

NASA/TP–20250010472

NDARC
NASA Design and Analysis of Rotorcraft

Input and Data Structures

Wayne Johnson
Ames Research Center
Moffett Field, California

November 2025

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain this
important role.

The NASA STI program operates under the auspices of
the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one of
the largest collections of aeronautical and space science
STI in the world. Results are published in both non-
NASA channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g., quick
release reports, working papers, and
bibliographies that contain minimal annotation.
Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include organizing and
publishing research results, distributing specialized
research announcements and feeds, providing
information desk and personal search support, and
enabling data exchange services.

For more information about the NASA STI program,
see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TP–20250010472

NDARC
NASA Design and Analysis of Rotorcraft

Input and Data Structures

Wayne Johnson
Ames Research Center
Moffett Field, California

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, CA 94035-1000

November 2025

This report is available in electronic form at

http://ntrs.nasa.gov

Contents

1. Data Structures and Input . 1

2. Input Based on Configuration . 13

3. Parameters and Constants . 21

4. Job . 26

5. Design . 33

6. Cases . 35

7. Size . 39

8. SizeParam . 40

9. OffDesign . 46

10. OffParam . 47

11. Performance . 48

12. PerfParam . 49

13. MapEngine . 50

14. MapAero . 53

15. FltCond . 56

16. Mission . 62

17. MissParam . 63

18. MissSeg . 71

19. FltState . 80

20. FltAircraft . 81

Contents ii

21. FltFuse . 99

22. FltGear . 101

23. FltRotor . 102

24. FltWing . 109

25. FltTail . 112

26. FltTank . 113

27. FltProp . 115

28. FltEngn . 117

29. FltJet . 120

30. FltChrg . 123

31. Solution . 126

32. Cost . 131

33. Emissions . 136

34. Aircraft . 138

35. XAircraft . 156

36. Systems . 158

37. WFltCont . 165

38. WDeIce . 167

39. Fuselage . 168

40. AFuse . 172

41. WFuse . 175

42. LandingGear . 177

43. AGear . 179

44. WGear . 180

Contents iii

45. Rotor . 181

46. PRotorInd . 198

47. PRotorPro . 202

48. PRotorTab . 205

49. DRotor . 207

50. IRotor . 210

51. WRotor . 212

52. Wing . 216

53. AWing . 227

54. WWing . 230

55. WWingTR . 232

56. Tail . 235

57. ATail . 238

58. Wtail . 240

59. FuelTank . 242

60. WTank . 246

61. Propulsion . 248

62. WDrive . 253

63. EngineGroup . 255

64. DEngSys . 265

65. WEngSys . 266

66. JetGroup . 268

67. DJetSys . 275

68. WJetSys . 276

69. ChargeGroup . 278

70. DChrgSys . 283

Contents iv

71. WChrgSys . 284

72. EngineModel . 285

73. EngineParamN . 291

74. EngineTable . 293

75. RecipModel . 295

76. CompressorModel . 299

77. MotorModel . 302

78. JetModel . 305

79. FuelCellModel . 308

80. SolarCellModel . 311

81. BatteryModel . 313

82. Location . 316

83. Weight . 318

1

Chapter 1

Data Structures and Input

1–1 Overview

The NDARC code performs design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks
can include off-design mission performance analysis, flight performance calculation for point operating conditions, and generation of subsystem or component performance
maps. Figure 1-1 illustrates the tasks. The principal tasks (sizing, mission analysis, flight performance analysis) are shown in the figure as boxes with heavy borders. Heavy
arrows show control of subordinate tasks.

The aircraft description (figure 1-1) consists of all the information, input and derived, that defines the aircraft. The aircraft consists of a set of components, including fuselage,
rotors, wings, tails, and propulsion. This information can be the result of the sizing task; can come entirely from input, for a fixed model; or can come from the sizing task in
a previous case or previous job. The aircraft description information is available to all tasks and all solutions (indicated by light arrows).

The sizing task determines the dimensions, power, and weight of a rotorcraft that can perform a specified set of design conditions and missions. The aircraft size is characterized
by parameters such as design gross weight, weight empty, rotor radius, and engine power available. The relations between dimensions, power, and weight generally require
an iterative solution. From the design flight conditions and missions, the task can determine the total engine power or the rotor radius (or both power and radius can be fixed),
as well as the design gross weight, maximum takeoff weight, drive system torque limit, and fuel tank capacity. For each propulsion group, the engine power or the rotor
radius can be sized.

Missions are defined for the sizing task, and for the mission performance analysis. A mission consists of a number of mission segments, for which time, distance, and fuel
burn are evaluated. For the sizing task, certain missions are designated to be used for design gross weight calculations; for transmission sizing; and for fuel tank sizing. The
mission parameters include mission takeoff gross weight and useful load. For specified takeoff fuel weight with adjustable segments, the mission time or distance is adjusted
so the fuel required for the mission (burned plus reserve) equals the takeoff fuel weight. The mission iteration is on fuel weight or energy.

Flight conditions are specified for the sizing task, and for the flight performance analysis. For the sizing task, certain flight conditions are designated to be used for design gross
weight calculations; for transmission sizing; for maximum takeoff weight calculations; and for antitorque or auxiliary thrust rotor sizing. The flight condition parameters
include gross weight and useful load.

For flight conditions and mission takeoff, the gross weight can be maximized, such that the power required equals the power available.

A flight state is defined for each mission segment and each flight condition. The aircraft performance can be analyzed for the specified state, or a maximum effort performance
can be identified. The maximum effort is specified in terms of a quantity such as best endurance or best range, and a variable such as speed, rate of climb, or altitude. The
aircraft must be trimmed, by solving for the controls and motion that produce equilibrium in the specified flight state. Different trim solution definitions are required for
various flight states. Evaluating the rotor hub forces may require solution of the blade flap equations of motion.

Data Structures and Input 2

Sizing Task
size iteration Engine

Performance Map

Mission Analysis

Flight
Performance

Analysis

Mission
adjust & fuel wt iteration

max takeoff GW

Flight Condition
max GW

Flight State
max effort / trim aircraft / flap equations

Airframe
Aerodynamics Map

Aircraft
Description

DESIGN ANALYZE

fixed model or
previous job or
previous case

design
conditions design

missions

each segment

Figure 1-1 Outline of NDARC tasks.

Data Structures and Input 3

design

geometry

performance

airframe
aerodynamics

engine
performance

design and
performance

aircraft
description

solution

input

additional
output
additional
cases

PRINT

INTERFACE
FILES

NDARC

COMPREHENSIVE
ANALYSIS

STRUCTURAL
DESIGN
LAYOUT DESIGN

COMPREHENSIVE
ANALYSIS

Figure 1-2 NDARC Interfaces.

Data Structures and Input 4

&JOB INIT_input=0,INIT_data=0,&END
&DEFN action=’ident’,created=’time-date’,title=’standard input’,&END
!##
&DEFN action=’open file’,file=’engine.list’,&END
&DEFN action=’open file’,file=’helicopter.list’,&END
!==
&DEFN quant=’Cases’,&END
&VALUE title=’Helicopter’,TASK_size=0,TASK_mission=1,TASK_perf=1,&END
&DEFN quant=’Size’,&END
&VALUE nFltCond=0,nMission=0,&END
!==
&DEFN quant=’OffDesign’,&END
&VALUE title=’mission analysis’,nMission=1,&END
&DEFN quant=’OffMission’,&END
&VALUE

(one mission, mission segment parameters as arrays)
&END
!==
&DEFN quant=’Performance’,&END
&VALUE title=’performance analysis’,nFltCond=2,&END
&DEFN quant=’PerfCondition’,&END
&VALUE

(one condition)
&END
&DEFN quant=’PerfCondition’,&END
&VALUE

(one condition)
&END
!==
&DEFN action=’endofcase’,&END
!##
&DEFN action=’endofjob’,&END

Figure 1-3a Illustration of NDARC input (primary input).

Data Structures and Input 5

&DEFN action=’ident’,created=’time-date’,title=’Helicopter’,&END
!##
! default helicopter
&DEFN action=’configuration’,&END
&VALUE config=’helicopter’,rotate=1,&END
!==
&DEFN quant=’Cases’,&END
&VALUE title=’Helicopter’,FILE_design=’helicopter.design’,&END
&DEFN quant=’Size’,&END
&VALUE
title=’Helicopter’,
SIZE_perf=’none’,SET_rotor=’radius+Vtip+sigma’,’radius+Vtip+sigma’,
FIX_DGW=1,SET_tank=’input’,SET_SDGW=’input’,SET_WMTO=’input’,

&END
&DEFN quant=’Solution’,&END
&VALUE &END
!==
&DEFN quant=’Aircraft’,&END
&VALUE (Aircraft parameters) &END
&DEFN quant=’Geometry’,&END
&VALUE (geometry) &END
&DEFN quant=’Rotor 1’,&END
&VALUE (Rotor 1 parameters) &END
!==

(other parameters in other structures)
!==
&DEFN quant=’TechFactors’,&END
&VALUE (technology factors) &END
!##
&DEFN action=’endoffile’,&END

Figure 1-3b Illustration of NDARC input (secondary input file).

Data Structures and Input 6

1–2 NDARC Input and Output

Figure 1-2 illustrates the input and output environment of NDARC. Table 1-1 lists the possible input and output files. A job reads input from one or more files. The primary
input is obtained from standard input (perhaps redirected to a file). The primary input can direct the code to read other files, identified by file name or logical name. The
input data are read in namelist format. Unit numbers are part of the job input. Output file names are part of the case input. Input files names are defined in the input itself.

Table 1-1. Input and output files.

file logical name unit number (and default)

INPUT
Primary Input standard input nuin = 5
Secondary Input File FILE nufile = 40
Aircraft Description FILE nufile = 40
Solution FILE nufile = 40

OUTPUT
Output standard output nuout = 6
Design DESIGNn nudesign = 41
Performance PERFn nuperf = 42
Airframe Aerodynamics AEROn nuaero = 43
Engine Performance ENGINEn nuengine = 44
Geometry GEOMETRYn nugeom = 45
Aircraft Description AIRCRAFTn nuacd = 46
Solution SOLUTIONn nusoln = 47
Sketch SKETCHn nusketch = 48
Errors ERRORn nuerror = 49

1-2.1 Input

Figure 1-3 illustrates NDARC input. The primary input starts with a JOB namelist, then DEFN namelists are read to define the action and contents of the subsequent
information. The job parameters include initialization control, error action, and input/output unit numbers. Job parameters can be read during case input using QUANT=’Job’.
The initialization takes place before case input, so changed initialization parameters in QUANT=’Job’ input take effect for the next case. The DEFN namelist has the following
parameters.

Data Structures and Input 7

a) ACTION: character string (length = 32; case independent).

b) QUANT: character string (length = 32, case independent); corresponds to data structure in input; string includes structure
number (1 or next condition/mission if absent).

c) SOURCE: integer; for copy action.

d) FILE: file name or logical name (length = 256).

e) CREATED: character string of creation time and date (length = 20).

f) TITLE: character string of title identifying input file (length = 80).

g) VERSION: code version number as character string (length = 6).

h) MODIFICATION: character string of code modification (length = 32).

Table 1-2 describes the options for the ACTION variable in the DEFN namelist. The code searches for the keyword in the ACTION character string. A solution file (text or
binary) can be written by an NDARC job and then read by a subsequent job, restoring the solution to the state that existed when the file was created. Then additional output
and additional cases can be obtained. An aircraft description file can be written by an NDARC job and then read by a subsequent job, restoring the aircraft model (but not the
solution). A secondary input file has DEFN namelists to define action and contents. When ACTION=’end’ (or EOF) is encountered in a secondary input file, the file is closed
and the code returns to primary input.

A DEFN namelist with ACTION=’ident’ identifies the file; probably there is only one identification per file, and only the last occurrence is stored. The identification consists
of the CREATED, TITLE, VERSION, MODIFICATION variables. CREATED and TITLE are written when a file is created by NDARC, and read and stored for each input file.
If present, VERSION and MODIFICATION are compared with the version and modification of the code, and input continues only if they match.

The parameter QUANT identifies the data structure to be read (namelist format), initialized, or copied. Table 1-3 describes the options. The input corresponds to the
data structures of the analysis. The QUANT string includes the structure number; if absent, the number is 1, or the next condition or mission. Note that each mission,
with the mission segment parameters as arrays, is input with QUANT=’SizeMission’ or QUANT=’OffMission’; and each condition is input with QUANT=’SizeCondition’ or
QUANT=’PerfCondition’.

A case inherits input for flight conditions and missions from the previous case if INIT_input = last-case-input (default). A DEFN namelist with ACTION=’delete’ deletes
this input as specified by QUANT=’SizeCondition n’, QUANT=’SizeMission n’, QUANT=’OffMission n’, or QUANT=’PerfCondition n’. ACTION=’delete all’ deletes all (ignore
structure number); ACTION=’delete one’ deletes structure n (all if number absent); ACTION=’delete last’ deletes structure n and subsequent structures (all if number absent).

For ACTION=’nosize’, input variables in the Size structure are set for no size iteration: SIZE_perf=’none’, SIZE_engine=’none’, SIZE_jet=’none’, SIZE_charge=’none’,
SET_rotor=’radius+Vtip+sigma’, SET_wing=’area+span’, FIX_DGW=1, SET_tank=’input’, SET_limit_ds=’input’, SET_SDGW=’input’, SET_WMTO=’input’.

Data Structures and Input 8

Table 1-2. ACTION options.
ACTION keyword QUANT function

Primary Input Only
blank — blank open and read secondary input file, name = FILE

’open file’ file, open open and read secondary input file, name = FILE

’load aircraft’ aircraft, desc load aircraft description file, name = FILE

’read solution’ solution ’text’ read complete solution file, name = FILE (text)
’read solution’ solution not ’text’ read complete solution file, name = FILE (binary)
’end of case’ end+case stop case input, execute case
’end of job’ end+job, quit stop job input, execute case, exit code

Primary or Secondary Input
blank — ’structure’ read VALUE namelist
’read namelist’ list ’structure’ read VALUE namelist
’copy input’ copy ’structure’ copy input from source (same structure), SOURCE=SRCnumber

’initialize’ init ’structure’ set structure variables to default values
’delete all’ del+all ’structure’ delete all conditions or missions
’delete one’ del+one ’structure’ delete one condition or mission
’delete last’ del+last ’structure’ delete last conditions or missions
’configuration’ config set input based on aircraft configuration
’nosize’ nosize set input for no size iteration
’identification’ ident identify file
’end’ end (or EOF) Secondary: close file, return to primary input
’end’ end (or EOF) Primary: same as ACTION=’endofjob’

Data Structures and Input 9

Table 1-3. QUANT options.
QUANT data structures read maximum n

’Job’ Job
’Cases’ Cases

’Size’ SizeParam
’SizeCondition n’ one FltCond+FltState nFltCond
’SizeMission n’ one MissParam, MissSeg+FltState as array nMission
’OffDesign’ OffParam
’OffMission n’ one MissParam, MissSeg+FltState as array nMission
’Performance’ PerfParam
’PerfCondition n’ one FltCond+FltState nFltCond
’MapEngine’ MapEngine
’MapAero’ MapAero

’Solution’ Solution

’Cost’ Cost
’Emissions’ Emissions
’Aircraft’ Aircraft
’Systems’ Systems, WFltCont, WDeIce
’Fuselage’ Fuselage, AFuse, WFuse
’LandingGear’ LandingGear, AGear, WGear
’Rotor n’ Rotor, PRotorInd, PRotorPro, PRotorTab, IRotor, DRotor, WRotor nRotor
’Wing n’ Wing, AWing, WWing, WWingTR nWing
’Tail n’ Tail, ATail, WTail nTail
’FuelTank n’ FuelTank, WTank nTank
’Propulsion n’ Propulsion, WDrive nPropulsion
’EngineGroup n’ EngineGroup, DEngSys, WEngSys nEngineGroup
’JetGroup n’ JetGroup, DJetSys, WJetSys nJetGroup
’ChargeGroup n’ ChargeGroup, DChrgSys, WChrgSys nChargeGroup

’EngineModel n’ EngineModel nEngineModel
’EngineParamN n’ EngineParamN nEngineParamN
’EngineTable n’ EngineTable nEngineTable
’RecipModel n’ RecipModel nRecipModel
’CompressorModel n’ CompressorModel nCompressorModel
’MotorModel n’ MotorModel nMotorModel
’JetModel n’ JetModel nJetModel
’FuelCellModel n’ FuelCellModel nFuelCellModel
’SolarCellModel n’ SolarCellModel nSolarCellModel
’BatteryModel n’ BatteryModel nBatteryModel

’TechFactors’ all TECH_xxx
’Geometry’ all Location

Data Structures and Input 10

1-2.2 Formats

Namelist input has the following format (see also figure 1-3).

&DEFN action=’IDENT’,created=’time-date’,title=’xxx’,version=’n.n’,modification=’xxx’,&END
&DEFN quant=’STRUCTURE n’,&END
&VALUE param=value,&END
&DEFN action=’NAMELIST’,quant=’STRUCTURE n’,&END
&VALUE param=value,&END
&DEFN action=’COPY’,quant=’STRUCTURE n’,source=#,&END

An aircraft description file is written in a separate file by NDARC, from theDesign(kcase):

&DEFN action=’IDENT’,created=’time-date’,title=’xxx’,version=’n.n’,modification=’xxx’,&END
&VALUE_ADIMEN nrotor=m,nwing=m,ntail=m,ntank=m,npropulsion=m,nenginegroup=m,njetgroup=m,nchargegroup=m,

nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m,nmotormodel=m,njetmodel=m,
nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m,&END

&VALUE theStructure%xxx,&END
&VALUE theStructure%xxx,&END
&VALUE theStructure%xxx,&END

This aircraft description file is read by identifying it in the primary input:

&DEFN action=’AIRCRAFT’,file=’aircraft.acd’,&END

A solution file is written in a separate file by NDARC, from theDesign(kcase), in binary or text format:

&DEFN action=’IDENT’,created=’time-date’,title=’xxx’,version=’n.n’,modification=’xxx’,&END
&VALUE_ADIMEN nrotor=m,nwing=m,ntail=m,ntank=m,npropulsion=m,nenginegroup=m,njetgroup=m,nchargegroup=m,

nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m,nmotormodel=m,njetmodel=m,
nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m,&END

&VALUE_SDIMEN nsizecond=m,nsizemiss=m,nperfcond=m,noffmiss=m,&END
&VALUE theStructure%xxx,&END
&VALUE theStructure%xxx,&END
&VALUE theStructure%xxx,&END

This solution file is read by identifying it in the primary input, with QUANT identifying the file as text or binary:

&DEFN action=’SOLUTION,quant=’TEXT’,file=’aircraft.soln’&END

Data Structures and Input 11

1-2.3 Conventions

Each flight condition (FltCond and FltState variables) is input in a separate SizeCondition or PerfCondition namelist.

Each mission (MissParam, MissSeg, and FltState variables) is input in a separate SizeMission or OffMission namelist. All mission segments are defined in
this namelist, so MissSeg and FltState variables are arrays. Each variable gets one more dimension, with the first array index always segment number.

Geometry input includes Location variables, which are read as elements of the data structure (for example, loc_rotor%SL).

Variables can appear in more than one namelist. Specifically there are separate namelists for all technology factors (all TECH_xxx variables), and all geometry (all Location

variables), with corresponding options for output. A variable that is a scalar in the Rotor, Wing, Tail, Propulsion, EngineGroup, JetGroup, or ChargeGroup
input becomes an array in the TechFactors or Geometry input. Note that it is the Location variable that is the array (for example, loc_rotor(1)%SL).

Case is not important in character string input. Character string input consists of keywords; the code searches for the keywords in the string.

Default values are specified in the dictionary (blank implies a default of zero); all elements of arrays have the same default value.

Tasks, aircraft, and components have title variables. There are also notes variables (long character string) to record information about the input.

1–3 Software Tool

All information about data structures is contained in a dictionary file. This information includes the parameter name, dimension, type, default value, description, identification
as input, and formats for write of the parameter. A software tool was created to manage the data, including construction of the module of data structures. The software tool
reads this dictionary file and creates subroutines for the input process: namelist read, copy, print of input, initialization, set to default. This software tool is a program that
manipulates character strings, to produce compilable module and subroutines for NDARC.

1–4 Data Structures

Table 1-4 outlines the data structures used for NDARC. The following chapters describe the contents of each structure. Note that a ”+” sign in the column between the type
and description identifies input variables. Input variables can be changed by the analysis, so may not be the same at the end of a case as at the beginning. All variables, input
and other, are initialized to zero or blank. If default values exist (only for input variables), they supersede that initialization.

Data Structures and Input 12

Table 1-4. NDARC data structures.

Design Fuselage FuelTank(ntankmax) FltState(nfltmax)

Cases [Location]loc_fuselage [Location]loc_auxtank(nauxtankmax) FltAircraft

Size AFuse Weight FltFuse

SizeParam Weight WTank FltGear

FltCond(nfltmax) WFuse Propulsion(npropmax) FltRotor(nrotormax)

FltState(nfltmax) LandingGear Weight FltWing(nwingmax)

Mission(nmissmax) [Location]loc_gear WDrive FltTail(ntailmax)

MissParam AGear EngineGroup(nengmax) FltTank(ntankmax)

MissSeg(nsegmax) Weight [Location]loc_engine FltProp(npropmax)

FltState(nsegmax) WGear DEngSys FltEngn(nengmax)

OffDesign Rotor(nrotormax) Weight FltJet(njetmax)

OffParam [Location]loc_rotor WEngSys FltChrg(nchrgmax)

Mission(nmissmax) [Location]loc_pylon JetGroup(njetmax)

MissParam [Location]loc_pivot [Location]loc_jet

MissSeg(nsegmax) [Location]loc_nac DJetSys

FltState(nsegmax) PRotorInd Weight

Performance PRotorPro WJetSys

PerfParam PRotorTab ChargeGroup(nchrgmax)

FltCond(nfltmax) IRotor [Location]loc_charger

FltState(nfltmax) DRotor DChrgSys

MapEngine Weight Weight

MapAero WRotor WChrgSys

Solution Wing(nwingmax) EngineModel(nengmax)

Cost [Location]loc_wing EngineParamN(nengpmax)

Emissions AWing EngineTable(nengmax)

Aircraft Weight RecipModel(nengmax)

[Location]loc_cg WWing CompressorModel(nengmax)

Weight WWingTR MotorModel(nengmax)

XAircraft Tail(ntailmax) JetModel(njetmax)

Systems [Location]loc_tail FuelCellModel(nchrgmax)

Weight ATail SolarCellModel(nchrgmax)

WFltCont Weight BatteryModel(ntankmax)

WDeIce WTail

13

Chapter 2

Input Based on Configuration

The rotorcraft configuration is identified by the variable config in the QUANT=’Aircraft’ input. With ACTION=’configuration’, the analysis defines a number of input parameters
in order to facilitate modelling of conventional configurations. The input required to execute ACTION=’configuration’ is:

&DEFN action=’configuration’,&END
&VALUE config=’aaaa’,nRotor=#,rotate=#,#,overlap_tandem=#,#,ang_multicopter=#,#,&END

The VALUE namelist contains only the parameters Aircraft%config (rotorcraft configuration), Aircraft%nRotor (number of rotors, only for multicopter), Rotor%rotate (direction
of rotation, each rotor), Rotor%overlap_tandem (each rotor, only for tandem helicopter), and Rotor%ang_multicopter (each rotor, only for multicopter). The convention is that
the first rotor is the main rotor for the helicopter or compound configuration; the front rotor for the tandem configuration; the right rotor for the tiltrotor configuration. This
capability has been implemented for rotorcraft, helicopter, tandem, coaxial, tiltrotor, compound, multicopter, and airplane configurations. There is common input for all
configurations, and special input for each except the rotorcraft. The analysis creates the following input, through information at the end of the NDARC structures file. Note
that default values are defined for all input quantities.

2–1 All Configurations

a) Components: nRotor=2 (except multicopter), nWing=0, nTail=2; nPropulsion=1, nEngineGroup=1, nEngineModel=1, nJetGroup=0, nChargeGroup=0

b) Aircraft
Aircraft controls: ncontrol=7, IDENT_control=’coll’,’latcyc’,’lngcyc’,’pedal’,’tailinc’,’elevator’,’rudder’

Control states: nstate_control=1

Trim states: nstate_trim=10, selected by FltAircraft%STATE_trim=IDENT_trim; compound state not active

IDENT_trim mtrim trim_quant trim_var

6-variable ’free’ 6 ’force x’,’force y’,’force z’,’moment x’,’moment y’,’moment z’ ’coll’,’latcyc’,’lngcyc’,’pedal’,’pitch’,’roll’

longitudinal ’long’ 4 ’force x’,’force z’,’moment y’,’moment z’ ’coll’,’lngcyc’,’pitch’,’pedal’

symmetric 3-variable ’symm’ 3 ’force x’,’force z’,’moment y’ ’coll’,’lngcyc’,’pitch’

weight and drag ’force’ 2 ’force x’,’force z’ ’coll’,’pitch’

hover thrust and torque ’hover’ 2 ’force z’,’moment z’ ’coll’,’pedal’

hover thrust ’thrust’ 1 ’force z’ ’coll’

hover rotor CT /σ ’rotor’ 1 ’CTs rotor 1’ ’coll’

wind tunnel ’windtunnel’ 3 ’CTs rotor 1’,’betac 1’,’betas 1’ ’coll’,’latcyc’,’lngcyc’

full power ’power’ 1 ’P margin 1’ ’coll’

ground run ’ground’ 1 ’force x’ ’coll’

compound ’comp’ 6 ’force x’,’force y’,’force z’,’moment x’,’moment y’,’moment z’ ’coll’,’latcyc’,’lngcyc’,’pedal’,’prop’,’roll’

Input Based on Configuration 14

c) Systems: MODEL_FWfc=0, MODEL_CVfc=0 (no fixed wing flight controls, no conversion controls)

d) Landing Gear: KIND_LG=0 (fixed gear), Wgear%nLG=3

e) Fuel Tank: place=1 (internal tank), Mauxtanksize=1, WTank%ntank_int=1, WTank%nplumb=2

f) Rotor
First rotor is primary: kPropulsion=1, KIND_xmsn=1

Second and other rotors are dependent: kPropulsion=1, KIND_xmsn=0, INPUT_gear=1 (input quantity is tip speed)
Configuration: direction=’main’

Drag: SET_aeroaxes=1 (helicopter), Idrag=0. (not tilt); DRotor%SET_Dspin=1, DRotor%DoQ_spin=0. (no spinner drag)
Weight: WRotor%MODEL_config=1 (rotor), WRotor%KIND_rotor=2 (not tilting)
Control:

INPUT_coll=0, INPUT_cyclic=0, INPUT_incid=0, INPUT_cant=0, INPUT_diam=0 (no connection to aircraft controls)
T_coll=0., T_latcyc=0., T_lngcyc=0., T_incid=0., T_cant=0., T_diam=0. (all controls, all states)
KIND_control=1 (1 for thrust and TPP command)
KIND_coll=2 (1 for thrust, 2 for CT /σ)
KIND_cyclic=1 (1 for TPP tilt, 2 for hub moment, 3 for lift offset)
KIND_tilt=0 (fixed shaft)

g) Wing
Control:

INPUT_flap=0, INPUT_flaperon=0, INPUT_aileron=0, INPUT_incid=0 (no connection to aircraft controls)
T_flap=0., T_flaperon=0., T_aileron=0., T_incid=0. (all controls, all states, all panels)

Drag: Idrag=0. (not tilt)

h) Tail
First tail is horizontal tail: KIND_tail=1, WTail%MODEL_Htail=1 (helicopter)
Second tail is vertical tail: KIND_tail=2, WTail%MODEL_Vtail=1 (helicopter)
Configuration: KIND_TailVol=2, TailVolRef=1 (rotor reference)
Control:

INPUT_cont=1 (tail control connection to aircraft controls), INPUT_incid=0 (no connection of tail incidence to aircraft controls)
T_cont=0., T_incid=0. (all controls, all states)

i) Propulsion: nGear=1, STATE_gear_wt=1, INPUT_DN=0

Input Based on Configuration 15

j) Engine Group
Configuration: kPropulsion=1, INPUT_gear=1 (gear ratio from N_spec), SET_power=0 (sized), fPsize=1., direction=’x’, SET_geom=0 (standard position)
Drag: MODEL_drag=1, Idrag=0. (not tilt)

k) Engine Group, Jet Group, Charge Group
Control:

INPUT_amp=0, INPUT_mode=0, INPUT_incid=0, INPUT_yaw=0 (no connection to aircraft controls)
T_amp=0., T_incid=0., T_yaw=0. (all controls, all states)

2–2 Helicopter

a) Rotor
First rotor is main rotor: config=’main’, fDGW=1., fArea=1., SET_geom=’standard’

rotation: r = 1; if (Rotor(1)%rotate < 0) r = −1
control: INPUT_coll=1, INPUT_latcyc=1, INPUT_lngcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_latcyc(2,1)= − r, T_lngcyc(3,1)=-1.

Second rotor is tail rotor: config=’tail+antiQ’, fThrust=1., fArea=0., SET_geom=’tailrotor’, mainRotor=1

direction=’tail’, WRotor%MODEL_config=2 (tail rotor)
rotation: r = 1; if (Rotor(1)%rotate < 0) r = −1
control: KIND_control=2 (thrust and NFP command); INPUT_coll=1, T_coll(4,1)= − r (rotor collective connection to aircraft control ’pedal’)

Performance: PRotorInd%MODEL_twin=’none’

Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

b) Tail
Control: INPUT_incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T_incid(5,1)=1. (incidence connection to aircraft control ’tailinc’), T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(7,1)=1. (rudder direct control)

c) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15

2–3 Tandem

a) Components: nTail=0 (no tail)

b) Fuel Tank: place=2 (sponson)

Input Based on Configuration 16

c) Rotor
Configuration: config=’main+tandem’, fDGW=.5, SET_geom=’tandem’, fRadius=1.

fArea=1 − m/2, from m = (2/π)(cos−1 h − h
√

1 − h2), h = 1 − overlap_tandem

First rotor is front rotor: otherRotor=2

rotation: r = 1, if (Rotor(1)%rotate < 0) r = −1
control: INPUT_coll=1, INPUT_latcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(3,1)=-1., T_latcyc(2,1)= − r, T_latcyc(4,1)= − r

Second rotor is aft rotor: otherRotor=1, rotate=-Rotor(1)%rotate

rotation: r = 1, if (Rotor(1)%rotate < 0) r = −1; r = −r
control: INPUT_coll=1, INPUT_latcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(3,1)= 1., T_latcyc(2,1)= − r, T_latcyc(4,1)=r

Performance: PRotorInd%MODEL_twin=’tandem’, PRotorInd%Kh_twin=1., PRotorInd%Kf_twin=0.85, IRotor%MODEL_int_twin=2

Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

d) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

2–4 Coaxial

a) Rotor
Configuration: config=’main+coaxial’, fDGW=.5, fArea=.5, SET_geom=’coaxial’, fRadius=1.

First rotor is lower rotor: otherRotor=2

rotation: r = 1, if (Rotor(1)%rotate < 0) r = −1
control: INPUT_coll=1, INPUT_latcyc=1, INPUT_lngcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(4,1)=r, T_latcyc(2,1)= − r, T_lngcyc(3,1)=-1.

Second rotor is upper rotor: otherRotor=1, rotate=-Rotor(1)%rotate

rotation: r = 1, if (Rotor(1)%rotate < 0) r = −1; r = −r
control: INPUT_coll=1, INPUT_latcyc=1, INPUT_lngcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(4,1)=r, T_latcyc(2,1)= − r, T_lngcyc(3,1)=-1.

Performance: PRotorInd%MODEL_twin=’coaxial’, PRotorInd%Kh_twin=1., PRotorInd%Kf_twin=0.85, IRotor%MODEL_int_twin=2

Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

b) Tail
Horizontal tail: T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(7,1)=1. (rudder direct control)

c) Propulsion: WDrive%ngearbox=1, WDrive%ndriveshaft=0, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

Input Based on Configuration 17

2–5 Tiltrotor

a) Components: nWing=1, nEngineGroup=2 (engine at each nacelle)

b) Aircraft
Aircraft controls: ncontrol=10, IDENT_control=’coll’,’latcyc’,’lngcyc’,’pedal’,’tilt’,’flap’,’flaperon’,’elevator’,’aileron’,’rudder’

Control states: nstate_control=2 (state 1 for helicopter mode, state 2 for airplane mode)
Control state in conversion: kcont_hover=1, kcont_conv=1, kcont_cruise=2

Drive state in conversion: kgear_hover(1)=1, kgear_conv(1)=1, kgear_cruise(1)=1

c) Systems: MODEL_FWfc=1, MODEL_CVfc=1 (fixed wing flight controls, conversion control)

d) Landing Gear: KIND_LG=1 (retractable)

e) Fuel Tank: place=3 (wing), fFuelWing(1)=1.

f) Rotor
Configuration: config=’main+tiltrotor’, fDGW=.5, fArea=1.; SET_geom=’tiltrotor’, KIND_TRgeom=1 (from clearance), fRadius=1., WingForRotor=1

First rotor is right rotor: otherRotor=2

helicopter mode control: INPUT_coll=1, INPUT_lngcyc=1 (rotor control connection to aircraft controls)
helicopter mode control: T_coll(1,1)=1., T_coll(2,1)=-1., T_lngcyc(3,1)=-1., T_lngcyc(4,1)=1.

Second rotor is left rotor: otherRotor=1, rotate=-Rotor(1)%rotate; INPUT_gear=2 (input quantity is gear ratio)
helicopter mode control: INPUT_coll=1, INPUT_lngcyc=1 (rotor control connection to aircraft controls)
helicopter mode control: T_coll(1,1)=1., T_coll(2,1)=1., T_lngcyc(3,1)=-1., T_lngcyc(4,1)=-1.

Airplane mode control state: T_coll(1,2)=1. (collective connection to aircraft control ’coll’)
Tilt: KIND_tilt=1 (shaft control = incidence), incid_ref=90. (helicopter mode reference), SET_Wmove=1, fWmove=1. (wing tip weight move)

control: INPUT_incid=1, T_incid(5,1)=1., T_incid(5,2)=1. (incidence connection to aircraft control ’tilt’)
Performance: PRotorInd%MODEL_twin=’tiltrotor’, PRotorInd%Kh_twin=1., PRotorInd%Kf_twin=1., IRotor%MODEL_int_twin=2

Weight: WRotor%KIND_rotor=1 (tilting)
Drag: SET_aeroaxes=2 (tiltrotor), Idrag=90. (tiltrotor)

DRotor%SET_Dhub=1, DRotor%DoQ_hub=0., DRotor%CD_hub=0., DRotor%SET_Vhub=1, DRotor%DoQV_hub=0., DRotor%CDV_hub=0. (no hub drag)

g) Wing
Configuration: fDGW=1., nRotorOnWing=2, RotorOnWing(1)=1, RotorOnWing(2)=2, SET_ext=0

Control: KIND_flaperon=3 (independent), nVincid=1

INPUT_flap=1, INPUT_flaperon=1, INPUT_aileron=1 (wing control connection to aircraft controls)
T_aileron(2,2)=-1. (airplane mode aileron connection to aircraft control ’latcyc’)

Input Based on Configuration 18

T_flap(6,1)=1., T_flap(6,2)=1. (flap direct control)
T_flaperon(7,1)=1., T_flaperon(7,2)=1. (flaperon direct control)
T_aileron(9,1)=1., T_aileron(9,2)=1. (aileron direct control)

Weight: WWing%MODEL_wing=3 (tiltrotor)

h) Tail
Configuration: KIND_TailVol=1, TailVolRef=1 (wing reference); Wtail%MODEL_Htail=2, Wtail%MODEL_Vtail=2 (tiltrotor)
Horizontal tail control: nVincid=1

T_cont(3,2)=1. (airplane mode elevator connection to aircraft control ’lngcyc’)
T_cont(8,1)=1., T_cont(8,2)=1. (elevator direct control)

Vertical tail control: nVincid=1

T_cont(4,2)=1. (airplane mode rudder connection to aircraft control ’pedal’)
T_cont(10,1)=1., T_cont(10,2)=1. (rudder direct control)

i) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

j) Engine Group
Configuration: fPsize=0.5, SET_geom=1 (tiltrotor)
First engine group: RotorForEngine=1

Second engine group: RotorForEngine=2

Control: INPUT_incid=1; T_incid(5,1)=1., T_incid(5,2)=1. (nacelle incidence connection to aircraft control ’tilt’)
Drag: SET_Swet=1, Swet=0., MODEL_drag=0, Idrag=90. (no engine nacelle drag)

DEngSys%SET_drag=1, DEngSys%DoQ=0., DEngSys%CD=0.; DEngSys%SET_Vdrag=1, DEngSys%DoQV=0., DEngSys%CDV=0.

2–6 Compound

a) Components: nRotor=3, nWing=1

b) Aircraft
Aircraft controls: ncontrol=10, IDENT_control=’coll’,’latcyc’,’lngcyc’,’pedal’,’tailinc’,’elevator’,’rudder’,’prop’,’aileron’,’flap’

Trim states: nstate_trim=11; compound state active

c) Rotor
First rotor is main rotor: config=’main’, fDGW=1., fArea=1., SET_geom=’standard’

rotation: r = 1; if (Rotor(1)%rotate < 0) r = −1
control: INPUT_coll=1, INPUT_latcyc=1, INPUT_lngcyc=1 (rotor control connection to aircraft controls)

Input Based on Configuration 19

control: T_coll(1,1)=1., T_latcyc(2,1)= − r, T_lngcyc(3,1)=-1.

Second rotor is tail rotor: config=’tail+antiQ’, fThrust=1., fArea=0., SET_geom=’tailrotor’, mainRotor=1

direction=’tail’, WRotor%MODEL_config=2 (tail rotor)
rotation: r = 1; if (Rotor(1)%rotate < 0) r = −1
control: KIND_control=2 (thrust and NFP command); INPUT_coll=1, T_coll(4,1)= − r (rotor collective connection to aircraft control ’pedal’)

Third rotor is propeller: config=’prop+auxT’, fThrust=1., fArea=0., SET_geom=’standard’

direction=’prop’, WRotor%MODEL_config=3 (auxiliary thrust)
control: KIND_control=2 (thrust and NFP command); INPUT_coll=1, T_coll(8,1)=1. (rotor collective connection to aircraft control ’prop’)

Performance: PRotorInd%MODEL_twin=’none’

Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

d) Wing
Configuration: fDGW=1.

Control: nVincid=1

INPUT_flap=1, INPUT_flaperon=1, INPUT_aileron=1 (wing control connection to aircraft controls)
T_aileron(9,1)=1. (aileron direct control)
T_flap(10,1)=1. (flap direct control)

Weight: WWing%MODEL_wing=2 (parametric)

e) Tail
Control: INPUT_incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T_incid(5,1)=1. (incidence connection to aircraft control ’tailinc’), T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(7,1)=1. (rudder direct control)

f) Propulsion: WDrive%ngearbox=3, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15

2–7 Multicopter

a) Components: nTail=0 (no tail)

b) Rotor
Configuration: config=’main+multirotor’, fDGW=1/nRotor, fArea=1., SET_geom=’multicopter’

Control: KIND_control=2 (thrust and NFP command); INPUT_coll=1

rotation: r = 1; if (rotate < 0) r = −1; a =ang_multicopter

T_coll(1,1)=1., T_coll(2,1)=− sin(a), T_coll(3,1)=cos(a), T_coll(4,1)=r (rotor collective connection to aircraft controls)

Input Based on Configuration 20

Performance: PRotorInd%MODEL_twin=’multirotor’; xh_multi=0., xp_multi=0., xf_multi=0., except 1.0 for this rotor
Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

c) Propulsion: WDrive%ngearbox=nRotor, WDrive%ndriveshaft=nRotor-1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

2–8 Airplane

a) Components: nRotor=1, nWing=1

b) Solution: KIND_Lscale=2 (wing span reference)

c) Aircraft
Geometry: INPUT_geom=2, KIND_scale=2, kScale=1 (geometry scaled with wing span); KIND_Ref=2, kRef=1 (wing reference)
Aircraft controls: ncontrol=9, IDENT_control=’coll’,’latcyc’,’lngcyc’,’pedal’,’tailinc’,’elevator’,’rudder’,’aileron’,’flap’

coll = propeller, latcyc = lateral stick, lngcyc = longitudinal stick

d) Systems: MODEL_FWfc=1 (fixed wing flight controls)

e) Rotor
Propeller: config=’prop+auxT’, fThrust=1., fDGW=0., SET_geom=’standard’

direction=’prop’, WRotor%MODEL_config=3 (auxiliary thrust)
Control: KIND_control=2 (thrust and NFP command); INPUT_coll=1, T_coll(1,1)=1. (rotor collective connection to aircraft control ’coll’)

f) Wing
Configuration: fDGW=1.

Control: nVincid=1

INPUT_flap=1, INPUT_aileron=1 (wing control connection to aircraft controls)
T_aileron(2,1)=1. (lateral stick), T_aileron(8,1)=1. (aileron direct control)
T_flap(9,1)=1. (flap direct control)

Weight: WWing%MODEL_wing=2 (parametric)

g) Tail: KIND_TailVol=1, TailVolRef=1 (wing reference)
Control: INPUT_incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T_incid(5,1)=1. (incidence connection to aircraft control ’tailinc’), T_cont(3,1)=1. (longitudinal stick), T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(4,1)=1. (pedal), T_cont(7,1)=1. (rudder direct control)

h) Propulsion: WDrive%ngearbox=1, WDrive%ndriveshaft=1, WDrive%fShaft=0.1

21

Chapter 3

Parameters and Constants

Parameters Value

ncasemax 10 nfltmax 21 nauxtankmax 4
nfilemax 40 ndesignmax 41 ngearmax 8
nrotormax 16 ncontmax 20 nratemax 20
npropmax 16 nsweepmax 200 nengtmax 20
nengmax 16 qsweepmax 4 nengkmax 6
njetmax 4 ntrimstatemax 20 nengrmax 40
nchrgmax 4 mtrimmax 16 nengpmax 20
nstatemax 10 nvelmax 20 nengcmax 80
nwingmax 8 ntablemax 32 nspeedmax 8
ntailmax 6 nrmax 51 nrowmax 4000
ntankmax 4 mrmax 40 naeromax 100
nmissmax 20 mpsimax 36
nsegmax 40 npanelmax 5

Constants Value

ACTION_error 0 SET_takeoff_transition 6 TRIM_QUANT_tank 21
ACTION_file 1 SET_takeoff_climb 7 TRIM_QUANT_Bmargin 22
ACTION_ident 2 SET_takeoff_brake 8 TRIM_QUANT_rotorL 23
ACTION_list 3 MAX_QUANT_none 0 TRIM_QUANT_rotorfL 24
ACTION_copy 4 MAX_QUANT_end 1 TRIM_QUANT_CLs 25
ACTION_init 5 MAX_QUANT_range 2 TRIM_QUANT_rotorV 26
ACTION_delete 6 MAX_QUANT_rangelow 3 TRIM_QUANT_rotorX 27
ACTION_delone 7 MAX_QUANT_range100 4 TRIM_QUANT_rotorfX 28
ACTION_dellast 8 MAX_QUANT_rangeVg 5 TRIM_QUANT_CXs 29
ACTION_config 9 MAX_QUANT_rangelowVg 6 TRIM_QUANT_XoQ 30

Parameters and Constants 22

ACTION_nosize 10 MAX_QUANT_range100Vg 7 TRIM_QUANT_CTs 31
ACTION_desc 11 MAX_QUANT_climb 8 TRIM_QUANT_Tmargs 32
ACTION_soln 12 MAX_QUANT_angle 9 TRIM_QUANT_Tmargt 33
ACTION_endfile 13 MAX_QUANT_power 10 TRIM_QUANT_Tmarge 34
ACTION_endcase 14 MAX_QUANT_PoV 11 TRIM_QUANT_rotorP 35
ACTION_endjob 15 MAX_QUANT_alt 12 TRIM_QUANT_betac 36
STATE_newcase 1 MAX_QUANT_Pmargin 13 TRIM_QUANT_betas 37
STATE_onecase 2 MAX_QUANT_Qmargin 14 TRIM_QUANT_hubMx 38
STATE_endofjob 3 MAX_QUANT_PQmargin 15 TRIM_QUANT_hubMy 39
STATE_init 1 MAX_QUANT_Jmargin 16 TRIM_QUANT_hubQ 40
STATE_size 2 MAX_QUANT_PJmargin 17 TRIM_QUANT_wingL 41
STATE_miss 3 MAX_QUANT_QJmargin 18 TRIM_QUANT_wingfL 42
STATE_perf 4 MAX_QUANT_PQJmargin 19 TRIM_QUANT_CL 43
STATE_maps 5 MAX_QUANT_Bmargin 20 TRIM_QUANT_Lmargin 44
STATE_out 6 MAX_QUANT_Lmargin 21 TRIM_QUANT_tailL 45
SIZE_perf_engine 1 MAX_QUANT_Tmargs 22 TRIM_VAR_not_found 0
SIZE_perf_rotor 2 MAX_QUANT_Tmargt 23 TRIM_VAR_pitch -1
SIZE_perf_none 3 MAX_QUANT_Tmarge 24 TRIM_VAR_roll -2
SIZE_engine_engn 1 MAX_VAR_none 0 TRIM_VAR_ROC -3
SIZE_engine_none 2 MAX_VAR_vel -1 TRIM_VAR_side -4
SIZE_jet_jet 1 MAX_VAR_ROC -2 TRIM_VAR_speed -5
SIZE_jet_none 2 MAX_VAR_side -3 TRIM_VAR_turn -6
SIZE_charge_chrg 1 MAX_VAR_alt -4 TRIM_VAR_pullup -7
SIZE_charge_none 2 MAX_VAR_turn -5 TRIM_VAR_Vtip -8
SIZE_rotor_none 1 MAX_VAR_pullup -6 TRIM_VAR_Nspec -9
SIZE_rotor_radius 2 MAX_VAR_xaccF -7 AERO_VAR_none 0
SIZE_rotor_thrust 3 MAX_VAR_yaccF -8 AERO_VAR_not_found -1
SET_rotor_radius 1 MAX_VAR_zaccF -9 AERO_VAR_alpha -2
SET_rotor_DL 2 MAX_VAR_xaccI -10 AERO_VAR_beta -3
SET_rotor_ratio 3 MAX_VAR_yaccI -11 RCCONFIG_rotorcraft 0
SET_rotor_scale 4 MAX_VAR_zaccI -12 RCCONFIG_helicopter 1
SET_rotor_not_radius 5 MAX_VAR_xaccG -13 RCCONFIG_tandem 2
SET_wing_area 1 MAX_VAR_yaccG -14 RCCONFIG_coaxial 3
SET_wing_WL 2 MAX_VAR_zaccG -15 RCCONFIG_tiltrotor 4

Parameters and Constants 23

SET_wing_not_area 3 MAX_VAR_pitch -16 RCCONFIG_compound 5
SET_wing_span 4 MAX_VAR_roll -17 RCCONFIG_multicopter 6
SET_wing_ratio 5 MAX_VAR_Vtip -18 RCCONFIG_airplane 7
SET_wing_radius 6 MAX_VAR_Nspec -19 ROTORCONFIG_main 1
SET_wing_width 7 SET_vel_general 1 ROTORCONFIG_tail 2
SET_wing_hub 8 SET_vel_hover 2 ROTORCONFIG_prop 3
SET_wing_panel 9 SET_vel_vert 3 ROTORCONFIG_tandem 4
SET_wing_not_span 10 SET_vel_right 4 ROTORCONFIG_coaxial 5
SET_tank_input 1 SET_vel_left 5 ROTORCONFIG_tiltrotor 6
SET_tank_miss 2 SET_vel_rear 6 ROTORCONFIG_not_twin 7
SET_tank_fmiss 3 SET_vel_Vfwd 7 SET_geom_standard 0
SET_tank_used 4 SET_vel_Vmag 8 SET_geom_tiltrotor 1
SET_tank_nopower 0 SET_vel_climb 9 SET_geom_coaxial 2
SET_tank_power 1 SET_vel_VNE 10 SET_geom_tandem 3
SET_SDGW_input 1 SET_vel_takeoff 11 SET_geom_tailrotor 4
SET_SDGW_fDGW 2 SET_vel2_TAS 1 SET_geom_multicopter 5
SET_SDGW_fWMTO 3 SET_vel2_CAS 2 MODEL_twin_none 0
SET_SDGW_maxfuel 4 SET_vel2_Mach 3 MODEL_twin_sidebyside 1
SET_SDGW_perf 5 SET_atmos_input -1 MODEL_twin_coaxial 2
SET_WMTO_input 1 SET_atmos_dens -2 MODEL_twin_tandem 3
SET_WMTO_fDGW 2 SET_atmos_notair -3 MODEL_twin_multirotor 4
SET_WMTO_fSDGW 3 SET_atmos_std 1 tablevar_none 0
SET_WMTO_maxfuel 4 SET_atmos_std_dtemp 2 tablevar_V 1
SET_WMTO_perf 5 SET_atmos_std_temp 3 tablevar_Vh 2
SET_limit_input 1 SET_atmos_polar 4 tablevar_mu 3
SET_limit_Ratio 2 SET_atmos_polar_dtem 5 tablevar_muz 4
SET_limit_Pav 3 SET_atmos_polar_temp 6 tablevar_alpha 5
SET_limit_Preq 4 SET_atmos_trop 7 tablevar_muTPP 6
SET_GW_none 0 SET_atmos_trop_dtemp 8 tablevar_muzTPP 7
SET_GW_DGW 1 SET_atmos_trop_temp 9 tablevar_alphaTPP 8
SET_GW_SDGW 2 SET_atmos_hot 10 tablevar_CTs 9
SET_GW_WMTO 3 SET_atmos_hot_dtemp 11 tablevar_Mx 10
SET_GW_fDGW 4 SET_atmos_hot_temp 12 tablevar_Mtip 11
SET_GW_fSDGW 5 SET_atmos_hot_table 13 tablevar_Mat 12

Parameters and Constants 24

SET_GW_fWMTO 6 SET_Vtip_input 1 SET_panel_free 0
SET_GW_input 7 SET_Vtip_ref 2 SET_panel_span 1
SET_GW_maxP 8 SET_Vtip_speed 3 SET_panel_bratio 2
SET_GW_maxQ 9 SET_Vtip_conv 4 SET_panel_edge 3
SET_GW_maxPQ 10 SET_Vtip_hover 5 SET_panel_station 4
SET_GW_maxJ 11 SET_Vtip_cruise 6 SET_panel_radius 5
SET_GW_maxPJ 12 SET_Vtip_man 7 SET_panel_width 6
SET_GW_maxQJ 13 SET_Vtip_OEI 8 SET_panel_hub 7
SET_GW_maxPQJ 14 SET_Vtip_xmsn 9 SET_panel_adjust 8
SET_GW_source 15 SET_Vtip_mu 10 SET_panel_area 9
SET_GW_fsource 16 SET_Vtip_Mtip 11 SET_panel_Sratio 10
SET_GW_payfuel 17 SET_Vtip_Mat 12 SET_panel_chord 11
SET_GW_paymiss 18 SET_Vtip_Nrotor 13 SET_panel_cratio 12
SET_UL_pay 1 STATE_LG_default 0 SET_panel_taper 13
SET_UL_fuel 2 STATE_LG_extend 1 SET_tail_area 1
SET_UL_payfuel 3 STATE_LG_retract 2 SET_tail_vol 2
SET_UL_miss 4 TRIM_QUANT_not_found 0 SET_tail_span 3
SET_UL_paymiss 5 TRIM_QUANT_forcex 1 SET_tail_AR 4
SET_pay_none 1 TRIM_QUANT_forcey 2 SET_tail_chord 5
SET_pay_input 2 TRIM_QUANT_forcez 3 MODEL_engine_RPTEM 1
SET_pay_delta 3 TRIM_QUANT_momentx 4 MODEL_engine_table 2
SET_pay_scale 4 TRIM_QUANT_momenty 5 MODEL_engine_recip 3
KIND_MissSeg_taxi 1 TRIM_QUANT_momentz 6 MODEL_engine_comp 4
KIND_MissSeg_dist 2 TRIM_QUANT_nz 7 MODEL_engine_compreact 5
KIND_MissSeg_time 3 TRIM_QUANT_nx 8 MODEL_engine_compflow 6
KIND_MissSeg_hold 4 TRIM_QUANT_ny 9 MODEL_engine_motor 7
KIND_MissSeg_climb 5 TRIM_QUANT_power 10 MODEL_engine_gen 8
KIND_MissSeg_spiral 6 TRIM_QUANT_Pmargin 11 MODEL_engine_motorgen 9
KIND_MissSeg_fuel 7 TRIM_QUANT_Qmargin 12 MODEL_engine_simpleeng 10
KIND_MissSeg_burn 8 TRIM_QUANT_powerEG 13 MODEL_engine_simplemot 11
KIND_MissSeg_takeoff 9 TRIM_QUANT_Emargin 14 MODEL_jet_RPJEM 1
SET_takeoff_none 0 TRIM_QUANT_FEmargin 15 MODEL_jet_react 2
SET_takeoff_start 1 TRIM_QUANT_thrust 16 MODEL_jet_flow 3
SET_takeoff_groundrun 2 TRIM_QUANT_Jmargin 17 MODEL_jet_simple 4

Parameters and Constants 25

SET_takeoff_enginefail 3 TRIM_QUANT_FJmargin 18 MODEL_charge_fuelcell 1
SET_takeoff_liftoff 4 TRIM_QUANT_charge 19 MODEL_charge_solarcell 2
SET_takeoff_rotation 5 TRIM_QUANT_Cmargin 20 MODEL_charge_simple 3

26

Chapter 4

Common: Job

Variable Type Description Default

NDARC
Version (set by main program)

version c*6 number n.n
modification c*32 modification
versionout c*64 string for headers (Version n.n, modification "xxx")

+ Initialization
INIT_input int + input parameters (0 default, 1 last case input, 2 last case solution) 1

INIT_data int + other parameters (0 default, 1 start of last case, 2 end of last case) 0

INIT_input:
if default, all input variables set to default values
if last-case-input, then case inherits input at beginning of previous case
if last-case-solution, then case inherits input at end of previous case

use INIT_input=2 to analyze case #1 design in subsequent cases
INIT_data: if always start-last-case, then case starts from default

if default, all other variables set to default values

+ Errors
ACT_error int + action on error (0 none, 1 exit) 1

ACT_version int + action on version mismatch in input (0 none, 1 exit) 0

+ File open
OPEN_status int + status keyword for write (0 unknown, 1 replace, 2 new, 3 old) 2

Common: Job 27

+ Input/output unit numbers
+ input

nuin int + standard input 5

nufile int + secondary file input 40

+ output
nuout int + standard output 6

nudesign int + design (DESIGNn) 41

nuperf int + performance (PERFn) 42

nuaero int + airframe aerodynamics (AEROn) 43

nuengine int + engine performance (ENGINEn) 44

nugeom int + geometry output (GEOMETRYn) 45

nuacd int + aircraft description (AIRCRAFTn) 46

nusoln int + solution (SOLUTIONn) 47

nusketch int + sketch output (SKETCHn) 48

nuerror int + errors (ERRORn) 49

default input/output unit numbers usually acceptable
default OPEN_status can be changed as appropriate for computer OS

Analysis
kcase int current case number
ncase int number of cases (maximum ncasemax)
case_state int case state
job_state int job state
out_design_state int design output state (1 file open)
out_perf_state int performance output state (1 file open)
out_geom_state int geometry output state (1 file open)
out_error_state int errors output state (1 file open)
nuinit int nuout or nuerror
fscratch FltState scratch structure

Input
kind_input int file input status (0 for primary file, 1 for secondary file, 2 for aircraft or solution file)
nread int unit number for input (nuin for primary file, nufile for secondary file)

Common: Job 28

Input file identification (stored from action=IDENT data)
ninputfile int number of identifications (maximum nfilemax; first is standard input)
input_title(nfilemax) c*80 title
input_created(nfilemax) c*20 creation date

theDesign(ncasemax) Design Design
theInput Design Input
theLastCaseInput Design Input from last case

system data = Job + theDesign(ncase) + theInput + theLastCaseInput

all data structure parameters = input (can be changed by analysis) or other (generated by analysis)
theInput used for input (not changed by analysis)
theLastCaseInput used to print only what changed from last case
after case input concluded, kcase incremented and theInput copied to theDesign(kcase)

CPU time
CPUtime_case_start(ncasemax)

real case start
CPUtime_case_end(ncasemax) real case end
CPUtime_case(ncasemax) real case
CPUtime_job real job

Clock time
DateTime_case_start(8,ncasemax)

int case start
DateTime_case_end(8,ncasemax)

int case end
ElapsedTime_case(ncasemax) real case
ElapsedTime_job real job

Case dimensions
nrotor_case int number of rotors (Aircraft)
nwing_case int number of wings (Aircraft)

Common: Job 29

ntail_case int number of tails (Aircraft)
ntank_case int number of fuel tank systems (Aircraft)
npropulsion_case int number of propulsion groups (Aircraft)
nenginegroup_case int number of engine groups (Aircraft)
njetgroup_case int number of jet groups (Aircraft)
nchargegroup_case int number of charge groups (Aircraft)
nenginemodel_case int number of engine models (Aircraft)
nengineparamn_case int number of engine model parameters (Aircraft)
nenginetable_case int number of engine tables (Aircraft)
nrecipmodel_case int number of reciprocating engine models (Aircraft)
ncompressormodel_case int number of compressor models (Aircraft)
nmotormodel_case int number of motor models (Aircraft)
njetmodel_case int number of jet models (Aircraft)
nfuelcellmodel_case int number of fuel cell models (Aircraft)
nsolarcellmodel_case int number of solar cell models (Aircraft)
nbatterymodel_case int number of bettery models (Aircraft)
ncontrol_case int number of controls (Aircraft)
nstate_control_case int number of control states (Aircraft)
npanel_case(nwingmax) int number of wing panels (Wing)
mauxtanksize_case(ntankmax)

int number of aux tank sizes (FuelTank)
ngear_case(npropmax) int number of drive system states (Propulsion)
nstate_trim_case int number of trim states (Aircraft)
mtrim_case(ntrimstatemax) int number of trim variables (Aircraft)
nwoful_case int number of other fixed useful load categories (System)

Job constants
pi real π
twopi real 2π
halfpi real π/2
degrad real degree/radian = 180/π
raddeg real radian/degree = π/180

Common: Job 30

Case constants
gravity real gravity g (ft/sec2 or m/sec2)
density_sls real SLS density ρ0 (slug/ft3 or kg/m3)
csound_sls real SLS speed of sound cs (ft/sec or m/sec)

Conversion factors
powerconv real power (hp from ft-lb/sec; kW from m-N/sec)
knotsconv real speed (knots from ft/sec or m/sec)
nmconv real range (nm from ft or m)
massconv real mass (slug from lb; kg from kg)
volumeconv real volume (gal from ft3; liter from m3)

Conversion factors for scaled D/q
DoQconv23 real D/q = kW 2/3 (ft2 from k=m2/kg2/3; m2 from k=ft2/lb2/3; depending on Units_Dscale)
DoQconv12 real D/q = kW 1/2 (ft2 from k=m2/kg1/2; m2 from k=ft2/lb1/2; depending on Units_Dscale)

Conversion factors for mission and flight condition input
uconv_vel real velocity (knots from input)
uconv_alt real altitude (ft or m from input)
uconv_pay real payload (lb or kg from input)
uconv_time real time (minutes from input)
uconv_dist real distance (nm from input)
uconv_drag real drag (ft2 or m2 from input)
uconv_ROC real rate of climb (ft/sec or m/sec from input)
uconv_en real Conversion factor for energy (MJ from input)

Conversion factors for weight equations
wtconv_hp real power (hp from hp or kW)
wtconv_lb real weight (lb from lb or kg)
wtconv_frc real force (lb from lb or N)
wtconv_ft real length (ft from ft or m)
wtconv_ft2 real area (ft2 from ft2 or m2)
wtconv_gal real fuel (gal from gal or liter)
wtconv_slug real slug (slug/lb or kg/kg)
wtconv_in real inches (in/ft or m/m)
wtconv_kW real power (kW from hp or kW)
wtconv_m real meter (m from ft or m)

Common: Job 31

Conversion factors for energy
Econv_kg real weight (kg from lb or kg)
Econv_L real volume (liter from gal or liter)
Econv_dE real energyflow (MJ/hr from hp or kW)

Conversion factors
DLconv real disk loading (lb/ft2 from lb/ft2 or N/m2)
tonconv real ton (from lb or kg)
rangeconv real range for fuel=1%GW (nm from 1/(lb/hp-hr) or 1/(kg/kW-hr), times ln(1/.99))

Output
WRITEenergy_case int write fuel energy for burn weight

Units for output
Uwrite int analysis units (from Cases)
Uwrite_temp int mission units, temperature (from Cases)
Ukts c*10 speed (knots, mph, kph, ft/sec, m/sec); uconv_vel

UROC c*10 rate of climb (ft/min, ft/sec, m/sec); uconv_ROC

Udist c*10 distance (nm, mile, km); uconv_dist

Utime c*10 time (min, hr); uconv_time

UDoQ c*10 drag (ft2, m2); uconv_drag

Upay c*10 payload (lb, kg); uconv_pay

Ualt c*10 altitude (ft, m); uconv_alt

Ulen c*10 length
Uarea c*10 area
Uvol c*10 volume
Uvel c*10 velocity
Utemp c*10 temperature
Uwt c*10 weight
Upwr c*10 power
Ufuelflow c*10 fuel flow
Umassflow c*10 mass flow
Usfc c*10 sfc
Utsfc c*10 thrust sfc
Uspecrange c*10 specific range
Ufueleff c*10 fuel efficiency
Uproductivity c*10 productivity

Common: Job 32

Ufrc c*10 force
Umom c*10 moment
Uque c*10 dynamic pressure
Udens c*10 density
Udiskload c*10 disk loading
Uenergy c*10 energy
UspecrangeE c*10 specific range
UfueleffE c*10 fuel efficiency
UproductivityE c*10 productivity

33

Chapter 5

Structure: Design

Variable Type Description Default

Cases Cases Cases
Size Size Size Aircraft for Design Conditions and Missions
OffDesign OffDesign Mission Analysis
Performance Performance Flight Performance Analysis
MapEngine MapEngine Map of Engine Performance
MapAero MapAero Map of Airframe Aerodynamics
Solution Solution Solution Procedures
Cost Cost Cost
Emissions Emissions Emissions
Aircraft Aircraft Aircraft
Systems Systems Systems
Fuselage Fuselage Fuselage
LandingGear LandingGear Landing Gear
Rotor(nrotormax) Rotor Rotors
Wing(nwingmax) Wing Wings
Tail(ntailmax) Tail Tails
FuelTank(ntankmax) FuelTank Fuel Tank Systems
Propulsion(npropmax) Propulsion Propulsion Groups
EngineGroup(nengmax) EngineGroup Engine Groups
JetGroup(njetmax) JetGroup Jet Groups
ChargeGroup(nchrgmax) ChargeGroup Charge Groups
EngineModel(nengmax) EngineModel Engine Models
EngineParamN(nengpmax) EngineParamNEngine Model Parameters
EngineTable(nengmax) EngineTable Engine Tables
RecipModel(nengmax) RecipModel Reciprocating Engine Models
CompressorModel(nengmax) CompressorModelCompressor Models
MotorModel(nengmax) MotorModel Motor Models
JetModel(njetmax) JetModel Jet Models

Structure: Design 34

FuelCellModel(nchrgmax) FuelCellModelFuel Cell Models
SolarCellModel(nchrgmax) SolarCellModelSolar Cell Models
BatteryModel(ntankmax) BatteryModelBattery Models

35

Chapter 6

Structure: Cases

Variable Type Description Default

+ Case Description
title c*100 + title
subtitle1 c*100 + subtitle
subtitle2 c*100 + subtitle
subtitle3 c*100 + subtitle
notes c*1000 + notes
ident c*32 + identification
timedate c*20 time-date identification

+ Case Tasks (0 for none)
TASK_Size int + size aircraft for design conditions 1

TASK_Mission int + mission analysis 1

TASK_Perf int + flight performance analysis 1

TASK_Map_engine int + map of engine performance 0

TASK_Map_aero int + map of airframe aerodynamics 0

Turn off all tasks to just initialize and check the model, including geometry and weights

+ Write Input Parameters
WRITE_input int + selection (0 none, 1 all, 2 first case) 2

WRITE_input_TechFactors int + TechFactors (0 for none) 1

WRITE_input_Geometry int + Geometry (0 for none) 1

Structure: Cases 36

+ Output
+ selection (0 for none)

OUT_design int + design file 0

OUT_perf int + performance file 0

OUT_geometry int + geometry file 0

OUT_aircraft int + aircraft description file 0

OUT_solution int + solution file (1 text, 2 binary) 0

OUT_sketch int + sketch file 0

OUT_error int + errors file 0

+ file name or logical name (blank for default logical name)
FILE_design c*256 + design file (DESIGNn) ’ ’

FILE_perf c*256 + performance file (PERFn) ’ ’

FILE_geometry c*256 + geometry file (GEOMETRYn) ’ ’

FILE_aircraft c*256 + aircraft description file (AIRCRAFTn) ’ ’

FILE_solution c*256 + solution file (SOLUTIONn) ’ ’

FILE_sketch c*256 + sketch file (SKETCHn) ’ ’

FILE_engine c*256 + engine performance file (ENGINEn) ’ ’

FILE_aero c*256 + airframe aerodynamics file (AEROn) ’ ’

FILE_error c*256 + errors file (ERRORn) ’ ’

+ formats
WRITE_page int + page control (0 none, 1 form feed, 2 extended Fortran) 1

WRITE_design int + design (1 first case only, 2 all cases) 2

WRITE_wt_level int + weight statement, max level (1 to 5) 5

WRITE_wt_long int + weight statement, style (0 omit zero lines, 1 all lines) 0

WRITE_energy int + fuel energy for burn weight (0 for none) 1

WRITE_flight int + flight state, component loads (0 for none) 0

WRITE_files int + design, performance, or geometry (1 single file of all cases) 0

WRITE_sketch_load int + sketch component forces (0 none) 1

WRITE_sketch_cond int + sketch flight condition (0 none, 1 design, 2 performance) 0

ksketch int + flight condition number 0

selected files are generated for each case (n = case number in default name)
option single file of all cases for design, performance, or geometry (form feed between cases)

size and analysis tasks can produce design and performance files
same information as in standard output, in tab-delimited form

Structure: Cases 37

aircraft or solution file can be read by subsequent case or job
geometry file has information for graphics and other analyses
sketch file has information to check geometry and solution (DXF format)

flight condition required to use Euler angles, control and incidence, component forces
engine map task (TASK_Map_engine) produces engine performance file
airframe aerodynamics map task (TASK_Map_aero) produces airframe aerodynamics file
error messages to standard output (OUT_error=0) or separate file (OUT_error=1)

+ Gravity
SET_grav int + specification (0 standard, 1 input) 0

grav real + input gravitational acceleration g
+ Environment

density_ref real + reference density (0. for air at SLS) 0.

csound_ref real + reference speed of sound (0. for air at SLS) 0.

+ Units
Units int + analysis units (1 English, 2 SI) 1

+ units for input of missions and flight conditions
Units_miss int + override default units (0 no, 1 yes) 0

Units_vel int + velocity units (0 knots; 1 mile/hr, 2 km/hr, 3 ft/sec, 4 m/sec) 0

Units_alt int + altitude units (0 ft or m; 1 ft, 2 m) 0

Units_pay int + payload units (0 lb or kg; 1 lb, 2 kg) 0

Units_time int + time units (0 minutes; 1 hours) 0

Units_dist int + distance units (0 nm; 1 miles; 2 km) 0

Units_temp int + temperature (0 F or C; 1 F, 2 C) 0

Units_drag int + drag units (0 ft2 or m2; 1 ft2, 2 m2) 0

Units_ROC int + rate of climb units (0 ft/min; 1 ft/sec, 2 m/sec) 0

+ units for parameters
Units_Dscale int + input D/q scaled with gross weight (0 analysis default, 1 English, 2 SI) 0

Units_energy int + units for energy input and output (1 MJ, 2 kWh) 1

Analysis units: must be same for all cases in job
English: ft-slug-sec-F; weights in lb, power in hp (internal units)
SI: m-kg-sec-C; weights in kg, power in kW (internal units)

Structure: Cases 38

Weight in the design description is actually mass
pounds converted to slugs using reference gravitational acceleration

Default units for flight condition and mission: override with Units_xxx

speed in knots, time in minutes, distance in nm, ROC in ft/min
Input Efuel_cap, Eaux_cap always MJ; internal energy units MJ
If load aircraft description or solution file, checked that Units not changed

Input for case
inCases int Cases
inSize int Size
inSizeCondition(nfltmax) int SizeCondition
inSizeMission(nmissmax) int SizeMission
inOffDesign int OffDesign
inOffMission(nmissmax) int OffMission
inPerformance int Performance
inPerfCondition(nfltmax) int PerfCondition
inMapEngine int MapEngine
inMapAero int MapAero
inSolution int Solution

Last input
lastSizeCondition int SizeCondition
lastSizeMission int SizeMission
lastOffMission int OffMission
lastPerfCondition int PerfCondition

Units
Units_ACD int Units from aircraft description or solution file
inAircraftFile int aircraft description file (0 not loaded)
inSolutionFile int solution file (0 not read)

case input of other structures recorded in Aircraft structure
there must be input for systems, fuselage, landing gear, fuel tank
there must be input for all structures used

39

Chapter 7

Structure: Size

Variable Type Description Default

Size Aircraft for Design Conditions and Missions
SizeParam SizeParam Parameters

Sizing Flight Conditions
FltCond(nfltmax) FltCond conditions
FltState(nfltmax) FltState conditions

Design Missions
Mission(nmissmax) Mission missions

40

Chapter 8

Structure: SizeParam

Variable Type Description Default

+ Size Aircraft for Design Conditions and Missions
title c*100 + title
notes c*1000 + notes

+ Sizing Method
SIZE_perf(npropmax) c*16 + quantity sized from performance ’engine’

SIZE_engine(nengmax) c*16 + engine group sized from performance ’none’

SIZE_jet(njetmax) c*16 + jet group sized from performance ’jet’

SIZE_charge(nchrgmax) c*16 + charge group sized from performance ’none’

SIZE_param int + parameter iteration (0 not required) 0

SET_rotor(nrotormax) c*32 + rotor parameters ’DL+Vtip+CWs’

SET_wing(nwingmax) c*16 + wing parameters ’WL+aspect’

FIX_DGW int + design gross weight (0 calculated, 1 fixed) 0

FIX_WE int + weight empty (0 calculated, 1 fixed, 2 scaled) 0

SET_tank(ntankmax) c*16 + fuel tank capacity ’miss’

SET_SDGW c*16 + structural design gross weight ’f(DGW)’

SET_WMTO c*16 + maximum takeoff weight ’f(DGW)’

SET_limit_ds(npropmax) c*16 + drive system torque limit ’ratio’

size task (Cases%TASK_Size=1): at least one nFltCond or nMission

no size task (Cases%TASK_Size=0): size input specifies how fixed aircraft determined

SIZE_perf: size power-producing engines of propulsion group
’engine’ = power from maximum of power required for all designated conditions and missions
’rotor’ = radius from maximum of power required for all designated conditions and missions
’none’ = power required not used to size engine/rotor

flight conditions and missions (max GW, max effort, or trim)
that have zero power margin are not used to size engine or rotor
that have zero torque margin are not used to size transmission

Structure: SizeParam 41

SIZE_engine: size power-consuming engines of engine group
’engine’ = power from maximum of power required for all designated conditions and missions

flight conditions and missions (max GW, max effort, or trim)
that have zero power margin are not used to size engine group

designated only for engine groups that consume power
engine groups that produce power sized with propulsion group (SIZE_perf)

’none’ = power required not used to size engine group
SIZE_jet:

’jet’ = thrust from maximum of thrust required for all designated conditions and missions
’none’ = thrust required not used to size jet group

flight conditions and missions (max GW, max effort, or trim)
that have zero thrust margin are not used to size jet group

SIZE_charge:
’charge’ = power from maximum of power required for all designated conditions and missions
’none’ = power required not used to size charge group

’SIZE_param’: use to force parameter iteration

SET_rotor, rotor parameters: required for each rotor
rotor parameters: input three or two quantities, others derived

SET_rotor = input three of (’radius’ or disk loading ’DL’ or ’ratio’), ’CWs’, ’Vtip’, ’sigma’

except if SIZE_perf=’rotor’: SET_rotor = input two of ’CWs’, ’Vtip’, ’sigma’ for one or more main rotors
SET_rotor = ’ratio+XX+XX’ to calculate radius from radius of another rotor
tip speed is Vtip_ref for drive state #1

rotor parameters for an antitorque or aux thrust rotor:
SET_rotor = input three of (’radius’ or ’DL’ or ’ratio’ or ’scale’), ’CWs’, ’Vtip’, ’sigma’

SET_rotor = ’scale+XX+XX’ to calculate tail rotor radius from parametric equation,
using main rotor radius and disk loading

thrust from designated sizing conditions and missions (DESIGN_thrust)

SET_wing, wing parameters: for each wing; input two quantities, other two derived
SET_wing = input two of (’area’ or wing loading ’WL’), (’span’ or ’ratio’ or ’radius’or ’width’ or ’hub’ or ’panel’),

’chord’, aspect ratio ’aspect’

SET_wing = ’ratio+XX’ to calculate span from span of another wing
SET_wing = ’radius+XX’ to calculate span from rotor radius
SET_wing = ’width+XX’ to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)

Structure: SizeParam 42

SET_wing = ’hub+XX’ to calculate span from rotor hub position (tiltrotor)
SET_wing = ’panel+XX’ to calculate span from wing panel widths

FIX_DGW: input DGW restricts SIZE_perf, SET_GW parameters
FIX_WE: fixed or scaled weight empty obtained by adjusting contingency weight

scaled with design gross weight: WE=dWE+fWE*WD

SET_tank, fuel tank sizing: usable fuel capacity Wfuel_cap (weight) or Efuel_cap (energy)
’input’ = input Wfuel_cap or Efuel_cap

’miss’ = calculate from mission fuel used
Wfuel_cap or Efuel_cap = max(fFuel_cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))

’f(miss)’ = function of mission fuel used
Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*((maximum mission fuel)+(reserve fuel))

’used’ = calculate from maximum fuel quantity in tank during mission
Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*(maximum fuel in tank)

’XX+power’ = and calculate from mission battery discharge power

SET_SDGW, structural design gross weight:
’input’ = input
’f(DGW)’ = based on DGW; WSD=dSDGW+fSDGW*WD

’f(WMTO)’ = based on WMTO; WSD=dSDGW+fSDGW*WMTO

’maxfuel’ = based on fuel state; WSD=dSDGW+fSDGW*WG, WG = WD–Wfuel_DGW+fFuelSDGW*Wfuel−cap

’perf’ = calculated from maximum gross weight at SDGW sizing conditions (DESIGN_sdgw)
Aircraft input parameters: dSDGW, fSDGW, fFuelSDGW

SET_WMTO, maximum takeoff weight:
’input’ = input
’f(DGW)’ = based on DGW; WMTO=dWMTO+fWMTO*WD

’f(SDGW)’ = based on SDGW; WMTO=dWMTO+fWMTO*WSD

’maxfuel’ = based on maximum fuel; WMTO=dWMTO+fWMTO*WG, WG = WD–Wfuel_DGW+Wfuel−cap

’perf’ = calculated from maximum gross weight at WMTO sizing conditions (DESIGN_wmto)
Aircraft input parameters: dWMTO, fWMTO

Structure: SizeParam 43

SET_limit_ds, drive system torque limit: input (use Plimit_xx) or calculate (from fPlimit_xx)
’input’ = Plimit_ds input
’ratio’ = from takeoff power, fPlimit_ds

∑
(NengPeng)

’Pav’ = from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Ωref/Ωprim)

∑
(NengPav)

’Preq’ = from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Ωref/Ωprim)

∑
(NengPreq)

engine shaft limit also uses EngineGroup%SET_limit_es

rotor shaft limit also uses Rotor%SET_limit_rs, rotor limits only use power required (or input)

input required to transmit sized rotorcraft to another job (through aircraft description file) or to following case:
turn off sizing: Cases%TASK_size=0, Cases%TASK_mission=1, Cases%TASK_perf=1

fix aircraft: use ACTION=’nosize’, or
SIZE_perf=’none’, SIZE_engine=’none’, SIZE_jet=’none’, SIZE_charge=’none’

SET_rotor=’radius+Vtip+sigma’, SET_wing=’area+span’, FIX_DGW=1

SET_tank=’input’, SET_limit_ds=’input’, SET_SDGW=’input’, SET_WMTO=’input’

with wing panels: SET_wing=’WL+panel’, Wing%SET_panel=’width+taper’,’span+taper’

Specification
iSIZE_perf(npropmax) int performance (SIZE_perf_engine, rotor, none)
iSIZE_engine(nengmax) int performance (SIZE_engine_engn, none)
iSIZE_jet(njetmax) int performance (SIZE_jet_jet, none)
iSIZE_charge(nchrgmax) int performance (SIZE_charge_chrg, none)
iSIZE_rotor(nrotormax) int rotor sized (SIZE_rotor_radius, thrust, none)
iSET_rotor_radius(nrotormax)

int rotor radius (SET_rotor_radius, DL, ratio, scale, not_radius)
FIX_rotor_CWs(nrotormax) int rotor CW /σ (1 fixed, 0 not)
FIX_rotor_Vtip(nrotormax) int rotor Vtip (1 fixed, 0 not)
FIX_rotor_sigma(nrotormax) int rotor σ (1 fixed, 0 not)
iSET_wing_area(nwingmax) int wing area (SET_wing_area, WL, not_area)
iSET_wing_span(nwingmax) int wing span (SET_wing_span, ratio, radius, width, hub, panel, not_span)
FIX_wing_chord(nwingmax) int wing chord (1 fixed, 0 not)

Structure: SizeParam 44

FIX_wing_AR(nwingmax) int wing aspect ratio (1 fixed, 0 not)
iSET_tank(ntankmax) int fuel tank (SET_tank_input, miss, fmiss, used)
iSET_tank_power(ntankmax) int fuel tank (SET_tank_nopower, power)
iSET_SDGW int SDGW (SET_SDGW_input, fDGW, fWMTO, maxfuel, perf)
iSET_WMTO int WMTO (SET_WMTO_input, fDGW, fSDGW, maxfuel, perf)
iSET_limit_ds(npropmax) int drive system torque limit (SET_limit_input, ratio, Pav, Preq)

Number of conditions and missions
nSIZE_perf(npropmax) int conditions and missions for size engine or rotor
nSIZE_engine(nengmax) int conditions and missions for size engine group
nSIZE_jet(njetmax) int conditions and missions for size jet group
nSIZE_charge(nchrgmax) int conditions and missions for size charge group
nDESIGN_GW int design conditions and missions for DGW
nDESIGN_xmsn(npropmax) int design conditions and missions for transmission
nDESIGN_sdgw int design conditions for SDGW
nDESIGN_wmto int design conditions for WMTO
nDESIGN_tank int design missions for fuel tank
nDESIGN_thrust int design conditions and missions for rotor thrust

Size aircraft
kind_iter_size int kind iteration, performance (0 none, 1 size engine or radius, or engine group, or jet group, or charge group)
kind_iter_param int kind iteration, parameters (0 none, 1 calculate parameters)
issizeconv int converged (0 not)
count_size int number of iterations, performance loop
count_param int number of iterations, parameter loop
count_total int total number of iterations

error ratio
error_engine(nengmax) real engine
error_jet(njetmax) real jet
error_charge(nchrgmax) real charge
error_rotor(nrotormax) real rotor
error_DGW real DGW
error_xmsn(npropmax) real Plimit

error_sdgw real structural design gross weight
error_wmto real maximum takeoff weight
error_tank real Wfuelcap (rms all tanks)

Structure: SizeParam 45

error_thrust(nrotormax) real thrust
error_WE real WE

residual (difference after one size iteration)
resid_engine(nengmax) real engine power Peng = Peng

resid_jet(njetmax) real jet thrust Tjet = Tjet

resid_charge(nchrgmax) real charge power Pchrg = Pchrg

resid_rotor(nrotormax) real rotor radius R
resid_DGW real design gross weight DGW

resid_xmsn(npropmax) real transmission limit Plimit_ds = PDSlimit

resid_sdgw real structural design gross weight SDGW

resid_wmto real maximum takeoff weight WMTO

resid_tank(ntankmax) real fuel capacity Wfuel_cap = Wfuel−cap or Efuel_cap = Efuel−cap

resid_thrust(nrotormax) real rotor design thrust Tdesign

resid_WE real weight empty WE

Pratio(npropmax) real ratio PreqPG/PavPG (max all sizing conditions and missions)
Eratio(nengmax) real ratio PreqEG/PavEG (max all sizing conditions and missions)
Jratio(njetmax) real ratio TreqJG/TavJG (max all sizing conditions and missions)
Cratio(nchrgmax) real ratio PreqCG/PavCG (max all sizing conditions and missions)
nFltCond_out int number of conditions for output
nMission_out int number of missions for output

+ Sizing Flight Conditions
nFltCond int + number of conditions (maximum nfltmax) 0

+ Design Missions
nMission int + number of missions (maximum nmissmax) 0

input one condition (FltCond and FltState variables) in SizeCondition namelist

input one mission (MissParam, MissSeg, and FltState variables) in SizeMission namelist
all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays
each variable gets one more dimension, first array index is always segment number

46

Chapter 9

Structure: OffDesign

Variable Type Description Default

Mission Analysis
OffParam OffParam Parameters
Mission(nmissmax) Mission Missions

47

Chapter 10

Structure: OffParam

Variable Type Description Default

+ Mission Analysis
title c*100 + title
notes c*1000 + notes

Analyze mission
nMission_out int number of missions for output

+ Missions
nMission int + number of missions (maximum nmissmax) 0

mission analysis input required if Cases%TASK_Mission=1

input one mission (MissParam, MissSeg, and FltState variables) in OffMission namelist
all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays
each variable gets one more dimension, first array index is always segment number

48

Chapter 11

Structure: Performance

Variable Type Description Default

Flight Performance Analysis
PerfParam PerfParam Parameters

Performance Flight Conditions
FltCond(nfltmax) FltCond conditions
FltState(nfltmax) FltState conditions

49

Chapter 12

Structure: PerfParam

Variable Type Description Default

+ Flight Performance Analysis
title c*100 + title
notes c*1000 + notes

Analyze performance
nFltCond_out int number of conditions for output (including sweeps)
nsweep_total int total number of sweep conditions

+ Performance Flight Conditions
nFltCond int + number of conditions (maximum nfltmax) 0

flight performance analysis input required if Cases%TASK_Perf=1

input one condition (FltCond and FltState variables) in PerfCondition namelist

50

Chapter 13

Structure: MapEngine

Variable Type Description Default

+ Map of Engine Performance
title c*100 + title
notes c*1000 + notes

+ Identification
kEngineGroup int + engine group 1

KIND_map int + Kind (1 performance, 2 model) 1

engine map only available for RPTEM model and reciprocating engine model (performance only)

engine map input required if Cases%TASK_Map_engine=1

only performance parameters or only model parameters used

+ Performance
+ independent variables (0 none, 1 altitude, 2 temperature, 3 flight speed, 4 engine speed, 5 power)

SET_var(5) int + first set 0

SET_var2(5) int + second set 0

WRITE_header int + output format (1 single header, 2 header for inner variable) 2

SET_atmos c*12 + atmosphere specification ’std’

+ altitude h (Units_alt)
altitude_min real + minimum 0.

altitude_max real + maximum 20000.

altitude_inc real + increment 1000.

altitude_base real + baseline 0.

Structure: MapEngine 51

+ temperature τ or temperature increment ΔT (Units_temp)
temp_min real + minimum 0.

temp_max real + maximum 100.

temp_inc real + increment 10.

temp_base real + baseline 0.

+ flight speed V (TAS, Units_vel)
Vkts_min real + minimum 0.

Vkts_max real + maximum 200.

Vkts_inc real + increment 50.

Vkts_base real + baseline 0.

SET_rpm int + engine speed N (1 rpm, 2 percent) 2

Nturbine_min real + minimum 90.

Nturbine_max real + maximum 110.

Nturbine_inc real + increment 5.

Nturbine_base real + baseline 100.

SET_power int + power required (1 power, 2 fraction of power available (0. to 1.+) 2

power_min real + minimum .1

power_max real + maximum 1.

power_inc real + increment .1

power_base real + baseline 1.

STATE_IRS int + IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust) 0

KIND_loss int + installation losses (0 for none) 0

independent variables: 1 to 5 variables, last is innermost loop; outer loop is always rating
quantities not identified as independent variables fixed at baseline values

SET_atmos, atmosphere specification:
determines whether temp_xxx is temperature or temperature increment
’std’ = standard day at specified altitude (use altitude_xxx)
’temp’ = standard day at specified altitude, and specified temperature (use altitude_xxx, temp_xxx)
’dtemp’ = standard day at specified altitude, plus temperature increment (use altitude_xxx, temp_xxx)
see FltState%SET_atmos for other options (polar, tropical, and hot days)

Structure: MapEngine 52

+ Model
+ flight speeds V (TAS, Units_vel)

nV_model int + number (maximum 10) 1

V_model(10) real + values 0.

V_min real + minimum 0.

V_max real + maximum 400.

V_inc real + increment 50.

+ temperature ratio T/T0

ntheta_model int + number (maximum 10) 1

theta_model(10) real + values 1.

theta_min real + minimum .8

theta_max real + maximum 1.1

theta_inc real + increment .02

+ engine speed, N/Nspec (percent)
fN_min real + minimum 90.

fN_max real + maximum 110.

fN_inc real + increment 5.

+ fraction static MCP power, P/P0C

fP_min real + minimum .1

fP_max real + maximum 2.

fP_inc real + increment .1

RPTEM model
performance: fuel flow, mass flow, net jet thrust, optimum turbine speed

vs power fraction and airspeed (use fP and V_model)
turbine speed: power ratio vs turbine speed and airspeed (use fN and V_model)
power available: specific power, mass flow, power, fuel flow

vs temperature ratio (use theta and V_model)
vs airspeed (use V and theta_model)

Specification
kEngineModel int engine model
iSET_atmos int atmosphere (SET_atmos_xxx)
nSET_var int number of independent variable sets

53

Chapter 14

Structure: MapAero

Variable Type Description Default

+ Map of Airframe Aerodynamics
title c*100 + title
notes c*1000 + notes

+ Tables
KIND_table int + kind (1 one-dimensional, 2 multi-dimensional) 1

+ aerodynamic loads (0 for components off)
SET_fuselage int + fuselage and landing gear 1

SET_tail int + tails 1

SET_wing int + wings 1

SET_rotor int + rotors 1

SET_engine int + engines and fuel tank 1

airframe aerodynamics map input required if Cases%TASK_Map_aero=1

multi-dimensional: generate 6 files of three-dimensional tables
one file for each load=DRAG, SIDE, LIFT, ROLL, PITCH, YAW
filename=FILE_aero//load or AEROn//load

one-dimensional: generate 1 file of all six loads
function of single independent variable = var_lift(1)

+ Operating Condition
STATE_control int + aircraft control state 1

STATE_LG c*12 + landing gear state ’retract’

Nauxtank(nauxtankmax,ntankmax)

int + number of auxiliary fuel tanks Nauxtank (each aux tank size) 0

Structure: MapAero 54

SET_extkit int + wing extension kit on aircraft (0 none, 1 present) 1

KIND_alpha int + angle of attack and sideslip angle representation (1 conventional, 2 reversed) 1

SET_comp_control int + use component control (0 for c = TcAC ; 1 for c = TcAC + c0) 0

control(ncontmax) real + aircraft controls 0.

tilt real + tilt 0.

alpha real + angle of attack α 0.

beta real + sideslip angle β 0.

landing gear state: STATE_LG=’extend’, ’retract’ (keyword = ext, ret)

+ Independent variables
var_lift(3) c*16 + lift
var_drag(3) c*16 + drag
var_side(3) c*16 + side force
var_pitch(3) c*16 + pitch moment
var_roll(3) c*16 + roll moment
var_yaw(3) c*16 + yaw moment

+ Variable range
+ angle of attack and sideslip variation

angle_lowinc real + low range increment (deg) 2.

angle_highinc real + high range increment (deg) 5.

angle_low real + low range value (deg) 40.

angle_max real + maximum value (deg) 180.

+ control variation
control_lowinc real + low range increment (deg) 2.

control_highinc real + high range increment (deg) 2.

control_low real + low range value (deg) 45.

control_max real + maximum value (deg) 90.

+ third independent variable
gamma_lowinc real + low range increment (deg) 20.

gamma_highinc real + high range increment (deg) 20.

gamma_low real + low range value (deg) 60.

gamma_max real + maximum value (deg) 60.

Structure: MapAero 55

var_load identify independent variables
only var_lift(1) used for KIND_table=one-dimensional
values: ’alpha’, ’beta’, IDENT_control(ncontrol)

var_load(2) blank for 1D table, var_load(3) blank for 2D table
alpha/beta/controls/tilt fixed if not independent variable (tilt replace control(ktilt))
assume control system defined so aircraft controls connected to flaperon, elevator, aileron, rudder

angle, control, gamma variation: by lowinc for -low to +low; by highinc to -max and +max

maximum total values = naeromax

Operating Condition
iSTATE_LG int landing gear state (STATE_LG_extend, retract)

Independent variables (AERO_VAR_none, alpha, beta, or control number)
nvar(6) int number of independent variables
ivar(3,6) int variables (drag, side, lift, roll, pitch, yaw)

Tables
nang int number of angles (maximum naeromax)
ang(naeromax) real angle values
ncnt int number of controls (maximum naeromax)
cnt(naeromax) real control values
ngam int number of gamma (maximum naeromax)
gam(naeromax) real gamma values

56

Chapter 15

Structure: FltCond

Variable Type Description Default

+ Sizing or Performance Flight Condition
title c*100 + title
label c*8 + label

+ Specification
SET_GW c*12 + gross weight ’DGW’

GW real + input gross weight WG 0.

dGW real + gross weight increment 0.

fGW real + gross weight factor 1.

dPav(npropmax) real + power increment, each propulsion group 0.

fPav(npropmax) real + power factor, each propulsion group 1.

dTav(njetmax) real + thrust increment, each jet group 0.

fTav(njetmax) real + thrust factor, each jet group 1.

SET_Wlimit c*12 + gross weight limit ’none’

Wlimit real + input gross weight limit 0.

SET_alt int + altitude (0 input, 1 from KIND_source) 0

+ source for gross weight and altitude
KIND_source int + kind (1 size mission, 2 size condition, 3 off design mission, 4 performance condition) 1

kSource int + mission or condition number 0

kSegment int + segment number 0

seg_source int + segment (1 start, 2 midpoint) 1

SET_UL c*12 + useful load ’pay’

Wpay real + input payload weight Wpay (Units_pay) 0.

Npass int + number of passengers Npass 0

Wpay_cargo real + cargo Wcargo (Units_pay) 0.

Wpay_extload real + external load Wext−load (Units_pay) 0.

Wpay_ammo real + ammunition Wammo (Units_pay) 0.

Wpay_weapons real + weapons Wweapons (Units_pay) 0.

Structure: FltCond 57

+ fuel tank system
dFuel(ntankmax) real + fuel weight or energy increment 0.

fFuel(ntankmax) real + fuel capacity factor 1.

SET_auxtank(ntankmax) int + auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 0 no change) 1

mauxtank(ntankmax) int + tank size changed (–1 first, –2 first size already used, m for m-th size) -1

dNauxtank(ntankmax) int + number tanks added or dropped 1

Nauxtank(nauxtankmax,ntankmax)

int + number of auxiliary fuel tanks Nauxtank (each aux tank size)
+ fixed useful load

dWcrew real + crew weight increment 0.

dNcrew int + number of crew increment δNcrew 0

dWoful(10) real + other fixed useful load increment (nWoful categories) 0.

dWequip real + equipment weight increment 0.

dNcrew_seat int + crew seat increment δNcrew−seat 0

dNpass_seat int + passenger seat increment δNpass−seat 0

+ kits on aircraft (0 none, 1 present)
SET_foldkit int + folding kit 1

SET_extkit(nwingmax) int + wing extension kit 1

SET_wingkit(nwingmax) int + wing kit on aircraft 1

SET_otherkit int + other kit on aircraft 0

DESIGN_engine int + design condition for power (1 to use for engine sizing) 1

DESIGN_jet int + design condition for jet thrust (1 to use for jet group sizing) 1

DESIGN_charge int + design condition for charge power (1 to use for charge group sizing) 1

DESIGN_GW int + design condition for DGW (1 to use for DGW calculation) 1

DESIGN_xmsn int + design condition for transmission (1 to use for transmission sizing) 1

DESIGN_sdgw int + design condition for SDGW (1 to use for SDGW calculation) 1

DESIGN_wmto int + design condition for WMTO (1 to use for WMTO calculation) 1

DESIGN_thrust int + design condition for antitorque or aux thrust (1 to use for rotor sizing) 1

label is short description for output
sizing flight condition: use all parameters except sweep

fixed gross weight conditions not used to determine DGW, SDGW, WMTO
(set DESIGN_GW=0, DESIGN_sdgw=0, DESIGN_wmto=0)

condition not used to size engine or rotor if power margin fixed (max GW, max effort, or trim)
condition not used to size transmission if zero torque margin (max GW, max effort, or trim)

Structure: FltCond 58

performance flight condition: not use DESIGN_xx

SET_GW, SET_UL values determine which input parameters used

SET_GW, set gross weight WG:
’DGW’ = design gross weight WD; input (FIX_DGW) or calculated
’SDGW’ = structural design gross weight WSD (may depend on DGW)
’WMTO’ = maximum takeoff gross weight WMTO (may depend on DGW)
’f(DGW)’ = function DGW: fGW*WD+dGW

’f(SDGW)’ = function SDGW: fGW*WSD+dGW

’f(WMTO)’ = function WMTO: fGW*WMTO+dGW

’input’ = input (use GW)
’source’ = gross weight from specified mission segment or flight condition (KIND_source)
’f(source)’ = function of source: fGW*Wsource+dGW

’maxP’, ’max’ = maximum GW for power required equal specified power: Preq = fPavPav + dPav

min((fPavPG + d) − PreqPG) = 0, over all propulsion groups
’maxQ’ = maximum GW for transmission torque equal limit: zero torque margin

min(Plimit − Preq) = 0, over all propulsion groups, engine groups, and rotors
’maxPQ’, ’maxQP’ = maximum GW for power required equal specified power and transmission torque equal limit

most restrictive of power and torque margins
’maxJ’ = maximum GW for jet thrust required equal specified thrust: Treq = fTavTav + dTav

min((fTavJG + d) − TreqJG) = 0, over all jet groups
’maxPJ’, ’maxQJ’, ’maxPQJ’ = maximum GW for most restrictive of power, torque, and thrust margins
’pay+fuel’ = input payload and fuel weights; gross weight fallout

SET_Wlimit: weight limit for SET_GW=’max’

’none’ = no limit
’f(DGW)’ = function DGW: fGW*WD+dGW

’f(SDGW)’ = function SDGW: fGW*WSD+dGW

’f(WMTO)’ = function WMTO: fGW*WMTO+dGW

’input’ = input (use Wlimit)

SET_UL, set useful load: with fixed useful load adjustments in fallout weight
’pay’ = input payload weight (Wpay); fuel weight fallout
’fuel’ = input fuel weight (dFuel, fFuel, Nauxtank); payload weight fallout
’pay+fuel’ = input payload and fuel weights; gross weight fallout

if SET_GW=’pay+fuel’, assume SET_UL same (actual SET_UL ignored)

Structure: FltCond 59

KIND_source, source for gross weight or altitude: source must be solved before this condition
calculation order: size missions, size conditions, off design missions, performance conditions

input fuel weight: Wfuel = min(dFuel+fFuel∗Wfuel−cap, Wfuel−cap) +
∑

Nauxtank∗Waux−cap

auxiliary fuel tanks: SET_auxtank used for fallout fuel weight (SET_UL=’pay’)
adjust Nauxtank for first fuel tank system with SET_auxtank > 0
otherwise number of auxiliary fuel tanks fixed at input value

payload: only Wpay used if SET_Wpayload = no details
crew: only dWcrew used if SET_Wcrew = no details
equipment: dNcrew_seat and dNpass_seat require non-zero weight per seat

+ Parameter sweep
SET_sweep int + sweep (0 for none, 1 from list, 2 from range) 0

KIND_sweep int + kind (1 single sweep sequence, 2 nested sweeps) 1

INIT_sweep int + initialize trim (0 for not) 0

nquant_sweep int + number of swept quantities (1 to qsweepmax) 1

quant_sweep(qsweepmax) c*12 + quantity (parameter name)
+ range

sweep_first(qsweepmax) real + first parameter value
sweep_last(qsweepmax) real + last parameter value
sweep_inc(qsweepmax) real + parameter increment

+ list
nsweep(qsweepmax) int + number of values (maximum nsweepmax)
sweep(nsweepmax,qsweepmax) real + parameter values

Parameter sweep: only for performance flight conditions, not sizing flight conditions
maximum total number of values for all conditions is nsweepmax

KIND_sweep: single sweep, simultaneously varying nquant_sweep quantities; or nquant_sweep nested sweeps
Sweeps executed from sweep_last to sweep_first

sweep analyzed using single data structure, only solution for sweep_first saved (last value executed)
sweep_last (first value executed) should be condition that will converge
sign of parameter step determined by sign of (sweep_last-sweep_first); sign of sweep_inc ignored

Structure: FltCond 60

Single sweep sequence: only use nsweep(1)

sweep_inc of first quantity determines number of values, sweep_inc of other quantities not used
INIT_sweep: control/pitch/roll values of trim iteration initialized from previous condition of sweep
Available parameters: quant_sweep = parameter name

GW, dGW, fGW, dPavn, fPavn, dTavn, fTavn, Wpay, dFueln, fFueln, dWcrew, dWequip

Vkts, Mach, ROC, climb, side, pitch, roll, rate_turn, nz_turn, bank_turn, rate_pullup, nz_pullup

ax_linear, ay_linear, az_linear, nx_linear, ny_linear, nz_linear

altitude, dtemp, temp, density, csound, viscosity, HAGL

controln, coll, latcyc, lngcyc, pedal, tilt, Vtipn, Npecn, fPower, fThrust, fCharge, fTorque

DoQ_pay, fDoQ_pay, DoQV_pay, dSLcg, dBLcg, dWLcg, trim_targetn

n = propulsion group (Vtip, Nspec, dPav, fPav), jet group (dTav, fTav), fuel tank system, control number, or trim quantity
n = 1 if absent from quant_sweep

for fPower, value is factor on input fPower for all engine groups, all propulsion groups
for fThrust, value is factor on input fThrust for all jet groups
for fCharge, value is factor on input fCharge for all charge groups
for fTorque, value is factor on input fTorque for for all propulsion groups

parent int parent (1 Size, 2 Performance)
kFltCond int FltCond number
kcol_out int performance output column (first for sweep)

Specification
iSET_GW int gross weight (SET_GW_xxx)
iSET_maxGW int max gross weight (0 no iteration; SET_GW_maxP, maxQ, maxPQ, maxJ, maxPJ, maxQJ, maxPQJ)
iSET_Wlimit int max gross weight limit (0 none, SET_GW_xxx)
iSET_UL int useful load (SET_UL_pay, fuel, payfuel)
iSETPmargin(npropmax) int power margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size engine or rotor
iSETQmargin(npropmax) int torque margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size transmission
iSETEmargin(nengmax) int power margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size engine group
iSETJmargin(njetmax) int jet thrust margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size jet group
iSETCmargin(nchrgmax) int charger power margin as quantity (1 trim); not used to size charge group
iSETBmargin(ntankmax) int battery power margin as quantity (2 max effort, 1 trim); not used to size fuel tank
isFIX_GW int fixed gross weight; DESIGN_GW=0, DESIGN_sdgw=0, DESIGN_wmto=0

Structure: FltCond 61

Parameter sweep
kquant_sweep(qsweepmax) int quantity number
label_sweep c*8 quantity column label (first parameter)
msweep(qsweepmax) int number of values
vsweep(nsweepmax,qsweepmax)

real parameter values
fPower_original(nengmax) real fraction of rated engine power available
fThrust_original(njetmax) real fraction of rated jet thrust available
fCharge_original(nchrgmax) real fraction of rated charger power available
fTorque_original(npropmax) real fraction of rated drive system torque limit

62

Chapter 16

Structure: Mission

Variable Type Description Default

Mission Profile
MissParam MissParam Parameters

Mission Segments
MissSeg(nsegmax) MissSeg mission segments
FltState(nsegmax) FltState flight conditions

63

Chapter 17

Structure: MissParam

Variable Type Description Default

+ Mission Profile
title c*100 + title
label c*8 + label

+ Specification
SET_GW c*16 + mission takeoff gross weight WG ’pay+miss’

GW real + input gross weight 0.

dGW real + gross weight increment 0.

fGW real + gross weight factor 1.

SET_Wlimit c*16 + gross weight limit ’none’

Wlimit real + input gross weight limit 0.

SET_UL c*16 + useful load ’pay+miss’

Wpay real + input takeoff payload weight Wpay (Units_pay) 0.

Npass int + number of passengers Npass 0

Wpay_cargo real + cargo Wcargo (Units_pay) 0.

Wpay_extload real + external load Wext−load (Units_pay) 0.

Wpay_ammo real + ammunition Wammo (Units_pay) 0.

Wpay_weapons real + weapons Wweapons (Units_pay) 0.

SET_pay c*16 + payload changes ’delta’

+ fuel tank systems
FIX_missfuel(ntankmax) int + mission fuel weight (0 calculated, 1 fixed) 0

dFuel(ntankmax) real + fuel weight or energy increment 0.

fFuel(ntankmax) real + fuel capacity factor 1.

SET_auxtank(ntankmax) int + auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 3 increase at start and drop, 0 no change) 1

mauxtank(ntankmax) int + tank size changed (–1 first, –2 first size already used, m for m-th size) -1

dNauxtank(ntankmax) int + number tanks added or dropped 1

Nauxtank(nauxtankmax,ntankmax)

int + number of auxiliary fuel tanks Nauxtank (each aux tank size)

Structure: MissParam 64

+ fixed useful load
SET_foldkit int + folding kit on aircraft (0 none, 1 present) 1

SET_reserve int + fuel reserve (1 fraction mission fuel, 2 fraction fuel capacity, 3 only mission segments) 1

fReserve real + fuel reserve fraction fres 0.

+ split segments
dist_inc real + distance increment (Units_dist) 100.

time_inc real + time increment (Units_time) 30.

alt_inc real + altitude increment (Units_alt) 2000.

VTO_inc real + takeoff velocity increment 10.

hTO_inc real + takeoff height increment 10.

DESIGN_engine int + design mission for power (1 to use for engine sizing) 1

DESIGN_jet int + design mission for jet thrust (1 to use for jet group sizing) 1

DESIGN_charge int + design mission for charge power (1 to use for charge group sizing) 1

DESIGN_GW int + design mission for DGW (1 to use for DGW calculation) 1

DESIGN_xmsn int + design mission for transmission (1 to use for transmission sizing) 1

DESIGN_tank int + design mission for fuel tank (1 to use for fuel tank capacity) 1

DESIGN_thrust int + design mission for antitorque or aux thrust (1 to use for rotor sizing) 1

label is short description for output
sizing mission: use all parameters

fixed gross weight missions not used to determine DGW (set DESIGN_GW=0)
mission segment not used to size engine or rotor if power margin fixed (max GW, max effort, or trim)
mission segment not used to size transmission if zero torque margin (max GW, max effort, or trim)
mission segment not used for sizing if set MissSeg%SizeZZZ=0

off design mission: not use DESIGN_xx

SET_GW, SET_UL values determine which input parameters used

SET_GW, set mission takeoff gross weight WG:
’DGW’ = design gross weight WD; input (FIX_DGW) or calculated
’SDGW’ = structural design gross weight WSD (may depend on DGW)
’WMTO’ = maximum takeoff gross weight WMTO (may depend on DGW)
’f(DGW)’ = function DGW: fGW*WD+dGW

’f(SDGW)’ = function SDGW: fGW*WSD+dGW

’f(WMTO)’ = function WMTO: fGW*WMTO+dGW

Structure: MissParam 65

’input’ = input (use GW)
’maxP’, ’max’ = maximum GW for power required equal specified power: Preq = fPavPav + dPav

at mission segment MaxGW, minimum gross weight of designated segments
min((fPavPG + d) − PreqPG) = 0, over all propulsion groups

’maxQ’ = maximum GW for transmission torque equal limit: zero torque margin
at mission segment MaxGW, minimum gross weight of designated segments
min(Plimit − Preq) = 0, over all propulsion groups, engine groups, and rotors

’maxPQ’, ’maxQP’ = maximum GW for power required equal specified power and transmission torque equal limit
at mission segment MaxGW, minimum gross weight of designated segments
most restrictive of power and torque margins

’maxJ’ = maximum GW for jet thrust required equal specified thrust: Treq = fTavTav + dTav

at mission segment MaxGW, minimum gross weight of designated segments
min((fTavJG + d) − TreqJG) = 0, over all jet groups

’maxPJ’, ’maxQJ’, ’maxPQJ’ = maximum GW for most restrictive of power, torque, and thrust margins
’pay+fuel’ = input payload and fuel weights; gross weight fallout
’pay+miss’ = input payload, fuel weight from mission; gross weight fallout

SET_Wlimit: weight limit for SET_GW=’max’

’none’ = no limit
’f(DGW)’ = function DGW: fGW*WD+dGW

’f(SDGW)’ = function SDGW: fGW*WSD+dGW

’f(WMTO)’ = function WMTO: fGW*WMTO+dGW

’input’ = input (use Wlimit)

SET_UL, set useful load:
’pay’ = input payload weight (Wpay); fuel weight fallout
’fuel’ = input fuel weight (dFuel, fFuel, Nauxtank); initial payload weight fallout
’miss’ = fuel weight from mission; initial payload weight fallout
’pay+fuel’ = input payload and fuel weights; gross weight fallout
’pay+miss’ = input payload, fuel weight from mission; gross weight fallout

if SET_GW=’pay+fuel’ or ’pay+miss’, assume SET_UL same (actual SET_UL ignored)
FIX_missfuel only used for SET_UL=’miss’ or ’pay+miss’, with more than one fuel tank system

Structure: MissParam 66

SET_pay, set payload changes: mission segment payload (use of MissSeg%xWpay)
’none’ = no changes
’input’ = value; payload = xWpay (not use Wpay)
’delta’ = increment; payload = (initial payload weight)+(xWPay–xWpay(seg1))
’scale’ = factor; payload = (initial payload weight)*(xWPay/xWpay(seg1))

when SET_GW=’max’ and SET_UL=’fuel’ or ’miss’ (so payload is fallout), payload (from SET_pay and xWpay) must
not be zero at the maximum GW segments

payload: only Wpay and xWpay used if SET_Wpayload = no details

input fuel weight: Wfuel = min(dFuel+fFuel∗Wfuel−cap, Wfuel−cap) +
∑

Nauxtank∗Waux−cap

for fallout fuel weight, this is the initial value for the mission iteration

auxiliary fuel tanks:
SET_auxtank options: fixed; or adjust Nauxtank for each segment; or

increase at mission start, then constant; or increase at start, then drop
for input fuel (SET_UL = ’fuel’ or ’pay+fuel’), start with input Nauxtank, then drop
for mission fuel (SET_UL = ’miss’ or ’pay+miss’), fixed Wfuel or Efuel at start
for fallout (SET_UL = ’pay’), adjust Wfuel with change in Nauxtank (fixed WG − Wpay = WO + Wfuel)
for all SET_UL, adjust WO with change in Nauxtank

fuel tank design mission: Nauxtank=0, allow Wfuel or Efuel to exceed tank capacity

SET_reserve: maximum of fuel for designated reserve mission segments
and fraction of fuel (fresWburn or fresEburn) or fraction of fuel capacity (fresWfuel−cap or fresEfuel−cap)

+ Segment integration
KIND_SegInt int + method (0 segment start, 1 segment midpoint, 2 trapezoidal) 1

+ Mission iteration (supersede Solution input if nonzero)
relax_miss real + relaxation factor (mission fuel) 0.

relax_range real + relaxation factor (range credit) 0.

relax_gw real + relaxation factor (max takeoff GW) 0.

toler_miss real + tolerance (fraction reference) 0.

trace_miss int + trace iteration (0 for none) 0

Structure: MissParam 67

+ Mission Segments
nSeg int + number of mission segments (maximum nsegmax) 1

input all mission segments as arrays in single mission namelist

parent int parent (1 Size, 2 OffDesign)
kMission int Mission number
kcol_out int performance output column

Specification
iSET_GW int gross weight (SET_GW_xxx)
iSET_maxGW int max gross weight (SET_GW_maxP, maxQ, maxPQ, maxJ, maxPJ, maxQJ, maxPQJ)
nSET_maxGW int number max gross weight segments
iSET_Wlimit int max gross weight limit (0 none, SET_GW_xxx)
iSET_UL int useful load (SET_UL_pay, fuel, payfuel, miss, paymiss)
iSET_pay int payload changes (SET_pay_none, input, delta, scale)
iSETPmargin(npropmax) int power margin as quantity (all mission segments); not used to size engine or rotor
iSETQmargin(npropmax) int torque margin as quantity (all mission segments); not used to size transmission
iSETEmargin(nengmax) int power margin as quantity (all mission segments); not used to size engine group
iSETJmargin(njetmax) int jet thrust margin as quantity (all mission segments); not used to size jet group
iSETCmargin(nchrgmax) int charger power margin as quantity (all mission segments); not used to size charge group
iSETBmargin(ntankmax) int battery power margin as quantity (all mission segments); not used to size fuel tank
isFIX_GW int fixed gross weight; DESIGN_GW=0

Segments
nreserve int number reserve segments
nadjust int number adjustable segments
kind_adjust int kind adjustable (0 none, 1 distance, 2 time)
kind_range int kind range credit (0 none, 1 all forward, 2 all backward, 3 both)
ntakeoff int number takeoff segments

Iteration
kind_iter int kind iteration (0 none, 1 calculate mission fuel, 2 adjust mission, 3 only range credit or integration)

Structure: MissParam 68

ismissconv int converged (0 not)
count_miss int number of iterations
error_miss(3) real error ratio (Wfuel, range credit, takeoff GW)

residuals (difference after one mission iteration)
resid_fuel(ntankmax) real fuel Wfuel or Efuel

resid_rangecredit real range credit
resid_TOGW real takeoff gross weight

Mission quantities
isFirstSol int first solution (initialize GW_to and Wfuel_to)
GW_to real takeoff gross weight (start of mission)
GW_endmiss real gross weight (end of mission, excluding reserve segments; last non-reserve segment)
GW_end real gross weight (end of mission; last segment)
Wfuel_to(ntankmax) real takeoff fuel weight (start of mission)
Wfuel_add(ntankmax) real added fuel weight (fill/add/drop during mission)
Wfuel_endmiss(ntankmax) real fuel weight (end of mission, excluding reserve segments; last non-reserve segment)
Wfuel_end(ntankmax) real fuel weight (end of mission; last segment)
Wfuel_max(ntankmax) real maximum fuel weight in tank (all segments)
Wfuel_net(ntankmax) real maximum net (burn-add) fuel used (all segments)
Wburn(ntankmax) real weight fuel burned Wburn

Wres(ntankmax) real weight reserve fuel Wres (maximum of fraction or reserve segments)
Wfuel_miss(ntankmax) real calculated mission fuel weight (Wburn + Wres)
Efuel_to(ntankmax) real takeoff fuel energy (start of mission)
Efuel_add(ntankmax) real added fuel energy (fill/add/drop during mission)
Efuel_endmiss(ntankmax) real fuel energy (end of mission, excluding reserve segments; last non-reserve segment)
Efuel_end(ntankmax) real fuel energy (end of mission; last segment)
Efuel_max(ntankmax) real maximum fuel energy in tank (all segments)
Efuel_net(ntankmax) real maximum net (burn-add) fuel energy used (all segments)
Eburn(ntankmax) real energy fuel burned Eburn

Eres(ntankmax) real energy reserve fuel Eres (maximum of fraction or reserve segments)
Efuel_miss(ntankmax) real calculated mission fuel energy (Eburn + Eres)
exceedP int exceed power available: any mission segment PreqPG > (1 + ε)PavPG

exceedQ int exceed torque available: any mission segment PreqPG > (1 + ε)PDSlimit

exceedJ int exceed jet thrust available: any mission segment TreqJG > (1 + ε)TavJG

exceedC int exceed charger power available: any mission segment PreqCG > (1 + ε)PavCG

Structure: MissParam 69

exceedWf int exceed fuel capacity: any mission segment Wfuel > (1 + ε)Wfuel−cap or Efuel > (1 + ε)Efuel−cap

exceedB int exceed battery power: any mission segment |Ėbatt| > (1 + ε)Pmax

Total mission, excluding reserve segments
endurance real endurance E, block time (min)
range real range R (nm)
airdist real air distance (nm)
blockspeed real block speed (kts; range/endurance)
range_factor real range factor RF = R/ ln(Wto/(Wto − Wburn)) (nm)
range_factorE real range factor RF = R/Eburn (nm/MJ)
fuel_eff real fuel efficiency e = WpayR/Wburn (ton-nm/lb or ton-nm/kg)
fuel_effE real fuel efficiency e = WpayR/Eburn (ton-nm/MJ)
productivity_o real productivity p = WpayV/WO (ton-kt/lb or ton-kt/kg)
productivity_f real productivity p = WpayV/Wburn (ton-kt/lb or ton-kt/kg)
productivity_fE real productivity p = WpayV/Eburn (ton-kt/MJ)
fuelflow real average fuel flow Wburn/E (lb/hr or kg/hr)
energyflow real average energy flow Eburn/E (MJ/hr)
spec_range real average specific range R/Wburn (nm/lb or nm/kg)
spec_rangeE real average specific range R/Eburn (nm/MJ)

Cost
Ttrip real trip time Ttrip = Tmiss + TNF

Ndep real number of depatures per year B/Ttrip

TF real flight hours per year TF = TmissNdep

ASM real available seat miles
COP real yearly operating cost COP (maintenance + fuel + crew + depreciation + insurance + finance + ETS)
COPmaint real yearly operating cost, maintenance
COPfuel real yearly operating cost, fuel
COPlabor real yearly operating cost, labor
COPcrew real yearly operating cost, crew
COPpers real yearly operating cost, personnel
COPdep real yearly operating cost, depreciation
COPins real yearly operating cost, insurance
COPfin real yearly operating cost, finance
COPETS real yearly operating cost, ETS
Ctrip real trip operating cost COP /Ndep

Structure: MissParam 70

Cpass real passenger operating cost Ctrip/(Npass LoadFactor/100)
xmaint real operating cost fraction, maintenance
xfuel real operating cost fraction, fuel
xcrew real operating cost fraction, crew or personnel
xdep real operating cost fraction, depreciation
xins real operating cost fraction, insurance
xfin real operating cost fraction, finance
xETS real operating cost fraction, ETS
DOC real direct operating cost 100COP /ASM

Emissions Trading Scheme (kg CO2, per mission)
ETS real total
ETS_fuel real fuel burned
ETS_energy real energy used

Weight of emissions (kg, per mission)
W_CO2 real carbon dioxide
W_NOx real NOx

W_H2O real water vapor
W_soot real soot
W_SO4 real sulphates

Average Temperature Response (deg C)
ATR real total
ATR_noAIC real total without AIC
ATR_CO2 real carbon dioxide
ATR_CH4 real NOx - methane
ATR_O3L real NOx - ozone (long life)
ATR_O3S real NOx - ozone (short life)
ATR_H2O real water vapor
ATR_soot real soot
ATR_SO4 real sulphates
ATR_AIC real aviation induced cloudiness

71

Chapter 18

Structure: MissSeg

Variable Type Description Default

+ Segment definition
label_seg c*8 + label ’ ’

kind c*12 + kind ’dist’

dist real + distance D (Units_dist) 0.

time real + time T (Units_time) 0.

+ segment
reserve int + reserve (0 for not) 0

adjust int + adjustable for flexible mission (0 for not) 0

range_credit int + segment number for range credit (0 for no reassignment) 0

ignore int + ignore segment (0 for not) 0

copy int + copy segment (source segment number) 0

split int + split segment (number segments; –1 calculated; 0 for not split) 0

SET_tank(ntankmax) int + segment fuel use or replace 0

dTank(ntankmax) real + fuel increment 0.

fTank(ntankmax) real + fuel factor 1.

SET_refuel(ntankmax) int + refuel (0 not, 1 fill all tanks, 2/8 add fuel, 3/9 drop fuel, 4-5 fill/add below rWfuel, 6-7 fill/add below mWfuel) 0

xWfuel(ntankmax) real + fuel weight or energy change 0.

rWfuel(ntankmax) real + threshold fraction 0.

mWfuel(ntankmax) real + threshold weight or energy 0.

+ gross weight
MaxGW int + maximize gross weight (0 not) 0

dPav(npropmax) real + power increment, each propulsion group 0.

fPav(npropmax) real + power factor, each propulsion group 1.

dTav(njetmax) real + thrust increment, each jet group 0.

fTav(njetmax) real + thrust factor, each jet group 1.

+ useful load
xWpay real + payload weight change (Units_pay) 0.

xNpass int + number of passengers increment δNpass 0

Structure: MissSeg 72

+ fixed useful load
dWcrew real + crew weight increment 0.

dNcrew int + number of crew increment δNcrew 0

dWoful(10) real + other fixed useful load increment (nWoful categories) 0.

dWequip real + equipment weight increment 0.

dNcrew_seat int + crew seat increment δNcrew−seat 0

dNpass_seat int + passenger seat increment δNpass−seat 0

+ kits on aircraft (0 none, 1 present)
SET_extkit(nwingmax) int + wing extension kit 1

SET_wingkit(nwingmax) int + wing kit 1

SET_otherkit int + other kit 0

SET_alt int + altitude at start of segment (0 input, 1 from previous segment, 2 from kSeg_alt) 0

kSeg_alt int + source of altitude 0

+ design mission (0 to not use segment for sizing)
SizeEngine int + power 1

SizeJet int + jet thrust 1

SizeCharge int + charger power 1

SizeGW int + DGW 1

SizeXmsn int + transmission 1

SizeThrust int + antitorque or aux thrust 1

segment kind

kind=’taxi’, ’idle’: taxi/warm-up mission segment (use time)
kind=’dist’: fly segment for specified distance (use dist)
kind=’time’: fly segment for specified time (use time)
kind=’hold’, ’loiter’: fly segment for specified time (use time), fuel burned but no distance added to range
kind=’climb’: climb/descend from present altitude to next segment altitude
kind=’spiral’: climb/descend from present altitude to next segment altitude, fuel burned but no dist added to range
kind=’fuel’: use or replace specified fuel amount, calculate time and distance
kind=’burn’, ’charge’: use or replace specified fuel amount, calculate time but no distance added to range
kind=’takeoff’, ’TO’: takeoff distance calculation

only one of reserve, adjust, range_credit designations for each segment
reserve: time and distance not included in block time and range

Structure: MissSeg 73

range credit: to facilitate specification of range
range calculated for this segment credited to segment = range_credit

range_credit segment must be kind=’dist’, specified distance is for group of segments
actual distance flown in range_credit segment is specified dist less distances from other segments

if credit to earlier segment, iteration required
adjustable: for SET_UL not ’miss’, can adjust one or more segments

if more than one segment adjusted, must be all kind=’dist’ or all kind=’time’/’hold’

adjust time or distance based on fuel burn (proportional to initial values)

split segment: number specified, or calculated from MissParam%dest_inc, time_inc, alt_inc

ignore segment: removed from input; segments using MaxGW, range_credit, FltCond%KIND_source can not be ignored

SET_tank: segment fuel use or replace for kind=’fuel’ or ’burn’; distance and time calculated
SET_tank = 0: no requirement
SET_tank = 1: target dTank+fTank*Wfuel−cap or dTank+fTank*Efuel−cap

SET_tank = 2: target dTank+fTank*Wfuel or dTank+fTank*Efuel

SET_tank = 3: increment dTank+fTank*Wfuel−cap or dTank+fTank*Efuel−cap

SET_tank = 4: increment dTank+fTank*Wfuel or dTank+fTank*Efuel

charge if Ė < 0 (not based on keyword, increment always positive)
target limited by capacity, if target already achieved then no requirement
increment limited by current fuel (use) or capacity minus current fuel (replace)

SET_refuel, refuel: change at start of segment; weight or energy; no contribution to distance or time
SET_refuel = 1: fill all tanks (including any auxiliary tanks installed)
SET_refuel = 2: add fuel xWfuel

SET_refuel = 3: drop fuel xWfuel

SET_refuel = 4: if below fraction rWfuel of fuel capacity (including auxiliary tanks), fill all tanks
SET_refuel = 5: if below fraction rWfuel of fuel capacity (including auxiliary tanks), add xWfuel

SET_refuel = 6: if below mWfuel, fill all tanks
SET_refuel = 7: if below mWfuel, add xWfuel

SET_refuel = 8: add fraction rWfuel of fuel capacity (including auxiliary tanks)
SET_refuel = 9: drop fraction rWfuel of fuel capacity (including auxiliary tanks)
added fuel limited by capacity (unless sizing fuel tank); not used for first segment
xWfuel positive (add or drop determined by SET_refuel)

Structure: MissSeg 74

maximize gross weight: MaxGW designate segments if SET_GW=’maxP’ or ’maxQ’ or ’maxPQ’

climb/descend or spiral segment: end altitude is that of next segment; last segment kind can not be climb or spiral
begin altitude is that input for this segment (SET_alt=0), or altitude of previous segment (SET_alt=1),

payload: only Wpay and xWpay used if SET_Wpayload = no details
xNpass is change from MissParam%Npass

crew: only dWcrew used if SET_Wcrew = no details
equipment: dNcrew_seat and dNpass_seat require non-zero weight per seat

+ Takeoff distance calculation
SET_takeoff c*12 + takeoff segment kind ’none’

Vkts_takeoff real + ground speed or climb speed (knots, CAS) 0.

climb_takeoff real + climb angle relative ground γ (deg) 0.

height_takeoff real + height during climb h (ft or m) 0.

slope_ground real + slope of ground γG (+ for uphill; deg) 0.

friction real + friction coefficient μ 0.04

t_decision real + decision delay after engine failure t1 (sec) 1.5

t_rotation real + rotation time tR (sec) 2.0

nz_transition real + transition load factor nTR 1.2

takeoff distance calculation: set of consecutive kind=’takeoff’ segments
first segment identified by SET_takeoff=’start’ (V = 0)
last segment if next segment is not kind=’takeoff’, or is SET_takeoff=’start’

takeoff segment kind
SET_takeoff=’start’, ’ground run’ (keyword = ground or run), ’engine fail’ (keyword = eng or fail)
SET_takeoff=’liftoff’, ’rotation’, ’transition’, ’climb’, ’brake’

each segment requires appropriate configuration, trim option, max effort specification
not use dist, time, reserve, adjust, range_credit, SET_refuel, MaxGW, SET_alt

max_var=’alt’ not allowed in maximum effort
velocity specification (SET_vel) and HAGL superseded; SET_turn=SET_pullup=0

can split segment (except start, rotation, transition): split height for climb, velocity for others
splitting liftoff or engine failure segment produces additional ground run segments

Structure: MissSeg 75

separate definition of multiple ground run, climb, brake segments allows configuration variations
define takeoff profile in terms of velocities

integrate acceleration vs velocity to obtain time and distance
segments correspond to ends of integration intervals
analysis checks for consistency of input velocity and calculated acceleration
analysis checks for consistency of input height and input/calculated climb angle

takeoff distance definition: includes SET_takeoff=’liftoff’ segment
order: start, ground run, engine failure, ground run, liftoff, rotation, transition, climb
only one liftoff; only one engine failure, rotation, transition (or none)
engine failure before liftoff; all ground run before liftoff, all climb after liftoff

accelerate-stop distance definition: does not have SET_takeoff=’liftoff’ segment
order: start, ground run, engine failure, brake
only one engine failure (or none)

engine failure segment (if present) identifies point for decision delay
until t_decision after engine failure segment, use engine rating, fPower, fraction of engine failure segment
so engine failure segment corresponds to conditions before failure

number of inoperative engines specified by nEngInop for each segment
if engine failure segment present, nEngInop specification must be consistent

parent int parent (1 Size, 2 OffDesign)
kMission int Mission number
kMissSeg int MissSeg number
kcol_out int performance output column

Specification
ikind int kind (MissSeg_kind_taxi, dist, time, hold, climb, spiral, fuel, burn)
SET_foldkit int folding kit on aircraft (0 none, 1 present)

Structure: MissSeg 76

Segments
kind_range int this segment receives range credit (0 not, 1 source forward, 2 source backward, 3 both)
fadjust real adjustment ratio (initial time or dist ratio)
wassplit int split segment (number segments; 0 for not split)
ksplit_first int first segment after split
ksplit_last int last segment after split
dWpay real payload increment (xWpay–xWpay(seg1)) or factor (xWpay/xWpay(seg1))
iSET_maxGW int max gross weight (0 no iteration; SET_GW_maxP, maxQ, maxPQ, maxJ, maxPJ, maxQJ, maxPQJ + maxGW)
iSETPmargin(npropmax) int power margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETQmargin(npropmax) int torque margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETEmargin(nengmax) int power margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETJmargin(njetmax) int jet thrust margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETCmargin(nchrgmax) int charger power margin as quantity (1 trim)
iSETBmargin(ntankmax) int battery power margin as quantity (2 max effort, 1 trim)

Maximum gross weight
ismaxgwconv int converged (0 not)
count_maxgw int number of iterations
error_maxgw real error ratio
GW_inc real gross weight increment

Takeoff distance calculation
iSET_takeoff int takeoff segment kind (SET_takeoff_xxx)
VCAS_TO real ground speed or climb speed (CAS)
V_TO real ground speed (ft/sec or m/sec)
climb_TO real angle relative ground (deg)
isConsistent_TO int consistent acc and V change, climb and h change
FxG_TO real net force T − D (ground axes)
FzG_TO real net force W − L (ground axes)
FzGmu_TO real friction drag μFzG

acc_TO real acceration (ground axes)
h_TO real height (ft or m)
t_TO real time (sec)
s_TO real distance (ft or m)
time_TO real cumulative time (sec)
dist_TO real cumulative distance (ft or m)

Structure: MissSeg 77

original value for engine failure decision (from FltAircraft)
rating_original(nengmax) c*12 engine rating
krate_original(nengmax) int engine rating
fPower_original(nengmax) real fraction of rated engine power available
rating_jet_original(njetmax)

c*12 jet rating
krate_jet_original(njetmax)

int jet rating
fThrust_original(njetmax) real fraction of rated jet thrust available
rating_charge_original(nchrgmax)

c*12 charger rating
krate_charge_original(nchrgmax)

int charger rating
fCharge_original(nchrgmax) real fraction of rated charger power available
friction_original real friction coefficient
kSegEF_TO int engine failure segment (0 for none)

Performance (from FltState; at start or midpoint)
speed real horizontal speed Vh (knots)
Vclimb real climb velocity Vc (ft/sec or m/sec)
fuelflow(ntankmax) real fuel flow ẇ (lb/hr or kg/hr)
energyflow(ntankmax) real energy flow Ė (MJ/hr)

trapezoidal integration
speed_start real horizontal speed Vh

Vclimb_start real climb velocity Vc

fuelflow_start(ntankmax) real fuel flow ẇ
energyflow_start(ntankmax) real energy flow Ė
speed_end real horizontal speed Vh

Vclimb_end real climb velocity Vc

fuelflow_end(ntankmax) real fuel flow ẇ
energyflow_end(ntankmax) real energy flow Ė
alt_start real altitude h at start of segment (ft or m)
alt_end real altitude h at end of segment (from start of next segment, only used for kind=’climb’ or ’spiral’)
Wind real Headwind Vw (knots)
groundspeed real Ground speed Vg = Vh − Vw (knots)

Structure: MissSeg 78

Mission segment quantities
T real time T (minutes)
D real ground distance D (nm)
otherDpast real distance from past range credit (nm)
otherDfuture real distance from future range credit (nm)
dR real range contribution dR (nm)
airdist real air distance (nm)
Wburn(ntankmax) real fuel burned Wburn (lb or kg)
Wfuel_add(ntankmax) real fuel added or dropped at start of segment
Wfuel_start(ntankmax) real fuel weight Wfuel (segment start)
Eburn(ntankmax) real fuel burned Eburn (MJ)
Efuel_add(ntankmax) real fuel added or dropped at start of segment
Efuel_start(ntankmax) real fuel energy Efuel (segment start)
GW_start real gross weight WG (segment start)

Emissions Trading Scheme (kg CO2, per mission)
ETS real total
ETS_fuel real fuel burned
ETS_energy real energy used

Weight of emissions (kg, per mission)
W_CO2 real carbon dioxide
W_NOx real NOx

W_H2O real water vapor
W_soot real soot
W_SO4 real sulphates

Average Temperature Response (deg C)
ATR real total
ATR_noAIC real total without AIC
ATR_CO2 real carbon dioxide
ATR_CH4 real NOx - methane
ATR_O3L real NOx - ozone (long life)
ATR_O3S real NOx - ozone (short life)
ATR_H2O real water vapor
ATR_soot real soot
ATR_SO4 real sulphates

Structure: MissSeg 79

ATR_AIC real aviation induced cloudiness
EI_NOx(ntankmax) real EINOx

=
∑

EIẇ/
∑

ẇ, input or turboshaft calculated, weighted for engine group
fPto(nengmax) real fP = Pq/Pto for ẇ

80

Chapter 19

Structure: FltState

Variable Type Description Default

Flight State
FltAircraft FltAircraft Aircraft

Components
FltFuse FltFuse fuselage
FltGear FltGear landing gear
FltRotor(nrotormax) FltRotor rotors
FltWing(nwingmax) FltWing wings
FltTail(ntailmax) FltTail tails
FltTank(ntankmax) FltTank fuel tank systems
FltProp(npropmax) FltProp propulsion groups
FltEngn(nengmax) FltEngn engine groups
FltJet(njetmax) FltJet jet groups
FltChrg(nchrgmax) FltChrg charge groups

81

Chapter 20

Structure: FltAircraft

Variable Type Description Default

+ Flight State
+ Specification

SET_max int + maximum effort performance (maximum 2, 0 to analyze specified condition) 0

max_quant(2) c*12 + quantity ’ ’

max_var(2) c*12 + variable ’ ’

max_limit(2) int + switch quantity if exceed limit (0 not, 1 power margin, 2 torque margin, 3 both) 0

max_Vlimit(2) int + velocity limited by VNE (0 not) 0

fVel(2) real + flight speed factor 1.

SET_vel c*12 + flight speed ’general’

Vkts real + horizontal velocity Vh (TAS or CAS, Units_vel) 0.

Mach real + horizontal velocity M (Mach number) 0.

ROC real + vertical rate of climb Vc (Units_ROC) 0.

climb real + climb angle θV (deg) 0.

side real + sideslip angle ψV (deg) 0.

+ aircraft motion
SET_pitch int + pitch motion specification (0 Aircraft value, 1 FltState input) 1

SET_roll int + roll motion specification (0 Aircraft value, 1 FltState input) 1

pitch real + pitch θF 0.

roll real + roll φF 0.

SET_turn int + turn specification (0 zero, 1 turn rate, 2 load factor, 3 bank angle) 0

rate_turn real + turn rate ψ̇F (deg/sec) 0.

nz_turn real + load factor n (g) 1.

bank_turn real + bank angle φF (deg) 0.

SET_pullup int + pullup specification (0 zero, 1 pitch rate, 2 load factor) 0

rate_pullup real + pitch rate θ̇F (deg/sec) 0.

nz_pullup real + load factor n (g) 1.

SET_acc int + linear acceleration specification (0 zero, 1 acceleration, 2 load factor) 0

ax_linear real + x-acceleration aACx (ft/sec2 or m/sec2) 0.

Structure: FltAircraft 82

ay_linear real + y-acceleration aACy (ft/sec2 or m/sec2) 0.

az_linear real + z-acceleration aACz (ft/sec2 or m/sec2) 0.

nx_linear real + x-load factor increment nLx (g) 0.

ny_linear real + y-load factor increment nLy (g) 0.

nz_linear real + z-load factor increment nLz (g) 0.

altitude real + altitude h (Units_alt) 0.

SET_atmos c*12 + atmosphere specification ’std’

temp real + temperature τ (Units_temp)
dtemp real + temperature increment ΔT (Units_temp) 0.

density real + density ρ
csound real + speed of sound cs

viscosity real + viscosity μ
SET_wind int + wind specification (0 none, 1 headwind, 2 tailwind) 0

dWind real + wind increment, knots (dWind+fWind*altitude) 0.

fWind real + wind gradient, knots (dWind+fWind*altitude) 0.

SET_GE int + ground effect (0 OGE, 1 IGE) 0

HAGL real + height of landing gear above ground level hLG 999.

STATE_LG c*12 + landing gear state ’default’

STATE_control int + aircraft control state 1

SET_control(ncontmax) int + control specification (0 Aircraft value, 1 FltState input) 1

SET_coll int + collective stick 1

SET_latcyc int + lateral cyclic stick 1

SET_lngcyc int + longitudinal cyclic stick 1

SET_pedal int + pedal 1

SET_tilt int + tilt (0 Aircraft value, 1 FltState input, 2 Aircraft conversion schedule) 1

control(ncontmax) real + aircraft controls
coll real + collective stick cAC0 0.

latcyc real + lateral cyclic stick cACc 0.

lngcyc real + longitudinal cyclic stick cACs 0.

pedal real + pedal cACp 0.

tilt real + tilt αtilt 0.

SET_comp_control int + use component control (0 for c = TcAC ; 1 for c = TcAC + c0) 1

SET_cg int + center of gravity specification (0 baseline plus increment, 1 input) 0

dSLcg real + stationline 0.

Structure: FltAircraft 83

dBLcg real + buttline 0.

dWLcg real + waterline 0.

+ Specification, each propulsion group
SET_Vtip(npropmax) c*12 + rotor tip speed specification ’hover’

Vtip(npropmax) real + tip speed
Mtip(npropmax) real + tip Mach number Mtip

mu_Vtip(npropmax) real + tip speed from μ
Mat_Vtip(npropmax) real + tip speed from Mat

Nrotor(npropmax) real + rotor speed (rpm)
Nspec(npropmax) real + engine speed (rpm)
STATE_gear(npropmax) int + drive system state 1

rating_ds(npropmax) c*12 + drive system rating ’ ’

fTorque(npropmax) real + fraction of rated drive system torque limit fQ (0. to 1.+) 1.

SET_Plimit(npropmax) int + drive system limit (0 not applied to power available) 1

SET_Qlimit_rs(npropmax) int + rotor shaft limit (0 not used for torque margin) 1

SET_Pmargin(npropmax) int + power and torque margin (0 not used for maximum effort) 1

dPacc(npropmax) real + accessory power increment dPacc 0.

+ Specification, each engine group
rating(nengmax) c*12 + engine rating ’MCP’

fPower(nengmax) real + fraction of rated engine power available fP (0. to 1.+) 1.

nEngInop(nengmax) int + number of inoperative engines Ninop 0

SET_Preq(nengmax) int + power required (1 distributed, 2 fixed A, 3 fixed APav , 4 fixed APeng) 1

STATE_IRS(nengmax) int + IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust) 0

+ Specification, each jet group
rating_jet(njetmax) c*12 + jet rating ’MCT’

fThrust(njetmax) real + fraction of rated jet thrust available fT (0. to 1.+) 1.

nJetInop(njetmax) int + number of inoperative jets Ninop 0

SET_Jreq(njetmax) int + thrust required (1 from component, 2 fixed A, 3 fixed ATav , 4 fixed ATjet) 2

STATE_IRS_jet(njetmax) int + IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust) 0

+ Specification, each charge group
rating_charge(nchrgmax) c*12 + charger rating ’MCP’

fCharge(nchrgmax) real + fraction of rated charger power available fC (0. to 1.+) 1.

nChrgInop(nchrgmax) int + number of inoperative chargers Ninop 0

SET_Creq(nchrgmax) int + power required (2 fixed A, 3 fixed APav , 4 fixed APchrg) 2

Structure: FltAircraft 84

dPeq(ntankmax) real + Equipment power increment dPeq, each fuel tank 0.

+ Specification, each fuel tank (battery)
ffade(ntankmax) real + battery capacity fade factor 1.

Tcell(ntankmax) real + cell temperature (deg C) 20.

fcurrent(ntankmax) real + maximum current (fraction xmbd or xCCmax) 1.

+ Specification, each rotor
STOP_rotor(nrotormax) int + rotor stop/stow (0 not, 1 stop, 2 stop and stow, 3 stop as wing) 0

STATE_deice int + Deice system state (0 off) 0

+ Performance
DoQ_pay real + payload forward flight drag increment D/q (Units_drag) 0.

fDoQ_pay real + payload drag increment scaling with weight Δ(D/q)/Wpay (Units_drag) 0.

DoQV_pay real + payload vertical drag increment D/q (Units_drag) 0.

+ Rotor (nonzero to supersede rotor model)
Ki(nrotormax) real + induced power factor κ 0.

cdo(nrotormax) real + profile power mean cd 0.

MODEL_Ftpp(nrotormax) int + inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory) 0

MODEL_Fpro(nrotormax) int + inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect) 0

KIND_control(nrotormax) int + control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP) 0

+ Engine group (nonzero to supersede engine model)
sfc_engine(nengmax) real + specific fuel consumption 0.

Kffd_engine(nengmax) real + deterioration factor 0.

eta_motor(nengmax) real + motor-generator efficiency 0.

+ Jet group (nonzero to supersede jet model)
sfc_jet(njetmax) real + specific fuel consumption 0.

Kffd_jet(njetmax) real + deterioration factor 0.

+ Trim solution
STATE_trim c*12 + aircraft trim state (match IDENT_trim, ’none’ for no trim) ’none’

trim_target(mtrimmax) real + trim quantity targets
+ Iterations (supersede Solution input if nonzero)
+ relaxation factor

relax_rotor real + all rotors 0.

relax_trim real + trim 0.

relax_fly(2) real + maximum effort 0.

relax_maxgw real + maximum gross weight 0.

Structure: FltAircraft 85

+ tolerance (fraction reference)
toler_rotor real + all rotors 0.

toler_trim real + trim 0.

toler_fly(2) real + maximum effort 0.

toler_maxgw real + maximum gross weight 0.

+ reinitialize aircraft controls (0 no, 1 force retrim)
init_trim int + trim 0

init_fly int + maximum effort 0

+ variable perturbation amplitude (fraction reference, 0. for no limit)
perturb_trim real + trim 0.

perturb_fly(2) real + maximum effort 0.

perturb_maxgw real + maximum gross weight 0.

+ maximum derivative amplitude (0. for no limit)
maxderiv_fly(2) real + maximum effort 0.

maxderiv_maxgw real + maximum gross weight 0.

+ maximum increment fraction (0. for no limit)
maxinc_fly(2) real + maximum effort 0.

maxinc_maxgw real + maximum gross weight 0.

+ solution method
method_flymax(2) int + maximum effort 0

+ trace iteration (0 for none)
trace_rotor int + all rotors 0

trace_trim int + trim (2 for component controls) 0

trace_fly(2) int + maximum effort 0

trace_maxgw int + maximum gross weight 0

maximum effort performance: one or two quantity/variable identified; first is inner loop
two variables must be unique
two variables can be identified for same maximized quantity (endurance, range, climb)
quantity identified by max_quant maximized for endurance, range, climb, or ceiling; otherwise driven to zero

ROC or altitude can be outer loop quantity only if it is also inner loop variable
fVel is only used for max_var=’speed’ or ’ROC’

ceiling calculation should use ’Pmargin’/’alt’ as inner loop, ’power’/’speed’ as outer loop
best range calculation often requires maxinc_fly=0.1 for convergence

Structure: FltAircraft 86

ROC for zero power margin initialized based on level flight power margin if input ROC=0

max_quant=’rotor(s) n’ uses Rotor%CTs_steady, max_quant=’rotor(t) n’ uses Rotor%CTs_tran

max_quant=’rotor(e) n’ uses equation for rotor thrust capability (Rotor%K0_limit and Rotor%K1_limit)
if energy burned (not weight) or multiple fuels, use equivalent fuel flow obtained from weighted energy flow
max_var=’Vtip’ or ’Nspec’ requires FltAircraft%SET_Vtip=’input’

if trailing “n” is absent, use first component (n=1)

max_limit: switch quantity to power and/or torque margin if margin negative; useful for best range

description max_quant

endurance ’end’ maximum (1/fuelflow)
range (high side) ’range’ 0.99 maximum (V /fuelflow)
range ’range(100)’ maximum (V /fuelflow)
range (low side) ’range(low)’ 0.99 maximum (V /fuelflow), low side
range (high side), ground speed ’rangeVg’ 0.99 maximum (Vg/fuelflow)
range, ground speed ’range(100)Vg’ maximum (Vg/fuelflow)
range (low side), ground speed ’range(low)Vg’ 0.99 maximum (Vg/fuelflow), low side
climb or descent rate ’climb’, ’ROC’ maximum (ROC)
climb rate (power) ’power’ maximum (1/Power)
climb or descent angle ’angle’ maximum (ROC/V)
climb angle (power) ’power/V’ maximum (V /Power)
ceiling ’alt’ maximum (altitude)
power margin ’P margin’ min(Pav − Preq) = 0 (all propulsion groups)
torque margin ’Q margin’, min(Qlimit − Qreq) = 0 (all limits)
jet thrust margin ’J margin’, min(Tav − Treq) = 0 (all jet groups)
power and torque margin ’PQ margin’, most restrictive
power and thrust margin ’PJ margin’, most restrictive
torque and thrust margin ’QJ margin’, most restrictive
power, torque, thrust margin ’PQJ margin’, most restrictive
battery power margin ’B margin’ min(Pmax − |Ėbatt|) = 0 (all fuel tanks)
rotor thrust margin ’rotor(t) n’ (CT /σ)max − |CT /σ| = 0 (transient)
rotor thrust margin ’rotor(s) n’ (CT /σ)max − |CT /σ| = 0 (sustained)
rotor thrust margin ’rotor(e) n’ (CT /σ)max − |CT /σ| = 0 (equation)
wing lift margin ’stall n’ CLmax − CL = 0

Structure: FltAircraft 87

description max_var

horizontal velocity ’speed’ times fVel

vertical rate of climb ’ROC’ times fVel

aircraft velocity ’side’ sideslip angle
altitude ’alt’

aircraft angular rate ’pullup’, ’turn’ Euler angle rates
aircraft acceleration ’xacc’, ’yacc’, ’zacc’ linear, airframe axes
aircraft acceleration ’xaccI’, ’yaccI’, ’zaccI’ linear, inertial axes
aircraft acceleration ’xaccG’, ’yaccG’, ’zaccG’ linear, ground axes
aircraft control match IDENT_control

aircraft orientation ’pitch’, ’roll’ body axes relative inertial axes
propulsion group tip speed ’Vtip n’

propulsion group engine speed ’Nspec n’

SET_vel, velocity specification:
’general’ = general (use Vkts=horizontal, ROC, side)
’hover’ = hover (zero velocity)
’vert’ = hover or VROC (use ROC; Vkts=0, climb=0/+90/–90)
’right’ = right sideward (use Vkts, ROC; side=90)
’left’ = left sideward (use Vkts, ROC; side=–90)
’rear’ = rearward (use Vkts, ROC, side=180)
’Vfwd’ = general (use Vkts=forward velocity, ROC, side)
’Vmag’ = general (use Vkts=velocity magnitude, ROC, side)
’climb’ = general (use Vkts=velocity magnitude, climb, side)
’VNE’ = never-exceed speed
’+Mach’ = use Mach not Vkts

’+CAS’ = Vkts is CAS not TAS
velocities: forward Vf = Vh cos(side), side Vs = Vh sin(side), climb Vc = Vh tan(climb)

Structure: FltAircraft 88

aircraft motion:
orientation velocity relative inertial axes defined by climb and sideslip angles (θV , ψV)

sideslip positive aircraft moving to right, climb positive aircraft moving up
specify horizontal velocity, vertical rate of climb, and sideslip angle

orientation body relative inertial axes defined by Euler angles, yaw/pitch/roll (ψF , θF , φF)
yaw positive to right, pitch positive nose up, roll positive to right

SET_PITCH and SET_roll, pitch and roll motion specification:
Aircraft values (perhaps function speed) or flight state input
initial values specified if motion is trim variable; otherwise fixed for flight state

SET_turn, bank angle and load factor in turn: use turn rate, load factor, or bank angle
tan(roll) =

√
n2 − 1 = (turn)V/g; calculated using input Vkts for flight speed

SET_pullup, load factor in pullup: use pullup rate or load factor
n = 1 + (pullup)V/g; calculated using input Vkts for flight speed

SET_acc, linear acceleration: use acceleration or load factor

SET_atmos, atmosphere specification:
’std’ = standard day at specified altitude (use altitude)
’polar’ = polar day at specified altitude (use altitude)
’trop’ = tropical day at specified altitude (use altitude)
’hot’ = hot day at specified altitude (use altitude)
’xxx+dtemp’ = specified altitude, plus temperature increment (use altitude, dtemp)
’xxx+temp’ = specified altitude, and specified temperature (use altitude, temp)
’hot+table’ = hot day table at specified altitude (use altitude)
’dens’ = input density and temperature (use density, temp)
’input’ = input density, speed of sound, and viscosity (use density, csound, viscosity)
’notair’ = input, not air on earth (use density, csound, viscosity)

SET_GE: use HAGL; out-of-ground-effect (OGE) if rotor more than 1.5Diameter above ground
height rotor = landing gear above ground + hub above landing gear = HAGL + (WL_hub–WL_gear+d_gear)

STATE_LG: ’default’ (based on retraction speed), ’extend’, ’retract’ (keyword = def, ext, ret)

Structure: FltAircraft 89

STATE_control, aircraft control state: identifies control matrix
STATE_control=0 to use conversion schedule, STATE_control=n (1 to nstate_control) to use state#n

SET_control, control specification: Aircraft values (perhaps function speed) or flight state input
coll/latcyc/lngcyc/pedal/tilt specification and values put in SET_control and control, based on IDENT_control

initial values specified if control is trim variable; otherwise fixed for flight state
SET_control=0 to use Aircraft%cont and Aircraft%Vcont; 1 to use FltState%control

SET_tilt: 0 to use Aircraft%tilt and Aircraft%Vtilt; 1 to use FltState%tilt

2 to use conversion speeds Aircraft%Vconv_hover and Aircraft%Vconv_cruise

SET_cg, center of gravity position: input for this flight state; or
baseline cg position plus shift due to nacelle tilt, plus input cg increment

tip speed, engine, transmission: for each propulsion group
SET_Vtip, primary rotor tip speed: for primary rotor of propulsion group

’input’ = use input Vtip for this flight state
’Mtip’ = use input Mtip for this flight state
’Nrotor’ = use input Nrotor (rpm) for this flight state
’ref’ = use Vtip_ref (for drive state STATE_gear)
’speed’ = use default Vtip(speed)

’conv’ = use conversion schedule (Vtip_hover or Vtip_cruise)
’hover’ = use default Vtip_hover = Vtip_ref(1)

’cruise’, ’man’, ’OEI’, ’xmsn’ = use default Vtip_cruise, Vtip_man, Vtip_oei, Vtip_xmsn

’mu’ = use tip speed from μ (mu_Vtip)
’Mat’ = use tip speed from Mat (Mat_Vtip)
’xxx+Mat’ = for tip speed limited by Mat (Mat_Vtip)
’xxx+diam’ = for variable diameter rotor, scale Vtip with radius ratio
without rotors, specify engine group speed by SET_Vtip=’input’ (use input Nspec) or ’ref’

STATE_gear, drive system state: identifies gear ratio set for multiple speed transmissions
state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n

drive system rating: match rating designation in propulsion group; blank for same as rating of first engine group
rating_ds=’speed’ to use schedule with speed
if Propulsion%nrate_ds≤ 1, drive system rating not used

fTorque reduces drive system torque limit (fTorque = 0. to 1.; > 1 is an acceptable input)
SET_Plimit: usually should not be applied for flight conditions and mission segments that size transmission

Structure: FltAircraft 90

engine rating: match rating designation in engine model; e.g. ’ERP’,’MRP’,’IRP’,’MCP’

or rating=’idle’ or rating=’takeoff’

fPower reduces engine group power available (fPower = 0. to 1.; > 1 is an acceptable input)
the engine model gives the power available, accounting for installation losses and mechanical limits

then the power available is reduced by the factor fPower

next torque limits are applied (unless SET_Plimit=off), first engine shaft limit and then drive system limit
for SET_GW=’maxP’ or ’maxPQ’ (flight condition or mission), the gross weight is determined
such that PreqPG = fPavPG + d

either fPower or fPav can be used to reduce the available power
with identical results, unless the engine group is operating at a torque limit

nEngInop, number inoperative engines: 1 for one engine inoperative (OEI), maximum nEngine

SET_Preq: distribution of propulsion group power required among engine groups
distributed (SET_Preq=1): PreqEG from PreqPG, proportional Peng

except for rotor reaction drive, PreqEG from power needed to supply reaction force
and for fuselage or wing flow control, PreqEG from power needed to supply momentum flux

fixed options use engine group amplitude control variable A, for each operable engine
engine group that consumes shaft power (generator or compressor) only uses fixed option
engine group that produces no shaft power (converted to turbo jet or reaction drive) only uses fixed option

EngineGroup%SET_Power, fPsize defines power distribution for sizing

jet rating: match rating designation in jet model; or rating_jet=’idle’ or rating_jet=’takeoff’

fThrust reduces jet group thrust available (fThrust = 0 to 1; > 1 is an acceptable input)
nJetInop, number inoperative jets: 1 for one jet inoperative (OEI), maximum nJet

SET_Jreq: fixed options use jet group amplitude control variable A, for each operable jet
from component (SET_Jreq=1): only for reaction drive or flow control, TreqJG from required FGreq

charger rating: match rating designation in charger model; or rating_charge=’idle’ or rating_charge=’takeoff’

fCharge reduces charger group power available (fCharge = 0 to 1; > 1 is an acceptable input)
nChrgInop, number inoperative chargers: 1 for one charger inoperative (OEI), maximum nCharge

SET_Creq: use charge group amplitude control variable A, for each operable charger

STOP_rotor: only for stoppable rotor; if stopped, model sets KIND_control=1, MODEL_Ftpp=1, MODEL_Fpro=3

it is neither required nor appropriate to set small or zero tip speed for a stopped rotor

Structure: FltAircraft 91

STATE_trim, aircraft trim state: match IDENT_trim, ’none’ for no trim
identifies trim variables and quantities
ACTION=’configuration’ defines trim states with following identification:

IDENT_trim=’free’, ’symm’, ’hover’, ’thrust’, ’rotor’, ’windtunnel’, ’power’, ’ground’, ’comp’

requirement for trim_target depends on designation of Aircraft%trim_quant

parent int parent (1 SizeCond, 2 SizeMiss, 3 OffMiss, 4 PerfCond)
kMission int Mission number
kMissSeg int MissSeg number
kFltState int FltState number
kcol_out int performance output column

Maximum effort
imax_quant(2) int quantity (MAX_QUANT_xxx)
imax_quantn(2) int quantity structure number
imax_isslope(2) int quantity is slope (maximize)
imax_var(2) int variable (MAX_VAR_xxx, or control number)
imax_varn(2) int variable structure number

Specification
iSET_vel int velocity (SET_vel_xxx)
iSET_vel2 int velocity (SET_vel2_TAS, SET_vel2_CAS, SET_vel2_Mach)
isSideward int sideward flight (1 for sideward flight)
iSET_atmos int atmosphere (SET_atmos_xxx)
iSTATE_LG int landing gear state (STATE_LG_default, extend, retract)
iSTATE_trim int aircraft trim state (number, 0 for no trim)

Specification, each propulsion group
iSET_Vtip(npropmax) int rotor tip speed (SET_Vtip_input, Nrotor, ref, speed, conv, hover, cruise, man, OEI, xmsn, mu, Mat, Mtip)
iSET_Vtip_Mat(npropmax) int rotor tip speed limited by Mat

iSET_Vtip_VarDiam(npropmax)

int rotor tip speed for variable diameter rotor (1 to scale Vtip with radius ratio)
iSETPmargin(npropmax) int power margin as quantity (2 maximum effort, 1 trim)
iSETQmargin(npropmax) int torque margin as quantity (2 maximum effort, 1 trim)
krate_ds(npropmax) int drive system rating number
xSET_Plimit(npropmax) int drive system limit (SET_Plimit, superseded for sizing by Propulsion%SET_Plimit_size)

Structure: FltAircraft 92

Specification
krate(nengmax) int engine rating number
krate_jet(njetmax) int jet rating number
krate_charge(nchrgmax) int charger rating number
iSETEmargin(nengmax) int power margin as quantity (1 trim)
iSETJmargin(njetmax) int jet thrust margin as quantity (2 maximum effort, 1 trim)
iSETCmargin(nchrgmax) int charger power margin as quantity (1 trim)
iSETBmargin(ntankmax) int battery power margin as quantity (2 maximum effort, 1 trim)

Weight
GW real gross weight WG

Wfuel_total real usable fuel weight Wfuel

Wfuel(ntankmax) real usable fuel weight
Wfuel_std(ntankmax) real standard tanks
Wfuel_aux(ntankmax) real auxiliary tanks
Wpayload real payload weight Wpay

Wpay_pass real passengers Wpass

Wpay_cargo real cargo Wcargo

Wpay_extload real external load Wext−load

Wpay_ammo real ammunition Wammo

Wpay_weapons real weapons Wweapons

Wpay_other real other Wother

WFixUL real fixed useful load WFUL

dW_fixUL real fixed useful load increment (relative weight statement W_fixUL)
Wcrew real crew (replace weight statement W_fixUL_crew)
Wauxtank real auxiliary fuel tanks (replace weight statement W_fixUL_auxtank)
W_fixUL_other real other fixed useful load (replace weight statement W_fixUL_other)
Woful(10) real categories
Wequip real equipment increment (replace weight statement W_fixUL_equip)
Wfoldkit real folding kit (replace weight statement W_fixUL_foldkit)
Wextkit real wing extension kit (replace weight statement W_fixUL_extkit)
Wwingkit real wing kit (replace weight statement W_fixUL_wingkit)
Wotherkit real other kit (replace weight statement W_fixUL_otherkit)
WO real operating weight WO

Ncrew int number of crew

Structure: FltAircraft 93

Npass int number of passengers
Ncrew_seat int number of crew seats
Npass_seat int number of passenger seats
Efuel_total real usable fuel energy Efuel

Efuel(ntankmax) real usable fuel energy
Efuel_std(ntankmax) real standard tanks
Efuel_aux(ntankmax) real auxiliary tanks

Weight at mission segment start
GW_start real gross weight WG

Wfuel_start(ntankmax) real usable fuel weight Wfuel

Wfuel_std_start(ntankmax) real standard tanks
Wfuel_aux_start(ntankmax) real auxiliary tanks
Efuel_start(ntankmax) real usable fuel energy Efuel

Efuel_std_start(ntankmax) real standard tanks
Efuel_aux_start(ntankmax) real auxiliary tanks
zcg(3) real Center of gravity position
SLcg real stationline
BLcg real buttline
WLcg real waterline

Moments of inertia
Ixx real Ixx

Iyy real Iyy

Izz real Izz

Ixy real Ixy

Iyz real Iyz

Ixz real Ixz

weight statement defines fixed useful load and operating weight for design configuration
so for flight state, additional fixed useful load = auxiliary fuel tank and kits and increments

gross weight = weight empty + useful load = operating weight + payload + usable fuel
useful load = fixed useful load + payload + usable fuel
operating weight = weight empty + fixed useful load

Structure: FltAircraft 94

Atmosphere
alt real altitude h
tmp real temperature τ
dtmp real temperature increment ΔT
sigma real density ratio ρ/ρ0

theta real temperature ratio T/T0

delta real pressure ratio p/p0

kinvis real kinematic viscosity ν = μ/ρ
altdens real density altitude hd

altpress real pressure altitude hp

Flight condition
radius(nrotormax) real rotor radius R
VNE real never-exceed speed VNE (knots TAS)

rotational speeds
Vtip_trim(nrotormax) real rotor tip speed ΩR
rpm_trim(nrotormax) real rotor rpm Ω
rN_trim_rotor(nrotormax) real rotor Ω/Ωref

N_trim(nengmax) real engine rpm N
rN_trim_eng(nengmax) real engine N/Nspec

rN_trim_ref(npropmax) real propulsion group reference speed ratio
flight speed

speed real horizontal speed Vh (knots)
Vclimb real climb velocity Vc (ft/sec or m/sec)
side_trim real sideslip angle ψV (deg)

derived
Vhoriz real horizontal velocity Vh (ft/sec or m/sec)
Mhoriz real horizontal Mach number Vh/cs

climb_trim real climb angle θV (deg)
Vside real sideward velocity Vs (ft/sec or m/sec)
Vmag real velocity magnitude |V |
Vfwd real forward velocity Vf (ft/sec or m/sec)
VCAS real calibrated airspeed Vcal (knots) (V

√
σf(δ, M))

VAC(3) real velocity vAC in F axes
ed(3) real drag vector, −vAC/|vAC | in F axes

Structure: FltAircraft 95

qAC real dynamic pressure qAC

Wind real headwind Vw (knots)
groundspeed real ground speed Vg = Vh − Vw (knots)

angular velocity
turn_trim real turn ψ̇F (yaw rate)
pullup_trim real pullup θ̇F (pitch rate)
turnRadius real turn radius RT

wAC(3) real ωAC in F axes
acceleration

aAC(3) real aAC in F axes (linear)
nAC(3) real load factor nAC (linear acc and angular rate)
KIND_alpha int angle of attack and sideslip angle representation (1 conventional, 2 reversed)

orientation of body axes relative inertial axes
pitch_trim real pitch angle θF (deg)
roll_trim real roll angle φF (deg)

rotation matrices
CFI(3,3) real CFI , velocity axes relative inertial axes
CVI(3,3) real CV I , body axes relative inertial axes
CFV(3,3) real CFV , body axes relative velocity axes
control_trim(ncontmax) real aircraft controls
Nauxtank(nauxtankmax,ntankmax)

int number of auxiliary fuel tanks Nauxtank (each aux tank size), from FltCond or MissSeg

SET_extkit(nwingmax) int wing extension kit on aircraft (0 none, 1 present)
SET_wingkit(nwingmax) int wing kit on aircraft (0 none, 1 present)
Wfuel_cap(ntankmax) real total fuel capacity Wfuel−cap, including auxiliary tanks
Efuel_cap(ntankmax) real total fuel capacity Efuel−cap, including auxiliary tanks
slope_ground real slope of ground γG (+uphill; deg), from MissSeg

SET_sweep int parameter sweep, from FltCond

angle of attack and sideslip angle representation: from Aircraft and isSideward

orientation body relative inertial axes defined by Euler angles, with yaw/pitch/roll sequence (ψF , θF , φF)
yaw positive to right, pitch positive nose up, roll positive to right
CFI = XrollYpitchZyaw, yaw angle = (turn)*time

Structure: FltAircraft 96

orientation velocity relative inertial axes defined by climb and sideslip angles (θV , ψV)
sideslip positive aircraft moving to right, climb positive aircraft moving up
CV I = YclimbZsideZyaw

orientation body relative velocity axes: CFV = XrollYpitchZ−sideY−climb

Trim (last)
istrimconv int converged (0 not)
count_trim int number of iterations
error_trim(mtrimmax) real error ratio
resid_trim(mtrimmax) real residual (difference after one trim iteration)
gain_trim(mtrimmax,mtrimmax)

real gain matrix
Maximum effort (principal iteration, 99% range iteration; inner, outer loops)

isflyconv(2,2) int converged (0 not)
count_fly(2,2) int number of iterations
error_fly(2,2) real error ratio
isSwitched(2) int quantity switched (1 P margin, 2 Q margin, 3 both)

Maximum gross weight (flight condition or mission takeoff)
ismaxgwconv int converged (0 not)
count_maxgw int number of iterations
error_maxgw real error ratio

Rotor flap equation (all converged or any not converged)
isrotorconv int converged (0 not, –1 no iteration)

Solution state
count_control int count of solution (0 at start, get aircraft controls)
trim_deriv_exist int trim derivative matrix exist (0 for not)

Loads
forces (F axes, about cg)

Faero(3) real aerodynamic FF
aero (fuselage, rotor, wing, tail, tank, engine, jet, charger)

Frotor(3) real rotor FF
rotor

Ftank(3) real fuel tanks FF
tank

Structure: FltAircraft 97

Fengine(3) real engine groups FF
eng (jet thrust, momentum drag)

Fjet(3) real jet groups FF
jet

Fchrg(3) real charge groups FF
charge

Fgrav(3) real gravitational FF
grav

Finertia(3) real inertial FF
inertial (turn)

moments (F axes, about cg)
Maero(3) real aerodynamic MF

aero (fuselage, rotor, wing, tail, tank, engine, jet, charger)
Mrotor(3) real rotor MF

rotor

Mtank(3) real fuel tanks MF
tank

Mengine(3) real engine groups MF
engine (jet thrust, momentum drag)

Mjet(3) real jet groups MF
jet

Mchrg(3) real charge groups MF
charge

Minertia(3) real inertial MF
inertial (turn)

Ftotal(3) real total force (F axes, about cg); F + Fgrav − Finertia

Mtotal(3) real total moment (F axes, about cg); M − Minertia

Download real download, aero Fz (I axes); set to 0 if V>10 knots
Thrust real rotor thrust, rotor −Fz (I axes; sum Fvert)
DLoT real download/thrust DL/T
DLoW real download/weight DL/W
diskloadT real aircraft disk loading T/Aref (lb/ft2 or N/m2)
diskloadW real aircraft disk loading WG/Aref (lb/ft2 or N/m2)
Aref real reference rotor area Aref =

∑
fAA

Aircraft performance
power

Preq real power required Preq (engine groups)
Pmargin real power margin, min(Pav − Preq) (propulsion groups and converted engine groups)
Qmargin real torque margin, min(Plimit − Preq)
exceedP int exceed power available: any propulsion group PreqPG > (1 + ε)PavPG

exceedQ int exceed torque available: any propulsion group PreqPG > (1 + ε)PDSlimit

thrust
Tjet real thrust required Tjet (jet groups)
Jmargin real jet thrust margin, min(Tav − Treq)
exceedJ int exceed jet thrust available: any jet group TreqJG > (1 + ε)TavJG

Structure: FltAircraft 98

charging
Pchrg real power required Pchrg (charge groups)
Cmargin real charger power margin, min(Pav − Preq)
exceedC int exceed charger power available: any charge group PreqCG > (1 + ε)PavCG

Pequiv real equivalent aircraft power required P = Preq + V Tjet

Pclimb real climb power, VclimbW
fuelflow(ntankmax) real fuel flow ẇ
fuelflow_total real total fuel flow ẇ
fuelflow_equiv real equivalent fuel flow ẇequiv, from energy flow
energyflow(ntankmax) real energy flow Ė
energyflow_total real total energy flow Ė
exceedWf int exceed fuel capacity: Wfuel > (1 + ε)Wfuel−cap or Efuel > (1 + ε)Efuel−cap

battery
Bmargin real battery power margin, min(Pmax − |Ėbatt|) (MJ/hr)
exceedB int exceed battery power: any fuel tank |Ėbatt| > (1 + ε)Pmax

sfc real sfc, ẇequiv/Pequiv (lb/hp-hr or kg/kW-hr)
efficiency real efficiency, Pequiv/Ė
spec_range real specific range, V/ẇequiv (nm/lb or nm/kg)
spec_rangeE real specific range, V/Ė (nm/MJ)

Performance indices
FM real aircraft figure of merit FM = W

√
W/(2ρAref)/P

LoDe real aircraft effective lift-to-drag ratio L/De = WV/P
Drage real aircraft effective drag De = P/V
DragAC real aircraft drag DAC

DoQAC real aircraft drag area D/q = DAC/qAC ; set to 0 if V<10 knots
WoP real power loading W/P
range_onepcW real range for fuel=1%GW (nm)
fuel_eff real fuel efficiency e = WpayV/ẇequiv (ton-nm/lb or ton-nm/kg)
productivity real productivity p = WpayV/WO (ton-kt/lb or ton-kt/kg)

Operating size
length_op real length
width_op real width
area_op real area

99

Chapter 21

Structure: FltFuse

Variable Type Description Default

Flight State - Fuselage
controls

flow real momentum coefficient Cμ

aerodynamics
VintR(3,nrotormax) real interference velocity vF

int, from rotors (F axes)
Vaero(3) real total velocity relative air vF (F axes)
VB(3) real total velocity relative air vB (B axes)
alpha real angle of attack α (deg)
beta real sideslip angle β (deg)
CBA(3,3) real CBA

Vmag real velocity magnitude
q real dynamic pressure
FGreq real flow control momentum flux required FGreq

PEGreq real engine group power required to supply FGreq

DoQ_pay real payload D/q
DoQ_cont real contingency D/q
CL real lift coefficient CL

CM real pitch moment coefficient CM

CD real drag coefficient CD

CY real side force coefficient CY

CN real yaw moment coefficient CN

L real lift
M real pitch moment
D real drag
Y real side force
N real yaw moment

loads
Faero(3) real aerodynamic force FF

aero (F axes, about cg)

Structure: FltFuse 100

Maero(3) real aerodynamic moment MF
aero (F axes, about cg)

Drag real drag eT
d FF

aero

Download real download, aero Fz (I axes)

101

Chapter 22

Structure: FltGear

Variable Type Description Default

Flight State - Landing Gear
aerodynamics

iSTATE_LG int landing gear state (STATE_LG_extended, retracted)
Vaero(3) real total velocity relative air vF (F axes)
Vmag real velocity magnitude
q real dynamic pressure
ed(3) real drag vector, −v/|v| in F axes
Faero(3) real aerodynamic force FF

aero (F axes, about cg)
Maero(3) real aerodynamic moment MF

aero (F axes, about cg)
Drag real drag eT

d FF
aero

Download real download, aero Fz (I axes)

102

Chapter 23

Structure: FltRotor

Variable Type Description Default

Flight State - Rotor
control mode

KIND_control_coll int collective control mode (1 thrust command, 2 pitch command)
KIND_control_cyc int cyclic control mode (1 TPP command, 2 NFP command)
Scoll real collective T matrix scale factor S (1, a/6, ρV 2

tipAbladea/6)
Scyc real cyclic T matrix scale factor S (–1 TPP command, 1 NFP command)

controls
coll real collective
lngcyc real longitudinal cyclic
latcyc real lateral cyclic
incid real incidence
cant real cant
diam real diameter
fgear real gear ratio factor
Freact real reaction drive net force Freact

geometry
Ccont(3,3) real shaft control, Ccont

CSF(3,3) real shaft relative airframe, CSF

zhub(3) real hub position, zhub

zpylon(3) real pylon position, zpylon

znac(3) real nacelle cg position, znac

CBF(3,3) real pylon relative airframe, CBF

condition
radius real radius R
Vtip real tip speed Vtip = ΩR
Omega real rotational speed Ω
Mtip real tip Mach number Mtip

Mat real maximum Mach number Mat (advancing tip or helical)

Structure: FltRotor 103

sigma real solidity σ (thrust weighted)
gamma real Lock number γ
Iblade real blade moment of inertia Iblade

flapfreq real flap frequency ν
conefreq real coning frequency ν
Khub real hub stiffness Khub

performance
shaft axis loads

T real thrust
H real drag force
Y real side force
Mx real roll moment
My real pitch moment
Q real torque
CT real thrust coefficient CT

CH real drag force coefficient CH

CY real side force coefficient CY

CMx real roll moment coefficient CMx

CMy real pitch moment coefficient CMy

CQ real torque coefficient CQ

control and motion
theta75 real collective pitch θ0.75 (0.75R)
thetas real longitudinal cyclic pitch θs

thetac real lateral cyclic pitch θc

beta0 real coning β0

betac real longitudinal flapping βc

betas real lateral flapping βs

lambda0 real inflow λ0 = κλi

CPS(3,3) real tip-path plane relative shaft, CPS

velocity and inflow
VoVtip real V/Vtip

VF(3) real total velocity relative air vF (F axes)
VS(3) real total velocity relative air vS (S axes)
mux real μx

Structure: FltRotor 104

muy real μy

muz real μz

omegaS(3) real angular velocity ωS (S axes)
dax real α̇x

day real α̇y

mu real μ =
√

μ2
x + μ2

y

alphas real α = tan−1(μz/μ)
fDuctA real ducted fan area ratio fA

fDuctT real ducted fan thrust ratio fT

fDuctW real ducted fan far wake ratio fW

fDuctD real ducted fan power ratio fD = fW /2ηD

zg real height rotor hub above ground, zg/D
zge real effective height, zgCg/(D cos ε)
fg real ground effect inflow ratio fg = P/P∞
kappag real ground effect thrust ratio κg = T/T∞
CTe real CT for inflow solution
lambdah real reference λh =

√
CT /2

lambda_ideal real ideal induced velocity λi

CPideal real ideal induced power CP ideal = CT λi

kappax real inflow gradient κx

kappay real inflow gradient κy

kappam real inflow gradient κm = (σa/8)fm/U
diskload real disk loading T/A (lb/ft2 or N/m2)
CTs real thrust coefficient/solidity, |CT /σ|
FPpro real profile power factor FP

FHpro real profile drag factor FH

inplane forces
CHtpp real drag force CH , tpp
CYtpp real side force CY , tpp
CHo real drag force CH , profile
CYo real side force CY , profile
fB real blockage factor fB

rotor flap equations
isrotorconv int converged (0 not, –1 no iteration)

Structure: FltRotor 105

count_rotor int iteration count
error_rotor(3) real error ratio (Et, Ec, Es)
resid_rotor(3) real residual (Et, Ec, Es)
rotor_deriv_exist int rotor derivative matrix exist (0 for not)

loads
Frotor(3) real rotor force FF

rotor (F axes, about cg)
Mrotor(3) real rotor moment MF

rotor (F axes, about cg)
L real lift (wind axis)
X real drag (wind axis)
CL real lift coefficient CL

CX real drag coefficient CX

Fvert real vertical force (inertia axes)
CTs_rotor real rotor blade loading, CT /σfT

CTs_steady real max CT /σ (sustained)
CTs_tran real max CT /σ (transient)
CTs_eqn real max CT /σ (equation)
Tmargin_steady real thrust margin, (CT /σ)max − |CT /σ| (sustained)
Tmargin_tran real thrust margin, (CT /σ)max − |CT /σ| (transient)
Tmargin_eqn real thrust margin, (CT /σ)max − |CT /σ| (equation)
Plimit_rs real drive system limit PRSlimit (at rpm_trim and rating_ds)
Qmargin_rs real torque margin, PRSlimit − P
exceedQ_rs int exceed torque available: P > (1 + ε)PRSlimit

power
P real rotor power P
Pind real induced power Pi (include interference)
Ppro real profile power Po

Ppar real parasite power Pp

CP real rotor power coefficient CP

CPind real induced power coefficient CPi (include interference)
CPpro real profile power coefficient CPo

CPpar real parasite power coefficient CPp

lambda real induced velocity λ
Ki real induced power factor κ
Pint_wing(nwingmax) real wing interference power Pintw

Structure: FltRotor 106

CPint_wing(nwingmax) real wing interference power coefficient CP intw

lambdaint_wing(nwingmax) real equivalent induced velocity λintw

cdmean real mean drag coefficient cdmean

cdmean_basic real mean drag coefficient, basic (without TECH_drag or Re scale)
cdmean_stall real mean drag coefficient, stall (without TECH_drag or Re scale)
cdmean_comp real mean drag coefficient, compressible (without TECH_drag or Re scale)
cdmean_table real mean drag coefficient, table term
FM real hover figure of merit, TfDv/P
etaprop real propulsive efficiency, TV/P
etamom real momentum efficiency, T (V + fDv)/P
CDe real effective drag, (CPi + CPo)/(V/Vtip)
LoDe real effective lift-to-drag, CL/CDe

shaft power and reaction drive
Pshaft real shaft power Pshaft

Preact real reaction drive power Preact = ΩrreactFreact

rOmegareact real blade velocity Ωrreact

mdotreact real mass flow ṁreact

STreact real specific thrust ST = FGreq/ṁreact

FGreq real gross thrust (momentum flux) required FGreq = Freact + ṁreactΩrreact

PEGreq real engine group power required to supply FGreq

aerodynamics
hub

Vaero_hub(3) real total velocity relative air vF (F axes)
Vmag_hub real velocity magnitude
q_hub real dynamic pressure
ed_hub(3) real drag vector, −v/|v| in F axes
VB_hub(3) real total velocity relative air vB (B axes)
alpha_hub real angle of attack α (deg)

pylon
Vaero_pylon(3) real total velocity relative air vF (F axes)
Vmag_pylon real velocity magnitude
q_pylon real dynamic pressure
ed_pylon(3) real drag vector, −v/|v| in F axes
VB_pylon(3) real total velocity relative air vB (B axes)

Structure: FltRotor 107

alpha_pylon real angle of attack α (deg)
CDhub real drag coefficient, hub CDhub

CDpylon real drag coefficient, pylon CDpylon

CDduct real drag coefficient, duct CDduct

CDspin real drag coefficient, spinner CDspin

CDbldstop real drag coefficient, stopped blade CDblade−stop

Dhub real drag, hub Dhub

Dpylon real drag, pylon Dpylon

Dduct real drag, duct Dduct

Dspin real drag, spinner Dspin

Dbldstop real drag, stopped blade Dblade−stop

loads
Faero(3) real aerodynamic force FF

aero (F axes, about cg)
Maero(3) real aerodynamic moment MF

aero (F axes, about cg)
Drag real drag eT

d FF
aero

Download real download, aero Fz (I axes)

interference
lambda_int real ideal induced velocity λi (from CT)
vind(3) real induced velocity vF

ind (F axes)
eind(3) real direction induced velocity −CFP kP

chi_wake real wake angle χ
Fint_fus real interference factor fW fzfrft at fuselage
Fint_wingLp(nwingmax,npanelmax)

real interference factor fW fzfrft at wing, left panel
Fint_wingRp(nwingmax,npanelmax)

real interference factor fW fzfrft at wing, right panel
Fint_tail(ntailmax) real interference factor fW fzfrft at tail
isInWake_fus int fuselage inside wake
isInWake_wingLp(nwingmax,npanelmax)

int wing inside wake, left panel
isInWake_wingRp(nwingmax,npanelmax)

int wing inside wake, right panel
isInWake_tail(ntailmax) int tail inside wake
ftwin real twin rotor factor ft

Structure: FltRotor 108

Aint_wing(nwingmax) real induced power interference at wing αint

vint_wing(nwingmax) real interference velocity from wing vintw

109

Chapter 24

Structure: FltWing

Variable Type Description Default

Flight State - Wing
controls

flap(npanelmax) real flap δF

flaperon(npanelmax) real flaperon δf

aileron(npanelmax) real aileron δa

incid(npanelmax) real incidence i
flow(npanelmax) real momentum coefficient Cμ

geometry
zac(3) real aerodynamic center position, zac

zcg(3) real center of gravity position, zcg

aerodynamics
VintR_Lp(3,nrotormax,npanelmax)

real interference velocity vF
int at left wing panel, from rotors (F axes)

VintR_Rp(3,nrotormax,npanelmax)

real interference velocity vF
int at right wing panel, from rotors (F axes)

VintR(3,nrotormax) real interference velocity vF
int (panel area weighted), from rotors (F axes)

VintW(3,nwingmax) real interference velocity vF
int, from other wings (F axes)

AintW(nwingmax) real interference angle αint, from other wings
AintR(nrotormax) real induced power interference αint, from rotors

with mean interference
Vaero(3) real total velocity relative air vF (F axes)
VB(3) real total velocity relative air vB (B axes)
alpha real angle of attack α (deg)
beta real sideslip angle β (deg)
CBA(3,3) real CBA

Vmag real velocity magnitude
q real dynamic pressure

Structure: FltWing 110

alpha_int real angle of attack α, with interference (deg)
CDV real vertical drag coefficient CDV

left panel
Vaero_Lp(3,npanelmax) real total velocity relative air vF (F axes)
VB_Lp(3,npanelmax) real total velocity relative air vB (B axes)
alpha_Lp(npanelmax) real angle of attack α (deg)
beta_Lp(npanelmax) real sideslip angle β (deg)
CBA_Lp(3,3,npanelmax) real CBA

Vmag_Lp(npanelmax) real velocity magnitude
q_Lp(npanelmax) real dynamic pressure
CL_Lp(npanelmax) real lift coefficient CLp

CDp_Lp(npanelmax) real drag coefficient, parasite CDpp

CM_Lp(npanelmax) real pitch moment coefficient CMp

CR_Lp(npanelmax) real roll moment coefficient C�p

L_Lp(npanelmax) real lift
Dp_Lp(npanelmax) real drag, parasite
M_Lp(npanelmax) real pitch moment
R_Lp(npanelmax) real roll moment

right panel
Vaero_Rp(3,npanelmax) real total velocity relative air vF (F axes)
VB_Rp(3,npanelmax) real total velocity relative air vB (B axes)
alpha_Rp(npanelmax) real angle of attack α (deg)
beta_Rp(npanelmax) real sideslip angle β (deg)
CBA_Rp(3,3,npanelmax) real CBA

Vmag_Rp(npanelmax) real velocity magnitude
q_Rp(npanelmax) real dynamic pressure
CL_Rp(npanelmax) real lift coefficient CLp

CDp_Rp(npanelmax) real drag coefficient, parasite CDpp

CM_Rp(npanelmax) real pitch moment coefficient CMp

CR_Rp(npanelmax) real roll moment coefficient C�p

L_Rp(npanelmax) real lift
Dp_Rp(npanelmax) real drag, parasite
M_Rp(npanelmax) real pitch moment
R_Rp(npanelmax) real roll moment

Structure: FltWing 111

qS real qS (sum over panels)
qeff real (qS)/S (weighted by panel area)
dCLda3D real compressible 3D lift curve slope CLα

AoA_max real αmax

CL real lift coefficient CL

CDp real drag coefficient, parasite CDp

CDi real drag coefficient, induced CDi

CM real pitch moment coefficient CM

CR real roll moment coefficient C�

CLmax real maximum lift coefficient CLmax

L real lift
Dp real drag, parasite
Di real drag, induced
D real drag
M real pitch moment
R real roll moment
Lmargin real stall margin, CLmax − CL

FGreq real flow control momentum flux required FGreq (all panels)
PEGreq real engine group power required to supply FGreq (all panels)

loads
Faero(3) real aerodynamic force FF

aero (F axes, about cg)
Maero(3) real aerodynamic moment MF

aero (F axes, about cg)
Drag real drag eT

d FF
aero

Download real download, aero Fz (I axes)

interference
Vint_tail(3,ntailmax) real velocity at tail vF

int (F axes)
vind(3) real induced velocity vF

ind (F axes)
eind(3) real direction induced velocity CFBkBsign(CL)
Vint_wing(3,nwingmax) real velocity at other wing vF

int (F axes)
Aint_wing(nwingmax) real angle at other wing (αint = vint/vB = Kintvind/vB)
vind_rotor real velocity for rotor interference |vF

ind|sign(CL)

112

Chapter 25

Structure: FltTail

Variable Type Description Default

Flight State - Tail
controls

cont real control δ
incid real incidence i

aerodynamics
VintR(3,nrotormax) real interference velocity vF

int, from rotors (F axes)
VintW(3,nwingmax) real interference velocity vF

int, from wings (W axes)
Vaero(3) real total velocity relative air vF (F axes)
VB(3) real total velocity relative air vB (B axes)
alpha real angle of attack α (deg)
beta real sideslip angle β (deg)
CBA(3,3) real CBA

Vmag real velocity magnitude
q real dynamic pressure
dCLda3D real compressible 3D lift curve slope CLα

AoA_max real αmax

CL real lift coefficient CL

CDp real drag coefficient, parasite CDp

CDi real drag coefficient, induced CDi

CLmax real maximum lift coefficient CLmax

L real lift
D real drag

loads
Faero(3) real aerodynamic force FF

aero (F axes, about cg)
Maero(3) real aerodynamic moment MF

aero (F axes, about cg)
Drag real drag eT

d FF
aero

Download real download, aero Fz (I axes)

113

Chapter 26

Structure: FltTank

Variable Type Description Default

Flight State - Fuel Tank Systems
all tanks (standard plus auxiliary)

Wfuel real usable fuel weight
Efuel real usable fuel energy
Wfuel_cap real fuel weight capacity
Efuel_cap real fuel energy capacity
rWfuel real fraction weight capacity
rEfuel real fraction energy capacity = state-of-charge = 1 - depth-of-discharge

battery (Ė > 0 discharge, Ė < 0 charge; power and current positive)
Pfuel_cap real power capacity Pcap = xmbdEfuel−cap/(dmax − dmin) (MJ/hr)
state int state (1 discharging, -1 CC charge, -2 CV charge)
dact real actual depth-of-discharge dact = dmin + (dmax − dmin)duse

x real current x (1/hr)
xi real current ξ = x/xmbd

V real cell voltage V
Edotcomp real component energy flow Ėcomp (MJ/hr)
etabatt real battery efficiency ηbatt

Ploss real power loss Ploss (MJ/hr)
etasys real system efficiency ηsys

Edotbatt real battery energy flow Ėbatt (MJ/hr)
dcrit real effective capacity factor dcrit

Edoteff real effective energy flow Ėeff (MJ/hr)
xmax real maximum current xmax (1/hr)
Pmax real maximum power (for xmax) (MJ/hr)
Bmargin real battery power margin Pmax − |Ėbatt| (MJ/hr)
exceedB int exceed battery power: |Ėbatt| > (1 + ε)Pmax

Structure: FltTank 114

system losses
Peq real equipment power loss Peq (hp or kW)
Pdist real distribution power loss Pdist (MJ/hr)

thermal management system
Prej real battery rejected power Prej (MJ/hr)
mdot real mass flow ṁ
FG real gross jet thrust FG

FN real net jet thrust FN

Fjet(3) real jet thrust force FF
jet (F axes, about cg)

Mjet(3) real jet thrust moment MF
jet (F axes, about cg)

PTMS real thermal management system loss PTMS (MJ/hr)
fuelflow real fuel flow ẇ
energyflow real energy flow Ė
fuelflow_equiv real equivalent fuel flow ẇequiv, from energy flow

aerodynamics
Vaero(3) real total velocity relative air vF (F axes)
Vmag real velocity magnitude
q real dynamic pressure
ed(3) real drag vector, −v/|v| in F axes
Dcool real cooling drag D
DL real download, aero Fz (I axes)

auxiliary tanks
Vaero_aux(3,nauxtankmax) real total velocity relative air vF (F axes)
Vmag_aux(nauxtankmax) real velocity magnitude
q_aux(nauxtankmax) real dynamic pressure
ed_aux(3,nauxtankmax) real drag vector, −v/|v| in F axes
D_aux(nauxtankmax) real drag D
DL_aux(nauxtankmax) real download, aero Fz (I axes)

loads
Faero(3) real aerodynamic force FF

aero (F axes, about cg)
Maero(3) real aerodynamic moment MF

aero (F axes, about cg)
Drag real drag eT

d FF
aero

Download real download, aero Fz (I axes)

115

Chapter 27

Structure: FltProp

Variable Type Description Default

Flight State - Propulsion Group
STATE_gear int drive system state

control
DN_trim real rotational speed increment, primary rotor or primary engine (rpm)

power
Pcomp real power required Pcomp, all components
Pcomp_rotor real rotor
Pcomp_eng real engine groups
Pxmsn real transmission losses Pxmsn

Pacc real accessory power Pacc

PreqPG real power required PreqPG = Pcomp + Pxmsn + Pacc, propulsion group
PavPG real power available PavPG, propulsion group (sum all engine groups producing shaft power)
PavEIsum real engine installed power available PavEI (sum all engine groups producing shaft power)
PavEGsum real engine group power available PavEG (sum all engine groups producing shaft power)
Pratio real PreqPG/PavPG, propulsion group
Plimit_ds real drive system limit PDSlimit (at rpm_trim(primary) and rating_ds, including fTorque)
atPlimit_ds int at drive system limit (PavPG limited by PDSlimit)
Qmargin_ds real torque margin, PDSlimit − PreqPG

Pmargin real power margin, PavPG − PreqPG

exceedP int exceed power available: PreqPG > (1 + ε)PavPG

exceedQ_ds int exceed torque available: PreqPG > (1 + ε)PDSlimit

Qmargin real torque margin, min(propulsion group, engine groups, rotors)
exceedQ int exceed torque available: any propulsion group, engine groups, rotors

propulsion group engines
fuelflow(ntankmax) real fuel flow ẇ
fuelflow_total real total fuel flow ẇ
fuelflow_equiv real equivalent fuel flow ẇequiv, from energy flow
energyflow(ntankmax) real energy flow Ė

Structure: FltProp 116

energyflow_total real total energy flow Ė
sfc real specific fuel consumption sfc = ẇequiv/Preq

Fprop(3) real jet thrust and momentum drag force FF
prop (F axes, about cg)

Mprop(3) real jet thrust and momentum drag moment MF
prop (F axes, about cg)

Faero(3) real aerodynamic force FF
aero (F axes, about cg)

Maero(3) real aerodynamic moment MF
aero (F axes, about cg)

Drag real drag eT
d FF

aero

Download real download, aero Fz (I axes)

117

Chapter 28

Structure: FltEngn

Variable Type Description Default

Flight State - Engine Group
controls

amp real amplitude A
mode real mode B
incid real incidence i
yaw real yaw ψ
fgear real gear ratio factor fgear

geometry
CBF(3,3) real engine relative airframe, CBF

ef(3) real engine direction, ef

engine
Pq real uninstalled power required, Pq

Plossq real installation loss Ploss or PTMS

etalossq real installation efficiency ηloss

Preq_eng real installed power required, Preq−eng

N_trim real engine rpm N
mdot real mass flow ṁ
wdot real fuel flow ẇ
Edot real energy flow Ė
FG real gross installed jet thrust FG

Fmom real momentum thrust Fmom = ṁV
FGreq real gross thrust (momentum flux) required FGreq = Freact + ṁreactΩrreact or flow control (all components)
FGq real FGq = FGreq/(Nengine–NEngInOp)
FN real net installed jet thrust FN

Daux real momentum drag of auxiliary air flow Daux

Pa real uninstalled power available, Pa

Plossa real installation loss Ploss or PTMS

Structure: FltEngn 118

etalossa real installation efficiency ηloss

Pav_eng real installed power available, Pav−eng

Pmech real engine mechanical limit Pmech (at N_trim)
atPmech int at mechanical limit (Pav−eng limited by Pmech)
TM real motor/generator torque margin
SM real motor/generator speed margin
etamotor real motor/generator efficiency ηmotor

Prej real motor/generator rejected power Prej (hp or kW)
engine group

ReactionMode int reaction drive mode (MODEL_engine_compreact or converted)
Converted int converted (KIND=RPTEM with mode=1; 0 shaft power, 1 reaction, 2 jet)
ProducePower int shaft power (0 consumed (generator or compressor), 1 produced)
Pcomp real component power Pcomp (generator or compressor); (Nengine–NEngInOp)PqKffd

Preq real power required PreqEG

PavEI real engine installed power available PavEI ; (Nengine–NEngInOp)Pav−eng

Pav real power available, PavEG; fPower(Nengine–NEngInOp)Pav−eng

Qreq real torque required Qreq (at N_trim)
Pratio real PreqEG/PavEG

Pmargin real power margin, PavEG − PreqEG

Plimit_es real drive system limit PESlimit (at N_trim and rating_ds)
atPlimit_es int at drive system limit (PavEG limited by PESlimit)
Qmargin_es real torque margin, PESlimit − PreqEG

exceedQ_es int exceed torque available: PreqEG > (1 + ε)PESlimit

Fmargin real momentum margin, FG − FGreq

exceedF int exceed momentum available: FGreq > (1 + ε)FG

fuelflow real fuel flow ẇ (negative if generated)
energyflow real energy flow Ė (negative if generated)
fuelflow_equiv real equivalent fuel flow ẇequiv, from energy flow
sfc real specific fuel consumption sfc = ẇequiv/Preq

FNEG real net installed jet thrust FN

DauxEG real momentum drag of auxiliary air flow Daux

Fjet(3) real jet thrust force FF
jet (F axes, about cg)

Mjet(3) real jet thrust moment MF
jet (F axes, about cg)

Faux(3) real momentum drag force FF
aux (F axes, about cg)

Structure: FltEngn 119

Maux(3) real momentum drag moment MF
aux (F axes, about cg)

aerodynamics
Vaero(3) real total velocity relative air vF (F axes)
Vmag real velocity magnitude
q real dynamic pressure
ed(3) real drag vector, −v/|v| in F axes
VB(3) real total velocity relative air vB (B axes)
alpha real angle of attack α (deg)
CD real drag coefficient CD

D real drag
Dcool real cooling drag

load
Faero(3) real aerodynamic force FF

aero (F axes, about cg)
Maero(3) real aerodynamic moment MF

aero (F axes, about cg)
Drag real drag eT

d FF
aero

Download real download, aero Fz (I axes)

120

Chapter 29

Structure: FltJet

Variable Type Description Default

Flight State - Jet Group
controls

amp real amplitude A
mode real mode B
incid real incidence i
yaw real yaw ψ

geometry
CBF(3,3) real jet relative airframe, CBF

ef(3) real jet direction, ef

jet
Tq real uninstalled thrust required Tq

Tlossq real installation loss Tloss

etalossq real installation efficiency ηloss

Treq_jet real installed thrust required Treq−jet

mdot real mass flow ṁ
wdot real fuel flow ẇ
Edot real energy flow Ė
ST real specific thrust ST = TGq/ṁ
FG real gross installed jet thrust FG

Fmom real momentum thrust Fmom = ṁ(1 + β)V
FGreq real gross thrust (momentum flux) required FGreq = Freact + ṁreactΩrreact or flow control (all components)
FGq real FGq = FGreq/(Njet–NJetInOp)
FN real net installed jet thrust FN

Daux real momentum drag of auxiliary air flow Daux

Ta real uninstalled thrust available Ta

Tlossa real installation loss Tloss

etalossa real installation efficiency ηloss

Structure: FltJet 121

Tav_jet real installed thrust available Tav−jet

Tmech real jet mechanical limit Tmech

atTmech int at mechanical limit (Tav−jet limited by Tmech)
jet group

ReactionMode int reaction drive mode (MODEL_jet_react or converted)
Converted int converted (RPJEM with mode=1; 0 jet, 1 reaction)
Treq real thrust required TreqJG

TavJI real jet installed thrust available TavJI ; (Njet–NJetInOp)Tav−jet

Tav real thrust available, TavJG; fThrust(Njet–NJetInOp)Tav−jet

Jratio real TreqJG/TavJG

Jmargin real thrust margin TavJG − TreqJG

exceedJ int exceed thrust available: TreqJG > (1 + ε)TavJG

Fmargin real momentum margin FG − FGreq

exceedF int exceed momentum available: FGreq > (1 + ε)FG

fuelflow real fuel flow ẇ (negative if generated)
energyflow real energy flow Ė (negative if generated)
fuelflow_equiv real equivalent fuel flow ẇequiv, from energy flow
sfc real specific fuel consumption sfc = ẇequiv/Treq

FNJG real net installed jet thrust FN

DauxJG real momentum drag of auxiliary air flow Daux

Fjet(3) real jet thrust force FF
jet (F axes, about cg)

Mjet(3) real jet thrust moment MF
jet (F axes, about cg)

Faux(3) real momentum drag force FF
aux (F axes, about cg)

Maux(3) real momentum drag moment MF
aux (F axes, about cg)

loads
F(3) real force FF

jet (F axes)
M(3) real moment MF

jet (F axes)

aerodynamics
Vaero(3) real total velocity relative air vF (F axes)
Vmag real velocity magnitude
q real dynamic pressure
ed(3) real drag vector, −v/|v| in F axes
VB(3) real total velocity relative air vB (B axes)
alpha real angle of attack α (deg)

Structure: FltJet 122

CD real drag coefficient CD

D real drag
Dcool real cooling drag

load
Faero(3) real aerodynamic force FF

aero (F axes, about cg)
Maero(3) real aerodynamic moment MF

aero (F axes, about cg)
Drag real drag eT

d FF
aero

Download real download, aero Fz (I axes)

123

Chapter 30

Structure: FltChrg

Variable Type Description Default

Flight State - Charge Group
controls

amp real amplitude A
mode real mode B
incid real incidence i
yaw real yaw ψ

geometry
CBF(3,3) real charger relative airframe, CBF

ef(3) real charger direction, ef

charger
Pacell real power available Pav = Pacell = Ėacell

Pqcell real cell power required Pqcell = Ėqcell

Preq real installed power required Preq = PreqCG/(Ncharge–NChrgInOp)
charger, fuel cell

deltac real compressor pressure ratio δc

iratio real power required current ratio iq/id
sfc_burn real cell specific fuel consumption ẇ/Preq

mdot_burn real mass flow ṁ
wdot_burn real fuel flow ẇ
FG real gross installed jet thrust FG

Fmom real momentum thrust Fmom

FN real net installed jet thrust FN

Daux real momentum drag of auxiliary air flow Daux

charger, solar cell
etachrg real charger efficiency ηchrg

charge group
Pchrg real power required PreqCG = ĖreqCG

Structure: FltChrg 124

Preqtotal real total cell power required Preqtotal; (Ncharge–NChrgInOp)Pqcell

PavCG real power available PavCG; fCharge(Ncharge–NChrgInOp)Pav

Cratio real PreqCG/PavCG

Cmargin real power margin, PavCG − PreqCG

exceedC int exceed power available: PreqCG > (1 + ε)PavCG

energyflow real energy flow Ė (negative if generated)
fuelflow_equiv real equivalent fuel flow ẇequiv, from energy flow

charge group, fuel cell
fuel burn

fuelflow_burn real fuel flow ẇ
energyflow_burn real energy flow Ė
fuelflow_equiv_burn real equivalent fuel flow ẇequiv, from energy flow
sfc real specific fuel consumption sfc = ẇequiv/Preq

FNCG real net installed jet thrust FN

DauxCG real momentum drag of auxiliary air flow Daux

Fjet(3) real jet thrust force FF
jet (F axes, about cg)

Mjet(3) real jet thrust moment MF
jet (F axes, about cg)

Faux(3) real momentum drag force FF
aux (F axes, about cg)

Maux(3) real momentum drag moment MF
aux (F axes, about cg)

loads
F(3) real force FF

chrg (F axes)
M(3) real moment MF

chrg (F axes)

aerodynamics
Vaero(3) real total velocity relative air vF (F axes)
Vmag real velocity magnitude
q real dynamic pressure
ed(3) real drag vector, −v/|v| in F axes
VB(3) real total velocity relative air vB (B axes)
alpha real angle of attack α (deg)
CD real drag coefficient CD

D real drag
Dcool real cooling drag

Structure: FltChrg 125

load
Faero(3) real aerodynamic force FF

aero (F axes, about cg)
Maero(3) real aerodynamic moment MF

aero (F axes, about cg)
Drag real drag eT

d FF
aero

Download real download, aero Fz (I axes)

126

Chapter 31

Structure: Solution

Variable Type Description Default

+ Solution Procedures
title c*100 + title
notes c*1000 + notes

+ Rotor
+ convergence control

niter_rotor(nrotormax) int + maximum number of iterations 40

toler_rotor(nrotormax) real + tolerance (deg) .01

relax_rotor(nrotormax) real + relaxation factor .5

deriv_rotor(nrotormax) int + derivative (1 first order, 2 second order) 1

maxinc_rotor(nrotormax) real + maximum increment amplitude (0. for no limit) 4.

trace_rotor(nrotormax) int + trace iteration (0 for none) 0

+ Trim
+ convergence control

niter_trim int + maximum number of iterations 40

toler_trim real + tolerance (fraction reference) .001

relax_trim real + relaxation factor .5

+ perturbation identification of derivative matrix
deriv_trim int + perturbation (1 first order, 2 second order) 1

mpid_trim int + number of iterations between identification (0 for never recalculated) 0

perturb_trim real + variable perturbation amplitude (fraction reference) .002

init_trim int + reinitialize aircraft controls in maximum effort iteration (0 no, 1 force retrim) 0

start_trim int + initialize controls from solution of previous case (0 no) 0

trace_trim int + trace iteration (0 for none, 2 for component controls) 0

start_trim=1: initialize FltAircraft%control from FltAircraft%control_trim of previous case
require INIT_input=INIT_data=2 or read solution file; and same missions and conditions as previous case
requirements not checked

Structure: Solution 127

+ Maximum effort
method_fly int + method (1 secant, 2 false position) 1

method_flymax int + maximization method (1 secant, 2 false position, 3 golden section search, 4 curve fit) 3

+ convergence control
niter_fly int + maximum number of iterations 80

toler_fly real + tolerance (fraction reference) .002

relax_fly real + relaxation factor .5

perturb_fly real + variable perturbation amplitude (fraction reference) .05

maxderiv_fly real + maximum derivative amplitude (0. for no limit) 0.

maxinc_fly real + maximum increment fraction (0. for no limit) 0.

rfit_fly real + extent of curve fit (fraction maximum) .98

nfit_fly int + order of curve fit (2 quadradic, 3 cubic) 3

init_fly int + reinitialize aircraft controls (0 no, 1 force retrim) 0

trace_fly int + trace iteration (0 for none) 0

+ Maximum gross weight (flight condition or mission takeoff)
method_maxgw int + method (1 secant, 2 false position) 1

+ convergence control
niter_maxgw int + maximum number of iterations 40

toler_maxgw real + tolerance (fraction reference) .002

relax_maxgw real + relaxation factor .5

perturb_maxgw real + variable perturbation amplitude (fraction reference) .02

maxderiv_maxgw real + maximum derivative amplitude (0. for no limit) 0.

maxinc_maxgw real + maximum increment fraction (0. for no limit) 0.

trace_maxgw int + trace iteration (0 for none) 0

+ Mission
+ convergence control

niter_miss int + maximum number of iterations 40

toler_miss real + tolerance (fraction reference) .01

relax_miss real + relaxation factor (mission fuel) 1.

relax_range real + relaxation factor (range credit) 1.

relax_gw real + relaxation factor (max takeoff GW) 1.

trace_miss int + trace iteration (0 for none) 0

Structure: Solution 128

+ Size aircraft
+ convergence control

niter_size int + maximum number of iterations (performance loop) 40

niter_param int + maximum number of iterations (parameter loop) 40

toler_size real + tolerance (fraction reference) .01

+ relaxation factors
relax_size real + power or radius 1.

relax_DGW real + gross weight 1.

relax_xmsn real + drive system limit 1.

relax_wmto real + WMTO and SDGW 1.

relax_tank real + fuel tank capacity 1.

relax_thrust real + rotor thrust 1.

+ maximum increment fraction (0. for no limit)
maxinc_size real + power or radius 0.

maxinc_DGW real + gross weight 0.

maxinc_xmsn real + drive system limit 0.

maxinc_wmto real + WMTO and SDGW 0.

maxinc_tank real + fuel tank capacity 0.

maxinc_thrust real + rotor thrust 0.

trace_size int + trace iteration (0 for none, 2 for power) 0

with niter_param=1, parameter iteration is part of performance loop (can be faster than niter_param > 1)

+ Case
trace_case int + trace operation (0 for none, 1 trace, 2 for all iterations) 1

trace_start int + counter at start trace of iterations 0

trace_count int counter

use trace_case=2 to identify point at which analysis diverges
counter written if trace_case=1 or 2; trace of iterations suppressed until counter > trace_start

then turn on trace selectively for mission/segment/condition

Structure: Solution 129

+ Flight condition and mission segment
toler_check real + check Preq, Qlimit, Wfuel (fraction reference) .005

+ Tolerance and perturbation scales
KIND_Wscale int + weight scale (1 design gross weight, 2 nominal CT /σ) 1

KIND_Pscale int + power scale (1 aircraft power, 2 derived from weight scale) 1

KIND_Lscale int + length scale (1 rotor radius, 2 wing span, 3 fuselage length) 1

scaleRotor int + rotor number 1

scaleWing int + wing number 1

Derived tolerance and perturbation scales
Wscale real weight scale
Pscale real power scale
Lscale real length scale
Ascale real angle scale
Fscale real force scale
Mscale real moment scale
Vscale real horizontal velocity scale
Rscale real vertical velocity scale
Oscale real angular velocity scale
Tscale real CT /σ scale
Cscale real CL scale
Hscale real altitude scale
Gscale real acceleration scale
Xscale real range scale

Structure: Solution 130

+ External solution procedure (0 for internal)
SETextsol_size int + size iteration 0

SETextsol_miss int + mission iteration 0

SETextsol_trim int + trim iteration 0

SETextsol_rotor int + rotor iteration 0

for external solution procedure (SETextsol = 1), suppress iteration and calculate residual
the solution problem (such as size parameters, trim variables) must still be defined
residuals (and error ratios) are in structures SizeParam, MissParam, FltAircraft, FltRotor

with external solution for maximum gross weight or maximum effort, there is no residual; do not specify internal
iteration

131

Chapter 32

Structure: Cost

Variable Type Description Default

+ Cost
title c*100 + title
notes c*1000 + notes

+ Inflation
MODEL_inf int + model (1 only input factor, 2 CPI, 3 DoD) 3

year_inf int + year for internal inflation factor (0 for current year) 0

inflation real + inflation factor (per cent, relative 1994 or year_inf) 100.00

EXTRAP_inf int + year beyond CPI/DoD table data (0 error, 1 extrapolate factor) 1

inflation: Fi multiplies airframe purchase price and maintenance cost
factor inflation always used, even with internal table
CPI or DoD table: Fi = inflation×

(
Ftable(year_inf)/Ftable(1994)

)
input factor: Fi = inflation (relative 1994)

cost factors and rates include technology and inflation, correspond to year_inf

+ Cost
MODEL_cost int + model (0 none, 1 cost, 2 only CTM purchase price) 1

FuelPrice(ntankmax) real + fuel price Gfuel ($/gallon or $/liter) 5.0

EnergyPrice(ntankmax) real + energy price Genergy ($/MJ or $/kWh, Units_energy) 0.04

EnergyCredit(ntankmax) real + credit for generated energy ($/MJ or $/kWh, Units_energy) 0.

Npass int + number of passengers Npass 100

+ Purchase Price, airframe composite construction
rComp real + additional cost rate rcomp for composite construction ($/lb or $/kg) 0.

fWcomp_body real + composite weight in body (fraction body weight) 0.

Structure: Cost 132

fWcomp_tail real + composite weight in tail (fraction tail weight) 0.

fWcomp_pylon real + composite weight in pylon (fraction pylon weight) 0.

fWcomp_wing real + composite weight in wing (fraction wing weight) 0.

KIND_maint int + Maintenance factors (0 input, 1 best practice, 2 average practice) 1

+ Battery
rBatt real + purchase cost factor rbatt, battery ($/MJ or $/kWh, Units_energy) 50.

Mbatt real + battery maintenance factor Mbatt ($/MJ or $/kWh per flight hour, Units_energy) .10

equivalent energy price for fuel burned: $/MJ∼=($/gal)/126.2 (based on 42.8 MJ/kg and 6.5 lb/gal of JP-4/JP-8)
EnergyCredit=0. if no credit for generated energy

cost factors and rates include technology and inflation, correspond to year_inf

rComp negative for cost reduction

battery: rBatt and Mbatt are for actual tank capacity (including unusable SOC)
maintenance includes replacement, for just replacement Mbatt=rBatt/(time-between-replacement)

+ Direct Operating Cost
BlockHours real + available block hours per year B 3751.

NonFlightTime real + non-flight time per trip TNF (min) 12.

DepPeriod real + depreciation period D (years) 15.

LoanPeriod real + loan period L (years) 15.

IntRate real + interest rate i (%) 8.

ResidValue real + residual value V (%) 10.

Spares real + spares per aircraft S (% purchase price) 25.

LoadFactor real + passenger load factor (%) 75.

+ DOC model
MODEL_DOC_price int + purchase price model for DOC (1 CTM, 2 Scott) 1

MODEL_DOC_maint int + maintenance cost model for DOC (1 CTM, 2 Scott) 1

MODEL_DOC_cdi int + crew+depreciation+insurance estimate (1 total only, 2 separate components) 2

Kcdi real + crew+depreciation+insurance factor Kcdi 1.0

Kcrew real + crew cost factor Kcrew 1.0

Structure: Cost 133

Kins real + insurance cost Kins (fraction aircraft cost) .0056

KETS real + emissions trading scheme cost KETS ($/kg CO2) .02

+ Technology Factors
TECH_cost_af real + airframe χAF 0.87

TECH_cost_maint real + maintenance χmaint 1.0

TECH_cost_cmpnt real + components χcmpnt 1.0

+ CTM rotorcraft cost model
+ Purchase Price

MODEL_CTM int + CTM model (1 original, 2 original with Scott Modern Complexity factor, 3 revisited) 1

KIND_engine int + engine (1 turbine, 2 piston) 1

fmotor real + weighting factor for electric motor or generator 0.5

+ systems (fixed useful load)
rFCE real + cost factor rFCE, flight control electronics ($/lb or $/kg) 10000.

rMEP real + cost factor rMEP, mission equipment package ($/lb or $/kg) 10000.

+ Maintenance
MODEL_maint int + maintenance cost estimate (1 total only, 2 separate components) 2

rLabor real + labor rate ($ per hour) 160.

MMHperFH real + maintenance man hours per flight hour 0.

Mlabor real + MMH/FH factor Mlabor 0.0017

Mparts real + parts factor Mparts 34.

Mengine real + engine overhaul factor Mengine 1.45

Mmajor real + major periodic maintenance factor Mmajor 18.

labor rate includes inflation, corresponds to year_inf

cost factors and rates include technology and inflation, correspond to year_inf

current best practice: Mlabor=0.0017, Mparts=34, Mengine=1.45, Mmajor=18

current average practice: Mlabor=0.0027, Mparts=56, Mengine=1.74, Mmajor=28

maintenance man hours per flight hour calculated from sum of fixed term (MMHperFH) and term scaling with weight
empty (Mlabor)

Structure: Cost 134

+ Scott rotorcraft component cost model
+ Flyaway Price
+ production

year_proc int + year of procurement (0 same as year_inf, not used if <1955) 0

Nprod int + aircraft production number (0 not used) 0

Nlot int + number aircraft in this production lot (0 not used) 0

Nprod_eng int + engine production number (0 not used) 0

+ systems
drFCE real + cost factor ΔrFCE, additional flight control electronics ($/lb or $/kg) 0.

drMEP real + cost factor ΔrMEP, additional mission equipment package ($/lb or $/kg) 0.

+ component cost models
f_sec real + fuselage, fraction of secondary fuselage weight 0.35

KIND_fuse_boom int + fuselage, includes tail boom (0 not) 1

KIND_fuse_dev int + fuselage, early LRIP of new design (0 not) 0

Pr_avg real + engine, stage-averaged compressor pressure ratio 1.6

TBO_eng real + engine, time between overhaul (hours) 2000.

KIND_eng_mar int + engine, marinized (0 not) 0

KIND_eng_FADEC int + engine, FADEC equipped (0 not) 1

KIND_motor_PM int + motor, complexity (1 induction, 2 permanent magnet) 2

Kcompress real + compressor cost factor 0.1

Kjet real + jet cost factor 0.1

Kchrg real + charger cost factor 0.1

KIND_xmsn_rg int + transmission, engine group includes reduction gearbox (0 direct drive) 0

KIND_xmsn_mar int + transmission, marinized (0 not) 0

KIND_av_dev int + avionics, early LRIP of new package (0 not) 0

KIND_av_UAV int + avionics, unmanned medium to long endurance aircraft (0 not, 1 LOS, 2 BLOS) 0

f_env real + environmental group, fraction prime equipment cost 0.03

f_arm_furn_LH real + armament provisions, furnishings, and load and handling groups, fraction fuselage cost 0.12

KIND_int_SE_prof int + integration and assembly, systems engineering, and profit (1 government, 2 commercial) 2

f_int_SE_prof real + integration and assembly, systems engineering, and profit (commercial), fraction prime equipment cost 0.25

+ cost adjustment factors
xwing real + wing 1.0

xrotor real + all rotors 1.0

xfuse real + fuselage 1.0

Structure: Cost 135

xeng(nengmax) real + engine group 1.0

xjet(njetmax) real + jet group 1.0

xchrg(nchrgmax) real + charge group 1.0

xxmsn real + drive system 1.0

xav real + avionics 1.0

xss real + small structures 1.0

xpropsys real + propulsion systems 1.0

xfc real + flight controls 1.0

xelec real + electrical 1.0

+ Maintenance
+ maintenance cost factors

Slabor real + personnel 1.0

KIND_labor_UAV int + personnel cost factor, UAV (0 not) 0

Scsi real + continuing system improvements 0.0621

Srotor real + all rotors 0.0219

Sxmsn(npropmax) real + drive system 0.0178

Seng(nengmax) real + engine group 0.1412

Sjet(njetmax) real + jet group 0.1

Schrg(nchrgmax) real + charge group 0.1

Sacsys real + aircraft systems 0.0978

Sinspect real + inspections 0.1234

TBR_motor real + motor time-between-replacement (hours) 5000.

funsched real + unscheduled maintenance fraction 0.25

Ccrew not used in DOC with Scott maintenance model (included in personnel cost)

maintenance cost factors
current best practice: Srotor=0.0219, Sxmsn=0.0178, Seng=0.1412 (turboshaft), Seng=0.0941 (reciprocating)

Sacsys=0.0978, Sinspect=0.1234

current average practice: Srotor=0.0514, Sxmsn=0.0417, Seng=0.2256 (turboshaft), Seng=0.1506 (reciprocating)
Sacsys=0.1983, Sinspect=0.3086

continuing system improvements: Scsi=0.1071 (UAV), Scsi=0.0621 (other)

136

Chapter 33

Structure: Emissions

Variable Type Description Default

+ Emissions
title c*100 + title
notes c*1000 + notes

MODEL_emissions int + Emissions model (0 none, 1 ETS and ATR, 2 only ETS) 1

+ Emissions Trading Scheme (ETS)
Kfuel(ntankmax) real + CO2 emissions from fuel used, Kfuel (kg/kg) 3.75

Kenergy(ntankmax) real + CO2 emissions from energy used, Kenergy (kg/MJ or kg/kWh, Units_energy) 0.14

+ Average Temperature Response (ATR)
H real + aircraft operating lifetime H (yr) 30.

U real + aircraft utilization rate U (missions/yr) 350.

r real + ATR discount rate r 0.03

tmax real + ATR integration period tmax (yr) 500.

+ emission index (kg/kg)
EI_CO2(ntankmax) real + carbon dioxide, EICO2 3.16

EI_H2O(ntankmax) real + water vapor, EIH2O 1.26

EI_SO4(ntankmax) real + sulphates, EISO4 0.0002

EI_soot(ntankmax) real + soot, EIsoot 0.00004

EI_NOx(ntankmax) real + nitrogen oxides, EINOx
0.01

MODEL_NOx(ntankmax) int + turboshaft engine NOx emission model (0 input EINOx
, 1 DLR, 2 Swiss) 1

KIND_NOx(ntankmax) int + model parameters (0 input, 1 low emissions, 2 high emissions) 1

KEI0(ntankmax) real + DLR model, KEI0 0.0036739

KEI1(ntankmax) real + DLR model, KEI1 0.00748

KEIs(ntankmax) real + Swiss model, KEIs 0.004

fAIC real + aviation induced cloudiness factor, fAIC 1.0

+ energy emission factor (kg/MJ or kg/kWh, Units_energy)
K_CO2(ntankmax) real + carbon dioxide, KCO2 0.14

K_H2O(ntankmax) real + water vapor, KH2O 0.

Structure: Emissions 137

K_SO4(ntankmax) real + sulphates, KSO4 0.

K_soot(ntankmax) real + soot, Ksoot 0.

K_NOx(ntankmax) real + nitrogen oxides, KNOx
0.

SET_credit int + Emissions credit for energy generated (0 for none) 1

EI default values are for turboshaft engine

emission index (EI and Kfuel) only used for tanks that store and use fuel as weight (SET_burn=1)
energy emission factor (K and Kenergy) only used for tanks that store and use fuel as energy (SET_burn=2)

ATR discount rate: r ≥ 100000 evaluated as r = ∞

ATR factors
ZCO2 real CO2

ZNOx real NOx (CH4 and O3L)
Zs real short life

turboshaft NOx model
fPower(11,nengmax) real power factor, Pq = fP Pto

wdot(11,nengmax) real fuel flow, ẇ

138

Chapter 34

Structure: Aircraft

Variable Type Description Default

+ Aircraft
title c*100 + title
notes c*1000 + notes
config c*16 + Configuration ’helicopter’

RCconfig int configuration (RCconfig_rotorcraft, helicopter, tandem, coaxial, tiltrotor, compound, multicopter, airplane)
nRotor_main int number of main rotors

config: identifies rotorcraft configuration
config = ’rotorcraft’, ’helicopter’, ’tandem’, ’coaxial’, ’tiltrotor’, ’compound’, ’multicopter’, ’airplane’

+ Aircraft Controls
ncontrol int + number of aircraft controls (maximum ncontmax) 4

IDENT_control(ncontmax) c*16 + labels of aircraft controls
nstate_control int + number of control states (maximum nstatemax) 1

pilot’s controls (control number)
kcoll int collective stick
klatcyc int lateral cyclic stick
klngcyc int longitudinal stick
kpedal int pedal
ktilt int tilt

+ control values (function speed)
nVcont(ncontmax) int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
nVcoll int + collective stick 0

nVlatcyc int + lateral cyclic stick 0

nVlngcyc int + longitudinal stick 0

Structure: Aircraft 139

nVpedal int + pedal 0

nVtilt int + tilt 0

cont(nvelmax,ncontmax) real + values
coll(nvelmax) real + collective stick cAC0

latcyc(nvelmax) real + lateral cyclic stick cACc

lngcyc(nvelmax) real + longitudinal cyclic stick cACs

pedal(nvelmax) real + pedal cACp

tilt(nvelmax) real + tilt αtilt

Vcont(nvelmax,ncontmax) real + speeds (CAS or TAS, knots)
Vcoll(nvelmax) real + collective stick
Vlatcyc(nvelmax) real + lateral cyclic stick
Vlngcyc(nvelmax) real + longitudinal cyclic stick
Vpedal(nvelmax) real + pedal
Vtilt(nvelmax) real + tilt

control system: set of aircraft controls cAC defined
aircraft controls connected to individual controls of each component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)

use of component control c0 can be suppressed for flight state using SET_comp_control

aircraft controls: identified by IDENT_control

typical aircraft controls are pilot’s controls; default IDENT_control=’coll’,’latcyc’,’lngcyc’,’pedal’,’tilt’

available for trim (flight state specifies trim option)
initial values specified if control is trim variable; otherwise fixed for flight state

each aircraft control can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
coll/latcyc/lngcyc/pedal/tilt input put in appropriate nVcont-cont-Vcont, based on IDENT_control

flight state input can override
by connecting aircraft control to component control, flight state can specify component control value

sign conventions for pilot’s controls: collective + up, lat cyclic + right, long cyclic + forward, pedal + nose right
rotor controls are positive Fourier series, with azimuth measured in direction of rotation

Structure: Aircraft 140

+ Aircraft Motion
+ aircraft pitch angle θF

nVpitch int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
pitch(nvelmax) real + values
Vpitch(nvelmax) real + speeds (CAS or TAS, knots)

+ aircraft roll angle φF

nVroll int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
roll(nvelmax) real + values
Vroll(nvelmax) real + speeds (CAS or TAS, knots)

aircraft motion
available for trim (depending on flight state)
each motion can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
flight state input can override; initial value if trim variable

+ Conversion
Vconv_hover real + maximum speed for hover and helicopter mode (CAS or TAS, knots)
Vconv_cruise real + minimum speed for cruise (CAS or TAS, knots)

+ control state
kcont_hover int + hover and helicopter mode (V ≤ Vconv−hover) 1

kcont_conv int + conversion mode (Vconv−hover < V < Vconv−cruise) 1

kcont_cruise int + cruise mode (V ≥ Vconv−cruise) 1

+ drive system state (each propulsion group)
kgear_hover(npropmax) int + hover and helicopter mode (V ≤ Vconv−hover) 1

kgear_conv(npropmax) int + conversion mode (Vconv−hover < V < Vconv−cruise) 1

kgear_cruise(npropmax) int + cruise mode (V ≥ Vconv−cruise) 1

conversion control: use depends on STATE_control, SET_tilt, SET_Vtip of FltState

hover and helicopter mode (V ≤ Vconv−hover): use tilt=90, Vtip_hover, kgear_hover, kcont_hover

cruise mode (V ≥ Vconv−cruise): use tilt=0, Vtip_cruise, kgear_cruise, kcont_cruise

conversion mode: tilt linear with V , use Vtip_hover, kgear_conv, kcont_conv

nacelle tilt angle: 0 for cruise, 90 deg for helicopter mode flight

Structure: Aircraft 141

+ Never-exceed speed
SET_VNE c*32 + model ’none’

iSET_VNE int limits defined (0 for none)
iSET_VNE_TAS int TAS
iSET_VNE_CAS int CAS
iSET_VNE_stall int stall
iSET_VNE_comp int compressibility
VNE_TAS real + TAS limit (knots)
VNE_CAS real + CAS limit (knots)
KIND_VNE_stall(nrotormax) int + stall model, each rotor (0 for no limit, 1 steady, 2 transient, 3 equation) 3

Mat_VNE(nrotormax) real + advancing tip Mach number Mat, each rotor (0. for no limit) 1.

never-exceed speed: calculate VNE in knots TAS
SET_VNE = ’none’, or one to four of (’TAS’, ’CAS’, ’stall’, ’comp’)
stall limit: VNEs from rotor thrust capability (CT /σ vs μ)
compressibility limit: VNEc from advancing tip Mach number Mat

SET_Vschedule int + Velocity schedules (1 CAS, 2 TAS) 1

velocity schedules: all described as function CAS or TAS (knots)
conversion, controls and motion, rotor tip speed, landing gear retraction, trim targets, drive system ratings

Structure: Aircraft 142

+ Trim states
nstate_trim int + number of trim states (maximum ntrimstatemax) 1

IDENT_trim(ntrimstatemax) c*12 + label of trim state
mtrim(ntrimstatemax) int + number of trim variables (maximum mtrimmax) 0

trim_quant(mtrimmax,ntrimstatemax)

c*16 + trim quantity name
trim_var(mtrimmax,ntrimstatemax)

c*16 + trim variable name
trim_target(mtrimmax,ntrimstatemax)

int + target source (1 FltState, 2 component) 1

Derived trim states
itrim_quant(mtrimmax,ntrimstatemax)

int trim quantity name (TRIM_QUANT_xxx)
itrim_quantn(mtrimmax,ntrimstatemax)

int trim quantity structure number
itrim_quantk(mtrimmax,ntrimstatemax)

int trim quantity kind (0 other, 1 rotor, 2 rotor lift, 3 rotor prop, 4 wing, 5 wing lift)
itrim_var(mtrimmax,ntrimstatemax)

int trim variable name (TRIM_VAR_xxx, or control number)
itrim_varn(mtrimmax,ntrimstatemax)

int trim variable structure number

trim state: one or more set of quantities and variables for trim iteration
FltState identifies trim state (STATE_trim match IDENT_trim),

trim variable:

description trim_var

aircraft control match IDENT_control
aircraft orientation ’pitch’, ’roll’ body axes relative inertial axes
aircraft velocity ’speed’, ’ROC’ horizontal, vertical flight speed
aircraft velocity ’side’ sideslip angle
aircraft angular rate ’pullup’, ’turn’ Euler angle rates
propulsion group tip speed ’Vtip n’
propulsion group engine speed ’Nspec n’

Structure: Aircraft 143

trim quantity:

description trim_quant target

aircraft total force ’force x’, ’force y’, ’force z’ zero
aircraft total moment ’moment x’, ’moment y’, ’moment z’ zero
aircraft load factor ’nx’, ’ny’, ’nz’ FltState%trim_target
propulsion group power ’power n’ FltState%trim_target
power margin ’P margin n’ FltState%trim_target
torque margin ’Q margin n’ FltState%trim_target
engine group power ’power EG n’ FltState%trim_target
power margin ’E margin n’ FltState%trim_target
momentum margin ’FE margin n’ FltState%trim_target
jet group thrust ’jet n’ FltState%trim_target
jet thrust margin ’J margin n’ FltState%trim_target
momentum margin ’FJ margin n’ FltState%trim_target
charge group power ’charge n’ FltState%trim_target
charge power margin ’C margin n’ FltState%trim_target
fuel tank energy flow ’tank n’ FltState%trim_target
battery power margin ’B margin n’ FltState%trim_target
rotor lift ’lift rotor n’, ’flift rotor n’ FltState%trim_target, Rotor%Klift
rotor lift ’CLs rotor n’, ’vert rotor n’ FltState%trim_target, Rotor%Klift
rotor propulsive force ’prop rotor n’, ’fprop rotor n’ FltState%trim_target, Rotor%Kprop
rotor propulsive force ’CXs rotor n’, ’X/q rotor n’ FltState%trim_target, Rotor%Kprop
rotor thrust ’CTs rotor n’ FltState%trim_target, Rotor%Klift
rotor thrust margin ’T margin n’ FltState%trim_target
rotor thrust margin ’T margin tran n’, ’T margin eqn n’ FltState%trim_target
rotor shaft power ’power rotor n’ FltState%trim_target
rotor flapping ’betac n’, ’lngflap n’ FltState%trim_target
rotor flapping ’betas n’, ’latflap n’ FltState%trim_target
rotor hub moment ’hub Mx n’, ’roll n’ FltState%trim_target
rotor hub moment ’hub My n’, ’pitch n’ FltState%trim_target
rotor torque ’hub Mz n’, ’torque n’ FltState%trim_target
wing lift ’lift wing n’, ’flift wing n’ FltState%trim_target, Wing%Klift
wing lift coefficient ’CL wing n’ FltState%trim_target, Wing%Klift
wing lift margin ’L margin n’ FltState%trim_target
tail lift ’lift tail n’ FltState%trim_target

Structure: Aircraft 144

if trim_target=1, trim quantity target value is FltState%trim_target; otherwise component Klift or Kprop used
if trailing “n” is absent, use first component (n=1)

trim_quant=’flift rotor n’ or trim_quant=’flift wing n’: target is fraction total aircraft lift (GW*nAC(3))
trim_quant=’fprop rotor n’: target is fraction total aircraft drag (qAC*DoQ)
trim_quant=’T margin n’ uses Rotor%CTs_steady, trim_quant=’T margin tran n’ uses Rotor%CTs_tran

trim_quant=’T margin eqn n’ uses equation for rotor thrust capability (Rotor%K0_limit and Rotor%K1_limit)

trim_var=’Vtip’ or ’Nspec’: requires FltAircraft%SET_Vtip=’input’

+ Geometry
INPUT_geom int + input (1 fixed, SL/BL/WL; 2 scaled, from XoL/YoL/ZoL) 2

+ scaled geometry
+ reference length

KIND_scale int + kind (1 rotor radius, 2 wing span, 3 fuselage length) 1

kScale int + identification (component number) 1

+ reference point
KIND_Ref int + kind (0 input, 1 rotor, 2 wing, 3 fuselage, 4 center of gravity) 0

kRef int + identification (component number) 1

SL_Ref real + stationline
BL_Ref real + buttline
WL_Ref real + waterline

calculated reference point (input or component)
SLref real stationline
BLref real buttline
WLref real waterline
loc_cg Location + baseline center of gravity location

Geometry: Location for each component
fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL

stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m

Structure: Aircraft 145

scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale)
XoL + aft, YoL + right, ZoL + up; from reference point
option to fix some geometry (FIX_geom in Location override INPUT_geom)
option to specify reference length (KIND_scale in Location override this global KIND_scale)

reference point: KIND_Ref, kRef; input dimensional XX_Ref, or position of identified component
component reference must be fixed

certain Locations can be calculated from other parameters (configuration specific)
center of gravity: baseline is for nacelle angle = 90

flight state has calculated or input actual cg location

+ Takeoff flight condition
SET_atmos c*12 + atmosphere specification ’std’

temp real + temperature τ
dtemp real + temperature increment ΔT 0.

density real + density ρ
csound real + speed of sound cs

viscosity real + viscosity μ
altitude real + altitude

Derived takeoff flight condition
iSET_atmos int atmosphere (SET_atmos_xxx)
density_to real density ρ
sigma_to real density ratio ρ/ρ0

theta_to real temperature ratio T/T0

delta_to real pressure ratio p/p0

takeoff condition (density) used for CT /σ in rotor sizing
SET_atmos, atmosphere specification:

’std’ = standard day at specified altitude (use altitude)
’dtemp’ = standard day at specified altitude, plus temperature increment (use altitude, dtemp)
’temp’ = standard day at specified altitude, and specified temperature (use altitude, temp)
’dens’ = input density and temperature (use density, temp)
’input’ = input density, speed of sound, and viscosity (use density, csound, viscosity)
’notair’ = input, not air on earth (use density, csound, viscosity)
see FltState%SET_atmos for other options (polar, tropical, and hot days)

Structure: Aircraft 146

Size
diskload real aircraft disk loading (lb/ft2 or N/m2)
Aref real reference rotor area
wingload real aircraft wing loading (lb/ft2 or N/m2)
Sref real reference wing area
Pav real total takeoff power available
powerload real aircraft power loading
Tav real total takeoff thrust available
thrustload real aircraft weight-to-thrust

aircraft disk loading = WD/Aref , Aref =
∑

fAA; rotor disk loading = fW WD/A
aircraft wing loading = WD/Sref , Sref =

∑
S; individual wing loading = fW WD/S

aircraft power loading = WD/Pav , Pav =
∑

NengPeng (each engine group at takeoff rating)
aircraft thrust-to-weight = WD/Tav , Tav =

∑
NjetTjet (each jet group at takeoff rating)

Configuration
nWingExt int wing extensions (0 for none)
nWingExtKit int wing extension kits (0 for none)
nWingKit int wing kits (0 for none)
nWotherkit int other kit (0 for none)
SET_fold int folding (0 none, 1 fold weights, 2 with kit) (from Systems)

Neutral point
SLna real stationline SLna

Operating size (hover; controls = 0 except tilt = 90)
length_op real length
width_op real width
area_op real area

Fuel tank system
burnweight int first fuel tank that burns weight (0 none)
eref real reference specific energy (MJ/kg)

Structure: Aircraft 147

Cost
factor_inf real inflation factor Fi (year_inf relative 1994, including factor inflation)
factor_inf2011 real inflation factor Fi (2011 relative 1994, CPI)
factor_inf2018 real inflation factor Fi (2018 relative 1994)
factor_inf2021 real inflation factor Fi (2021 relative 1994)
factor_inf2024 real inflation factor Fi (2024 relative 1994)
fcmplx real Scott Modern Complexity factor fcmplx = 2.366/Fi24

Cbatt real battery cost Cbatt

Wbatt real battery weight Wbatt

Ebatt real battery capacity Ebatt

Cbattmaint real battery maintenance cost Cbatt−maint

CTM purchase price
CAC real aircraft CAC

CAC_nokit real aircraft CAC , folding kit not installed
Cmaint real maintenance Cmaint

Cmaint_nokit real maintenance Cmaint, folding kit not installed
Ccomp real composite cost increment Ccomp

CMEP real mission equipment package cost CMEP

CFCE real flight control electronics cost CFCE

Wcomp real composite weight increment Wcomp

WMEP real mission equipment package weight WMEP

WFCE real flight control electronics weight WFCE

Kconfig real configuration factor, KET KENKLGKR

rAF real airframe CAF /WAF ($/lb or $/kg)
rAC real total aircraft CAC/WEK ($/lb or $/kg)
WAFcost real airframe weight WAF

WEKcost real WEK = weight empty + airframe kits = WAF + WMEP + WFCE + Wbatt

Pcost real rated takeoff power P
CTM maintenance

Clabor real labor cost Clabor

Cparts real parts cost Cparts

Cengine real engine overhaul cost Cengine

Cmajor real major periodic maintenance cost Cmajor

MMHperFH real maintenance man hours per flight hour

Structure: Aircraft 148

DOC
Ccrew real crew cost Ccrew

Cdep real depreciation cost Cdep

Cins real insurance cost Cins

Cfin real finance cost Cfin

Scott flyaway price
CACcomp real aircraft CAC from components
rACcomp real total aircraft CAC/WEK ($/lb or $/kg)
rAFcomp real airframe flyaway CFA/WAF ($/lb or $/kg)
rPQcomp real prime equipment cpq/WAF ($/lb or $/kg)
dCMEP real mission equipment package cost increment ΔCMEP

dCFCE real flight control electronics cost increment ΔCFCE

c_FA real aircraft flyaway
c_pq real prime equipment (including inflation and technology factor)
c_int_SE real integration/assemmbly and systems engineering
c_profit real profit
c_wing real wing
c_rotor real rotor
c_fuselage real fuselage
c_emp_nac_LG real empennage, nacelle, and landing gear
c_engine real engine group
c_jet real jet group
c_chrg real charger group
c_prop real propeller
c_xmsn real transmission
c_FC_inst_hyd real flight controls, instruments, and hydraulic systems
c_aux_fuelsys real auxiliary power system, fuel system, exhaust, propulsion controls and accessories
c_elect real electrical
c_avionics real avionics
c_arm_furn_load real armament provisions, furnishings, and load and handling
c_env real environmental

Scott maintenance
Cmaintcomp real maintenance Cmaint from components (excluding labor)
cm_csi real continuing system improvements

Structure: Aircraft 149

cm_rotor real rotor
cm_xmsn real drive system
cm_eng real engine group
cm_jet real jet group
cm_chrg real charger group
cm_acsys real aircraft systems
cm_inspect real inspections
cm_unsched real unscheduled

+ Weight
DGW real + design gross weight WD

Wfuel_DGW real + mission fuel Wfuel corresponding to DGW
Wpay_DGW real + payload Wpay corresponding to DGW
WE real + weight empty WE

dWE real + weight increment
fWE real + weight factor

+ structural design gross weight
SDGW real + structural design gross weight WSD

dSDGW real + weight increment 0.

fSDGW real + weight factor 1.

fFuelSDGW real + fraction main fuel tanks filled at SDGW 1.

+ maximum takeoff weight
WMTO real + maximum takeoff weight WMTO

dWMTO real + weight increment 0.

fWMTO real + weight factor 1.

nz_ult real + design ultimate flight load factor nzult at SDGW 6.0

input or calculated: design gross weight WD (FIX_DGW), structural design gross weight WSD (SET_SDGW), maximum
takeoff weight WMTO (SET_WMTO), weight empty WE (FIX_WE)

if calculated, then input parameter is initial value

DGW, design gross weight: used for rotor disk loading and blade loading, wing loading, power loading, thrust loading
to obtain aircraft moments of inertia from radii of gyration
for tolerance and perturbation scales of the solution procedures
optionally to define structural design gross weight and maximum takeoff weight

Structure: Aircraft 150

optionally to specify the gross weight for missions and flight conditions
Wfuel_DGW and Wpay_DGW usually calculated (identified as input so inherited by next case)

FIX_WE: fixed or scaled weight empty obtained by adjusting contingency weight
scaled with design gross weight: WE=dWE+fWE*WD

SET_SDGW, structural design gross weight:
’input’ = input
’f(DGW)’ = based on DGW; WSD=dSDGW+fSDGW*WD

’f(WMTO)’ = based on WMTO; WSD=dSDGW+fSDGW*WMTO

’maxfuel’ = based on fuel state; WSD=dSDGW+fSDGW*WG, WG = WD–Wfuel_DGW+fFuelSDGW*Wfuel−cap

’perf’ = calculated from maximum gross weight at SDGW sizing conditions (DESIGN_sdgw)
SET_WMTO, maximum takeoff weight:

’input’ = input
’f(DGW)’ = based on DGW; WMTO=dWMTO+fWMTO*WD

’f(SDGW)’ = based on SDGW; WMTO=dWMTO+fWMTO*WSD

’maxfuel’ = based on maximum fuel; WMTO=dWMTO+fWMTO*WG, WG = WD–Wfuel_DGW+Wfuel−cap

’perf’ = calculated from maximum gross weight at WMTO sizing conditions (DESIGN_wmto)
SDGW used for weights (fuselage, rotor, wing)
WMTO used for cost, drag (scaled aircraft and hub drag), and weights (system, fuselage, landing gear, engine group)
nz_ult, design ultimate flight load factor at SDGW: used for weights (fuselage, rotor, wing)

+ Weight
Weight Weight aircraft weight statement (operating weight, without payload and usable fuel)
WO real operating weight WO

growth_factor real growth factor = WD/(WD − Wscaled − Wfuel)
+ moments of inertia (based on design gross weight, scaled with reference length)

kx real + roll radius of gyration kx/L
ky real + pitch radius of gyration ky/L
kz real + yaw radius of gyration kz/L

Derived moments of inertia (corresponding to aircraft weight statement)
Ixx real Ixx

Iyy real Iyy

Structure: Aircraft 151

Izz real Izz

Ixy real Ixy

Iyz real Iyz

Ixz real Ixz

Battery weight (W_fuel_tank=TECH_tank*(Wbatt+WBMS+WTMS)+dWtank, W_fuel_plumb=TECH_plumb*Wwire+dWplumb)
Wbattery real battery (Efuel_cap/eWtank)
WBMS real battery management system (fBMS*Wbattery)
WTMS real thermal management system
Wwire real power distribution (wiring) (Wwire=Uwire*xwire+fwire*Wbattery)
Wbattsys real battery system (W_fuel_tank + W_fuel_plumb)

weight empty = structure + propulsion + systems and equipment + vibration + contingency
operating weight = weight empty + fixed useful load
weight statement defines fixed useful load and operating weight for design configuration

so for flight state, additional fixed useful load = auxiliary fuel tank and kits and increments
flight state can also increment crew weight or equipment weight

flight state: gross weight, useful load (payload, usable fuel, fixed useful load), operating weight
gross weight = weight empty + useful load = operating weight + payload + usable fuel
useful load = fixed useful load + payload + usable fuel

+ Drag
FIX_drag int + total aircraft D/q (0 calculated; 1 fixed, input D/q; 2 scaled, input CD; 3 scaled, from k) 0

DoQ real + area D/q 0.

CD real + coefficient CD (based on rotor area, D/q = ArefCD) 0.008

kDrag real + k = (D/q)/(WMTO/1000)2/3 (Units_Dscale) 2.5

FIX_DL int + total aircraft download (0 calculated; 1 fixed, input D/qV ; 2 scaled, from kDL) 0

DoQV real + area (D/q)V 0.

kDL real + kDL = (D/q)V /Aref 0.05

Structure: Aircraft 152

fixed drag or download: obtained by adjusting contingency D/q or (D/q)V

FIX_drag: minimum drag, excludes drag due to lift and angle of attack
use only one of input DoQ, CD, kDrag (others calculated)
Aref = reference rotor area; units of kDrag are ft2/klb2/3 or m2/Mg2/3

CD = 0.02 for old helicopter, 0.008 for current low drag helicopters
kDrag = 9 for old helicopter, 2.5 for current low drag helicopters,

1.6 for current tiltrotors, 1.4 for turboprop aircraft (English units)
FIX_DL, download: Aref = reference rotor area, kDL ∼ DL/T

use only one of DoQV, kDL (other calculated)

+ Aerodynamics
KIND_alpha int + angle of attack and sideslip angle representation (1 conventional, 2 reversed for sideward flight) 2

angle of attack and sideslip angle: reversed definition best for sideward flight

Derived aircraft drag
DoQC_comp real sum component cruise drag, area (D/q)comp (without contingency)
DoQH_comp real sum component helicopter drag, area (D/q)comp (without contingency)
DoQV_comp real sum component vertical drag, area (D/q)comp (without contingency)
DoQC_AC real total cruise drag, area (D/q)AC

DoQH_AC real total helicopter drag, area (D/q)AC

DoQV_AC real total vertical drag, area (D/q)AC

CDC_AC real total cruise (D/q)AC/Aref

CDH_AC real total helicopter (D/q)AC/Aref

kDragC_AC real total cruise (D/q)/(WMTO/1000)2/3

kDragH_AC real total helicopter (D/q)/(WMTO/1000)2/3

kDL_AC real total vertical (D/q)V /Aref

DoQwet_AC real total cruise wetted drag, area (D/q)wet

Swet_AC real total wetted area Swet

CD_AC real total cruise (D/q)wet/Swet

Structure: Aircraft 153

+ Number of Components
nRotor int + rotors (maximum nrotormax) 2

nWing int + wings (maximum nwingmax) 0

nTail int + tails (maximum ntailmax) 1

nTank int + fuel tank systems (maximum ntankmax) 1

nPropulsion int + propulsion groups (maximum npropmax) 1

nEngineGroup int + engine groups (maximum nengmax) 1

nJetGroup int + jet groups (maximum njetmax) 0

nChargeGroup int + charge groups (maximum nchrgmax) 0

nEngineModel int + engine models (maximum nengmax) 1

nEngineParamN int + engine model parameters (maximum nengpmax) 0

nEngineTable int + engine tables (maximum nengmax) 0

nRecipModel int + reciprocating engine models (maximum nengmax) 0

nCompressorModel int + compressor models (maximum nengmax) 0

nMotorModel int + motor models (maximum nengmax) 0

nJetModel int + jet models (maximum njetmax) 0

nFuelCellModel int + fuel cell models (maximum nchrgmax) 0

nSolarCellModel int + solar cell models (maximum nchrgmax) 0

nBatteryModel int + battery models (maximum ntankmax) 0

propulsion group is set of components and engine groups, connected by drive system
engine model or engine table or reciprocating engine or motor model describes particular engine,

used in one or more engine groups
jet model describes particular jet, used in one or more jet groups
fuel cell model or solar cell model describes particular charger, used in one or more charge groups
battery model describes particular battery, used in one or more fuel tanks

Aircraft Input for case
inAircraft int Aircraft
inSystems int Systems
inFuselage int Fuselage
inLandingGear int LandingGear

Structure: Aircraft 154

inRotor(nrotormax) int Rotor
inWing(nwingmax) int Wing
inTail(ntailmax) int Tail
inFuelTank(ntankmax) int FuelTank
inPropulsion(npropmax) int Propulsion
inEngineGroup(nengmax) int EngineGroup
inJetGroup(njetmax) int JetGroup
inChargeGroup(nchrgmax) int ChargeGroup
inEngineModel(nengmax) int EngineModel
inEngineParamN(nengpmax) int EngineParamN
inEngineTable(nengmax) int EngineTable
inRecipModel(nengmax) int RecipModel
inCompressorModel(nengmax) int CompressorModel
inMotorModel(nengmax) int MotorModel
inJetModel(njetmax) int JetModel
inFuelCellModel(nchrgmax) int FuelCellModel
inSolarCellModel(nchrgmax) int SolarCellModel
inBatteryModel(ntankmax) int BatteryModel
inCost int Cost
inEmissions int Emissions

Design specification (from Size)
iSIZE_perf(npropmax) int performance (SIZE_perf_engine, rotor, none)
iSIZE_engine(nengmax) int performance (SIZE_engine_engn, none)
iSIZE_jet(njetmax) int performance (SIZE_jet_jet, none)
iSIZE_charge(nchrgmax) int performance (SIZE_charge_chrg, none)
iSIZE_rotor(nrotormax) int rotor sized (SIZE_rotor_radius, thrust, none)
iSET_rotor_radius(nrotormax)

int rotor radius (SET_rotor_radius, DL, ratio, scale, not_radius)
FIX_rotor_CWs(nrotormax) int rotor CW /σ (1 fixed, 0 not)
FIX_rotor_Vtip(nrotormax) int rotor Vtip (1 fixed, 0 not)
FIX_rotor_sigma(nrotormax) int rotor σ (1 fixed, 0 not)
iSET_wing_area(nwingmax) int wing area (SET_wing_area, WL, not_area)
iSET_wing_span(nwingmax) int wing span (SET_wing_span, ratio, radius, width, hub, panel, not_span)
FIX_wing_chord(nwingmax) int wing chord (1 fixed, 0 not)

Structure: Aircraft 155

FIX_wing_AR(nwingmax) int wing aspect ratio (1 fixed, 0 not)
FIX_DGW int design gross weight (0 calculated, 1 fixed)
FIX_WE int weight empty (0 calculated, 1 fixed, 2 scaled)
iSET_tank(ntankmax) int fuel tank (SET_tank_input, miss, fmiss, used)
iSET_tank_power(ntankmax) int fuel tank (SET_tank_nopower, power)
iSET_SDGW int SDGW (SET_SDGW_input, fDGW, fWMTO, maxfuel, perf)
iSET_WMTO int WMTO (SET_WMTO_input, fDGW, fSDGW, maxfuel, perf)
iSET_limit_ds(npropmax) int drive system torque limit (SET_limit_input, ratio, Pav, Preq)
kind_iter_size int kind iteration, performance (0 none, 1 size engine or radius or jet group or charge group)
kind_iter_param int kind iteration, parameters (0 none, 1 calculate parameters)
nSIZE_perf(npropmax) int conditions and missions for size engine or rotor
nSIZE_engine(nengmax) int conditions and missions for size engine group
nSIZE_jet(njetmax) int conditions and missions for size jet group
nSIZE_charge(nchrgmax) int conditions and missions for size charge group
nDESIGN_GW int design conditions and missions for DGW
nDESIGN_xmsn(npropmax) int design conditions and missions for transmission
nDESIGN_wmto int design conditions for WMTO
nDESIGN_tank int design missions for fuel tank
nDESIGN_thrust int design conditions and missions for antitorque or aux thrust rotor

Design data (from sizing)
DGW_source int design gross weight source (1 condition, 2 mission)
DGW_kState int design gross weight source number
DGW_kSeg int design gross weight segment number
nDesignState int number design of conditions and missions (maximum ndesignmax)
XAircraft(ndesignmax) XAircraft design data

156

Chapter 35

Structure: XAircraft

Variable Type Description Default

Design Data
source int source (1 condition, 2 mission)
kState int source number
kSeg int segment number
title c*100 title
kind c*12 kind (condition or mission)
number c*12 number (condition or mission/segment)
label c*12 label
setgw c*12 Set Gross Weight
setul c*12 Set Useful Load
design c*12 design
Nauxtank(nauxtankmax,ntankmax)

int number of auxiliary fuel tanks Nauxtank (each aux tank size)
Ncrew int number of crew
Npass int number of passengers
Ncrew_seat int number of crew seats
Npass_seat int number of passenger seats
kits c*12 kits

Weights (from FltAircraft)
GW real gross weight WG; at segment start
Wpayload real payload weight Wpay

Wpay_pass real passengers Wpass

Wpay_cargo real cargo Wcargo

Wpay_extload real external load Wext−load

Wpay_ammo real ammunition Wammo

Wpay_weapons real weapons Wweapons

Wpay_other real other Wother

Wfuel_total real usable fuel weight Wfuel; at segment start

Structure: XAircraft 157

Wfuel(ntankmax) real usable fuel weight
Wfuel_std(ntankmax) real standard tanks
Wfuel_aux(ntankmax) real auxiliary tanks
WO real operating weight WO

WE real weight empty WE (from Aircraft)
WFixUL real fixed useful load WFUL

Wcrew real crew
W_fixUL_fluid real fluids (from Aircraft%Weight)
Wauxtank real auxiliary fuel tanks
W_fixUL_other real other fixed useful load
Woful(10) real catagories
Wequip real equipment increment
Wfoldkit real folding kit
Wextkit real wing extension kit
Wwingkit real wing kit
Wotherkit real other kit
WUL real useful load WUL

WML real military load
Energy (from FltAircraft)

Efuel_total real usable fuel energy Efuel; at segment start
Efuel(ntankmax) real usable fuel energy
Efuel_std(ntankmax) real standard tanks
Efuel_aux(ntankmax) real auxiliary tanks

158

Chapter 36

Structure: Systems

Variable Type Description Default

+ Systems
title c*100 + title
notes c*1000 + notes

+ Weight
Weight Weight weight statement (systems)
SET_Wpayload int + payload (1 no details; 2 all terms) 1

Upass real + weight per passenger
+ fixed useful load

SET_Wcrew int + crew weight (1 no details; 2 all terms) 1

Wcrew real + weight or adjustment
Ucrew real + weight per crew
Ncrew int + number of crew
Wtrap real + trapped fluids and engine oil weight 0.

+ other fixed useful load
nWoful int + number of categories (0 for one value without name; maximum 10) 0

Woful_name(10) c*24 + category name ’ ’

Woful(10) real + baseline weight 0.

Wotherkit real + other kit 0.

SET_Wpayload: payload specified by flight condition or mission
SET_Wcrew: no details (only Wcrew) or all terms (Ucrew*Ncrew+Wcrew)

other fixed useful load: can include baggage, gun installations, weapons provisions, aircraft survivability equipment,
survival kits, life rafts, oxygen

Structure: Systems 159

SET_fold int + folding (0 none, 1 fold weights, 2 with kit) 0

+ folding weight in kit ffoldkit (fraction wing/rotor/tail/body fold weight)
fWfoldkitW(nwingmax) real + wing 0.5

fWfoldkitR(nrotormax) real + rotor 0.5

fWfoldkitT(ntailmax) real + tail 0.5

fWfoldkitFw real + body (wing and rotor fold) 0.5

fWfoldkitFt real + body (tail fold) 0.5

SET_Wvib int + vibration treatment weight (1 fraction weight empty, 2 input) 1

Wvib real + weight Wvib

fWvib real + fraction weight empty fvib

SET_Wcont int + contingency weight (1 fraction weight empty, 2 input) 1

Wcont real + weight Wcont

fWcont real + fraction weight empty fcont

WE = (structure + propulsion group + systems and equipment) + Wvib + Wcont

SET_Wvib: Wvib input or Wvib = fvibWE

SET_Wcont: Wcont input or Wcont = fcontWE ; or adjust Wcont for input or scaled WE (FIX_WE=1 or 2)

SET_fold, folding:
set component dWxxfold=0 and fWxxfold=0 for no rotor/wing/tail/body fold weight
fraction fWfoldkit of fold weight in fixed useful load as kit, remainder kept in component weight
kit weight removable, absent for specified flight conditions and missions

+ systems and equipment
Wauxpower real + auxiliary power group (APU) 0.

Winstrument real + instruments group 0.

Wpneumatic real + pneumatic group 0.

Wenviron real + environmental control group 0.

SET_Welectrical int + electrical group (1 no details; 2 all terms) 1

Welectrical real + aircraft 0.

Welect_supply real + power supply 0.

Structure: Systems 160

Welect_conv real + power conversion 0.

Welect_distrib real + power distribution and controls 0.

Welect_lights real + lights and signal devices 0.

Welect_support real + equipment supports 0.

SET_WMEQ int + avionics group (1 no details; 2 all terms) 1

WMEQ real + avionics 0.

Wavionics_com real + communications 0.

Wavionics_nav real + navigation 0.

Wavionics_ident real + identification 0.

Wavionics_disp real + control and display 0.

Wavionics_survive real + aircraft survivability 0.

Wavionics_mission real + mission system equipment 0.

+ armament group
SET_Warmor int + armor (1 no details; 2 all terms) 1

Warmor real + armor 0.

Uarmor_floor real + cabin floor armor weight per area
Uarmor_wall real + cabin wall armor weight per area
Uarmor_crew real + armor weight per crew
SET_Warmprov int + armament provisions (1 no details; 2 all terms) 1

Warmprov real + armament provisions 0.

Warmprov_gun real + gun provisions 0.

Warmprov_turret real + turret systems 0.

Warmprov_expend real + expendable weapons provisions 0.

Warm_elect real + armament electronics (avionics group) 0.

SET_Wfurnish int + furnishings and equipment group (1 no details; 2 all terms) 1

Wfurnish real + furnishings and equipment 0.

+ accommodations for personnel
Useat_crew real + each crew seat
Useat_pass real + each passenger seat
Uaccom_crew real + miscellaneous accommodation per crew seat
Uaccom_pass real + miscellaneous accommodation per passenger seat
Uox_crew real + oxygen system per crew seat
Uox_pass real + oxygen system per passenger seat
Wfurnish_misc real + miscellaneous equipment 0.

Structure: Systems 161

+ furnishings
Wfurnish_trim real + trim 0.

Uinsulation real + acoustic and thermal insulation weight per cabin area
+ emergency equipment

Wemerg_fire real + fire detection and extinguishing 0.

Wemerg_other real + other emergency equipment 0.

SET_Wload int + load and handling group (1 no details; 2 all terms) 1

Wload real + load and handling 0.

Whandling_aircraft real + aircraft handling 0.

+ load handling
Uhandling_cargo real + cargo handling weight per cabin floor area
Wload_hoist real + hoist 0.

Wload_extprov real + external load provisions 0.

+ systems and equipment
Ncrew_seat int + number of crew seats 0

Npass_seat int + number of passenger seats 0

Ucrew_seat_inc real + equipment weight increment per crew seat (0. for default) 0.

Upass_seat_inc real + equipment weight increment per passenger seat (0. for default) 0.

SET_Welectrical=1: only Welectrical+WDIelect

SET_WMEQ=1: only WMEQ; equipment weights include installation
SET_Warmor=1: only Warmor

SET_Warmprov=1: only Warmprov

SET_Wfurnish=1: only Wfurnish

miscellaneous accommodation includes galleys and toilets
miscellaneous equipment includes cockpit displays
trim includes floor covering, partitions, crash padding, acoustic and thermal insulation

excluding vibration absorbers
other emergency equipment includes first aid, survival kit, life raft

SET_Wload=1: only Wload

equipment weight increment is for flight condition and mission; default (if SET_furnish=2 and SET_armor=2):
Ucrew_seat_inc=Useat_crew+Uaccom_crew+Uox_crew+Uarmor_crew

Upass_seat_inc=Useat_pass+Uaccom_pass+Uox_pass

Structure: Systems 162

Derived weights
fixed useful load, fold kit

W_fixUL_foldkit_fus real fuselage
W_fixUL_foldkit_rotor real rotors
W_fixUL_foldkit_wing real wings
W_fixUL_foldkit_tail real tails

armament group
Warmor_floor real cabin floor armor weight
Warmor_wall real cabin wall armor weight
Warmor_crew real crew armor weight

furnishings and equipment group
Wseat real seats
Waccom real miscellaneous accommodation
Wox real oxygen system
Winsulation real acoustic and thermal insulation weight
Whandling_cargo real cargo handling weight
Ucrewseatinc real equipment weight increment per crew seat
Upassseatinc real equipment weight increment per passenger seat
Wtip(nrotormax) real weight on wing tip

+ Weight
+ systems and equipment
+ flight control group and hydraulic group

MODEL_fc int + model (0 input, 1 NDARC, 2 custom) 1

MODEL_RWfc int + rotary wing flight controls (0 not present, 1 global, 2 for each rotor) 1

refRotor int + reference rotor number for global 1

KIND_RWfc(nrotormax) int + kind control for each rotor (0 fixed pitch, 1 swashplate, 2 collective only) 1

TF_RWfc_coll(nrotormax) real + addition weight factor, collective control only 0.5

TF_RWfc_b(nrotormax) real + addition weight factor, boosted 1.0

TF_RWfc_mb(nrotormax) real + addition weight factor, control boost mechanisms 1.0

TF_RWfc_nb(nrotormax) real + addition weight factor, non-boosted 1.0

TF_RWfc_hyd(nrotormax) real + addition weight factor, hydraulic 1.0

MODEL_FWfc int + fixed wing flight controls (0 for not present) 1

MODEL_CVfc int + conversion controls (0 for not present) 1

Structure: Systems 163

+ flight control weight increment
dWRWfc_b real + rotary wing, boosted 0.

dWRWfc_mb real + rotary wing, control boost mechanisms 0.

dWRWfc_nb real + rotary wing, non-boosted 0.

dWFWfc_mb real + fixed wing, control boost mechanisms 0.

dWFWfc_nb real + fixed wing, non-boosted 0.

dWCVfc_mb real + conversion, boosted 0.

dWCVfc_nb real + conversion, control boost mechanisms 0.

+ fixed flight controls
Wfc_cc real + cockpit controls 0.

Wfc_afcs real + automatic flight control system 0.

+ hydraulic weight increment
dWRWhyd real + rotary wing 0.

dWFWhyd real + fixed wing 0.

dWCVhyd real + conversion 0.

WEQhyd real + equipment hydraulics 0.

WFltCont WFltCont NDARC model
+ anti-icing group

MODEL_DI int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWDIelect real + electrical system 0.

dWDIsys real + anti-ice system 0.

WDeIce WDeIce NDARC model

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

MODEL_RWfc=1: global option is based on just main rotor (refRotor)
MODEL_RWfc=2: sums separate contributions from all rotors; uses KIND_RWfc and TF_RWfc_xxxx

each rotor designated fixed pitch (no weight), swashplate (collective and cyclic), or collective control only

tiltrotor wing weight model requires weight on wing tip: distributed to designated rotor;
sum rotary wing and conversion flight controls, hydraulic group, trapped fluids

Structure: Systems 164

+ Technology Factors
+ rotary wing flight control weight

TECH_RWfc_b real + boosted χRWb 1.0

TECH_RWfc_mb real + control boost mechanisms χRWmb 1.0

TECH_RWfc_nb real + non-boosted χRWnb 1.0

+ fixed wing flight control weight
TECH_FWfc_mb real + control boost mechanisms χFWmb 1.0

TECH_FWfc_nb real + non-boosted χFWnb 1.0

+ conversion flight control weight
TECH_CVfc_mb real + control boost mechanisms χCV mb 1.0

TECH_CVfc_nb real + non-boosted χCV nb 1.0

+ flight control hydraulics
TECH_RWhyd real + rotary wing χRWhyd 1.0

TECH_FWhyd real + fixed wing χFWhyd 1.0

TECH_CVhyd real + conversion χCV hyd 1.0

+ anti-icing
TECH_DIelect real + electrical system χDIelect 1.0

TECH_DIsys real + anti-ice system χDIsys 1.0

165

Chapter 37

Structure: WFltCont

Variable Type Description Default

+ Flight Control Group, NDARC Weight Model
+ rotary wing flight controls

MODEL_WRWfc int + model (1 fraction, 2 parametric, 3 Boeing, 4 GARTEUR, 5 Tishchenko, 6 generic) 1

fRWfc_nb real + AFDD: non-boosted control weight fRWnb (fraction boost mechanisms weight) 0.6

xRWfc_red real + AFDD: hydraulic system redundancy/complexity factor fRW red 3.0

KIND_WRWfc int + AFDD: survivability (1 baseline, 2 UTTAS/AAH level of survivability) 2

fRWfc_b real + Boeing, GARTEUR, Tishchenko, or generic: boosted weight fRWb (fraction boosted + boost mech, or total) 0.2

fRWfc_mb real + GARTEUR, Tishchenko, or generic: boost mechanisms weight fRWmb (fraction total weight) 0.2

KRW real + generic: factor KRW 0.

XRWN real + exponent XRWN 0.

XRWR real + exponent XRWR 0.

XRWc real + exponent XRWc 0.

XRWW real + exponent XRWW 0.

XRWb real + exponent XRWb 0.

+ fixed wing flight controls
MODEL_WFWfc int + model (1 full controls, 2 only on hor tail, 3 GARTEUR, Raymer (4 transport, 5 general aviation), 6 generic) 1

fFWfc_nb real + non-boosted weight fFWnb (fraction total fixed wing flight control weight) 0.10

nfunction int + Raymer: number of control functions 6

fmech real + Raymer: number of mechanical functions (fraction total) 0.2

KFW real + generic, factor KFW 0.

XFW real + exponent XFW 0.

+ conversion controls
fCVfc_mb real + boost mechanisms weight fCV mb (fraction maximum takeoff weight) 0.02

fCVfc_nb real + non-boosted weight fCV nb (fraction boost mechanisms weight) 0.10

+ cockpit controls
MODEL_cc int + model (1 fixed Wfc_cc, 2 scaled with DGW) 1

Kcc real + factor Kcc 1.7

Xcc real + exponent Xcc 0.41

Structure: WFltCont 166

+ Hydraulic Group, NDARC Model
+ flight control hydraulics

fRWhyd real + rotary wing fRWhyd (fraction rotary wing boost mechanisms + hydraulic weight) 0.40

fFWhyd real + fixed wing fFWhyd (fraction fixed wing boost mechanisms weight) 0.10

fCVhyd real + conversion fCV hyd (fraction conversion boost mechanisms weight) 0.10

flight controls = non-boosted (do not see aero surface or rotor loads) + boost mechanisms (actuators) + boosted

MODEL_WRWfc = fraction: parametric except for non-boosted controls (from fRWfc_nb)

typically fRWfc_nb = 0.6 (data range 0.3 to 1.8), fRWhyd = 0.4
xRWfc_red = 1.0 to 3.0

+ Custom Weight Model
WtParam_fc(8) real + parameters 0.

Weight Model Input
Rotary wing

WMTO_rw real maximum takeoff weight
Wbld_rw real blade weight
Nrotor_rw int number of rotors
NrNb_rw int total number of blades, Nrotor*Nblade
chord_rw real blade mean chord
Vtip_rw real hover tip speed
radius_rw real blade radius

Fixed wing
WMTO_fw real maximum takeoff weight
Sht_fw real horizontal tail area (fixed wing)

Conversion
WMTO_cv real maximum takeoff weight

Cockpit controls
DGW_cc real design gross weight

167

Chapter 38

Structure: WDeIce

Variable Type Description Default

+ Anti-Icing Group, NDARC Weight Model
kDeIce_elec(nrotormax) real + weight factor for electrical system Kelec (lb/ft2 or kg/m2) 0.25

kDeIce_rotor(nrotormax) real + weight factor for main rotor Krotor (lb/ft2 or kg/m2) 0.25

kDeIce_wing(nwingmax) real + weight factor for wing Kwing (lb/ft or kg/m) 0.

kDeIce_air(nengmax) real + weight factor for engine air intake Kair (lb/lb or kg/kg) 0.006

kDeIce_jet(njetmax) real + weight factor for jet air intake Kjet (lb/lb or kg/kg) 0.006

+ Custom Weight Model
WtParam_DI(8) real + parameters 0.

Weight Model Input
Ablade(nrotormax) real blade area
Lwing(nwingmax) real wing length
Weng(nengmax) real engine weight
Wjet(njetmax) real jet weight

168

Chapter 39

Structure: Fuselage

Variable Type Description Default

+ Fuselage
title c*100 + title
notes c*1000 + notes

+ Geometry
loc_fuselage Location + fuselage location
SET_length int + fuselage length (1 input, 2 calculated, 3 from rotor and tail only, 4 from rotor only) 1

Length_fus real + length �fus

SET_nose int + nose length (distance forward of hub; 1 input, 2 calculated) 1

Length_nose real + nose length �nose

fLength_nose real + nose length (fraction reference length)
SET_aft int + aft length (distance aft of hub; 1 input, 2 calculated) 1

Length_aft real + aft length �aft
fLength_aft real + aft length (fraction reference length)
fRef_fus real + fuselage SL location relative nose fref (fraction fuselage length)
Length_rotors real rotor-rotor longitudinal separation
Length_tail real tail length (wing to horizontal tail)
Width_fus real + fuselage width wfus

SET_Swet int + fuselage wetted area (1 input, 2 input plus boom, 3 from nose length, 4 from fuselage length, 5 from weight) 2

Swet real + wetted area Swet

Sproj real + projected area Sproj

fSwet real + factor for wetted area fwet or kwet 1.

fSproj real + factor for projected area fproj or kproj 1.

Height_fus real + fuselage height hfus

Circum_boom real + tail boom effective circumference Cboom

Width_boom real + tail boom effective width wboom

Swet_in real input wetted area Swet

Sproj_in real input projected area Sproj

Structure: Fuselage 169

SET_Scabin int + cabin area (1 input, 2 calculated) 2

Scabin real + total cabin surface area Scabin

Scabin_floor real + cabin floor area Scabin−floor

Scabin_wall real + cabin wall area Scabin−wall

fScabin real + factor for total cabin surface area fcabin 0.6

fScabin_floor real + factor for cabin floor area fcabin−floor 0.6

fScabin_wall real + factor for cabin wall area fcabin−wall 0.6

KIND_scale int + reference length (1 rotor radius, 2 wing span, 3 fuselage length) 1

refRotor int + rotor number (for rotor radius) 1

refWing int + wing number (for wing span) 1

SET_length: input (use Length_fus) or calculated (from nose and aft lengths)
calculated uses rotor, tail, wing locations; or just rotor and tail, or just rotor

which can not then be scaled with fuselage length
SET_nose: input (use Length_nose) or calculated (from fLength_nose); used for Length_fus and Swet

SET_aft: input (use Length_aft) or calculated (from fLength_aft); used for Length_fus

fRef_fus=(SL_fuselage–SL_nose)/Length_fus; used for operating length and sketch
input required if SET_length = input, otherwise calculated

SET_Swet: both wetted area and projected area; input (use Swet, Sproj),
or calculated (from fSwet, fSproj, Width_fus, Height_fus, and fuselage or nose length)
or from weight, units of kwet = fSwet and kproj = fSproj are ft2/klb2/3 or m2/Mg2/3

boom circumference and width used if SET_Swet not input and not from weight (set to zero if no boom)

SET_Scabin: cabin areas used for systems and equipment weights

+ Geometry (for graphics)
Height_ramp real + height of cargo ramp
fLength_cargo real + fraction of fuselage length used for cargo 0.60

Structure: Fuselage 170

+ Controls
+ flow control momentum coefficient Cμ

INPUT_flow int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_flow(ncontmax,nstatemax) real + control matrix
nVflow int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

flow(nvelmax) real + values
Vflow(nvelmax) real + speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Aerodynamics
MODEL_aero int + model (0 none, 1 standard) 1

AFuse AFuse standard model
DoQ_cont real + contingency drag, area (D/q)cont 0.

DoQV_cont real + contingency vertical drag, area (D/q)V cont 0.

Derived drag
DoQ_fus real fuselage drag, area (D/q)fus

DoQV_fus real fuselage vertical drag, area (D/q)V fus

DoQ_fit real fittings and fixtures drag, area (D/q)fit

DoQ_rb real rotor-body interference drag, area (D/q)rb
prop_flow(3) int propulsion for flow control (group (1 engine, 2 jet), number, model)

DoQ_cont calculated if total drag fixed (Aircraft FIX_drag); otherwise input
DoQV_cont calculated if total download fixed (Aircraft FIX_DL); otherwise input

Structure: Fuselage 171

+ Weight
Weight Weight weight statement (component)

+ fuselage group
MODEL_weight int + fuselage group model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWbody real + basic body 0.

dWmar real + body marinization 0.

dWpress real + pressurization 0.

dWcrash real + body crashworthiness 0.

dWftfold real + tail fold 0.

dWfwfold real + wing fold 0.

WFuse WFuse AFFD model
+ Technology Factors

TECH_body real + basic body χbasic 1.0

TECH_mar real + body marinization χmar 1.0

TECH_press real + pressurization χpress 1.0

TECH_crash real + body crashworthiness χcw 1.0

TECH_ftfold real + tail fold χtfold 1.0

TECH_fwfold real + wing fold χwfold 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

172

Chapter 40

Structure: AFuse

Variable Type Description Default

+ Aerodynamics, Standard Model
AoA_zl real + zero lift angle of attack αzl (deg) 0.

AoA_max real + angle of attack for maximum lift αmax (deg) 10.

+ lift
SET_lift int + specification (1 fixed, L/q; 2 scaled, CL) 2

dLoQda real + lift slope, d(L/q)/dα (per rad) 0.

dCLda real + lift slope, CLα = dCL/dα (per rad; based on wetted area, L/q = SCL) 0.

+ pitch moment
SET_moment int + specification (1 fixed, M/q; 2 scaled, CM) 2

MoQ0 real + moment at zero lift, (M/q)0 0.

CM0 real + moment at zero lift, CM0 (based on wetted area and fuselage length, M/q = S�CM) 0.

dMoQda real + moment slope, d(M/q)/dα (per rad) 0.

dCMda real + moment slope, CMα = dCM/dα (per rad; based on wetted area and fuselage length, M/q = S�CM) 0.

SS_zy real + sideslip angle for zero side force βzy (deg) 0.

SS_max real + sideslip angle for maximum side force βmax (deg) 10.

+ side force
SET_side int + specification (1 fixed, Y/q; 2 scaled, CY) 2

dYoQdb real + side force slope, d(Y/q)/dβ (per rad) 0.

dCYdb real + side force slope, CY β = dCY /dβ (per rad; based on wetted area, Y/q = SCY) 0.

+ yaw moment
SET_yaw int + specification (1 fixed, N/q; 2 scaled, CN) 2

NoQ0 real + moment at zero lift, (N/q)0 0.

CN0 real + moment at zero lift, CN0 (based on wetted area and fuselage length, N/q = S�CN) 0.

dNoQdb real + moment slope, d(N/q)/dβ (per rad) 0.

dCNdb real + moment slope, CNβ = dCN/dβ (per rad; based on wetted area and fuselage length, N/q = S�CN) 0.

Structure: AFuse 173

SET_xxx: fixed (use XoQ) or scaled (use CX); other parameter calculated

+ Drag, Standard Model
+ forward flight drag

SET_drag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ real + area (D/q)0
CD real + coefficient CD0 (based on wetted area, D/q = SCD) 0.005

+ fixtures and fittings
SET_Dfit int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ_fit real + area (D/q)fit

CD_fit real + coefficient CDfit (based on wetted area, D/q = SCD) 0.

+ rotor-body interference
SET_Drb int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ_rb(nrotormax) real + area (D/q)rb

CD_rb(nrotormax) real + coefficient CDrb (based on wetted area, D/q = SCD) 0.

CD_rb_total real total rotor-body interference drag, CDrb

+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV real + area (D/q)V

CDV real + coefficient CDV (based on projected area, D/q = SprojCD) 0.

CDVs real CDV Sproj/Swet

+ sideward drag
SET_Sdrag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQS real + area (D/q)S

CDS real + coefficient CDS (based on wetted area, D/q = SCD) 0.

+ drag variation with angle of attack
MODEL_drag int + model (0 none, 1 general, 2 quadratic) 2

AoA_Dmin real + angle of attack for fuselage minimum drag CDmin (deg) 0.

Kdrag real + drag increment Kd, ΔCD = CD0Kd|αe|Xd 0.

Xdrag real + drag increment Xd, ΔCD = CD0Kd|αe|Xd 2.

Structure: AFuse 174

+ transition from forward flight drag to vertical drag
MODEL_trans int + model (1 input transition angle of attack, 2 calculate for quadratic) 1

AoA_tran real + angle of attack for transition αt (deg) 25.

at real angle of attack for transition αt (deg) (derived)
Xd real exponent Xd (derived)

+ Flow Control; ΔCL = CLα(Lμs

√
Cμ + Lμ1Cμ + Lμ2C

2
μ), ΔCLmax = XμCμ, ΔCM = MμCμ, ΔCD = DμCμ

MODEL_flow int + model (0 none) 0

Lmus real + lift Lμs 0.0

Lmu1 real + lift Lμ1 0.0

Lmu2 real + lift Lμ2 0.0

Xmu real + maximum lift Xμ 1.0

Mmu real + moment Mμ 0.0

Dmu real + drag Dμ 0.0

Cmu_limit real + flow limit Cμlimit 1.0

175

Chapter 41

Structure: WFuse

Variable Type Description Default

+ Fuselage Group, NDARC Weight Model
MODEL_body int + model (1 AFDD84, 2 AFDD82, 3 other) 1

MODEL_other int + model (1 Boeing, GARTEUR (2 air, 3 hel), 4 Tishchenko, 5 Torenbeek, Raymer (6 transport, 7 gen av), 8 generic)
KIND_ramp int + AFDD: rear cargo ramp (0 none) 0

fLength_crg real + Boeing: cabin length + ramp length + cg range (fraction fuselage length) 0.6

Vdive real + Boeing or Torenbeek or Raymer: design dive speed Vdive (knots) 200.

ndoor int + Raymer: number of cargo doors 0

Pdelta real + Raymer: cabin pressure differential (psi) 8.

Kfus real + generic: factor Kfus 0.

XfusW real + exponent XfusW 0.

Xfusn real + exponent Xfusn 0.

XfusS real + exponent XfusS 0.

Xfusl real + exponent Xfus� 0.

fWbody_mar real + body weight for marinization fmar (fraction basic body weight) 0.

fWbody_press real + body weight for pressurization fpress (fraction basic body weight) 0.

fWbody_crash real + body weight for crashworthiness fcw (fraction body weight) 0.

fWbody_tfold real + tail fold weight ftfold (fraction tail (AFDD84 or other) or body (AFDD82) weight) 0.

fWbody_wfold real + wing fold weight fwfold (fraction wing+tip (AFDD84 or other) or body+tailfold (AFDD82) weight) 0.

AFDD84 (UNIV) is universal body weight model, for tiltrotor and tiltwing as well as for helicopters
AFDD82 (HELO) is helicopter body weight model, should not be used for tiltrotor or tiltwing
dive speed: Vmax = SLS max speed, Vdive = 1.25Vmax

fLength_crg = (�c + �r + ΔCG)/�body
∼= 1.0 for tandem, 0.3-0.6 for single main rotor (0.7-0.8 with ramp)

typically fWbody_crash = 0.06
typically fWbody_tfold = 0.30 (AFDD84 or other) or 0.05 (AFDD82) for folding tail

Structure: WFuse 176

+ Custom Weight Model
WtParam_fuse(8) real + parameters 0.

Weight Model Input
WMTO real maximum takeoff weight
SDGW real structural design gross weight
nz real design ultimate flight load factor at SDGW
Sbody real body wetted area
Lbody real fuselage length
place_LG int landing gear placement (1 on body, 2 on wing)
kind_LG int landing gear (0 fixed, 1 retracts)
WtTail real tail weight (for fold)
WtWing real wing weight (for fold)

177

Chapter 42

Structure: LandingGear

Variable Type Description Default

+ Landing Gear
title c*100 + title
notes c*1000 + notes

+ Geometry
loc_gear Location + landing gear location
d_gear real + distance from bottom of landing gear to WL_gear dLG 0.

place int + placement (1 located on body, 2 located on wing) 1

KIND_LG int + retraction (0 fixed, 1 retracts) 1

speed real + retraction speed (CAS or TAS, knots)

landing gear location: with HAGL (FltState) determines rotor height above ground level
height rotor = landing gear above ground + hub above landing gear = HAGL + (WL_hub–WL_gear+d_gear)

place: used for weight (fuselage and wing)

+ Aerodynamics
MODEL_aero int + model (0 none, 1 standard) 1

AGear AGear standard model
Derived drag

DoQC_LG real landing gear cruise drag, area D/q (0 for retractable gear)
DoQH_LG real landing gear helicopter drag, area D/q

Structure: LandingGear 178

+ Weight
Weight Weight weight statement (component)

+ alighting gear group
MODEL_weight int + alighting gear group model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWLG real + basic landing gear 0.

dWLGret real + retraction 0.

dWLGcrash real + crashworthiness 0.

WGear WGear AFFD model
+ Technology Factors

TECH_LG real + basic landing gear χLG 1.0

TECH_LGret real + retraction χLGret 1.0

TECH_LGcrash real + crashworthiness χLGcw 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

179

Chapter 43

Structure: AGear

Variable Type Description Default

+ Drag, Standard Model
DoQ real + drag area extended, D/q

180

Chapter 44

Structure: WGear

Variable Type Description Default

+ Landing Gear Group, NDARC Weight Model
MODEL_LG int + model (1 fraction, 2 parametric rotary wing (wheel), 3 parametric fixed wing, 4 parametric skid) 2

nLG int + number of landing gear assemblies NLG 3

fWLG_basic real + basic landing gear weight fLG (fraction maximum takeoff weight) 0.0325

fWLG_ret real + landing gear weight for retraction fLGret (fraction basic weight) 0.08

fWLG_crash real + landing gear weight for crashworthiness fLGcw (fraction basic+retraction weight) 0.14

MODEL_LG=fraction: uses fWLG_basic; typically fWLG_basic = 0.0325 (wheel) or 0.014 (skid)
MODEL_LG=skid: for tall gear, technology factor TECH_LG should include form factor 1.11

design ultimate flight load factor nz_ult used for landing gear design load factor nzL

typically fWLG_ret = 0.087, fWLG_crash = 0.14

+ Custom Weight Model
WtParam_gear(8) real + parameters 0.

Weight Model Input
WMTO real maximum takeoff weight
wingload real wing loading
nz real design load factor for landing gear

181

Chapter 45

Structure: Rotor

Variable Type Description Default

+ Rotor
title c*100 + title
notes c*1000 + notes
config c*32 + Configuration ’main’

rotorconfig int configuration (ROTORCONFIG_main, tail, prop)
isMainRotor int main rotor (0 not)
isAntiQRotor int antitorque rotor (0 not)
isAuxTRotor int auxiliary thrust rotor (0 not)
isVariableDiam int variable diameter rotor (0 not)
isDuctedFan int ducted fan (0 not)
isReactionDrive int reaction drive (0 not)
isMultiRotor int multiple rotors (0 not)
isStoppable int stopped rotor (0 not)
twinrotor int configuration (ROTORCONFIG_tandem, coaxial, tiltrotor, not_twin)

configuration designation: principal designation required, rest identify special characteristics
principal designation = ’main’, ’tail’, ’prop’

antitorque = ’antiQ’, ’auxT’

twin rotor = ’coaxial’, ’tandem’, ’tiltrotor’ (keyword = tan, coax, tilt)
others = ’variable diameter’, ’stop’, ’ducted fan’, ’reaction drive’, ’multirotor’ (keyword = var, stop, duct, react, multi)

principal designation determines where weight put in weight statement, and designates main rotors (isMainRotor)
separately specify appropriate performance and weight models

multiple rotor configurations have special options for geometry and performance
options defined by variables SET_geom, MODEL_twin, MODEL_int_twin

antitorque or aux thrust rotor has special options for sizing
options defined by variables SET_rotor, fThrust, Tdesign

reaction drive still requires propulsion group

Structure: Rotor 182

kRotor int rotor number

+ Propulsion group
kPropulsion int + group number 1

KIND_xmsn int + drive system branch (1 primary, 0 dependent) 1

Vtip_ref(ngearmax) real + reference tip speed
rVtip_ref(ngearmax) real ratio to state #1
Omega_ref real reference rotational speed (state #1)
INPUT_gear int + gear ratio input for dependent branch (1 Vtip_ref, 2 gear) 1

gear(ngearmax) real + gear ratio r = Ωdep/Ωprim (ratio rpm to rpm of primary rotor) 1.0

+ Reaction drive
r_react real + effective radial station of force (fraction Radius) 1.0

prop_react(3) int propulsion for reaction drive (group (1 engine, 2 jet), number, model)

drive system branch: only one primary rotor per propulsion group
tip speed and gear ratio required for each drive system state
primary: specify Vtip_ref and default tip speeds; Vtip−hover = Vtip_ref(1)

dependent: specify gear ratio, or specify Vtip_ref and calculate gear (depend on rotor radius)
can not specify gear ratio if sizing changes dependent rotor Vtip (SET_rotor)

if size task changes Vtip_ref(1), then rVtip_ref used to change Vtip_ref(n) for n>1
variable speed transmission: for drive system state STATE_gear_var, gear ratio factor fgear (control) included

when evaluate rotational speed of dependent rotor

reaction drive requires one and only one propulsion system (engine group or jet group)

+ Default rotor tip speeds (primary rotor)
INPUT_Vtip int + input form (1 tip speed, 2 hover Vtip and rpm ratio) 1

+ function of flight speed
nVrpm int + number of speeds (1 constant; ≥ 2 piecewise linear, maximum nvelmax) 1

Vrpm(nvelmax) real + speeds (CAS or TAS, knots)
+ tip speed

Vtip_cruise real + cruise

Structure: Rotor 183

Vtip_man real + maneuvering flight
Vtip_oei real + OEI
Vtip_xmsn real + transmission sizing
Vtip(nvelmax) real + function of flight speed

+ rpm ratio (Vtip/Vtip−hover)
fRPM_cruise real + cruise 1.

fRPM_man real + maneuvering flight 1.

fRPM_oei real + OEI 1.

fRPM_xmsn real + transmission sizing 1.

fRPM(nvelmax) real + function of flight speed 1.

default rotor tip speeds (including conversion): selectable by SET_Vtip of FltState

only for primary rotor; Vtip calculated from gear(state) for dependent branch

+ Drive system torque limit
SET_limit_rs int + rotor shaft (0 input, 1 fraction power, 2 fraction drive system limit) 1

Plimit_rs real + rotor shaft power limit PRSlimit

fPlimit_rs real + rotor shaft power limit factor 1.

Qlimit_rs real rotor shaft torque limit (PRSlimit at Ωref)

drive system torque limit: Size%SET_limit_ds = input (use Plimit_rs) or calculated (from fPlimit_rs)
SET_limit_ds=’input’: Plimit_rs input
SET_limit_ds�=’input’: from rotor power required at transmission sizing flight conditions (DESIGN_xmsn)

rotor shaft: options for SET_limit_ds�=’input’

SET_limit_rs=0: Plimit_rs

SET_limit_rs=1: fPlimit_rs × (rotor Preq)
SET_limit_rs=2: fPlimit_rs ×PDSlimit

rotor shaft power limit: corresponds to one rotor
can be used for max effort in flight state (max_quant=’Q margin’)
can be used for max gross weight in flight condition or mission (SET_GW=’maxQ’ or ’maxPQ’)
always check and print whether exceed torque limit

Structure: Rotor 184

+ Parameters
diskload real + disk loading (lb/ft2 or N/m2)
fArea real + fraction rotor area for reference disk area fA

fDGW real + fraction DGW fW (for disk loading and blade loading)
fThrust real + thrust factor (antitorque or aux thrust rotor) 1.0

Radius real + radius R
CWs real + blade loading CW /σ (thrust-weighted)
sigma real + solidity σ = Nc/πR (thrust-weighted)
Tdesign real + thrust for antitorque or aux thrust rotor
Pdesign real + power for antitorque or aux thrust rotor
Ndesign real + rotor speed (rpm) at Pdesign

SET_thrust int + rotor thrust for disk loading and blade loading (0 default; 1 fDGW*DGW, 2 fThrust*Tdesign) 0

iSET_thrust int rotor thrust for disk loading and blade loading (1 from DGW, 2 from Tdesign)

rotor disk loading = T/A; aircraft disk loading = WD/Aref , Aref =
∑

(fAA)
W = fW WD (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor); can specify using SET_thrust

Tdesign and Pdesign obtained from thrust design conditions and missions (DESIGN_thrust)
if rotor sized from disk loading (SET_rotor=’DL+xx+xx’), area = T /diskload

if SET_rotor specify ’Vtip’, use Vtip_ref(1)

if SET_rotor not specify ’Vtip’, calculate Vtip_ref(1), and then Vtip_ref for dependent rotors
if SET_rotor=’CWs+xx+xx’, then CW /σ from fDGW*DGW, takeoff condition, Vtip_ref, and thrust-weighted solidity

for antitorque or aux thrust rotor, need design conditions and missions (DESIGN_thrust) to identify Tdesign

otherwise use fDGW and design gross weight
Tdesign and Pdesign generally calculated (identified as input so inherited by next case)

+ Geometry
SET_geom c*12 + position (standard, tiltrotor, coaxial, tandem, tailrotor, multicopter) ’std’

KIND_TRgeom int + tiltrotor (1 from clearance, 2 at wing tip, 3 at wing panel edge) 0

+ twin rotors
fRadius real + ratio rotor radius to that of other rotor 1.0

otherRotor int + other rotor number

Structure: Rotor 185

positionOfRotor int + rotor position (+1/–1 for right/left, lower/upper, front/aft) 0

WingForRotor int + wing number 1

PanelForRotor int + wing panel number 1

clearance_fus real + tiltrotor clearance between rotor and fuselage dfus 0.6

fclearance_fus real + tiltrotor clearance factor 1.0

sep_coaxial real + coaxial rotor separation s (fraction Diameter) 0.08

overlap_tandem real + tandem rotor overlap o (fraction Diameter) 0.25

derived
iSET_geom int position (SET_geom_standard, tiltrotor, coaxial, tandem, tailrotor, multicopter)
clearance_calc real clearance between rotor and fuselage dfus

Hsep_twin real horizontal separation � (fraction Diameter)
Vsep_twin real vertical separation s (fraction Diameter)
overlap_twin real overlap o (1 – separation/Diameter)
m_twin real overlap area fraction m

+ tail rotor
mainRotor int + main rotor number 1

fRadius_tr real + radius scale factor 1.0

clearance_tr real + clearance between tail rotor and main rotor dtr 0.5

+ multicopter
ang_multicopter real + angle ψ (clockwise from forward, deg) 0.

len_multicopter real + arm length � (fraction Radius) 1.5

+ variable diameter rotor
SET_VarDiam int + set diameter (1 conversion schedule, 2 function speed)
fRcruise real + ratio cruise radius to hover radius (variable diameter only)

+ rotor stopped as wing
StopAsWing int + wing number (0 not) 0

SET_geom: calculation override part of location input
SET_geom=’tiltrotor’: calculate lateral position (BL)

KIND_TRgeom=clearance: from WingForRotor, Width_fus, clearance_fus, fclearance_fus

KIND_TRgeom=wing tip: from WingForRotor, wing span
KIND_TRgeom=wing panel edge: from WingForRotor, PanelForRotor, panel edge and wing span
positionOnRotor specifies right or left position
BL or YoL in loc_pylon, loc_pivot, loc_naccg is relative calculated loc_rotor BL

Structure: Rotor 186

SET_geom=’coaxial’: calculate position from sep_coaxial

same sep_coaxial for otherRotor, positionOnRotor specifies lower or upper position
loc_rotor (SL,BL,WL or XoL,YoL,ZoL) is midpoint between hubs
loc_pylon (SL,BL,WL or XoL,YoL,ZoL) is relative calculated loc_rotor

SET_geom=’tandem’: calculate longitudinal position (SL) from overlap_tandem

same overlap_tandem for otherRotor, positionOnRotor specifies front or aft position
loc_rotor (SL or XoL only) is midpoint between hubs
loc_pylon SL or XoL is relative calculated loc_rotor

SET_geom=’tailrotor’: calculate longitudinal position (SL) from clearance_tr, mainRotor

loc_pylon SL or XoL is relative calculated loc_rotor

SET_geom=’multicopter’: calculate longitudinal and lateral position from ang_multicopter, len_multicopter

loc_rotor (SL,BL or XoL,YoL) is center of rotors
loc_pylon (SL,BL,WL or XoL,YoL,ZoL) is relative calculated loc_rotor

ang_multicopter also used for Aircraft%config=’multicopter’ to define control
if rotor number ≤ 2 and positionOnRotor=0: first rotor is right/lower/front, second rotor is left/upper/aft

sizing:
if SET_rotor=’ratio’, Radius=fRadius*Radius(otherRotor); otherRotor not SET_rotor=’ratio’

twin rotors: config identify as twin rotor
antitorque: config identify as antitorque rotor

if SET_rotor=’scale’, Radius=fRadius_tr*(main rotor Radius)*function(DiskLoad)
variable diameter: Radius is hover or reference radius; can be commanded by aircraft controls

conversion schedule: R =Radius in hover and helicopter mode (V ≤ Vconv−hover)
R =Radius*fRcruise in cruise mode (V ≥ Vconv−cruise); linear with V in conversion mode

function of speed: use nVdiam, fdiam, Vdiam to calculate R

stoppable rotor: zero rotor flapping, forces, and power when stopped
stopped (FltAircraft%STOP_rotor=1) uses stopped rotor hub and blade drag
stopped and stowed (FltAircraft%STOP_rotor=2) uses stowed rotor hub drag
stopped as wing (FltAircraft%STOP_rotor=3) uses wing aero (wing number StopAsWing) with zero hub drag

Structure: Rotor 187

+ Geometry, Dynamics, Aerodynamics
rotate int + direction of rotation (1 counter-clockwise, –1 clockwise) 1

nBlade int + number of blades N
+ planform and twist

SET_chord int + chord distribution (1 linear from fTWsigma, 2 linear from taper, 3 nonlinear from fchord) 1

fTWsigma real + ratio thrust-weighted solidity to geometric solidity f = σt/σg 1.

taper real + taper ratio t (tip chord/root chord) 1.

SET_twist int + twist distribution (1 linear from twistL, 2 nonlinear from twist) 1

twistL real + linear twist θL (deg, root to tip) -10.

nprop int + number of radial stations (maximum nrmax) 2

rprop(nrmax) real + radial stations (rroot/R)
fchord(nrmax) real + chord distribution c(r)/cref 1.

twist(nrmax) real + twist θtw(r) (deg)
+ flap dynamics

KIND_hub int + hub type (1 articulated, 2 hingeless) 1

flapfreq real + first flapwise natural frequency ν (per-rev at hover tip speed) 1.04

conefreq real + coning natural frequency ν (0. to use flapfreq) 0.

gamma real + blade Lock number γ 8.

precone real + precone βp (deg) 0.

delta3 real + pitch-flap coupling δ3 (deg) 0.

+ aerodynamics
dclda real + blade section 2D lift-curve slope a = c�α (per-rad) 5.7

tiploss real + tip loss factor B (lift zero from BR to tip) 0.97

xroot real + root cutout (rroot/R) 0.1

Blockage real + blockage factor B = ΔT/T 0.

mu_blockage real + advance ratio μB (0. for no correction) 0.

SET_chord: use one of fTWsigma, taper, or fchord(r); others calculated (including root cutout)
fTWsigma = sigma_tw/sigma_geom

from fTWsigma: calculate equivalent linear taper, and fc = c/cref

from taper (linear): calculate fTWsigma, and fc = c/cref

from fchord(r): integrate for cg and ct, fTWsigma= ct/cg , calculate taper, fc = scaled fchord

SET_twist: use one of twistL or twist(r); other calculated
for nonlinear distribution, twist relative 0.75R obtained from input

Structure: Rotor 188

flap frequency and Lock number are used for flap dynamics and hub moments due to flap
specified for hover radius and rotational speed
KIND_hub determines how flap frequency and hub moment spring vary with rotor speed and R
weight models can have separate blade and hub values for flap frequency

blade Lock number gamma: for SLS density, a = 5.7, thrust-weighted chord
SET_Iblade determines whether Lock number input or calculated

blockage: force acting on aircraft includes fBT opposing rotor thrust
blockage B is for hover, blockage factor zero for μ > μB

+ Geometry (for graphics)
thick real + blade thickness-to-chord ratio 0.12

Geometry and dynamics (derived)
frotate real direction of rotation (1 counter-clockwise, –1 clockwise)
Arotor real rotor area (πR2)
chord real thrust-weighted chord
sigma_geom real solidity σ = Nc/πR; mean geometric chord
chord_geom real mean geometric chord
AspectRatio real aspect ratio, R/chord_geom

Ablade real thrust-weighted blade area
Ablade_geom real geometric blade area
KP real tan(δ3)
fc(nrmax) real chord distribution fc = c(r)/cref (scaled to unit thrust-weighted chord)
tw(nrmax) real twist θtw(r) (relative 0.75R)
gamma_calc real blade Lock number γ
AI_calc real autorotation index KE/P
Iblade real blade moment of inertia Iblade

Kflap real flap stiffness Kflap (KIND_hub = hingeless)
eflap real flap hinge offset e (KIND_hub = articulated)
Kcone real cone stiffness Kcone (conefreq input)
Khub real hub moment spring Khub

Structure: Rotor 189

+ Blade element theory solution
+ integration

mr int + number of radial stations (xroot to 1; maximum mrmax) 4

mpsi int + number of azimuth angles (maximum mpsimax) 8

dr real radial increment dr = (1 − xroot)/mr

cspsi(mpsimax) real cos(ψj), ψj = j Δψ, j = 1 to mpsi (Δψ = 2π/mpsi)
snpsi(mpsimax) real sin(ψj), ψj = j Δψ, j = 1 to mpsi (Δψ = 2π/mpsi)

+ Geometry
loc_rotor Location + hub location
loc_pylon Location + pylon location
loc_pivot Location + pivot location
loc_naccg Location + nacelle cg location
direction c*16 + nominal orientation (’+x’, ’–x’, ’+y’, ’–y’, ’+z’, ’–z’; ’main’ (–z), ’tail’ (ry), ’prop’ (x)) ’main’

KIND_tilt int + shaft control (0 fixed shaft, 1 incidence, 2 cant, 3 both controls) 0

+ orientation of rotor shaft
incid_hub real + incidence θh (deg) 0.

cant_hub real + cant angle φh (deg) 0.

+ orientation of pivot axes
dihedral_pivot real + pivot dihedral angle φp (deg)
pitch_pivot real + pivot pitch angle θp (deg)
sweep_pivot real + pivot sweep angle ψp (deg)

+ reference shaft control
incid_ref real + incidence iref (deg) 0.

cant_ref real + cant angle cref (deg) 0.

+ moving weight for cg shift
SET_Wmove int + weight (1 wing tip weight, 2 Wgbrs, 3 Wgbrs and WES) 1

fWmove real + fraction moving weight 1.

dz_hub(3) real + hub position increment due to tilt ΔzF
hub (SL/BL/WL) 0.

Derived geometry
iDirection int nominal orientation (1, –1, 2, –2, 3, –3, –3, r2, 1)
axis_incid int axis incidence (±123)
axis_cant int axis cant (±123)
KIND_incid int incidence (0 fixed, 1 controlled)
KIND_cant int cant angle (0 fixed, 1 controlled)

Structure: Rotor 190

CPF(3,3) real pivot axes relative airframe, CPF

CFP(3,3) real pivot axes relative airframe, CFP

WCHF(3,3) real WCHF (CSF for reference control)
CSF(3,3) real rotor shaft relative airframe, CSF (zero shaft control)

loc_naccg, loc_pivot, orientation of pivot axes, and reference shaft control angles not used for KIND_tilt=fixed shaft
for tiltrotor, locations and orientation specified in helicopter mode, so incid_ref = 90

SET_Wmove: cg shift calculated using incidence and cant rotation of loc_naccg relative loc_pivot

moving weight fWmove*Wmove, Wmove = Wtip_total/nRotorOnWing or w/Nrotor

w = Wgbrs (drive system) or Wgbrs +
∑

(WES) (drive system and engine system)

+ Controls
KIND_control int + rotor control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP) 1

KIND_cyclic int + cyclic input (1 tip-path-plane tilt, 2 hub moment, 3 lift offset) 1

KIND_coll int + collective input (1 thrust, 2 CT /σ) 2

SCALE_coll int + scale collective T matrix (0 for none) 1

+ collective (magnitude of thrust vector)
INPUT_coll int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_coll(ncontmax,nstatemax) real + control matrix
nVcoll int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

coll(nvelmax) real + values
Vcoll(nvelmax) real + speeds (CAS or TAS, knots)

+ longitudinal cyclic (tip-path plane tilt or no-feathering plane tilt)
INPUT_lngcyc int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_lngcyc(ncontmax,nstatemax)

real + control matrix
nVlngcyc int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

lngcyc(nvelmax) real + values
Vlngcyc(nvelmax) real + speeds (CAS or TAS, knots)

Structure: Rotor 191

+ lateral cyclic (tip-path plane tilt or no-feathering plane tilt)
INPUT_latcyc int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_latcyc(ncontmax,nstatemax)

real + control matrix
nVlatcyc int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

latcyc(nvelmax) real + values
Vlatcyc(nvelmax) real + speeds (CAS or TAS, knots)

+ incidence i (nacelle tilt)
INPUT_incid int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_incid(ncontmax,nstatemax)

real + control matrix
nVincid int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

incid(nvelmax) real + values
Vincid(nvelmax) real + speeds (CAS or TAS, knots)

+ cant c
INPUT_cant int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_cant(ncontmax,nstatemax) real + control matrix
nVcant int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

cant(nvelmax) real + values
Vcant(nvelmax) real + speeds (CAS or TAS, knots)

+ diameter fdiam (variable diameter only)
INPUT_diam int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_diam(ncontmax,nstatemax) real + control matrix
nVdiam int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

fdiam(nvelmax) real + values
Vdiam(nvelmax) real + speeds (CAS or TAS, knots)

+ gear ratio factor fgear (variable speed transmission only)
INPUT_fgear int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_fgear(ncontmax,nstatemax)

real + control matrix
nVfgear int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

fgear(nvelmax) real + values
Vfgear(nvelmax) real + speeds (CAS or TAS, knots)

Structure: Rotor 192

+ reaction drive net force Freact

INPUT_Freact int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_Freact(ncontmax,nstatemax)

real + control matrix
nVFreact int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

Freact(nvelmax) real + values
VFreact(nvelmax) real + speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to component control, flight state can specify component control value
initial values if control is connected to trim variable; otherwise fixed for flight state

pylon moves with rotor; nontilting part is engine nacelle

+ Trim Targets
+ rotor lift

nVlift int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
Klift(nvelmax) real + target
Vlift(nvelmax) real + speeds (CAS or TAS, knots)

+ rotor propulsive force
nVprop int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
Kprop(nvelmax) real + target
Vprop(nvelmax) real + speeds (CAS or TAS, knots)

target definition determined by Aircraft%trim_quant

Klift can be fraction total aircraft lift, lift, CL/σ, or CT /σ
Kprop can be fraction total aircraft drag, propulsive force −X , −CX/σ, or −X/q)

Structure: Rotor 193

+ Rotor Thrust Capability (CT /σ vs μ)
+ sustained

nsteady int + number of points (maximum 20) 16

mu_steady(20) real + advance ratio
CTs_steady(20) real + CT /σ

+ transient
ntran int + number of points (maximum 20) 16

mu_tran(20) real + advance ratio
CTs_tran(20) real + CT /σ

+ equation, CT /σ = K0 − K1μ
2

K0_limit real + constant K0 0.17

K1_limit real + constant K1 0.25

CTs_steady, CTS_tran used to calculate rotor thrust margin, which available for max effort or trim
defaults used if CTs(1)=0.

default CTs_steady = .170,.168,.161,.149,.131,.109,.084,.050,.049,.048,.047,.046,.045,.044,.043,.042
default CTs_tran = .200,.197,.190,.177,.156,.135,.110,.080,.075,.070,.065,.060,.055,.050,.045,.040
default mu_steady = 0.,.10,.20,.30,.40,.50,.60,.70,.71,.72,.73,.74,.75,.76,.77,.78
default mu_tran = 0.,.10,.20,.30,.40,.50,.60,.70,.72,.74,.76,.78,.80,.82,.84,.86

+ Performance
MODEL_perf int + power model (1 standard, 2 table model) 1

PRotorInd PRotorInd standard model, induced power
PRotorPro PRotorPro standard model, profile power
PRotorTab PRotorTab table model
MODEL_Ftpp int + inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory) 2

MODEL_Fpro int + inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect) 2

if thrust and TPP command, and neglect inplane forces relative TPP, then pitch control angles not required

Structure: Rotor 194

+ Interference
MODEL_int int + model (0 none, 1 standard, 2 with transition) 1

+ transition
Vint_low real + low velocity (knots) 0.

Vint_high real + high velocity (knots) 0.

IRotor IRotor standard model

Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all
with transition: interference factors linearly vary from Kint at V ≤ Vint_low to 0 at V ≥ Vint_high

+ Geometry
SET_aeroaxes int + hub/pylon aerodynamic axes (0 input pitch, 1 helicopter, 2 propeller or tiltrotor) 1

pitch_aero real + pitch relative shaft axes θref , CBS = Y−θref 0.

SET_Spylon int + pylon wetted area (1 fixed, input Swet; 2 scaled, Wgbrs; 3 scaled, Wgbrs and WES ; 4 scaled, disk area) 2

Swet_pylon real + area Spylon 0.

kSwet_pylon real + factor, k = Spylon/(w/Nrotor)2/3 (Units_Dscale) or k = Spylon/A 1.0

SET_Sduct int + duct area (1 fixed, input S_duct; 2 scaled, from fLength_duct) 2

S_duct real + area Sduct 0.

fLength_duct real + duct length (fraction rotor radius) 1.2

SET_Sspin int + spinner wetted area (1 fixed, input Swet; 2 scaled, from fSwet) 2

Swet_spin real + area Sspin 0.

fSwet_spin real + factor, k = Sspin/Aspin 1.0

fRadius_spin real + spinner radius (fraction rotor radius) 0.

Derived geometry
CBS(3,3) real pylon axes relative shaft, CBS

CBF(3,3) real pylon axes relative airframe, CBF (zero shaft control)
Radius_spin real spinner radius Rspin

Structure: Rotor 195

only SET_aeroaxes=input uses pitch_aero; pitch_aero=180 for helicopter, 90 for propeller

SET_Spylon, pylon wetted area: input (use Swet_pylon) or calculated (from kSwet_pylon)
units of kSwet are ft2/lb2/3 or m2/kg2/3

w = Wgbrs (drive system) or Wgbrs +
∑

WES (drive system and engine system)
pylon wetted area used for pylon drag
rotor pylon must be consistent with engine group nacelle

SET_Sduct, duct area: input (use S_duct) or calculated (from fLength_duct)
Sduct = (2πR)�duct, �duct =fLength_duct*R; used for drag (wetted area 2Sduct) and weight

SET_Sspin, spinner wetted area: (use Swet_spin) or calculated (from fSwet_spin)
Aspin = πR2

spin = spinner frontal area (from fRadius_spin*R); spinner radius used for drag and weight

+ Drag
MODEL_drag int + model (0 none, 1 standard) 1

Idrag real + incidence angle for helicopter nominal drag (deg; 0 for not tilt) 0.

DRotor DRotor standard model
Derived drag

DoQC_hub real hub cruise drag, area (D/q)hub

DoQH_hub real hub helicopter drag, area (D/q)hub

DoQV_hub real hub vertical drag, area (D/q)hub

DoQC_pylon real pylon cruise drag, area (D/q)pylon

DoQH_pylon real pylon helicopter drag, area (D/q)pylon

DoQV_pylon real pylon vertical drag, area (D/q)pylon

DoQC_duct real duct cruise drag, area (D/q)duct

DoQH_duct real duct helicopter drag, area (D/q)duct

DoQV_duct real duct vertical drag, area (D/q)duct

DoQ_spin real spinner drag, area (D/q)spin

Swet_rotor real total wetted area Swet

Structure: Rotor 196

+ Weight
Weight Weight weight statement (component)

+ rotor group (or empennage or propulsion group)
MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWblade real + blade 0.

dWhub real + hub and hinge 0.

dWshaft real + inter-rotor shaft 0.

dWspin real + fairing/spinner 0.

dWrfold real + blade fold 0.

dWtr real + tail rotor 0.

dWaux real + auxiliary thrust 0.

dWrsupt real + rotor support structure 0.

dWduct real + duct 0.

WRotor WRotor NDARC model
SET_Iblade int + blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from AI) 1

AI real + autorotation index KE/P = 1
2NbladeIbladeΩ2/P (sec) 3.0

Wblade_tip real + tip weight (per blade) 0.

rWblade_tip real + location tip weight (fraction blade radius) 0.9

fWblade_tip real + distributed weight for centrifugal force (fraction Wblade_tip) 1.0

rblade real + radius of gyration for distributed mass (fraction blade radius) 0.6

xWblade real + blade weight (fraction total tail rotor or auxiliary thrust rotor weight) 0.55

Wblade real blade weight (all blades; required for drive system weight)
Wtip real weight on wing tip (required for tiltrotor wing weight)

+ Technology Factors
TECH_blade real + blade weight χblade 1.0

TECH_hub real + hub and hinge weight χhub 1.0

TECH_shaft real + inter-rotor shaft χshaft 1.0

TECH_spin real + fairing/spinner weight χspin 1.0

TECH_rfold real + blade fold weight χfold 1.0

TECH_tr real + tail rotor weight χtr 1.0

TECH_aux real + auxiliary thrust weight χat 1.0

TECH_rsupt real + rotor support structure weight χsupt 1.0

TECH_duct real + duct weight χduct 1.0

Structure: Rotor 197

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

blade weight: Wblade = χbladewblade + dWblade + (1 + f)WtipNblade

SET_Iblade: calculate blade moment of inertia Iblade

0 from Lock number gamma, independent of blade weight
1 from blade weight
2 from Lock number gamma, tip weight Wblade_tip calculated from Iblade

3 from autorotation index AI, tip weight Wblade_tip calculated from Iblade

for tail rotor or aux thrust weight model (MODEL_config = 2 or 3), blade weight Wblade = xWblade*Wtr or xWblade*Wat

rotor weight = blade + hub + spinner + fold + shaft + support + duct
rotor config determines where weight put in weight statement

main rotor: rotor group
tail rotor: empennage group (tail rotor)
propeller: propulsion group (propeller/fan installation)

198

Chapter 46

Structure: PRotorInd

Variable Type Description Default

+ Rotor Induced Power, Standard Energy Performance Method
MODEL_ind int + model (0 none, 1 constant, 2 standard, 3 simple) 2

MODEL_ind=constant uses only Ki_hover, Ki_prop, Ki_edge

MODEL_ind=simple uses only Ki_hover, Ki_prop, Ki_edge, mu_axtran, mu_prop, Xa, mu_edge, Xe

nonzero values of Ki in FltState supersede calculated value

+ induced velocity factors (ratio to momentum theory induced velocity)
Ki_hover real + hover κhover 1.12

Ki_climb real + axial climb κclimb 1.08

Ki_prop real + axial cruise (propeller) κprop 2.0

Ki_edge real + edgewise flight (helicopter) κedge 2.0

+ variation with thrust
CTs_Hind real + (CT /σ)ind for hover κh variation 0.08

kh1 real + coefficient kh1 for κh 0.

kh2 real + coefficient kh2 for κh 0.

Xh2 real + exponent Xh2 for κh 2.

CTs_Pind real + (CT /σ)ind for axial κp variation 0.08

kp1 real + coefficient kp1 for κp 0.

kp2 real + coefficient kp2 for κp 0.

Xp2 real + exponent Xp2 for κp 2.

CTs_Tind real + (CT /σ)ind for edgewise κe variation 0.08

kt1 real + coefficient kt1 for κe 0.

kt2 real + coefficient kt2 for κe 0.

Xt2 real + exponent Xt2 for κe 2.

Structure: PRotorInd 199

+ variation with shaft angle
kpa real + coefficient kpα for κp 0.

Xpa real + exponent Xpα for κp 2.

+ variation with propulsive force
kpx real + coefficient kpx for κp 0.

Xpx real + exponent Xpx for κp 1.

+ axial flight transition
Maxial real + constant Maxial from hover to climb 1.176

Xaxial real + exponent Xaxial from hover to climb 0.65

mu_axtran real + advance ratio μztran from hover to axial 0.

+ variation with axial velocity
mu_prop real + advance ratio μzprop for Ki_prop 1.0

ka1 real + coefficient ka1 for κ(μz) (linear) 0.

ka2 real + coefficient ka2 for κ(μz) (quadratic) 0.

ka3 real + coefficient ka3 for κ(μz) 0.

Xa real + exponent Xa for κ(μz) 4.5

+ variation with edgewise velocity
MODEL_edge int + model for edgewise κ relative axial κ (0 replace, 1 sum) 0

mu_edge real + advance ratio μedge for Ki_edge 0.35

ke1 real + coefficient ke1 for κ(μ) (linear) 0.8

ke2 real + coefficient ke2 for κ(μ) (quadratic) 0.

ke3 real + coefficient ke3 for κ(μ) 1.

Xe real + exponent Xe for κ(μ) 4.5

kea real + variation with rotor drag keα 0.

+ variation with lift offset
ko1 real + coefficient ko1 for foff 0.

ko2 real + factor ko2 for foff 8.

Ki_min real + minimum κmin 1.

Ki_max real + maximum κmax 10.

fedge real edgewise scale factor S
fprop real axial scale factor S

Structure: PRotorInd 200

+ Momentum theory
MODEL_grad int + inflow gradient in forward flight (0 none, 1 White and Blake, 2 Coleman and Feingold) 1

fGradx real + longitudinal gradient factor fx 1.

fGrady real + lateral gradient factor fy 1.

fGradm real + hub moment inflow gradient factor fm 1.

+ Ground effect
MODEL_GE int + model (0 none, 1 Cheeseman, 2 BE Cheeseman, 3 Law, 4 Hayden, 5 Zbrozek, 6 Maryland, 7 generic equation) 3

Cge real + effective height correction Cg 1.

+ generic equation
AGE real + coefficient for height A 1.

BGE(3) real + coefficient for height Bn 0.

FGE real + coefficient for thrust F 1.

GGE real + coefficient for thrust G 0.

XGEt real + exponent for thrust Xt 1.

XGEz real + exponent for height Xz 1.

Cge: for tiltrotors, typically Cg = 0.5; smaller effective height accounting for increased influence of ground compared
to isolated rotor

+ Ducted fan
MODEL_duct int + model (1 specify area ratio, 2 specify thrust ratio) 1

fDuctA real + area ratio fA (fan area/far wake area) 1.

fDuctT real + thrust ratio fT (rotor thrust/total thrust) 0.5

fDuctVx real + velocity ratio fV x (fan edgewise velocity/free stream velocity) 1.

fDuctVz real + velocity ratio fV z (fan axial velocity/free stream velocity) 1.

eta_duct real + duct efficiency ηD (total pressure loss through duct) 1.

ducted fan model used only if config=’duct’

Structure: PRotorInd 201

+ Twin rotors
MODEL_twin c*12 + model (based on config, none, side-by-side, coaxial, tandem, multirotor) ’config’

Kh_twin real + ideal induced velocity correction for hover κhtwin 1.00

Kp_twin real + ideal induced velocity correction for propeller κptwin 1.00

Kf_twin real + ideal induced velocity correction for forward flight κftwin 0.85

Cind_twin real + constant C in axial to forward flight transition 1.0

Caxial_twin real + constant Ca in hover to propeller transition 1.0

A_coaxial real + coaxial rotor nonuniform disk loading factor ᾱ 1.05

xh_multi(nrotormax) real + multirotor thrust factor xh for hover 1.0

xp_multi(nrotormax) real + multirotor thrust factor xp for propeller 1.0

xf_multi(nrotormax) real + multirotor thrust factor xf for forward flgiht 1.0

Derived twin rotors
iMODEL_twin int model (MODEL_twin_none, sidebyside, coaxial, tandem, multirotor)
xh real thrust factor xh, hover
xp real thrust factor xp, propeller
xf1 real thrust factor xf1, forward flight, this rotor
xf2 real thrust factor xf2, forward flight, other rotor

MODEL_twin: ’config’, ’none’, ’side-by-side’ or ’tiltrotor’, ’coaxial’, ’tandem’, or ’multirotor’

’config’ must identify rotor as twin or multiple rotors
coaxial: MODEL_twin=’coaxial’ (use A_coaxial; Kh_twin not used)

or MODEL_twin=’tandem’ with zero horizontal separation (typically Kh_twin=0.90)
coaxial and tandem: Kf_twin = 0.88 to 0.81 for rotor separation 0.06D to 0.12D

thrust factors x calculated for twin rotors, input for multiple rotors
correction factors and transition constants (κtwin, C, Ca) used for twin or multiple rotors

202

Chapter 47

Structure: PRotorPro

Variable Type Description Default

+ Rotor Profile Power, Standard Energy Performance Method
MODEL_pro int + model (0 none, 1 constant, 2 standard) 2

cdmean real + constant mean drag coefficient 0.009

MODEL_pro=constant uses only cdmean

nonzero values of cdo in FltState supersede calculated cdmean

TECH_drag real + technology factor for profile power χ 1.0

Re_ref real + reference Reynolds number Reref (0. for no correction) 0.

X_Re real + exponent for Reynolds number correction XRe 0.2

MODEL_basic int + Basic model cdbasic (0 none, 1 array, 2 equation) 2

+ array (cd vs thrust-weighted CT /σ)
ncd int + number of points (maximum 24) 24

CTs_cd(24) real + blade loading
cd(24) real + drag coefficient

+ equation
CTs_Dmin real + (CT /σ)Dmin for minimum profile drag (Δ = |CT /σ − (CT /σ)Dmin|) 0.07

d0_hel real + coefficient d0hel in drag, cdh = d0hel + d1helΔ + d2helΔ2 + Δcdsep (hover/edgewise) 0.009

d1_hel real + coefficient d1hel in drag (hover/edgewise) 0.

d2_hel real + coefficient d2hel in drag (hover/edgewise) 0.5

d0_prop real + coefficient d0prop in drag, cdp = d0prop + d1propΔ + d2propΔ2 + Δcdsep (axial) 0.009

d1_prop real + coefficient d1prop in drag (axial) 0.

d2_prop real + coefficient d2prop in drag (axial) 0.5

dprop real + variation with shaft angle, coefficient dpα for cdp 0.

Xprop real + variation with shaft angle, exponent Xpα for cdp 2.

Structure: PRotorPro 203

CTs_sep real + (CT /σ)sep for separation (Δcdsep = dsep(|CT /σ| − (CT /σ)sep)Xsep) 0.07

dsep real + factor dsep in drag increment 4.0

Xsep real + exponent Xsep in drag increment 3.0

df1 real + variation with edgewise velocity, coefficient df1 0.

df2 real + variation with edgewise velocity, coefficient df2 0.

Xf real + variation with edgewise velocity, exponent Xf 2.

dz1 real + variation with axial velocity, coefficient dz1 0.

dz2 real + variation with axial velocity, coefficient dz2 0.

Xz real + variation with axial velocity, exponent Xz 2.

default array (cd(1)=0.): CT /σ = 0. to 0.23 (uniform increments)
cd = .01100,.01075,.01025,.01000,.01010,.01070,.01050,.00975,.00925,.00926,.00938,.00977,

.01048,.01152,.01336,.01593,.01920,.02381,.03014,.04000,.08000,.16000,.32000,1.0000

MODEL_stall int + Stall model cdstall (0 none) 1

+ CT /σ at stall (Δs = |CT /σ| − (fs/fαfoff)(CT /σ)s, Δcd = ds1ΔXs1
s + ds2ΔXs2

s)
nstall int + number of points (maximum 20) 10

mu_stall(20) real + advance ratio V/Vtip

CTs_stall(20) real + (CT /σ)s

fstall real + constant fs in stall drag increment 1.0

dstall1 real + factor ds1 in stall drag increment 2.

dstall2 real + factor ds2 in stall drag increment 40.

Xstall1 real + exponent Xs1 in stall drag increment 2.0

Xstall2 real + exponent Xs2 in stall drag increment 3.0

+ variation with lift offset
do1 real + coefficient do1 for foff 0.

do2 real + factor do2 for foff 8.

dsa real + variation with rotor drag dsα 0.

default used if CTs_stall(1)=0.

default CTs_stall = 0.17,0.16,0.15,0.14,0.13,0.12,0.11,0.10,0.10,0.10
default mu_stall = 0.00,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.80

Structure: PRotorPro 204

MODEL_comp int + Compressibility model cdcomp (0 none, 1 drag divergence, 2 similarity) 1

+ similarity model
fSim real + factor f 1.0

thick_tip real + blade tip thickness-to-chord ratio τ 0.08

+ drag divergence model (Δm = Mat − Mdd, Δcd = dm1Δm + dm2ΔXm
m)

dm1 real + coefficient dm1 in drag increment 0.056

dm2 real + coefficient dm2 in drag increment 0.416

Xm real + exponent Xm in drag increment 2.0

+ drag divergence Mach number (Mdd = Mdd0 − Mddcl c�)
Mdd0 real + Mdd0 at zero lift 0.88

Mddcl real + derivative with lift κ = ∂Mdd/∂c� 0.16

205

Chapter 48

Structure: PRotorTab

Variable Type Description Default

+ Performance, Table Method
MODEL_indTab int + induced power model (0 standard, 1 table, 2 table with equations) 1

nvar_ind int + number independent variables (1 to 3) 0

var_ind(3) c*12 + variables ’ ’

nv_ind(3) int + number of variable values (maximum ntablemax) 0

v_ind(ntablemax,3) real + independent variable
MODEL_proTab int + profile power model (0 standard, 1 table, 2 table with equations) 1

KIND_proTab int + profile power model (0 standard, 1 table cdmean, 2 table cdmeanF = 8CPo/σ) 1

nvar_pro int + number independent variables (1 to 3) 0

var_pro(3) c*12 + variables ’ ’

nv_pro(3) int + number of variable values (maximum ntablemax) 0

v_pro(ntablemax,3) real + independent variable
+ table

Ki(ntablemax,ntablemax,ntablemax)

real + induced power factor κ
cdo(ntablemax,ntablemax,ntablemax)

real + profile power mean cd

Derived
ivar_ind(3) int induced power variables (tablevar_V, Vh, mu, muz, alpha, muTPP, muzTPP, alphaTPP, CTs, Mx, Mtip, Mat)
ivar_pro(3) int profile power variables (tablevar_V, Vh, mu, muz, alpha, muTPP, muzTPP, alphaTPP, CTs, Mx, Mtip, Mat)

independent variables: var_ind and var_pro

’V’: flight speed V/Vtip

’Vh’: horizontal speed Vh/Vtip

’mu’, ’muHP’: edgewise advance ratio μ (hub plane)
’muz’, ’muzHP’: axial velocity ratio μz (hub plane)
’alpha’, ’alphaHP’: shaft angle-of-attack α = tan−1(μz/μ) (hub plane)

Structure: PRotorTab 206

’muTPP’: edgewise advance ratio μ (tip-path plane)
’muzTPP’: axial velocity ratio μz (tip-path plane)
’alphaTPP’: shaft angle-of-attack α = tan−1(μz/μ) (tip-path plane)
’CTs’, ’CT/s’: blade loading CT /σ
’Mx’, ’offset’: lift offset Mx/TR
’Mtip’: tip Mach number Mtip

’Mat’: advancing tip Mach number Mat

nonzero values of Ki and/or cdo in FltState supersede table (or table with equations) values

207

Chapter 49

Structure: DRotor

Variable Type Description Default

+ Rotor Drag, Standard Model
+ forward flight drag

SET_Dhub int + hub drag specification (1 fixed, D/q; 2 scaled, CD; 3 scaled, squared-cubed; 4 scaled, square-root) 2

DoQ_hub real + area (D/q)hub

CD_hub real + coefficient CDhub (based on rotor area, D/q = SCD) 0.0024

kDrag_hub real + k = (D/q)/(W/1000)2/3 or (D/q)/W 1/2 (Units_Dscale) 0.8

SET_Dpylon int + pylon drag specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ_pylon real + area (D/q)pylon

CD_pylon real + coefficient CDpylon (based on pylon wetted area, D/q = SCD) 0.

SET_Dduct int + duct drag specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ_duct real + area (D/q)duct

CD_duct real + coefficient CDduct (based on duct wetted area, D/q = SCD) 0.

SET_Dspin int + spinner drag specification (1 fixed, D/q; 2 scaled, CD) 1

DoQ_spin real + area (D/q)spin 0.

CD_spin real + coefficient CDspin (based on spinner wetted area, D/q = SCD) 0.

+ vertical drag
SET_Vhub int + hub drag specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV_hub real + area (D/q)V hub

CDV_hub real + coefficient CDV hub (based on rotor area, D/q = SCD) 0.

SET_Vpylon int + pylon drag specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV_pylon real + area (D/q)V pylon

CDV_pylon real + coefficient CDV pylon (based on pylon wetted area, D/q = SCD) 0.

SET_Vduct int + duct drag specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV_duct real + area (D/q)V duct

CDV_duct real + coefficient CDV duct (based on duct wetted area, D/q = SCD) 0.

Structure: DRotor 208

+ stopped/stowed rotor
+ forward flight hub drag

DoQ_hubstop real + area (D/q)hub−stop 0.

CD_hubstop real + coefficient CDhub−stop (based on rotor area, D/q = SCD) 0.

DoQ_hubstow real + area (D/q)hub−stow 0.

CD_hubstow real + coefficient CDhub−stow (based on rotor area, D/q = SCD) 0.

+ vertical hub drag
DoQV_hubstop real + area (D/q)V hub−stop 0.

CDV_hubstop real + coefficient CDV hub−stop (based on rotor area, D/q = SCD) 0.

DoQV_hubstow real + area (D/q)V hub−stow 0.

CDV_hubstow real + coefficient CDV hub−stow (based on rotor area, D/q = SCD) 0.

+ stopped blade drag
CD_bladestop real + coefficient CDblade (based on blade area, D/q = SCD) 0.

+ transition from forward flight drag to vertical drag
MODEL_Dhub int + hub drag model (0 none, 1 general, 2 quadratic) 2

MODEL_Dpylon int + pylon drag model (0 none, 1 general, 2 quadratic) 2

MODEL_Dduct int + duct drag model (0 none, 1 general, 2 quadratic) 2

X_hub real + hub drag, transition exponent Xd 2.

X_pylon real + pylon drag, transition exponent Xd 2.

X_duct real + duct drag, transition exponent Xd 2.

Xh real hub drag, transition exponent Xd (derived)
Xp real pylon drag, transition exponent Xd (derived)
Xd real duct drag, transition exponent Xd (derived)

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

component drag contributions must be consistent; pylon is rotor support, and nacelle is engine support
tiltrotor with tilting engines use pylon drag (and no nacelle drag), since pylon connected to rotor shaft axes
tiltrotor with nontilting engines: use nacelle drag as well
rotor with a spinner (such as on a tiltrotor aircraft) likely not have hub drag

SET_Dhub, hub drag: use one of DoQ_hub, CD_hub, kDrag_hub

units of kDrag are ft2/klb2/3 or m2/Mg2/3; ft2/lb1/2 or m2/kg1/2

CD = 0.0040 for typical hubs, 0.0024 for current low drag hubs, 0.0015 for faired hubs
kDrag (2/3 power) = 1.4 for typical hubs, 0.8 for current low drag hubs, 0.5 for faired hubs (English units)

Structure: DRotor 209

kDrag (1/2 power) = 0.074 for single rotor helicopters, 0.049 for tandem helicopters,
0.038 for hingeless rotors, 0.027 for faired hubs (English units)

W = fW WMTO (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor)

stopped/stowed rotor: areas or coefficients (based on SET_Dhub and SET_Vhub) replace hub drag

210

Chapter 50

Structure: IRotor

Variable Type Description Default

+ Rotor Interference, Standard Model
+ model

MODEL_develop int + development along wake axis (1 step function, 2 nominal, 3 input Xdevelop) 3

Xdevelop real + rate parameter t 0.2

MODEL_boundary int + immersion in wake (1 step function, 2 always immersed, 3 input Xboundary) 3

MODEL_contract int + far wake contraction (0 no, 1 yes) 1

Xboundary real + boundary transition s (fraction contracted radius) 0.2

MODEL_int_twin int + twin rotor interference (1 no correction, 2 nominal, 3 input Ktwin) 1

Ktwin real + velocity factor in overlap region KT 1.4142

Nint_wing(nwingmax) int + number wing span stations 6

Nint_tail(ntailmax) int + number tail span stations 2

+ interference factors Kint (0. for no interference)
Kint_fus real + at fuselage 1.0

Kint_wing(nwingmax) real + at wing 1.0

Kint_tail(ntailmax) real + at tail 1.0

Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all
interference factor linearly transition from Kint at V ≤ Vint_low to 0 at V ≥ Vint_high

to account for wing or tail area in wake, interference averaged at Nint points along span

MODEL_develop: step function same as Xdevelop=0; nominal same as Xdevelop=1.

MODEL_boundary: step function same as Xboundary=0; always immersed same as Xboundary=∞
MODEL_twin: only for coaxial or tandem or side-by-side; nominal same as Ktwin=

√
2

Structure: IRotor 211

+ Induced power interference at wing
KIND_int_wing int + kind (1 wing-like, 2 propeller-like) 1

Cint_wing(nwingmax) real + factor Cint (0. for no interference) 0.

For tiltrotors, typically the interference is wing-like, with Cint
∼= −0.06

212

Chapter 51

Structure: WRotor

Variable Type Description Default

+ Rotor Group, NDARC Weight Model
MODEL_config int + model (1 rotor, 2 tail rotor, 3 auxiliary thrust) 1

MODEL_Wblade int + blade weight model (1 AFDD82, 2 AFDD00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic) 1

MODEL_Whub int + hub and hinge weight model (1 AFDD82, 2 AFDD00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic) 1

MODEL_Wshaft int + inter-rotor shaft weight (0 none, 1 from lift offset, 2 from shaft length) 0

+ AFDD00 weight models
MODEL_type int + hub weight equation depend on blade weight (for hub weight; 0 no, 1 yes) 1

KIND_rotor int + rotor kind (for blade weight; 1 tilting, 2 not) 2

+ AFDD00 and AFDD82: first flapwise natural frequency ν (per-rev at hover tip speed)
flapfreq_blade real + blade (0. to use flapfreq) 0.

flapfreq_hub real + hub (0. to use flapfreq_blade) 0.

+ lift offset rotor
MODEL_offset int + rotor tip clearance (for blade weight; 1 scaled, 2 fixed) 1

offset real + design lift offset L (roll moment/TR) 0.3

thick20 real + blade airfoil thickness-to-chord ratio τ.2R (at 20%R) 0.21

clearance_tip real + tip clearance, scaled s/R or fixed s (ft or m) 0.05

thick25 real + Boeing: blade airfoil thickness-to-chord ratio τ.25R (at 25%R) 0.15

rattach real + Boeing (blade, hub, tail rotor, aux thrust): blade attachment (fraction rotor radius) 0.09

+ generic blade
Kblade real + factor Kblade 0.

XbldN real + exponent XbldN 0.

XbldR real + exponent XbldR 0.

Xbldc real + exponent Xbldc 0.

XbldV real + exponent XbldV 0.

Xbldf real + exponent Xbldν 0.

XbldW real + exponent XbldW 0.

Structure: WRotor 213

+ generic hub
Khub real + factor Khub 0.

XhubN real + exponent XhubN 0.

XhubR real + exponent XhubR 0.

Xhubc real + exponent Xhubc 0.

XhubV real + exponent XhubV 0.

Xhubf real + exponent Xhubν 0.

XhubW real + exponent XhubW 0.

MODEL_tr int + tail rotor weight model (1 AFDD, 2 Boeing, 3 GARTEUR) 1

thick70 real + GARTEUR: blade airfoil thickness-to-chord ratio τ.7R (at 70%R) 0.11

MODEL_aux int + auxiliary thrust weight model (1 AFDD10, 2 AFDD82, 3 Boeing, 4 GARTEUR, 5 Torenbeek, 6 generic) 1

thrust_aux real + AFDD82: design maximum thrust Tat 0.

power_aux real + AFDD10: design maximum power Pat 0.

material_aux real + AFDD10: material factor fm 1.

+ generic propeller
Kat real + factor Kat 0.

XatN real + exponent XatN 0.

XatR real + exponent XatR 0.

Xatc real + exponent Xatc 0.

XatV real + exponent XatV 0.

XatP real + exponent XatP 0.

fWfold real + blade fold weight ffold (fraction total blade weight) 0.

fWsupt real + rotor support structure weight (fraction maximum takeoff weight) 0.

Usupt real + rotor support weight per length Usupt (lb/ft or kg/m) 0.

fshaft real + rotor shaft length (fraction rotor radius) fshaft 0.

Ushaft real + rotor shaft weight per length Ushaft (lb/ft or kg/m) 0.

Uduct real + duct weight per area Uduct (lb/ft2 or kg/m2) 1.5

MODEL_config: tail rotor and auxiliary thrust models use only rotor, support, and duct weights (not shaft, fold, or
separate blade and hub weights)
duct weight only used for ducted fan configuration

for teetering and gimballed rotors, the flap frequency flapfreq_blade should be the coning frequency

Structure: WRotor 214

The AFDD00 hub weight equation using the calculated blade weight (MODEL_type = 0) results in a lower average
error, and best represents legacy rotor systems.
Using the actual actual blade weight (MODEL_type = 1) is best for advanced technology rotors with blades lighter than
trend.

if thrust_aux�= 0, supersedes design maximum thrust of rotor from sizing task
if power_aux�= 0, supersedes design maximum power of rotor from sizing task
material_aux=1 for composite construction, 1.20 for wood, 1.31 for aluminum spar, 1.44 for aluminum construction
default Ωprop is the reference rotor speed

typically fWfold = 0.04 for manual fold, 0.28 for automatic fold

rotor support structure weight must be consistent with engine support and pylon support weights of engine section

+ Custom Weight Model
WtParam_rotor(8) real + parameters 0.

Weight Model Input
Blade

nblade_b int number of blades
radius_b real radius
chord_b real blade mean chord
taper_b real blade taper ratio
Vtip_b real hover tip speed
flapfreq_b real blade flap frequency
HoD_b real coaxial separation h/D (for lift offset)
SDGW_b real structural design gross weight (for lift offset)
nz_b real design ultimate flight load factor at SDGW (for lift offset and Boeing)
WMTO_b real maximum takeoff weight

Hub and hinge
nblade_h int number of blades
radius_h real radius
chord_h real blade mean chord
taper_h real blade taper ratio

Structure: WRotor 215

Vtip_h real hover tip speed
flapfreq_h real blade flap frequency
Wbld_h real blade weight
SDGW_h real structural design gross weight (for lift offset)
nz_h real design ultimate flight load factor at SDGW (for lift offset)
WMTO_h real maximum takeoff weight

Shaft
radius_s real radius
chord_s real blade mean chord
taper_s real blade taper ratio
HoD_s real coaxial separation h/D (for lift offset)
SDGW_s real structural design gross weight (for lift offset)
nz_s real design ultimate flight load factor at SDGW (for lift offset)

Fold
Wbld_f real blade weight

Spinner
Dspin_n real spinner diameter (for Wspin)

Support structure
WMTO_p real maximum takeoff weight
radius_p real radius

Rotor/fan duct
Sduct_d real duct area

Tail rotor
radius_t real radius
Qlimit_t real PSDlimit*R_mr/Vtip (for tail rotor)

Auxiliary thrust
nblade_a int number of blades
radius_a real radius
chord_a real blade mean chord
Vtip_a real hover tip speed
RPMprop_a real propeller speed (rpm)
Taux_a real aux thrust Tdesign
Paux_a real aux power Pdesign

216

Chapter 52

Structure: Wing

Variable Type Description Default

+ Wing
title c*100 + title
notes c*1000 + notes
kWing int wing number

+ Geometry
wingload real + wing loading W/S = fW WD/S
fDGW real + fraction DGW fW (for wing loading) 1.0

area real + area S
span real + span b
chord real + chord c
AspectRatio real + aspect ratio AR

wing parameters: for each wing; input two quantities, other two derived (SizeParam input)
SET_wing = input two of (’area’ or wing loading ’WL’), (’span’ or ’ratio’ or ’radius’ or ’width’ or ’hub’ or ’panel’),

’chord’, aspect ratio ’aspect’

SET_wing = ’ratio+XX’ to calculate span from span of another wing
SET_wing = ’radius+XX’ to calculate span from rotor radius
SET_wing = ’width+XX’ to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
SET_wing = ’hub+XX’ to calculate span from rotor hub position (tiltrotor)
SET_wing = ’panel+XX’ to calculate span from wing panel widths

if wing sized from wing loading (SET_wing=’WL+xx’), area = fDGW*DGW/wingload

rotor stopped as wing: identified by wing number Rotor%StopAsWing for stoppable rotor
use SET_wing=’area+span’, area = blade geometric area, span = 2R, nPanel=1, zero weight
wing aerodynamic loads calculated when FltAircraft%STOP_rotor = stopped as wing

Structure: Wing 217

+ Geometry
+ rotors

nRotorOnWing int + number of rotors mounted on wing 0

RotorOnWing(nrotormax) int + rotor numbers
+ span calculation

fSpan real + ratio wing span to span of other wing, or to rotor radius 1.0

otherWing int + other wing number 0

RotorForSpan int + rotor number for span (if nRotorOnWing=0) 0

RotorOnPanel(npanelmax) int + rotor at wing panel edge
thick real + thickness ratio τw .23

fWidth_box real + wing torque box chord wtb (fraction wing chord) 0.45

SET_ac int + aerodynamic center offset from pivot, at zero incidence (0 none, 1 fixed, 2 scale with chord) 0

dSLac real + stationline 0.

dBLac real + buttline 0.

dWLac real + waterline 0.

SET_cg int + center of gravity offset from pivot, at zero incidence (0 none, 1 fixed, 2 scale with chord) 0

dSLcg real + stationline 0.

dWLcg real + waterline 0.

RotorOnWing required for SET_wing = ’radius’ or ’width’ or ’hub’; MODEL_wing = tiltrotor; SET_Vdrag = airfoil cd90

RotorOnPanel required for SET_panel = ’radius’ or ’width’ or ’hub’

SET_wing = ’radius’ gets radius from RotorOnWing or RotorForSpan

taper, sweep, thickness used by weight equations
taper and sweep calculated for entire wing from wing panel geometry

fWidth_box used by tiltrotor weight equations
thick and fWidth_box used for fuel in wing

+ Geometry (for graphics)
twist real + twist 0.

Geometry (derived)
taper real taper ratio
sweep real sweep (+ aft, deg)
dihedral real dihedral (+ up, deg)

Structure: Wing 218

MAC real mean aerodynamic chord c̄A

xAC real mean aerodynamic center chordwise offset from root aero center x̄A (+ aft)
zAC real mean aerodynamic center vertical offset from root aero center z̄A (+ up)
StoppedRotor int stopped rotor number (0 not)

+ Geometry
loc_wing Location + aerodynamic center location
nPanel int + number of wing panels (maximum npanelmax) 1

KIND_ACoffset int + aero center offset (1 fixed, 2 fraction root chord, 3 fraction inboard chord) 1

+ Wing Panels
SET_panel(npanelmax) c*24 + panel parameters ’span+taper’

span_panel(npanelmax) real + span (one side), bp

area_panel(npanelmax) real + area (both sides), Sp

chord_panel(npanelmax) real + mean chord, cp

fspan_panel(npanelmax) real + ratio span to wing span (one side), bp/(b/2) 1.

farea_panel(npanelmax) real + ratio area to wing area (both sides), Sp/S 1.

fchord_panel(npanelmax) real + ratio mean chord to wing chord, cp/c 1.

+ panel edges
edge_panel(npanelmax) real + outboard edge, yE

fedge_panel(npanelmax) real + outboard edge, ηE = y/(b/2) 1.

lambdaI(npanelmax) real + inboard chord ratio, cI/cref 1.

lambdaO(npanelmax) real + outboard chord ratio, cO/cref 1.

+ aerodynamic center locus
sweep_panel(npanelmax) real + sweep Λp (deg, + aft) 0.

dihedral_panel(npanelmax) real + dihedral δp (deg, + up) 0.

dxAC_panel(npanelmax) real + chordwise offset at panel inboard edge xIp (+ aft) 0.

dzAC_panel(npanelmax) real + vertical offset at panel inboard edge zIp (+ up) 0.

+ control surfaces
fchord_flap(npanelmax) real + flap chord �F = cF /cp (fraction panel chord) 0.25

fchord_flaperon(npanelmax) real + flaperon/aileron chord �f = cf/cp (fraction panel chord) 0.25

fspan_flap(npanelmax) real + flap span fb = bF /bp (fraction panel span) 0.5

fspan_flaperon(npanelmax) real + flaperon/aileron span fb = bf/bp (fraction panel span) 0.5

fAC_aileron(npanelmax) real + aileron aerodynamic center lateral position y 0.7

Structure: Wing 219

SET_wing, wing parameters: for each wing; input two quantities, other two derived
SET_wing = input two of (’area’ or wing loading ’WL’), (’span’ or ’ratio’ or ’radius’ or ’width’ or ’hub’ or ’panel’)
SET_wing = ’chord’, aspect ratio ’aspect’

SET_wing = ’ratio+XX’ to calculate span from span of another wing
SET_wing = ’radius+XX’ to calculate span from rotor radius
SET_wing = ’width+XX’ to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
SET_wing = ’hub+XX’ to calculate span from rotor hub position (tiltrotor)
SET_wing = ’panel+XX’ to calculate span from wing panel widths

wing panels: SET_panel not required with only one panel
SET_panel: specify consistent definition of panels (span, edge, area, chord)

panel span: ’span’ or ’bratio’, else free
’span’ = input span_panel, bp

’bratio’ = input ratio to wing span, fspan_panel, bp/(b/2)
panel outboard edge: ’edge’, ’station’, ’width’, ’hub’, or ’adjust’ (not used for tip panel)

’edge’ = input edge_panel, yE

’station’ = input fraction wing semispan fedge_panel, ηE = y/(b/2)
’radius’ = from rotor radius
’width’ = from rotor radius, fuselage width, and clearance (tiltrotor)
’hub’ = from rotor hub position (tiltrotor)
’adjust’ = from adjacent input panel span or span ratio

panel area or chord: ’area’, ’Sratio’, ’chord’, ’cratio’, ’taper’, else free
’area’ = input area_panel, Sp

’Sratio’ = input ratio to wing area, farea_panel, Sp/S
’chord’ = input chord_panel, cp

’cratio’ = input ratio to wing chord, fchord_panel, cp/c
’taper’ = from chord ratios lambdaI and lambdaO

require consistent definition of panel spans and outboard edges, and consistent with SET_wing

all edges known (from input edge or station, or from adjacent panel span or span ratio)
resulting edges unique and sequential
if wing span calculated from panel widths:

one and only one input panel span or span ratio that not used to define edge
if known span: no input panel span or span ratio that not used to define edge

Structure: Wing 220

usually best that any free span defined for inboard panel, not outboard panel
panel area or chord:

if one or more taper (and no free), calculate cref from wing area
if one (and only one) free, calculate Sp from wing area

fAC_aileron: from panel inboard edge, fraction panel span
for nPanel=1, from centerline and fraction wing semispan

Example input for typical wing geometry
Tiltrotor, one panel:

Size: SET_wing=’WL+width’, ! span from radius, fuselage width, and clearance; and wing loading
Rotor: SET_geom=’tiltrotor’,KIND_TRgeom=1, ! rotor lateral position (BL) from clearance

WingForRotor=1,otherRotor=1/2,

clearance_fus=x.,

fclearance_fus=1.,

Fuselage: Width_fus=x.,

Wing: wingload=x.,

nRotorOnWing=2,RotorOnWing=1,2,

nPanel=1,

SET_panel=’span+taper’,lambdaI=1.,lambdaO=1., ! not required with only one panel

Tiltrotor with wing extension, two panels
Size: SET_wing=’WL+panel’, ! span from wing panel widths; and wing loading
Rotor: SET_geom=’tiltrotor’,KIND_TRgeom=1, ! rotor lateral position (BL) from clearance

WingForRotor=1,otherRotor=1/2,PanelForRotor=1,

clearance_fus=x.,

fclearance_fus=1.,

Fuselage: Width_fus=x.,

Wing: wingload=x.,

nRotorOnWing=2,RotorOnWing=1,2,

nPanel=2,

SET_panel=’width+taper’,’span+taper’, ! outboard edge from R, Width_fus, and clearance; from span_panel

RotorOnPanel=1, 0,

span_panel=0., x.,

lambdaI=1., 1.,

lambdaO=1., x.,

Structure: Wing 221

sweep_panel=x., x.,

dihedral_panel=x., x.,

SET_ext=1,kPanel_ext=2,KIT_ext=0, ! wing extension

General wing, two panels, define chord and span of both
Size: SET_wing=’panel+area’, ! span from wing panel widths; and wing area
Rotor: SET_geom=’standard’,

Wing: area=x.,

nPanel=2,

SET_panel=’span+chord’,’span+free’, ! span from span_panel; chord from inboard chord_panel and area
span_panel=x., x.,

chord_panel=x., x.,

Tiltwing, three panels, four rotors
inboard hub at 1.75R (R + .25R clearance + .50R fuselage)
outboard hub at 3.6R (1.85R between hubs, overlap = .075)
wing tip at 4.2R (0.6R from outboard hub)
Size: SET_wing=’WL+radius’, ! calculate span from rotor radius; and wing loading
Rotor: right/right-inboard/left-inboard/left

SET_geom=’tiltrotor’,KIND_TRgeom=3, ! rotor lateral position (BL) from wing panel edge
WingForRotor=1,

positionOfRotor=1/1/-1/-1, ! right/left
PanelForRotor=2/1/1/2,

Wing: wingload=x.,

nRotorOnWing=4,RotorOnWing=1,2,3,4,

fSpan=4.2, ! fSpan = b/D
nPanel=3,

SET_panel=’station+cratio’,’station+cratio’,’station+free’,

fedge_panel=0.4167, 0.8571, 1., ! inboard-rotor/semispan, outboard-rotor/semispan, 1
fchord_panel=1., 1., 1.,

Structure: Wing 222

Derived geometry
iSET_panel_span(npanelmax) int span (SET_panel_span, bratio, free)
iSET_panel_edge(npanelmax) int edge (SET_panel_edge, station, radius, width, hub, adjust)
iSET_panel_area(npanelmax) int area (SET_panel_area, Sratio, chord, cratio, taper, free)
kind_area int kind area and chord solution (1 tapered panels, 2 free panel)
chordI(npanelmax) real inboard chord cIp

chordO(npanelmax) real outboard chord cOp

eAC_aileron(npanelmax) real aileron aerodynamic center lateral position y (from centerline, fraction wing semispan)
rArea_flap(npanelmax) real flap area/panel area
rArea_flaperon(npanelmax) real flaperon-aileron area/panel area
Ktef_flap(4,npanelmax) real trailing edge flap factors (Lf , Xf , Mf , Df)
Ktef_flaperon(4,npanelmax) real trailing edge flap factors (Lf , Xf , Mf , Df)
rArea_Wflap real total flap area/wing area
rArea_Wflaperon real total flaperon-aileron area/wing area
isConsistent int consistent geometry (0 if calculated geometry not consistent)

+ Wing Extensions
SET_ext int + extension (0 for none) 0

kPanel_ext int + wing panel number 2

KIT_ext int + wing extension as kit (0 not kit) 0

areaX real extension area SX (both sides)
spanX real extension span bX (one side)
areaI real inboard area (S − SX)
spanI real inboard span (b − 2bX)
area_flapI real inboard flap area
area_flaperonI real inboard flaperon-aileron area
AspectRatioI real inboard wing aspect ratio
sweepI real inboard wing sweep
taperI real inboard wing taper

+ Wing Kit
KIT_wing int + wing as kit (0 not, 1 kit, 2 kit as fixed useful load) 0

fWkit real + kit weight (fraction total wing weight) 0.

Structure: Wing 223

+ Controls (each panel)
+ kind deflection

KIND_flap(npanelmax) int + flap (1 fraction root flap; 2 increment relative root flap; 3 independent) 3

KIND_aileron(npanelmax) int + aileron (1 fraction root aileron; 2 increment relative root aileron; 3 independent) 3

KIND_incid(npanelmax) int + incidence (1 fraction root incidence; 2 increment relative root incidence; 3 independent) 3

KIND_flaperon(npanelmax) int + kind flaperon deflection (1 fraction flap; 2 increment relative flap; 3 independent) 1

+ flap δFp

INPUT_flap(npanelmax) int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_flap(ncontmax,nstatemax,npanelmax)

real + control matrix
nVflap(npanelmax) int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

flap(nvelmax,npanelmax) real + values
Vflap(nvelmax,npanelmax) real + speeds (CAS or TAS, knots)

+ flaperon δfp

INPUT_flaperon(npanelmax) int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_flaperon(ncontmax,nstatemax,npanelmax)

real + control matrix
nVflaperon(npanelmax) int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

flaperon(nvelmax,npanelmax)

real + values
Vflaperon(nvelmax,npanelmax)

real + speeds (CAS or TAS, knots)
+ aileron δap

INPUT_aileron(npanelmax) int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_aileron(ncontmax,nstatemax,npanelmax)

real + control matrix
nVaileron(npanelmax) int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

aileron(nvelmax,npanelmax) real + values
Vaileron(nvelmax,npanelmax)

real + speeds (CAS or TAS, knots)

Structure: Wing 224

+ incidence ip
INPUT_incid(npanelmax) int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_incid(ncontmax,nstatemax,npanelmax)

real + control matrix
nVincid(npanelmax) int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

incid(nvelmax,npanelmax) real + values
Vincid(nvelmax,npanelmax) real + speeds (CAS or TAS, knots)

+ flow control momentum coefficient Cμ

INPUT_flow(npanelmax) int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_flow(ncontmax,nstatemax,npanelmax)

real + control matrix
nVflow(npanelmax) int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

flow(nvelmax,npanelmax) real + values
Vflow(nvelmax,npanelmax) real + speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Trim Target
+ wing lift

nVlift int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
Klift(nvelmax) real + target
Vlift(nvelmax) real + speeds (CAS or TAS, knots)

target definition determined by Aircraft%trim_quant

Klift can be fraction total aircraft lift, lift, or CL

Structure: Wing 225

+ Aerodynamics
MODEL_aero int + model (0 none, 1 standard) 1

Idrag real + incidence angle i for helicopter nominal drag (deg; 0 for not tilt) 0.

AWing AWing standard model
Derived drag

DoQC_wing real wing cruise drag, area (D/q)wing

DoQH_wing real wing helicopter drag, area (D/q)wing

DoQV_wing real wing vertical drag, area (D/q)wing

DoQ_wb real wing-body interference drag, area (D/q)wb

Swet real total wetted area Swet

prop_flow(3) int propulsion for flow control (group (1 engine, 2 jet), number, model)

+ Weight
Weight Weight weight statement (component)

+ wing group
MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWprim real + wing primary structure 0.

dWext real + wing extension 0.

dWfair real + fairing 0.

dWfit real + fittings 0.

dWflap real + flaps and control surfaces 0.

dWwfold real + wing fold 0.

dWefold real + wing extension fold 0.

WWing WWing NDARC model (except tiltrotor)
WWingTR WWingTR NDARC tiltrotor model

+ tiltrotor model
fWtip real + factor for weight on wing tips 1.

xWtip real + increment for weight on wing tips 0.

Wwing_total real wing weight
Wwing_ext real wing extension weight
Wwing_kit real wing kit weight
Wtip_total real weight on wing tips

Structure: Wing 226

+ Technology Factors
TECH_prim real + wing primary structure (torque box) weight χprim 1.0

TECH_ext real + wing extension weight χext 1.0

TECH_fair real + fairing weight χfair 1.0

TECH_fit real + fittings weight χfit 1.0

TECH_flap real + flaps and control surfaces weight χflap 1.0

TECH_wfold real + wing fold weight χfold 1.0

TECH_efold real + wing extension fold weight χefold 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

tiltrotor model requires weight on wing tips: both sides; calculated as sum of
rotor group, engine section or nacelle group, air induction group,
engine system, drive system (less drive shaft), rotary wing and conversion flight controls,
hydraulic group, trapped fluids, wing tip extensions

fWtip and xWtip adjust Wtip_total, without changing weight statements
negative increment required when engine and transmission not at tip location with rotor

227

Chapter 53

Structure: AWing

Variable Type Description Default

+ Wing Aerodynamics, Standard Model
AoA_zl real + zero lift angle of attack αzl (deg) 0.

CLmax real + maximum lift coefficient CLmax 1.5

SET_compress int + compressibility correction (0 none, 1 lift, 2 drag, 3 both) 0

+ lift
SET_lift int + specification (2 2D dCL/dα; 3 3D dCL/dα) 2

dCLda real + lift curve slope CLα = dCL/dα (per rad) 5.73

Tind real + lift curve slope non-elliptical loading correction τ 0.25

Eind real + Oswald or span efficiency e (CDi = (CL − CL0)2/(πeAR)) 0.8

CL_Dmin real + lift coefficient for minimum induced drag CL0 0.

dCLda3D real incompressible 3D lift curve slope CLα (derived)
fDind real 1/(πeAR)
AoA_max real αmax = CLmax/(dCL/dα3D) (deg)
Mdiv real + lift-divergence Mach number Mdiv 0.75

+ control (each wing panel)
eta0(npanelmax) real + lift effectiveness factor η0, η0 − η1|δ| 0.85

eta1(npanelmax) real + lift effectiveness factor η1, η0 − η1|δ| 0.43

Kconl(npanelmax) real + calibration or correction factor for lift K� 1.

Kconm(npanelmax) real + calibration or correction factor for moment Km 1.

Kcond(npanelmax) real + calibration or correction factor for drag Kd 1.

Kconx(npanelmax) real + calibration or correction factor for maximum lift Kx 1.

+ pitch moment
CMac real + pitch moment coefficient about aerodynamic center CMac 0.

+ Wing Drag, Standard Model
+ forward flight drag

SET_drag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ real + area (D/q)0

Structure: AWing 228

CD real + coefficient CD0 (based on wing area, D/q = SCD) 0.012

+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, CD; 3 airfoil cd90) 2

DoQV real + area (D/q)V

CDV real + coefficient, CDV (based on wing area, D/q = SCD) 2.

cd90 real + airfoil drag coefficient cd90 (–90 deg) 1.4

fd90 real + airfoil drag coefficient flap effectiveness factor fd90 2.5

CDcc real + compressibility drag increment CDcc at Mcc 0.0011

Mcc0 real + critical Mach number constant Mcc0 0.74

Mcc1 real + critical Mach number constant Mcc1 0.31

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

+ drag variation with angle of attack
MODEL_drag int + model (0 none, 1 general, 2 quadratic) ΔCD = CD0Kd|αe|Xd 2

AoA_Dmin real + angle of attack for wing minimum drag αDmin (deg) 0.

Kdrag real + drag increment Kd 0.

Xdrag real + drag increment Xd 2.

MODEL_sep int + separated flow model (0 none, 1 general, 2 quadratic, 3 cubic) ΔCD = CD0Ks(|αe| − αs)Xs 3

AoA_sep real + angle of attack for separation αs (deg) 10.

Ksep real + drag increment Ks 0.

Xsep real + drag increment Xs 2.

Xd real drag exponent Xd (derived)
Xs real drag exponent Xs (derived)

+ transition from forward flight drag to vertical drag
AoA_tran real + angle of attack for transition αt (deg) 25.

Conventionally the Oswald efficiency e represents the wing parasite drag variation with lift, as well as the induced drag.
If CDp varies with angle-of-attack, then e is just the span efficiency factor for the induced power (and CL0 should be
zero).

Structure: AWing 229

+ wing-body interference drag
SET_wb int + specification (1 fixed, D/q 2 scaled, CD) 1

DoQ_wb real + area (D/q)wb 0.

CD_wb real + coefficient CDwb (based on wing area, D/q = SCD) 0.

+ Interference
Etail(ntailmax) real + angle of attack change at tail, E = dε/dα (rad/rad) 0.

Kint_wing(nwingmax) real + interference factor Kint at other wings (0. for no interference) 0.

+ rotor induced power increment (0. for no interference)
Kinth_rotor(nrotormax) real + helicopter Kinth 0.

Kintp_rotor(nrotormax) real + propeller Kintp 0.

isRotorInt(nrotormax) int interference

for tandem wings, typically
Kint_wing(aftwing)=2. for front-on-aft interference
Kint_wing(frontwing)=0. for aft-on-front interference

for biplane wings, typically Kint_wing(otherwing)=0.7

with mutual interference (as for biplane), require trim or other iteration for convergence

+ Flow Control; ΔCL = CLα(Lμs

√
Cμ + Lμ1Cμ + Lμ2C

2
μ), ΔCLmax = XμCμ, ΔCM = MμCμ, ΔCD = DμCμ

MODEL_flow int + model (0 none) 0

Lmus(npanelmax) real + lift Lμs 1.4

Lmu1(npanelmax) real + lift Lμ1 0.0

Lmu2(npanelmax) real + lift Lμ2 0.0

Xmu(npanelmax) real + maximum lift Xμ 1.0

Mmu(npanelmax) real + moment Mμ 0.0

Dmu(npanelmax) real + drag Dμ 0.0

Cmu_limit(npanelmax) real + flow limit Cμlimit 1.0

230

Chapter 54

Structure: WWing

Variable Type Description Default

+ Wing Group, NDARC Weight Model
MODEL_wing int + model (1 area, 2 parametric, 3 tiltrotor, 4 other) 2

MODEL_other int + model (1 Boeing, 2 GARTEUR, Torenbeek (3 light, 4 transport), Raymer (5 transport, 6 general aviation))
fLift real + lift factor 1.0

bFold real + parametric method: fraction wing span that folds bfold (0 to 1) 0.

wfus real + Boeing: maximum fuselage width (fraction wing span)
Vdive real + Boeing or Raymer: design dive speed Vdive (knots) 200.

rflaplift real + GARTEUR: ratio maximum lift with and without flaps
+ area method

Uprim real + weight per area Uprim, wing primary structure (lb/ft2 or kg/m2) 5.

Uext real + weight per area Uext, wing extension (lb/ft2 or kg/m2) 3.

+ weight factors (fraction total wing weight)
fWfair real + fairing ffair 0.10

fWfit real + fittings ffit 0.12

fWflap real + flaps and control surfaces fflap 0.10

fWfold real + wing fold ffold 0.

fWefold real + wing extension fold fefold (fraction wing extension weight) 0.

+ Custom Weight Model
WtParam_wing(8) real + parameters 0.

Weight Model Input
Swing real wing area (without extension)
Sext real wing extension area
sweep real sweep angle
AR real aspect ratio
taper real taper ratio
thick real thickness-to-chord ratio

Structure: WWing 231

SDGW real structural design gross weight
nz real design ultimate flight load factor at SDGW
place_LG int landing gear placement (1 on body, 2 on wing)
SET_fold int folding

232

Chapter 55

Structure: WWingTR

Variable Type Description Default

+ Wing Group, NDARC Tiltrotor Weight Model
+ jump takeoff condition

CTs_jump real + rotor maximum blade loading CT /σ 0.20

n_jump real + load factor njump at SDGW 2.0

Vtip_jump real + rotor tip speed (0. to use hover Vtip) 750.0

thickTR real + wing airfoil thickness-to-chord ratio τw 0.23

+ width of wing structural attachments to body
SET_Attach int + definition (0 input wAttach, 1 fraction fuselage width, 2 fraction wing span) 1

fAttach real + fraction width wattach/wfus 1.

wAttach real + width wattach (ft or m) 0.

fRG_pylon real + pylon radius of gyration rpylon/R (fraction rotor radius) 0.30

+ wing mode frequencies (per rev, fraction rotor speed)
freq_beam real + beam bending frequency ωB 0.5

freq_chord real + chord bending frequency ωC 0.8

freq_tors real + torsion frequency ωT 0.9

SET_refrpm int + reference rotor speed (0 from input Vtip_freq, 1 hover Vtip, 2 cruise Vtip) 0

Vtip_freq real + rotor tip speed 600.

MODEL_form int + form factors (1 calculate, 2 input) 1

form_beam real + torque box beam bending FB 0.6048

form_chord real + torque box chord bending FC 0.4874

form_tors real + torque box torsion FT 1.6384

form_spar real + spar caps vertical/horizontal bending FV H 0.5018

eff_spar real + spar structural efficiency esp 0.8

eff_box real + torque box structural efficiency etb 0.8

+ tapered spar cap correction factors
C_t real + weight correction Ct (equivalent stiffness) 0.75

C_j real + weight correction Cj (equivalent strength) 0.50

C_m real + strength correction Cm (equivalent stiffness) 1.5

Structure: WWingTR 233

+ material (lb/in2, in/in, lb/in3; or N/m2, m/m, kg/m3)
E_spar real + spar modulus Esp 10.E6

E_box real + torque box modulus Etb 10.E6

G_box real + torque box shear modulus Gtb 4.0E6

StrainU_spar real + spar ultimate strain allowable εU 0.01

StrainU_box real + torque box ultimate strain allowable εU 0.01

density_spar real + density spar cap ρsp 0.06

density_box real + density torque box ρtb 0.06

+ weight per area (lb/ft2 or kg/m2)
Ufair real + fairing Ufair 2.

Uflap real + flaps and control surfaces Uflap 3.

UextTR real + wing extension Uext 3.

+ weight factor
fWfitTR real + fittings ffit (fraction maximum thrust of one rotor) 0.01

fWfoldTR real + wing fold ffold (fraction total wing weight excluding fold) 0.

fWefoldTR real + wing extension fold fefold (fraction wing extension weight) 0.

jump takeoff: hover Vtip obtained from RotorOnWing(1) rotor

wing frequencies: reference rotor rotation speed from rotor Vtip and radius
from RotorOnWing(1) rotor; hover tip speed Vtip_ref(1), cruise Vtip_cruise

thickTR only used for tiltrotor wing weight

SET_Attach: attachment width used for both torsion stiffness and fairing area

+ Custom Weight Model
WtParam_wingtr(8) real + parameters 0.

Weight Model Input
span real wing span (without extension)
chord real wing chord
fWtb real width wing torque box (fraction chord)

Structure: WWingTR 234

wfus real fuselage width
Sflap real area of control surfaces (flap and flaperon)
Sext real wing extension area
Wtip real weight on wing tips (both sides, except wing tip extension)
SDGW real structural design gross weight
radius real blade radius
Vtip_hover real hover tip speed
Vtip_cruise real cruise tip speed
Nrotor int number of rotors (for Tcap)
Ablade real blade area, one rotor (for Tcap)

235

Chapter 56

Structure: Tail

Variable Type Description Default

+ Empennage
title c*100 + title
notes c*1000 + notes
KIND_tail int + kind (1 horizontal tail, 2 vertical tail, 3 V-tail horizontal, 4 V-tail vertical) 1

isHortail int horizontal tail (0 vertical)
isVtail int V-tail (0 not)
kTail int tail number

+ Geometry
SET_tail c*16 + specification ’vol+aspect’

area real + area S
span real + span b
chord real + chord c
AspectRatio real + aspect ratio AR
TailVol real + tail volume V
KIND_TailVol int + tail volume reference (1 wing, 2 rotor) 2

TailVolRef int + wing or rotor number for tail volume 1

otherVtail int + other V-tail number

KIND_tail used for geometry, baseline orientation, tail volume, tail weight model
tail parameters: input two quantities, others calculated

SET_tail = input two of (’area’ or tail volume ’vol’), (’span’ or aspect ratio ’aspect’ or ’chord’)
tail volume reference: tail volume V = S�/RA (tailarea * taillength / (diskarea * radius))

or horizontal tail volume V = S�/Swcw (tailarea * taillength / (wingarea * wingchord))
or vertical tail volume V = S�/Swbw (tailarea * taillength / (wingarea * wingspan))

V-tail: modeled as pair of horizontal and vertical tails (identified by otherVtail)
separately sized, aerodynamic loads for each; dihedral calculated, cant set to zero
weight only for second tail, based on V-tail area and aspect ratio

Structure: Tail 236

+ Geometry (for graphics and weights)
taper real + taper ratio 1.0

sweep real + sweep (+ aft, deg) 0.

dihedral real + dihedral (deg) 0.

thick real + thickness ratio .12

Derived geometry
iSet_tail_area int area (SET_tail_area, vol)
iSet_tail_len int length (SET_tail_span, AR, chord)
Length_tail real tail length �
rArea_control real control surface area/tail area
Ktef_cont(4) real trailing edge flap factors (Lf , Xf , Mf , Df)
CBF(3,3) real tail axes relative airframe, CBF

areaVtail real V-tail area SV

spanVtail real V-tail span bV

AspectRatioVtail real V-tail aspect ratio

+ Geometry
loc_tail Location + aerodynamic center location
cant real + cant angle φ (deg) 0.

fchord_cont real + control surface chord cf/c (fraction tail chord) 0.25

fspan_cont real + control surface span bf/b (fraction tail span) 1.0

+ Controls
+ elevator δe or rudder δr

INPUT_cont int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_cont(ncontmax,nstatemax) real + control matrix
nVcont int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

cont(nvelmax) real + values
Vcont(nvelmax) real + speeds (CAS or TAS, knots)

+ incidence i
INPUT_incid int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_incid(ncontmax,nstatemax)

real + control matrix
nVincid int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

incid(nvelmax) real + values
Vincid(nvelmax) real + speeds (CAS or TAS, knots)

Structure: Tail 237

horizontal tail cant angle: + to left (vertical tail for cant = 90)
vertical tail cant angle: + to right (horizontal tail for cant = 90)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Aerodynamics
MODEL_aero int + model (0 none, 1 standard) 1

ATail ATail standard model
Derived drag

DoQ_tail real tail drag, area (D/q)tail
DoQV_tail real tail vertical drag, area (D/q)V tail

Swet real total wetted area

+ Weight
Weight Weight weight statement (component)

+ tail (empennage group)
MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWtail real + basic 0.

dWfold real + fold 0.

WTail WTail NDARC model
Wtail_total real tail weight

+ Technology Factors
TECH_tail real + tail weight χht or χvt 1.0

TECH_tfold real + fold weight χfold 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

238

Chapter 57

Structure: ATail

Variable Type Description Default

+ Tail Aerodynamics, Standard Model
AoA_zl real + zero lift angle of attack αzl (deg) 0.

CLmax real + maximum lift coefficient CLmax 1.

SET_compress int + compressibility correction (0 none, 1 lift, 2 drag, 3 both) 0

+ lift
SET_lift int + specification (2 2D dCL/dα; 3 3D dCL/dα) 2

dCLda real + lift curve slope CLα = dCL/dα (per rad) 5.73

Tind real + lift curve slope non-elliptical loading correction τ 0.25

Eind real + Oswald efficiency e (CDi = (CL − CL0)2/(πeAR)) 0.8

CL_Dmin real + lift coefficient for minimum induced drag CL0 0.

dCLda3D real incompressible 3D lift curve slope CLα (derived)
fDind real 1/(πeAR)
AoA_max real αmax = CLmax/(dCL/dα3D) (deg)
Mdiv real + lift-divergence Mach number Mdiv 0.75

+ control
eta0 real + lift effectiveness factor η0, η0 − η1|δ| 0.85

eta1 real + lift effectiveness factor η1, η0 − η1|δ| 0.43

Kconl real + calibration or correction factor for lift K� 1.

Kconm real + calibration or correction factor for moment Km 1.

Kcond real + calibration or correction factor for drag Kd 1.

Kconx real + calibration or correction factor for maximum lift Kx 1.

+ Tail Drag, Standard Model
+ forward flight drag

SET_drag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ real + area (D/q)0
CD real + coefficient CD0 (based on tail area, D/q = SCD) 0.011

Structure: ATail 239

+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV real + area (D/q)V

CDV real + coefficient CDV (based on tail area, D/q = SCD) 1.

CDcc real + compressibility drag increment CDcc at Mcc 0.0011

Mcc0 real + critical Mach number constant Mcc0 0.74

Mcc1 real + critical Mach number constant Mcc1 0.31

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

+ drag variation with angle of attack
MODEL_drag int + model (0 none, 1 general, 2 quadratic) ΔCD = CD0Kd|αe|Xd 2

AoA_Dmin real + angle of attack for tail minimum drag αDmin (deg) 0.

Kdrag real + drag increment Kd 0.

Xdrag real + drag increment Xd 2.

Xd real exponent Xd (derived)
+ transition from forward flight drag to vertical drag

AoA_tran real + angle of attack for transition αt (deg) 25.

240

Chapter 58

Structure: WTail

Variable Type Description Default

+ Tail, NDARC Weight Model
MODEL_tail int + model (1 horizontal tail, 2 vertical tail, 3 based on KIND_tail) 3

+ horizontal tail
MODEL_Htail int + model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other) 1

MODEL_Hother int + model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))
KIND_Htail int + Torenbeek or Raymer: kind (1 fixed, 2 variable incidence) 1

wfus real + Raymer: fuselage width at horizontal tail wf/bht (fraction span) 0.2

+ vertical tail
MODEL_Vtail int + model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other) 1

MODEL_Vother int + model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))
place_AntiQ int + AFDD: antitorque placement (0 none, 1 on tail boom, 2 on vertical tail) 1

KIND_Vtail int + Torenbeek or Raymer: kind (1 conventional, 2 T-tail) 1

fTtail real + Torenbeek: T-tail factor (Shthht)/(Svtbvt) 0.8

Vdive real + design dive speed Vdive (knots) 200.

+ area method
Utail real + weight per area Utail (lb/ft2 or kg/m2) 3.

fTfold real + fold weight factor ffold (fraction total tail weight excluding fold) 0.

weight models can use taper ratio, sweep, and thickness ratio
dive speed: Vmax = SLS max speed, Vdive = 1.25Vmax

+ Custom Weight Model
WtParam_tail(8) real + parameters 0.

Structure: WTail 241

Weight Model Input
Horizontal tail

area_ht real planform area
AR_ht real aspect ratio

Vertical tail
area_vt real planform area
AR_vt real aspect ratio

242

Chapter 59

Structure: FuelTank

Variable Type Description Default

+ Fuel Tank System
title c*100 + title
notes c*1000 + notes
kTank int tank number

+ Configuration
SET_burn int + fuel quantity stored and used (1 weight, 2 energy) 1

+ fuel weight properties
fuel_density real + fuel weight per volume ρfuel (lb/gallon or kg/liter) 6.5

specific_energy real + fuel energy per weight efuel (MJ/kg) 42.8

fFuelWing(nwingmax) real + fraction wing torque box filled by fuel tanks 1.0

+ fuel tank sizing
Wfuel_cap real + fuel capacity Wfuel−cap (weight, lb or kg)
Efuel_cap real + fuel capacity Efuel−cap (energy, MJ)
fFuel_cap real + ratio capacity to mission fuel ffuel−cap 1.0

dFuel_cap real + capacity increment dfuel−cap 0.

IDENT_battery c*16 + battery identification ’ ’

store and use weight: energy calculated from weight; capacity is usable fuel weight
use Wfuel_cap, Waux_cap, fuel_density, specific_energy, fFuelWing; fWtank, fWauxtank, other weight parameters
units of specific_energy = MJ/kg, regardless of Units_energy

store and use energy: fuel weight zero; capacity is usable fuel energy
use Efuel_cap, Eaux_cap, IDENT_battery; eWtank, eWauxtank, energy_density, other weight parameters
units of Efuel_cap, Eaux_cap = MJ, regardless of Units_energy

fuel tank sizing: usable fuel capacity Wfuel_cap (weight) or Efuel_cap (energy)
SET_tank=’input’: input Wfuel_cap or Efuel_cap

Structure: FuelTank 243

SET_tank=’miss’: calculate from mission fuel used
Wfuel_cap or Efuel_cap = max(fFuel_cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))

SET_tank=’miss+power’ = calculate from mission fuel used and mission battery discharge power
SET_tank=’f(miss)’ = function of mission fuel used

Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*((maximum mission fuel)+(reserve fuel))

battery identification: energy storage only, match ident of BatteryModel

+ Geometry
loc_tank Location + location
place int + placement (for graphics; 1 internal, 2 sponson, 3 wing, 4 combination) 1

SET_length_wire int + wiring length (1 input, 2 from component positions) 1

Length_wire real + length �wire

fLength_wire real + factor 1.0

+ Auxiliary Fuel Tank
Mauxtanksize int + number of auxiliary tank sizes (minimum 1, maximum nauxtankmax) 1

Waux_cap(nauxtankmax) real + fuel capacity Waux−cap (weight) 1000.

Eaux_cap(nauxtankmax) real + fuel capacity Eaux−cap (energy) 20000.

fWauxtank(nauxtankmax) real + tank weight fauxtank (fraction auxiliary fuel weight) 0.

eWauxtank(nauxtankmax) real + tank weight eauxtank (MJ/kg or kWh/kg, Units_energy) 0.

DoQ_auxtank(nauxtankmax) real + drag (D/q)auxtank (each tank)
loc_auxtank(nauxtankmax) Location + location

+ Equipment power
MODEL_Peq int + model (0 for none) 0

sfc real + specific fuel consumption 0.

Peq_0 real + power loss Peq0, constant 0.

Peq_d real + power loss Peqd, scale with density 0.

Peq_t real + power loss Peqt, scale with temperature 0.

KPeq_w real + power loss Peqw, weight factor 0.

XPeq_w real + power loss Peqw, weight exponent 0.

Peq_deice real + deice power loss Peqi 0.

Structure: FuelTank 244

specific fuel consumption: weight (lb/hp-hr or kg/kWh) or energy (hp/hp or kW/kW)

+ Thermal management system
SET_TMS int + design rejected power Prej−design (0 none, 1 input, 2 fraction Pcap) 0

Prej_design real + power (hp or kW) 0.

fPrej_design real + fraction 0.004

SET_FN int + net jet force (0 for no force) 1

+ Power distribution losses
eta_dist real + efficiency at Pcap 1.

+ Cooling drag
DoQ_cool real + area (D/q)cool 0.

The design rejected power Prej−design can be specified as a fraction of the battery power capacity Pcap,
which is the product of the maximum burst discharge current xmbd and the actual battery capacity.
The fraction fPref_design accounts for the fact that the design operating current is significantly less than xmbd.

Derived
Vfuel_cap real fuel capacity Vfuel−cap (volume)
Wfuel_wing real wing fuel capacity Wfuel−wing

rWfuel_wing real wing fuel capacity (fraction Wfuel_cap)
ncomp_in_tank int number of components in fuel tank system
kBatteryModel int battery identification (BatteryModel, from IDENT_battery)
specific_power real specific power πtank = xmbdetank/(3.6(dmax − dmin)) (kW/kg)
fEfuel_act real actual battery capacity factor 1/(dmax − dmin)

Structure: FuelTank 245

+ Weight
Weight Weight weight statement (component, not including auxiliary tanks)

+ fuel system (propulsion group)
MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWtank real + tanks and support; battery (including BMS and TMS) 0.

dWplumb real + plumbing; power distribution (wiring) 0.

WTank WTank NDARC model
Neng int number of main engines
fuelflow real total fuel flow F at DGW takeoff conditions (lb/hr or kg/hr)

battery (W_fuel_tank=TECH_tank*(Wbatt+WBMS+WTMS)+dWtank, W_fuel_plumb=TECH_plumb*Wwire+dWplumb)
Wbatt real battery weight (Efuel_cap/eWtank)
WBMS real battery management system weight (fBMS*Wbatt)
WTMS real thermal management system weight
Wwire real power distribution (wiring) weight (Wwire=Uwire*xwire+fwire*Wbatt)
Wbattsys real battery system weight (W_fuel_tank + W_fuel_plumb)

+ Technology Factors
TECH_tank real + fuel tank weight χtank 1.0

TECH_plumb real + plumbing weight χplumb 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

246

Chapter 60

Structure: WTank

Variable Type Description Default

+ Fuel System, NDARC Weight Model
+ weight storage
+ fuel tank

MODEL_tank int + model (1 fraction, 2 parametric, Torenbeek (3 integral, 4 generic), Raymer (5 transport, 6 general aviation)) 2

ntank_int int + number of internal tanks Nint 4

fWtank real + tank weight ftank (fraction fuel capacity weight) 0.09

Ktoler real + parametric: ballistic tolerance factor fbt (1.0 to 2.5) 2.5

KIND_crash int + parametric: survivability (1 baseline, 2 UTTAS/AAH level of survivability) 2

Ktank real + Torenbeek (generic): factor Ktank 3.2

Xtank real + Torenbeek (generic): exponent Xtank 0.727

fint real + Raymer: integral tank capacity (fraction total) 1.0

fprot real + Raymer: protected tank capacity (fraction total) 1.0

+ plumbing
MODEL_plumb int + model (1 fraction, 2 parametric) 2

nplumb int + total number of fuel tanks (internal and auxiliary) for plumbing Nplumb 4

K0_plumb real + weight increment K0plumb (lb) 150.

K1_plumb real + weight factor K1plumb (lb) 2.0

fWplumb real + plumbing weight fplumb (fraction total fuel system weight) 0.4

MODEL_tank: fraction method uses fWtank; parametric method uses ntank_int, Ktoler, KIND_crash

K1_plumb is a crashworthiness and survivability factor; typically K1_plumb = 2.
K0_plumb is the sum of weights for auxiliary fuel, in-flight refueling, pressure refueling, inerting system, etc.; typically
K0_plumb = 50 to 250 lb

Structure: WTank 247

+ energy storage
eWtank real + tank weight etank (MJ/kg or kWh/kg, Units_energy)
energy_density real + tank volume density ρtank (MJ/liter or kWh/liter, Units_energy)
fBMS real + battery management system (fraction basic tank weight) 0.2

+ power distribution (wiring) weight
Uwire real + weight per length 0.62

fwire real + fraction basic tank weight 0.2

specific energy etank and energy density ρtank based on usable fuel capacity (consistent with dmax − dmin)

+ Custom Weight Model
WtParam_tank(8) real + parameters 0.

Weight Model Input
Tanks and support

Wint_t real internal fuel tank capacity (weight)
Cint_t real internal fuel tank capacity (volume)

Plumbing
Neng_p int number of main engines
fuelflow_p real fuel flow rate
Xtank_p real tank weight

Energy tank
Eint_e real internal fuel tank capacity (energy)
xwire_e real wiring length
Pcap_e real battery power capacity

248

Chapter 61

Structure: Propulsion

Variable Type Description Default

+ Propulsion Group
title c*100 + title
notes c*1000 + notes

propulsion group is set of components and engine groups, connected by drive system
components (rotors) define power required, engine groups define power available
drive system defines ratio of rotational speeds of components (relative primary rotor speed)

kPropulsion int propulsion group number

Specification
kRotor_prim int primary rotor
rotor_in_group(nrotormax) int rotors in group (0 no, 1 main rotor, 2 other)
nRotor int number of rotors in group
nRotor_main int number of main rotors
kEngine_prim int primary engine group
engine_in_group(nengmax) int engine groups in propulsion group (0 no, 1 only produce power, 2 can consume power)
nEngineGroup int number of engine groups
firstEngineGroup int first engine group
canConsumePower int engine group generator or compressor, can consume shaft power (0 only produce power)

+ Drive system
nGear int + number of states (maximum ngearmax) 1

STATE_gear_var int + drive system state for variable speed transmisson (0 for none) 0

Structure: Propulsion 249

drive system branches: one primary rotor per propulsion group (specify Vtip), others dependent (specify gear ratio)
specify primary engine group only if no rotors in propulsion group

drive system state: identifies gear ratio set for multiple speed transmissions
state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n

variable speed transmission: for drive system state STATE_gear_var, gear ratio factor fgear (control) included
when evaluate rotational speed of dependent rotors and engines

+ Transmission losses
MODEL_Xloss int + model (1 fraction component power required; 2 with function drive shaft limit) 2

fPloss_xmsn real + gear box loss �xmsn (fraction total component power required) 0.04

Ploss_windage real + power loss due to windage Pwindage 0.

+ Accessory losses
Pacc_0 real + power loss Pacc0, constant 0.

Pacc_d real + power loss Paccd, scale with density 0.

Pacc_n real + power loss Paccn, scale with density and rpm 0.

Pacc_deice real + deice power loss Pacci 0.

fPacc_ECU real + ECU (etc.) power loss �acc (fraction component+transmission power) 0.

fPacc_IRfan real + IRS fan loss �IRfan (fraction total engine power) 0.

+ Geometry
SET_length int + drive shaft length (1 input, 2 from hub positions, 3 scale with radius) 2

Length_ds real + length �DS

fLength_ds real + factor 0.9

SET_length: input (use Length_ds) or calculated (from fLength_ds)

+ Drive system torque limit
Plimit_ds real + drive system power limit PDSlimit

fPlimit_ds real + drive system power limit factor 1.0

SET_Plimit_size int + drive system limit when sizing transmission (0 not applied to power available) 0

Structure: Propulsion 250

+ Drive system ratings
nrate_ds int + number of ratings (maximum nratemax) 1

rating_ds(nratemax) c*12 + drive system rating designation ’ ’

frating_ds(nratemax) real + torque limit factor 1.0

+ schedule
Vdrive_hover real + maximum speed for hover and helicopter mode (CAS or TAS, knots)
Vdrive_cruise real + minimum speed for cruise (CAS or TAS, knots)
rating_ds_hover c*12 + rating for hover and helicopter mode (V ≤ Vdrive−hover) ’ ’

rating_ds_conv c*12 + rating for conversion mode (Vdrive−hover < V < Vdrive−cruise) ’ ’

rating_ds_cruise c*12 + rating for cruise mode (V ≥ Vdrive−cruise) ’ ’

Derived drive system limit
Qlimit_ds real drive system torque limit (PDSlimit at primary rotor reference speed)
arating_ds(nratemax) c*12 drive system rating designation
xrating_ds(nratemax) real torque limit factor
krate_ds_hover int rating number for hover and helicopter mode
krate_ds_conv int rating number for conversion mode
krate_ds_cruise int rating number for cruise mode

drive system torque limits: SET_limit_ds = input (use Plimit_xx) or calculate (from fPlimit_xx)
SET_limit_ds=’input’: Plimit_ds input
SET_limit_ds=’ratio’: from takeoff power, fPlimit_ds

∑
(NengPeng)

SET_limit_ds=’Pav’: from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Ωref/Ωprim)

∑
(NengPav)

SET_limit_ds=’Preq’: from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Ωref/Ωprim)

∑
(NengPreq)

engine shaft: options for SET_limit_ds�=’input’

SET_limit_es=0: Plimit_es

SET_limit_es=1: fPlimit_es × (engine group Peng or Pav or Preq , depending on SET_limit_ds)
SET_limit_es=2: fPlimit_es ×PDSlimit(PengEG/PengPG)

drive system power limit: corresponds to power of all engines of propulsion group (all engine groups)
can be used for trim (trim_quant=’Q margin’)
used for drive system weight, tail rotor weight, transmission losses
limits propulsion group Pav (if FltState%SET_Plimit=on)

Structure: Propulsion 251

engine shaft power limit: corresponds to all engines of engine group (nEngine × Peng)
limits engine group Pav (if FltState%SET_Plimit=on)

rotor shaft power limit: corresponds to one rotor
all limits

can be used for max effort in flight state (max_quant=’Q margin’)
can be used for max gross weight in flight condition or mission (SET_GW=’maxQ’ or ’maxPQ’)
always check and print whether exceed torque limit

the engine model gives the power available, accounting for installation losses and mechanical limits
then the power available is reduced by the factor FltState%fPower

next torque limits are applied (unless FltState%SET_Plimit=off), first engine shaft limit and then drive system limit

SET_Plimit_size=0: drive system limits are not applied for transmission sizing conditions and mission segments
(DESIGN_xmsn); otherwise use FltState%SET_Plimit

drive system ratings: blank to use engine ratings of first engine group
limit at flight state is rxfQPlimit, where r is the rotor speed ratio and x is the rating factor frating_ds

if nrate_ds≤ 1, drive system rating not used
schedule used if FltAircraft%rating_ds=’speed’

+ Control
+ rotational speed increment ΔN , primary rotor or primary engine (rpm)

INPUT_DN int + connection to aircraft controls (0 none, 1 input T matrix) 0

T_DN(ncontmax,nstatemax) real + control matrix
nVDN int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

DN(nvelmax) real + values
VDN(nvelmax) real + speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

Structure: Propulsion 252

+ Weight
Weight Weight weight statement (component, not including EngineGroup)

+ drive system (propulsion group)
MODEL_DS int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWgb real + gear box 0.

dWrs real + rotor shaft 0.

dWds real + drive shaft 0.

dWrb real + rotor brake 0.

dWcl real + clutch 0.

dWgd real + gas drive 0.

WDrive WDrive NDARC model
STATE_gear_wt int + drive system state for weight 1

kEngineGroup_wt(2) int + EngineGroup for weight (input, output) 1

Wtip real weight on wing tip
Wgbrs real weight gear box and rotor shaft

+ Technology Factors
TECH_gb real + gear box weight χgb 1.0

TECH_rs real + rotor shaft weight χrs 1.0

TECH_ds real + drive shaft weight χds 1.0

TECH_rb real + rotor brake weight χrb 1.0

TECH_cl real + clutch weight χcl 1.0

TECH_gd real + gas drive weight χgd 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

kEngineGroup_wt: always identify engine group for drive system input
if propulsion group has rotors, primary rotor speed used for drive system output
if propulsion group does not have rotors, must identify engine group for drive system output

drive system weight = gear box (including rotor shaft) + drive shaft + rotor brake + clutch + gas drive
tiltrotor wing weight model requires weight on wing tip (drive system, without rotor shaft)

253

Chapter 62

Structure: WDrive

Variable Type Description Default

+ Drive System, NDARC Weight Model
+ gear box (including rotor shafts)

MODEL_gbrs int + model (1 AFDD83, 2 AFDD00, 3 other) 1

MODEL_other int + model (1 Boeing, 2 Boeing (alternate), GARTEUR (3 helicopter, 4 tiltrotor), 5 Tishchenko, 6 generic)
fShaft real + rotor shaft weight frs (fraction gear box and rotor shaft weight) 0.13

ngearbox int + AFDD83: number of gear boxes Ngb 7

fTorque real + AFDD83: second (main or tail) rotor rated torque fQ (fraction total drive system rated torque) 0.03

nstage int + Boeing: number of stages in main-rotor drive 4

+ generic gearbox
Kgbrs real + factor Kgbrs 0.

XgbP real + exponent XgbP 0.

Xgbe real + exponent Xgbe 0.

Xgbr real + exponent Xgbr 0.

KIND_other int + other: separate tail rotor drive weight increment (0 none) 0

Ktrgb real + tail rotor drive weight increment factor Ktrgb 1.0

fPower_tr real + tail rotor power (fraction total drive system rated power) 0.15

gear_tr real + tail rotor gear ratio 5.0

+ drive shaft and rotor brake
MODEL_dsrb int + model (0 none, 1 AFDD82) 1

ndriveshaft int + AFDD82: number of intermediate drive shafts Nds (excluding rotor shafts) 6

fPower real + AFDD82: second (main or tail) rotor rated power fP (fraction total drive system rated power) 0.15

fPower = fTorque*(otherrotor RPM)/(mainrotor RPM)
typically fTorque=fPower=0.6 for twin main rotors (tandem, coaxial, tiltrotor)
for single main rotor and tail rotor, fTorque = 0.03, fPower = 0.15 (0.18 for 2-bladed teeter)

typically fShaft = 0.13 (data range 0.06 to 0.20)

Structure: WDrive 254

+ Custom Weight Model
WtParam_drive(8) real + parameters 0.

Weight Model Input
Gear box and rotor shaft

PDSlimit_gb real drive system rated power
RPMrotor_gb real rotor speed (rpm)
RPMeng_gb real engine speed (rpm)
Nrotor_gb int number of main rotors

Drive shaft
PDSlimit_ds real drive system rated power
RPMrotor_ds real rotor speed (rpm)
xhub_ds real length of drive shaft between rotors

Rotor brake
Wblade_rb real blade weight (all blades, all rotors)
Vtip_rb real main rotor tip speed

255

Chapter 63

Structure: EngineGroup

Variable Type Description Default

+ Engine Group
title c*100 + title
notes c*1000 + notes
kEngineGroup int engine group number

+ Description
MODEL_engine c*32 + engine model ’RPTEM’

IDENT_engine c*16 + engine identification ’Engine’

IDENT_system2 c*16 + second system identification ’ ’

nEngine int + number of engines Neng 1

nEngine_main int + number of main engines 1

Peng real + engine power Peng (SLS static at takeoff rating, 0. for P0_ref(rating_to)) 0.

rating_to c*12 + takeoff power rating ’MCP’

rating_idle c*12 + idle power rating ’MCP’

kFuelTank int + fuel tank system number 1

kRotor_react int + rotor number for reaction drive
fuselage_flow int + fuselage flow control (0 not) 1

wing_flow(nwingmax) int + wing flow control (0 not) 1

+ Propulsion Group
kPropulsion int + group number 1

KIND_xmsn int + drive system branch (1 primary, 0 dependent) 0

INPUT_gear int + gear ratio input (1 from Nspec, 2 gear) 1

gear(ngearmax) real + engine gear ratio r = Ωspec/Ωprim (ratio rpm to rpm of primary rotor in propulsion group) 1.0

Derived
iMODEL_engine int engine model (MODEL_engine_xxx)
KIND_engine int engine model (MODEL_engine_RPTEM, table, recip, comp, motor, simpleeng, simplemot)
canConsumePower int can consume shaft power (0 only produce power), generator or compressor
canProducePower int can produce shaft power (0 only consume power)

Structure: EngineGroup 256

isConvertReact int convertible engine, reaction drive (0 not)
isConvertJet int convertible engine, turbojet/fan (0 not)
kModel_eng int identification (EngineModel or EngineTable or RecipModel or CompressorModel or MotorModel, from IDENT_engine)
kModel_sys2 int identification (EngineModel, from IDENT_system2)
kBattery int battery model, from kFuelTank (0 for none)
nrate int number of ratings
rating(nratemax) c*12 rating designations (lowercase)
krateC int MCP rating number
krate_to int takeoff power rating number
WOneEng real weight one engine Wone eng

Nref real reference engine speed (at drive state #1)
comp_flow int flow control, any component (0 none)

MODEL_engine: engine model
’RPTEM’, ’shaft’ = turboshaft engine (RPTEM); IDENT_engine → EngineModel; fuel is weight
’table’ = turboshaft engine (table); IDENT_engine → EngineTable; fuel is weight
’recip’ = reciprocating engine; IDENT_engine → RecipModel; fuel is weight
’comp’ = compressor; IDENT_engine → CompressorModel; not use fuel
’comp+react’ = compressor for reaction drive; IDENT_engine → CompressorModel; not use fuel
’comp+flow’ = compressor for flow control; IDENT_engine → CompressorModel; not use fuel
’motor’ = electric motor; IDENT_engine → MotorModel; fuel is energy
’gen’ = electric generator; IDENT_engine → MotorModel; fuel is energy (generated, not burned)
’motor+gen’ = motor + generator (mode B ≥ 0 for motor); IDENT_engine → MotorModel; fuel is energy
’simple’ = simple engine; no model identified; fuel is weight or energy

MODEL_engine: convertible engine; only with turboshaft
’+react’ = reaction drive (mode B = 1); IDENT_system2 → EngineModel

’+jet’, ’+fan’ = turbojet/turbofan (mode B = 1); IDENT_system2 → EngineModel

engine identification: match ident of EngineModel or EngineTable or RecipModel or CompressorModel or MotorModel

second system identification: match ident of EngineModel; not use weight
number of main engines: for fuel tank weight

for fixed engine: use Peng = 0. and no size task (or engine power not sized)
takeoff power rating: for engine scaling, aircraft power loading, fuel tank weight
FltState%rating can be set to ’idle’ (rating_idle) or ’takeoff’ (rating_to)

Structure: EngineGroup 257

fuel tank system identified for burn must store and use weight (turboshaft, reciprocating)
or energy (motor, may have BatteryModel)

fuel tank system identified for generation must store and use energy (may have BatteryModel)

drive system branch: primary engine group only designated if no rotors for propulsion group
INPUT_gear: calculate gear from Nspec and Vtip_ref of primary rotor of propulsion group, or specify gear ratio
variable speed transmission: for drive system state STATE_gear_var, gear ratio factor fgear (control) included

when evaluate rotational speed of engine

+ Sizing
SET_power int + specification (0 sized, 1 fixed) 0

fPsize real + sized power ratio fn 1.0

SET_Pother int + sized power from other engine group (0 not) 0

fEsize(nengmax) real + fraction other engine group power fE 0.

SET_power: if SIZE_perf=’engine’, used to distribute propulsion group power required among engine groups
Peng = fnPsized/Neng for n-th engine group, Psized = PPG − ∑

fixed NengPeng

must size at least first engine group, so SET_power and fPsize values not used for first group
fPsize calculated for first engine group, must be > 0.

not used (SET_power=1) if group consumes power (compressor or generator, which sized if SIZE_engine=’engine’)
FltState%SET_Preq specifies distribution of power required for flight state

SET_Pother: size power from engine group of other propulsion groups, max(Peng, fEPeng−other)

Engine model performance parameters (one engine)
P0(nratemax) real power (P0)
SP0(nratemax) real specific power (SP0)
Pmech(nratemax) real mechanical limit of power (Pmech or Ppeak)
sfc0C real specific fuel consumption at MCP (sfc0C)
Fg0C real gross jet thrust at MCP (Fg0C = SF0Cṁ0C)
Nspec real specification engine speed (Nspec)
Nbase(nratemax) real base rotational speed ((P0R/PpeakR)Nspec)

Structure: EngineGroup 258

Nmax real maximum motor speed (Nmax)
Nopt0C real optimum engine speed at MCP (Nopt0C)
mdot0C real mass flow at MCP (ṁ0C = P0C/SP0C)
wdot0C real fuel flow at MCP (ẇ0C = sfc0CP0C)
sfc0(nratemax) real specific fuel consumption (sfc0)

Engine model performance parameters (one engine), ratio converted to base
rsfc0C_conv real specific fuel consumption at MCP
rFg0C_conv real gross jet thrust at MCP, jet/fan only
rwdot0C_conv real fuel flow at MCP

reciprocating: only P0, Pmech, Nspec used, and sfc0

motor or generator: only P0, Pmech, Nspec, Nmax, Nbase used

+ Drive system torque limit
SET_limit_es int + engine shaft (0 input, 1 fraction power, 2 fraction drive system limit) 1

Plimit_es real + engine shaft power limit PESlimit

fPlimit_es real + engine shaft power limit factor 1.0

Derived engine shaft limit
Qlimit_es real engine shaft torque limit (PESlimit at engine reference speed)

drive system torque limits: SET_limit_ds = input (use Plimit_es) or calculated (from fPlimit_es)
SET_limit_ds=’input’: Plimit_ds input
SET_limit_ds=’ratio’: from takeoff power, fPlimit_ds

∑
(NengPeng)

SET_limit_ds=’Pav’: from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Ωref/Ωprim)

∑
(NengPav)

SET_limit_ds=’Preq’: from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Ωref/Ωprim)

∑
(NengPreq)

engine shaft: options for SET_limit_ds�=’input’

SET_limit_es=0: Plimit_es

SET_limit_es=1: fPlimit_es × (engine group Peng or Pav or Preq , depending on SET_limit_ds)
SET_limit_es=2: fPlimit_es ×PDSlimit(PengEG/PengPG)

Structure: EngineGroup 259

engine shaft power limit: corresponds to all engines of engine group (nEngine × Peng)
limits engine group Pav (if FltState%SET_Plimit=on)
can be used for max effort in flight state (max_quant=’Q margin’)
can be used for max gross weight in flight condition or mission (SET_GW=’maxQ’ or ’maxPQ’)
always check and print whether exceed torque limit

+ Installation
Kffd real + deterioration factor on engine fuel flow or performance Kffd 1.05

eta_d real + engine inlet efficiency ηd (fraction, for δM) 0.98

+ power losses (fraction power available, Ploss/Pa)
fPloss_inlet real + engine inlet loss �in 0.

fPloss_ps real + inlet particle separator loss �in 0.

fPloss_exh real + engine exhaust loss �ex (IRS off) 0.015

+ auxiliary air momentum drag (IRS off)
fMF_auxair real + mass flow faux (fraction engine mass flow) 0.007

eta_auxair real + ram recovery efficiency ηaux 0.75

+ IR suppressor
+ power losses (IRS on)

fPloss_exh_IRon real + engine exhaust loss �ex 0.030

+ auxiliary air momentum drag (IRS on)
fMF_auxair_IRon real + mass flow faux (fraction engine mass flow) 0.01

eta_auxair_IRon real + ram recovery efficiency ηaux 0.75

+ Convertible
Kffd_conv real + deterioration factor on engine fuel flow or performance Kffd 1.05

+ power losses (fraction power available, Ploss/Pa)
fPloss_exh_conv real + engine exhaust loss �ex 0.015

+ Thermal management system
SET_TMS int + design rejected power Prej−design for one engine (0 none, 1 input, 2 fraction Peng) 0

Prej_design real + power (hp or kW) 0.

fPrej_design real + fraction 0.02

+ Model
SET_FN int + net jet force (0 for no force) 1

SET_Daux int + auxiliary air momentum drag (0 for no drag) 1

Structure: EngineGroup 260

installation power losses = inlet + particle separator + exhaust (including IRS)
IR suppressor state specified by STATE_IRS in operating condition
motor or generator: only use Kffd, thermal management system

+ Simple engine
Pmax real + design maximum power at takeoff rating Pmax 0.

rMRP real + power ratio (MRP/MCP) 1.2

SET_burn int + fuel quantity used (1 weight, 2 energy) 1

sfc real + specific fuel consumption (weight) 0.4

eta real + efficiency (energy) 0.95

SW real + specific weight S 0.5

fuel tank system identified must be consistent with SET_burn

simple engine has two ratings: MCP and MRP

+ Geometry
loc_engine Location + location
direction c*16 + nominal orientation (’+x’, ’–x’, ’+y’, ’–y’, ’+z’, ’–z’) ’x’

SET_geom int + position (0 standard, 1 tiltrotor, 2 rotor) 0

RotorForEngine int + rotor number 1

SET_Swet int + nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, WES ; 3 scaled, WES and Wgbrs; 4 scaled, lengths) 2

Swet real + area Swet (per engine) 0.

kSwet real + factor, k = Swet/(w/Neng)2/3 (Units_Dscale) or k = Swet/(�Xfus
fus c

Xwing
wing RXrotor) 0.8

XSwet_fus real + exponent, Xfus 0.

XSwet_wing real + exponent, Xwing 0.

XSwet_rotor real + exponent, Xrotor 2.

refWing int + wing number (for wing chord) 1

refRotor int + rotor number (for rotor radius) 1

Snac real nacelle/cowling area Snac

Swet_nac real total wetted area

Structure: EngineGroup 261

SET_geom: calculation override part of location input
SET_geom=tiltrotor: calculate lateral position (BL) from RotorForEngine

SET_geom=rotor: (SL,BL,WL or XoL,YoL,ZoL) is relative loc_rotor(RotorForEngine)

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)
units of kSwet are ft2/lb2/3 or m2/kg2/3

w = WES (engine system) or WES + Wgbrs/NEG (engine system and drive system)
nacelle wetted area used for nacelle drag, and for cowling weight
engine group nacelle must be consistent with rotor pylon

Derived geometry
iDirection int nominal orientation (1, –1, 2, –2, 3, –3)
axis_incid int axis incidence (±123)
axis_yaw int axis yaw (±123)
isFixed int orientation (1 fixed)
CBF(3,3) real engine axes relative airframe, CBF (fixed)
ef0(3) real engine direction, ef0

ef(3) real engine direction, ef (fixed)

+ Controls
+ amplitude A (fixed engine group power)

INPUT_amp int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_amp(ncontmax,nstatemax) real + control matrix
nVamp int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

amp(nvelmax) real + values
Vamp(nvelmax) real + speeds (CAS or TAS, knots)

+ mode B
INPUT_mode int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_mode(ncontmax,nstatemax) real + control matrix
nVmode int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

mode(nvelmax) real + values
Vmode(nvelmax) real + speeds (CAS or TAS, knots)

Structure: EngineGroup 262

+ incidence i (tilt)
INPUT_incid int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_incid(ncontmax,nstatemax)

real + control matrix
nVincid int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

incid(nvelmax) real + values
Vincid(nvelmax) real + speeds (CAS or TAS, knots)

+ yaw ψ
INPUT_yaw int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_yaw(ncontmax,nstatemax) real + control matrix
nVyaw int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

yaw(nvelmax) real + values
Vyaw(nvelmax) real + speeds (CAS or TAS, knots)

+ gear ratio factor fgear (variable speed transmission only)
INPUT_fgear int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_fgear(ncontmax,nstatemax)

real + control matrix
nVfgear int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

fgear(nvelmax) real + values
Vfgear(nvelmax) real + speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Nacelle Drag
MODEL_drag int + model (0 none, 1 standard) 1

Idrag real + incidence angle i for helicopter nominal drag (deg; 0 for not tilt) 0.

DEngSys DEngSys standard model

Structure: EngineGroup 263

Derived drag
DoQC_nac real nacelle cruise drag, area (D/q)nac

DoQH_nac real nacelle helicopter drag, area (D/q)nac

DoQV_nac real nacelle vertical drag, area (D/q)nac

component drag contributions must be consistent
pylon is rotor support, and nacelle is engine support

tiltrotor with tilting engines use pylon drag (and no nacelle drag),
since pylon connected to rotor shaft axes

tiltrotor with nontilting engines, use nacelle drag as well

+ Weight
Weight Weight weight statement (component, including engine weight)

+ engine weight
MODEL_weight int + model (0 input, 1 RPTEM or NASA, 2 custom) 1

dWEng real + weight increment (all engines) 0.

+ engine system (except engine), engine section or nacelle group, air induction group
+ model (0 input, 1 NDARC, 2 custom)

MODEL_sys int + engine system 1

MODEL_nac int + engine section or nacelle 1

MODEL_air int + air induction 1

+ weight increment
dWexh real + exhaust 0.

dWacc real + accessories 0.

dWsupt real + engine support 0.

dWcowl real + engine cowling 0.

dWpylon real + pylon support 0.

dWair real + air induction 0.

WEngSys WEngSys NDARC model
Weng_total real engine weight
WES real engine system weight WES (engine, exhaust, accessories)
Wtip real weight on wing tip

Structure: EngineGroup 264

WESC real motor electronic speed control weight
WTMS real motor thermal management system weight

+ Technology Factors
TECH_eng real + engine weight χeng 1.0

TECH_cowl real + engine cowling weight χcowl 1.0

TECH_pylon real + pylon structure weight χpylon 1.0

TECH_supt real + engine support structure weight χsupt 1.0

TECH_air real + air induction system weight χairind 1.0

TECH_exh real + exhaust system weight χexh 1.0

TECH_acc real + engine accessories weight χacc 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory (WES used for rotor pylon wetted area, engine nacelle wetted
area, rotor moving weight)
nacelle weight = support + cowl + pylon
engine weight parameters in EngineModel

tiltrotor wing weight model requires weight on wing tip:
engine section or nacelle group, air induction group, engine system

265

Chapter 64

Structure: DEngSys

Variable Type Description Default

+ Nacelle Drag, Standard Model
+ forward flight drag

SET_drag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ real + area (D/q)0
CD real + coefficient CD0 (based on wetted area, D/q = SCD)

+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV real + area (D/q)V

CDV real + coefficient CDV (based on wetted area, D/q = SCD)
+ transition from forward flight drag to vertical drag

MODEL_Deng int + model (0 none) 1

Xdrag real + exponent Xd 2.0

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

+ Cooling Drag
DoQ_cool real + area (D/q)cool 0.

266

Chapter 65

Structure: WEngSys

Variable Type Description Default

+ Engine Section or Nacelle Group, NDARC Weight Model
MODEL_nacelle int + model (1 parametric, 2 scale with power, 3 Boeing, 4 Raymer (transport)) 1

fWpylon real + pylon support structure weight fpylon (fraction maximum takeoff weight) 0.

+ nacelle group weight, W vs P0C

Knac real + factor Knac

Xnac real + exponent Xnac

n_clf real + Boeing: crash load factor 20.

fWidth_nac real + Raymer: nacelle width (fraction nacelle length) 0.2

+ Air Induction Group, NDARC Weight Model
MODEL_airind int + model (1 parametric, 2 area) 1

fWair real + air induction weight fairind (fraction engine support plus air induction weight) 0.3

Uair real + weight per nacelle area Uairind (lb/ft2 or kg/m2)
+ Engine System, NDARC Model
+ exhaust system weight, per engine, including IR suppressor; Wexh vs P0C

Kwt0_exh real + K0exh 0.

Kwt1_exh real + K1exh 0.002

+ engine accessories
MODEL_lub int + lubrication system weight (1 in engine weight, 2 in accessory weight) 1

typically fWair = 0.3 (data range 0.1 to 0.6)

engine support and pylon support weights must be consistent with rotor support structure weight

+ Custom Weight Model
WtParam_engsys(8) real + parameters 0.

Structure: WEngSys 267

Weight Model Input
Exhaust

Neng_x int number of engines
Peng_x real installed takeoff power

Accessory
Neng_a int number of engines
Weng_a real engine weight (all engines)

Engine support
Neng_s int number of engines
Weng_s real engine weight (all engines)

Cowling
Snac_c real nacelle wetted area
Neng_c int number of engines
Peng_c real installed takeoff power
Weng_c real engine weight (all engines)

Pylon support
WMTO_p real maximum takeoff weight

Air induction
Neng_i int number of engines
Weng_i real engine weight (all engines)
Snac_i real nacelle wetted area

268

Chapter 66

Structure: JetGroup

Variable Type Description Default

+ Jet Group
title c*100 + title
notes c*1000 + notes
kJetGroup int jet group number

+ Description
MODEL_jet c*32 + jet model ’RPJEM’

IDENT_jet c*16 + jet identification ’Jet’

IDENT_system2 c*16 + second system identification ’ ’

nJet int + number of jets Njet 1

Tjet real + jet thrust Tjet (SLS static at takeoff rating, 0. for T0_ref(rating_to)) 0.

rating_to c*12 + takeoff thrust rating ’MCT’

rating_idle c*12 + idle thrust rating ’MCT’

kFuelTank int + fuel tank system number 1

kRotor_react int + rotor number for reaction drive
fuselage_flow int + fuselage flow control (0 not) 1

wing_flow(nwingmax) int + wing flow control (0 not) 1

Derived
iMODEL_jet int jet model (MODEL_jet_xxx)
KIND_jet int jet model (MODEL_jet_RPJEM, simple)
isConvertReact int convertible engine (0 not)
kModel_jet int identification (JetModel, from IDENT_jet)
kModel_sys2 int identification (JetModel, from IDENT_system2)
nrate int number of ratings
rating(nratemax) c*12 rating designations (lowercase)
krateC int MCT rating number
krate_to int takeoff thrust rating number
WOneJet real weight one jet Wone jet

Structure: JetGroup 269

comp_flow int flow control, any component (0 none)

MODEL_jet: jet model
’RPJEM’, ’jet’, ’fan’ = turbojet/turbofan engine (RPJEM); IDENT_jet → JetModel; fuel is weight
’react’ = reaction drive (RPJEM)); IDENT_jet → JetModel; fuel is weight
’flow’ = flow control (RPJEM)); IDENT_jet → JetModel; fuel is weight
’simple’ = simple force generator; no model identified; fuel is weight or energy

MODEL_jet: convertible engine; only with turbojet/turbofan
’+react’ = reaction drive (mode B = 1); IDENT_system2 → JetModel

jet identification: match ident of JetModel

second system identification: match ident of JetModel; not use weight

for fixed jet: use Tjet = 0. and no size task (or jet thrust not sized)

Jet model performance parameters (one jet)
T0(nratemax) real thrust (T0)
ST0(nratemax) real specific thrust (ST0)
Tmech(nratemax) real mechanical limit of thrust (Tmech)
sfc0C real specific fuel consumption at MCT (sfc0C)
mdot0C real mass flow at MCT (ṁ0C = T0C/ST0C)
wdot0C real fuel flow at MCT (ẇ0C = sfc0CT0C)
Edot0C real energy flow at MCT (ẇ0C = sfc0CT0C)

Jet model performance parameters (one jet), ratio converted to base
rsfc0C_conv real specific fuel consumption at MCT
rwdot0C_conv real fuel flow at MCT

+ Installation
Kffd real + deterioration factor on jet fuel flow Kffd 1.05

eta_d real + jet inlet efficiency ηd (fraction, for δM) 0.98

+ power losses (fraction thrust available, Tloss/Ta)
fTloss_inlet real + engine inlet loss �in 0.

fTloss_exh real + engine exhaust loss �ex (IRS off) 0.01

Structure: JetGroup 270

+ auxiliary air momentum drag (IRS off)
fMF_auxair real + mass flow faux (fraction engine mass flow) 0.007

eta_auxair real + ram recovery efficiency ηaux 0.75

+ IR suppressor
+ power losses (IRS on)

fTloss_exh_IRon real + engine exhaust loss �ex 0.03

+ auxiliary air momentum drag (IRS on)
fMF_auxair_IRon real + mass flow faux (fraction engine mass flow) 0.01

eta_auxair_IRon real + ram recovery efficiency ηaux 0.75

+ Convertible
Kffd_conv real + deterioration factor on jet fuel flow Kffd 1.05

+ power losses (fraction thrust available, Tloss/Ta)
fTloss_exh_conv real + engine exhaust loss �ex 0.01

installation power losses = inlet + exhaust (including IRS)
IR suppressor state specified by STATE_IRS_jet in operating condition

+ Simple force generator
Tmax real + design maximum thrust Tmax 0.

SET_burn int + fuel quantity used (1 weight, 2 energy) 1

sfc real + thrust specific fuel consumption (weight or energy) 1.0

SW real + specific weight S
KIND_simple int + weight group (1 engine system, 2 propeller/fan installation, 3 tail rotor) 1

fuel tank system identified must be consistent with SET_burn

+ Geometry
loc_jet Location + location
direction c*16 + nominal orientation (’+x’, ’–x’, ’+y’, ’–y’, ’+z’, ’–z’) ’x’

Structure: JetGroup 271

SET_Swet int + nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, WES ; 4 scaled, lengths) 2

Swet real + area Swet (per jet) 0.

kSwet real + factor, k = Swet/(WES/Njet)2/3 (Units_Dscale) or k = Swet/(�Xfus
fus c

Xwing
wing RXrotor) 0.8

XSwet_fus real + exponent, Xfus 0.

XSwet_wing real + exponent, Xwing 0.

XSwet_rotor real + exponent, Xrotor 2.

refWing int + wing number (for wing chord) 1

refRotor int + rotor number (for rotor radius) 1

Snac real nacelle/cowling area Snac

Swet_nac real total wetted area

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)
units of kSwet are ft2/lb2/3 or m2/kg2/3

nacelle wetted area used for nacelle drag, and for cowling weight

Derived geometry
iDirection int nominal orientation (1, –1, 2, –2, 3, –3)
axis_incid int axis incidence (±123)
axis_yaw int axis yaw (±123)
isFixed int orientation (1 fixed)
CBF(3,3) real jet relative airframe, CBF (fixed)
ef0(3) real jet direction, ef0

ef(3) real jet direction, ef (fixed)

+ Controls
+ amplitude A

INPUT_amp int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_amp(ncontmax,nstatemax) real + control matrix
nVamp int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

amp(nvelmax) real + values
Vamp(nvelmax) real + speeds (CAS or TAS, knots)

Structure: JetGroup 272

+ mode B
INPUT_mode int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_mode(ncontmax,nstatemax) real + control matrix
nVmode int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

mode(nvelmax) real + values
Vmode(nvelmax) real + speeds (CAS or TAS, knots)

+ incidence i (tilt)
INPUT_incid int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_incid(ncontmax,nstatemax)

real + control matrix
nVincid int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

incid(nvelmax) real + values
Vincid(nvelmax) real + speeds (CAS or TAS, knots)

+ yaw ψ
INPUT_yaw int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_yaw(ncontmax,nstatemax) real + control matrix
nVyaw int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

yaw(nvelmax) real + values
Vyaw(nvelmax) real + speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Nacelle Drag
MODEL_drag int + model (0 none, 1 standard) 1

Idrag real + incidence angle i for helicopter nominal drag (deg; 0 for not tilt) 0.

DJetSys DJetSys standard model

Structure: JetGroup 273

Derived drag
DoQC_nac real nacelle cruise drag, area (D/q)nac

DoQH_nac real nacelle helicopter drag, area (D/q)nac

DoQV_nac real nacelle vertical drag, area (D/q)nac

+ Weight
Weight Weight weight statement (component, including jet weight)

+ jet weight
MODEL_weight int + model (0 input, 1 RPJEM, 2 custom) 1

dWJet real + weight increment (all jets) 0.

+ engine system (except jet), engine section or nacelle group, air induction group
+ model (0 input, 1 NDARC, 2 custom)

MODEL_sys int + engine system 1

MODEL_nac int + engine section or nacelle 1

MODEL_air int + air induction 1

+ weight increment
dWexh real + exhaust 0.

dWacc real + accessories 0.

dWsupt real + engine support 0.

dWcowl real + engine cowling 0.

dWpylon real + pylon support 0.

dWair real + air induction 0.

WJetSys WJetSys NDARC model
Wjet_total real jet weight
WES real engine system weight WES (engine, exhaust, accessories)

+ Technology Factors
TECH_jet real + jet weight χjet 1.0

TECH_jetcowl real + engine cowling weight χcowl 1.0

TECH_jetpylon real + pylon structure weight χpylon 1.0

TECH_jetsupt real + engine support structure weight χsupt 1.0

TECH_jetair real + air induction system weight χairind 1.0

TECH_jetexh real + exhaust system weight χexh 1.0

TECH_jetacc real + engine accessories weight χacc 1.0

Structure: JetGroup 274

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory (WES used for nacelle wetted area)
nacelle weight = support + cowl + pylon
jet weight parameters in JetModel

275

Chapter 67

Structure: DJetSys

Variable Type Description Default

+ Nacelle Drag, Standard Model
+ forward flight drag

SET_drag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ real + area (D/q)0
CD real + coefficient CD0 (based on wetted area, D/q = SCD)

+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV real + area (D/q)V

CDV real + coefficient CDV (based on wetted area, D/q = SCD)
+ transition from forward flight drag to vertical drag

MODEL_Djet int + model (0 none) 1

Xdrag real + exponent Xd 2.0

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

+ Cooling Drag
DoQ_cool real + area (D/q)cool 0.

276

Chapter 68

Structure: WJetSys

Variable Type Description Default

+ Engine Section or Nacelle Group, NDARC Weight Model
MODEL_nacelle int + model (1 parametric, 2 scale with thrust, 3 Boeing, 4 Raymer (transport)) 1

fWpylon real + pylon support structure weight fpylon (fraction maximum takeoff weight) 0.

+ nacelle group weight, W vs T0C

Knac real + factor Knac

Xnac real + exponent Xnac

n_clf real + Boeing: crash load factor 20.

fWidth_nac real + Raymer: nacelle width (fraction nacelle length) 0.2

+ Air Induction Group, NDARC Weight Model
MODEL_airind int + model (1 parametric, 2 area) 1

fWair real + air induction weight fairind (fraction engine support plus air induction weight) 0.3

Uair real + weight per nacelle area Uairind (lb/ft2 or kg/m2)
+ Engine System, NDARC Model
+ exhaust system weight, per jet; Wexh vs T0C

Kwt0_exh real + K0exh 0.

Kwt1_exh real + K1exh 0.002

+ engine accessories
MODEL_lub int + lubrication system weight (1 in jet weight, 2 in accessory weight) 1

+ Custom Weight Model
WtParam_jetsys(8) real + parameters 0.

Weight Model Input
Exhaust

Njet_x int number of engines
Tjet_x real installed takeoff thrust

Accessory
Njet_a int number of engines
Wjet_a real jet weight (all jets)

Structure: WJetSys 277

Engine support
Njet_s int number of engines
Wjet_s real jet weight (all jets)

Cowling
Snac_c real nacelle wetted area
Njet_c int number of engines
Tjet_c real installed takeoff thrust
Wjet_c real jet weight (all jets)

Pylon support
WMTO_p real maximum takeoff weight

Air induction
Njet_i int number of engines
Wjet_i real jet weight (all jets)
Snac_i real nacelle wetted area

278

Chapter 69

Structure: ChargeGroup

Variable Type Description Default

+ Charge Group
title c*100 + title
notes c*1000 + notes
kChargeGroup int charge group number

+ Description
MODEL_charge c*32 + charger model ’ ’

IDENT_charge c*16 + charger identification ’Charge’

nCharge int + number of chargers Nchrg 1

Pchrg real + charger power Pchrg (SLS static at takeoff rating, 0. for P0_ref(rating_to)) 0.

rating_to c*12 + takeoff power rating ’MCP’

rating_idle c*12 + idle power rating ’MCP’

kFuelTank int + fuel tank system number (generated) 1

kFuelTank_burn int + fuel tank system number (burned)
Derived

iMODEL_charge int charger model (MODEL_charge_xxx)
KIND_charge int charger model (MODEL_charge_fuelcell, solarcell, simple)
kModel_chrg int identification (FuelCellModel or SolarCellModel, from IDENT_charge)
kBattery int battery model, from kFuelTank (0 for none)
nrate int number of ratings
rating(nratemax) c*12 rating designations (lowercase)
krateC int MCP rating number
krate_to int takeoff power rating number
WOneChrg real weight one charger Wone chrg

MODEL_charge: charger model
’fuel’ = fuel cell; IDENT_charge → FuelCellModel; fuel generated is energy; fuel burned is weight (kFuelTank_burn)
’solar’ = solar cell; IDENT_charge → SolarCellModel; fuel generated is energy
’simple’ = simple charger; no model identified; fuel generated is energy

Structure: ChargeGroup 279

charger identification: match ident of FuelCellModel or SolarCellModel

for fixed charger: use Pchrg = 0. and no size task (or charger power not sized)

fuel tank system identified for generation must store and use energy (may have BatteryModel)
fuel tank system identified for burn must store and use weight

Charger model performance parameters (one charger)
P0(nratemax) real power (P0)
sfc0C real specific fuel consumption at MCP (sfc0C)
mdot0C real mass flow at MCP (ṁ0C)
wdot0C real fuel flow at MCP (ẇ0C = sfc0CP0C)
solararea real solar cell total area

+ Installation
Kffd real + deterioration factor on charger fuel flow or performance Kffd 1.05

eta_d real + charger inlet efficiency ηd (fraction, for δM) 0.98

+ auxiliary air momentum drag
fMF_auxair real + mass flow faux (fraction charger mass flow) 0.007

eta_auxair real + ram recovery efficiency ηaux 0.75

+ Simple charger
Pmax real + design maximum power Pmax 0.

eta_chrg real + efficiency ηchrg 1.0

SW real + specific weight S (per charger)

+ Geometry
loc_charger Location + location
direction c*16 + nominal orientation (’+x’, ’–x’, ’+y’, ’–y’, ’+z’, ’–z’) ’x’

SET_Swet int + nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, WES ; 4 scaled, lengths) 2

Swet real + area Swet (per charger) 0.

kSwet real + factor, k = Swet/(WES/Nchrg)2/3 (Units_Dscale) or k = Swet/(�Xfus
fus c

Xwing
wing RXrotor) 0.8

XSwet_fus real + exponent, Xfus 0.

XSwet_wing real + exponent, Xwing 0.

Structure: ChargeGroup 280

XSwet_rotor real + exponent, Xrotor 2.

refWing int + wing number (for wing chord) 1

refRotor int + rotor number (for rotor radius) 1

Snac real nacelle/cowling area Snac

Swet_nac real total wetted area

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)
units of kSwet are ft2/lb2/3 or m2/kg2/3

nacelle wetted area used for nacelle drag

Derived geometry
iDirection int nominal orientation (1, –1, 2, –2, 3, –3)
axis_incid int axis incidence (±123)
axis_yaw int axis yaw (±123)
isFixed int orientation (1 fixed)
CBF(3,3) real charger relative airframe, CBF (fixed)
ef0(3) real charger direction, ef0

ef(3) real charger direction, ef (fixed)

+ Controls
+ amplitude A

INPUT_amp int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_amp(ncontmax,nstatemax) real + control matrix
nVamp int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

amp(nvelmax) real + values
Vamp(nvelmax) real + speeds (CAS or TAS, knots)

+ mode B
INPUT_mode int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_mode(ncontmax,nstatemax) real + control matrix
nVmode int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

mode(nvelmax) real + values
Vmode(nvelmax) real + speeds (CAS or TAS, knots)

Structure: ChargeGroup 281

+ incidence i (tilt)
INPUT_incid int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_incid(ncontmax,nstatemax)

real + control matrix
nVincid int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

incid(nvelmax) real + values
Vincid(nvelmax) real + speeds (CAS or TAS, knots)

+ yaw ψ
INPUT_yaw int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_yaw(ncontmax,nstatemax) real + control matrix
nVyaw int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

yaw(nvelmax) real + values
Vyaw(nvelmax) real + speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Nacelle Drag
MODEL_drag int + model (0 none, 1 standard) 1

Idrag real + incidence angle i for helicopter nominal drag (deg; 0 for not tilt) 0.

DChrgSys DChrgSys standard model
Derived drag

DoQC_nac real nacelle cruise drag, area (D/q)nac

DoQH_nac real nacelle helicopter drag, area (D/q)nac

DoQV_nac real nacelle vertical drag, area (D/q)nac

Structure: ChargeGroup 282

+ Weight
Weight Weight weight statement (component, including charger weight)

+ charger weight
MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1

dWChrg real + weight increment (all chargers) 0.

WChrgSys WChrgSys NDARC model
Wchrg_total real charge group weight
WES real engine system weight WES (engine, exhaust, accessories)

+ Technology Factors
TECH_chrg real + charger weight χchrg 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory = charge group weight (WES used for nacelle wetted area)
charger weight parameters in FuelCellModel or SolarCellModel

283

Chapter 70

Structure: DChrgSys

Variable Type Description Default

+ Nacelle Drag, Standard Model
+ forward flight drag

SET_drag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ real + area (D/q)0
CD real + coefficient CD0 (based on wetted area, D/q = SCD)

+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV real + area (D/q)V

CDV real + coefficient CDV (based on wetted area, D/q = SCD)
+ transition from forward flight drag to vertical drag

MODEL_Dchrg int + model (0 none) 1

Xdrag real + exponent Xd 2.0

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

+ Cooling Drag
DoQ_cool real + area (D/q)cool 0.

284

Chapter 71

Structure: WChrgSys

Variable Type Description Default

+ Custom Weight Model
WtParam_chrgsys(8) real + parameters 0.

285

Chapter 72

Structure: EngineModel

Variable Type Description Default

+ Engine Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Engine’

engine identification: used by IDENT_engine of EngineGroup input (eg ’T800’)

installed: power available Pav , power required Preq , gross jet thrust FG, net jet thrust FN

uninstalled: power available Pa, power required Pq, gross jet thrust Fg , net jet thrust Fn

“0” = SLS static; “C” = MCP
mass flow = power / specific power (SP = P/ṁ); fuel flow = specific fuel consumption * power (sfc = ẇ/P)

engine model can be used by more than one engine group, so all parameters fixed

as model for turbojet or reaction drive of convertible engine:
only use sfc0C_ref, sfc0C_ref, and parameters for optimum speed, thrust available, and performance
P0_ref and SP0_ref required, but not used; weight, ratings, technology, and scaling variables not used

kEngineModel int engine model number

+ Weight
MODEL_weight int + RPTEM model (0 fixed, 1 W (P), 2 SW (ṁ)) 1

Weng real + engine weight (fixed) 0.

+ engine weight, Weng vs Peng model (W = K0eng + K1engP + K2engP
Xeng)

Kwt0_eng real + constant K0eng 0.

Kwt1_eng real + constant K1eng 0.25

Kwt2_eng real + constant K2eng 0.

Xwt_eng real + exponent Xeng 0.

Structure: EngineModel 286

+ engine weight, SW = Peng/Weng vs ṁ0C model
SW_ref real + specific weight reference SWref (ṁ = ṁtech) 4.

SW_limit real + specific weight limit SWlim (ṁ = ṁlim) 5.

+ Custom Weight Model
WtParam_engine(8) real + parameters 0.

+ Parameters
+ Engine Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

krateC int MCP rating number
+ Reference

P0_ref(nratemax) real + power (P0) 2000.

SP0_ref(nratemax) real + specific power (SP0) 150.

Pmech_ref(nratemax) real + mechanical limit of power (Pmech) 2500.

sfc0C_ref real + specific fuel consumption at MCP (sfc0C) 0.45

SF0C_ref real + specific jet thrust (Fg0C = SF0Cṁ0C) 10.

Nspec_ref real + specification turbine speed (Nspec) 20000.

Nopt0C_ref real + optimum turbine speed at MCP (Nopt0C) 20000.

Derived ratios
rP0(nratemax) real power (P0R/P0C)
rSP0(nratemax) real specific power (SP0R/SP0C)
rPmech(nratemax) real mechanical limit of power (PmechR/P0C)

Reference Engine Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

engine rating: match rating designation in FltState; typically designated as
’ERP’ = Emergency Rated Power (OEI power)
’CRP’ = Contigency Rated Power (2.5 min)
’MRP’ = Maximum Rated Power (5 or 10 min)
’IRP’ = Intermediate Rated Power (30 min)
’MCP’ = Maximum Continuous Power (normal operations)
engine model being used may not contain data for all ratings

Structure: EngineModel 287

+ Technology
SP0C_tech real + specific power at MCP SPtech (0. for SP0_ref(MCP)) 0.

sfc0C_tech real + specific fuel consumption at MCP sfctech (0. for sfc0C_ref) 0.

Nspec_tech real + specification turbine speed Ntech (0. for Nspec_ref) 0.

+ Scaling
FIX_size int + engine size (0 scaled, 1 fixed) 0

MF_limit real + mass flow at limit SP and sfc (ṁlim) 30.

SP0C_limit real + specific power limit SPlim 200.

sfc0C_limit real + specific fuel consumption limit sfclim 0.34

KNspec real + specification turbine speed variation (KNs2) 0.

Derived scaling
specific power available (SLS static, MCP, Nspec), SP0C vs ṁ0C

P0C_limit real power limit
Ksp0 real Ksp0

Ksp1 real Ksp1

specific fuel consumption (SLS static, MCP, Nspec), sfc0C vs ṁ0C

Ksfc0 real Ksfc0

Ksfc1 real Ksfc1

specification turbine speed, Nspec vs ṁ0C

KNs1 real KNs1

KNs2 real KNs2

optimum turbine speed, Nopt0C

KNo real KNo

engine weight, SW = P/Weng vs ṁ0C

Ksw0 real Ksw0

Ksw1 real Ksw1

SP and sfc functions are defined by values SP0C_tech, sfc0C_tech, ṁtech=P0C_ref/SP0C_tech

and limits SP0C_limit, sfc0C_limit, MF_limit

defaults SP0C_tech=SP0_ref(MCP), sfc0C_tech=sfc0C_ref, Nspec_tech=Nspec_ref

require ṁtech < ṁlim (otherwise get SP0C = SP0C_tech and sfc0C = sfc0C_tech)

for no variation of SP , sfc, and SW with scale, use FIX_size=1 or MF_limit=0.

engine weight scaling determined by MODEL_weight

Structure: EngineModel 288

+ Optimum Power Turbine Speed
MODEL_OptN int + model (0 none, 1 linear, 2 cubic) 1

+ linear, Nopt/Nspec vs Pq/P0

KNoptA real + constant KNoptA 1.

KNoptB real + constant KNoptB 0.

+ cubic, Nopt/Nopt0C vs Pq/P0C

KNopt0 real + constant KNopt0 1.

KNopt1 real + constant KNopt1 0.

KNopt2 real + constant KNopt2 0.

KNopt3 real + constant KNopt3 0.

XNopt real + exponent XNopt 0.

+ power turbine efficiency function, ηt(N)/ηt(Nspec)
XNeta real + exponent XNη 2.0

engine power and performance variation with power turbine speed determined by Nopt and XNη

used only for INPUT_param = single set; no variation if MODEL_OptN=0

+ Power Available and Power Required Parameters
MODEL_Pav int + power available (0 constant, 1 referred, 2 general) 2

MODEL_perf int + performance at power required (1 referred, 2 general) 2

INPUT_param int + parameter input form (1 single set; 2 function of engine speed) 1

Param EngineParamN single set (input moved to Param for use)
+ function of engine speed

nspeed int + number of engine speeds (maximum nspeedmax) 1

rNeng(nspeedmax) real + engine speed ratio, N/Nspec 1.

kEngineParamN(nspeedmax) int + identification of parameter sets (0 to use IDENT_param) 1

IDENT_param(nspeedmax) c*16 + identification of parameter sets ’ ’

iEngineParamN(nspeedmax) int identification of parameter sets (derived from kEngineParamN or IDENT_param)

constant or referred model does not use parameters, does not include effect of turbine speed
general model uses parameters for effects of temperature and ram, can include effect of turbine speed

function of engine speed (INPUT_param=2): parameters interpolated, rNeng unique and sequential
identification of parameter sets: IDENT_param match EngineParamN%ident

Structure: EngineModel 289

simple model: constant (MODEL_Pav=0) or constant referred (MODEL_Pav=1) power available
constant specific fuel consumption (MODEL_perf=1, sfc0C_tech=0., MF_limit=0.)
no jet force (EngineGroup%SET_FN=0), no auxiliary air momentum drag (EngineGroup%SET_Daux=0)

+ Power Available
INPUT_lin int + input form (1 coefficients K0, K1; 2 values θb, Kb) 1

+ referred specific power available, SPa/SP0 vs temperature
Nspa(nratemax) int + number of regions (maximum nengkmax-1) 0

Kspa0(nengkmax,nratemax) real + Kspa0 (piecewise linear Kspa = K0 + K1θ) 3.5

Kspa1(nengkmax,nratemax) real + Kspa1 (piecewise linear Kspa = K0 + K1θ) -2.5

Tspak(nengkmax,nratemax) real + θb

Kspab(nengkmax,nratemax) real + Kspa−b

Xspa0(nengkmax,nratemax) real + Xspa0 (piecewise linear Xspa = X0 + X1θ) -.2

Xspa1(nengkmax,nratemax) real + Xspa1 (piecewise linear Xspa = X0 + X1θ) 0.

Tspax(nengkmax,nratemax) real + θb

Xspab(nengkmax,nratemax) real + Xspa−b

+ referred mass flow at power available, ṁa/ṁ0 vs temperature
Nmfa(nratemax) int + number of regions (maximum nengkmax-1) 0

Kmfa0(nengkmax,nratemax) real + Kmfa0 (piecewise linear Kmfa = K0 + K1θ) .3

Kmfa1(nengkmax,nratemax) real + Kmfa1 (piecewise linear Kmfa = K0 + K1θ) -.3

Tmfak(nengkmax,nratemax) real + θb

Kmfab(nengkmax,nratemax) real + Kmfa−b

Xmfa0(nengkmax,nratemax) real + Xmfa0 (piecewise linear Xmfa = X0 + X1θ) 1.

Xmfa1(nengkmax,nratemax) real + Xmfa1 (piecewise linear Xmfa = X0 + X1θ) 0.

Tmfax(nengkmax,nratemax) real + θb

Xmfab(nengkmax,nratemax) real + Xmfa−b

piecewise linear function:
input form = coefficients K0, K1 (N sets) or values θb, Kb (N+1 values)
form not input is calculated (N-1 θb, Kb or N K0, K1)
input K0, K1: adjacent K1 different, resulting θb unique and sequential
input θb, Kb: θb unique and sequential

Structure: EngineModel 290

Nspec = specification power turbine speed
SPa, ṁa = referred specific power and mass flow available, at Nspec

SP0, ṁ0 = referred specific power and mass flow available, at Nspec, SLS static
N = power turbine speed, Nopt = optimum power turbine speed
ηt = power turbine efficiency; assume gas power available PG = Pa/ηt insensitive to N , so ηt(N) give Pa(N)

+ Performance at Power Required
+ referred fuel flow at power required, ẇreq/ẇ0C vs Pq/P0C

Kffq0 real + constant Kffq0 .2

Kffq1 real + constant Kffq1 .8

Kffq2 real + constant Kffq2 0.

Kffq3 real + constant Kffq3 0.

Xffq real + exponent Xffq 1.3

+ referred mass flow at power required, ṁreq/ṁ0C vs Pq/P0C

Kmfq0 real + constant Kmfq0 .6

Kmfq1 real + constant Kmfq1 .78

Kmfq2 real + constant Kmfq2 -.48

Kmfq3 real + constant Kmfq3 .1

Xmfq real + exponent Xmfq 3.5

+ gross jet thrust at power required, Fg/Fg0C vs Pq/P0C

Kfgq0 real + constant Kfgq0 .2

Kfgq1 real + constant Kfgq1 .8

Kfgq2 real + constant Kfgq2 0.

Kfgq3 real + constant Kfgq3 0.

Xfgq real + exponent Xfgq 2.0

+ installed net jet thrust at power required, FG/Fg (installed thrust loss) vs �ex

Kfgr0 real + constant Kfgr0 .8

Kfgr1 real + constant Kfgr1 .6

Kfgr2 real + constant Kfgr2 0.

Kfgr3 real + constant Kfgr3 0.

291

Chapter 73

Structure: EngineParamN

Variable Type Description Default

+ Engine Model Parameters
title c*100 + title
notes c*1000 + notes
ident c*16 + identification
kEngineParamN int engine param number

identification: used by IDENT_param of EngineModel

+ Power Available
nrate int + number of ratings 1

INPUT_lin int + input form (1 coefficients K0, K1; 2 values θb, Kb) 1

+ referred specific power available, SPa/SP0 vs temperature
Nspa(nratemax) int + number of regions (maximum nengkmax-1) 0

Kspa0(nengkmax,nratemax) real + Kspa0 (piecewise linear Kspa = K0 + K1θ) 3.5

Kspa1(nengkmax,nratemax) real + Kspa1 (piecewise linear Kspa = K0 + K1θ) -2.5

Tspak(nengkmax,nratemax) real + θb

Kspab(nengkmax,nratemax) real + Kspa−b

Xspa0(nengkmax,nratemax) real + Xspa0 (piecewise linear Xspa = X0 + X1θ) -.2

Xspa1(nengkmax,nratemax) real + Xspa1 (piecewise linear Xspa = X0 + X1θ) 0.

Tspax(nengkmax,nratemax) real + θb

Xspab(nengkmax,nratemax) real + Xspa−b

+ referred mass flow at power available, ṁa/ṁ0 vs temperature
Nmfa(nratemax) int + number of regions (maximum nengkmax-1) 0

Kmfa0(nengkmax,nratemax) real + Kmfa0 (piecewise linear Kmfa = K0 + K1θ) .3

Kmfa1(nengkmax,nratemax) real + Kmfa1 (piecewise linear Kmfa = K0 + K1θ) -.3

Tmfak(nengkmax,nratemax) real + θb

Kmfab(nengkmax,nratemax) real + Kmfa−b

Xmfa0(nengkmax,nratemax) real + Xmfa0 (piecewise linear Xmfa = X0 + X1θ) 1.

Structure: EngineParamN 292

Xmfa1(nengkmax,nratemax) real + Xmfa1 (piecewise linear Xmfa = X0 + X1θ) 0.

Tmfax(nengkmax,nratemax) real + θb

Xmfab(nengkmax,nratemax) real + Xmfa−b

number of ratings consistent with EngineModel

+ Performance at Power Required
+ referred fuel flow at power required, ẇreq/ẇ0C vs Pq/P0C

Kffq0 real + constant Kffq0 .2

Kffq1 real + constant Kffq1 .8

Kffq2 real + constant Kffq2 0.

Kffq3 real + constant Kffq3 0.

Xffq real + exponent Xffq 1.3

+ referred mass flow at power required, ṁreq/ṁ0C vs Pq/P0C

Kmfq0 real + constant Kmfq0 .6

Kmfq1 real + constant Kmfq1 .78

Kmfq2 real + constant Kmfq2 -.48

Kmfq3 real + constant Kmfq3 .1

Xmfq real + exponent Xmfq 3.5

+ gross jet thrust at power required, Fg/Fg0C vs Pq/P0C

Kfgq0 real + constant Kfgq0 .2

Kfgq1 real + constant Kfgq1 .8

Kfgq2 real + constant Kfgq2 0.

Kfgq3 real + constant Kfgq3 0.

Xfgq real + exponent Xfgq 2.0

+ installed net jet thrust at power required, FG/Fg (installed thrust loss) vs �ex

Kfgr0 real + constant Kfgr0 .8

Kfgr1 real + constant Kfgr1 .6

Kfgr2 real + constant Kfgr2 0.

Kfgr3 real + constant Kfgr3 0.

Derived
q(41) real referred power Pq/P0C (0. to 4.0)
fgq(41) real gross jet thrust Fg/Fg0C

mfq(41) real referred mass flow ṁreq/ṁ0C

293

Chapter 74

Structure: EngineTable

Variable Type Description Default

+ Engine Table
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Engine’

engine identification: used by IDENT_engine of EngineGroup input

engine table can be used by more than one engine group, so all parameters fixed

engine not scaled (SET_power, fPsize not used); eta_d not used
fixed engine weight dWEng (MODEL_weight=0)
no mass flow value, so no momentum drag of auxillary air flow (fMF_auxair, eta_auxair not used)
obtain Peng from table; mechanical limits included in power available data
tables intended for installed engine, including losses (fPloss_inlet, fPloss_ps, fPloss_exh not used)
fuel flow multiplied by Kffd, accounting for deterioration of engine efficiency

kEngineTable int engine table number

+ Engine ratings
nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

krateC int MCP rating number
Nspec real + Specification turbine speed (Nspec)

Structure: EngineTable 294

+ Technology factors
Kp real + power available 1.0

Kw real + fuel flow 1.0

Kf real + net thrust 1.0

+ Table
nalt int + number of altitudes (maximum nengtmax)
nspeed int + number of speeds (maximum nengtmax)
alt(nengtmax) real + altitude h
speed(nengtmax) real + speed V (TAS)
Tp(nengtmax,nengtmax,nratemax)

real + power available Pa(h, V, R)
Tw(nengtmax,nengtmax,nratemax)

real + fuel flow ẇ(h, V, R)
Tf(nengtmax,nengtmax,nratemax)

real + net thrust FN (h, V, R)

295

Chapter 75

Structure: RecipModel

Variable Type Description Default

+ Reciprocating Engine Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Engine’

engine identification: used by IDENT_engine of EngineGroup input

installed: power available Pav , power required Preq , gross jet thrust FG, net jet thrust FN

uninstalled: power available Pa, power required Pq, gross jet thrust Fg , net jet thrust Fn

fuel flow = specific fuel consumption * power (sfc = ẇ/P); mass flow = fuel flow / fuel-air ratio

reciprocating engine model can be used by more than one engine group, so all parameters fixed

kRecipModel int reciprocating engine model number

+ Weight
MODEL_weight int + model (0 fixed, 1 W (P)) 1

Weng real + engine weight (fixed) 0.

+ engine weight, Weng vs Peng model (W = K0eng + K1engP + K2engP
Xeng)

Kwt0_eng real + constant K0eng 0.

Kwt1_eng real + constant K1eng 0.25

Kwt2_eng real + constant K2eng 0.

Xwt_eng real + exponent Xeng 0.

+ Custom Weight Model
WtParam_recip(8) real + parameters 0.

Structure: RecipModel 296

+ Parameters
+ Engine Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

krateC int MCP rating number
+ Reference

P0_ref(nratemax) real + power (P0) 1000.

sfc0_ref(nratemax) real + specific fuel consumption (sfc0) 0.60

F0_ref(nratemax) real + fuel-air ratio (F0) 0.08

SF0_ref(nratemax) real + specific jet thrust (Fg = SF0ṁ) 0.

Pmep_ref(nratemax) real + mean effective pressure limit (Pmep) 1000.

Pcrit_ref(nratemax) real + critical (throttle) limit (Pcrit) 1000.

N0_ref(nratemax) real + reference engine speed (N0) 2000.

Nspec_ref real + specification engine speed (Nspec) 2000.

Derived ratios
rP0(nratemax) real power (P0R/P0C)
rN0(nratemax) real reference engine speed (N0R/Nspec)
rcrit(nratemax) real critical power (PcritR/P0R)
rmep(nratemax) real mechanical limit of power (PmechR/P0R * Nspec/N0R)

Reference Engine Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

engine rating: match rating designation in FltState; typically designated as
’MRP’ = Maximum Rated Power (5 or 10 min)
’MCP’ = Maximum Continuous Power (normal operations)

ratings encompass mixture settings and supercharger speeds

Pmep_ref: zero for no mechanical (mep) limit
Pcrit_ref: zero for no critical (throttle) limit; Xcrit = 0. for limit independent of engine speed

Structure: RecipModel 297

+ Scaling
FIX_size int + engine size (0 scaled, 1 fixed) 0

Xo real + specific output exponent Xo 0.2

Xs real + mean piston speed exponent Xs 0.3

Xf real + specific fuel consumption exponent Xf 0.1

Ksfc1 real + specific fuel consumption constant Ksfc1 1.

Ksfc2 real + specific fuel consumption constant Ksfc2 0.

KN1 real + engine speed constant KNspec1 1.

KN2 real + engine speed constant KNspec2 0.

Derived scaling
Xsfc real exponent −Xf/(2 − Xo)
XN real exponent −(1 + Xs)/(2 − Xo)

+ Power Available
MODEL_Pav int + model (0 constant Pa) 1

Kp(nratemax) real + factor Kp 1.

Kram(nratemax) real + constant Kram 1.

XpN(nratemax) real + exponent XpN 1.

Xpt(nratemax) real + exponent Xpθ 0.5

Xcrit(nratemax) real + exponent Xcrit 3.0

+ Performance at Power Required
+ fuel flow, ẇreq/ẇ0 vs Pq/P0

MODEL_Kffq int + model (1 polynomial, 2 piecewise linear, 3 table) 1

+ polynomial
Kffq0(nratemax) real + constant Kffq0 0.

Kffq1(nratemax) real + constant Kffq1 1.

Kffq2(nratemax) real + constant Kffq2 0.

Kffq3(nratemax) real + constant Kffq3 0.

+ piecewise linear
Nffq(nratemax) int + number of values (maximum nengrmax) 0

Pffq(nengrmax,nratemax) real + power ratio Pq/P0

Kffq(nengrmax,nratemax) real + factor Kffq

XffN(nratemax) real + exponent XffN 0.

Xffs(nratemax) real + exponent Xffσ 0.

Structure: RecipModel 298

+ table
nqff int + number of powers (maximum nengtmax)
nrff int + number of speeds (maximum nengtmax)
qff(nengtmax) real + power ratio q = Pq/P0

rff(nengtmax) real + speed ratio r = N/N0

Tff(nengtmax,nengtmax,nratemax)

real + fuel flow factor Tff (q, r)
+ fuel-air ratio, Freq/F0 vs Pq/P0

MODEL_KFq int + model (1 polynomial, 2 piecewise linear) 1

+ polynomial
KFq0(nratemax) real + constant KFq0 1.

KFq1(nratemax) real + constant KFq1 0.

KFq2(nratemax) real + constant KFq2 0.

KFq3(nratemax) real + constant KFq3 0.

+ piecewise linear
NFq(nratemax) int + number of values (maximum nengrmax) 0

PFq(nengrmax,nratemax) real + power ratio Pq/P0

KFq(nengrmax,nratemax) real + factor KFq

XFN(nratemax) real + exponent XFN 0.

+ installed net jet thrust, Kfgr = FG/Fg (installed thrust loss)
Kfgr(nratemax) real + constant Kfgr 1.

Simple model: constant power available (MODEL_Pav=0)
constant specific fuel consumption (defaults Kffq1=1. and Xffq=0., and Xf=0.)
constant fuel-air ratio (defaults KFq0=1. and XFq=0.)
no jet force (EngineGroup%SET_FN=0), no auxiliary air momentum drag (EngineGroup%SET_Daux=0)

299

Chapter 76

Structure: CompressorModel

Variable Type Description Default

+ Compressor Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Comp’

compressor identification: used by IDENT_engine of EngineGroup input

“0” = SLS static; “C” = MCP
mass flow = power / specific power (SP = P/ṁ); gross thrust = specific thrust * mass flow (ST = T/ṁ)

compressor model can be used by more than one engine group, so all parameters fixed

kCompressorModel int compressor model number

+ Weight
MODEL_weight int + model (0 fixed, 1 W (P)) 1

Wcomp real + compressor weight (fixed) 0.

+ compressor weight, Wcomp vs Peng model (W = K0comp + K1compP + K2compPXcomp)
Kwt0_comp real + constant K0comp 0.

Kwt1_comp real + constant K1comp 0.2

Kwt2_comp real + constant K2comp 0.

Xwt_comp real + exponent Xcomp 0.

+ Custom Weight Model
WtParam_comp(8) real + parameters 0.

Structure: CompressorModel 300

+ Parameters
+ Compressor Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

krateC int MCP rating number
+ Reference

P0_ref(nratemax) real + power (P0)
SP0_ref(nratemax) real + specific power (SP0)
Pmech_ref(nratemax) real + mechanical limit of power (Pmech)
SF0C_ref real + specific jet thrust (Fg0C = SF0Cṁ0C)
Nspec_ref real + specification compressor speed (Nspec)

Derived ratios
rP0(nratemax) real power (P0R/P0C)
rSP0(nratemax) real specific power (SP0R/SP0C)
rPmech(nratemax) real mechanical limit of power (PmechR/P0C)

Reference Compressor Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

compressor rating: match rating designation in FltState

+ Power Available
+ referred specific power available, SPa/SP0

Xspa real + exponent Xspa 1.

+ referred mass flow at power available, ṁa/ṁ0

Xmfa real + exponent Xmfa 1.

+ Performance at Power Required
+ referred mass flow at power required, ṁreq/ṁ0C vs Pq/P0C

Kmfq0 real + constant Kmfq0

Kmfq1 real + constant Kmfq1

Kmfq2 real + constant Kmfq2

Kmfq3 real + constant Kmfq3

Xmfq real + exponent Xmfq 1.

Structure: CompressorModel 301

+ gross jet thrust at power required, Fg/Fg0C vs Pq/P0C

Kfgq0 real + constant Kfgq0 1.

Kfgq1 real + constant Kfgq1 0.

Kfgq2 real + constant Kfgq2 0.

Kfgq3 real + constant Kfgq3 0.

Xfgq real + exponent Xfgq 2.0

Derived
q(41) real referred power Pq/P0C (0. to 4.0)
fgq(41) real gross jet thrust Fg/Fg0C

mfq(41) real referred mass flow ṁreq/ṁ0C

302

Chapter 77

Structure: MotorModel

Variable Type Description Default

+ Motor Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Motor’

motor identification: used by IDENT_engine of EngineGroup input

“0” = SLS static; “C” = MCP

motor model can be used by more than one engine group, so all parameters fixed

kMotorModel int motor model number

+ Weight
MODEL_weight int + model (0 fixed, 1 W (P), 2 NASA15 W (Q)) 2

Wmotor real + motor weight (fixed) 0.

+ motor weight W (P): Wmotor vs Peng model (W = K0motor + K1motorP + K2motorP
XmotorQXqmotorSXsmotor)

Kwt0_motor real + constant K0motor 0.

Kwt1_motor real + constant K1motor 0.

Kwt2_motor real + constant K2motor 0.

Xwt_motor real + exponent Xmotor 0.

Xwtq_motor real + exponent Xqmotor 0.

Xwts_motor real + exponent Xsmotor 0.

+ motor weight W (Q): NASA15 Wmotor vs Qpeak model
KIND_design int + torque-to-weight design (0 only high Q/W ; 1 high Q/W , 2 low Q/W factor) 0

Structure: MotorModel 303

+ controller weight (ΔW = KESCPXESC)
Kwt_ESC real + constant KESC 0.

Xwt_ESC real + exponent XESC 0.

+ Custom Weight Model
WtParam_motor(8) real + parameters 0.

+ Parameters
+ Motor Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

krateC int MCP rating number
krateM int MRP rating number
MODEL_Qlimit int + Torque limit (1 constant Qpeak, 2 with high speed limit) 1

+ Reference
P0_ref(nratemax) real + power (P0) 0.

Ppeak_ref(nratemax) real + mechanical limit of power (Ppeak)
Nspec_ref real + specification motor speed (Nspec)
Nmax_ref real + maximum (no load) motor speed (Nmax)

Derived ratios
rP0(nratemax) real power (P0R/P0C)
rPpeak(nratemax) real mechanical limit of power (PpeakR/P0C)
Nbase(nratemax) real base rotational speed ((P0R/PpeakR)Nspec)

Reference Motor Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

motor rating: match rating designation in FltState

+ Performance
+ Motor/Generator Efficiency

KIND_eff int + kind (1 fixed, 2 function power, 3 map) 2

+ fixed or function power
eta_motor real + reference efficiency (at Peng) 1.00

loss_motor real + power loss (fraction Peng) 0.00

Structure: MotorModel 304

+ efficiency map (Ploss = Pengfloss

∑3
i=0

∑3
j=0 Cijt

inj)
Closs(4,4) real + loss coefficients Closs(i+1,j+1)= Cij 0.00

floss real + factor floss 1.00

eta_cont real + controller efficiency 1.00

+ Scaling
KNspec real + specification motor speed variation (KNs) 0.

KNbase real + base motor speed variation (KNb) 0.

Nspec used by efficiency map; Nbase affects Ppeak scaling
for no variation of motor speeds with scale, use KNspec = KNbase = 0.

+ Thermal Management System
+ mass flow (lb/sec or kg/sec) from rejected heat (hp or kW)

KTMSm0 real + constant KTMSm0 0.

KTMSm1 real + constant KTMSm1 0.07

XTMSm real + exponent XTMSm 1.

+ power (hp or kW) from mass flow (lb/sec or kg/sec)
KTMSp0 real + constant KTMSp0 0.

KTMSp1 real + constant KTMSp1 0.6

XTMSp real + exponent XTMSp 1.

+ gross jet force (lb or N) from mass flow (lb/sec or kg/sec)
KTMSf0 real + constant KTMSf0 0.

KTMSf1 real + constant KTMSf1 6.0

XTMSf real + exponent XTMSf 1.

+ weight (lb or kg)
KTMSw0 real + constant KTMSw0 4.0

KTMSw1 real + constant KTMSw1 0.3

XTMSwp real + exponent XTMSwp 1.

XTMSwm real + exponent XTMSwm 0.

305

Chapter 78

Structure: JetModel

Variable Type Description Default

+ Jet Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Jet’

jet identification: used by IDENT_jet of JetGroup input

installed: thrust available Tav , thrust required Treq

uninstalled: thrust available Ta, thrust required Tq

“0” = SLS static; “C” = MCT
mass flow = thrust / specific thrust (ST = T/ṁ); fuel flow = specific fuel consumption * thrust (sfc = ẇ/T)

jet model can be used by more than one jet group, so all parameters fixed

as model for reaction drive of convertible engine:
only use sfc0C_ref and parameters for thrust available and performance at thrust required
T0_ref and ST0_ref required, but not used; weight, ratings, technology, and scaling variables not used

kJetModel int jet model number

+ Weight
MODEL_weight int + RPJEM model (0 fixed, 1 W (T)) 1

Wjet real + jet weight (fixed) 0.

+ jet weight, Wjet vs Tjet model (W = K0jet + K1jetT + K2jetT
Xjet)

Kwt0_jet real + constant K0jet 0.

Kwt1_jet real + constant K1jet 0.2

Kwt2_jet real + constant K2jet 0.

Xwt_jet real + exponent Xjet 0.

+ Custom Weight Model
WtParam_jet(8) real + parameters 0.

Structure: JetModel 306

+ Parameters
+ Jet Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCT’

krateC int MCT rating number
+ Reference

T0_ref(nratemax) real + thrust (T0) 0.

ST0_ref(nratemax) real + specific thrust (ST0)
Tmech_ref(nratemax) real + mechanical limit of thrust (Tmech)
sfc0C_ref real + specific fuel consumption at MCT (sfc0C)

Derived ratios
rT0(nratemax) real thrust (T0R/T0C)
rST0(nratemax) real specific thrust (ST0R/ST0C)
rTmech(nratemax) real mechanical limit of thrust (TmechR/T0C)

Reference Jet Rating: SLS, static
if MCT scaled, ratios to MCT values kept constant

jet rating: match rating designation in FltState

+ Technology
ST0C_tech real + specific thrust at MCT STtech (0. for ST0_ref(MCT)) 0.

sfc0C_tech real + specific fuel consumption at MCT sfctech (0. for sfc0C_ref) 0.

+ Scaling
FIX_size int + engine size (0 scaled, 1 fixed) 0

MF_limit real + mass flow at limit ST and sfc (ṁlim) 0.

ST0C_limit real + specific thrust limit STlim 0.

sfc0C_limit real + specific fuel consumption limit sfclim

Derived scaling
specific thrust available (SLS static, MCT), ST0C vs ṁ0C

T0C_limit real thrust limit
Kst0 real Kst0

Kst1 real Kst1

Structure: JetModel 307

specific fuel consumption (SLS static, MCT), sfc0C vs ṁ0C

Ksfc0 real Ksfc0

Ksfc1 real Ksfc1

ST and sfc functions are defined by values ST0C_tech, sfc0C_tech, ṁtech=T0C_ref/ST0C_tech

and limits ST0C_limit, sfc0C_limit, MF_limit

defaults ST0C_tech=ST0_ref(MCT), sfc0C_tech=sfc0C_ref

require ṁtech < ṁlim (otherwise get ST0C = ST0C_tech and sfc0C = sfc0C_tech)

for no variation of ST and sfc with scale, use FIX_size=1 or MF_limit=0.

bypass real + Turbofan bypass ratio (0. for turbojet) 0.

+ Thrust Available
+ referred specific thrust available, STa/ST0

Xsta real + exponent Xsta 1.

+ referred mass flow at thrust available, ṁa/ṁ0

Xmfa real + exponent Xmfa 1.

+ Performance at Thrust Required
+ referred fuel flow at thrust required, ẇreq/ẇ0C vs Tq/T0C

Kffq0 real + constant Kffq0 0.

Kffq1 real + constant Kffq1 1.

Kffq2 real + constant Kffq2 0.

Kffq3 real + constant Kffq3 0.

Xffq real + exponent Xffq 1.

+ referred mass flow at thrust required, ṁreq/ṁ0C vs Tq/T0C

Kmfq0 real + constant Kmfq0 0.

Kmfq1 real + constant Kmfq1 1.

Kmfq2 real + constant Kmfq2 0.

Kmfq3 real + constant Kmfq3 0.

Xmfq real + exponent Xmfq 1.

Derived
t(41) real referred thrust Tq/T0C (0. to 4.0)
mfq(41) real referred mass flow ṁreq/ṁ0C

308

Chapter 79

Structure: FuelCellModel

Variable Type Description Default

+ Fuel Cell Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Cell’

fuel cell identification: used by IDENT_charge of ChargerGroup input

“0” = SLS static; “C” = MCP

fuel cell model can be used by more than one charger group, so all parameters fixed

kFuelCellModel int fuel cell model number

+ Weight
MODEL_weight int + model (0 fixed, 1 W (P)) 1

Wcell real + fuel cell weight (fixed) 0.

+ fuel cell weight, Wcell vs Pchrg model (W = K0cell + K1cellP + K2cellP
Xcell)

Kwt0_cell real + constant K0cell 0.

Kwt1_cell real + constant K1cell 0.

Kwt2_cell real + constant K2cell 0.

Xwt_cell real + exponent Xcell 0.

+ Custom Weight Model
WtParam_fuelcell(8) real + parameters 0.

Structure: FuelCellModel 309

+ Parameters
+ Fuel Cell Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

krateC int MCP rating number
+ Reference

P0_ref(nratemax) real + power (P0) 0.

sfc0C_ref real + specific fuel consumption at MCP (sfc0C) 0.

Derived ratios
rP0(nratemax) real power (P0R/P0C)

Reference Fuel Cell Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

fuel cell rating: match rating designation in FltState

+ Performance
idesign real + design current density id
pi_comp real + compressor pressure ratio πC

+ cell characteristics (at cell pressure δc = 1)
ncell int + number of values (maximum nengcmax) 1

icell(nengcmax) real + current density ic 1.

vcell(nengcmax) real + voltage vc 1.

Xfc real + pressure scaling exponent Xfc 0.38

Kmf real + mass flow ratio (ṁ/ẇ) 86.

Derived
vdesign real design voltage vd

pdesign real design power density pd

vmax real voltage for maximum power vmax

irate(nratemax) real rated current density iR

reference sfc corresponds to fuel specific energy and design cell current, including technology impact
units of idesign and icell must be consistent

Structure: FuelCellModel 310

icell values unique and sequential; icell(1)=0.

vcell monotonically decreasing (reversed vcell unique and sequential)

simple model: define power P0_ref and specific fuel consumption sfc0C_ref, mass flow from Kmf

ncell=1 for constant vc, hence constant efficiency, constant power and sfc (idesign, pi_comp, Xfc not used)

311

Chapter 80

Structure: SolarCellModel

Variable Type Description Default

+ Solar Cell Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Cell’

solar cell identification: used by IDENT_charge of ChargerGroup input

“0” = SLS static; “C” = MCP

solar cell model can be used by more than one charge group, so all parameters fixed

kSolarCellModel int solar cell model number

+ Weight
MODEL_weight int + model (0 fixed, 1 W (A)) 1

Wsolar real + solar cell weight (fixed) 0.

ssolar real + weight density (kg/m2)
+ Custom Weight Model

WtParam_solarcell(8) real + parameters 0.

+ Parameters
+ Solar Cell Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

krateC int MCP rating number

Structure: SolarCellModel 312

+ Reference
P0_ref(nratemax) real + power (P0) 0.

Derived ratios
rP0(nratemax) real power (P0R/P0C)

Reference Solar Cell Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

solar cell rating: match rating designation in FltState

+ Performance
esolar real + power density (W/m2)

+ Efficiency
KIND_eff int + kind (1 fixed, 2 function power) 2

eta_cell real + reference efficiency (at Pchrg) 1.00

loss_cell real + power loss (fraction Pchrg) 0.00

simple model: power density esolar and weight density ssolar; with efficiency in esolar (KIND_eff=1 and eta_cell=1.)

313

Chapter 81

Structure: BatteryModel

Variable Type Description Default

+ Battery Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Battery’

battery identification: used by IDENT_battery of FuelTank input

battery model can be used by more than one fuel tank system, so all parameters fixed

kBatteryModel int battery model number

+ Performance
MODEL_battery int + model (1 equivalent circuit, 2 lithium-ion) 1

Vref real + reference voltage Vref 4.2

xmbd real + maximum burst discharge current xmbd (1/hr) 20.

xCCmax real + maximum charge current xCCmax (1/hr) 4.

+ actual cell depth-of-discharge (dact = dmin + (dmax − dmin)duse)
DoDmin real + minimum dmin 0.0

DoDmax real + maximum dmax 0.8

Derived performance
CfromE real charge capacity C (A-hr) from usable energy capacity (MJ); (106/3600)/(DoDmax-DoDmin)/Vref

PfromE real power capacity P (hp or kW) from usable energy capacity (MJ); xmdb/(DoDmax-DoDmin)/Econv_dE

Structure: BatteryModel 314

+ Thermal Management System
+ mass flow (lb/sec or kg/sec) from rejected heat (hp or kW)

KTMSm0 real + constant KTMSm0 0.

KTMSm1 real + constant KTMSm1 0.07

XTMSm real + exponent XTMSm 1.

+ power (hp or kW) from mass flow (lb/sec or kg/sec)
KTMSp0 real + constant KTMSp0 0.

KTMSp1 real + constant KTMSp1 0.6

XTMSp real + exponent XTMSp 1.

+ gross jet force (lb or N) from mass flow (lb/sec or kg/sec)
KTMSf0 real + constant KTMSf0 0.

KTMSf1 real + constant KTMSf1 6.0

XTMSf real + exponent XTMSf 1.

+ weight (lb or kg)
KTMSw0 real + constant KTMSw0 4.0

KTMSw1 real + constant KTMSw1 0.3

XTMSwp real + exponent XTMSwp 1.

XTMSwm real + exponent XTMSwm 0.

+ Equivalent Circuit Model
KIND_eff int + kind (1 fixed, 2 function power) 2

+ discharge
eta_dischrg real + reference efficiency (at Pref) 1.00

loss_dischrg real + power loss (fraction Pref) 0.00

+ charge
eta_chrg real + reference efficiency (at Pref) 1.00

loss_chrg real + power loss (fraction Pref) 0.00

simple model: constant efficiencies eta_dischrg and eta_chrg (KIND_eff=1)

Structure: BatteryModel 315

+ Lithium-Ion Model
+ discharge

fcrit real + critical voltage factor (FV = fcrit is capacity) 0.6

fd real + nominal discharge voltage (Vd = fdVref) 1.0

+ open circuit voltage ratio (Vo = VdFV (d))
nFV int + number of points (maximum 40) 0

DoD(40) real + depth-of-discharge d (fraction) 0.

FV(40) real + FV 0.

Tref real + reference temperature Tref (deg C) 20.

fTC real + temperature control power loss fTC (fraction component power) 0.01

+ current influence on discharge voltage
R real + internal resistance xmbdCR/Vref 0.1

kdI real + depth-of-discharge kdIxmbdC 0.05

+ temperature influence on discharge voltage
kVT real + voltage increment kV T 0.005

kdT real + depth-of-discharge kdT 0.000005

+ charge
fc real + nominal charge voltage (Vc = fcVref) 1.0

kcV real + CC phase starting voltage decrement kcV 0.1

ks real + CV phase parameter kσ 0.2

Derived lithium-ion discharge
DoDrev(40) real reversed DoD

FVrev(40) real reversed FV

open circuit voltage ratio: monotonically decreasing; default used if nFV=0

default DoD = 0.,.1,.2,.3,.4,.5,.6,.7,.8,.9,.91,.92,.93,.94,.95,.96,.97,.98,.99,1.,1.01,1.02
default FV = 1.,.97,.95,.93,.915,.90,.89,.88,.87,.85,.847,.842,.835,.826,.815,.8,.78,.75,.7,.6,.4,0.

FV (d) defined for actual depth-of-discharge, used from dmin to dmax

316

Chapter 82

Structure: Location

Variable Type Description Default

+ Location
+ input
+ fixed (dimensional, arbitrary origin)

FIX_geom c*8 + input ’ ’

SL real + stationline
BL real + buttline
WL real + waterline

+ scaled (based on reference length, from reference point)
XoL real + x/L
YoL real + y/L
ZoL real + z/L

+ reference length
KIND_scale int + kind (0 global, 1 rotor radius, 2 wing span, 3 fuselage length) 0

kScale int + identification (component number) 1

Fixed input: FIX_geom = ’x’, ’y’, ’z’ (or combination) to override INPUT_geom=2

Geometry: Location for each component
fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL

stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m
scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale)

XoL + aft, YoL + right, ZoL + up; from reference point
option to fix some geometry (FIX_geom in Location override INPUT_geom)
option to specify reference length (KIND_scale in Location override global KIND_scale)

Reference point: KIND_Ref, kRef; input dimensional XX_Ref, or position of identified component
component reference must be fixed

Locations can be calculated from other parameters (configuration specific)

Structure: Location 317

Derived
input, from Aircraft%INPUT_geom and FIX_geom (1 fixed; 2 scaled)

INPUT_geom_x int x
INPUT_geom_y int y
INPUT_geom_z int z

from Aircraft%INPUT_geom and FIX_geom (0 calculated, 1 fixed, 2 scaled)
FIX_x int x
FIX_y int y
FIX_z int z
isFixed int all fixed (0 not, some scaled or calculated)

fixed (dimensional, arbitrary origin)
SLloc real stationline
BLloc real buttline
WLloc real waterline

scaled (based on reference length, from reference point)
XoLloc real x/L
YoLloc real y/L
ZoLloc real z/L

reference length
KIND_scale_loc int from Aircraft%KIND_scale and KIND_scale (1 rotor radius, 2 wing span, 3 fuselage length)
kScale_loc int from Aircraft%kScale and kScale (component number)
scale real reference length

FIX = 0: x calculation depends on component/configuraton; calc SLloc and XoLloc

FIX = 1: x from SLloc; calc XoLloc

FIX = 2: x from XoLloc; calc SLloc

Geometry (dimensional, body axes, relative reference point)
x real x (+ forward)
y real y (+ right)
z real z (+ down)

318

Chapter 83

Structure: Weight

Variable Type Description Default

WE real WEIGHT EMPTY
W_structure real STRUCTURE
W_wing real wing group
W_wing_basic real basic structure
W_wing_secondary real secondary structure
W_wing_fair real fairings (not RP8A)
W_wing_fit real fittings (not RP8A)
W_wing_fold real fold/tilt (not RP8A)
W_wing_control real control surfaces
W_rotor real rotor group
W_rotor_blade real blade assembly
W_rotor_hub real hub & hinge
W_rotor_basic real basic (not RP8A)
W_rotor_shaft real inter-rotor shaft (not RP8A)
W_rotor_fair real fairing/spinner (not RP8A)
W_rotor_fold real blade fold (not RP8A)
W_rotor_supt real rotor support structure (not RP8A)
W_rotor_duct real duct (not RP8A)
W_tail real empennage group
W_Htail real horizontal tail (not RP8A)
W_Htail_basic real basic (not RP8A)
W_Htail_fold real fold (not RP8A)
W_Vtail real vertical tail (not RP8A)
W_Vtail_basic real basic (not RP8A)
W_Vtail_fold real fold (not RP8A)
W_tailrotor real tail rotor (not RP8A)
W_tr_blade real blades
W_tr_hub real hub & hinge

Structure: Weight 319

W_tr_supt real rotor supports
W_tr_duct real rotor/fan duct
W_fuselage real fuselage group
W_fus_basic real basic (not RP8A)
W_fus_wingfold real wing & rotor fold/retraction (not RP8A)
W_fus_tailfold real tail fold/tilt (not RP8A)
W_fus_mar real marinization (not RP8A)
W_fus_press real pressurization (not RP8A)
W_fus_crash real crashworthiness (not RP8A)
W_gear real alighting gear group
W_gear_basic real basic (not RP8A)
W_gear_retract real retraction (not RP8A)
W_gear_crash real crashworthiness (not RP8A)
W_nacelle real engine section or nacelle group
W_nac_engsupt real engine support (not RP8A)
W_nac_cowling real engine cowling (not RP8A)
W_nac_pylon real pylon support (not RP8A)
W_airind real air induction group
W_propulsion real PROPULSION GROUP
W_engsys real engine system
W_engine real engine
W_exhaust real exhaust system
W_acc real accessories (not RP8A)
W_propeller real propeller/fan installation
W_prop_blade real blades (not RP8A)
W_prop_hub real hub & hinge (not RP8A)
W_prop_supt real rotor supports (not RP8A)
W_prop_duct real rotor/fan duct (not RP8A)
W_fuelsys real fuel system
W_fuel_tank real tanks and support
W_fuel_plumb real plumbing
W_drive real drive system
W_drive_box real gear boxes
W_drive_xmsn real transmission drive

Structure: Weight 320

W_drive_rtrsft real rotor shaft
W_drive_brake real rotor brake (not RP8A)
W_drive_clutch real clutch (not RP8A)
W_drive_gas real gas drive
W_equip real SYSTEMS AND EQUIPMENT
W_fltcont real flight controls group
W_fc_cockpit real cockpit controls
W_fc_afcs real automatic flight control system
W_fc_system real system controls
W_fc_fw real fixed wing systems
W_fc_fw_nonboost real non-boosted (not RP8A)
W_fc_fw_mech real boost mechanisms (not RP8A)
W_fc_rw real rotary wing systems
W_fc_rw_nonboost real non-boosted (not RP8A)
W_fc_rw_mech real boost mechanisms (not RP8A)
W_fc_rw_boost real boosted (not RP8A)
W_fc_cv real conversion systems
W_fc_cv_nonboost real non-boosted (not RP8A)
W_fc_cv_mech real boost mechanisms (not RP8A)
W_auxpower real auxiliary power group
W_instrument real instruments group
W_hydraulic real hydraulic group
W_hyd_fw real fixed wing (not RP8A)
W_hyd_rw real rotary wing (not RP8A)
W_hyd_cv real conversion (not RP8A)
W_hyd_eq real equipment (not RP8A)
W_pneumatic real pneumatic group
W_electrical real electrical group
W_elect_aircraft real aircraft (not RP8A)
W_elect_deice real anti-icing (not RP8A)
W_avionics real avionics group (mission equipment)
W_arm real armament group
W_armprov real armament provisions (not RP8A)
W_armor real armor (not RP8A)

Structure: Weight 321

W_furnish real furnishings & equipment group
W_environ real environmental control group
W_deice real anti-icing group
W_load real load & handling group
W_vib real VIBRATION (not RP8A)
W_cont real CONTINGENCY
W_fixUL real FIXED USEFUL LOAD
W_fixUL_crew real crew
W_fixUL_fluid real fluids (oil, unusable fuel) (not RP8A)
W_fixUL_auxtank real auxilary fuel tanks
W_fixUL_other real other fixed useful load (not RP8A)
W_fixUL_equip real equpment increment (not RP8A)
W_fixUL_foldkit real folding kit (not RP8A)
W_fixUL_extkit real wing extension kit (not RP8A)
W_fixUL_wingkit real wing kit (not RP8A)
W_fixUL_otherkit real other kit (not RP8A)
Wpayload real PAYLOAD
Wfuel real USABLE FUEL
Wfuel_std real standard tanks (not RP8A)
Wfuel_aux real auxiliary tanks (not RP8A)

Wscaled real scaled weight (sum all K=3 in operating weight)
Wfixed real fixed weight (sum all K=2 in operating weight)
Wfeature real military features in empty weight
Wbattsys real battery system (W_fuel_tank + W_fuel_plumb)

WO real OPERATING WEIGHT = weight empty + fixed useful load
WUL real USEFUL LOAD = fixed useful load + payload + usable fuel

GW real GROSS WEIGHT = weight empty + useful load = operating weight + payload + usable fuel

follows SAWE RP8A Group Weight Statement, except as noted
typical only lowest elements of hierarchy specified, others obtained by summation

set status flag when define weight
can define weights (k=2 or 3) at any level, ignore child weights if not lowest level

Structure: Weight 322

when print weight statement, designate all fixed (ie input) quantities

usage:
set all W=K=0; put W, with K=2 or 3
then fill structure: if K=0 and some child defined/sum, then W=

∑
(child) and K=1

addition or increment sums all elements, with status Kt of total as follows

Ka = 0 1 2 3

Kb = 0 0 1 2 3
Kb = 1 1 1 3 3
Kb = 2 2 3 2 3
Kb = 3 3 3 3 3

Status (0 none; 1 sum of child; 2 defined, fixed (input); 3 defined, not fixed (scaled, wt eq; or composite))
KE int WEIGHT EMPTY
K_structure int STRUCTURE
K_wing int wing group
K_wing_basic int basic structure
K_wing_secondary int secondary structure
K_wing_fair int fairings (not RP8A)
K_wing_fit int fittings (not RP8A)
K_wing_fold int fold/tilt (not RP8A)
K_wing_control int control surfaces
K_rotor int rotor group
K_rotor_blade int blade assembly
K_rotor_hub int hub & hinge
K_rotor_basic int basic (not RP8A)
K_rotor_shaft int inter-rotor shaft (not RP8A)
K_rotor_fair int fairing/spinner (not RP8A)
K_rotor_fold int blade fold (not RP8A)
K_rotor_supt int rotor support structure (not RP8A)
K_rotor_duct int duct (not RP8A)
K_tail int empennage group

Structure: Weight 323

K_Htail int horizontal tail (not RP8A)
K_Htail_basic int basic (not RP8A)
K_Htail_fold int fold (not RP8A)
K_Vtail int vertical tail (not RP8A)
K_Vtail_basic int basic (not RP8A)
K_Vtail_fold int fold (not RP8A)
K_tailrotor int tail rotor (not RP8A)
K_tr_blade int blades
K_tr_hub int hub & hinge
K_tr_supt int rotor supports
K_tr_duct int rotor/fan duct
K_fuselage int fuselage group
K_fus_basic int basic (not RP8A)
K_fus_wingfold int wing & rotor fold/retraction (not RP8A)
K_fus_tailfold int tail fold/tilt (not RP8A)
K_fus_mar int marinization (not RP8A)
K_fus_press int pressurization (not RP8A)
K_fus_crash int crashworthiness (not RP8A)
K_gear int alighting gear group
K_gear_basic int basic (not RP8A)
K_gear_retract int retraction (not RP8A)
K_gear_crash int crashworthiness (not RP8A)
K_nacelle int engine section or nacelle group
K_nac_engsupt int engine support (not RP8A)
K_nac_cowling int engine cowling (not RP8A)
K_nac_pylon int pylon support (not RP8A)
K_airind int air induction group
K_propulsion int PROPULSION GROUP
K_engsys int engine system
K_engine int engine
K_exhaust int exhaust system
K_acc int accessories (not RP8A)
K_propeller int propeller/fan installation
K_prop_blade int blades (not RP8A)

Structure: Weight 324

K_prop_hub int hub & hinge (not RP8A)
K_prop_supt int rotor supports (not RP8A)
K_prop_duct int rotor/fan duct (not RP8A)
K_fuelsys int fuel system
K_fuel_tank int tanks and support
K_fuel_plumb int plumbing
K_drive int drive system
K_drive_box int gear boxes
K_drive_xmsn int transmission drive
K_drive_rtrsft int rotor shaft
K_drive_brake int rotor brake (not RP8A)
K_drive_clutch int clutch (not RP8A)
K_drive_gas int gas drive
K_equip int SYSTEMS AND EQUIPMENT
K_fltcont int flight controls group
K_fc_cockpit int cockpit controls
K_fc_afcs int automatic flight control system
K_fc_system int system controls
K_fc_fw int fixed wing systems
K_fc_fw_nonboost int non-boosted (not RP8A)
K_fc_fw_mech int boost mechanisms (not RP8A)
K_fc_rw int rotary wing systems
K_fc_rw_nonboost int non-boosted (not RP8A)
K_fc_rw_mech int boost mechanisms (not RP8A)
K_fc_rw_boost int boosted (not RP8A)
K_fc_cv int conversion systems
K_fc_cv_nonboost int non-boosted (not RP8A)
K_fc_cv_mech int boost mechanisms (not RP8A)
K_auxpower int auxiliary power group
K_instrument int instruments group
K_hydraulic int hydraulic group
K_hyd_fw int fixed wing (not RP8A)
K_hyd_rw int rotary wing (not RP8A)
K_hyd_cv int conversion (not RP8A)

Structure: Weight 325

K_hyd_eq int equipment (not RP8A)
K_pneumatic int pneumatic group
K_electrical int electrical group
K_elect_aircraft int aircraft (not RP8A)
K_elect_deice int anti-icing (not RP8A)
K_avionics int avionics group (mission equipment)
K_arm int armament group
K_armprov int armament provisions (not RP8A)
K_armor int armor (not RP8A)
K_furnish int furnishings & equipment group
K_environ int environmental control group
K_deice int anti-icing group
K_load int load & handling group
K_vib int VIBRATION (not RP8A)
K_cont int CONTINGENCY
K_fixUL int FIXED USEFUL LOAD
K_fixUL_crew int crew
K_fixUL_fluid int fluids (oil, unusable fuel) (not RP8A)
K_fixUL_auxtank int auxilary fuel tanks
K_fixUL_other int other fixed useful load (not RP8A)
K_fixUL_equip int equipment increment (not RP8A)
K_fixUL_foldkit int folding kit (not RP8A)
K_fixUL_extkit int wing extension kit (not RP8A)
K_fixUL_wingkit int wing kit (not RP8A)
K_fixUL_otherkit int other kit (not RP8A)
Kpayload int PAYLOAD
Kfuel int USABLE FUEL
Kfuel_std int standard tanks (not RP8A)
Kfuel_aux int auxiliary tanks (not RP8A)
KO int OPERATING WEIGHT = weight empty + fixed useful load
KUL int USEFUL LOAD = fixed useful load + payload + usable fuel
KGW int GROSS WEIGHT = weight empty + useful load = operating weight + payload + usable fuel

