 1
T_Freact(ncontmax,nstatemax)
real + control matrix
nVFreact int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax) 0
Freact(nvelmax) real + values
VFreact(nvelmax) real + speeds (CAS or TAS, knots)
aircraft controls connected to individual controls of component, ¢ = T'cac + ¢
for each component control, define matrix 7" (for each control state) and value ¢,
flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to component control, flight state can specify component control value
initial values if control is connected to trim variable; otherwise fixed for flight state
pylon moves with rotor; nontilting part is engine nacelle
+ Trim Targets
+ rotor lift
nVIift int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
Klift(nvelmax) real + target
Vlift(nvelmax) real + speeds (CAS or TAS, knots)
+ rotor propulsive force
nVprop int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
Kprop(nvelmax) real + target
Vprop(nvelmax) real + speeds (CAS or TAS, knots)

target definition determined by Aircraft%trim_quant
Klift can be fraction total aircraft lift, lift, Cr, /o, or Cr /o
Kprop can be fraction total aircraft drag, propulsive force — X, —C'x /o, or —X/q)

Structure: Rotor

nsteady
mu_steady(20)
CTs_steady(20)

ntran
mu_tran(20)
CTs_tran(20)

KO_limit
K1_limit

MODEL_perf
PRotorInd
PRotorPro
PRotorTab
MODEL_Ftpp
MODEL_Fpro

+

+
int +
real +
real +

+
int +
real +
real +

+
real +
real +

+
int +
PRotorInd
PRotorPro
PRotorTab
int +
int +

Rotor Thrust Capability (Cr /o vs 1)

sustained
number of points (maximum 20)
advance ratio
CT / g

transient
number of points (maximum 20)
advance ratio
CT / (o

equation, Cr /o = Ko — Ky u?
constant K
constant K

193

16

16

0.17
0.25

CTs_steady, CTS_tran used to calculate rotor thrust margin, which available for max effort or trim
defaults used if CTs(1)=0.

default CTs_steady = .170,.168,.161,.149,.131,.109,.084,.050,.049,.048,.047,.046,.045,.044,.043,.042
default CTs_tran = .200,.197,.190,.177,.156,.135,.110,.080,.075,.070,.065,.060,.055,.050,.045,.040
default mu_steady =0.,.10,.20,.30,.40,.50,.60,.70,.71,.72,.73,.74,.75,76,.77,.78

default mu_tran =0.,.10,.20,.30,.40,.50,.60,.70,.72,.74,.76,.78,,.80,.82,.84,.86

Performance
power model (1 standard, 2 table model)
standard model, induced power
standard model, profile power
table model
inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory)
inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect)

if thrust and TPP command, and neglect inplane forces relative TPP, then pitch control angles not required

Structure: Rotor

MODEL _int

Vint_low
Vint_high
IRotor

SET aeroaxes
pitch_aero
SET_Spylon
Swet_pylon
kSwet_pylon
SET_Sduct

S duct
fLength_duct
SET_Sspin
Swet_spin
fSwet_spin
fRadius_spin

CBS(3,3)
CBF(3,3)
Radius_spin

int

real
real
IRotor

int
real
int
real
real
int
real
real
int
real
real
real

real
real
real

+ + + + +

R T T S S S S S R

Interference
model (0 none, 1 standard, 2 with transition)
transition
low velocity (knots)
high velocity (knots)
standard model

Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all
with transition: interference factors linearly vary from Kint at V' < Vint_low to 0 at V' > Vint_high

Geometry
hub/pylon aerodynamic axes (0 input pitch, 1 helicopter, 2 propeller or tiltrotor)
pitch relative shaft axes O,er, CB5 =Y_4_,
pylon wetted area (1 fixed, input Swet; 2 scaled, Wy,5; 3 scaled, W, and Wgg; 4 scaled, disk area)
area Spylon
factor, k = Spylon/(u)/]\/rotor)g/3 (Units_Dscale) or k = Spyion/A
duct area (1 fixed, input S_duct; 2 scaled, from fLength_duct)
area Sduct
duct length (fraction rotor radius)
spinner wetted area (1 fixed, input Swet; 2 scaled, from fSwet)
area Sepin
factor, k = Sepin/Aspin
spinner radius (fraction rotor radius)
Derived geometry
pylon axes relative shaft, CB*
pylon axes relative airframe, C2%" (zero shaft control)
spinner radius Rgpin

194

[[

._\
CoPrvMNMPNNOCPNNC -~

Structure: Rotor

MODEL_drag
Idrag
DRotor

DoQC_hub
DoQH_hub
DoQV_hub
DoQC_pylon
DoQH_pylon
DoQV_pylon
DoQC_duct
DoQH_duct
DoQV _duct
DoQ_spin
Swet_rotor

+
int +
real +
DRotor

real
real
real
real
real
real
real
real
real
real
real

only SET_aeroaxes=input uses pitch_aero; pitch_aero=180 for helicopter, 90 for propeller

SET_Spylon, pylon wetted area: input (use Swet_pylon) or calculated (from kSwet_pylon)
units of kSwet are ft*/1b%/3 or m?/kg?/3
w = Wyprs (drive system) or Wy, + > Wgs (drive system and engine system)
pylon wetted area used for pylon drag
rotor pylon must be consistent with engine group nacelle

SET_Sduct, duct area: input (use S_duct) or calculated (from fLength_duct)
Sauct = (27 R)lauct > Lauct =fLength_duct* R; used for drag (wetted area 2S54,¢t) and weight

SET_Sspin, spinner wetted area: (use Swet_spin) or calculated (from fSwet_spin)

Agpin = wapin = spinner frontal area (from fRadius_spin*R); spinner radius used for drag and weight

Drag
model (0 none, 1 standard)
incidence angle for helicopter nominal drag (deg; O for not tilt)
standard model

Derived drag
hub cruise drag, area (D/q)nub
hub helicopter drag, area (D/q)nub
hub vertical drag, area (D /q)nub
pylon cruise drag, area (D/q)pylon
pylon helicopter drag, area (D/q)pyion
pylon vertical drag, area (D/q)pyion
duct cruise drag, area (D/q)quct
duct helicopter drag, area (D/q)duct
duct vertical drag, area (D/q)duct
spinner drag, area (D/q)spin
total wetted area Syt

195

Structure: Rotor

Weight
MODEL_weight

dWhlade
dWhub
dWshaft
dWspin
dWrfold
dWtr
dWaux
dWrsupt
dWduct
WRotor
SET Iblade
Al
Whlade_tip
rWhblade tip
fWhblade_tip
rblade
xWhlade
Whlade
Witip

TECH_blade
TECH_hub
TECH_shaft
TECH_spin
TECH_rfold
TECH_tr
TECH_aux
TECH_rsupt
TECH_duct

Weight
int

real
real
real
real
real
real
real
real
real
WRotor
int
real
real
real
real
real
real
real
real

real
real
real
real
real
real
real
real
real

+

T T i T S S S S e S T

+ 4+ + + + + + + + o+

196
Weight
weight statement (component)
rotor group (or empennage or propulsion group)
model (0 input, 1 NDARC, 2 custom) 1
weight increment
blade 0.
hub and hinge 0.
inter-rotor shaft 0.
fairing/spinner 0.
blade fold 0.
tail rotor 0.
auxiliary thrust 0.
rotor support structure 0.
duct 0.
NDARC model
blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from AI) 1
autorotation index KE/P = %NbladelbladeQQ /P (sec) 3.0
tip weight (per blade) 0.
location tip weight (fraction blade radius) 0.9
distributed weight for centrifugal force (fraction Whblade_tip) 1.0
radius of gyration for distributed mass (fraction blade radius) 0.6
blade weight (fraction total tail rotor or auxiliary thrust rotor weight) 0.55
blade weight (all blades; required for drive system weight)
weight on wing tip (required for tiltrotor wing weight)
Technology Factors
blade weight xblade 1.0
hub and hinge weight xnhup 1.0
inter-rotor shaft xshatt 1.0
fairing/spinner weight Xspin 1.0
blade fold weight X014 1.0
tail rotor weight x, 1.0
auxiliary thrust weight y ¢ 1.0
rotor support structure weight Xgupt 1.0

duct weight X gyt 1.0

Structure: Rotor

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

blade weight: Whiade = XbladeWblade + AWhiade + (1 + f)Wiip Nblade
SET Iblade: calculate blade moment of inertia Iblade
0 from Lock number gamma, independent of blade weight
1 from blade weight
2 from Lock number gamma, tip weight Wblade_tip calculated from Iblade
3 from autorotation index Al, tip weight Whblade_tip calculated from Iblade
for tail rotor or aux thrust weight model (MODEL_config =2 or 3), blade weight W},1,qe =xWhblade*W,,. or xWblade*W

rotor weight = blade + hub + spinner + fold + shaft + support + duct
rotor config determines where weight put in weight statement

main rotor: rotor group

tail rotor: empennage group (tail rotor)

propeller: propulsion group (propeller/fan installation)

197

Chapter 46

198

Structure: PRotorInd

Variable Type Description Default
+ Rotor Induced Power, Standard Energy Performance Method
MODEL _ind int + model (0 none, 1 constant, 2 standard, 3 simple) 2
MODEL_ind=constant uses only Ki_hover, Ki_prop, Ki_edge
MODEL_ind=simple uses only Ki_hover, Ki_prop, Ki_edge, mu_axtran, mu_prop, Xa, mu_edge, Xe
nonzero values of Ki in FltState supersede calculated value
+ induced velocity factors (ratio to momentum theory induced velocity)
Ki_hover real + hover Knover 1.12
Ki_climb real + axial climb Kcimb 1.08
Ki_prop real + axial cruise (propeller) Kprop 2.0
Ki_edge real + edgewise flight (helicopter) Keqge 2.0
+ variation with thrust
CTs_Hind real + (Cr/0)ina for hover x;, variation 0.08
kh1 real + coefficient ky; for kp, 0.
kh2 real + coefficient kj,» for kp, 0.
Xh2 real + exponent X5 for xp, 2.
CTs_Pind real + (C7/0)ina for axial k,, variation 0.08
kpl real + coefficient k1 for k), 0.
kp2 real + coefficient k5 for x, 0.
Xp2 real + exponent X s for k,, 2.
CTs_Tind real + (C7/0)ing for edgewise k. variation 0.08
ktl real + coefficient k; for x. 0.
kt2 real + coefficient k5 for k. 0.
Xt2 real + exponent X5 for k. 2.

Structure: PRotorInd

kpa
Xpa

kpx
Xpx

Maxial
Xaxial
mu_axtran

mu_prop
kal

ka2

ka3

Xa

MODEL_edge
mu_edge

kel

ke2

ke3

Xe

kea

kol

ko2
Ki_min
Ki_max
fedge
fprop

real
real

real
real

real
real
real

real
real
real
real
real

int

real
real
real
real
real
real

real
real
real
real
real
real

R T T T S S S S S I I e T IR I T T T e

variation with shaft angle
coefficient £y, for x,
exponent X, for s,

variation with propulsive force
coefficient k. for x,
exponent X, for

axial flight transition
constant M, 4, from hover to climb
exponent X ,xi,1 from hover to climb
advance ratio pi,¢ran from hover to axial

variation with axial velocity
advance ratio fi.prop for Ki_prop
coefficient k.1 for k(u,) (linear)
coefficient k2 for k() (quadratic)
coefficient k3 for x(u.)
exponent X, for x(u.)

variation with edgewise velocity
model for edgewise « relative axial « (0 replace, 1 sum)
advance ratio fledge for Ki_edge
coefficient k. for x(u) (linear)
coefficient k.o for x(u) (quadratic)
coefficient k.3 for r(u)
exponent X, for x(u)

variation with rotor drag k.,

variation with lift offset
coefficient k.1 for fog
factor ko for fog

minimum Kpin

maximum Kmax

edgewise scale factor S

axial scale factor S

199

1.176
0.65

= 0 o

10.

Structure: PRotorInd

MODEL_grad
fGradx
fGrady
fGradm

MODEL_GE
Cge

AGE
BGE(3)
FGE
GGE
XGEt
XGEz

MODEL_duct
fDuctA
fDuctT
fDuctVx
fDuctVz
eta_duct

int

real
real
real

int
real

real
real
real
real
real
real

int

real
real
real
real
real

+ + + + +

+ 4+ + + + + + + o+

+ 4+ + + + + +

Momentum theory
inflow gradient in forward flight (0 none, 1 White and Blake, 2 Coleman and Feingold)
longitudinal gradient factor f,
lateral gradient factor f,
hub moment inflow gradient factor f,,

Ground effect
model (0 none, 1 Cheeseman, 2 BE Cheeseman, 3 Law, 4 Hayden, 5 Zbrozek, 6 Maryland, 7 generic equation)
effective height correction C,
generic equation
coefficient for height A
coefficient for height B,
coefficient for thrust F'
coefficient for thrust G
exponent for thrust X,
exponent for height X,

Cge: for tiltrotors, typically C'y = 0.5; smaller effective height accounting for increased influence of ground compared

to isolated rotor

Ducted fan
model (1 specify area ratio, 2 specify thrust ratio)
area ratio f, (fan area/far wake area)
thrust ratio fr (rotor thrust/total thrust)
velocity ratio fy, (fan edgewise velocity/free stream velocity)
velocity ratio fy . (fan axial velocity/free stream velocity)
duct efficiency np (total pressure loss through duct)

ducted fan model used only if config="duct’

200

= ow

RO RFROH

o
il e

Structure: PRotorInd

MODEL_twin
Kh_twin

Kp_twin

Kf_twin

Cind_twin
Caxial_twin
A_coaxial
xh_multi(nrotormax)
xp_multi(nrotormax)
xf_multi(nrotormax)

iMODEL _twin
xh
Xp
xfl
xf2

c*12
real
real
real
real
real
real
real
real
real

int

real
real
real
real

+ 4+ 4+ + o+

Twin rotors
model (based on config, none, side-by-side, coaxial, tandem, multirotor)
ideal induced velocity correction for hover Kptwin
ideal induced velocity correction for propeller Kptwin
ideal induced velocity correction for forward flight & fiwin
constant C' in axial to forward flight transition
constant C,, in hover to propeller transition
coaxial rotor nonuniform disk loading factor &
multirotor thrust factor x;, for hover
multirotor thrust factor x,, for propeller
multirotor thrust factor x s for forward flgiht
Derived twin rotors
model (MODEL_twin_none, sidebyside, coaxial, tandem, multirotor)
thrust factor xj,, hover
thrust factor x,,, propeller
thrust factor z 1, forward flight, this rotor
thrust factor x 79, forward flight, other rotor

201

"config’
1.00
1.00
0.85

1.0
1.0
1.05
1.0
1.0
1.0

MODEL_twin: 'config’, 'none’, 'side-by-side’ or 'tiltrotor’, 'coaxial’, 'tandem’, or 'multirotor’
"config’ must identify rotor as twin or multiple rotors
coaxial: MODEL_twin="coaxial' (use A_coaxial; Kh_twin not used)
or MODEL_twin="tandem’ with zero horizontal separation (typically Kh_twin=0.90)
coaxial and tandem: Kf_twin =0.88 to 0.81 for rotor separation 0.06D to 0.12D
thrust factors x calculated for twin rotors, input for multiple rotors
correction factors and transition constants (kwin, C', Cy) used for twin or multiple rotors

Chapter 47

202

Structure: PRotorPro

Variable Type Description Default

+ Rotor Profile Power, Standard Energy Performance Method
MODEL_pro int + model (0 none, 1 constant, 2 standard) 2
cdmean real + constant mean drag coefficient 0.009

MODEL_pro=constant uses only cdmean
nonzero values of cdo in FltState supersede calculated cdmean

TECH_drag real + technology factor for profile power x 1.0
Re_ref real + reference Reynolds number Re,ef (0. for no correction) 0.
X_Re real + exponent for Reynolds number correction Xge 0.2
MODEL_basic int + Basic model cgpasic (0 none, 1 array, 2 equation) 2

+ array (cq vs thrust-weighted Cr /o)
ncd int + number of points (maximum 24) 24
CTs_cd(24) real + blade loading
cd(24) real + drag coefficient

+ equation
CTs_Dmin real + (C7/0) pmin for minimum profile drag (A = |Cr /0 — (C1/0) Dmin|) 0.07
d0_hel real + coefficient donel in drag, cgn, = donel + dinel A + donaA? + Acgsep (hover/edgewise) 0.009
d1_hel real + coefficient dyy,) in drag (hover/edgewise) 0.
d2_hel real + coefficient day,) in drag (hover/edgewise) 0.5
d0_prop real + coefficient dopyop in drag, cap = doprop + d1propA + daprop A% + Acsep (axial) 0.009
d1_prop real + coefficient dyprop in drag (axial) 0.
d2_prop real + coefficient dap,op in drag (axial) 0.5
dprop real + variation with shaft angle, coefficient d,, for cgp 0.
Xprop real + variation with shaft angle, exponent X, for cqp, 2.

Structure: PRotorPro

CTs_sep
dsep
Xsep
dfl

df2

Xf

dz1

dz2

Xz

MODEL _stall

nstall
mu_stall(20)
CTs_stall(20)
fstall

dstalll

dstall2
Xstalll
Xstall2

dol
do2
dsa

real
real
real
real
real
real
real
real
real

int

int

real
real
real
real
real
real
real

real
real
real

+ 4+ 4+ + + + + + o+

T T S S S S S S R

(C1/0)sep for separation (Acgsep = dsep(|C1 /0| — (C1/0)sep)5P)
factor dgcp in drag increment

exponent X,ep, in drag increment

variation with edgewise velocity, coefficient d

variation with edgewise velocity, coefficient d r2

variation with edgewise velocity, exponent X ¢

variation with axial velocity, coefficient d

variation with axial velocity, coefficient d o

variation with axial velocity, exponent X,

203

0.07
4.0
3.0

Moo o

default array (cd(1)=0.): Cr /o = 0. to 0.23 (uniform increments)
cd =.01100,.01075,.01025,.01000,.01010,.01070,.01050,.00975,.00925,.00926,.00938,.00977,
01048,.01152,.01336,.01593,.01920,.02381,.03014,.04000,.08000,.16000,.32000,1.0000

Stall model cggta11 (0 none)

CT/O' at stall (A = |CT/U‘ — (fs/fafoff)(CT/U)s, Acg = dslAfﬂ + dSQAfsz)
number of points (maximum 20)
advance ratio V/V;p,

(Cr/o)s

constant f in stall drag increment

factor dg; in stall drag increment

factor dgs in stall drag increment
exponent X1 in stall drag increment
exponent X o in stall drag increment
variation with lift offset

coefficient d,; for fog

factor d,o for fog
variation with rotor drag d,

10

1.0

40.
2.0
3.0

«©

default used if CTs_stall(1)=0.
default CTs_stall =0.17,0.16,0.15,0.14,0.13,0.12,0.11,0.10,0.10,0.10
default mu_stall = 0.00,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.80

Structure: PRotorPro

MODEL_comp

fSim
thick_tip

dml
dm2
Xm

Mddo
Mddcl

int
real

real

real
real
real

real
real

+ 4+ + + o+

Compressibility model ¢jcomp (0 none, 1 drag divergence, 2 similarity)
similarity model
factor f
blade tip thickness-to-chord ratio 7
drag divergence model (A, = My; — Mgq, Acqg = dpm1 A + dmgAfgm)
coefficient d,,; in drag increment
coefficient d,,> in drag increment
exponent X, in drag increment
drag divergence Mach number (M4 = Mdd0 — Mddcl cy)
M gq0 at zero lift
derivative with lift Kk = OMgq/0cy

204

1.0
0.08

0.056
0.416
2.0

0.88
0.16

205

Chapter 48

Structure: PRotorTab

Variable Type Description Default
+ Performance, Table Method
MODEL_indTab int + induced power model (0 standard, 1 table, 2 table with equations) 1
nvar_ind int + number independent variables (1 to 3) 0
var_ind(3) c*12 + variables "
nv_ind(3) int + number of variable values (maximum ntablemax) 0
v_ind(ntablemax,3) real + independent variable
MODEL_proTab int + profile power model (0 standard, 1 table, 2 table with equations) 1
KIND proTab int + profile power model (0 standard, 1 table ¢gmean, 2 table CgmeanF' = 8Cpy/0) 1
nvar_pro int + number independent variables (1 to 3) 0
var_pro(3) c*12 + variables "
nv_pro(3) int + number of variable values (maximum ntablemax) 0
v_pro(ntablemax,3) real + independent variable
+ table

Ki(ntablemax,ntablemax,ntablemax)

real + induced power factor s
cdo(ntablemax,ntablemax,ntablemax)
real + profile power mean cy
Derived
ivar_ind(3) int induced power variables (tablevar_V, Vh, mu, muz, alpha, muTPP, muzTPP, alphaTPP, CTs, Mx, Mtip, Mat)
ivar_pro(3) int profile power variables (tablevar_V, Vh, mu, muz, alpha, muTPP, muzTPP, alphaTPP, CTs, Mx, Mtip, Mat)

independent variables: var_ind and var_pro
'V': flight speed V/Vi;p,
'Vh': horizontal speed V3, /Viip,
'mu’, 'muHP’: edgewise advance ratio p (hub plane)
'muz’, 'muzHP’: axial velocity ratio x, (hub plane)
'alpha’, "alphaHP’: shaft angle-of-attack o = tan™!(u, /p1) (hub plane)

Structure: PRotorTab 206

'muTPP’: edgewise advance ratio p (tip-path plane)

'muzTPP’: axial velocity ratio p, (tip-path plane)

'alphaTPP’: shaft angle-of-attack ov = tan~!(j,/u) (tip-path plane)
'CTs','CT/s": blade loading Cr /o

'Mx', 'offset’: lift offset M, /TR

'"Mtip": tip Mach number M;,

'Mat': advancing tip Mach number M,

nonzero values of Ki and/or cdo in FitState supersede table (or table with equations) values

Chapter 49

207

Structure: DRotor

Variable Type Description Default
+ Rotor Drag, Standard Model
+ forward flight drag
SET Dhub int + hub drag specification (1 fixed, D/q; 2 scaled, Cp; 3 scaled, squared-cubed; 4 scaled, square-root) 2
DoQ_hub real + area (D/q)hub
CD_hub real + coefficient Cppy1, (based on rotor area, D/q = SCp) 0.0024
kDrag_hub real + k= (D/q)/(W/1000)3/% or (D/q)/W/? (Units_Dscale) 0.8
SET_Dpylon int + pylon drag specification (1 fixed, D/q; 2 scaled, C'p) 2
DoQ_pylon real + area (D/q)pyion
CD_pylon real + coefficient Cppyion (based on pylon wetted area, D/q = SCp) 0.
SET Dduct int + duct drag specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQ_duct real + area (D /q)duct
CD_duct real + coefficient Cpqyuet (based on duct wetted area, D/q = SCp) 0.
SET_Dspin int + spinner drag specification (1 fixed, D/q; 2 scaled, Cp) 1
DoQ _spin real + area (D/q)spin 0.
CD _spin real + coefficient C'pgpin (based on spinner wetted area, D/q = SCp) 0.
+ vertical drag
SET _Vhub int + hub drag specification (1 fixed, D/q; 2 scaled, C'p) 2
DoQV_hub real + area (D/q)vhub
CDV_hub real + coefficient Cpyhyb (based on rotor area, D/q = SCp) 0.
SET_Vpylon int + pylon drag specification (1 fixed, D/q; 2 scaled, C'p) 2
DoQV_pylon real + area (D /q)vpylon
CDV_pylon real + coefficient Cpy pyion (based on pylon wetted area, D/q = SCp) 0.
SET_Vduct int + duct drag specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQV_duct real + area (D/q)vduct
CDV_duct real + coefficient Cpy quct (based on duct wetted area, D/q = SCp) 0.

Structure: DRotor

DoQ hubstop
CD_hubstop
DoQ_hubstow
CD_hubstow

DoQV_hubstop
CDV_hubstop
DoQV_hubstow
CDV_hubstow

CD_bladestop

MODEL_Dhub
MODEL_Dpylon
MODEL_Dduct
X_hub

X _pylon

X duct

Xh

Xp

Xd

real
real
real
real

real
real
real
real

real

int
int
int
real
real
real
real
real
real

I T I i e T S S e e e e S S S e e T &

208

stopped/stowed rotor
forward flight hub drag

area (D/q)hub—stop 0.

coefficient Cphyb—stop (based on rotor area, D/q = SCp) 0.

area (D/q)hub—stow 0.

coefficient Cppub—stow (based on rotor area, D/q = SCp) 0.
vertical hub drag

area (D/q)thbfstop 0.

coefficient Cpyhub—stop (based on rotor area, D/q = SCp) 0.

area (D/q)thbfstow 0.

coefficient Cpyhub—stow (based on rotor area, D/q = SCp) 0.
stopped blade drag

coefficient Cpplade (based on blade area, D/q = SCp) 0.

transition from forward flight drag to vertical drag

hub drag model (0 none, 1 general, 2 quadratic) 2
pylon drag model (0 none, 1 general, 2 quadratic) 2
duct drag model (0 none, 1 general, 2 quadratic) 2
hub drag, transition exponent X4 2.
pylon drag, transition exponent X4 2.
duct drag, transition exponent X4 2.

hub drag, transition exponent X, (derived)
pylon drag, transition exponent X; (derived)
duct drag, transition exponent X (derived)

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

component drag contributions must be consistent; pylon is rotor support, and nacelle is engine support
tiltrotor with tilting engines use pylon drag (and no nacelle drag), since pylon connected to rotor shaft axes
tiltrotor with nontilting engines: use nacelle drag as well
rotor with a spinner (such as on a tiltrotor aircraft) likely not have hub drag

SET_Dhub, hub drag: use one of DoQ_hub, CD_hub, kDrag_hub
units of kDrag are ft2/kIb%/3 or m?/Mg?/?; ft2/1b'/2 or m?/kg'/?
CD = 0.0040 for typical hubs, 0.0024 for current low drag hubs, 0.0015 for faired hubs
kDrag (2/3 power) = 1.4 for typical hubs, 0.8 for current low drag hubs, 0.5 for faired hubs (English units)

Structure: DRotor 209

kDrag (1/2 power) = 0.074 for single rotor helicopters, 0.049 for tandem helicopters,
0.038 for hingeless rotors, 0.027 for faired hubs (English units)
W = fwWarro (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor)

stopped/stowed rotor: areas or coefficients (based on SET_Dhub and SET_Vhub) replace hub drag

Chapter 50

210

Structure: IRotor

Variable Type Description Default
+ Rotor Interference, Standard Model
+ model
MODEL_develop int + development along wake axis (1 step function, 2 nominal, 3 input Xdevelop) 3
Xdevelop real + rate parameter ¢ 0.2
MODEL_boundary int + immersion in wake (1 step function, 2 always immersed, 3 input Xboundary) 3
MODEL_contract int + far wake contraction (0 no, 1 yes) 1
Xboundary real + boundary transition s (fraction contracted radius) 0.2
MODEL_int_twin int + twin rotor interference (1 no correction, 2 nominal, 3 input Ktwin) 1
Ktwin real + velocity factor in overlap region K 1.4142
Nint_wing(nwingmax) int + number wing span stations 6
Nint_tail(ntailmax) int + number tail span stations 2
+ interference factors K;,; (0. for no interference)
Kint_fus real + at fuselage 1.0
Kint_wing(nwingmax) real + at wing 1.0
Kint_tail(ntailmax) real + at tail 1.0

Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all
interference factor linearly transition from Kint at V' < Vint_low to O at V' > Vint_high

to account for wing or tail area in wake, interference averaged at Nint points along span

MODEL_develop: step function same as Xdevelop=0; nominal same as Xdevelop=1.
MODEL_boundary: step function same as Xboundary=0; always immersed same as Xboundary=00
MODEL_twin: only for coaxial or tandem or side-by-side; nominal same as Ktwin=1/2

Structure: IRotor 211

+ Induced power interference at wing
KIND_int_wing int + kind (1 wing-like, 2 propeller-like) 1
Cint_wing(nwingmax) real + factor Cjy, (0. for no interference) 0.

For tiltrotors, typically the interference is wing-like, with C,; = —0.06

212

Chapter 51

Structure: WRotor

Variable Type Description Default
+ Rotor Group, NDARC Weight Model
MODEL_config int + model (1 rotor, 2 tail rotor, 3 auxiliary thrust) 1
MODEL_Whblade int + blade weight model (1 AFDD82, 2 AFDDO0O, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic) 1
MODEL_Whub int + hub and hinge weight model (1 AFDD82, 2 AFDDO0O0, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic) 1
MODEL_Wshaft int + inter-rotor shaft weight (0 none, 1 from lift offset, 2 from shaft length) 0
+ AFDDO00 weight models
MODEL_type int + hub weight equation depend on blade weight (for hub weight; 0 no, 1 yes) 1
KIND_rotor int + rotor kind (for blade weight; 1 tilting, 2 not)
+ AFDDO00 and AFDDS8?2: first flapwise natural frequency v (per-rev at hover tip speed)
flapfreq_blade real + blade (0. to use flapfreq) 0.
flapfreq_hub real + hub (0. to use flapfreq_blade) 0.
+ lift offset rotor
MODEL_offset int + rotor tip clearance (for blade weight; 1 scaled, 2 fixed) 1
offset real + design lift offset L (roll moment/T R) 0.3
thick20 real + blade airfoil thickness-to-chord ratio 75z (at 20%R) 0.21
clearance_tip real + tip clearance, scaled s/R or fixed s (ft or m) 0.05
thick25 real + Boeing: blade airfoil thickness-to-chord ratio 7957 (at 25%R) 0.15
rattach real + Boeing (blade, hub, tail rotor, aux thrust): blade attachment (fraction rotor radius) 0.09
+ generic blade
Kblade real + factor Kpjade 0.
XbldN real + exponent Xpjqn 0.
XbldR real + exponent Xp14r 0.
Xbldc real + exponent Xpqc 0.
XbldV real + exponent Xyqy 0.
Xbldf real + exponent Xp1q, 0.
XbldW real + exponent Xpqw 0.

Structure: WRotor

Khub
XhubN
XhubR
Xhubc
XhubV
Xhubf
XhubW

MODEL _tr
thick70
MODEL_aux
thrust_aux
power_aux
material_aux

Kat

XatN
XatR
Xatc
XatV
XatP

fWfold
fWsupt
Usupt
fshaft
Ushaft
Uduct

real
real
real
real
real
real
real

int
real
int
real
real
real

real
real
real
real
real
real

real
real
real
real
real
real

+ 4+ 4+ + + + + +

+ A+ o+

+ + + + + +

generic hub

factor Kyup,
exponent Xy pN
exponent Xyubr
exponent Xtupe
exponent Xypy
exponent Xy by
exponent Xy ubw

tail rotor weight model (1 AFDD, 2 Boeing, 3 GARTEUR)

GARTEUR: blade airfoil thickness-to-chord ratio 7.7z (at 70%R)

auxiliary thrust weight model (1 AFDD10, 2 AFDD82, 3 Boeing, 4 GARTEUR, 5 Torenbeek, 6 generic)
AFDDS82: design maximum thrust 7,

AFDD10: design maximum power P,

AFDDI10: material factor f,,

generic propeller

factor K¢
exponent X 4N
exponent Xt
exponent X,
exponent X,y
exponent X, p

blade fold weight fz,1q (fraction total blade weight)

rotor support structure weight (fraction maximum takeoff weight)
rotor support weight per length Ugyp (Ib/ft or kg/m)

rotor shaft length (fraction rotor radius) fgshagt

rotor shaft weight per length Ugpas (Ib/ft or kg/m)

duct weight per area Ugyc; (Ib/ft? or kg/m?)

MODEL _config: tail rotor and auxiliary thrust models use only rotor, support, and duct weights (not shaft, fold, or
separate blade and hub weights)
duct weight only used for ducted fan configuration

for teetering and gimballed rotors, the flap frequency flapfreq_blade should be the coning frequency

213

Coocoo0o00o

o
=
[

= o

A o

;o @ eo

Structure: WRotor

WtParam_rotor(8)

nblade b
radius_b
chord b
taper_b
Vtip_b
flapfreq_b
HoD_b
SDGW_b
nz_b
WMTO_b

nblade_h
radius_h
chord_h
taper_h

real

int

real
real
real
real
real
real
real
real
real

int

real
real
real

+ Custom Weight Model

+

The AFDDO00 hub weight equation using the calculated blade weight (MODEL _type = 0) results in a lower average
error, and best represents legacy rotor systems.
Using the actual actual blade weight (MODEL_type = 1) is best for advanced technology rotors with blades lighter than

trend.

if thrust_aux# 0, supersedes design maximum thrust of rotor from sizing task

if power_aux# 0, supersedes design maximum power of rotor from sizing task

material_aux=1 for composite construction, 1.20 for wood, 1.31 for aluminum spar, 1.44 for aluminum construction
default €., is the reference rotor speed

typically fWfold = 0.04 for manual fold, 0.28 for automatic fold

rotor support structure weight must be consistent with engine support and pylon support weights of engine section

parameters

Weight Model Input
Blade

number of blades
radius

blade mean chord
blade taper ratio
hover tip speed

blade flap frequency

coaxial separation h/D (for lift offset)

structural design gross weight (for lift offset)

design ultimate flight load factor at SDGW (for lift offset and Boeing)
maximum takeoff weight

Hub and hinge

number of blades
radius

blade mean chord
blade taper ratio

214

Structure: WRotor

Vtip_h
flapfreq_h
Whbld_h
SDGW_h
nz_h
WMTO_h

radius_s
chord s
taper_s
HoD s
SDGW._s

nz_s
Whbld_f
Dspin_n

WMTO_p
radius_p

Sduct d

radius_t
Qlimit_t

nblade a
radius_a
chord_a
Vtip_a
RPMprop_a
Taux_a
Paux_a

real
real
real
real
real
real

real
real
real
real
real
real

real

real

real
real

real

real
real

int

real
real
real
real
real
real

hover tip speed
blade flap frequency
blade weight

structural design gross weight (for lift offset)
design ultimate flight load factor at SDGW (for lift offset)

maximum takeoff weight
Shaft

radius

blade mean chord

blade taper ratio

coaxial separation h/D (for lift offset)
structural design gross weight (for lift offset)
design ultimate flight load factor at SDGW (for lift offset)

Fold
blade weight
Spinner
spinner diameter (for Wspin)
Support structure
maximum takeoff weight
radius
Rotor/fan duct
duct area
Tail rotor
radius
PSDIlimit*R_mr/Vtip (for tail rotor)
Aucxiliary thrust
number of blades
radius
blade mean chord
hover tip speed
propeller speed (rpm)
aux thrust Tdesign
aux power Pdesign

215

216

Chapter 52

Structure: Wing

Variable Type Description Default
+ Wing

title c*100 + title

notes c*1000 + notes

kWing int wing number
+ Geometry

wingload real + wing loading W/S = fuWp/S

fDGW real + fraction DGW fy (for wing loading) 1.0

area real + area S

span real + span b

chord real + chord ¢

AspectRatio real + aspect ratio AR

wing parameters: for each wing; input two quantities, other two derived (SizeParam input)
SET_wing = input two of (‘area’ or wing loading "WL'), ("span’ or 'ratio’ or 'radius’ or 'width’ or "hub’ or 'panel’),
"chord’, aspect ratio 'aspect’
SET_wing = 'ratio+XX' to calculate span from span of another wing
SET_wing = "radius+XX' to calculate span from rotor radius
SET_wing = 'width+XX’ to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
SET_wing = "hub+XX’ to calculate span from rotor hub position (tiltrotor)
SET_wing = 'panel+XX’ to calculate span from wing panel widths
if wing sized from wing loading (SET_wing="WL+xx'), area = fDGW*DGW/wingload

rotor stopped as wing: identified by wing number Rotor%StopAsWing for stoppable rotor
use SET_wing="area+span’, area = blade geometric area, span = 2R, nPanel=1, zero weight
wing aerodynamic loads calculated when FltAircraft%STOP_rotor = stopped as wing

Structure: Wing

nRotorOnWing
RotorOnWing(nrotormax)

fSpan
otherWing
RotorForSpan
RotorOnPanel(npanelmax)
thick
fWidth_box
SET _ac
dSLac

dBLac
dWLac

SET cg
dSLcg
dWlLcg

twist

taper
sweep
dihedral

int
int

real
int
int
int
real
real
int
real
real
real
int
real
real

real

real
real
real

+ 4+ A+ A+ o+

Geometry
rotors

number of rotors mounted on wing

rotor numbers
span calculation

ratio wing span to span of other wing, or to rotor radius

other wing number

rotor number for span (if nRotorOnWing=0)
rotor at wing panel edge

thickness ratio 7,

wing torque box chord wy;, (fraction wing chord)
aerodynamic center offset from pivot, at zero incidence (0 none, 1 fixed, 2 scale with chord)

stationline
buttline
waterline

center of gravity offset from pivot, at zero incidence (0 none, 1 fixed, 2 scale with chord)

stationline
waterline

217

o

.23
0.45

©C O oL Co

RotorOnWing required for SET_wing = 'radius’ or 'width’ or 'hub’; MODEL_wing = tiltrotor; SET_Vdrag = airfoil c49¢
RotorOnPanel required for SET_panel = 'radius’ or 'width’ or 'hub’
SET_wing = "radius’ gets radius from RotorOnWing or RotorForSpan

taper, sweep, thickness used by weight equations

taper and sweep calculated for entire wing from wing panel geometry
fWidth_box used by tiltrotor weight equations
thick and fWidth_box used for fuel in wing

Geometry (for graphics)
twist

Geometry (derived)
taper ratio
sweep (+ aft, deg)
dihedral (+ up, deg)

Structure: Wing

MAC

xAC

zAC
StoppedRotor

loc_wing
nPanel
KIND_ACoffset

SET_panel(npanelmax)
span_panel(npanelmax)
area_panel(npanelmax)
chord_panel(npanelmax)
fspan_panel(npanelmax)
farea_panel(npanelmax)
fchord_panel(npanelmax)

edge_panel(npanelmax)
fedge_panel(npanelmax)
lambdal(npanelmax)
lambdaO(npanelmax)

sweep_panel(npanelmax)
dihedral_panel(npanelmax)
dxAC_panel(npanelmax)
dzAC_panel(npanelmax)

fchord_flap(npanelmax)
fchord_flaperon(npanelmax)
fspan_flap(npanelmax)
fspan_flaperon(npanelmax)
fAC_aileron(npanelmax)

real
real
real
int

mean aerodynamic chord ¢4

mean aerodynamic center chordwise offset from root aero center Z 4 (+ aft)
mean aerodynamic center vertical offset from root aero center zZ4 (+ up)

stopped rotor number (0 not)

+ Geometry

Location +

int
int

c*24
real
real
real
real
real
real

real
real
real
real

real
real
real
real

real
real
real
real
real

+

T T S S S S S e e e e T Tk 2 I T T e

aerodynamic center location
number of wing panels (maximum npanelmax)

aero center offset (1 fixed, 2 fraction root chord, 3 fraction inboard chord)
Wing Panels

panel parameters

span (one side), b,

area (both sides), S,

mean chord, ¢,

ratio span to wing span (one side), b, /(b/2)

ratio area to wing area (both sides), .S, /.S

ratio mean chord to wing chord, ¢, /¢

panel edges
outboard edge, yr
outboard edge, ng = y/(b/2)

inboard chord ratio, ¢y /cret

outboard chord ratio, co /cyet

aerodynamic center locus
sweep A, (deg, + aft)
dihedral 6, (deg, + up)
chordwise offset at panel inboard edge xr, (+ aft)
vertical offset at panel inboard edge zr, (+ up)

control surfaces
flap chord ¢ = cp/c, (fraction panel chord)
flaperon/aileron chord ¢ = ¢f/c, (fraction panel chord)
flap span f, = br /b, (fraction panel span)
flaperon/aileron span f;, = by /b, (fraction panel span)
aileron aerodynamic center lateral position y

218

'span—+taper’

=

cocoeo

0.25
0.25
0.5
0.5
0.7

Structure: Wing 219

SET_wing, wing parameters: for each wing; input two quantities, other two derived
SET_wing = input two of (‘area’ or wing loading "WL’), ("span’ or 'ratio’ or 'radius’ or 'width’ or 'hub’ or 'panel’)
SET_wing = 'chord’, aspect ratio 'aspect’
SET_wing = 'ratio+XX' to calculate span from span of another wing
SET_wing = 'radius+XX’ to calculate span from rotor radius
SET_wing = 'width+XX’ to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
SET_wing = 'hub+XX’ to calculate span from rotor hub position (tiltrotor)
SET_wing = 'panel+XX’ to calculate span from wing panel widths

wing panels: SET_panel not required with only one panel
SET_panel: specify consistent definition of panels (span, edge, area, chord)
panel span: 'span’ or 'bratio’, else free
'span’ = input span_panel, b,
'bratio’ = input ratio to wing span, fspan_panel, b, /(b/2)
panel outboard edge: 'edge’, 'station’, 'width’, 'hub’, or "adjust’ (not used for tip panel)
'edge’ = input edge_panel, yg
'station’ = input fraction wing semispan fedge_panel, ng = y/(b/2)
'radius’ = from rotor radius
'width’ = from rotor radius, fuselage width, and clearance (tiltrotor)
"hub’ = from rotor hub position (tiltrotor)
'adjust’ = from adjacent input panel span or span ratio
panel area or chord: 'area’, 'Sratio’, 'chord’, 'cratio’, 'taper’, else free
'area’ = input area_panel, S,
'Sratio’ = input ratio to wing area, farea_panel, S, /S
"chord’ = input chord_panel, ¢,
‘cratio’ = input ratio to wing chord, fchord_panel, ¢, /¢
"taper’ = from chord ratios lambdal and lambdaO

require consistent definition of panel spans and outboard edges, and consistent with SET_wing
all edges known (from input edge or station, or from adjacent panel span or span ratio)
resulting edges unique and sequential
if wing span calculated from panel widths:
one and only one input panel span or span ratio that not used to define edge
if known span: no input panel span or span ratio that not used to define edge

Structure: Wing

usually best that any free span defined for inboard panel, not outboard panel
panel area or chord:

if one or more taper (and no free), calculate c,of from wing area

if one (and only one) free, calculate .S;, from wing area

fAC_aileron: from panel inboard edge, fraction panel span
for nPanel=1, from centerline and fraction wing semispan

Example input for typical wing geometry
Tiltrotor, one panel:
Size: SET_wing="WL+width’, ! span from radius, fuselage width, and clearance; and wing loading
Rotor: SET_geom="tiltrotor',KIND_TRgeom=1, ! rotor lateral position (BL) from clearance
WingForRotor=1,otherRotor=1/2,
clearance fus=x.,
fclearance fus=1.,
Fuselage: Width_fus=x.,
Wing: wingload=x.,
nRotorOnWing=2,RotorOnWing=1,2,
nPanel=1,
SET_panel='span+taper’,lambdal=1.,lambdaO=1., ! not required with only one panel

Tiltrotor with wing extension, two panels

Size: SET_wing="WL+panel’, | span from wing panel widths; and wing loading

Rotor: SET_geom="tiltrotor’,KIND_TRgeom=1, ! rotor lateral position (BL) from clearance
WingForRotor=1,otherRotor=1/2,PanelForRotor=1,
clearance fus=x.,
fclearance fus=1.,

Fuselage: Width_fus=x.,

Wing: wingload=x.,
nRotorOnWing=2,RotorOnWing=1,2,
nPanel=2,

SET_panel="width+taper’,’span—+taper’, | outboard edge from R, Width_fus, and clearance; from span_panel

RotorOnPanel=1, 0,
span_panel=0., x.,
lambdal=1., 1.,
lambdaO=1., x.,

220

Structure: Wing 221

sweep_panel=x., x.,
dihedral_panel=x., x.,
SET_ext=1,kPanel_ext=2,KIT_ext=0, ! wing extension

General wing, two panels, define chord and span of both

Size: SET_wing='panel+area’, ! span from wing panel widths; and wing area

Rotor: SET_geom='"standard’,

Wing: area=x.,
nPanel=2,
SET_panel='span+-chord’,’span—+free’, ! span from span_panel; chord from inboard chord_panel and area
span_panel=x., x.,
chord_panel=x., x.,

Tiltwing, three panels, four rotors
inboard hub at 1.75R (R + .25R clearance + .50R fuselage)
outboard hub at 3.6R (1.85R between hubs, overlap = .075)
wing tip at 4.2R (0.6R from outboard hub)
Size: SET_wing="WL+radius’, ! calculate span from rotor radius; and wing loading
Rotor: right/right-inboard/left-inboard/left
SET_geom="tiltrotor’,KIND_TRgeom=3, ! rotor lateral position (BL) from wing panel edge
WingForRotor=1,
positionOfRotor=1/1/-1/-1, ! right/left
PanelForRotor=2/1/1/2,
Wing: wingload=x.,
nRotorOnWing=4,RotorOnWing=1,2,3,4,
fSpan=4.2, | fSpan =b/D
nPanel=3,
SET_panel='station+cratio’, 'station+-cratio’, 'station-+free’,
fedge_panel=0.4167, 0.8571, 1., ! inboard-rotor/semispan, outboard-rotor/semispan, 1
fchord_panel=1., 1., 1.,

Structure: Wing 222

Derived geometry

iSET_panel_span(npanelmax) int span (SET_panel_span, bratio, free)
iSET_panel_edge(npanelmax) int edge (SET_panel_edge, station, radius, width, hub, adjust)
iSET_panel_area(npanelmax) int area (SET_panel_area, Sratio, chord, cratio, taper, free)
kind_area int kind area and chord solution (1 tapered panels, 2 free panel)
chordl(npanelmax) real inboard chord cy),
chordO(npanelmax) real outboard chord cp,,
eAC_aileron(npanelmax) real aileron aerodynamic center lateral position y (from centerline, fraction wing semispan)
rArea_flap(npanelmax) real flap area/panel area
rArea_flaperon(npanelmax) real flaperon-aileron area/panel area
Ktef_flap(4,npanelmax) real trailing edge flap factors (L, Xy, My, Dy)
Ktef_flaperon(4,npanelmax) real trailing edge flap factors (Ly, Xy, My, Dy)
rArea_Wflap real total flap area/wing area
rArea_Wflaperon real total flaperon-aileron area/wing area
isConsistent int consistent geometry (0 if calculated geometry not consistent)
+ Wing Extensions
SET ext int + extension (0 for none) 0
kPanel_ext int + wing panel number 2
KIT ext int + wing extension as kit (0 not kit) 0
areaX real extension area Sy (both sides)
spanX real extension span bx (one side)
areal real inboard area (S — Sx)
spanl real inboard span (b — 2bx)
area_flapl real inboard flap area
area_flaperonl real inboard flaperon-aileron area
AspectRatiol real inboard wing aspect ratio
sweepl real inboard wing sweep
taperl real inboard wing taper
+ Wing Kit
KIT wing int + wing as kit (0 not, 1 kit, 2 kit as fixed useful load) 0

fWkit real + kit weight (fraction total wing weight) 0.

Structure: Wing 223

+ Controls (each panel)
+ kind deflection
KIND_flap(npanelmax) int + flap (1 fraction root flap; 2 increment relative root flap; 3 independent) 3
KIND_aileron(npanelmax) int + aileron (1 fraction root aileron; 2 increment relative root aileron; 3 independent) 3
KIND_incid(npanelmax) int + incidence (1 fraction root incidence; 2 increment relative root incidence; 3 independent) 3
KIND_flaperon(npanelmax) int + kind flaperon deflection (1 fraction flap; 2 increment relative flap; 3 independent) 1
+ flap dp
INPUT _flap(npanelmax) int + connection to aircraft controls (0 none, 1 input 7' matrix) 1
T_flap(ncontmax,nstatemax,npanelmax)
real + control matrix
nVflap(npanelmax) int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax) 0
flap(nvelmax,npanelmax) real + values
Vflap(nvelmax,npanelmax) real + speeds (CAS or TAS, knots)
+ flaperon d ¢,
INPUT _flaperon(npanelmax) int + connection to aircraft controls (0 none, 1 input 7" matrix) 1
T_flaperon(ncontmax,nstatemax,npanelmax)
real + control matrix
nVflaperon(npanelmax) int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax) 0
flaperon(nvelmax,npanelmax)
real + values
Vflaperon(nvelmax,npanelmax)
real + speeds (CAS or TAS, knots)
+ aileron d,y
INPUT _aileron(npanelmax) int + connection to aircraft controls (0 none, 1 input 7" matrix) 1
T_aileron(ncontmax,nstatemax,npanelmax)
real + control matrix
nVaileron(npanelmax) int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax) 0
aileron(nvelmax,npanelmax) real + values

Vaileron(nvelmax,npanelmax)

real + speeds (CAS or TAS, knots)

Structure: Wing 224

+ incidence i,,
INPUT _incid(npanelmax) int + connection to aircraft controls (0 none, 1 input 7" matrix) 1
T_incid(ncontmax, nstatemax,npanelmax)
real + control matrix
nVincid(npanelmax) int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax) 0
incid(nvelmax,npanelmax) real + values
Vincid(nvelmax,npanelmax) real + speeds (CAS or TAS, knots)
+ flow control momentum coefficient C,
INPUT_flow(npanelmax) int + connection to aircraft controls (0 none, 1 input 7" matrix) 1
T_flow(ncontmax,nstatemax,npanelmax)
real + control matrix
nVflow(npanelmax) int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax) 0
flow(nvelmax,npanelmax) real + values
Vflow(nvelmax,npanelmax) real + speeds (CAS or TAS, knots)
aircraft controls connected to individual controls of component, ¢ = T'cac + ¢g
for each component control, define matrix 7" (for each control state) and value cg
flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state
+ Trim Target
+ wing lift
nVlift int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
Klift(nvelmax) real + target
Vlift(nvelmax) real + speeds (CAS or TAS, knots)

target definition determined by Aircraft%trim_quant
Klift can be fraction total aircraft lift, lift, or C'y,

Structure: Wing 225

+ Aerodynamics

MODEL_aero int + model (0 none, 1 standard) 1
Idrag real + incidence angle ¢ for helicopter nominal drag (deg; O for not tilt) 0.
AWing AWing standard model
Derived drag

DoQC_wing real wing cruise drag, area (D/q)wing
DoQH_wing real wing helicopter drag, area (D/q)wing
DoQV_wing real wing vertical drag, area (D/q)wing
DoQ wb real wing-body interference drag, area (D/q) b
Swet real total wetted area Syt
prop_flow(3) int propulsion for flow control (group (1 engine, 2 jet), number, model)

+ Weight
Weight Weight weight statement (component)

+ wing group
MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWprim real + wing primary structure 0.
dWext real + wing extension 0.
dWHair real + fairing 0.
dWHit real + fittings 0.
dWflap real + flaps and control surfaces 0.
dWwfold real + wing fold 0.
dWefold real + wing extension fold 0.
WWing WWing NDARC model (except tiltrotor)
WWingTR WWingTR NDARC tiltrotor model

+ tiltrotor model
fWtip real + factor for weight on wing tips 1.
xWtip real + increment for weight on wing tips
Wwing_total real wing weight
Wwing_ext real wing extension weight
Wwing_kit real wing kit weight

Wiip_total real weight on wing tips

Structure: Wing 226

+ Technology Factors
TECH_prim real + wing primary structure (torque box) weight X prim 1.0
TECH ext real + wing extension weight Xext 1.0
TECH_fair real + fairing weight X fair 1.0
TECH_fit real + fittings weight ¢ 1.0
TECH_flap real + flaps and control surfaces weight xqap, 1.0
TECH_wfold real + wing fold weight X014 1.0
TECH _efold real + wing extension fold weight Xefo1q 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

tiltrotor model requires weight on wing tips: both sides; calculated as sum of
rotor group, engine section or nacelle group, air induction group,
engine system, drive system (less drive shaft), rotary wing and conversion flight controls,
hydraulic group, trapped fluids, wing tip extensions
fWtip and xWtip adjust Wtip_total, without changing weight statements
negative increment required when engine and transmission not at tip location with rotor

227

Chapter 53

Structure: AWing

Variable Type Description Default
+ Wing Aerodynamics, Standard Model

AoA _zl real + zero lift angle of attack a,; (deg) 0.

CLmax real + maximum lift coefficient C',max 1.5

SET compress int + compressibility correction (0 none, 1 lift, 2 drag, 3 both) 0
+ lift

SET _lift int + specification (2 2D dC,/da; 3 3D dC, /de) 2

dCLda real + lift curve slope C, = dC,/da (per rad) 5.73

Tind real + lift curve slope non-elliptical loading correction 7 0.25

Eind real + Oswald or span efficiency e (Cp; = (Cf, — CLo)?/(meAR)) 0.8

CL_Dmin real + lift coefficient for minimum induced drag C'p¢ 0.

dCLda3D real incompressible 3D lift curve slope C,, (derived)

fDind real 1/(meAR)

AoA_max real Omax = Crmax/(dCL/dasp) (deg)

Mdiv real + lift-divergence Mach number My;, 0.75
+ control (each wing panel)

eta0(npanelmax) real + lift effectiveness factor ng, g — 119 0.85

etal(npanelmax) real + lift effectiveness factor 1y, 19 — 11|9] 0.43

Kconl(npanelmax) real + calibration or correction factor for lift K, 1.

Kconm(npanelmax) real + calibration or correction factor for moment K, 1.

Kcond(npanelmax) real + calibration or correction factor for drag Ky 1.

Kconx(npanelmax) real + calibration or correction factor for maximum lift i, 1.
+ pitch moment

CMac real + pitch moment coefficient about aerodynamic center Cyq. 0.
+ Wing Drag, Standard Model
+ forward flight drag

SET drag int + specification (1 fixed, D/q; 2 scaled, Cp) 2

DoQ real + area (D/q)o

Structure: AWing

CDh

SET_Vdrag
DoQV
CcbV

cd90

fd90

CDcc

MccO

Mccl

MODEL_drag
AoA_Dmin
Kdrag

Xdrag
MODEL_sep
AoA sep
Ksep

Xsep

Xd

Xs

AoA tran

real

int

real
real
real
real
real
real
real

int

real
real
real
int

real
real
real
real
real

real

+ 4+ + o+

+ 4+ 4+ + + + + + o+

+

coefficient C'pg (based on wing area, D/q = SCp)
vertical drag
specification (1 fixed, D/q; 2 scaled, Cp; 3 airfoil cg90)
area (D/q)v
coefficient, Cpy (based on wing area, D/q = SCp)
airfoil drag coefficient cq9¢ (—90 deg)
airfoil drag coefficient flap effectiveness factor fu90
compressibility drag increment Cp.. at M.,
critical Mach number constant Mo
critical Mach number constant M.

228

0.012

1.4
2.5
0.0011
0.74
0.31

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

drag variation with angle of attack
model (0 none, 1 general, 2 quadratic) ACp = CpoKg|ae|X¢
angle of attack for wing minimum drag o ppyi, (deg)
drag increment K4
drag increment X4
separated flow model (0 none, 1 general, 2 quadratic, 3 cubic) ACp = CpoKs(|ae| — as
angle of attack for separation o, (deg)
drag increment K
drag increment X,
drag exponent X; (derived)
drag exponent X (derived)
transition from forward flight drag to vertical drag
angle of attack for transition «; (deg)

¥

1

NOOo WMo oL

25.

Conventionally the Oswald efficiency e represents the wing parasite drag variation with lift, as well as the induced drag.
If Cp,, varies with angle-of-attack, then e is just the span efficiency factor for the induced power (and C' should be

Zero).

Structure: AWing

SET_wb
DoQ wb
CD_wb

Etail(ntailmax)
Kint_wing(nwingmax)

Kinth_rotor(nrotormax)
Kintp_rotor(nrotormax)
isRotorInt(nrotormax)

MODEL_flow
Lmus(npanelmax)
Lmul(npanelmax)
Lmu2(npanelmax)
Xmu(npanelmax)
Mmu(npanelmax)
Dmu(npanelmax)
Cmu_limit(npanelmax)

int
real
real

real
real

real
real
int

int

real
real
real
real
real
real
real

+ 4+ + +

+ 4+ 4+ 4+ o+

+ 4+ 4+ + + + + + +

229

wing-body interference drag

specification (1 fixed, D/q 2 scaled, Cp) 1
area (D/q)wb 0.
coefficient Cp,,p (based on wing area, D/q = SCp) 0.
Interference
angle of attack change at tail, £ = de/do (rad/rad) 0.
interference factor Kj, at other wings (0. for no interference) 0.
rotor induced power increment (0. for no interference)
helicopter Kinn 0.
propeller Kipp 0.
interference

for tandem wings, typically
Kint_wing(aftwing)=2. for front-on-aft interference
Kint_wing(frontwing)=0. for aft-on-front interference
for biplane wings, typically Kint_wing(otherwing)=0.7
with mutual interference (as for biplane), require trim or other iteration for convergence

Flow Control; ACL, = Cra(Lus/Cy + LuiCy + LM2C3), ACrmax = Xu,C,, ACy = M,,Cy,, ACp = D,,C,,

model (0 none) 0
lift L, 1.4
lift L,y 0.0
lift L0 0.0
maximum lift X, 1.0
moment M), 0.0
drag D, 0.0

flow limit C,ulimit 1.0

230

Chapter 54

Structure: WWing

Variable Type Description Default
+ Wing Group, NDARC Weight Model

MODEL_wing int + model (1 area, 2 parametric, 3 tiltrotor, 4 other) 2

MODEL_other int + model (1 Boeing, 2 GARTEUR, Torenbeek (3 light, 4 transport), Raymer (5 transport, 6 general aviation))

fLift real + lift factor 1.0

bFold real + parametric method: fraction wing span that folds bg,1q (0 to 1) 0.

wfus real + Boeing: maximum fuselage width (fraction wing span)

Vdive real + Boeing or Raymer: design dive speed Ve (knots) 200.

rflaplift real + GARTEUR: ratio maximum lift with and without flaps
+ area method

Uprim real + weight per area Upyin, wing primary structure (Ib/ft* or kg/m?) 5.

Uext real + weight per area Usy, wing extension (Ib/ft? or kg/m?) 3.
+ weight factors (fraction total wing weight)

fWfair real + fairing fair 0.10

fWiit real + fittings fat 0.12

fWiflap real + flaps and control surfaces fq.p 0.10

fWfold real + wing fold fro1q 0.

fWefold real + wing extension fold feo1q (fraction wing extension weight) 0.
+ Custom Weight Model

WtParam_wing(8) real + parameters 0.

Weight Model Input

Swing real wing area (without extension)

Sext real wing extension area

sweep real sweep angle

AR real aspect ratio

taper real taper ratio

thick real thickness-to-chord ratio

Structure: WWing

SDGW
nz

place LG
SET_fold

real
real
int
int

structural design gross weight

design ultimate flight load factor at SDGW
landing gear placement (1 on body, 2 on wing)
folding

231

Chapter 55

232

Structure: WWingTR

Variable Type Description Default
+ Wing Group, NDARC Tiltrotor Weight Model
+ jump takeoff condition
CTs_jump real + rotor maximum blade loading C /o 0.20
n_jump real + load factor 1jymp at SDGW 2.0
Vtip_jump real + rotor tip speed (0. to use hover V4;;,) 750.0
thick TR real + wing airfoil thickness-to-chord ratio 7, 0.23
+ width of wing structural attachments to body
SET_Attach int + definition (0 input wAttach, 1 fraction fuselage width, 2 fraction wing span) 1
fAttach real + fraction width Wattach /Weus 1.
wAttach real + width Wagtacn (ft or m) 0.
fRG_pylon real + pylon radius of gyration 7py10n /R (fraction rotor radius) 0.30
+ wing mode frequencies (per rev, fraction rotor speed)
freq_beam real + beam bending frequency wp 0.5
freq_chord real + chord bending frequency w¢ 0.8
freq_tors real + torsion frequency wr 0.9
SET_refrpm int + reference rotor speed (0 from input Vtip_freq, 1 hover Vi;,, 2 cruise Vi;p) 0
Vtip_freq real + rotor tip speed 600.
MODEL_form int + form factors (1 calculate, 2 input) 1
form_beam real + torque box beam bending F'p 0.6048
form_chord real + torque box chord bending F- 0.4874
form_tors real + torque box torsion Frr 1.6384
form_spar real + spar caps vertical/horizontal bending Fy i 0.5018
eff_spar real + spar structural efficiency e, 0.8
eff_box real + torque box structural efficiency ey, 0.8
+ tapered spar cap correction factors
Ct real + weight correction C; (equivalent stiffness) 0.75
Cj real + weight correction C; (equivalent strength) 0.50
C_m real + strength correction C,, (equivalent stiffness) 1.5

Structure: WWingTR

E spar
E_box
G_box
StrainU_spar
StrainU_box
density_spar
density box

Ufair
Uflap
UextTR

fWHitTR
fWfoldTR
fWefoldTR

WtParam_wingtr(8)

span
chord
fWtb

real
real
real
real
real
real
real

real
real
real

real
real
real

real

real
real
real

material (Ib/in?, in/in, 1b/in®; or N/m?, m/m, kg/m?)
spar modulus E),
torque box modulus Ey,
torque box shear modulus Gy,
spar ultimate strain allowable €;;
torque box ultimate strain allowable e
density spar cap pg,
density torque box py,
weight per area (Ib/ft? or kg/m?)
fairing Uy,
flaps and control surfaces Ugap
wing extension Ugyxy
weight factor
fittings fg¢ (fraction maximum thrust of one rotor)
wing fold ffo1q (fraction total wing weight excluding fold)
wing extension fold fefo1q (fraction wing extension weight)

+ 4+ + A+ +

233

10.E6
10.E6
4.0E6
0.01
0.01
0.06
0.06

jump takeoff: hover Vi;, obtained from RotorOnWing(1) rotor

wing frequencies: reference rotor rotation speed from rotor Vi;, and radius
from RotorOnWing(1) rotor; hover tip speed Vtip_ref(1), cruise Vtip_cruise

thick TR only used for tiltrotor wing weight

SET_Attach: attachment width used for both torsion stiffness and fairing area

+ Custom Weight Model
+ parameters

Weight Model Input
wing span (without extension)
wing chord
width wing torque box (fraction chord)

Structure: WWingTR

wfus

Sflap

Sext

Witip
SDGW
radius
Vtip_hover
Vtip_cruise
Nrotor
Ablade

real
real
real
real
real
real
real
real
int

real

fuselage width

area of control surfaces (flap and flaperon)

wing extension area

weight on wing tips (both sides, except wing tip extension)
structural design gross weight

blade radius

hover tip speed

cruise tip speed

number of rotors (for Tcap)

blade area, one rotor (for Tcap)

234

235

Chapter 56

Structure: Tail

Variable Type Description Default
+ Empennage
title c*100 + title
notes c*1000 + notes
KIND _tail int + kind (1 horizontal tail, 2 vertical tail, 3 V-tail horizontal, 4 V-tail vertical) 1
isHortail int horizontal tail (O vertical)
isVtail int V-tail (0 not)
kTail int tail number
+ Geometry
SET _tail c*16 + specification 'vol+-aspect’
area real + area S
span real + span b
chord real + chord ¢
AspectRatio real + aspect ratio AR
TailVol real + tail volume V'
KIND_TailVol int + tail volume reference (1 wing, 2 rotor) 2
TailVolRef int + wing or rotor number for tail volume 1
otherVtail int + other V-tail number

KIND_tail used for geometry, baseline orientation, tail volume, tail weight model
tail parameters: input two quantities, others calculated
SET_tail = input two of ("area’ or tail volume 'vol'), ('span’ or aspect ratio 'aspect’ or 'chord’)
tail volume reference: tail volume V' = S¢/RA (tailarea * taillength / (diskarea * radius))
or horizontal tail volume V' = S¢/S,,¢,, (tailarea * taillength / (wingarea * wingchord))
or vertical tail volume V' = S¢/S,,b,, (tailarea * taillength / (wingarea * wingspan))
V-tail: modeled as pair of horizontal and vertical tails (identified by otherVtail)
separately sized, aerodynamic loads for each; dihedral calculated, cant set to zero
weight only for second tail, based on V-tail area and aspect ratio

Structure: Tail

taper
sweep
dihedral
thick

iSet_tail_area
iSet_tail_len
Length_tail
rArea_control
Ktef_cont(4)
CBF(3,3)
areaVtail
spanVtail
AspectRatioVtail

loc_tail
cant

fchord cont
fspan_cont

INPUT _cont
T_cont(ncontmax,nstatemax)
nVcont

cont(nvelmax)
Vcont(nvelmax)

INPUT _incid
T_incid(ncontmax,nstatemax)

nVincid
incid(nvelmax)
Vincid(nvelmax)

real
real
real
real

int

int

real
real
real
real
real
real
real

Location
real
real
real

int
real
int
real
real

int

real
int

real
real

+ + + + +

+ 4+ A+ o+

+ + + +

Geometry (for graphics and weights)
taper ratio
sweep (+ aft, deg)
dihedral (deg)
thickness ratio

Derived geometry
area (SET _tail_area, vol)
length (SET _tail_span, AR, chord)
tail length ¢
control surface area/tail area
trailing edge flap factors (L, Xy, My, Dy)
tail axes relative airframe, C
V-tail area Sy
V-tail span by
V-tail aspect ratio

Geometry
aerodynamic center location
cant angle ¢ (deg)
control surface chord ¢y /c (fraction tail chord)
control surface span b /b (fraction tail span)
Controls
elevator ¢, or rudder ¢,
connection to aircraft controls (0 none, 1 input 7" matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
incidence ¢
connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

236

o

12

0.25
1.0

Structure: Tail 237

horizontal tail cant angle: + to left (vertical tail for cant = 90)
vertical tail cant angle: + to right (horizontal tail for cant = 90)

aircraft controls connected to individual controls of component, ¢ = T'cac + ¢
for each component control, define matrix 7" (for each control state) and value ¢,
flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Aerodynamics

MODEL_aero int + model (0 none, 1 standard) 1
ATail ATail standard model
Derived drag

DoQ _tail real tail drag, area (D/q)tail
DoQV _tail real tail vertical drag, area (D/q)vtail
Swet real total wetted area

+ Weight
Weight Weight weight statement (component)

+ tail (empennage group)
MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWhtail real + basic 0.
dWfold real + fold 0.
WTail WTail NDARC model
Whail_total real tail weight

+ Technology Factors
TECH_tail real + tail weight xps OF X4t 1.0
TECH_tfold real + fold weight X014 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

Chapter 57

238

Structure: ATail

Variable Type Description Default
+ Tail Aerodynamics, Standard Model
AoA _zl real + zero lift angle of attack a,; (deg) 0.
CLmax real + maximum lift coefficient C',max 1.
SET compress int + compressibility correction (0 none, 1 lift, 2 drag, 3 both) 0
+ lift
SET _lift int + specification (2 2D dC,/da; 3 3D dC, /de) 2
dCLda real + lift curve slope C, = dC,/da (per rad) 5.73
Tind real + lift curve slope non-elliptical loading correction 7 0.25
Eind real + Oswald efficiency e (Cp; = (CL, — Cpo)?/(meAR)) 0.8
CL_Dmin real + lift coefficient for minimum induced drag C'p¢ 0.
dCLda3D real incompressible 3D lift curve slope C,, (derived)
fDind real 1/(meAR)
AoA_max real Omax = Crmax/(dCL/dasp) (deg)
Mdiv real + lift-divergence Mach number My;, 0.75
+ control
eta0 real + lift effectiveness factor ng, g — 119 0.85
etal real + lift effectiveness factor 1y, 19 — 11|9] 0.43
Kconl real + calibration or correction factor for lift K, 1.
Kconm real + calibration or correction factor for moment K, 1.
Kcond real + calibration or correction factor for drag Ky 1.
Kconx real + calibration or correction factor for maximum lift &, 1.
+ Tail Drag, Standard Model
+ forward flight drag
SET _drag int + specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQ real + area (D/q)o
cDh real + coefficient Cpg (based on tail area, D/q = SCp) 0.011

Structure: ATail

SET_Vdrag
DoQV
CDbV

CDcc

MccO

Mccl

MODEL_drag
AoA_Dmin
Kdrag

Xdrag

Xd

AoA_tran

int

real
real
real
real
real

int

real
real
real
real

real

+ 4+ + + + + +

+ 4+ + + o+

+

vertical drag
specification (1 fixed, D/q; 2 scaled, Cp)
area (D/q)v
coefficient Cpy (based on tail area, D/q = SCp)
compressibility drag increment C'p.. at M.
critical Mach number constant M ..
critical Mach number constant M.,

239

0.0011
0.74
0.31

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

drag variation with angle of attack
model (0 none, 1 general, 2 quadratic) ACp = CpoKglae
angle of attack for tail minimum drag apmin (deg)
drag increment K4
drag increment X
exponent X, (derived)
transition from forward flight drag to vertical drag
angle of attack for transition «; (deg)

|Xa

N o oo

25.

Chapter 58

240

Structure: WTail

Variable Type Description Default
+ Tail, NDARC Weight Model
MODEL_tail int + model (1 horizontal tail, 2 vertical tail, 3 based on KIND _tail) 3
+ horizontal tail
MODEL_Htail int + model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other) 1
MODEL_Hother int + model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))
KIND_Htail int + Torenbeek or Raymer: kind (1 fixed, 2 variable incidence) 1
wfus real + Raymer: fuselage width at horizontal tail wy /by, (fraction span) 0.2
+ vertical tail
MODEL_Vtail int + model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other) 1
MODEL_Vother int + model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))
place_AntiQ int + AFDD: antitorque placement (0 none, 1 on tail boom, 2 on vertical tail) 1
KIND_Vtail int + Torenbeek or Raymer: kind (1 conventional, 2 T-tail) 1
fTtail real + Torenbeek: T-tail factor (Spihnt)/(Svtbut) 0.8
Vdive real + design dive speed Vjiye (knots) 200.
+ area method
Utail real + weight per area Uy ,; (Ib/ft? or kg/m?) 3.
fTfold real + fold weight factor fr,q (fraction total tail weight excluding fold) 0.
weight models can use taper ratio, sweep, and thickness ratio
dive speed: Vi ax = SLS max speed, Vdive = 1.25V .«
+ Custom Weight Model
WtParam_tail(8) real + parameters 0.

Structure: WTail

area_ht
AR_ht

area_vt
AR vt

real
real

real
real

Weight Model Input

Horizontal tail
planform area
aspect ratio

Vertical tail
planform area
aspect ratio

241

Chapter 59

242

Structure: FuelTank

Variable Type Description Default
+ Fuel Tank System

title c*100 + title

notes c*1000 + notes

kTank int tank number
+ Configuration

SET_burn int + fuel quantity stored and used (1 weight, 2 energy) 1
+ fuel weight properties

fuel_density real + fuel weight per volume py,e (Ib/gallon or kg/liter) 6.5

specific_energy real + fuel energy per weight eg,e; (MJ/kg) 42.8

fFuelWing(nwingmax) real + fraction wing torque box filled by fuel tanks 1.0
+ fuel tank sizing

Wfuel_cap real + fuel capacity Weyel—cap (Weight, 1b or kg)

Efuel_cap real + fuel capacity Efyel—cap (energy, MJ)

fFuel_cap real + ratio capacity to mission fuel frucl—cap 1.0

dFuel_cap real + capacity increment dyel—cap 0.

IDENT _battery c*16 + battery identification "

store and use weight: energy calculated from weight; capacity is usable fuel weight
use Wfuel_cap, Waux_cap, fuel_density, specific_energy, fFuelWing; fWtank, fWauxtank, other weight parameters
units of specific_energy = MJ/kg, regardless of Units_energy

store and use energy: fuel weight zero; capacity is usable fuel energy
use Efuel_cap, Eaux_cap, IDENT_battery; eWtank, eWauxtank, energy_density, other weight parameters
units of Efuel_cap, Eaux_cap = MJ, regardless of Units_energy

fuel tank sizing: usable fuel capacity Wfuel_cap (weight) or Efuel_cap (energy)

SET_tank='input’: input Wfuel_cap or Efuel_cap

Structure: FuelTank 243

SET_tank='miss": calculate from mission fuel used

WHfuel_cap or Efuel_cap = max(fFuel_cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))
SET_tank='miss+power’ = calculate from mission fuel used and mission battery discharge power
SET_tank='"f(miss)’ = function of mission fuel used

Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*((maximum mission fuel)+(reserve fuel))

battery identification: energy storage only, match ident of BatteryModel

+ Geometry

loc_tank Location + location
place int + placement (for graphics; 1 internal, 2 sponson, 3 wing, 4 combination) 1
SET_length_wire int + wiring length (1 input, 2 from component positions)
Length_wire real + length £yire
fLength_wire real + factor 1.0
+ Auxiliary Fuel Tank
Mauxtanksize int + number of auxiliary tank sizes (minimum 1, maximum nauxtankmax) 1
Waux_cap(nauxtankmax) real + fuel capacity Waux—cap (Weight) 1000.
Eaux_cap(nauxtankmax) real + fuel capacity Equx—cap (€Energy) 20000.
fWauxtank(nauxtankmax) real + tank weight fauxtank (fraction auxiliary fuel weight) 0.
eWauxtank(nauxtankmax) real + tank weight e,yuxtank (MJ/kg or kWh/kg, Units_energy) 0.
DoQ_auxtank(nauxtankmax) real + drag (D/q)auxtank (each tank)
loc_auxtank(nauxtankmax) Location + location
+ Equipment power
MODEL_Peq int + model (O for none) 0
sfc real + specific fuel consumption 0.
Peq 0 real + power loss FPeqo, constant 0.
Peq_d real + power loss FPeqq, scale with density 0.
Peq_t real + power loss P, scale with temperature 0.
KPeq w real + power loss Peq,,, weight factor 0.
XPeq_w real + power loss Peq.,, weight exponent 0.
Peq_deice real + deice power loss Peq; 0.

Structure: FuelTank

SET_TMS
Prej_design
fPrej_design
SET_FN

eta_dist

DoQ_cool

Vfuel_cap
Wfuel_wing
rWfuel_wing
ncomp_in_tank
kBatteryModel
specific_power
fEfuel act

int
real
real
int

real

real

real
real
real
int

int

real
real

+ 4+ 4+ 4+ + + + + o+

244

specific fuel consumption: weight (Ib/hp-hr or kg/kWh) or energy (hp/hp or kW/kW)

Thermal management system
design rejected power Prej—design (0 none, 1 input, 2 fraction FPe,p)
power (hp or kW)
fraction
net jet force (0 for no force)
Power distribution losses
efficiency at P,
Cooling drag
area (D/q)cool

The design rejected power Prej—design €an be specified as a fraction of the battery power capacity FPeap,,
which is the product of the maximum burst discharge current x,,4 and the actual battery capacity.
The fraction fPref_design accounts for the fact that the design operating current is significantly less than x,,4.

Derived
fuel capacity Viyel—cap (volume)
wing fuel capacity Wiyel—wing
wing fuel capacity (fraction Wfuel_cap)
number of components in fuel tank system
battery identification (BatteryModel, from IDENT_battery)
specific power Tiank = Tmbd€tank/ (3-6(dmax — dmin)) KW/kg)
actual battery capacity factor 1/(dmax — dmin)

Structure: FuelTank

Weight
MODEL_weight

dWtank
dWplumb
WTank
Neng
fuelflow

Whatt
WBMS
WTMS
Wwire
Whbattsys

TECH_tank
TECH_plumb

Weight
int

real
real
WTank
int

real

real
real
real
real
real

real
real

+

+ 4+ + + +

245

Weight
weight statement (component, not including auxiliary tanks)
fuel system (propulsion group)

model (0 input, 1 NDARC, 2 custom) 1
weight increment
tanks and support; battery (including BMS and TMS) 0.
plumbing; power distribution (wiring) 0.
NDARC model

number of main engines
total fuel flow F’ at DGW takeoff conditions (Ib/hr or kg/hr)
battery (W_fuel_tank=TECH_tank*(Wbatt+WBMS+WTMS)+dWtank, W_fuel_plumb=TECH_plumb*Wwire+dWplumb)
battery weight (Efuel_cap/eWtank)
battery management system weight (fBMS*Whbatt)
thermal management system weight
power distribution (wiring) weight (Wwire=Uwire*xwire4fwire¥*Wbatt)
battery system weight (W_fuel_tank + W_fuel_plumb)
Technology Factors
fuel tank weight Y tank 1.0
plumbing weight X p1umb 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

246

Chapter 60

Structure: WTank

Variable Type Description Default
+ Fuel System, NDARC Weight Model
+ weight storage
+ fuel tank
MODEL_tank int + model (1 fraction, 2 parametric, Torenbeek (3 integral, 4 generic), Raymer (5 transport, 6 general aviation)) 2
ntank_int int + number of internal tanks N, 4
fWtank real + tank weight fiani (fraction fuel capacity weight) 0.09
Ktoler real + parametric: ballistic tolerance factor f5; (1.0 to 2.5) 2.5
KIND_crash int + parametric: survivability (1 baseline, 2 UTTAS/AAH level of survivability) 2
Ktank real + Torenbeek (generic): factor K,k 3.2
Xtank real + Torenbeek (generic): exponent X,k 0.727
fint real + Raymer: integral tank capacity (fraction total) 1.0
fprot real + Raymer: protected tank capacity (fraction total) 1.0
+ plumbing
MODEL_plumb int + model (1 fraction, 2 parametric) 2
nplumb int + total number of fuel tanks (internal and auxiliary) for plumbing Npjumb 4
KO_plumb real + weight increment Kopiumb (Ib) 150.
K1_plumb real + weight factor K p1ymp, (Ib) 2.0
fWplumb real + plumbing weight forumpb (fraction total fuel system weight) 0.4

MODEL_tank: fraction method uses fWtank; parametric method uses ntank_int, Ktoler, KIND_crash

K1_plumb is a crashworthiness and survivability factor; typically K1_plumb = 2.
KO_plumb is the sum of weights for auxiliary fuel, in-flight refueling, pressure refueling, inerting system, etc.; typically
KO_plumb = 50 to 250 1b

Structure: WTank

eWtank
energy density
fBMS

Uwire
fwire

WtParam_tank(8)

Wint_t
Cint_t

Neng p
fuelflow_p
Xtank_p

Eint e
xwire_e
Pcap_e

real
real
real

real
real

real

real
real

int
real
real

real
real
real

+ 4+ + + + + +

247
energy storage
tank weight egank (MJ/kg or kWh/kg, Units_energy)
tank volume density pyankx (MJ/liter or kWh/liter, Units_energy)
battery management system (fraction basic tank weight) 0.2
power distribution (wiring) weight
weight per length 0.62
fraction basic tank weight 0.2
specific energy e,nk and energy density pyanx based on usable fuel capacity (consistent with dyax — dmin)
Custom Weight Model
parameters 0.
Weight Model Input

Tanks and support
internal fuel tank capacity (weight)
internal fuel tank capacity (volume)
Plumbing
number of main engines
fuel flow rate
tank weight
Energy tank
internal fuel tank capacity (energy)
wiring length
battery power capacity

Chapter 61

248

Structure: Propulsion

Variable Type Description Default
+ Propulsion Group

title c*100 + title
notes c*1000 + notes

propulsion group is set of components and engine groups, connected by drive system

components (rotors) define power required, engine groups define power available

drive system defines ratio of rotational speeds of components (relative primary rotor speed)
kPropulsion int propulsion group number

Specification
kRotor_prim int primary rotor
rotor_in_group(nrotormax) int rotors in group (0 no, 1 main rotor, 2 other)
nRotor int number of rotors in group
nRotor_main int number of main rotors
kEngine_prim int primary engine group
engine_in_group(nengmax) int engine groups in propulsion group (0 no, 1 only produce power, 2 can consume power)
nEngineGroup int number of engine groups
firstEngineGroup int first engine group
canConsumePower int engine group generator or compressor, can consume shaft power (0 only produce power)
+ Drive system

nGear int + number of states (maximum ngearmax) 1
STATE_gear_var int + drive system state for variable speed transmisson (0 for none) 0

Structure: Propulsion

MODEL_Xloss
fPloss_xmsn
Ploss_windage

Pacc_0
Pacc_d
Pacc_n
Pacc_deice
fPacc_ECU
fPacc_IRfan

SET_length
Length_ds
fLength_ds

Plimit_ds
fPlimit_ds
SET_Plimit_size

int
real
real

real
real
real
real
real
real

int
real
real

real
real
int

+ 4+ + + o+t

+ + + +

249

drive system branches: one primary rotor per propulsion group (specify V4;,), others dependent (specify gear ratio)

specify primary engine group only if no rotors in propulsion group

drive system state: identifies gear ratio set for multiple speed transmissions
state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n

variable speed transmission: for drive system state STATE_gear_var, gear ratio factor fge,, (control) included
when evaluate rotational speed of dependent rotors and engines

Transmission losses
model (1 fraction component power required; 2 with function drive shaft limit)
gear box 10ss x5, (fraction total component power required)
power loss due to windage Pyindage
Accessory losses
power loss Ppeco, constant
power loss P,.cq, scale with density
power loss P,ccn, , scale with density and rpm
deice power 10ss Pycc;
ECU (etc.) power loss £, (fraction component+transmission power)
IRS fan loss ¢1rsap (fraction total engine power)

Geometry
drive shaft length (1 input, 2 from hub positions, 3 scale with radius)
length {pg
factor

0.04

e o

0.9

SET_length: input (use Length_ds) or calculated (from fLength_ds)

Drive system torque limit
drive system power limit Ppgiimit
drive system power limit factor
drive system limit when sizing transmission (0 not applied to power available)

Structure: Propulsion

nrate_ds
rating_ds(nratemax)
frating_ds(nratemax)

Vdrive_hover
Vdrive_cruise
rating_ds_hover
rating_ds_conv
rating_ds_cruise

Qlimit_ds
arating_ds(nratemax)
xrating_ds(nratemax)
krate_ds_hover
krate_ds_conv
krate_ds_cruise

int
c*12
real

real
real
c*12
c*12
c*12

real
c*12
real
int
int
int

+ 4+ ++ o+

Drive system ratings
number of ratings (maximum nratemax)
drive system rating designation
torque limit factor
schedule
maximum speed for hover and helicopter mode (CAS or TAS, knots)
minimum speed for cruise (CAS or TAS, knots)
rating for hover and helicopter mode (V' < Viyive—hover)
rating for conversion mode (Vgrive—hover < V' < Vidrive—cruise)
rating for cruise mode (V' > Virive—cruise)
Derived drive system limit
drive system torque limit (Ppgiimit at primary rotor reference speed)
drive system rating designation
torque limit factor
rating number for hover and helicopter mode
rating number for conversion mode
rating number for cruise mode

drive system torque limits: SET_limit_ds = input (use Plimit_xx) or calculate (from fPlimit_xx)
SET_limit_ds='input’: Plimit_ds input
SET_limit_ds='"ratio’: from takeoff power, fPlimit_ds> _(Neng Peng)
SET_limit_ds='Pav’: from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Qrer/Qprim) Y (Neng Pav)
SET_limit_ds="Preq’: from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Qref/Qprim) Y (Neng Preq)
engine shaft: options for SET_limit_ds#'input’
SET_limit_es=0: Plimit_es
SET _limit_es=1: fPlimit_es X (engine group Feng or Py, or P4, depending on SET _limit_ds)
SET_“mit_ES:QI fPIimit_es X PDSlimit (PengEG/PengPG)

drive system power limit: corresponds to power of all engines of propulsion group (all engine groups)
can be used for trim (trim_quant='Q margin’)
used for drive system weight, tail rotor weight, transmission losses
limits propulsion group P, (if FItState%SET_Plimit=on)

250

Structure: Propulsion

INPUT_DN
T_DN(ncontmax,nstatemax)
nVDN

DN(nvelmax)

VDN (nvelmax)

int
real
int
real
real

+ 4+ + + 4+ + o+

251

engine shaft power limit: corresponds to all engines of engine group (nEngine X Peng)
limits engine group P,,, (if FltState%SET_Plimit=on)
rotor shaft power limit: corresponds to one rotor
all limits
can be used for max effort in flight state (max_quant="Q margin’)
can be used for max gross weight in flight condition or mission (SET_GW="maxQ’ or 'maxPQ’)
always check and print whether exceed torque limit

the engine model gives the power available, accounting for installation losses and mechanical limits
then the power available is reduced by the factor FltState%fPower
next torque limits are applied (unless FltState%SET_Plimit=off), first engine shaft limit and then drive system limit

SET_Plimit_size=0: drive system limits are not applied for transmission sizing conditions and mission segments
(DESIGN_xmsn); otherwise use FltState%SET_Plimit

drive system ratings: blank to use engine ratings of first engine group
limit at flight state is 72 fg Piimit, Where r is the rotor speed ratio and x is the rating factor frating_ds
if nrate_ds< 1, drive system rating not used
schedule used if FltAircraft%rating_ds='speed’

Control

rotational speed increment AN, primary rotor or primary engine (rpm)
connection to aircraft controls (0 none, 1 input 7" matrix) 0
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax) 0
values

speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, ¢ = T'cac + ¢
for each component control, define matrix 7" (for each control state) and value ¢,
flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

Structure: Propulsion 252

+ Weight
Weight Weight weight statement (component, not including EngineGroup)

+ drive system (propulsion group)
MODEL_DS int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWgb real + gear box 0.
dWrs real + rotor shaft 0.
dWds real + drive shaft 0.
dWrb real + rotor brake 0.
dWel real + clutch 0.
dWegd real + gas drive 0.
WnDrive WnDrive NDARC model
STATE_gear_wt int + drive system state for weight 1
kEngineGroup_wt(2) int + EngineGroup for weight (input, output) 1
Witip real weight on wing tip
Woegbrs real weight gear box and rotor shaft

+ Technology Factors
TECH_gb real + gear box weight x4 1.0
TECH rs real + rotor shaft weight x5 1.0
TECH_ds real + drive shaft weight x4 1.0
TECH_rb real + rotor brake weight x4 1.0
TECH_dl real + clutch weight x; 1.0
TECH_gd real + gas drive weight X 4q 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

kEngineGroup_wt: always identify engine group for drive system input
if propulsion group has rotors, primary rotor speed used for drive system output
if propulsion group does not have rotors, must identify engine group for drive system output

drive system weight = gear box (including rotor shaft) + drive shaft + rotor brake + clutch + gas drive
tiltrotor wing weight model requires weight on wing tip (drive system, without rotor shaft)

Chapter 62

253

Structure: WDrive

Variable Type Description Default
+ Drive System, NDARC Weight Model
+ gear box (including rotor shafts)
MODEL_gbrs int + model (1 AFDD83,2 AFDDO00, 3 other) 1
MODEL_other int + model (1 Boeing, 2 Boeing (alternate), GARTEUR (3 helicopter, 4 tiltrotor), 5 Tishchenko, 6 generic)
fShaft real + rotor shaft weight f. (fraction gear box and rotor shaft weight) 0.13
ngearbox int + AFDDB83: number of gear boxes Ny, 7
fTorque real + AFDD83: second (main or tail) rotor rated torque f (fraction total drive system rated torque) 0.03
nstage int + Boeing: number of stages in main-rotor drive 4
+ generic gearbox
Kgbrs real + factor K gprs 0.
XgbP real + exponent X g, p 0.
Xgbe real + exponent X gp¢ 0.
Xgbr real + exponent X gy, 0.
KIND_other int + other: separate tail rotor drive weight increment (0 none) 0
Ktrgb real + tail rotor drive weight increment factor K43 1.0
fPower_tr real + tail rotor power (fraction total drive system rated power) 0.15
gear_tr real + tail rotor gear ratio 5.0
+ drive shaft and rotor brake
MODEL_dsrb int + model (0 none, 1 AFDD82) 1
ndriveshaft int + AFDDS82: number of intermediate drive shafts V45 (excluding rotor shafts) 6
fPower real + AFDD82: second (main or tail) rotor rated power fp (fraction total drive system rated power) 0.15

fPower = fTorque*(otherrotor RPM)/(mainrotor RPM)
typically fTorque=fPower=0.6 for twin main rotors (tandem, coaxial, tiltrotor)
for single main rotor and tail rotor, fTorque = 0.03, fPower = 0.15 (0.18 for 2-bladed teeter)

typically fShaft = 0.13 (data range 0.06 to 0.20)

Structure: WDrive

WtParam_drive(8)

PDSlimit_gb
RPMrotor_gb
RPMeng_gb
Nrotor_gb

PDSlimit_ds
RPMrotor_ds
xhub_ds

Whblade_rb
Vtip_rb

real

real
real
real
int

real
real
real

real
real

+
+

Custom Weight Model
parameters

Weight Model Input
Gear box and rotor shaft
drive system rated power
rotor speed (rpm)
engine speed (rpm)
number of main rotors
Drive shaft
drive system rated power
rotor speed (rpm)
length of drive shaft between rotors
Rotor brake
blade weight (all blades, all rotors)
main rotor tip speed

254

255

Chapter 63

Structure: EngineGroup

Variable Type Description Default
+ Engine Group
title c*100 + title
notes c*1000 + notes
kEngineGroup int engine group number
+ Description
MODEL_engine c*¥32 + engine model 'RPTEM’
IDENT _engine c*16 + engine identification '"Engine’
IDENT _system2 c*16 + second system identification "
nEngine int + number of engines Nopg 1
nEngine_main int + number of main engines 1
Peng real + engine power FPeg (SLS static at takeoff rating, 0. for PO_ref(rating_to)) 0.
rating_to c*12 + takeoff power rating "MCP’
rating_idle c*12 + idle power rating "MCP’
kFuelTank int + fuel tank system number 1
kRotor react int + rotor number for reaction drive
fuselage flow int + fuselage flow control (0 not) 1
wing_flow(nwingmax) int + wing flow control (0 not) 1
+ Propulsion Group
kPropulsion int + group number 1
KIND_xmsn int + drive system branch (1 primary, 0 dependent)
INPUT _gear int + gear ratio input (1 from Nspec, 2 gear) 1
gear(ngearmax) real + engine gear ratio r = Qgpec/Qprim (ratio rpm to rpm of primary rotor in propulsion group) 1.0
Derived
iMODEL_engine int engine model (MODEL_engine_xxx)
KIND_engine int engine model (MODEL_engine_ RPTEM, table, recip, comp, motor, simpleeng, simplemot)
canConsumePower int can consume shaft power (0 only produce power), generator or compressor

canProducePower int can produce shaft power (0 only consume power)

Structure: EngineGroup

isConvertReact
isConvertJet
kModel_eng
kModel_sys2
kBattery

nrate
rating(nratemax)
krateC

krate to
WOneEng
Nref
comp_flow

int
int
int
int
int
int
c*12
int
int
real
real
int

convertible engine, reaction drive (0 not)
convertible engine, turbojet/fan (0 not)
identification (EngineModel or EngineTable or RecipModel or CompressorModel or MotorModel, from IDENT _engine)
identification (EngineModel, from IDENT_system?2)
battery model, from kFuelTank (0 for none)
number of ratings

rating designations (lowercase)

MCP rating number

takeoff power rating number

weight one engine Wiy eng

reference engine speed (at drive state #1)

flow control, any component (0 none)

MODEL_engine: engine model
'RPTEM’, 'shaft’ = turboshaft engine (RPTEM); IDENT_engine — EngineModel; fuel is weight
'table’ = turboshaft engine (table); IDENT_engine — EngineTable; fuel is weight
'recip’ = reciprocating engine; IDENT_engine — RecipModel; fuel is weight
'comp’ = compressor; IDENT_engine — CompressorModel; not use fuel
'comp-react’ = compressor for reaction drive; IDENT_engine — CompressorModel; not use fuel
"‘comp+flow’ = compressor for flow control; IDENT_engine — CompressorModel; not use fuel
"'motor’ = electric motor; IDENT_engine — MotorModel; fuel is energy
'gen’ = electric generator; IDENT_engine — MotorModel; fuel is energy (generated, not burned)
"'motor+gen’ = motor + generator (mode B > 0 for motor); IDENT_engine — MotorModel; fuel is energy
'simple’ = simple engine; no model identified; fuel is weight or energy

MODEL_engine: convertible engine; only with turboshaft
"+react’ = reaction drive (mode B = 1); IDENT _system2 — EngineModel
"+jet’, '+fan’ = turbojet/turbofan (mode B = 1); IDENT _system2 — EngineModel

engine identification: match ident of EngineModel or EngineTable or RecipModel or CompressorModel or MotorModel
second system identification: match ident of EngineModel; not use weight
number of main engines: for fuel tank weight

for fixed engine: use P, = 0. and no size task (or engine power not sized)
takeoff power rating: for engine scaling, aircraft power loading, fuel tank weight
FltState%rating can be set to 'idle’ (rating_idle) or "takeoff’ (rating_to)

256

Structure: EngineGroup

SET power
fPsize

SET Pother
fEsize(nengmax)

PO(nratemax)
SPO(nratemax)
Pmech(nratemax)
sfc0C

Fg0C

Nspec
Nbase(nratemax)

257

fuel tank system identified for burn must store and use weight (turboshaft, reciprocating)
or energy (motor, may have BatteryModel)
fuel tank system identified for generation must store and use energy (may have BatteryModel)

drive system branch: primary engine group only designated if no rotors for propulsion group

INPUT _gear: calculate gear from Nspec and Vtip_ref of primary rotor of propulsion group, or specify gear ratio

variable speed transmission: for drive system state STATE_gear_var, gear ratio factor fgear (control) included
when evaluate rotational speed of engine

+ Sizing
int + specification (0 sized, 1 fixed) 0
real + sized power ratio f;, 1.0
int + sized power from other engine group (0 not) 0
real + fraction other engine group power fg 0.
SET_power: if SIZE_perf="engine’, used to distribute propulsion group power required among engine groups
Peng = fnPsized/Neng for n-th engine group, Psized = PPG - Zﬁxed NengPeng
must size at least first engine group, so SET_power and fPsize values not used for first group
fPsize calculated for first engine group, must be > 0.
not used (SET_power=1) if group consumes power (compressor or generator, which sized if SIZE_engine="engine’)
FltState%SET_Preq specifies distribution of power required for flight state
SET_Pother: size power from engine group of other propulsion groups, max(Peng, f£ Peng—other)
Engine model performance parameters (one engine)
real power (Fy)
real specific power (S Fp)
real mechanical limit of power (Ppech OF Ppeak)
real specific fuel consumption at MCP (sfcy¢)
real gross jet thrust at MCP (Fyoc = SFycrinoc)
real specification engine speed (Ngpec)

real base rotational speed ((Por/Ppeakr) Nspec)

Structure: EngineGroup

Nmax

Nopt0C
mdot0C
wdot0C
sfcO(nratemax)

rsfc0C_conv
rFg0C_conv
rwdotOC_conv

SET _limit_es
Plimit_es
fPlimit_es

Qlimit_es

real
real
real
real
real

real
real
real

int
real
real

real

+ 4+ + +

maximum motor speed (Nyax)
optimum engine speed at MCP (Noptoc)
mass flow at MCP (1hoc = Poc/SPoc)
fuel flow at MCP (wo¢c = sfcoc Poc)
specific fuel consumption (sfcg)
Engine model performance parameters (one engine), ratio converted to base
specific fuel consumption at MCP
gross jet thrust at MCP, jet/fan only
fuel flow at MCP

reciprocating: only PO, Pmech, Nspec used, and sfcO
motor or generator: only PO, Pmech, Nspec, Nmax, Nbase used

Drive system torque limit
engine shaft (O input, 1 fraction power, 2 fraction drive system limit)
engine shaft power limit Pggiimit
engine shaft power limit factor
Derived engine shaft limit
engine shaft torque limit (Pgsimit at engine reference speed)

drive system torque limits: SET_limit_ds = input (use Plimit_es) or calculated (from fPlimit_es)
SET_limit_ds="input’: Plimit_ds input
SET_limit_ds='"ratio": from takeoff power, fPlimit_ds> (Neng Peng)

SET_limit_ds="Pav": from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)

fPlimit_ds(Qrer/Qprim) > (Neng Pav)

SET_limit_ds="Preq’: from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)

fPlimit_ds(Qrer/Qprim) Y (Neng Preq)
engine shaft: options for SET_limit_ds#'input’
SET _limit_es=0: Plimit_es

SET _limit_es=1: fPlimit_es x (engine group FPeyg or Py, or P4, depending on SET _limit_ds)

SET limit_es=2: fPlimit_es X PDSlimit (PcngEG/PcngPG)

258

1.0

Structure: EngineGroup

Kffd
eta d

fPloss_inlet
fPloss_ps
fPloss_exh

fMF_auxair
eta_auxair

fPloss_exh IRon

fMF_auxair_IRon
eta_auxair_IRon

Kffd_conv
fPloss_exh_conv

SET_TMS
Prej_design
fPrej_design

SET_FN
SET_Daux

real
real

real
real
real
real
real

real

real
real

real
real
int

real

real

int
int

I T S T S S e T T S S S ST S S S S

259

engine shaft power limit: corresponds to all engines of engine group (nEngine X Peng)
limits engine group P,,, (if FltState%SET_Plimit=on)
can be used for max effort in flight state (max_quant='Q margin’)
can be used for max gross weight in flight condition or mission (SET_GW="maxQ’ or 'maxPQ’)
always check and print whether exceed torque limit

Installation
deterioration factor on engine fuel flow or performance Kyq 1.05
engine inlet efficiency 7y (fraction, for ;) 0.98
power losses (fraction power available, Plogss/P,)
engine inlet loss /;;, 0.
inlet particle separator loss ¢;,, 0.
engine exhaust loss /., (IRS off) 0.015
auxiliary air momentum drag (IRS off)
mass flow fpux (fraction engine mass flow) 0.007
ram recovery efficiency naux 0.75

IR suppressor
power losses (IRS on)

engine exhaust loss £, 0.030
auxiliary air momentum drag (IRS on)
mass flow f,ux (fraction engine mass flow) 0.01
ram recovery efficiency 7,,x 0.75
Convertible
deterioration factor on engine fuel flow or performance Kyq 1.05
power losses (fraction power available, Poss/Py)
engine exhaust loss £, 0.015
Thermal management system
design rejected power Pej_design for one engine (0 none, 1 input, 2 fraction FPey,g) 0
power (hp or kW) 0.
fraction 0.02
Model
net jet force (0 for no force) 1

auxiliary air momentum drag (0 for no drag)

Structure: EngineGroup

Pmax
rMRP
SET burn
sfc

eta

SW

loc_engine
direction
SET_geom
RotorForEngine
SET_Swet
Swet

kSwet
XSwet_fus
XSwet_wing
XSwet_rotor
refWing
refRotor
Snac
Swet_nac

real
real
int

real
real
real

Location
c*16
int
int
int
real
real
real
real
real
int
int
real
real

+ 4+ 4+ + + + +

+ 4+ + + + + A+ A+

installation power losses = inlet + particle separator + exhaust (including IRS)
IR suppressor state specified by STATE_IRS in operating condition
motor or generator: only use Kffd, thermal management system

Simple engine

design maximum power at takeoff rating Ppax
power ratio (MRP/MCP)

fuel quantity used (1 weight, 2 energy)
specific fuel consumption (weight)

efficiency (energy)

specific weight S

fuel tank system identified must be consistent with SET_burn
simple engine has two ratings: MCP and MRP

Geometry
location

nominal orientation ('+x', '=x', '+y', '=y’', '+z', '-z')
position (0 standard, 1 tiltrotor, 2 rotor)
rotor number
nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, Wgg; 3 scaled, Wgg and Wy,.,; 4 scaled, lengths)
area Syet (per engine)
factor, k = Swet/(w/Neng)2/3 (Units_Dscale) or k = Syet/ (¢
exponent, Xyyg
exponent, Xy ing
exponent, X, otor
wing number (for wing chord)
rotor number (for rotor radius)
nacelle/cowling area Sy,
total wetted area

ch'mg RXrotor

260

1.2

0.4

0.95

0.5

o
PR, NOO 6 O vur oX

Structure: EngineGroup

iDirection
axis_incid
axis_yaw
isFixed
CBF(3,3)
ef0(3)
ef(3)

INPUT _amp
T_amp(ncontmax,nstatemax)
nVamp

amp(nvelmax)
Vamp(nvelmax)

INPUT_mode
T_mode(ncontmax,nstatemax)
nVmode

mode(nvelmax)
Vmode(nvelmax)

int
int
int
int
real
real
real

int
real
int
real
real

int
real
int
real
real

+ 4+ + A+ +

SET_geom: calculation override part of location input
SET_geom=tiltrotor: calculate lateral position (BL) from RotorForEngine
SET_geom=rotor: (SL,BL,WL or XoL,YoL,ZoL) is relative loc_rotor(RotorForEngine)
SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)
units of kSwet are ft2/1b%/% or m?/kg?/?
w = Wgg (engine system) or Wgs + Wyprs /NEq (engine system and drive system)
nacelle wetted area used for nacelle drag, and for cowling weight
engine group nacelle must be consistent with rotor pylon

Derived geometry
nominal orientation (1,-1,2,-2,3,-3)
axis incidence (£123)
axis yaw (£123)
orientation (1 fixed)
engine axes relative airframe, C 2% (fixed)
engine direction, e g
engine direction, ey (fixed)

Controls

amplitude A (fixed engine group power)
connection to aircraft controls (0 none, 1 input 7" matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

mode B
connection to aircraft controls (0 none, 1 input 7" matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

261

Structure: EngineGroup

INPUT _incid int
T_incid(ncontmax,nstatemax)

real
nVincid int
incid(nvelmax) real
Vincid(nvelmax) real
INPUT _yaw int
T_yaw(ncontmax,nstatemax) real
nVyaw int
yaw(nvelmax) real
Vyaw(nvelmax) real
INPUT _fgear int
T_fgear(ncontmax,nstatemax)

real
nVfgear int
fgear(nvelmax) real
Vfgear(nvelmax) real
MODEL_drag int
Idrag real

DEngSys DEngSys

+ +

+ 4+ ++

+ 4+ + +

incidence ¢ (tilt)

connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

yaw ¢

connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

gear ratio factor fycar (variable speed transmission only)

connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, ¢ = T'c4c + ¢g

for each component control, define matrix 7" (for each control state) and value ¢y

flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value

initial values if control is connected to trim variable; otherwise fixed for flight state

+ Nacelle Drag

+
+

model (0 none, 1 standard)
incidence angle 7 for helicopter nominal drag (deg; O for not tilt)
standard model

262

Structure: EngineGroup

DoQC_nac
DoQH_ nac
DoQV _nac

Weight

MODEL_weight
dWEng

MODEL _sys
MODEL _nac
MODEL _air

dWexh
dWacc
dWsupt
dWcowl
dWpylon
dWair
WEngSys
Weng_total
WES

Witip

real
real
real

+

Weight

int
real

int
int
int

real
real
real
real
real
real
WEngSys
real

real

real

+ 4+ 4+ A+ +

Derived drag
nacelle cruise drag, area (D/q)nac
nacelle helicopter drag, area (D/q)nac
nacelle vertical drag, area (D/q)nac

component drag contributions must be consistent
pylon is rotor support, and nacelle is engine support
tiltrotor with tilting engines use pylon drag (and no nacelle drag),
since pylon connected to rotor shaft axes
tiltrotor with nontilting engines, use nacelle drag as well

Weight
weight statement (component, including engine weight)
engine weight
model (0 input,]| RPTEM or NASA, 2 custom)
weight increment (all engines)

engine system (except engine), engine section or nacelle group, air induction group

model (0 input, 1 NDARC, 2 custom)
engine system
engine section or nacelle
air induction
weight increment
exhaust
accessories
engine support
engine cowling
pylon support
air induction
NDARC model
engine weight
engine system weight Wgg (engine, exhaust, accessories)
weight on wing tip

263

[ay

coocooe0o

Structure: EngineGroup

WESC
WTMS

TECH_eng
TECH_cowl
TECH_pylon
TECH_supt
TECH_air
TECH_exh
TECH acc

real
real

real
real
real
real
real
real
real

+ 4+ + + + + o+

motor electronic speed control weight

motor thermal management system weight
Technology Factors

engine weight Xeng

engine cowling weight X cowl

pylon structure weight X pyion

engine support structure weight Xsupt

air induction system weight X airind

exhaust system weight Xexh

engine accessories weight X acc

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory (WES used for rotor pylon wetted area, engine nacelle wetted
area, rotor moving weight)

nacelle weight = support + cowl + pylon

engine weight parameters in EngineModel

tiltrotor wing weight model requires weight on wing tip:
engine section or nacelle group, air induction group, engine system

264

1.0
1.0
1.0
1.0
1.0
1.0
1.0

Chapter 64

265

Structure: DEngSys

Variable Type Description Default
+ Nacelle Drag, Standard Model
+ forward flight drag
SET drag int + specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQ real + area (D/q)o
CcD real + coefficient Cpg (based on wetted area, D/q = SCp)
+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQV real + area (D/q)y
CbhVv real + coefficient Cpy (based on wetted area, D/q = SCp)
+ transition from forward flight drag to vertical drag
MODEL_Deng int + model (0 none) 1
Xdrag real + exponent X, 2.0
SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated
+ Cooling Drag
DoQ cool real + area (D/q)cool 0.

Chapter 65

266

Structure: WEngSys

Variable Type Description Default
+ Engine Section or Nacelle Group, NDARC Weight Model
MODEL_nacelle int + model (1 parametric, 2 scale with power, 3 Boeing, 4 Raymer (transport)) 1
fWhpylon real + pylon support structure weight fi, 1on (fraction maximum takeoff weight) 0.
+ nacelle group weight, W vs Py
Knac real + factor K.
Xnac real + exponent X, ¢
n_clf real + Boeing: crash load factor 20.
fWidth_nac real + Raymer: nacelle width (fraction nacelle length) 0.2
+ Air Induction Group, NDARC Weight Model
MODEL _airind int + model (1 parametric, 2 area) 1
fWair real + air induction weight f,iinq (fraction engine support plus air induction weight) 03
Uair real + weight per nacelle area Usj,ing (Ib/ft? or kg/m?)
+ Engine System, NDARC Model
+ exhaust system weight, per engine, including IR suppressor; Wexn vs Poc
Kwt0_exh real + Koexn 0.
Kwtl_exh real + Kiexn 0.002
+ engine accessories
MODEL_lub int + lubrication system weight (1 in engine weight, 2 in accessory weight) 1
typically fWair = 0.3 (data range 0.1 to 0.6)
engine support and pylon support weights must be consistent with rotor support structure weight
+ Custom Weight Model
WtParam_engsys(8) real + parameters 0.

Structure: WEngSys 267

Weight Model Input
Exhaust

Neng x int number of engines

Peng_x real installed takeoff power
Accessory

Neng_a int number of engines

Weng_a real engine weight (all engines)
Engine support

Neng_s int number of engines

Weng_s real engine weight (all engines)
Cowling

Snac_c real nacelle wetted area

Neng_c int number of engines

Peng c real installed takeoff power

Weng_c real engine weight (all engines)
Pylon support

WMTO_p real maximum takeoff weight
Air induction

Neng i int number of engines

Weng_i real engine weight (all engines)

Snac i real nacelle wetted area

268

Chapter 66

Structure: JetGroup

Variable Type Description Default
+ Jet Group
title c*100 + title
notes c*1000 + notes
kJetGroup int jet group number
+ Description
MODEL _jet c*¥32 + jet model 'RPJEM’
IDENT_jet c*16 + jet identification "Jet’
IDENT _system2 c*16 + second system identification "
nJet int + number of jets Njet 1
Tjet real + jet thrust T}e¢ (SLS static at takeoff rating, 0. for TO_ref(rating_to)) 0.
rating_to c*12 + takeoff thrust rating "MCT’
rating_idle c*12 + idle thrust rating 'MCT’
kFuelTank int + fuel tank system number 1
kRotor_react int + rotor number for reaction drive
fuselage flow int + fuselage flow control (0 not)
wing_flow(nwingmax) int + wing flow control (0 not) 1
Derived
iMODEL _jet int jet model (MODEL _jet_xxx)
KIND_jet int jet model (MODEL _jet RPJEM, simple)
isConvertReact int convertible engine (0 not)
kModel_jet int identification (JetModel, from IDENT _jet)
kModel_sys2 int identification (JetModel, from IDENT_system?2)
nrate int number of ratings
rating(nratemax) c*12 rating designations (lowercase)
krateC int MCT rating number
krate_to int takeoff thrust rating number

WOnelJet real weight one jet Wope jet

Structure: JetGroup

comp_flow

TO(nratemax)
STO(nratemax)
Tmech(nratemax)
sfc0C

mdot0C

wdot0C

Edot0C

rsfcOC_conv
rwdot0C_conv

Kffd
eta d

fTloss_inlet
fTloss_exh

int

real
real
real
real
real
real
real

real
real

real
real

real
real

+ 4+ + + + +

flow control, any component (0 none)

269

MODEL_jet: jet model
'RPJEM’, 'jet’, 'fan’ = turbojet/turbofan engine (RPJEM); IDENT_jet — JetModel; fuel is weight
'react’ = reaction drive (RPJEM)); IDENT_jet — JetModel; fuel is weight
'flow’ = flow control (RPJEM)); IDENT_jet — JetModel; fuel is weight
'simple’ = simple force generator; no model identified; fuel is weight or energy
MODEL_jet: convertible engine; only with turbojet/turbofan
"+react’ = reaction drive (mode B = 1); IDENT _system2 — JetModel

jet identification: match ident of JetModel
second system identification: match ident of JetModel; not use weight

for fixed jet: use Tje; = 0. and no size task (or jet thrust not sized)

Jet model performance parameters (one jet)
thrust (1)
specific thrust (STp)
mechanical limit of thrust (T ,ech)
specific fuel consumption at MCT (sfcgc)
mass flow at MCT (rhge = Toc/SToc)
fuel flow at MCT (woc = sfecoeToo)
energy flow at MCT (woc = sfcocToce)
Jet model performance parameters (one jet), ratio converted to base
specific fuel consumption at MCT
fuel flow at MCT

Installation
deterioration factor on jet fuel flow Ky rq
jet inlet efficiency 7y (fraction, for ;)
power losses (fraction thrust available, Tioss/T5)
engine inlet loss /;;,
engine exhaust loss /., (IRS off)

1.05
0.98

0.01

Structure: JetGroup

fMF_auxair
eta_auxair

fTloss_exh_IRon

fMF_auxair_IRon
eta_auxair_IRon

Kffd_conv

fTloss_exh_conv

Tmax

SET burn
sfc

SwW
KIND_simple

loc_jet
direction

real
real

real

real
real

real

real

real
int
real
real
int

+ 4+ 4+ + o+

+ 4+ + + + +

+

Location +

c*16

+

auxiliary air momentum drag (IRS off)
mass flow f,,x (fraction engine mass flow)
ram recovery efficiency 7,ux
IR suppressor
power losses (IRS on)
engine exhaust loss £,
auxiliary air momentum drag (IRS on)
mass flow foux (fraction engine mass flow)
ram recovery efficiency 7,ux
Convertible
deterioration factor on jet fuel flow K g4
power losses (fraction thrust available, Tjoss/T0)
engine exhaust loss /.,

270

0.007

0.75

0.03

0.01
0.75

1.05

0.01

installation power losses = inlet + exhaust (including IRS)
IR suppressor state specified by STATE_IRS_jet in operating condition

Simple force generator
design maximum thrust T}, .«
fuel quantity used (1 weight, 2 energy)
thrust specific fuel consumption (weight or energy)
specific weight S
weight group (1 engine system, 2 propeller/fan installation, 3 tail rotor)

fuel tank system identified must be consistent with SET_burn

Geometry
location
nominal orientation ('4+x’, '=x', '+y', '=y', '"+z', '=z')

Structure: JetGroup

SET_Swet int + nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, Wgg; 4 scaled, lengths)
Swet real + area Syet (per jet)
kSwet real + factor, k = Syet/(Wrs/Niet)?® (Units_Dscale) or k = Syet /(f® cv)v(f:fg“g RXrotor)
XSwet_fus real + exponent, Xyyg
XSwet_wing real + exponent, Xy ing
XSwet_rotor real + exponent, X, otor
refWing int + wing number (for wing chord)
refRotor int + rotor number (for rotor radius)
Snac real nacelle/cowling area Sy,
Swet_nac real total wetted area
SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)
units of kSwet are ft?/Ib%/3 or m?/kg?/3
nacelle wetted area used for nacelle drag, and for cowling weight
Derived geometry
iDirection int nominal orientation (1,-1,2,-2,3,-3)
axis_incid int axis incidence (+123)
axis_yaw int axis yaw (£123)
isFixed int orientation (1 fixed)
CBF(3,3) real jet relative airframe, CBF (fixed)
ef0(3) real jet direction, e ro
ef(3) real jet direction, e (fixed)
+ Controls
+ amplitude A
INPUT amp int + connection to aircraft controls (0 none, 1 input 7" matrix)
T_amp(ncontmax,nstatemax) real + control matrix
nVamp int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
amp(nvelmax) real + values
Vamp(nvelmax) real + speeds (CAS or TAS, knots)

271

[AN

Structure: JetGroup

INPUT_mode int
T_mode(ncontmax,nstatemax) real
nVmode int
mode(nvelmax) real
Vmode(nvelmax) real
INPUT _incid int
T_incid(ncontmax,nstatemax)

real
nVincid int
incid(nvelmax) real
Vincid(nvelmax) real
INPUT _yaw int
T_yaw(ncontmax,nstatemax) real
nVyaw int
yaw(nvelmax) real
Vyaw(nvelmax) real
MODEL_drag int
Idrag real

DJetSys DJetSys

+ 4+ 4+ + + + + +

+ 4+ 4+ + + + + + + o+

mode B

connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

incidence 17 (tilt)

connection to aircraft controls (0 none, 1 input 7' matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

yaw ¢

connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, ¢ = T'cac + ¢g

for each component control, define matrix 7" (for each control state) and value cg

flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value

initial values if control is connected to trim variable; otherwise fixed for flight state

+ Nacelle Drag

+
+

model (0 none, 1 standard)
incidence angle 7 for helicopter nominal drag (deg; O for not tilt)
standard model

Structure: JetGroup

DoQC_nac
DoQH_ nac
DoQV _nac

Weight

MODEL_weight
dWlet

MODEL _sys
MODEL_nac
MODEL _air

dWexh
dWacc
dWsupt
dWcowl
dWpylon
dWair

W JetSys
Wijet_total
WES

TECH_jet
TECH_jetcowl
TECH_jetpylon
TECH_jetsupt
TECH_jetair
TECH_jetexh
TECH_jetacc

real
real
real

+

Weight

int
real

int
int
int

real
real
real
real
real
real
W JetSys
real
real

R T T S S S S S R T

real
real
real
real
real
real
real

+ 4+ + + + + o+

Derived drag
nacelle cruise drag, area (D/q)nac
nacelle helicopter drag, area (D/q)nac
nacelle vertical drag, area (D/q)nac

Weight
weight statement (component, including jet weight)
jet weight
model (0 input, 1 RPJEM, 2 custom)
weight increment (all jets)
engine system (except jet), engine section or nacelle group, air induction group
model (0 input, 1 NDARC, 2 custom)
engine system
engine section or nacelle
air induction
weight increment
exhaust
accessories
engine support
engine cowling
pylon support
air induction
NDARC model
jet weight
engine system weight Wgg (engine, exhaust, accessories)
Technology Factors
jet weight Xjet
engine cowling weight X cowl
pylon structure weight X pyion
engine support structure weight Xsupt
air induction system weight X airind
exhaust system weight Xexh
engine accessories weight X acc

273

L

A o

1.0
1.0
1.0
1.0
1.0
1.0
1.0

Structure: JetGroup 274

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory (WES used for nacelle wetted area)
nacelle weight = support + cowl + pylon
jet weight parameters in JetModel

Chapter 67

275

Structure: DJetSys

Variable Type Description Default
+ Nacelle Drag, Standard Model
+ forward flight drag
SET drag int + specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQ real + area (D/q)o
CcD real + coefficient Cpg (based on wetted area, D/q = SCp)
+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQV real + area (D/q)y
CbhVv real + coefficient Cpy (based on wetted area, D/q = SCp)
+ transition from forward flight drag to vertical drag
MODEL_Djet int + model (0 none) 1
Xdrag real + exponent X, 2.0
SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated
+ Cooling Drag
DoQ cool real + area (D/q)cool 0.

Chapter 68

276

Structure: W JetSys

Variable Type Description Default
+ Engine Section or Nacelle Group, NDARC Weight Model
MODEL_nacelle int + model (1 parametric, 2 scale with thrust, 3 Boeing, 4 Raymer (transport)) 1
fWpylon real + pylon support structure weight fi, 1on (fraction maximum takeoff weight) 0.
+ nacelle group weight, W vs Ty
Knac real + factor K,
Xnac real + exponent X ,¢
n_clf real + Boeing: crash load factor 20.
fWidth_nac real + Raymer: nacelle width (fraction nacelle length) 0.2
+ Air Induction Group, NDARC Weight Model
MODEL_airind int + model (1 parametric, 2 area) 1
fWair real + air induction weight f,irina (fraction engine support plus air induction weight) 0.3
Uair real + weight per nacelle area Usi;inq (Ib/ft? or kg/m?)
+ Engine System, NDARC Model
+ exhaust system weight, per jet; Wexn vs Toco
Kwt0_exh real + Koexn 0.
Kwtl _exh real + Kiexn 0.002
+ engine accessories
MODEL_lub int + lubrication system weight (1 in jet weight, 2 in accessory weight) 1
+ Custom Weight Model
WtParam_jetsys(8) real + parameters 0.
Weight Model Input
Exhaust
Njet x int number of engines
Tjet x real installed takeoff thrust
Accessory
Njet_a int number of engines
Wijet_a real jet weight (all jets)

Structure: WletSys

Njet_s
Wiet_s

Snac ¢
Njet_c
Tjet_c
Wiet ¢

WMTO_p
Njet_i

Wijet_i
Snac i

int
real

real
int

real
real

real
int

real
real

Engine support

number of engines

jet weight (all jets)
Cowling

nacelle wetted area

number of engines

installed takeoff thrust

jet weight (all jets)
Pylon support

maximum takeoff weight
Air induction

number of engines

jet weight (all jets)

nacelle wetted area

277

Chapter 69

278

Structure: ChargeGroup

Variable Type Description Default

+ Charge Group
title c*100 + title
notes c*1000 + notes
kChargeGroup int charge group number

+ Description
MODEL_charge c*¥32 + charger model Y
IDENT _charge c*16 + charger identification "Charge’
nCharge int + number of chargers Nepyg 1
Pchrg real + charger power Py g (SLS static at takeoff rating, 0. for PO_ref(rating_to)) 0.
rating_to c*12 + takeoff power rating 'MCP’
rating_idle c*12 + idle power rating "MCP’
kFuelTank int + fuel tank system number (generated) 1
kFuelTank_burn int + fuel tank system number (burned)

Derived

iMODEL _charge int charger model (MODEL_charge_xxx)
KIND_charge int charger model (MODEL _charge_fuelcell, solarcell, simple)
kModel_chrg int identification (FuelCellModel or SolarCellModel, from IDENT _charge)
kBattery int battery model, from kFuelTank (0 for none)
nrate int number of ratings
rating(nratemax) c*12 rating designations (lowercase)
krateC int MCP rating number
krate_to int takeoff power rating number
WOneChrg real weight one charger Woye chrg

MODEL_charge: charger model

"fuel” = fuel cell; IDENT _charge — FuelCellModel; fuel generated is energy; fuel burned is weight (kFuelTank_burn)

'solar’ = solar cell; IDENT_charge — SolarCellModel; fuel generated is energy
'simple’” = simple charger; no model identified; fuel generated is energy

Structure: ChargeGroup

PO(nratemax)
sfc0C

mdot0C
wdot0C
solararea

Kffd
eta d

fMF_auxair
eta_auxair

Pmax
eta_chrg
SW

loc_charger
direction
SET_Swet
Swet

kSwet
XSwet_fus
XSwet_wing

real
real
real
real
real

real
real

real
real

real
real
real

Location
c*16

int

real

real

real

real

+ 4+ A+ A+ 4+

+ 4+ + o+ A+ A+ 4+

charger identification: match ident of FuelCellModel or SolarCellModel
for fixed charger: use P,y = 0. and no size task (or charger power not sized)

fuel tank system identified for generation must store and use energy (may have BatteryModel)
fuel tank system identified for burn must store and use weight

279

Charger model performance parameters (one charger)

power (FPy)

specific fuel consumption at MCP (sfcy¢)
mass flow at MCP (1hg¢)

fuel flow at MCP (woc = sfcoo Poc)
solar cell total area

Installation

deterioration factor on charger fuel flow or performance Kyq
charger inlet efficiency 7, (fraction, for d,s)
auxiliary air momentum drag

mass flow f,.x (fraction charger mass flow)

ram recovery efficiency 7,,x

Simple charger

design maximum power P ,x
efficiency 7chrg
specific weight S (per charger)

Geometry

location
nominal orientation ('+x’, '—x', '+y’, '=y’, '+z', '-z')
nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, Wgg; 4 scaled, lengths)
area Syt (per charger)
factor, k = Syet/(Wes/Nenrg)?/® (Units_Dscale) or k = Syet/ (fqufs“s cif;gg RXrotor)
exponent, Xy
exponent, Xying

1.05
0.98

0.007
0.75

Structure: ChargeGroup

XSwet_rotor
refWing
refRotor
Snac
Swet_nac

iDirection
axis_incid
axis_yaw
isFixed
CBF(3,3)
ef0(3)
ef(3)

INPUT _amp
T_amp(ncontmax,nstatemax)
nVamp

amp(nvelmax)
Vamp(nvelmax)

INPUT _mode
T_mode(ncontmax,nstatemax)
nVmode

mode(nvelmax)
Vmode(nvelmax)

real + exponent, X otor

int + wing number (for wing chord)
int + rotor number (for rotor radius)
real nacelle/cowling area Si,¢

real total wetted area

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)
units of kSwet are ft*/1b%/3 or m?/kg?/3
nacelle wetted area used for nacelle drag

Derived geometry

int nominal orientation (1,-1,2,-2,3,-3)
int axis incidence (+123)
int axis yaw (£123)
int orientation (1 fixed)
real charger relative airframe, C2¥" (fixed)
real charger direction, e g
real charger direction, ey (fixed)
+ Controls
+ amplitude A
int + connection to aircraft controls (0 none, 1 input 7' matrix)
real + control matrix
int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
real + values
real + speeds (CAS or TAS, knots)
+ mode B
int + connection to aircraft controls (0 none, 1 input 7' matrix)
real + control matrix
int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
real + values
real + speeds (CAS or TAS, knots)

280

Structure: ChargeGroup

INPUT _incid
T_incid(ncontmax,nstatemax)

nVincid
incid(nvelmax)
Vincid(nvelmax)

INPUT _yaw
T_yaw(ncontmax,nstatemax)
nVyaw

yaw(nvelmax)
Vyaw(nvelmax)

MODEL_drag
Idrag
DChrgSys

DoQC _nac
DoQH_nac
DoQV_nac

+ incidence ¢ (tilt)
int + connection to aircraft controls (0 none, 1 input 7" matrix)
real + control matrix
int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
real + values
real + speeds (CAS or TAS, knots)
+ yaw v
int + connection to aircraft controls (0 none, 1 input 7" matrix)
real + control matrix
int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
real + values
real + speeds (CAS or TAS, knots)
aircraft controls connected to individual controls of component, ¢ = T'cac + ¢g
for each component control, define matrix 7" (for each control state) and value ¢,
flight state specifies control state, or that control state obtained from conversion schedule
¢y can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state
+ Nacelle Drag
int + model (0 none, 1 standard)
real + incidence angle ¢ for helicopter nominal drag (deg; O for not tilt)
DChrgSys standard model
Derived drag
real nacelle cruise drag, area (D/q)nac
real nacelle helicopter drag, area (D/q)nac

real nacelle vertical drag, area (D/q)nac

281

Structure: ChargeGroup

Weight

MODEL_weight
dWChrg
W(ChrgSys
Wchrg_total
WES

TECH_chrg

+
Weight

+
int +
real +
W(ChrgSys
real
real

+
real +

282

Weight
weight statement (component, including charger weight)
charger weight

model (0 input, 1 NDARC, 2 custom) 1
weight increment (all chargers) 0.
NDARC model

charge group weight
engine system weight Wggs (engine, exhaust, accessories)
Technology Factors
charger weight Xchrg 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory = charge group weight (WES used for nacelle wetted area)
charger weight parameters in FuelCellModel or SolarCellModel

Chapter 70

283

Structure: DChrgSys

Variable Type Description Default
+ Nacelle Drag, Standard Model
+ forward flight drag
SET drag int + specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQ real + area (D/q)o
CcD real + coefficient Cpg (based on wetted area, D/q = SCp)
+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQV real + area (D/q)y
CbhVv real + coefficient Cpy (based on wetted area, D/q = SCp)
+ transition from forward flight drag to vertical drag
MODEL_Dchrg int + model (0 none) 1
Xdrag real + exponent X, 2.0
SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated
+ Cooling Drag
DoQ cool real + area (D/q)cool 0.

Chapter 71

284

Structure: WChrgSys

Variable Type Description Default
+ Custom Weight Model
WtParam_chrgsys(8) real + parameters 0.

Chapter 72

285

Structure: EngineModel

Variable Type Description Default
+ Engine Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification "Engine’
engine identification: used by IDENT_engine of EngineGroup input (eg 'T800")
installed: power available P,,, power required P,.,, gross jet thrust Fz, net jet thrust Fly
uninstalled: power available P, power required P, gross jet thrust F;, net jet thrust F,
“0” = SLS static; “C” = MCP
mass flow = power / specific power (SP = P/rn); fuel flow = specific fuel consumption * power (sfc = w/P)
engine model can be used by more than one engine group, so all parameters fixed
as model for turbojet or reaction drive of convertible engine:
only use sfcOC_ref, sfcOC_ref, and parameters for optimum speed, thrust available, and performance
PO_ref and SPO_ref required, but not used; weight, ratings, technology, and scaling variables not used
kEngineModel int engine model number
+ Weight
MODEL_weight int + RPTEM model (0 fixed, 1 W(P),2 SW(rn)) 1
Weng real + engine weight (fixed) 0.
+ engine weight, Weyg vs Pope model (W = Koeng + Kieng P + KgcngPXe"g)
Kwt0_eng real + constant Koeng 0.
Kwtl _eng real + constant Kyeng 0.25
Kwt2_eng real + constant Koepg 0.
Xwt_eng real + exponent X¢pg 0.

Structure: EngineModel

SW_ref
SW_limit

WtParam_engine(8)

nrate
rating(nratemax)
krateC

PO_ref(nratemax)
SPO_ref(nratemax)
Pmech_ref(nratemax)
sfcOC_ref

SFOC_ref

Nspec_ref
Nopt0C_ref

rPO(nratemax)
rSPO(nratemax)
rPmech(nratemax)

real
real

real

int
c*12
int

real
real
real
real
real
real
real

real
real
real

+ 4+ +

+ +

+ 4+ + +

+ 4+ + + + + + +

engine weight, SW = Py, / Weng Vs moc model
specific weight reference SWier (11 = 7i4ech)
specific weight limit SWiip, (1h = 174im)

Custom Weight Model
parameters

Parameters
Engine Ratings
number of ratings (maximum nratemax)
rating designations
MCP rating number
Reference
power (Fy)
specific power (S Fp)
mechanical limit of power (Ppech)
specific fuel consumption at MCP (sfcy¢)
specific jet thrust (Fyoc = SFycrioc)
specification turbine speed (Ngpec)
optimum turbine speed at MCP (Np00)
Derived ratios
power (Por/FPoc)
specific power (SPor/SPoc)
mechanical limit of power (Pechr/Poc)

286

"MCP’

2000.
150.
2500.
0.45
10.
20000.
20000.

Reference Engine Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant
engine rating: match rating designation in FltState; typically designated as
'ERP’ = Emergency Rated Power (OEI power)
"CRP’ = Contigency Rated Power (2.5 min)
'MRP’ = Maximum Rated Power (5 or 10 min)
'IRP’ = Intermediate Rated Power (30 min)
'MCP’ = Maximum Continuous Power (normal operations)
engine model being used may not contain data for all ratings

Structure: EngineModel

SPOC_tech
sfc0C_tech
Nspec_tech

FIX size
MF_limit
SPOC_limit
sfcOC_limit
KNspec

POC_limit
Ksp0
Kspl

KsfcO
Ksfcl

KNs1
KNs2

KNo

KswO
Kswl

real
real
real

int

real
real
real
real

real
real
real

real
real

real
real

real

real
real

+ 4+ + o+

Technology
specific power at MCP S Pyecp, (0. for SPO_ref(MCP))
specific fuel consumption at MCP sfcyecp, (0. for sfcOC_ref)
specification turbine speed Niecp, (0. for Nspec_ref)
Scaling
engine size (0 scaled, 1 fixed)
mass flow at limit .S P and sfc (11im)
specific power limit S Py,
specific fuel consumption limit sfcy;,
specification turbine speed variation (K ys32)
Derived scaling
specific power available (SLS static, MCP, Ngpec), SPoc Vs 1ioc
power limit
K sp0
K spl
specific fuel consumption (SLS static, MCP, Nypec), sfcoc vs hoc
K fcO
K sfel
specification turbine speed, Ngpec VS 11oc
Knsi
Knso
optimum turbine speed, Nopi0c
K No
engine weight, SW = P/Wepng Vs 1hoc
K sw0
K swl

287

o

30.
200.
0.34

S P and sfc functions are defined by values SPOC_tech, sfcOC_tech, 140, =P0OC_ref/SPOC_tech
and limits SPOC_limit, sfcOC_limit, MF_limit

defaults SPOC_tech=SP0_ref(MCP), sfcOC_tech=sfcOC_ref, Nspec_tech=Nspec_ref

require Myech < Mym (otherwise get S Pyc = SPOC_tech and sfcoc = sfcOC_tech)

for no variation of S P, sfc, and SW with scale, use FIX_size=1 or MF_limit=0.
engine weight scaling determined by MODEL_weight

Structure: EngineModel

MODEL_OptN

KNoptA
KNoptB

KNopt0
KNoptl
KNopt2
KNopt3
XNopt

XNeta

MODEL_Pav
MODEL_perf
INPUT _param
Param

nspeed
rNeng(nspeedmax)

kEngineParamN(nspeedmax)

IDENT_param(nspeedmax)

iEngineParamN(nspeedmax)

int

real
real

real
real
real
real
real

real

int
int
int

+ 4+ 4+ A+ +

+ 4+ +

+

Optimum Power Turbine Speed
model (0 none, 1 linear, 2 cubic)
linear, Nopt /Nepec V8 Py /Py

constant K noptA
constant K nopt B
cubic, Nopt/Noproc Vs Py/Poc
constant K nopto
constant K nopt1
constant K nopt2
constant K nopt3
exponent X nop
power turbine efficiency function, 7 (V') /1 (Ngpec)
exponent Xy,

engine power and performance variation with power turbine speed determined by Nop¢ and Xy,
used only for INPUT_param = single set; no variation if MODEL_OptN=0

Power Available and Power Required Parameters
power available (0 constant, 1 referred, 2 general)
performance at power required (1 referred, 2 general)
parameter input form (1 single set; 2 function of engine speed)

EngineParamN single set (input moved to Param for use)

int
real
int
c*16
int

+

+
+
+
+

function of engine speed
number of engine speeds (maximum nspeedmax)
engine speed ratio, N/Ngpec
identification of parameter sets (0 to use IDENT_param)
identification of parameter sets
identification of parameter sets (derived from kEngineParamN or IDENT_param)

constant or referred model does not use parameters, does not include effect of turbine speed
general model uses parameters for effects of temperature and ram, can include effect of turbine speed

function of engine speed (INPUT_param=2): parameters interpolated, rNeng unique and sequential
identification of parameter sets: IDENT_param match EngineParamN%ident

288

©

cococo

2.0

Structure: EngineModel

INPUT _lin

Nspa(nratemax)

KspaO(nengkmax,nratemax)
Kspal(nengkmax,nratemax)
Tspak(nengkmax,nratemax)

XspaO(nengkmax,nratemax)
Xspal(nengkmax,nratemax)
Tspax(nengkmax,nratemax)

(

(
Kspab(nengkmax,nratemax)

(

(

Xspab(nengkmax,nratemax)

Nmfa(nratemax)

Kmfa0(nengkmax,nratemax)
Kmfa 1(nengkmax,nratemax)
Tmfak(nengkmax,nratemax)
Kmfab(nengkmax,nratemax)
XmfaO(nengkmax,nratemax)
Xmfal(nengkmax,nratemax)
Tmfax(nengkmax,nratemax)
Xmfab(nengkmax,nratemax)

int

int

real
real
real
real
real
real
real
real

int

real
real
real
real
real
real
real
real

R T T S T S S S S . I

simple model: constant (MODEL_Pav=0) or constant referred (MODEL_Pav=1) power available
constant specific fuel consumption (MODEL_perf=1, sfcOC_tech=0., MF_limit=0.)
no jet force (EngineGroup%SET_FN=0), no auxiliary air momentum drag (EngineGroup%SET_Daux=0)

Power Available

input form (1 coefficients K, K1; 2 values 6, K3)

referred specific power available, SP, /S P, vs temperature
number of regions (maximum nengkmax-1)
Kspao (piecewise linear Ky, = Ko + K16)
Kspa1 (piecewise linear Ky, = Ko + K16)
Oy
Kspa—b
Xspao (piecewise linear Xp, = Xo + X10)
Xspa1 (piecewise linear X, = Xo + X16)
Oy
Xspa—b

referred mass flow at power available, 1, /i Vs temperature
number of regions (maximum nengkmax-1)
Ky fa0 (piecewise linear Ky, pq = Ko + K16)
Ko pq1 (piecewise linear K, 7, = Ko + K10)
Oy
Kmfa—b
Xmfao (piecewise linear X, rq = Xo + X10)
Xmrfa1 (piecewise linear X, r, = Xo + X16)
Oy
mea—b

piecewise linear function:
input form = coefficients K, K7 (N sets) or values 6, Kj (N+1 values)
form not input is calculated (N-1 8, K or N K, K1)
input Ky, K1: adjacent K different, resulting 6, unique and sequential
input 6, K3: 6, unique and sequential

289

35

-2.5

Structure: EngineModel

Kffq0
Kffql
Kffq2
Kffq3
Xffq

Kmfq0
Kmfql
Kmfq2
Kmfq3
Xmfq

Kfgq0
Kfgql
Kfgq2
Kfga3
Xfgq

Kfgr0
Kfgrl
Kfgr2
Kfgr3

real
real
real
real
real

real
real
real
real
real

real
real
real
real
real

real
real
real
real

R T T T S S S S A T e A I

Ngpec = specification power turbine speed

SP,,m, = referred specific power and mass flow available, at Ngpec

S Py, g = referred specific power and mass flow available, at Ngpe., SLS static

N = power turbine speed, N, = optimum power turbine speed

7 = power turbine efficiency; assume gas power available Pg = P, /1, insensitive to IV, so 7:(N) give P,(N)

290

Performance at Power Required
referred fuel flow at power required, wW,eq/Woc Vs Py/Poc

constant K¢ rqo
constant K fq1
constant Ky 42
constant K43
exponent Xy 4

referred mass flow at power required, 1,4 /moc Vs Py/Poc

constant K, 40
constant K, rq1
constant K, r42
constant K, 743
exponent X, 74

gross jet thrust at power required, Fy,/ Fyoc Vs Py/Poc

constant K 7440
constant K g1
constant Ky gqo
constant K43
exponent X g,

installed net jet thrust at power required, F/F), (installed thrust loss) vs £,

constant K rg.o
constant K g1
constant Ky g.o
constant Kg.3

w e Lo

Chapter 73

291

Structure: EngineParamN

Variable Type Description Default
+ Engine Model Parameters
title c*100 + title
notes c*1000 + notes
ident c*16 + identification
kEngineParamN int engine param number
identification: used by IDENT_param of EngineModel
+ Power Available
nrate int + number of ratings 1
INPUT _lin int + input form (1 coefficients Ky, K1; 2 values 6, K}) 1
+ referred specific power available, SP, /S P, vs temperature
Nspa(nratemax) int + number of regions (maximum nengkmax-1) 0
KspaO(nengkmax,nratemax) real + K pao (piecewise linear K, = Ko + K10) 35
Kspal(nengkmax,nratemax) real + Kspa1 (piecewise linear Ky, = Ko + K16) -2.5
Tspak(nengkmax,nratemax) real + 0,
Kspab(nengkmax,nratemax) real + Kypa—b
XspaO(nengkmax,nratemax) real + Xspao (piecewise linear X, = Xo + X10) -2
Xspal(nengkmax,nratemax) real + Xspa1 (piecewise linear Xp, = Xo + X10) 0.
Tspax(nengkmax,nratemax) real + 0y
Xspab(nengkmax,nratemax) real + Xspa—b
+ referred mass flow at power available, 1, /1hg Vs temperature
Nmfa(nratemax) int + number of regions (maximum nengkmax-1) 0
KmfaO(nengkmax,nratemax) real + Ky fq0 (piecewise linear Ky, rq = Ko + K16) 3
Kmfal(nengkmax,nratemax) real + Ky a1 (piecewise linear Ky, pq = Ko + K16) -3
Tmfak(nengkmax,nratemax) real + 0y
Kmfab(nengkmax,nratemax) real + Kofa—b
Xmfa0(nengkmax,nratemax) real + Xomrao (piecewise linear X, 7, = Xo + X10) 1.

Structure: EngineParamN

Xmfal(nengkmax,nratemax)
Tmfax(nengkmax,nratemax)
Xmfab(nengkmax,nratemax)

Kffq0
Kffql
Kffg2
Kffq3
Xffq

Kmfq0
Kmfql
Kmfq2
Kmfq3
Xmfq

Kfgq0
Kfgql
Kfgq2
Kfgq3
Xfeq

Kfgr0
Kfgrl
Kfgr2
Kfgr3

qa(41)
fgq(41)
mfq(41)

real
real
real

real
real
real
real
real

real
real
real
real
real

real
real
real
real
real

real
real
real
real

real
real
real

+ 4+ 4+ A+ A+

X a1 (piecewise linear X, 1o = Xo + X16)
Oy
meafb

292

number of ratings consistent with EngineModel

Performance at Power Required

referred fuel flow at power required, Wyeq/Woc Vs Py/Poc
constant K¢ ¢40
constant Ky 741
constant Ky g0
constant Ky g3
exponent X4

referred mass flow at power required, 7tyeq/moc Vs Py /Poc
constant K, t40
constant K, 41
constant K, r42
constant K, r43
exponent X, rq

gross jet thrust at power required, Fy/Fyoc vs Py/Poc
constant K 7440
constant K741
constant K rgq0
constant K rg43
exponent X g,

installed net jet thrust at power required, F¢/ F (installed thrust loss) vs e,
constant K rg,q
constant K 7g,.1
constant K rg,o
constant Ky g,3

Derived

referred power P,/ Pyc (0. to 4.0)

gross jet thrust F, / Fyoc

referred mass flow 1i,.¢q /1o

w e Lo

293

Chapter 74

Structure: EngineTable

Variable Type Description Default
+ Engine Table

title c*100 + title

notes c*1000 + notes

ident c*¥16 + identification "Engine’

engine identification: used by IDENT _engine of EngineGroup input
engine table can be used by more than one engine group, so all parameters fixed

engine not scaled (SET_power, fPsize not used); eta_d not used

fixed engine weight dWEng (MODEL_weight=0)

no mass flow value, so no momentum drag of auxillary air flow (fMF_auxair, eta_auxair not used)
obtain Peng from table; mechanical limits included in power available data

tables intended for installed engine, including losses (fPloss_inlet, fPloss_ps, fPloss_exh not used)
fuel flow multiplied by Kffd, accounting for deterioration of engine efficiency

kEngineTable int engine table number

+ Engine ratings

nrate int + number of ratings (maximum nratemax) 1
rating(nratemax) c*12 + rating designations 'MCP’
krateC int MCP rating number

Nspec real + Specification turbine speed (Ngpec)

Structure: EngineTable

Kp
Kw
Kf

nalt

nspeed
alt(nengtmax)
speed(nengtmax)

real
real
real

int
int
real
real

Tp(nengtmax,nengtmax,nratemax)

real

Tw(nengtmax,nengtmax,nratemax)

real

Tf(nengtmax,nengtmax,nratemax)

real

+ 4+ 4+ + 4+ + + + o+

+

+

Technology factors
power available
fuel flow
net thrust
Table
number of altitudes (maximum nengtmax)
number of speeds (maximum nengtmax)
altitude h
speed V' (TAS)

power available P, (h,V, R)
fuel flow w(h, V, R)

net thrust Fiy(h, V, R)

294

1.0
1.0
1.0

295

Chapter 75

Structure: RecipModel

Variable Type Description Default
+ Reciprocating Engine Model
title c*100 + title
notes c*1000 + notes
ident c*¥16 + identification "Engine’
engine identification: used by IDENT _engine of EngineGroup input
installed: power available P,,, power required P,..,, gross jet thrust F;, net jet thrust Iy
uninstalled: power available P, power required P, gross jet thrust F,, net jet thrust I,
fuel flow = specific fuel consumption * power (sfc = w/P); mass flow = fuel flow / fuel-air ratio
reciprocating engine model can be used by more than one engine group, so all parameters fixed
kRecipModel int reciprocating engine model number
+ Weight
MODEL_weight int + model (0 fixed, 1 W(P)) 1
Weng real + engine weight (fixed) 0.
+ engine weight, Weye vs Pepg model (W = Koeng + Kieng P + ngngPXe“g)
Kwt0_eng real + constant Koeng 0.
Kwtl_eng real + constant Kqgng 0.25
Kwt2_eng real + constant Koeng 0.
Xwt_eng real + exponent Xepe 0.
+ Custom Weight Model
WtParam_recip(8) real + parameters 0.

Structure: RecipModel

nrate
rating(nratemax)
krateC

PO_ref(nratemax)
sfcO_ref(nratemax)
FO_ref(nratemax)
SFO_ref(nratemax)
Pmep_ref(nratemax)
Pcrit_ref(nratemax)
NO_ref(nratemax)
Nspec_ref

rPO(nratemax)
rNO(nratemax)
rcrit(nratemax)
rmep(nratemax)

int
c*12
int

real
real
real
real
real
real
real
real

real
real
real
real

+ 4+ + +

+ 4+ 4+ + + + + + +

Parameters
Engine Ratings
number of ratings (maximum nratemax)
rating designations
MCP rating number
Reference
power (FPy)
specific fuel consumption (sfcg)
fuel-air ratio (Fp)
specific jet thrust (F, = SFym)
mean effective pressure limit (Pep)
critical (throttle) limit (P,it)
reference engine speed (/NVg)
specification engine speed (Ngpec)
Derived ratios
power (Por/FPoc)
reference engine speed (Nor/Nspec)
critical power (Peitr/Por)
mechanical limit of power (Pmechr/FPor * Nspec/Nor)

296

"MCP’

1000.
0.60
0.08

1000.
1000.
2000.
2000.

Reference Engine Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

engine rating: match rating designation in FltState; typically designated as
'"MRP’ = Maximum Rated Power (5 or 10 min)
'MCP’ = Maximum Continuous Power (normal operations)

ratings encompass mixture settings and supercharger speeds

Pmep_ref: zero for no mechanical (mep) limit
Pcrit_ref: zero for no critical (throttle) limit; Xcrit = 0. for limit independent of engine speed

Structure: RecipModel

FIX size
Xo

Xs

Xf

Ksfcl
Ksfc2
KN1
KN2

Xsfc
XN

MODEL_Pav
Kp(nratemax)
Kram(nratemax)
XpN(nratemax)
Xpt(nratemax)
Xerit(nratemax)

MODEL_Kffq

KffqO(nratemax)
Kffql(nratemax)
Kffg2(nratemax)
Kffg3(nratemax)

Nffq(nratemax)
Pffq(nengrmax,nratemax)
Kffq(nengrmax,nratemax)
XffN(nratemax)
Xffs(nratemax)

int

real
real
real
real
real
real
real

real
real

int

real
real
real
real
real

int

real
real
real
real

int

real
real
real
real

+ 4+ 4+ + + + + + o+

s T i o S S S T T SN

297

Scaling
engine size (0 scaled, 1 fixed) 0
specific output exponent X, 0.2
mean piston speed exponent X, 0.3
specific fuel consumption exponent X s 0.1
specific fuel consumption constant K1 1.
specific fuel consumption constant Kgco 0.
engine speed constant K yspect 1.
engine speed constant K ygpec2 0.
Derived scaling
exponent —X /(2 — X,)
exponent —(1 + X,)/(2 — X,)
Power Available
model (0 constant P,) 1
factor K, 1.
constant K, 1.
exponent X, n 1.
exponent X g 0.5
exponent X it 3.0
Performance at Power Required
fuel flow, wWyeq /W0 Vs Py /Py
model (1 polynomial, 2 piecewise linear, 3 table) 1
polynomial
constant K s 40 0.
constant K741 1.
constant K 742 0.
constant K43 0.
piecewise linear
number of values (maximum nengrmax) 0
power ratio P, /Py
factor Ky ¢,
exponent X ¢y 0.

exponent Xy, 0.

Structure: RecipModel

nqgff
nrff
qff(nengtmax)
rff(nengtmax)

int
int
real
real

Tff(nengtmax,nengtmax,nratemax)

MODEL_KFq
KFqO(nratemax)

(
KFqgl(nratemax)
KFqg2(nratemax)
KFg3(nratemax)
NFgq(nratemax)
PFq(nengrmax,nratemax)
KFg(nengrmax,nratemax)
XFN(nratemax)

Kfgr(nratemax)

real

int

real
real
real
real

int
real

real
real

real

+ + + + +

+ 4+ A+ A+ +

table
number of powers (maximum nengtmax)
number of speeds (maximum nengtmax)
power ratio ¢ = P,/ P
speed ratio r = N/Ny

fuel flow factor T's¢(g, 1)
fuel-air ratio, F.cq/Fo vs Py/Po
model (1 polynomial, 2 piecewise linear)
polynomial
constant K g0
constant K1
constant K pgo
constant K py3
piecewise linear
number of values (maximum nengrmax)
power ratio P, /Py
factor Kpq
exponent X
installed net jet thrust, Ky, = Fz/F (installed thrust loss)
constant Ky,

Simple model: constant power available (MODEL_Pav=0)
constant specific fuel consumption (defaults Kffql=1. and Xffq=0., and Xf=0.)
constant fuel-air ratio (defaults KFq0=1. and XFq=0.)
no jet force (EngineGroup%SET_FN=0), no auxiliary air momentum drag (EngineGroup%SET_Daux=0)

298

cocor

Chapter 76

299

Structure: CompressorModel

Variable Type Description Default
+ Compressor Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification "Comp’
compressor identification: used by IDENT_engine of EngineGroup input
“0” = SLS static; “C” = MCP
mass flow = power / specific power (SP = P/rn); gross thrust = specific thrust * mass flow (ST = T'/rn)
compressor model can be used by more than one engine group, so all parameters fixed
kCompressorModel int compressor model number
+ Weight
MODEL_weight int + model (0 fixed, 1 W(P)) 1
Wcomp real + compressor weight (fixed) 0.
+ compressor weight, Weomp V8 Peng model (W = Kocomp + KicompP + KgcompPXCDmp)
Kwt0_comp real + constant Kocomp 0.
Kwtl_comp real + constant Kqcomp 0.2
Kwt2_comp real + constant Kocomp 0.
Xwt_comp real + exponent Xcomp 0.
+ Custom Weight Model
WtParam_comp(8) real + parameters 0.

Structure: CompressorModel 300

+ Parameters

+ Compressor Ratings
nrate int + number of ratings (maximum nratemax) 1
rating(nratemax) c*12 + rating designations '"MCP’
krateC int MCP rating number

+ Reference
PO_ref(nratemax) real + power (FPy)
SPO_ref(nratemax) real + specific power (SF)
Pmech_ref(nratemax) real + mechanical limit of power (Ppech)
SFOC_ref real + specific jet thrust (Fyoc = SFycrioc)
Nspec_ref real + specification compressor speed (Ngpec)

Derived ratios
rPO(nratemax) real power (Por/Poc)
rSPO(nratemax) real specific power (SPor/SPoc)
rPmech(nratemax) real mechanical limit of power (Pmechr/Poc)
Reference Compressor Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant
compressor rating: match rating designation in FltState

+ Power Available

+ referred specific power available, SP, /S P,
Xspa real + exponent Xy, 1.

+ referred mass flow at power available, 1, /1
Xmfa real + exponent X, rq 1.

+ Performance at Power Required

+ referred mass flow at power required, 1,4 /m0c Vs Py/Poc
Kmfq0 real + constant K, f40
Kmfql real + constant K, 741
Kmfq2 real + constant K, 742
Kmfq3 real + constant K, r43
Xmfq real + exponent X, ¢, 1.

Structure: CompressorModel 301

+ gross jet thrust at power required, Fy,/ Fyoc Vs Py/Poc
Kfgq0 real + constant K rgq0 1.
Kfgql real + constant Kygq1 0.
Kfgq2 real + constant Ky gqo 0.
Kfgq3 real + constant K rg43 0.
Xfgq real + exponent X rg, 2.0
Derived
q(41) real referred power P,/ Pyc (0. to 4.0)
fgq(41) real gross jet thrust Fyy/ Fyoc

mfq(41) real referred mass flow 1i,.¢4 /1oc

Chapter 77

302

Structure: MotorModel

Variable Type Description Default
+ Motor Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification "Motor’
motor identification: used by IDENT _engine of EngineGroup input
“0” = SLS static; “C” = MCP
motor model can be used by more than one engine group, so all parameters fixed
kMotorModel int motor model number
+ Weight
MODEL_weight int + model (0 fixed, 1 W(P),2 NASA15 W(Q)) 2
Wmotor real + motor weight (fixed) 0.
+ motor weight W (P): Wiotor V8 Peng model (W = Komotor + Kimotor P + Komotor PXmotor ()X amotor §Xemotor)
Kwt0_motor real + constant Komotor 0.
Kwtl_motor real + constant K1 ot0r 0.
Kwt2_motor real + constant Ko otor 0.
Xwt_motor real + exponent X otor 0.
Xwtq_motor real + exponent Xgmotor 0.
Xwts_motor real + exponent X gy otor 0.
+ motor weight W (Q): NASAILS Wiotor VS Qpeak model
KIND_design int + torque-to-weight design (0 only high @ /W; 1 high Q/W,2 low Q /W factor) 0

Structure: MotorModel

Kwt_ESC
Xwt_ESC

WtParam_motor(8)

nrate
rating(nratemax)
krateC

krateM
MODEL_QIlimit

PO_ref(nratemax)
Ppeak_ref(nratemax)
Nspec_ref

Nmax_ref

rPO(nratemax)

rPpeak(nratemax)
Nbase(nratemax)

KIND_eff

eta_motor
loss_motor

real
real

real

int
c*12
int
int
int

real
real
real
real

real

real
real

int

real
real

+ + + + +

+ 4+ + +

+ 4+ + + + +

+ 4+ 4+ 4+ 4+ +

controller weight (AW = Kggc PXFs0)
constant Kggc
exponent Xgsc
Custom Weight Model
parameters

Parameters
Motor Ratings
number of ratings (maximum nratemax)
rating designations
MCP rating number
MRP rating number
Torque limit (1 constant Qpeak, 2 With high speed limit)
Reference
power (FPy)
mechanical limit of power (Ppeak)
specification motor speed (Ngpec)
maximum (no load) motor speed (Npyax)
Derived ratios
power (Por/FPoc)
mechanical limit of power (Ppeakr/Poc)
base rotational speed ((Por/Ppeakr) Nspec)

303

"MCP’

Reference Motor Rating: SLS, static

if MCP scaled, ratios to MCP values kept constant

motor rating: match rating designation in FltState

Performance
Motor/Generator Efficiency
kind (1 fixed, 2 function power, 3 map)
fixed or function power
reference efficiency (at Pepg)
power loss (fraction Py)

1.00
0.00

Structure: MotorModel

Closs(4,4)
floss
eta_cont

KNspec
KNbase

KTMSmO
KTMSm1
XTMSm

KTMSp0
KTMSpl1
XTMSp

KTMSf0
KTMSf1
XTMSS

KTMSwO0
KTMSwl
XTMSwp
XTMSwm

real
real
real

real
real

real
real
real

real
real
real

real
real
real

real
real
real
real

+ 4+ + +

+ + +

R T I T S S S S e e T T T

efficiency map (Ploss = Peng fioss Z?:o Z?:o Ci;t'n?)
loss coefficients Closs(i+1,j+1)= C;;
factor fioss
controller efficiency

Scaling
specification motor speed variation (K)
base motor speed variation (K)

304

0.00
1.00
1.00

Ngpec used by efficiency map; Nyage affects Ppeax scaling
for no variation of motor speeds with scale, use KNspec = KNbase = 0.

Thermal Management System

mass flow (Ib/sec or kg/sec) from rejected heat (hp or kW)
constant K1nismo
constant Kyism1
exponent X s

power (hp or kW) from mass flow (Ib/sec or kg/sec)
constant K1spo
constant Ktysp1
exponent Xusp

gross jet force (Ib or N) from mass flow (Ib/sec or kg/sec)
constant KTwms ro
constant KTns 1
exponent XTms s

weight (Ib or kg)
constant K1yswo
constant Kyisw1
exponent X Tnvswp
exponent X TnSwm

Chapter 78

305

Structure: JetModel

Variable Type Description Default
+ Jet Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification "Jet’
jet identification: used by IDENT_jet of JetGroup input
installed: thrust available 15, , thrust required 7.
uninstalled: thrust available Ty, thrust required 75,
“0” = SLS static; “C” = MCT
mass flow = thrust / specific thrust (ST = T'/n); fuel flow = specific fuel consumption * thrust (sfc = w/T)
jet model can be used by more than one jet group, so all parameters fixed
as model for reaction drive of convertible engine:
only use sfcOC_ref and parameters for thrust available and performance at thrust required
TO_ref and STO_ref required, but not used; weight, ratings, technology, and scaling variables not used
kJetModel int jet model number
+ Weight
MODEL_weight int + RPJEM model (0 fixed, 1 W (T")) 1
Wijet real + jet weight (fixed) 0.
+ jet weight, Wi vs Tier model (W = Kpjer + KijetT + Kojer T-Xi¢)
Kwt0_jet real + constant Kojeq 0.
Kwtl jet real + constant Kyjet 0.2
Kwt2_ jet real + constant Kojes 0.
Xwt_jet real + exponent Xje; 0.
+ Custom Weight Model
WtParam_jet(8) real + parameters 0.

Structure: JetModel

nrate
rating(nratemax)
krateC

TO_ref(nratemax)
STO_ref(nratemax)
Tmech_ref(nratemax)
sfcOC_ref

rTO(nratemax)
rSTO(nratemax)
rTmech(nratemax)

STOC tech
sfc0C_tech

FIX size
MF_limit
STOC_limit
sfcOC_limit

TOC limit
Kst0
Kstl

int
c*12
int

real
real
real
real

real
real
real

real
real

int

real
real
real

real
real
real

+ 4+ + +

+ + + + +

+ 4+ + + + + + +

Parameters
Jet Ratings
number of ratings (maximum nratemax)
rating designations
MCT rating number
Reference
thrust (1)
specific thrust (STp)
mechanical limit of thrust (T ,ech)
specific fuel consumption at MCT (sfcgc)
Derived ratios
thrust (Tor/Toc)
specific thrust (STor/SToc)
mechanical limit of thrust (T,echr/Toc)

306

'MCT'

Reference Jet Rating: SLS, static
if MCT scaled, ratios to MCT values kept constant
jet rating: match rating designation in FltState

Technology
specific thrust at MCT STiecn (0. for STO_ref(MCT))
specific fuel consumption at MCT sfciecn (0. for sfcOC_ref)
Scaling
engine size (0 scaled, 1 fixed)
mass flow at limit ST and sfc ("15m)
specific thrust limit STy,
specific fuel consumption limit sfcy;y,
Derived scaling
specific thrust available (SLS static, MCT), STyc Vs oo
thrust limit
KstO
Kstl

Structure: JetModel

KsfcO
Ksfcl

bypass

Xsta

Xmfa

Kffq0
Kffql
Kffg2
Kffq3
Xffq

Kmfq0
Kmfql
Kmfq2
Kmfq3
Xmfq

t(41)
mfq(41)

real
real

real

real

real

real
real
real
real
real

real
real
real
real
real

real
real

+ 4+ 4+ A+ A+ o+

specific fuel consumption (SLS static, MCT), sfcoc vs 1o
stc()
stcl

ST and sfc functions are defined by values STOC_tech, sfcOC_tech, 77146, =TOC_ref/STOC_tech
and limits STOC_limit, sfcOC_limit, MF_limit

defaults STOC_tech=STO_ref(MCT), sfcOC_tech=sfcOC_ref

require Myech, < Miim (otherwise get STy = STOC_tech and sfcoc = sfc0C_tech)

for no variation of ST and sfc with scale, use FIX size=1 or MF_limit=0.

Turbofan bypass ratio (0. for turbojet)
Thrust Available
referred specific thrust available, ST, /ST
exponent X,
referred mass flow at thrust available, 1, /11
exponent X, rq
Performance at Thrust Required
referred fuel flow at thrust required, Wyeq/tWoc Vs Tq/Toc
constant Kt ¢40
constant Ky 41
constant Ky g0
constant K g3
exponent X4
referred mass flow at thrust required, 7v,¢q /mhoc Vs Ty/Toc
constant K, t40
constant K, 41
constant K, r42
constant K, r43
exponent X, rq
Derived
referred thrust T, /Toc (0. to 4.0)
referred mass flow 1i,.¢4 /10

307

rooro

rooro

Chapter 79

308

Structure: FuelCellModel

Variable Type Description Default
+ Fuel Cell Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification "Cell’
fuel cell identification: used by IDENT_charge of ChargerGroup input
“0” = SLS static; “C” = MCP
fuel cell model can be used by more than one charger group, so all parameters fixed
kFuelCellModel int fuel cell model number
+ Weight
MODEL_weight int + model (0 fixed, 1 W(P)) 1
Weell real + fuel cell weight (fixed) 0.
+ fuel cell weight, Ween V8 Penrg model (W = Kocenn + Kicen P + Kacen PXeem)
Kwt0_cell real + constant Kocen 0.
Kwtl_cell real + constant Kq¢en 0.
Kwt2_cell real + constant Koce 0.
Xwt_cell real + exponent X q|1 0.
+ Custom Weight Model
WtParam_fuelcell(8) real + parameters 0.

Structure: FuelCellModel

nrate
rating(nratemax)
krateC

PO_ref(nratemax)
sfcOC_ref

rPO(nratemax)

idesign
pi_comp

ncell
icell(nengcmax)
vcell(nengecmax)
Xfc

Kmf

vdesign

pdesign

vmax
irate(nratemax)

int
c*12
int

real
real

real

real
real

int

real
real
real
real

real
real
real
real

+ 4+ + +

+ 4+ +

+ 4+ 4+ + + + + + +

309

Parameters
Fuel Cell Ratings
number of ratings (maximum nratemax) 1
rating designations '"MCP’
MCP rating number
Reference
power (FPy) 0.
specific fuel consumption at MCP (sfcy¢) 0.
Derived ratios
power (Por/Poc)

Reference Fuel Cell Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant
fuel cell rating: match rating designation in FltState

Performance
design current density 24
compressor pressure ratio m¢
cell characteristics (at cell pressure 6. = 1)

number of values (maximum nengcmax) 1

current density 7. 1.

voltage v, 1.

pressure scaling exponent X r. 0.38

mass flow ratio (/) 86.
Derived

design voltage vq

design power density pq

voltage for maximum power vy, x
rated current density i

reference sfc corresponds to fuel specific energy and design cell current, including technology impact
units of idesign and icell must be consistent

Structure: FuelCellModel 310

icell values unique and sequential; icell(1)=0.
veell monotonically decreasing (reversed veell unique and sequential)

simple model: define power PO_ref and specific fuel consumption sfcOC_ref, mass flow from Kmf
ncell=1 for constant v., hence constant efficiency, constant power and sfc (idesign, pi_comp, Xfc not used)

Chapter 80

311

Structure: SolarCellModel

Variable Type Description Default
+ Solar Cell Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification "Cell’
solar cell identification: used by IDENT_charge of ChargerGroup input
“0” = SLS static; “C” = MCP
solar cell model can be used by more than one charge group, so all parameters fixed
kSolarCellModel int solar cell model number
+ Weight
MODEL_weight int + model (0 fixed, 1 W(A)) 1
Wsolar real + solar cell weight (fixed) 0.
ssolar real + weight density (kg/m?)
+ Custom Weight Model
WtParam_solarcell(8) real + parameters 0.
+ Parameters
+ Solar Cell Ratings
nrate int + number of ratings (maximum nratemax) 1
rating(nratemax) c*12 + rating designations 'MCP’
krateC int MCP rating number

Structure: SolarCellModel

PO_ref(nratemax)

rPO(nratemax)

esolar

KIND_eff
eta_cell
loss_cell

real

real

real

int
real
real

+ 4+ + + + +

Reference

power (FPy)
Derived ratios

power (Por/Poc)

312

Reference Solar Cell Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant
solar cell rating: match rating designation in FltState

Performance
power density (W/m?)
Efficiency
kind (1 fixed, 2 function power)
reference efficiency (at Pep,g)
power loss (fraction Pep,rg)

1.00
0.00

simple model: power density esolar and weight density ssolar; with efficiency in esolar (KIND_eff=1 and eta_cell=1.)

313

Chapter 81

Structure: BatteryModel

Variable Type Description Default
+ Battery Model
title c*100 + title
notes c*1000 + notes
ident c*¥16 + identification 'Battery’
battery identification: used by IDENT_battery of FuelTank input
battery model can be used by more than one fuel tank system, so all parameters fixed
kBatteryModel int battery model number
+ Performance
MODEL_battery int + model (1 equivalent circuit, 2 lithium-ion) 1
Vref real + reference voltage Vies 4.2
xmbd real + maximum burst discharge current ,,,54 (1/hr) 20.
xCCmax real + maximum charge current ccmax (1/hr) 4,
+ actual cell depth-of-discharge (dact = dmin + (dmax — dmin)duse)
DoDmin real + minimum d,y;, 0.0
DoDmax real + maximum 5 0.8
Derived performance
CfromE real charge capacity C (A-hr) from usable energy capacity (MJ); (10°/3600)/(DoDmax-DoDmin)/Vref

PfromE real power capacity P (hp or kW) from usable energy capacity (MJ); xmdb/(DoDmax-DoDmin)/Econv_dE

Structure: BatteryModel

KTMSmO
KTMSm1
XTMSm

KTMSpO
KTMSp1
XTMSp

KTMSf0
KTMSf1
XTMSf

KTMSwO0
KTMSwl
XTMSwp
XTMSwm

KIND_eff

eta_dischrg
loss_dischrg

eta_chrg
loss_chrg

real
real
real

real
real
real

real
real
real

real
real
real
real

int

real
real

real
real

+ 4+ 4+ A+ F o+

+ 4+ 4+ 4+ + + o+

Thermal Management System

mass flow (Ib/sec or kg/sec) from rejected heat (hp or kW)
constant K1ysmo
constant Krysm1
exponent Xnsm

power (hp or kW) from mass flow (Ib/sec or kg/sec)
constant Ktmspo
constant KTmsp1
exponent XTmsp

gross jet force (Ib or N) from mass flow (Ib/sec or kg/sec)
constant Ktysfo
constant Ktys f1
exponent XTwms ¢

weight (Ib or kg)
constant K1yswo
constant K1yisw1
exponent XTnswp
exponent X T\swm

Equivalent Circuit Model
kind (1 fixed, 2 function power)
discharge
reference efficiency (at Pef)
power loss (fraction Pef)
charge
reference efficiency (at Pior)
power loss (fraction P.f)

314

1.00
0.00

1.00
0.00

simple model: constant efficiencies eta_dischrg and eta_chrg (KIND_eff=1)

Structure: BatteryModel

ferit
fd

nFV
DoD(40)
FV(40)
Tref

fTC

kdl

kVT
kdT

fc
keV
ks

DoDrev(40)
FVrev(40)

real
real

int

real
real
real
real

real
real

real
real

real
real
real

real
real

I T T i s T S S S e e e S S S T

Lithium-Ion Model
discharge
critical voltage factor (Fy = f.it IS capacity)
nominal discharge voltage (V; = fqVier)
open circuit voltage ratio (V, = V3 Fy/(d))
number of points (maximum 40)
depth-of-discharge d (fraction)
Fy
reference temperature 7,¢ (deg C)
temperature control power loss f7¢ (fraction component power)
current influence on discharge voltage
internal resistance 2,,pqC R/ Vief
depth-of-discharge kg5 ,64C
temperature influence on discharge voltage
voltage increment ky 7
depth-of-discharge k41
charge
nominal charge voltage (V. = f.Vier)
CC phase starting voltage decrement k.
CV phase parameter k,
Derived lithium-ion discharge
reversed DoD
reversed FV

315

0.6
1.0

0
0.
0.
20.
0.01

0.1
0.05

0.005
0.000005

1.0
0.1
0.2

open circuit voltage ratio: monotonically decreasing; default used if nFV=0
default DoD =0.,.1,.2,.3,4,5,.6,.7,.8,9,91,92,93,94,95,96,97,98,99,1.,1.01,1.02

default FV =1.,.97,.95,93,915,90,.89,.88,.87,.85,.847,.842,.835,.826,.815,.8,.78,.75,.7,.6,4 0.

Fy (d) defined for actual depth-of-discharge, used from d,pi, t0 diax

316

Chapter 82

Structure: Location

Variable Type Description Default
+ Location
+ input
+ fixed (dimensional, arbitrary origin)
FIX_geom c*8 + input Y
SL real + stationline
BL real + buttline
WL real + waterline
+ scaled (based on reference length, from reference point)
XolL real + x/L
Yol real + y/L
ZoL real + z/L
+ reference length
KIND_scale int + kind (0 global, 1 rotor radius, 2 wing span, 3 fuselage length) 0
kScale int + identification (component number) 1

[R A

Fixed input: FIX_geom ='x",'y’, 'z’ (or combination) to override INPUT_geom=2
Geometry: Location for each component
fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL
stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m
scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale)
XoL + aft, YoL + right, ZoL + up; from reference point
option to fix some geometry (FIX_geom in Location override INPUT_geom)
option to specify reference length (KIND_scale in Location override global KIND_scale)
Reference point: KIND_Ref, kRef; input dimensional XX_Ref, or position of identified component
component reference must be fixed
Locations can be calculated from other parameters (configuration specific)

Structure: Location

INPUT_geom_x
INPUT_geom_y
INPUT_geom_z

FIX x
FIX y
FIX z
isFixed

SLloc
BLloc
WLloc

Xolloc
Yol loc
Zolloc

KIND _scale loc
kScale loc
scale

int
int
int

int
int
int
int

real
real
real

real
real
real

int
int
real

real
real
real

Derived

input, from Aircraft%INPUT_geom and FIX_geom (1 fixed; 2 scaled)
x
Y
z

from Aircraft%INPUT_geom and FIX_geom (0 calculated, 1 fixed, 2 scaled)
x
Y
z
all fixed (0 not, some scaled or calculated)

fixed (dimensional, arbitrary origin)
stationline
buttline
waterline

scaled (based on reference length, from reference point)
z/L
y/L
z/L

reference length
from Aircraft%KIND_scale and KIND_scale (1 rotor radius, 2 wing span, 3 fuselage length)
from Aircraft%kScale and kScale (component number)
reference length

FIX = 0: z calculation depends on component/configuraton; calc SLloc and XoLloc
FIX = 1: z from SLloc; calc XoLloc
FIX = 2: x from XoLloc; calc SLloc

Geometry (dimensional, body axes, relative reference point)
x (+ forward)
y (+ right)
z (+ down)

317

Chapter 83

318

Structure: Weight

Variable Type Description Default
WE real WEIGHT EMPTY

W _structure real STRUCTURE

W_wing real wing group

W _wing_basic real basic structure
W_wing_secondary real secondary structure
W_wing_fair real fairings (not RP8A)
W_wing_fit real fittings (not RP8A)
W_wing_fold real fold/tilt (not RP8A)

W _wing_control real control surfaces

W_rotor real rotor group

W _rotor_blade real blade assembly

W _rotor_hub real hub & hinge

W _rotor_basic real basic (not RP8A)

W _rotor_shaft real inter-rotor shaft (not RP8A)
W _rotor_fair real fairing/spinner (not RP§A)
W _rotor_fold real blade fold (not RP8A)

W _rotor_supt real rotor support structure (not RP8A)
W _rotor_duct real duct (not RP8A)

W_tail real empennage group

W_Htail real horizontal tail (not RP8A)
W_Hetail_basic real basic (not RP8A)
W_Htail_fold real fold (not RP8A)

W _Vtail real vertical tail (not RPSA)
W_Viail_basic real basic (not RP8A)

W _Viail fold real fold (not RP8A)

W _tailrotor real tail rotor (not RP8A)
W_tr_blade real blades

W_tr_hub real hub & hinge

Structure: Weight

W _tr_supt

W _tr duct

W _fuselage

W _fus_basic
W_fus_wingfold
W_fus_tailfold
W _fus_mar

W _fus_press

W _fus_crash
W_gear
W_gear_basic
W_gear_retract
W_gear_crash
W _nacelle
W_nac_engsupt
W_nac_cowling
W_nac_pylon
W _airind

W _propulsion
W_engsys
W_engine
W_exhaust

W _acc

W _propeller
W_prop_blade
W _prop_hub

W _prop_supt
W _prop_duct
W_fuelsys
W_fuel_tank
W_fuel_plumb
W_drive

W _drive_box

W _drive_xmsn

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

rotor supports
rotor/fan duct
fuselage group
basic (not RP8A)
wing & rotor fold/retraction (not RP8A)
tail fold/tilt (not RP8A)
marinization (not RP§A)
pressurization (not RP§A)
crashworthiness (not RP8A)
alighting gear group
basic (not RP8A)
retraction (not RP8A)
crashworthiness (not RP8A)
engine section or nacelle group
engine support (not RP8A)
engine cowling (not RP8A)
pylon support (not RP§A)
air induction group
PROPULSION GROUP
engine system
engine
exhaust system
accessories (not RP8A)
propeller/fan installation
blades (not RPSA)
hub & hinge (not RP8A)
rotor supports (not RP§A)
rotor/fan duct (not RP§A)
fuel system
tanks and support
plumbing
drive system
gear boxes
transmission drive

319

Structure: Weight

W _drive_rtrsft
W _drive_brake
W _drive_clutch
W _drive_gas
W_equip
W_fltcont

W _fc_cockpit

W _fc_afcs
W_fc_system
W_fc_fw
W_fc_fw_nonboost
W _fc_fw_mech
W _fc rw

W _fc_rw_nonboost
W_fc_rw_mech
W _fc_rw_boost
W fc_cv

W _fc_cv_nonboost
W _fc cv_mech
W_auxpower
W_instrument
W_hydraulic
W_hyd_fw

W _hyd rw
W_hyd cv
W_hyd_eq
W_pneumatic

W _electrical

W _elect_aircraft
W_elect_deice

W _avionics
W_arm
W_armprov
W_armor

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

rotor shaft
rotor brake (not RP§A)
clutch (not RP8A)
gas drive
SYSTEMS AND EQUIPMENT
flight controls group
cockpit controls
automatic flight control system
system controls
fixed wing systems
non-boosted (not RP§A)
boost mechanisms (not RP8A)
rotary wing systems
non-boosted (not RP8A)
boost mechanisms (not RP8A)
boosted (not RP§A)
conversion systems
non-boosted (not RPSA)
boost mechanisms (not RP8A)
auxiliary power group
instruments group
hydraulic group
fixed wing (not RP8A)
rotary wing (not RP8A)
conversion (not RP8A)
equipment (not RP8A)
pneumatic group
electrical group
aircraft (not RP8A)
anti-icing (not RP8A)
avionics group (mission equipment)
armament group
armament provisions (not RP§A)
armor (not RP8A)

320

Structure: Weight

W _furnish

W _environ

W _deice

W _load

W_vib

W_cont

W_fixUL
W_fixUL_crew
W-_fixUL_fluid
W_fixUL_auxtank
W_fixUL_other
W_fixUL_equip
W-_fixUL_foldkit
W_fixUL_extkit
W-_fixUL_wingkit
W_fixUL_otherkit
Wopayload

Wruel

Wfuel_std
Wrfuel _aux

Wscaled
Wrixed
Wrfeature
Whbattsys

WO
WUL

GW

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

real
real
real
real

real
real

real

furnishings & equipment group
environmental control group
anti-icing group
load & handling group
VIBRATION (not RP8A)
CONTINGENCY
FIXED USEFUL LOAD
crew
fluids (oil, unusable fuel) (not RP8A)
auxilary fuel tanks
other fixed useful load (not RP8A)
equpment increment (not RPSA)
folding kit (not RP8A)
wing extension kit (not RPSA)
wing kit (not RP8A)
other kit (not RPSA)
PAYLOAD
USABLE FUEL
standard tanks (not RP8A)
auxiliary tanks (not RP8A)

scaled weight (sum all K=3 in operating weight)
fixed weight (sum all K=2 in operating weight)
military features in empty weight

battery system (W_fuel_tank + W_fuel_plumb)

OPERATING WEIGHT = weight empty + fixed useful load
USEFUL LOAD = fixed useful load + payload + usable fuel

GROSS WEIGHT = weight empty + useful load = operating weight + payload + usable fuel

follows SAWE RP8A Group Weight Statement, except as noted
typical only lowest elements of hierarchy specified, others obtained by summation

set status flag when define weight
can define weights (k=2 or 3) at any level, ignore child weights if not lowest level

321

Structure: Weight 322

when print weight statement, designate all fixed (ie input) quantities

usage:
set all W=K=0; put W, with K=2 or 3
then fill structure: if K=0 and some child defined/sum, then W=>(child) and K=1
addition or increment sums all elements, with status Kt of total as follows

Ka= 0 1 2 3
Kb=0 0 1 2 3
Kb=1 1 1 3 3
Kb=2 2 3 2 3
Kb=3 3 3 3 3

Status (0 none; 1 sum of child; 2 defined, fixed (input); 3 defined, not fixed (scaled, wt eq; or composite))

KE int WEIGHT EMPTY

K_structure int STRUCTURE

K_wing int wing group

K_wing_basic int basic structure
K_wing_secondary int secondary structure

K_wing_fair int fairings (not RP§A)
K_wing_fit int fittings (not RP§A)
K_wing_fold int fold/tilt (not RP8A)
K_wing_control int control surfaces

K_rotor int rotor group

K_rotor_blade int blade assembly

K_rotor_hub int hub & hinge

K_rotor_basic int basic (not RP8A)
K_rotor_shaft int inter-rotor shaft (not RPSA)
K _rotor_fair int fairing/spinner (not RP8A)
K_rotor_fold int blade fold (not RP8A)
K_rotor_supt int rotor support structure (not RP8A)
K_rotor_duct int duct (not RP8A)

K_tail int empennage group

Structure: Weight

K_Htail
K_Htail_basic
K_Htail_fold
K_Vtail
K_Vtail_basic
K_Vtail_fold

K tailrotor
K_tr_blade
K_tr_hub
K_tr_supt
K_tr_duct
K_fuselage

K _fus_basic
K_fus_wingfold
K_fus_tailfold
K_fus_mar

K fus_press

K _fus_crash

K _gear
K_gear_basic
K_gear_retract
K_gear_crash
K nacelle

K _nac_engsupt
K_nac_cowling
K_nac_pylon
K_airind
K_propulsion
K_engsys
K_engine
K_exhaust

K acc
K_propeller
K_prop_blade

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

horizontal tail (not RP8A)
basic (not RP8A)
fold (not RP8A)
vertical tail (not RPSA)
basic (not RPSA)
fold (not RP8A)
tail rotor (not RP8A)
blades
hub & hinge
rotor supports
rotor/fan duct
fuselage group
basic (not RP8A)
wing & rotor fold/retraction (not RP8A)
tail fold/tilt (not RP8A)
marinization (not RP8A)
pressurization (not RP8A)
crashworthiness (not RP8A)
alighting gear group
basic (not RP8A)
retraction (not RP8A)
crashworthiness (not RP8A)
engine section or nacelle group
engine support (not RP8A)
engine cowling (not RP8A)
pylon support (not RP8A)
air induction group
PROPULSION GROUP
engine system
engine
exhaust system
accessories (not RP8A)
propeller/fan installation
blades (not RP8A)

323

Structure: Weight

K_prop_hub
K_prop_supt
K_prop_duct
K_fuelsys
K_fuel_tank
K_fuel_plumb
K _drive

K _drive_box
K_drive_xmsn
K_drive_rtrsft
K_drive_brake
K _drive_clutch
K_drive_gas
K_equip
K_fltcont
K_fc_cockpit

K fc_afcs
K_fc_system

K fc fw
K_fc_fw_nonboost
K_fc_fw_mech
K_fc_rw

K _fc_rw_nonboost
K _fc_rw_mech
K _fc_rw_boost
K fc_cv
K_fc_cv_nonboost
K fc_cv_mech
K_auxpower
K_instrument
K_hydraulic
K_hyd_fw
K_hyd_rw
K_hyd_cv

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

hub & hinge (not RP8A)
rotor supports (not RP8A)
rotor/fan duct (not RPSA)
fuel system
tanks and support
plumbing
drive system
gear boxes
transmission drive
rotor shaft
rotor brake (not RP§A)
clutch (not RP8A)
gas drive
SYSTEMS AND EQUIPMENT
flight controls group
cockpit controls
automatic flight control system
system controls
fixed wing systems
non-boosted (not RP8A)
boost mechanisms (not RP8A)
rotary wing systems
non-boosted (not RP8A)
boost mechanisms (not RP8A)
boosted (not RP8A)
conversion systems
non-boosted (not RPSA)
boost mechanisms (not RP8A)
auxiliary power group
instruments group
hydraulic group
fixed wing (not RPSA)
rotary wing (not RP8A)
conversion (not RP8A)

324

Structure: Weight

K_hyd_eq
K_pneumatic
K_electrical

K _elect_aircraft
K_elect_deice
K_avionics
K_arm
K_armprov
K_armor
K_furnish
K_environ
K_deice

K load

K_vib

K_cont

K_fixUL
K_fixUL_crew
K_fixUL_fluid
K_fixUL_auxtank
K_fixUL_other
K_fixUL_equip
K_fixUL_foldkit
K_fixUL_extkit
K_fixUL_wingkit
K_fixUL_otherkit
Kpayload

Kfuel

Kfuel_std
Kfuel aux

KO

KUL

KGW

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

325

equipment (not RP8A)
pneumatic group
electrical group
aircraft (not RP8A)
anti-icing (not RP8A)
avionics group (mission equipment)
armament group
armament provisions (not RP§A)
armor (not RP8A)
furnishings & equipment group
environmental control group
anti-icing group
load & handling group
VIBRATION (not RP8A)
CONTINGENCY
FIXED USEFUL LOAD
crew
fluids (oil, unusable fuel) (not RP8A)
auxilary fuel tanks
other fixed useful load (not RP8A)
equipment increment (not RP8A)
folding kit (not RP8A)
wing extension kit (not RP8A)
wing kit (not RP8A)
other kit (not RPSA)
PAYLOAD
USABLE FUEL
standard tanks (not RP8A)
auxiliary tanks (not RP§A)
OPERATING WEIGHT = weight empty + fixed useful load
USEFUL LOAD = fixed useful load + payload + usable fuel
GROSS WEIGHT = weight empty + useful load = operating weight + payload + usable fuel

