NASA/TP-20250010470

NDARC
NASA Design and Analysis of Rotorcraft

Input

Wayne Johnson
Ames Research Center
Moffett Field, California

November 2025

NASA STI Program ...

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain this
important role.

The NASA STI program operates under the auspices of
the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one of
the largest collections of aeronautical and space science
STI in the world. Results are published in both non-
NASA channels and by NASA in the NASA STI Report
Series, which includes the following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

e TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g., quick
release reports, working papers, and
bibliographies that contain minimal annotation.
Does not contain extensive analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

in Profile

CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include organizing and
publishing research results, distributing specialized

research announcements

and feeds, providing

information desk and personal search support, and
enabling data exchange services.

For more information about the NASA STI program,
see the following:

Access the NASA STI program home page at
http://www.sti.nasa.gov

E-mail your question to help@sti.nasa.gov

Write to:

NASA STI Information Desk
Mail Stop 148

NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TP-20250010470

NDARC
NASA Design and Analysis of Rotorcraft

Input

Wayne Johnson
Ames Research Center
Moffett Field, California

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, CA 94035-1000

November 2025

This report is available in electronic form at

http://ntrs.nasa.gov

Contents

Data Structures and Input 1
2. Input Based on CONfIGUIAtIONttt ettt et et e et et e e e e e e e e e e e e e e 13
T = 0 00 (< P 21

JOD 22
S 0 T AP 24
(O 5 /P 28
T OffDESIZN . .o 32
8. PeITOIMANCEttt e 33
9. MAPENZING . .« oottt e e e 34
L0, MaPARCTO . . .o 37
L1, FIHCONA . oot e et et e e e e e e e e e e e 40
120 MISSION .« .ttt et e e e e e 45
R Y 6N 50
T Sl L PP 55
IS5, SOIULION .« ...ttt et et e 66
TR 01 PP 70
A ' 0T 73 () P 75
L8, AITCIAt . oo 77
10, Sy SIOIMIS ... e 88
20, FUSCIAZE . ..ot e 96

Contents il

21, Landin@Gear e 103
2 RO ..ttt 105
23 WM it 131
24, Tl oo e e e 145
25, FUCITaNK . .. 150
20, PrOPUISIONttt e 155
27, EN@INEGTOUD . ..ttt e et e e e e 161
28, JEUGTOUP ..ottt ettt e e 170
20, CharGEGTIOUD 176
30. EngineModel 181
31, EngineParamN ... 187
32, EngineTable 189
33, ReCIPMOdel ... 191
34, CompressOrMOdELo 195
35, MOtorModel 197
30, JetMOAel . .. 200
37. FuelCellMOodel 203
38. SolarCellMOodel 205
39, BatteryMoOdel e 207
0. LOCALIONottt et e e e e e e 210

Chapter 1

Data Structures and Input

1-1 Overview

The NDARC code performs design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks
can include off-design mission performance analysis, flight performance calculation for point operating conditions, and generation of subsystem or component performance
maps. Figure 1-1 illustrates the tasks. The principal tasks (sizing, mission analysis, flight performance analysis) are shown in the figure as boxes with heavy borders. Heavy
arrows show control of subordinate tasks.

The aircraft description (figure 1-1) consists of all the information, input and derived, that defines the aircraft. The aircraft consists of a set of components, including fuselage,
rotors, wings, tails, and propulsion. This information can be the result of the sizing task; can come entirely from input, for a fixed model; or can come from the sizing task in
a previous case or previous job. The aircraft description information is available to all tasks and all solutions (indicated by light arrows).

The sizing task determines the dimensions, power, and weight of a rotorcraft that can perform a specified set of design conditions and missions. The aircraft size is characterized
by parameters such as design gross weight, weight empty, rotor radius, and engine power available. The relations between dimensions, power, and weight generally require
an iterative solution. From the design flight conditions and missions, the task can determine the total engine power or the rotor radius (or both power and radius can be fixed),
as well as the design gross weight, maximum takeoff weight, drive system torque limit, and fuel tank capacity. For each propulsion group, the engine power or the rotor
radius can be sized.

Missions are defined for the sizing task, and for the mission performance analysis. A mission consists of a number of mission segments, for which time, distance, and fuel
burn are evaluated. For the sizing task, certain missions are designated to be used for design gross weight calculations; for transmission sizing; and for fuel tank sizing. The
mission parameters include mission takeoff gross weight and useful load. For specified takeoff fuel weight with adjustable segments, the mission time or distance is adjusted
so the fuel required for the mission (burned plus reserve) equals the takeoff fuel weight. The mission iteration is on fuel weight or energy.

Flight conditions are specified for the sizing task, and for the flight performance analysis. For the sizing task, certain flight conditions are designated to be used for design gross
weight calculations; for transmission sizing; for maximum takeoff weight calculations; and for antitorque or auxiliary thrust rotor sizing. The flight condition parameters
include gross weight and useful load.

For flight conditions and mission takeoff, the gross weight can be maximized, such that the power required equals the power available.

A flight state is defined for each mission segment and each flight condition. The aircraft performance can be analyzed for the specified state, or a maximum effort performance
can be identified. The maximum effort is specified in terms of a quantity such as best endurance or best range, and a variable such as speed, rate of climb, or altitude. The
aircraft must be trimmed, by solving for the controls and motion that produce equilibrium in the specified flight state. Different trim solution definitions are required for
various flight states. Evaluating the rotor hub forces may require solution of the blade flap equations of motion.

Data Structures and Input

DESIGN

Sizing Task
size iteration -

fixed model or
previous job or
previous case

Y

ANALYZE

Airframe

Aircraft
Description

Aerodynamics Map

Engine
Performance Map

| Mission Analysis

Flight
Performance
Analysis

design)
conditions d.es1.gn
missions
Flight Condition
max GW

Mission
adjust & fuel wt iteration
max takeoff GW

\ v / each segment

max effort / trim aircraft / flap equations

Flight State

Figure 1-1

Outline of NDARC tasks.

Data Structures and Input

additional
output

additional
cases

INTERFACE
FILES

—
design

aircraft ————

description —
~—

geometry
solution
~—
performance
\—/

PRINT

airframe
aerodynamics

design and

performance

engine

——

performance

Figure 1-2 NDARC Interfaces.

COMPREHENSIVE
e

ANALYSIS

STRUCTURAL
—

DESIGN
LAYOUT DESIGN

COMPREHENSIVE
ANALYSIS

Data Structures and Input

&JOB INIT input=0,INIT data=0, &END

&DEFN action='ident’,created='time-date’,title='standard input’,b &END

L L L)) L))) L) g) 1L)) L) L)) Jf L g L) L) L) L) 1)) 1) dE)) 1)))) 1)) L g) 4)) 1)) 1)))

R (A (A (A (A (A (A (A (A (A (A A

&DEFN action='open file’,file='engine.list’,&END

&DEFN action='open file’,file='helicopter.list’,&END

&DEFN quant='Cases’, &END

&VALUE title='Helicopter’,TASK size=0,TASK mission=1,TASK perf=1, &END

&DEFN quant='Size’, &END
&VALUE nFltCond=0,nMission=0, &END

&DEFN quant='OffDesign’, &END

&VALUE title='mission analysis’,nMission=1,&END
&DEFN quant='OffMission’, &END

&VALUE

(one mission, mission segment parameters as arrays)
&END

&DEFN quant='Performance’ , &END

&VALUE title='performance analysis’,nFltCond=2, &END

&DEFN quant='PerfCondition’, &END

&VALUE
(one condition)
&END
&DEFN quant='PerfCondition’, &END
&VALUE
(one condition)
&END

&DEFN action='endofcase’,&END

O

&DEFN action='endofjob’,&END

Figure 1-3a Illustration of NDARC input (primary input).

Data Structures and Input

&DEFN action='ident’,created='time-date’,title='Helicopter’,b &END

L L L L)) L) L) gL) g) 1L)) L)))) g L g L) L 1)) Jf L) 1) 1) I g) 1))) 4))) L g) 4)) 1))))))
R (A (A (A (A (A (A (A (A (A (A (A A U (A (A A

! default helicopter
&DEFN action='configuration’, &END
&VALUE config='helicopter’,rotate=1,&END

&DEFN quant='Cases’, &END

&VALUE title='Helicopter’ ,FILE design='helicopter.design’, &END

&DEFN quant='Size’, &END

&VALUE
title='Helicopter’,
SIZE perf='none’,SET rotor='radius+Vtip+sigma’, 'radius+Vtip+sigma’,
FIX DGW=1,SET tank='input’,SET SDGW='input’, SET WMTO='input’,

&END

&DEFN quant='Solution’,&END

&VALUE &END

&DEFN quant='Aircraft’, &END
&VALUE (Aircraft parameters) &END
&DEFN quant='Geometry’, &END
&VALUE (geometry) &END

&DEFN quant='Rotor 1’ ,&END
&VALUE (Rotor 1 parameters) &END

(other parameters in other structures)

&DEFN quant='TechFactors’ , &END
&VALUE (technology factors) &END

T T T T T T T T T T T T TV T /N T I T TN T T T N]
R A (A ({0 ([(A (A (A (A (A A (A (A (A (A (A U (A U (A A (A (A A U

&DEFN action='endoffile’, &END

Figure 1-3b Illustration of NDARC input (secondary input file).

Data Structures and Input

1-2 NDARC Input and Output

Figure 1-2 illustrates the input and output environment of NDARC. Table 1-1 lists the possible input and output files. A job reads input from one or more files. The primary
input is obtained from standard input (perhaps redirected to a file). The primary input can direct the code to read other files, identified by file name or logical name. The
input data are read in namelist format. Unit numbers are part of the job input. Output file names are part of the case input. Input files names are defined in the input itself.

1-2.1 Input

Table 1-1. Input and output files.

file logical name

unit number (and default)

INPUT
Primary Input
Secondary Input File
Aircraft Description
Solution

OUTPUT
Output
Design
Performance
Airframe Aerodynamics
Engine Performance
Geometry
Aircraft Description
Solution
Sketch
Errors

standard input
FILE
FILE
FILE

standard output
DESIGNn
PERFn
AEROn
ENGINEn
GEOMETRYn
AIRCRAFTn
SOLUTIONN
SKETCHn
ERRORN

nuin =5

nufile = 40
nufile = 40
nufile = 40

nuout = 6
nudesign = 41
nuperf =42
nuaero =43
nuengine = 44
nugeom =45
nuacd = 46
nusoln =47
nusketch = 48
nuerror =49

Figure 1-3 illustrates NDARC input. The primary input starts with a JOB namelist, then DEFN namelists are read to define the action and contents of the subsequent
information. The job parameters include initialization control, error action, and input/output unit numbers. Job parameters can be read during case input using QUANT="Job'.
The initialization takes place before case input, so changed initialization parameters in QUANT="Job’ input take effect for the next case. The DEFN namelist has the following

parameters.

Data Structures and Input 7

a) ACTION: character string (length = 32; case independent).

b) QUANT: character string (length = 32, case independent); corresponds to data structure in input; string includes structure
number (1 or next condition/mission if absent).

¢) SOURCE: integer; for copy action.

d) FILE: file name or logical name (length = 256).

e) CREATED: character string of creation time and date (length = 20).
f) TITLE: character string of title identifying input file (length = 80).

g) VERSION: code version number as character string (Ilength = 6).

h) MODIFICATION: character string of code modification (length = 32).

Table 1-2 describes the options for the ACTION variable in the DEFN namelist. The code searches for the keyword in the ACTION character string. A solution file (text or
binary) can be written by an NDARC job and then read by a subsequent job, restoring the solution to the state that existed when the file was created. Then additional output
and additional cases can be obtained. An aircraft description file can be written by an NDARC job and then read by a subsequent job, restoring the aircraft model (but not the
solution). A secondary input file has DEFN namelists to define action and contents. When ACTION="end’ (or EOF) is encountered in a secondary input file, the file is closed
and the code returns to primary input.

A DEFN namelist with ACTION='ident’ identifies the file; probably there is only one identification per file, and only the last occurrence is stored. The identification consists
of the CREATED, TITLE, VERSION, MODIFICATION variables. CREATED and TITLE are written when a file is created by NDARC, and read and stored for each input file.
If present, VERSION and MODIFICATION are compared with the version and modification of the code, and input continues only if they match.

The parameter QUANT identifies the data structure to be read (namelist format), initialized, or copied. Table 1-3 describes the options. The input corresponds to the
data structures of the analysis. The QUANT string includes the structure number; if absent, the number is 1, or the next condition or mission. Note that each mission,
with the mission segment parameters as arrays, is input with QUANT='SizeMission’ or QUANT="OffMission’; and each condition is input with QUANT='SizeCondition" or
QUANT="PerfCondition’.

A case inherits input for flight conditions and missions from the previous case if INIT_input = last-case-input (default). A DEFN namelist with ACTION='"delete’ deletes
this input as specified by QUANT='"SizeCondition n', QUANT='"SizeMission n’, QUANT="OffMission n’, or QUANT="PerfCondition n’. ACTION="delete all’ deletes all (ignore
structure number); ACTION='delete one’ deletes structure n (all if number absent); ACTION="delete last’ deletes structure n and subsequent structures (all if number absent).

For ACTION='nosize’, input variables in the Size structure are set for no size iteration: SIZE_perf="none’, SIZE_engine="none’, SIZE_jet="none', SIZE_charge="none’,
SET_rotor="radius+Vtip+sigma', SET_wing="'area+span’, FIX_DGW=1, SET_tank='input’, SET_limit_ds='input’, SET_SDGW="input’, SET_WMTO="input’.

Data Structures and Input

Table 1-2. ACTION options.

ACTION keyword QUANT function

Primary Input Only

blank — blank open and read secondary input file, name = FILE
"open file’ file,open open and read secondary input file, name = FILE
'load aircraft’ aircraft,desc load aircraft description file, name = FILE
'read solution’ solution "text’ read complete solution file, name = FILE (text)
'read solution’ solution not ‘text’ read complete solution file, name = FILE (binary)
'end of case’ end+case stop case input, execute case

‘end of job’ end+job,quit stop job input, execute case, exit code

Primary or Secondary Input

blank — "structure’ read VALUE namelist

'read namelist’ list "structure’ read VALUE namelist

"‘copy input’ copy "structure’ copy input from source (same structure), SOURCE=SRCnumber
"initialize’ init "structure’ set structure variables to default values
"delete all’ del+all "structure’ delete all conditions or missions

'delete one’ del+one 'structure’ delete one condition or mission

‘delete last’ del+last "structure’ delete last conditions or missions
"‘configuration’ config set input based on aircraft configuration
‘nosize’ nosize set input for no size iteration
"identification’ ident identify file

"end’ end (or EOF) Secondary: close file, return to primary input
"end’ end (or EOF) Primary: same as ACTION="endofjob’

Data Structures and Input

Table 1-3. QUANT options.

QUANT data structures read maximum n
"Job’ Job

'Cases’ Cases

'Size’ SizeParam

'SizeCondition n’ one FltCond+FltState nFltCond
'SizeMission n’ one MissParam, MissSeg+FItState as array nMission
"OffDesign’ OffParam

'OffMission n’ one MissParam, MissSeg+FltState as array nMission
'Performance’ PerfParam

'PerfCondition n’ one FltCond+FltState nFltCond
'MapEngine’ MapEngine

'MapAero’ MapAero

'Solution’ Solution

"Cost’ Cost

'Emissions’ Emissions

'Aircraft’ Aircraft

'Systems’ Systems, WFItCont, WDelce

"Fuselage’ Fuselage, AFuse, WFuse

'LandingGear’ LandingGear, AGear, WGear

"Rotor n’ Rotor, PRotorInd, PRotorPro, PRotorTab, IRotor, DRotor, WRotor nRotor
'Wing n’ Wing, AWing, WWing, WWingTR nWing
"Tail n’ Tail, ATail, WTail nTail
"FuelTank n’ FuelTank, WTank nTank
"Propulsion n’ Propulsion, WDrive nPropulsion
'EngineGroup n’ EngineGroup, DEngSys, WEngSys nEngineGroup
'JetGroup n’ JetGroup, DJetSys, WletSys nJetGroup
'ChargeGroup n’ ChargeGroup, DChrgSys, WChrgSys nChargeGroup

'EngineModel n’
'EngineParamN n’
'EngineTable n’
'RecipModel n’
'CompressorModel n’
'MotorModel n’
"JetModel n’
'FuelCellModel n’
'SolarCellModel n’
'BatteryModel n’

EngineModel
EngineParamN
EngineTable
RecipModel
CompressorModel
MotorModel
JetModel
FuelCellModel
SolarCellModel
BatteryModel

nEngineModel
nEngineParamN
nEngineTable
nRecipModel
nCompressorModel
nMotorModel
nJetModel
nFuelCellModel
nSolarCellModel
nBatteryModel

'TechFactors’
'Geometry’

all TECH_xxx
all Location

Data Structures and Input 10

1-2.2 Formats
Namelist input has the following format (see also figure 1-3).

&DEFN action='IDENT’,created='time-date’,title='xxxX’,version='n.n’,modification='xxx’,&END
&DEFN quant='STRUCTURE n’, &END

&VALUE param=value, &END

&DEFN action='NAMELIST',quant='STRUCTURE n’, &END

&VALUE param=value, &END

&DEFN action=’'COPY’,quant=’STRUCTURE n’,source=#, &END

An aircraft description file is written in a separate file by NDARC, from theDesign(kcase):

&DEFN action='IDENT’,created='time-date’,title='xxxX’',version='n.n’,modification='xxx’,&END

&VALUE_ADIMEN nrotor=m,nwing=m,ntail=m,ntank=m,npropulsion=m,nenginegroup=m,njetgroup=m,nchargegroup=m,
nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m, nmotormodel=m,njetmodel=m,
nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m, &END

&VALUE theStructure$xxx, &END

&VALUE theStructure%xxx, &END

&VALUE theStructure$xxx, &END

This aircraft description file is read by identifying it in the primary input:

&DEFN action='AIRCRAFT’,file='aircraft.acd’,b &END

A solution file is written in a separate file by NDARC, from theDesign(kcase), in binary or text format:

&DEFN action='IDENT’,created='time-date’,title='xxX’',version='n.n’,modification='xxx’,&END

&VALUE_ADIMEN nrotor=m,nwing=m,ntail=m,ntank=m,npropulsion=m,nenginegroup=m,njetgroup=m,nchargegroup=m,
nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m, nmotormodel=m,njetmodel=m,
nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m, &END

&VALUE_SDIMEN nsizecond=m,nsizemiss=m,nperfcond=m,noffmiss=m, &END

&VALUE theStructure%$xxx,&END

&VALUE theStructure%$xxx, &END

&VALUE theStructure$xxx, &END

This solution file is read by identifying it in the primary input, with QUANT identifying the file as text or binary:

&DEFN action='SOLUTION,quant='TEXT’,file='aircraft.soln’&END

Data Structures and Input 11

1-2.3 Conventions
Each flight condition (F1tCond and F1tState variables) is input in a separate SizeCondition or PerfCondition namelist.

Each mission (MissParam, MissSeg, and F1tState variables) is input in a separate SizeMission or OffMission namelist. All mission segments are defined in
this namelist, so MissSeg and F1tState variables are arrays. Each variable gets one more dimension, with the first array index always segment number.

Geometry input includes Location variables, which are read as elements of the data structure (for example, loc_rotor%SL).

Variables can appear in more than one namelist. Specifically there are separate namelists for all technology factors (all TECH_xxx variables), and all geometry (all Location
variables), with corresponding options for output. A variable that is a scalar in the Rotor,Wing, Tail, Propulsion, EngineGroup, JetGroup, or ChargeGroup
input becomes an array in the TechFactors or Geometry input. Note that it is the Location variable that is the array (for example, loc_rotor(1)%SL).

Case is not important in character string input. Character string input consists of keywords; the code searches for the keywords in the string.
Default values are specified in the dictionary (blank implies a default of zero); all elements of arrays have the same default value.

Tasks, aircraft, and components have title variables. There are also notes variables (long character string) to record information about the input.

1-3 Software Tool

All information about data structures is contained in a dictionary file. This information includes the parameter name, dimension, type, default value, description, identification
as input, and formats for write of the parameter. A software tool was created to manage the data, including construction of the module of data structures. The software tool
reads this dictionary file and creates subroutines for the input process: namelist read, copy, print of input, initialization, set to default. This software tool is a program that
manipulates character strings, to produce compilable module and subroutines for NDARC.

1-4 Data Structures

Table 1-4 outlines the data structures used for NDARC. The following chapters describe the contents of each structure. Note that a ”+” sign in the column between the type
and description identifies input variables. Input variables can be changed by the analysis, so may not be the same at the end of a case as at the beginning. All variables, input
and other, are initialized to zero or blank. If default values exist (only for input variables), they supersede that initialization.

Data Structures and Input

Table 1-4. NDARC data structures.

12

Design
Cases
Size
SizeParam
FltCond(nfltmax)
FltState(nfltmax)
Mission(nmissmax)
MissParam
MissSeg(nsegmax)
FltState(nsegmax)
OffDesign
OffParam
Mission(nmissmax)
MissParam
MissSeg(nsegmax)
FltState(nsegmax)
Performance
PerfParam
FltCond(nfltmax)
FltState(nfltmax)
MapEngine
MapAero
Solution
Cost
Emissions
Aircraft
[Location]loc_cg
Weight
XAircraft
Systems
Weight
WFltCont
WhDelce

Fuselage
[Location]loc_fuselage
AFuse
Weight
WFuse

LandingGear
[Location]loc_gear
AGear
Weight
WGear

Rotor(nrotormax)
[Location]loc_rotor
[Location]loc_pylon
[Location]loc_pivot
[Location]loc_nac
PRotorInd
PRotorPro
PRotorTab
IRotor
DRotor
Weight
WRotor

Wing(nwingmax)
[Location]loc_wing
AWing
Weight
WWing
WWingTR

Tail(ntailmax)
[Location]loc_tail
ATail
Weight
WTail

FuelTank(ntankmax)
[Location]loc_auxtank(nauxtankmax)
Weight
WTank

Propulsion(npropmax)
Weight
WDrive

EngineGroup(nengmax)
[Location]loc_engine
DEngSys
Weight
WEngSys

JetGroup(njetmax)
[Location]loc_jet
DJetSys
Weight
WJetSys

ChargeGroup(nchrgmax)
[Location]loc_charger
DChrgSys
Weight
WChrgSys

EngineModel(nengmax)

EngineParamN(nengpmax)

EngineTable(nengmax)

RecipModel(nengmax)

CompressorModel(nengmax)

MotorModel(nengmax)

JetModel(njetmax)

FuelCellModel(nchrgmax)

SolarCellModel(nchrgmax)

BatteryModel(ntankmax)

FltState(nfltmax)

FltAircraft

FltFuse

FltGear
FltRotor(nrotormax)
FltWing(nwingmax)
FltTail(ntailmax)
FltTank(ntankmax)
FltProp(npropmax)
FItEngn(nengmax)
FltJet(njetmax)
FltChrg(nchrgmax)

13

Chapter 2

Input Based on Configuration

The rotorcraft configuration is identified by the variable config in the QUANT="Aircraft’ input. With ACTION='configuration’, the analysis defines a number of input parameters
in order to facilitate modelling of conventional configurations. The input required to execute ACTION="configuration’ is:

&DEFN action='configuration’, &END

&VALUE config='aaaa’,nRotor=#,rotate=#,#,overlap_tandem=#,#,ang multicopter=#,#, &END
The VALUE namelist contains only the parameters Aircraft%config (rotorcraft configuration), Aircraft%nRotor (number of rotors, only for multicopter), Rotor%rotate (direction
of rotation, each rotor), Rotor%overlap_tandem (each rotor, only for tandem helicopter), and Rotor%ang_multicopter (each rotor, only for multicopter). The convention is that
the first rotor is the main rotor for the helicopter or compound configuration; the front rotor for the tandem configuration; the right rotor for the tiltrotor configuration. This
capability has been implemented for rotorcraft, helicopter, tandem, coaxial, tiltrotor, compound, multicopter, and airplane configurations. There is common input for all
configurations, and special input for each except the rotorcraft. The analysis creates the following input, through information at the end of the NDARC structures file. Note
that default values are defined for all input quantities.

2-1 All Configurations

a) Components: nRotor=2 (except multicopter), nWing=0, nTail=2; nPropulsion=1, nEngineGroup=1, nEngineModel=1, nJetGroup=0, nChargeGroup=0

b) Aircraft

Aircraft controls: ncontrol=7, IDENT _control="coll’,'latcyc’,'Ingcyc’, pedal’, tailinc’,’elevator’,'rudder’
Control states: nstate_control=1

Trim states: nstate_trim=10, selected by FItAircraft%STATE_trim=IDENT_trim; compound state not active

IDENT_trim mtrim trim_quant trim_var
6-variable 'free’ 6 'force x','force y’','force z',’moment x’,’'moment y’',’'moment z’' ‘coll’,’lateyc’,’Ingcyc’, pedal’,"pitch’, "roll’
longitudinal 'long’ 4 "force x',’'force z','moment y','moment z' "coll’,’Ingeyc’, pitch’,'pedal’
symmetric 3-variable 'symm’ 3 "force x',"force z','moment y’ "coll’,"Ingcyc’,"pitch’
weight and drag "force’ 2 "force x','force z' "coll’,"pitch’
hover thrust and torque "hover’ 2 'force z',"moment 2z’ "coll’,"pedal’
hover thrust "thrust’ 1 "force z' "coll’
hover rotor Cr /o 'rotor’ 1 'CTs rotor 1’ "coll’
wind tunnel 'windtunnel’ 3 'CTs rotor 1',’betac 1','betas 1’ "coll’,"latcyc’, ' Ingeyc’
full power "power’ 1 'P margin 1’ "coll’
ground run "ground’ 1 "force x’ "coll’
compound 'comp’ 6 'force x’,"force y’,'force z',’'moment x’,’'moment y',"'moment z’ ‘coll’,’lateyc’,’Ingcyc’, pedal’,"prop’, 'roll’

Input Based on Configuration

¢) Systems: MODEL_FWfc=0, MODEL_CVfc=0 (no fixed wing flight controls, no conversion controls)
d) Landing Gear: KIND_LG=0 (fixed gear), Wgear%nLG=3
e) Fuel Tank: place=1 (internal tank), Mauxtanksize=1, WTank%ntank_int=1, WTank%nplumb=2

f) Rotor
First rotor is primary: kPropulsion=1, KIND_xmsn=1
Second and other rotors are dependent: kPropulsion=1, KIND_xmsn=0, INPUT_gear=1 (input quantity is tip speed)
Configuration: direction="main’
Drag: SET_aeroaxes=1 (helicopter), Idrag=0. (not tilt); DRotor%SET_Dspin=1, DRotor%DoQ_spin=0. (no spinner drag)
Weight: WRotor%MODEL_config=1 (rotor), WRotor%KIND_rotor=2 (not tilting)
Control:
INPUT coll=0, INPUT cyclic=0, INPUT _incid=0, INPUT _cant=0, INPUT_diam=0 (no connection to aircraft controls)
T coll=0., T _latcyc=0., T_Ingcyc=0., T_incid=0., T_cant=0., T_diam=0. (all controls, all states)
KIND_control=1 (1 for thrust and TPP command)
KIND_coll=2 (1 for thrust, 2 for C/o)
KIND_cyclic=1 (1 for TPP tilt, 2 for hub moment, 3 for lift offset)
KIND_tilt=0 (fixed shaft)

g) Wing

Control:
INPUT_flap=0, INPUT _flaperon=0, INPUT _aileron=0, INPUT _incid=0 (no connection to aircraft controls)
T_flap=0., T_flaperon=0., T_aileron=0., T_incid=0. (all controls, all states, all panels)

Drag: Idrag=0. (not tilt)

h) Tail

First tail is horizontal tail: KIND_tail=1, WTail%MODEL_Htail=1 (helicopter)

Second tail is vertical tail: KIND_tail=2, WTail%MODEL_Vtail=1 (helicopter)

Configuration: KIND_TailVol=2, TailVolRef=1 (rotor reference)

Control:
INPUT _cont=1 (tail control connection to aircraft controls), INPUT _incid=0 (no connection of tail incidence to aircraft controls)
T_cont=0., T_incid=0. (all controls, all states)

i) Propulsion: nGear=1, STATE_gear wt=1, INPUT_DN=0

14

Input Based on Configuration

j) Engine Group
Configuration: kPropulsion=1, INPUT_gear=1 (gear ratio from N_spec), SET_power=0 (sized), fPsize=1., direction="x', SET_geom=0 (standard position)
Drag: MODEL _drag=1, Idrag=0. (not tilt)

k) Engine Group, Jet Group, Charge Group

Control:
INPUT_amp=0, INPUT_mode=0, INPUT _incid=0, INPUT_yaw=0 (no connection to aircraft controls)
T_amp=0., T_incid=0., T_yaw=0. (all controls, all states)

2-2 Helicopter

a) Rotor
First rotor is main rotor: config='main’, fDGW=1., fArea=1., SET_geom='"standard’
rotation: r = 1; if (Rotor(1)%rotate < 0) r = —1
control: INPUT _coll=1, INPUT _latcyc=1, INPUT _Ingcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_latcyc(2,1)= — r, T_Ingcyc(3,1)=-1.
Second rotor is tail rotor: config="tail+antiQ’, fThrust=1., fArea=0., SET_geom="tailrotor’, mainRotor=1
direction="tail’, WRotor% MODEL_config=2 (tail rotor)
rotation: r = 1; if (Rotor(1)%rotate < 0) r = —1
control: KIND_control=2 (thrust and NFP command); INPUT _coll=1, T_coll(4,1)= — r (rotor collective connection to aircraft control 'pedal’)
Performance: PRotorlnd%MODEL_twin="none’
Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

b) Tail

Control: INPUT _incid=1 (tail incidence connection to aircraft controls)

Horizontal tail: T_incid(5,1)=1. (incidence connection to aircraft control 'tailinc’), T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(7,1)=1. (rudder direct control)

¢) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15
2-3 Tandem

a) Components: nTail=0 (no tail)

b) Fuel Tank: place=2 (sponson)

15

Input Based on Configuration

¢) Rotor
Configuration: config='main+tandem’, fDGW=.5, SET_geom="tandem’, fRadius=1.
fArea=1 — m/2, from m = (2/m)(cos~* h — hy/1 — h2), h = 1 — overlap_tandem
First rotor is front rotor: otherRotor=2
rotation: r = 1, if (Rotor(1)%rotate < 0) r = —1
control: INPUT _coll=1, INPUT _latcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(3,1)=-1., T_latcyc(2,1)= — r, T_latcyc(4,1)= —r
Second rotor is aft rotor: otherRotor=1, rotate=-Rotor(1)%rotate
rotation: r = 1, if (Rotor(1)%rotate < 0) r = —1;r = —r
control: INPUT _coll=1, INPUT _latcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(3,1)= 1., T_latcyc(2,1)= — r, T_latcyc(4,1)=r
Performance: PRotorlnd%MODEL_twin="tandem’, PRotorInd%Kh_twin=1., PRotorInd%Kf_twin=0.85, IRotor%MODEL _int_twin=2
Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

d) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

2-4 Coaxial

a) Rotor
Configuration: config="main+coaxial’, fDGW=.5, fArea=.5, SET_geom='coaxial’, fRadius=1.
First rotor is lower rotor: otherRotor=2
rotation: r = 1, if (Rotor(1)%rotate < 0) r = —1
control: INPUT _coll=1, INPUT _latcyc=1, INPUT_Ingcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(4,1)=r, T_latcyc(2,1)= — 7, T_Ingcyc(3,1)=-1.
Second rotor is upper rotor: otherRotor=1, rotate=-Rotor(1)%rotate
rotation: 7 = 1, if (Rotor(1)%rotate < 0) r = —1;r = —r
control: INPUT coll=1, INPUT latcyc=1, INPUT Ingcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(4,1)=r, T_latcyc(2,1)= — r, T_Ingcyc(3,1)=-1.
Performance: PRotorlnd%MODEL_twin="coaxial’, PRotorInd%Kh_twin=1., PRotorInd%Kf_twin=0.85, IRotor%MODEL _int_twin=2
Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

b) Tail
Horizontal tail: T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(7,1)=1. (rudder direct control)

¢) Propulsion: WDrive%ngearbox=1, WDrive%ndriveshaft=0, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

16

Input Based on Configuration

2-5 Tiltrotor

a) Components: nWing=1, nEngineGroup=2 (engine at each nacelle)

b) Aircraft

Aircraft controls: ncontrol=10, IDENT _control="coll’,'latcyc’,'Ingcyc’,'pedal’, tilt’, flap’, 'flaperon’,’elevator’, aileron’,'rudder’
Control states: nstate_control=2 (state 1 for helicopter mode, state 2 for airplane mode)

Control state in conversion: kcont_hover=1, kcont_conv=1, kcont_cruise=2

Drive state in conversion: kgear_hover(1)=1, kgear_conv(1)=1, kgear_cruise(1)=1

¢) Systems: MODEL_FWfc=1, MODEL_CVfc=1 (fixed wing flight controls, conversion control)
d) Landing Gear: KIND_LG=1 (retractable)
e) Fuel Tank: place=3 (wing), fFuelWing(1)=L1.

f) Rotor
Configuration: config='main+tiltrotor’, fDGW=.5, fArea=1.; SET_geom="tiltrotor’, KIND_TRgeom=1 (from clearance), fRadius=1., WingForRotor=1
First rotor is right rotor: otherRotor=2
helicopter mode control: INPUT_coll=1, INPUT _Ingcyc=1 (rotor control connection to aircraft controls)
helicopter mode control: T_coll(1,1)=1., T_coll(2,1)=-1., T_Ingcyc(3,1)=-1., T_Ingcyc(4,1)=1.
Second rotor is left rotor: otherRotor=1, rotate=-Rotor(1)%rotate; INPUT_gear=2 (input quantity is gear ratio)
helicopter mode control: INPUT _coll=1, INPUT _Ingcyc=1 (rotor control connection to aircraft controls)
helicopter mode control: T_coll(1,1)=1., T_coll(2,1)=1., T_Ingcyc(3,1)=-1., T_Ingcyc(4,1)=-1.
Airplane mode control state: T_coll(1,2)=1. (collective connection to aircraft control 'coll’)
Tilt: KIND_tilt=1 (shaft control = incidence), incid_ref=90. (helicopter mode reference), SET_Wmove=1, fWmove=1. (wing tip weight move)
control: INPUT _incid=1, T_incid(5,1)=1., T_incid(5,2)=1. (incidence connection to aircraft control 'tilt")
Performance: PRotorlnd%MODEL_twin="tiltrotor’, PRotorInd%Kh_twin=1., PRotorInd%Kf_twin=1., IRotor%MODEL _int_twin=2
Weight: WRotor%KIND_rotor=1 (tilting)
Drag: SET_aeroaxes=2 (tiltrotor), Idrag=90. (tiltrotor)
DRotor%SET_Dhub=1, DRotor%DoQ_hub=0., DRotor%CD_hub=0., DRotor%SET_Vhub=1, DRotor%DoQV_hub=0., DRotor%CDV_hub=0. (no hub drag)

g) Wing
Configuration: fDGW=1., nRotorOnWing=2, RotorOnWing(1)=1, RotorOnWing(2)=2, SET_ext=0
Control: KIND_flaperon=3 (independent), nVincid=1
INPUT _flap=1, INPUT _flaperon=1, INPUT _aileron=1 (wing control connection to aircraft controls)
T_aileron(2,2)=-1. (airplane mode aileron connection to aircraft control 'latcyc’)

17

Input Based on Configuration

T _flap(6,1)=1., T_flap(6,2)=1. (flap direct control)

T_flaperon(7,1)=1., T_flaperon(7,2)=1. (flaperon direct control)

T_aileron(9,1)=1., T_aileron(9,2)=1. (aileron direct control)
Weight: WWing%MODEL_wing=3 (tiltrotor)

h) Tail
Configuration: KIND_TailVol=1, TailVolRef=1 (wing reference); Wtail%MODEL_Htail=2, Wtail%MODEL_Vtail=2 (tiltrotor)
Horizontal tail control: nVincid=1
T_cont(3,2)=1. (airplane mode elevator connection to aircraft control 'Ingcyc’)
T_cont(8,1)=1., T_cont(8,2)=1. (elevator direct control)
Vertical tail control: nVincid=1
T_cont(4,2)=1. (airplane mode rudder connection to aircraft control 'pedal’)
T_cont(10,1)=1., T_cont(10,2)=1. (rudder direct control)

1) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

j) Engine Group

Configuration: fPsize=0.5, SET_geom=1 (tiltrotor)

First engine group: RotorForEngine=1

Second engine group: RotorForEngine=2

Control: INPUT _incid=1; T_incid(5,1)=1., T_incid(5,2)=1. (nacelle incidence connection to aircraft control 'tilt")
Drag: SET_Swet=1, Swet=0., MODEL_drag=0, ldrag=90. (no engine nacelle drag)

DEngSys%SET_drag=1, DEngSys%DoQ=0., DEngSys%CD=0.; DEngSys%SET_Vdrag=1, DEngSys%DoQV=0., DEngSys%CDV=0.

2-6 Compound

a) Components: nRotor=3, nWing=1

b) Aircraft
Aircraft controls: ncontrol=10, IDENT _control="coll’,'latcyc’,'Ingcyc’, pedal’, tailinc’,"elevator’, rudder’,'prop’, aileron’, flap’
Trim states: nstate_trim=11; compound state active

¢) Rotor
First rotor is main rotor: config='main’, fDGW=1., fArea=1., SET_geom='"standard’
rotation: 7 = 1; if (Rotor(1)%rotate < 0) r = —1
control: INPUT _coll=1, INPUT _latcyc=1, INPUT _Ingcyc=1 (rotor control connection to aircraft controls)

18

Input Based on Configuration

control: T_coll(1,1)=1., T_latcyc(2,1)= — r, T_Ingcyc(3,1)=-1.
Second rotor is tail rotor: config="tail+antiQ’, fThrust=1., fArea=0., SET_geom="tailrotor’, mainRotor=1

direction="tail’, WRotor%MODEL_config=2 (tail rotor)

rotation: r = 1; if (Rotor(1)%rotate < 0) r = —1

control: KIND_control=2 (thrust and NFP command); INPUT _coll=1, T_coll(4,1)= — r (rotor collective connection to aircraft control 'pedal’)
Third rotor is propeller: config="prop+auxT’, fThrust=1., fArea=0., SET_geom="standard’

direction="prop’, WRotor%MODEL _config=3 (auxiliary thrust)

control: KIND_control=2 (thrust and NFP command); INPUT _coll=1, T_coll(8,1)=1. (rotor collective connection to aircraft control 'prop’)
Performance: PRotorlnd%MODEL_twin="none’
Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

d) Wing

Configuration: fDGW=1.

Control: nVincid=1
INPUT _flap=1, INPUT _flaperon=1, INPUT _aileron=1 (wing control connection to aircraft controls)
T_aileron(9,1)=1. (aileron direct control)
T_flap(10,1)=1. (flap direct control)

Weight: WWing%MODEL_wing=2 (parametric)

e) Tail

Control: INPUT _incid=1 (tail incidence connection to aircraft controls)

Horizontal tail: T_incid(5,1)=1. (incidence connection to aircraft control 'tailinc’), T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(7,1)=1. (rudder direct control)

f) Propulsion: WDrive%ngearbox=3, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15

2-7 Multicopter

a) Components: nTail=0 (no tail)

b) Rotor
Configuration: config="main+multirotor’, fDGW=1/nRotor, fArea=1., SET_geom="multicopter’
Control: KIND_control=2 (thrust and NFP command); INPUT _coll=1
rotation: 7 = 1; if (rotate < 0) r = —1; a =ang_multicopter
T _coll(1,1)=1., T_coll(2,1)=—sin(a), T_coll(3,1)=cos(a), T_coll(4,1)=r (rotor collective connection to aircraft controls)

Input Based on Configuration 20

Performance: PRotorInd%MODEL_twin="multirotor’; xh_multi=0., xp_multi=0., xf_multi=0., except 1.0 for this rotor
Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

¢) Propulsion: WDrive%ngearbox=nRotor, WDrive%ndriveshaft=nRotor-1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

2-8 Airplane

a) Components: nRotor=1, nWing=1
b) Solution: KIND_Lscale=2 (wing span reference)

¢) Aircraft
Geometry: INPUT_geom=2, KIND_scale=2, kScale=1 (geometry scaled with wing span); KIND_Ref=2, kRef=1 (wing reference)
Aircraft controls: ncontrol=9, IDENT_control="coll’,'latcyc’, Ingcyc’,'pedal’, tailinc’,’elevator’,'rudder’, "aileron’, flap’

coll = propeller, latcyc = lateral stick, Ingcyc = longitudinal stick

d) Systems: MODEL_FWfc=1 (fixed wing flight controls)

e) Rotor
Propeller: config="prop+auxT’, fThrust=1., fDGW=0., SET_geom="standard’
direction="prop’, WRotor%MODEL _config=3 (auxiliary thrust)
Control: KIND_control=2 (thrust and NFP command); INPUT _coll=1, T_coll(1,1)=1. (rotor collective connection to aircraft control 'coll")

f) Wing

Configuration: fDGW=1.

Control: nVincid=1
INPUT _flap=1, INPUT _aileron=1 (wing control connection to aircraft controls)
T_aileron(2,1)=1. (lateral stick), T_aileron(8,1)=1. (aileron direct control)
T_flap(9,1)=1. (flap direct control)

Weight: WWing%MODEL_wing=2 (parametric)

g) Tail: KIND_TailVol=1, TailVolRef=1 (wing reference)

Control: INPUT _incid=1 (tail incidence connection to aircraft controls)

Horizontal tail: T_incid(5,1)=1. (incidence connection to aircraft control 'tailinc’), T_cont(3,1)=1. (longitudinal stick), T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(4,1)=1. (pedal), T_cont(7,1)=1. (rudder direct control)

h) Propulsion: WDrive%ngearbox=1, WDrive%ndriveshaft=1, WDrive%fShaft=0.1

21

Chapter 3

Parameters

Parameters Value

ncasemax 10 nfltmax 21 nauxtankmax 4
nfilemax 40 ndesignmax 41 ngearmax 8
nrotormax 16 ncontmax 20 nratemax 20
npropmax 16 nsweepmax 200 nengtmax 20
nengmax 16 gsweepmax 4 nengkmax 6
njetmax 4 ntrimstatemax 20 nengrmax 40
nchrgmax 4 mtrimmax 16 nengpmax 20
nstatemax 10 nvelmax 20 nengcmax 80
nwingmax 8 ntablemax 32 nspeedmax 8
ntailmax 6 nrmax 51 nrowmax 4000
ntankmax 4 mrmax 40 naeromax 100
nmissmax 20 mpsimax 36

nsegmax 40 npanelmax 5

Chapter 4

22

Common: Job

Variable Type Description Default
+ Initialization
INIT _input int + input parameters (0 default, 1 last case input, 2 last case solution) 1
INIT data int + other parameters (0 default, 1 start of last case, 2 end of last case) 0
INIT _input:
if default, all input variables set to default values
if last-case-input, then case inherits input at beginning of previous case
if last-case-solution, then case inherits input at end of previous case
use INIT_input=2 to analyze case #1 design in subsequent cases
INIT_data: if always start-last-case, then case starts from default
if default, all other variables set to default values
+ Errors
ACT _error int + action on error (0 none, 1 exit) 1
ACT _version int + action on version mismatch in input (0 none, 1 exit) 0
+ File open
OPEN status int + status keyword for write (0 unknown, 1 replace, 2 new, 3 old) 2
+ Input/output unit numbers
+ input
nuin int + standard input 5
nufile int + secondary file input 40
+ output
nuout int + standard output 6
nudesign int + design (DESIGNn) 41

Common: Job

nuperf
nuaero
nuengine
nugeom
nuacd
nusoln
nusketch
nuerror

int
int
int
int
int
int
int
int

+ 4+ 4+ + + + + +

performance (PERFn)

airframe aerodynamics (AEROn)
engine performance (ENGINEn)
geometry output (GEOMETRYn)
aircraft description (AIRCRAFTn)
solution (SOLUTIONN)

sketch output (SKETCHn)

errors (ERRORn)

default input/output unit numbers usually acceptable
default OPEN_status can be changed as appropriate for computer OS

23

42
43
44
45
46
47
48
49

Chapter 5

24

Structure: Cases

Variable Type Description Default
+ Case Description
title c*100 + title
subtitlel c*100 + subtitle
subtitle2 c*100 + subtitle
subtitle3 c*100 + subtitle
notes c*1000 + notes
ident c*¥32 + identification
+ Case Tasks (0 for none)
TASK_Size int + size aircraft for design conditions 1
TASK_Mission int + mission analysis 1
TASK_Perf int + flight performance analysis 1
TASK_Map_engine int + map of engine performance 0
TASK_Map_aero int + map of airframe aerodynamics 0
Turn off all tasks to just initialize and check the model, including geometry and weights
+ Write Input Parameters
WRITE_input int + selection (0 none, 1 all, 2 first case) 2
WRITE_input_TechFactors int + TechFactors (0 for none) 1
WRITE_input_Geometry int + Geometry (0 for none)
+ Output
+ selection (0 for none)
OUT _design int + design file 0

Structure: Cases

OUT _perf
OUT_geometry
OUT _aircraft
OUT _solution
OUT _sketch
OUT _error

FILE_design
FILE perf
FILE_geometry
FILE_aircraft
FILE solution
FILE sketch
FILE engine
FILE_aero
FILE_error

WRITE_page
WRITE_design
WRITE_wt_level
WRITE_wt_long
WRITE_energy
WRITE_flight
WRITE_files

WRITE_sketch_load
WRITE_sketch_cond

ksketch

int
int
int
int
int
int

c*256
c*256
c*256
c*256
c*256
c*256
c*256
c*256
c*256

int
int
int
int
int
int
int
int
int
int

I T T S S S S e e e T T T T T R I S S S s

performance file
geometry file
aircraft description file
solution file (1 text, 2 binary)
sketch file
errors file
file name or logical name (blank for default logical name)
design file (DESIGNn)
performance file (PERFn)
geometry file (GEOMETRYn)
aircraft description file (AIRCRAFTn)
solution file (SOLUTIONnN)
sketch file (SKETCHn)
engine performance file (ENGINEnN)
airframe aerodynamics file (AEROn)
errors file (ERRORnN)
formats
page control (0 none, 1 form feed, 2 extended Fortran)
design (1 first case only, 2 all cases)
weight statement, max level (1 to 5)
weight statement, style (O omit zero lines, 1 all lines)
fuel energy for burn weight (0 for none)
flight state, component loads (0 for none)
design, performance, or geometry (1 single file of all cases)
sketch component forces (0 none)
sketch flight condition (0 none, 1 design, 2 performance)
flight condition number

selected files are generated for each case (n = case number in default name)
option single file of all cases for design, performance, or geometry (form feed between cases)
size and analysis tasks can produce design and performance files
same information as in standard output, in tab-delimited form
aircraft or solution file can be read by subsequent case or job
geometry file has information for graphics and other analyses

25

O O O O o o

OO, OO, OOUIN

Structure: Cases

SET_grav
grav

density ref
csound_ref

Units

Units_miss
Units_vel
Units_alt
Units_pay
Units_time
Units_dist
Units_temp
Units_drag
Units_ ROC

Units_Dscale
Units_energy

int
real

real
real

int

int
int
int
int
int
int
int
int
int

int
int

+ 4+ 4+ 4+ 4+ +

+ 4+ 4+ A+ A+ +

sketch file has information to check geometry and solution (DXF format)

flight condition required to use Euler angles, control and incidence, component forces
engine map task (TASK_Map_engine) produces engine performance file
airframe aerodynamics map task (TASK_Map_aero) produces airframe aerodynamics file
error messages to standard output (OUT_error=0) or separate file (OUT _error=1)

Gravity
specification (0 standard, 1 input)
input gravitational acceleration g
Environment
reference density (0. for air at SLS)
reference speed of sound (0. for air at SLS)

Units
analysis units (1 English, 2 SI)
units for input of missions and flight conditions
override default units (0 no, 1 yes)
velocity units (0 knots; 1 mile/hr, 2 km/hr, 3 ft/sec, 4 m/sec)
altitude units (0 ft or m; 1 ft, 2 m)
payload units (0 1b or kg; 1 Ib, 2 kg)
time units (0 minutes; 1 hours)
distance units (0 nm; 1 miles; 2 km)
temperature (0 For C; 1 F, 2 C)
drag units (0 ft? or m?; 1 ft2, 2 m?)
rate of climb units (0 ft/min; 1 ft/sec, 2 m/sec)
units for parameters
input D /q scaled with gross weight (0 analysis default, 1 English, 2 SI)
units for energy input and output (1 MJ, 2 kWh)

Analysis units: must be same for all cases in job
English: ft-slug-sec-F; weights in 1b, power in hp (internal units)
SI: m-kg-sec-C; weights in kg, power in kW (internal units)

26

O OO OO0 oOoo oo

Structure: Cases

Weight in the design description is actually mass
pounds converted to slugs using reference gravitational acceleration
Default units for flight condition and mission: override with Units_xxx
speed in knots, time in minutes, distance in nm, ROC in ft/min
Input Efuel_cap, Eaux_cap always MJ; internal energy units MJ
If load aircraft description or solution file, checked that Units not changed

27

Chapter 6

28

Structure: Size

Variable Type Description Default
+ Size Aircraft for Design Conditions and Missions
title c*100 + title
notes c*1000 + notes
+ Sizing Method
SIZE_perf(npropmax) c*16 + quantity sized from performance ‘engine’
SIZE_engine(nengmax) c*16 + engine group sized from performance 'none’
SIZE_jet(njetmax) c*16 + jet group sized from performance jet’
SIZE_charge(nchrgmax) c*16 + charge group sized from performance 'none’
SIZE_param int + parameter iteration (0 not required) 0
SET_rotor(nrotormax) c*32 + rotor parameters 'DL+Vtip+CWs'
SET_wing(nwingmax) c*16 + wing parameters "WL+aspect’
FIX_DGW int + design gross weight (0 calculated, 1 fixed) 0
FIX_WE int + weight empty (0 calculated, 1 fixed, 2 scaled) 0
SET_tank(ntankmax) c*16 + fuel tank capacity "miss’
SET_SDGW c*16 + structural design gross weight "f(DGW)'
SET_WMTO c*16 + maximum takeoff weight 'f(DGW)'
SET_limit_ds(npropmax) c*16 + drive system torque limit 'ratio’

size task (Cases%TASK_Size=1): at least one nFltCond or nMission
no size task (Cases%TASK_Size=0): size input specifies how fixed aircraft determined

SIZE_perf: size power-producing engines of propulsion group
‘engine’ = power from maximum of power required for all designated conditions and missions
"rotor’ = radius from maximum of power required for all designated conditions and missions
'none’ = power required not used to size engine/rotor
flight conditions and missions (max GW, max effort, or trim)
that have zero power margin are not used to size engine or rotor
that have zero torque margin are not used to size transmission

Structure: Size

29

SIZE_engine: size power-consuming engines of engine group
‘engine’ = power from maximum of power required for all designated conditions and missions
flight conditions and missions (max GW, max effort, or trim)
that have zero power margin are not used to size engine group
designated only for engine groups that consume power
engine groups that produce power sized with propulsion group (SIZE_perf)
'none’ = power required not used to size engine group
SIZE jet:
"jet’ = thrust from maximum of thrust required for all designated conditions and missions
'none’ = thrust required not used to size jet group
flight conditions and missions (max GW, max effort, or trim)
that have zero thrust margin are not used to size jet group
SIZE_charge:
"charge’ = power from maximum of power required for all designated conditions and missions
'none’ = power required not used to size charge group
'SIZE_param’: use to force parameter iteration

SET_rotor, rotor parameters: required for each rotor

rotor parameters: input three or two quantities, others derived
SET_rotor = input three of ('radius’ or disk loading 'DL’ or 'ratio’), '"CWSs', 'Vtip', 'sigma’
except if SIZE_perf="rotor’: SET_rotor = input two of 'CWSs', 'Vtip’, 'sigma’ for one or more main rotors
SET _rotor = 'ratio+XX-+XX' to calculate radius from radius of another rotor
tip speed is Vtip_ref for drive state #1

rotor parameters for an antitorque or aux thrust rotor:
SET_rotor = input three of ('radius’ or 'DL’ or 'ratio’ or 'scale’), 'CWs', 'Vtip', 'sigma’
SET_rotor = 'scale+XX+XX' to calculate tail rotor radius from parametric equation,

using main rotor radius and disk loading

thrust from designated sizing conditions and missions (DESIGN_thrust)

SET_wing, wing parameters: for each wing; input two quantities, other two derived
SET_wing = input two of (‘area’ or wing loading 'WL'), ('span’ or 'ratio’ or 'radius’or 'width’ or 'hub’ or 'panel’),
"chord’, aspect ratio 'aspect’
SET_wing = 'ratio+XX' to calculate span from span of another wing
SET_wing = 'radius+XX’ to calculate span from rotor radius
SET_wing = 'width+XX’ to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)

Structure:

Size

SET_wing = 'hub+XX’ to calculate span from rotor hub position (tiltrotor)
SET_wing = 'panel+XX’ to calculate span from wing panel widths

FIX_DGW: input DGW restricts SIZE_perf, SET_GW parameters
FIX_WE: fixed or scaled weight empty obtained by adjusting contingency weight

scaled with design gross weight: Wgp=dWE+WE*W

SET_tank, fuel tank sizing: usable fuel capacity Wfuel_cap (weight) or Efuel_cap (energy)

'input’ = input Wfuel_cap or Efuel_cap
'miss’ = calculate from mission fuel used
Wfuel_cap or Efuel_cap = max(fFuel_cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))
"f(miss)’ = function of mission fuel used
Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*((maximum mission fuel)+(reserve fuel))
'used’ = calculate from maximum fuel quantity in tank during mission
Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*(maximum fuel in tank)

"XX+power' = and calculate from mission battery discharge power

SET_SDGW, structural design gross weight:

"input’ = input
'f(DGW)' = based on DGW; W p=dSDGW+SDGW*Wp,

'f(WMTO)' = based on WMTO; Wgp=dSDGW+HSDGW*W ;10
'maxfuel’ = based on fuel state; Wsp=dSDGW+HSDGW*W s, W5 = Wp-Wfuel DGW+fFuelSDGW*Wiiel—cap

'perf’ = calculated from maximum gross weight at SDGW sizing conditions (DESIGN_sdgw)
Aircraft input parameters: dSDGW, fSDGW, fFuelSDGW
SET_WMTO, maximum takeoff weight:

"input’ = input
'f(DGW)' = based on DGW; W;70=dWMTO+WMTO*W p

'f(SDGW)' = based on SDGW; W ;70=dWMTO+HWMTO*Wgsp
'maxfuel’ = based on maximum fuel; W70=dWMTO+HWMTO*W g, Wg = Wp-Wfuel DGW+Wiyel—cap

'perf’ = calculated from maximum gross weight at WMTO sizing conditions (DESIGN_wmto)

Aircraft input parameters: dWMTO, fWMTO

Structure:

nFltCond

nMission

Size

31

SET_limit_ds, drive system torque limit: input (use Plimit_xx) or calculate (from fPlimit_xx)
"input’ = Plimit_ds input
'ratio’ = from takeoff power, fPlimit_ds) (Neng Peng)
'Pav’ = from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Qret/Qprim) Y (Neng Pav)
'Preq’ = from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Qrer/Qprim) Y (Neng Preq)
engine shaft limit also uses EngineGroup%SET_limit_es
rotor shaft limit also uses Rotor%SET_limit_rs, rotor limits only use power required (or input)

input required to transmit sized rotorcraft to another job (through aircraft description file) or to following case:
turn off sizing: Cases%TASK_size=0, Cases%TASK_mission=1, Cases% TASK_perf=1
fix aircraft: use ACTION="nosize’, or
SIZE_perf="none’, SIZE_engine="none’, SIZE_jet="none’, SIZE_charge="none’
SET_rotor="radius+Vtip+sigma’, SET_wing='area+span’, FIX_DGW=1
SET tank='input’, SET _limit_ds='input’, SET_SDGW='"input', SET_WMTO='"input’
with wing panels: SET_wing="WL+panel’, Wing%SET_panel="width-+taper’,’span-+taper’

+ Sizing Flight Conditions

int + number of conditions (maximum nfltmax) 0
+ Design Missions

int + number of missions (maximum nmissmax) 0

input one condition (FltCond and FltState variables) in SizeCondition namelist

input one mission (MissParam, MissSeg, and FltState variables) in SizeMission namelist
all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays
each variable gets one more dimension, first array index is always segment number

32

Chapter 7

Structure: OffDesign

Variable Type Description Default
+ Mission Analysis

title c*100 + title

notes c*1000 + notes
+ Missions

nMission int + number of missions (maximum nmissmax) 0

mission analysis input required if Cases% TASK_Mission=1

input one mission (MissParam, MissSeg, and FltState variables) in OffMission namelist
all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays
each variable gets one more dimension, first array index is always segment number

Chapter 8

33

Structure: Performance

Variable Type Description Default
+ Flight Performance Analysis

title c*100 + title

notes c*1000 + notes
+ Performance Flight Conditions

nFltCond int + number of conditions (maximum nfltmax) 0

flight performance analysis input required if Cases% TASK_Perf=1

input one condition (FltCond and FltState variables) in PerfCondition namelist

Chapter 9

34

Structure: MapEngine

Variable Type Description Default
+ Map of Engine Performance
title c*100 + title
notes c*1000 + notes
+ Identification
kEngineGroup int + engine group 1
KIND_map int + Kind (1 performance, 2 model) 1
engine map only available for RPTEM model and reciprocating engine model (performance only)
engine map input required if Cases%TASK_Map_engine=1
only performance parameters or only model parameters used
+ Performance
+ independent variables (0 none, 1 altitude, 2 temperature, 3 flight speed, 4 engine speed, 5 power)
SET _var(5) int + first set 0
SET _var2(5) int + second set 0
WRITE_header int + output format (1 single header, 2 header for inner variable) 2
SET_atmos c*12 + atmosphere specification "std’
+ altitude h (Units_alt)
altitude_min real + minimum 0.
altitude_max real + maximum 20000.
altitude_inc real + increment 1000.
altitude_base real + baseline 0.

Structure: MapEngine

temp_min
temp_max
temp_inc
temp_base

Vkts_min
Vkts_max
Vkts_inc
Vkts_base
SET_rpm
Nturbine_min
Nturbine_max
Nturbine_inc
Nturbine_base
SET_power
power_min
power_max
power_inc
power_base
STATE_IRS
KIND_loss

real
real
real
real

real
real
real
real
int

real
real
real
real
int

real
real
real
real
int

int

R i T o S S I T S A

temperature 7 or temperature increment A7" (Units_temp)
minimum
maximum
increment
baseline
flight speed V' (TAS, Units_vel)
minimum
maximum
increment
baseline
engine speed N (1 rpm, 2 percent)
minimum
maximum
increment
baseline
power required (1 power, 2 fraction of power available (0. to 1.+)
minimum
maximum
increment
baseline
IR suppressor system state (O off, hot exhaust; 1 on, suppressed exhaust)
installation losses (0 for none)

35

100.
10.

200.

independent variables: 1 to 5 variables, last is innermost loop; outer loop is always rating
quantities not identified as independent variables fixed at baseline values

SET_atmos, atmosphere specification:
determines whether temp_xxx is temperature or temperature increment
'std’ = standard day at specified altitude (use altitude_xxx)
"temp’ = standard day at specified altitude, and specified temperature (use altitude_xxx, temp_xxx)
'dtemp’ = standard day at specified altitude, plus temperature increment (use altitude_xxx, temp_xxx)
see FltState%SET_atmos for other options (polar, tropical, and hot days)

Structure: MapEngine

nV_model
V_model(10)
V_min
V_max

V inc

ntheta_model
theta_model(10)
theta_min
theta_max

theta _inc

fN_min
fN_max
fN _inc

fP_min
fP_max
fP_inc

int

real
real
real
real

int

real
real
real
real

real
real
real

real
real
real

T T i S S S S e S e e T

Model
flight speeds V(TAS, Units_vel)

36

number (maximum 10) 1
values 0.
minimum 0.
maximum 400.
increment 50.
temperature ratio 7'/7;
number (maximum 10) 1
values 1.
minimum .8
maximum 1.1
increment .02
engine speed, N/Ngpec (percent)
minimum 90.
maximum 110.
increment 5.
fraction static MCP power, P/ Pyc
minimum 1
maximum 2.
increment 1
RPTEM model

performance: fuel flow, mass flow, net jet thrust, optimum turbine speed

vs power fraction and airspeed (use fP and V_model)
turbine speed: power ratio vs turbine speed and airspeed (use fN and V_model)
power available: specific power, mass flow, power, fuel flow

vs temperature ratio (use theta and V_model)

vs airspeed (use V and theta_model)

37

Chapter 10

Structure: MapAero

Variable Type Description Default
+ Map of Airframe Aerodynamics
title c*100 + title
notes c*1000 + notes
+ Tables
KIND_table int + kind (1 one-dimensional, 2 multi-dimensional) 1
+ aerodynamic loads (0 for components off)
SET_fuselage int + fuselage and landing gear 1
SET _tail int + tails 1
SET_wing int + wings 1
SET _rotor int + rotors 1
SET_engine int + engines and fuel tank 1
airframe aerodynamics map input required if Cases%TASK_Map_aero=1
multi-dimensional: generate 6 files of three-dimensional tables
one file for each load=DRAG, SIDE, LIFT, ROLL, PITCH, YAW
filename=FILE aero//load or AEROn//load
one-dimensional: generate 1 file of all six loads
function of single independent variable = var_lift(1)
+ Operating Condition
STATE_control int + aircraft control state 1
STATE_LG c*12 + landing gear state "retract’

Nauxtank(nauxtankmax,ntankmax)
int + number of auxiliary fuel tanks N,yxtank (€ach aux tank size) 0

Structure: MapAero

SET_extkit

KIND _alpha
SET_comp_control
control(ncontmax)
tilt

alpha

beta

var_lift(3)
var_drag(3)
var_side(3)
var_pitch(3)
var_roll(3)
var_yaw(3)

angle_lowinc
angle_highinc
angle_low
angle_max

control_lowinc
control_highinc
control_low
control_max

int
int
int
real
real
real
real

c*16
c*16
c*16
c*16
c*16
c*16

real
real
real
real

real
real
real
real

+ 4+ + + + + +

R i T T S S S S e S e e T

wing extension kit on aircraft (O none, 1 present)

angle of attack and sideslip angle representation (1 conventional, 2 reversed)
use component control (0 for ¢ = T'cac; 1 forc = Teac + o)

aircraft controls

tilt

angle of attack a

sideslip angle

38

o = o=

co oo

landing gear state: STATE_LG="extend’, 'retract’ (keyword = ext, ret)

Independent variables

lift

drag

side force
pitch moment
roll moment
yaw moment

Variable range

angle of attack and sideslip variation
low range increment (deg)
high range increment (deg)
low range value (deg)
maximum value (deg)
control variation
low range increment (deg)
high range increment (deg)
low range value (deg)
maximum value (deg)

40.
180.

45.
90.

Structure: MapAero

gamma_lowinc
gamma_highinc
gamma_low
gamma_max

real
real
real
real

+ + + + +

third independent variable
low range increment (deg)
high range increment (deg)
low range value (deg)
maximum value (deg)

var_load identify independent variables
only var_lift(1) used for KIND_table=one-dimensional
values: 'alpha’, 'beta’, IDENT_control(ncontrol)
var_load(2) blank for 1D table, var_load(3) blank for 2D table
alpha/beta/controls/tilt fixed if not independent variable (tilt replace control(ktilt))
assume control system defined so aircraft controls connected to flaperon, elevator, aileron, rudder

angle, control, gamma variation: by lowinc for -low to +low; by highinc to -max and +max
maximum total values = naeromax

39

20.
20.
60.
60.

Chapter 11

40

Structure: FltCond

Variable Type Description Default
+ Sizing or Performance Flight Condition
title c*100 + title
label c*8 + label
+ Specification
SET_GW c*12 + gross weight 'DGW’
GW real + input gross weight Wg 0.
dGW real + gross weight increment 0.
fGW real + gross weight factor 1.
dPav(npropmax) real + power increment, each propulsion group 0.
fPav(npropmax) real + power factor, each propulsion group 1.
dTav(njetmax) real + thrust increment, each jet group 0.
fTav(njetmax) real + thrust factor, each jet group 1.
SET_WIlimit c*12 + gross weight limit 'none’
Wilimit real + input gross weight limit 0.
SET alt int + altitude (O input, 1 from KIND_source) 0
+ source for gross weight and altitude
KIND_source int + kind (1 size mission, 2 size condition, 3 off design mission, 4 performance condition) 1
kSource int + mission or condition number 0
kSegment int + segment number 0
seg_source int + segment (1 start, 2 midpoint) 1
SET_UL c*12 + useful load 'pay’
Whpay real + input payload weight W, (Units_pay) 0.
Npass int + number of passengers Npaqs 0
Wpay_cargo real + cargo Weargo (Units_pay) 0.
Wopay_extload real + external load Wy _10aq (Units_pay) 0.
Wpay _ammo real + ammunition W mo (Units_pay) 0.
Wpay_weapons real + weapons Wieapons (Units_pay) 0.

Structure: FltCond

dFuel(ntankmax)
fFuel(ntankmax)
SET_auxtank(ntankmax)
mauxtank(ntankmax)
dNauxtank(ntankmax)

real
real
int
int
int

Nauxtank(nauxtankmax,ntankmax)

dWcrew
dNcrew
dWoful(10)
dWequip
dNcrew_seat
dNpass_seat

SET_foldkit
SET_extkit(nwingmax)
SET_wingkit(nwingmax)
SET otherkit
DESIGN_engine
DESIGN_jet
DESIGN_charge
DESIGN_GW
DESIGN_xmsn
DESIGN_sdgw
DESIGN_wmto
DESIGN_thrust

int

real
int
real
real
int
int

int
int
int
int
int
int
int
int
int
int
int
int

+ 4+ + + + +

T i T i S S e e S A

fuel tank system
fuel weight or energy increment
fuel capacity factor
auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 0 no change)
tank size changed (-1 first, -2 first size already used, m for m-th size)
number tanks added or dropped

number of auxiliary fuel tanks N,yxtank (€ach aux tank size)
fixed useful load
crew weight increment
number of crew increment ¢ N ew
other fixed useful load increment (nWoful categories)
equipment weight increment
crew seat increment 0 Nerew—scat
passenger seat increment 6 Npags—scat
kits on aircraft (0 none, 1 present)
folding kit
wing extension kit
wing kit on aircraft
other kit on aircraft
design condition for power (1 to use for engine sizing)
design condition for jet thrust (1 to use for jet group sizing)
design condition for charge power (1 to use for charge group sizing)
design condition for DGW (1 to use for DGW calculation)
design condition for transmission (1 to use for transmission sizing)
design condition for SDGW (1 to use for SDGW calculation)
design condition for WMTO (1 to use for WMTO calculation)
design condition for antitorque or aux thrust (1 to use for rotor sizing)

label is short description for output
sizing flight condition: use all parameters except sweep
fixed gross weight conditions not used to determine DGW, SDGW, WMTO
(set DESIGN_GW=0, DESIGN_sdgw=0, DESIGN_wmto=0)
condition not used to size engine or rotor if power margin fixed (max GW, max effort, or trim)
condition not used to size transmission if zero torque margin (max GW, max effort, or trim)

41

co0o PP

e e = e T = O = S G S o S ST SRR T

Structure: FltCond

performance flight condition: not use DESIGN_xx
SET_GW, SET_UL values determine which input parameters used

SET_GW, set gross weight Wg:

'DGW’ = design gross weight Wp; input (FIX_DGW) or calculated

'SDGW' = structural design gross weight Wgp (may depend on DGW)

'WMTO’ = maximum takeoff gross weight W ;o (may depend on DGW)

'f(DGW)' = function DGW: fGW*W p+dGW

'f(SDGW)' = function SDGW: fGW*Wgp+dGW

"f(WMTO)' = function WMTO: fGW*Wj;ro+dGW

"input’ = input (use GW)

'source’ = gross weight from specified mission segment or flight condition (KIND_source)

"f(source)’ = function of source: fGW*Wyoyrce+dGW

'maxP’, 'max’ = maximum GW for power required equal specified power: Py, = fPavP,, + dPav
min((f Pawpe + d) — Pregpa) = 0, over all propulsion groups

'maxQ’ = maximum GW for transmission torque equal limit: zero torque margin
min(Piyis — Preq) = 0, over all propulsion groups, engine groups, and rotors

'maxPQ’, 'maxQP’ = maximum GW for power required equal specified power and transmission torque equal limit
most restrictive of power and torque margins

'maxJ’ = maximum GW for jet thrust required equal specified thrust: T}, = fTavly, + dTav
min((fTpwsc + d) — Treqia) = 0, over all jet groups

'maxPJ’, 'maxQJ’, 'maxPQJ’ = maximum GW for most restrictive of power, torque, and thrust margins

'pay+fuel’ = input payload and fuel weights; gross weight fallout

SET_WIlimit: weight limit for SET_GW="max’

'none’ = no limit

'f(DGW)' = function DGW: fGW*W p+dGW

'f(SDGW)’ = function SDGW: fGW*Wgp+dGW

"f(WMTO)' = function WMTO: fGW*Wj;70+dGW

'input’ = input (use Wlimit)

SET_UL, set useful load: with fixed useful load adjustments in fallout weight
'pay’ = input payload weight (Wpay); fuel weight fallout
"fuel’ = input fuel weight (dFuel, fFuel, Nauxtank); payload weight fallout
'pay+fuel’ = input payload and fuel weights; gross weight fallout

if SET_GW="pay+fuel’, assume SET_UL same (actual SET_UL ignored)

42

Structure: FltCond

SET_sweep int
KIND_sweep int
INIT_sweep int
nquant_sweep int
quant_sweep(gsweepmax) c*12
sweep_first(qsweepmax) real
sweep_last(qsweepmax) real
sweep_inc(gsweepmax) real
nsweep(gsweepmax) int

sweep(nsweepmax,qsweepmax) real

+ 4+ 4+ A+ A+ o+ +

43

KIND_source, source for gross weight or altitude: source must be solved before this condition
calculation order: size missions, size conditions, off design missions, performance conditions

input fuel weight: Wiye1 = min(dFuel+fFuelxWeuel—cap; Wiuel—cap) + 2 Nauxtank«Waux—cap

auxiliary fuel tanks: SET_auxtank used for fallout fuel weight (SET_UL="pay’)
adjust Nauxtank for first fuel tank system with SET_auxtank >0
otherwise number of auxiliary fuel tanks fixed at input value

payload: only Wpay used if SET_Wopayload = no details
crew: only dWcrew used if SET_Wcrew = no details
equipment: dNcrew_seat and dNpass_seat require non-zero weight per seat

Parameter sweep

sweep (0 for none, 1 from list, 2 from range)
kind (1 single sweep sequence, 2 nested sweeps)
initialize trim (O for not)
number of swept quantities (1 to gsweepmax)
quantity (parameter name)
range
first parameter value
last parameter value
parameter increment
list
number of values (maximum nsweepmax)
parameter values

= O = O

Parameter sweep: only for performance flight conditions, not sizing flight conditions
maximum total number of values for all conditions is nsweepmax
KIND_sweep: single sweep, simultaneously varying nquant_sweep quantities; or nquant_sweep nested sweeps
Sweeps executed from sweep_last to sweep_first
sweep analyzed using single data structure, only solution for sweep_first saved (last value executed)
sweep_last (first value executed) should be condition that will converge
sign of parameter step determined by sign of (sweep_last-sweep_first); sign of sweep_inc ignored

Structure: FltCond

Single sweep sequence: only use nsweep(1)
sweep_inc of first quantity determines number of values, sweep_inc of other quantities not used
INIT_sweep: control/pitch/roll values of trim iteration initialized from previous condition of sweep
Auvailable parameters: quant_sweep = parameter name
GW, dGW, fGW, dPavn, fPavn, dTavn, fTavn, Wpay, dFueln, fFueln, dWcrew, dWequip
Vkts, Mach, ROC, climb, side, pitch, roll, rate_turn, nz_turn, bank_turn, rate_pullup, nz_pullup
ax_linear, ay_linear, az_linear, nx_linear, ny_linear, nz_linear
altitude, dtemp, temp, density, csound, viscosity, HAGL
controln, coll, latcyc, Ingcyc, pedal, tilt, Vtipn, Npecn, fPower, fThrust, fCharge, fTorque
DoQ_pay, fDoQ_pay, DoQV_pay, dSLcg, dBLcg, dWLcg, trim_targetn
n = propulsion group (Vtip, Nspec, dPav, fPav), jet group (dTav, fTav), fuel tank system, control number, or trim quantity
n = 1 if absent from quant_sweep
for fPower, value is factor on input fPower for all engine groups, all propulsion groups
for fThrust, value is factor on input fThrust for all jet groups
for fCharge, value is factor on input fCharge for all charge groups
for fTorque, value is factor on input fTorque for for all propulsion groups

44

Chapter 12

45

Structure: Mission

Variable Type Description Default
+ Mission Profile
title c*100 + title
label c*8 + label
+ Specification
SET_GW c*16 + mission takeoff gross weight W 'pay+miss’
GW real + input gross weight 0.
dGW real + gross weight increment 0.
fGW real + gross weight factor 1.
SET_WIlimit c*16 + gross weight limit 'none’
Wilimit real + input gross weight limit 0.
SET_UL c*¥16 + useful load 'pay+miss’
Whpay real + input takeoff payload weight W, (Units_pay) 0.
Npass int + number of passengers Ny 0
Wpay_cargo real + cargo Weargo (Units_pay) 0.
Whpay_extload real + external load Wy _10aq (Units_pay) 0.
Wpay ammo real + ammunition W nmo (Units_pay) 0.
Wpay_weapons real + weapons Wieapons (Units_pay) 0.
SET_pay c*16 + payload changes "delta’
+ fuel tank systems
FIX_missfuel(ntankmax) int + mission fuel weight (O calculated, 1 fixed) 0
dFuel(ntankmax) real + fuel weight or energy increment 0.
fFuel(ntankmax) real + fuel capacity factor 1.
SET_auxtank(ntankmax) int + auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 3 increase at start and drop, 0 no change) 1
mauxtank(ntankmax) int + tank size changed (-1 first, -2 first size already used, m for m-th size) -1
dNauxtank(ntankmax) int + number tanks added or dropped 1

Nauxtank(nauxtankmax,ntankmax)

nt

+

number of auxiliary fuel tanks N, yxtank (€ach aux tank size)

Structure: Mission

SET foldkit
SET _reserve
fReserve

dist_inc
time_inc

alt_inc

VTO inc
hTO_inc
DESIGN_engine
DESIGN_jet
DESIGN_charge
DESIGN_GW
DESIGN_xmsn
DESIGN_tank
DESIGN_thrust

int
int
real

real
real
real
real
real
int
int
int
int
int
int
int

+ 4+ F o+

fixed useful load
folding kit on aircraft (O none, 1 present)
fuel reserve (1 fraction mission fuel, 2 fraction fuel capacity, 3 only mission segments)
fuel reserve fraction fies
split segments
distance increment (Units_dist)
time increment (Units_time)
altitude increment (Units_alt)
takeoff velocity increment
takeoff height increment
design mission for power (1 to use for engine sizing)
design mission for jet thrust (1 to use for jet group sizing)
design mission for charge power (1 to use for charge group sizing)
design mission for DGW (1 to use for DGW calculation)
design mission for transmission (1 to use for transmission sizing)
design mission for fuel tank (1 to use for fuel tank capacity)
design mission for antitorque or aux thrust (1 to use for rotor sizing)

46

100.
30.
2000.
10.
10.

e el e e e e

label is short description for output

sizing mission: use all parameters
fixed gross weight missions not used to determine DGW (set DESIGN_GW=0)
mission segment not used to size engine or rotor if power margin fixed (max GW, max effort, or trim)
mission segment not used to size transmission if zero torque margin (max GW, max effort, or trim)
mission segment not used for sizing if set MissSeg%SizeZZZ=0

off design mission: not use DESIGN_xx

SET_GW, SET_UL values determine which input parameters used

SET_GW, set mission takeoff gross weight Wg:
'DGW’ = design gross weight Wp; input (FIX_DGW) or calculated
'SDGW' = structural design gross weight Wsp (may depend on DGW)
'WMTO'’ = maximum takeoff gross weight W7o (may depend on DGW)
'f(DGW)' = function DGW: fGW*W p+dGW
'f(SDGW)’ = function SDGW: fGW*Wgp+dGW
"f(WMTO)' = function WMTO: fGW*Wjy;ro+dGW

Structure: Mission

47

'input’ = input (use GW)

'maxP’, 'max’ = maximum GW for power required equal specified power: P,.., = fPavF,, + dPav
at mission segment MaxGW, minimum gross weight of designated segments
min((fPyvpa + d) — Pregpa) = 0, over all propulsion groups

'maxQ’ = maximum GW for transmission torque equal limit: zero torque margin
at mission segment MaxGW, minimum gross weight of designated segments
min(Piimit — Preq) = 0, over all propulsion groups, engine groups, and rotors

'maxPQ’, 'maxQP’ = maximum GW for power required equal specified power and transmission torque equal limit
at mission segment MaxGW, minimum gross weight of designated segments
most restrictive of power and torque margins

'maxJ’ = maximum GW for jet thrust required equal specified thrust: T}.., = fTavTy, + dTav
at mission segment MaxGW, minimum gross weight of designated segments
min((fTawsc + d) — Treqra) = 0, over all jet groups

'maxPJ’, 'maxQJ’, 'maxPQJ’ = maximum GW for most restrictive of power, torque, and thrust margins

'pay—+fuel’ = input payload and fuel weights; gross weight fallout

'pay+miss’ = input payload, fuel weight from mission; gross weight fallout

SET_WIlimit: weight limit for SET_GW="max’

'none’ = no limit

'f(DGW)' = function DGW: fGW*W p+dGW

'f(SDGW)' = function SDGW: fGW*Wgp+dGW

"f(WMTO)' = function WMTO: fGW*Wj;ro0+dGW

'input’ = input (use Wlimit)

SET_UL, set useful load:
'pay’ = input payload weight (Wpay); fuel weight fallout
"fuel’ = input fuel weight (dFuel, fFuel, Nauxtank); initial payload weight fallout
'miss’ = fuel weight from mission; initial payload weight fallout
'pay+fuel’ = input payload and fuel weights; gross weight fallout
'pay+miss’ = input payload, fuel weight from mission; gross weight fallout

if SET_GW="pay+fuel’ or 'pay+miss’, assume SET_UL same (actual SET_UL ignored)
FIX_missfuel only used for SET_UL='miss’ or 'pay+miss’, with more than one fuel tank system

Structure: Mission

KIND_Segint

relax_miss
relax_range
relax_gw
toler_miss
trace_miss

int

real
real
real
real
int

+ 4+ 4+ + + + + +

SET_pay, set payload changes: mission segment payload (use of MissSeg%xWpay)

'none’ = no changes

'input’ = value; payload = xWpay (not use Wpay)

'delta’ = increment; payload = (initial payload weight)+(xWPay—xWpay(segl))

'scale’ = factor; payload = (initial payload weight)*(xWPay/xWpay(segl))
when SET_GW="max’ and SET_UL="fuel’ or 'miss’ (so payload is fallout), payload (from SET_pay and xWpay) must
not be zero at the maximum GW segments

payload: only Wpay and xWpay used if SET_Wpayload = no details

input fuel weight: Wiyer = min(dFuel+fFuel«Weuel—cap; Wiuel—cap) + 2 Nauxtank«Waux—cap
for fallout fuel weight, this is the initial value for the mission iteration

auxiliary fuel tanks:
SET_auxtank options: fixed; or adjust Nauxtank for each segment; or
increase at mission start, then constant; or increase at start, then drop
for input fuel (SET_UL = 'fuel’ or 'pay+fuel’), start with input Nauxtank, then drop
for mission fuel (SET_UL = 'miss’ or 'pay+miss’), fixed Wiye or Fyye at start
for fallout (SET_UL = "pay’), adjust Wy,e1 with change in Nauxtank (fixed Wg — Whay = Wo + Weyel)
for all SET_UL, adjust W with change in Nauxtank
fuel tank design mission: Nauxtank=0, allow Wt or Et,e1 to exceed tank capacity

SET _reserve: maximum of fuel for designated reserve mission segments
and fraction of fuel (fresWhurn OF fres Eburn) Or fraction of fuel capacity (fres Weuel—cap OF fres Ffucl—cap)

Segment integration

method (0 segment start, 1 segment midpoint, 2 trapezoidal)
Mission iteration (supersede Solution input if nonzero)

relaxation factor (mission fuel)

relaxation factor (range credit)

relaxation factor (max takeoff GW)

tolerance (fraction reference)

trace iteration (0 for none)

48

cooo

o

Structure: Mission

nSeg

int

+ Mission Segments

+

number of mission segments (maximum nsegmax)

input all mission segments as arrays in single mission namelist

49

Chapter 13

50

Structure: MissSeg

Variable Type Description Default
+ Segment definition
label_seg c*8 + label N
kind c*12 + kind "dist’
dist real + distance D (Units_dist) 0.
time real + time T" (Units_time) 0.
+ segment
reserve int + reserve (0 for not) 0
adjust int + adjustable for flexible mission (0 for not) 0
range_credit int + segment number for range credit (0 for no reassignment) 0
ignore int + ignore segment (0 for not) 0
copy int + copy segment (source segment number) 0
split int + split segment (number segments; —1 calculated; O for not split) 0
SET_tank(ntankmax) int + segment fuel use or replace 0
dTank(ntankmax) real + fuel increment 0.
fTank(ntankmax) real + fuel factor 1.
SET _refuel(ntankmax) int + refuel (0 not, 1 fill all tanks, 2/8 add fuel, 3/9 drop fuel, 4-5 fill/add below rWfuel, 6-7 fill/add below mWfuel) 0
xWfuel(ntankmax) real + fuel weight or energy change 0.
rWfuel(ntankmax) real + threshold fraction 0.
mWfuel(ntankmax) real + threshold weight or energy 0.
+ gross weight
MaxGW int + maximize gross weight (0 not) 0
dPav(npropmax) real + power increment, each propulsion group 0.
fPav(npropmax) real + power factor, each propulsion group 1.
dTav(njetmax) real + thrust increment, each jet group 0.
fTav(njetmax) real + thrust factor, each jet group 1.
+ useful load
xWpay real + payload weight change (Units_pay) 0.
xNpass int + number of passengers increment § Npags 0

Structure: MissSeg

+ fixed useful load
dWecrew real + crew weight increment
dNcrew int + number of crew increment 6 N¢pow
dWoful(10) real + other fixed useful load increment (nWoful categories)
dWequip real + equipment weight increment
dNcrew_seat int + crew seat increment 0 Nerow—seat
dNpass_seat int + passenger seat increment 6 Npass—seat
+ kits on aircraft (O none, 1 present)
SET_extkit(nwingmax) int + wing extension kit
SET_wingkit(nwingmax) int + wing kit
SET otherkit int + other kit
SET _alt int + altitude at start of segment (0 input, 1 from previous segment, 2 from kSeg_alt)
kSeg_alt int + source of altitude
+ design mission (0 to not use segment for sizing)
SizeEngine int + power
SizeJet int + jet thrust
SizeCharge int + charger power
SizeGW int + DGW
SizeXmsn int + transmission
SizeThrust int + antitorque or aux thrust

segment kind
kind="taxi’, 'idle’: taxi/warm-up mission segment (use time)
kind="dist’: fly segment for specified distance (use dist)
kind="time': fly segment for specified time (use time)
kind="hold’, 'loiter’: fly segment for specified time (use time), fuel burned but no distance added to range
kind="climb’: climb/descend from present altitude to next segment altitude
kind='spiral’: climb/descend from present altitude to next segment altitude, fuel burned but no dist added to range
kind="fuel’: use or replace specified fuel amount, calculate time and distance
kind="burn’, 'charge’: use or replace specified fuel amount, calculate time but no distance added to range
kind="takeoff’, 'TQ': takeoff distance calculation

only one of reserve, adjust, range_credit designations for each segment
reserve: time and distance not included in block time and range

[== co PP o e

Y e e e

Structure: MissSeg

range credit: to facilitate specification of range
range calculated for this segment credited to segment = range_credit
range_credit segment must be kind="dist’, specified distance is for group of segments
actual distance flown in range_credit segment is specified dist less distances from other segments
if credit to earlier segment, iteration required
adjustable: for SET_UL not 'miss’, can adjust one or more segments
if more than one segment adjusted, must be all kind="dist’ or all kind="time’/"hold’
adjust time or distance based on fuel burn (proportional to initial values)

split segment: number specified, or calculated from MissParam%dest_inc, time_inc, alt_inc
ignore segment: removed from input; segments using MaxGW, range_credit, FltCond%KIND_source can not be ignored

SET_tank: segment fuel use or replace for kind="fuel’ or 'burn’; distance and time calculated
SET_tank = 0: no requirement
SET _tank = 1: target dTank+fTank*Wpye1—cap Or dTank+fTank* Eyel—cap
SET_tank = 2: target dTank+fTank™* Wy or dTank+fTank™® Ef,e
SET_tank = 3: increment dTank+fTank™Wyel—cap OF dTank+fTank™ Eryel—cap
SET tank = 4: increment dTank+fTank*Wjyye or dTank+fTank* Eye
charge if E < 0 (not based on keyword, increment always positive)
target limited by capacity, if target already achieved then no requirement
increment limited by current fuel (use) or capacity minus current fuel (replace)

SET _refuel, refuel: change at start of segment; weight or energy; no contribution to distance or time
SET_refuel = 1: fill all tanks (including any auxiliary tanks installed)
SET refuel = 2: add fuel xWfuel
SET _refuel = 3: drop fuel xWfuel
SET _refuel = 4: if below fraction rWfuel of fuel capacity (including auxiliary tanks), fill all tanks
SET _refuel = 5: if below fraction rWfuel of fuel capacity (including auxiliary tanks), add xWfuel
SET refuel = 6: if below mWfuel, fill all tanks
SET refuel = 7: if below mWfuel, add xWfuel
SET_refuel = 8: add fraction rWfuel of fuel capacity (including auxiliary tanks)
SET_refuel = 9: drop fraction rWfuel of fuel capacity (including auxiliary tanks)
added fuel limited by capacity (unless sizing fuel tank); not used for first segment
xWfuel positive (add or drop determined by SET _refuel)

52

Structure: MissSeg

SET _takeoff
Vkts_takeoff
climb_takeoff
height_takeoff
slope_ground
friction
t_decision
t_rotation
nz_transition

c*12
real
real
real
real
real
real
real
real

+ 4+ 4+ 4+ + + + + + o+

53

maximize gross weight: MaxGW designate segments if SET_GW="maxP’ or 'maxQ’ or 'maxPQ’

climb/descend or spiral segment: end altitude is that of next segment; last segment kind can not be climb or spiral
begin altitude is that input for this segment (SET_alt=0), or altitude of previous segment (SET _alt=1),

payload: only Wpay and xWpay used if SET_Wpayload = no details
xNpass is change from MissParam%Npass

crew: only dWcrew used if SET_Wcrew = no details

equipment: dNcrew_seat and dNpass_seat require non-zero weight per seat

Takeoff distance calculation

takeoff segment kind 'none’
ground speed or climb speed (knots, CAS) 0.
climb angle relative ground ~y (deg) 0.
height during climb A (ft or m) 0.
slope of ground v (+ for uphill; deg) 0.
friction coefficient p 0.04
decision delay after engine failure ¢; (sec) 15
rotation time £ (sec) 2.0
transition load factor ntgr 1.2

takeoff distance calculation: set of consecutive kind='"takeoff’ segments
first segment identified by SET_takeoff="start’ (V' = 0)
last segment if next segment is not kind="takeoff’, or is SET_takeoff="start’
takeoff segment kind
SET_takeoff='start’, 'ground run’ (keyword = ground or run), 'engine fail' (keyword = eng or fail)
SET _takeoff="liftoff’, 'rotation’, "transition’, 'climb’, 'brake’
each segment requires appropriate configuration, trim option, max effort specification
not use dist, time, reserve, adjust, range_credit, SET_refuel, MaxGW, SET _alt
max_var="alt’ not allowed in maximum effort
velocity specification (SET_vel) and HAGL superseded; SET_turn=SET_pullup=0
can split segment (except start, rotation, transition): split height for climb, velocity for others
splitting liftoff or engine failure segment produces additional ground run segments
separate definition of multiple ground run, climb, brake segments allows configuration variations

Structure: MissSeg

54

define takeoff profile in terms of velocities
integrate acceleration vs velocity to obtain time and distance
segments correspond to ends of integration intervals
analysis checks for consistency of input velocity and calculated acceleration
analysis checks for consistency of input height and input/calculated climb angle

takeoff distance definition: includes SET_takeoff='liftoff’ segment
order: start, ground run, engine failure, ground run, liftoff, rotation, transition, climb
only one liftoff; only one engine failure, rotation, transition (or none)
engine failure before liftoff; all ground run before liftoff, all climb after liftoff
accelerate-stop distance definition: does not have SET_takeoff="liftoff’ segment
order: start, ground run, engine failure, brake
only one engine failure (or none)

engine failure segment (if present) identifies point for decision delay
until t_decision after engine failure segment, use engine rating, fPower, fraction of engine failure segment
so engine failure segment corresponds to conditions before failure

number of inoperative engines specified by nEnglnop for each segment
if engine failure segment present, nEnglnop specification must be consistent

55

Chapter 14

Structure: FltState

Variable Type Description Default

+ Flight State

+ Specification
SET_max int + maximum effort performance (maximum 2, 0 to analyze specified condition) 0
max_quant(2) c*12 + quantity N
max_var(2) c*¥12 + variable
max_limit(2) int + switch quantity if exceed limit (0 not, 1 power margin, 2 torque margin, 3 both) 0
max_Vlimit(2) int + velocity limited by Vg (0 not) 0
fVel(2) real + flight speed factor 1.
SET _vel c*12 + flight speed "general’
Vkts real + horizontal velocity V}, (TAS or CAS, Units_vel) 0.
Mach real + horizontal velocity M (Mach number) 0.
ROC real + vertical rate of climb V. (Units_ROC) 0.
climb real + climb angle 8y (deg) 0.
side real + sideslip angle ¥y (deg) 0.

+ aircraft motion
SET_pitch int + pitch motion specification (0 Aircraft value, 1 FltState input) 1
SET _roll int + roll motion specification (0 Aircraft value, 1 FltState input) 1
pitch real + pitch 0.
roll real + roll ¢ 0.
SET turn int + turn specification (0 zero, 1 turn rate, 2 load factor, 3 bank angle) 0
rate_turn real + turn rate 1/) r (deg/sec) 0.
nz_turn real + load factor n (g) 1.
bank_turn real + bank angle ¢ (deg) 0.
SET_pullup int + pullup specification (0 zero, 1 pitch rate, 2 load factor) 0
rate_pullup real + pitch rate Op (deg/sec) 0.
nz_pullup real + load factor n (g) 1.
SET acc int + linear acceleration specification (0 zero, 1 acceleration, 2 load factor) 0
ax_linear real + x-acceleration a ¢ (ft/sec? or m/sec?) 0.

Structure: FltState

ay_linear
az_linear
nx_linear
ny_linear
nz_linear
altitude
SET_atmos
temp

dtemp

density

csound
viscosity
SET_wind
dWind

fWind

SET_GE
HAGL
STATE_LG
STATE_control
SET_control(ncontmax)
SET_coll

SET _latcyc
SET _Ingcyc
SET_pedal

SET _tilt
control(ncontmax)
coll

latcyc

Ingcyc

pedal

tilt
SET_comp_control
SET cg

dSLcg

real
real
real
real
real
real
c*12
real
real
real
real
real
int
real
real
int
real
c*12
int
int
int
int
int
int
int
real
real
real
real
real
real
int
int
real

I T i i S S S S e e e e e S e Tk Tk Tt T Sk 2k S i S o S S

y-acceleration a ¢y, (ft/sec® or m/sec?)
z-acceleration a4c» (ft/sec? or m/sec?)
x-load factor increment ny,. (g)
y-load factor increment nr,, (g)
z-load factor increment ny,, (g)
altitude h (Units_alt)
atmosphere specification
temperature 7 (Units_temp)
temperature increment AT (Units_temp)
density p
speed of sound c,
viscosity p
wind specification (0 none, 1 headwind, 2 tailwind)
wind increment, knots (dWind+fWind*altitude)
wind gradient, knots (dWind+fWind*altitude)
ground effect (0 OGE, 1 IGE)
height of landing gear above ground level hp ¢
landing gear state
aircraft control state
control specification (0 Aircraft value, 1 FltState input)
collective stick
lateral cyclic stick
longitudinal cyclic stick
pedal
tilt (O Aircraft value, 1 FltState input, 2 Aircraft conversion schedule)
aircraft controls
collective stick cac0
lateral cyclic stick c4c.
longitudinal cyclic stick c4cs
pedal CACp
tilt cvgine
use component control (0 for ¢ = Tcac; 1 forc = Tcac + ¢p)
center of gravity specification (0 baseline plus increment, 1 input)
stationline

56

oL Lo

999.
"default’

e e e = = =

CorLCLOOo0Oo

Structure: FltState

dBLcg
dWlLcg

SET_Vtip(npropmax)
Vtip(npropmax)
Mtip(npropmax)
mu_Vtip(npropmax)
Mat_Vtip(npropmax)
Nrotor(npropmax)
Nspec(npropmax)
STATE_gear(npropmax)
rating_ds(npropmax)
fTorque(npropmax)
SET_Plimit(npropmax)
SET_QIlimit_rs(npropmax)
SET_Pmargin(npropmax)
dPacc(npropmax)

rating(nengmax)
fPower(nengmax)
nEnglnop(nengmax)
SET_Preq(nengmax)
STATE_IRS(nengmax)

rating_jet(njetmax)
fThrust(njetmax)
nJetlnop(njetmax)
SET_Jreq(njetmax)
STATE_IRS_jet(njetmax)

rating_charge(nchrgmax)
fCharge(nchrgmax)
nChrglnop(nchrgmax)
SET_Creq(nchrgmax)

real
real

c*12
real
real
real
real
real
real
int
c*12
real
int
int
int
real

c*12
real
int
int
int

c*12
real
int
int
int

c*12
real
int
int

I T i i S S S S e e e e e S I e Tk Tt Tk T ik 2k S T o o S S

buttline
waterline

Specification, each propulsion group

rotor tip speed specification

tip speed

tip Mach number Mj;,,

tip speed from p

tip speed from M

rotor speed (rpm)

engine speed (rpm)
drive system state
drive system rating
fraction of rated drive system torque limit fg (0. to 1.4)
drive system limit (O not applied to power available)
rotor shaft limit (0 not used for torque margin)
power and torque margin (0 not used for maximum effort)
accessory power increment d P,

Specification, each engine group

engine rating

fraction of rated engine power available fp (0. to 1.4+)

number of inoperative engines Ninop

power required (1 distributed, 2 fixed A, 3 fixed AP,,,, 4 fixed APe,,)
IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)

Specification, each jet group

jet rating

fraction of rated jet thrust available f (0. to 1.+)

number of inoperative jets Nipop

thrust required (1 from component, 2 fixed A4, 3 fixed AT, , 4 fixed ATjet)
IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)

Specification, each charge group

charger rating

fraction of rated charger power available f (0. to 1.+)
number of inoperative chargers Ny o,

power required (2 fixed A, 3 fixed AP,,, 4 fixed APchrg)

57

"hover’

"MCP’

o~ O

'MCT’

o N O

'MCP’

Structure: FltState

dPeqg(ntankmax)

ffade(ntankmax)
Tcell(ntankmax)
fcurrent(ntankmax)

STOP_rotor(nrotormax)
STATE_deice

DoQ_pay
fDoQ_pay
DoQV_pay

Ki(nrotormax)
cdo(nrotormax)

MODEL_Ftpp(nrotormax)
MODEL_Fpro(nrotormax)
KIND_control(nrotormax)

sfc_engine(nengmax)
Kffd_engine(nengmax)
eta_motor(nengmax)

sfc_jet(njetmax)
Kffd_jet(njetmax)

STATE_trim
trim_target(mtrimmax)

relax_rotor
relax_trim
relax_fly(2)
relax_maxgw

real

real
real
real

int
int

real
real
real

real
real
int
int
int

real
real
real

real
real

c*12
real

real
real
real
real

I T i i T ST S S S S E T T S S T S o SR S S S ST S

Equipment power increment d P, each fuel tank
Specification, each fuel tank (battery)
battery capacity fade factor
cell temperature (deg C)
maximum current (fraction x,,pq OF L Cmax)
Specification, each rotor
rotor stop/stow (0 not, 1 stop, 2 stop and stow, 3 stop as wing)
Deice system state (0 off)
Performance
payload forward flight drag increment D /¢ (Units_drag)
payload drag increment scaling with weight A(D/q)/Wyay (Units_drag)
payload vertical drag increment D /q (Units_drag)
Rotor (nonzero to supersede rotor model)
induced power factor x
profile power mean cq
inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory)
inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect)
control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP)
Engine group (nonzero to supersede engine model)
specific fuel consumption
deterioration factor
motor-generator efficiency
Jet group (nonzero to supersede jet model)
specific fuel consumption
deterioration factor
Trim solution
aircraft trim state (match IDENT_trim, 'none’ for no trim)
trim quantity targets
Iterations (supersede Solution input if nonzero)
relaxation factor
all rotors
trim
maximum effort
maximum gross weight

58

©

© o co oL

'none’

co oo

Structure: FltState

toler_rotor
toler_trim
toler_fly(2)
toler_maxgw

init_trim
init_fly

perturb_trim
perturb_fly(2)
perturb_maxgw

maxderiv_fly(2)
maxderiv_maxgw

maxinc_fly(2)
maxinc_maxgw

method_flymax(2)

trace_rotor
trace_trim
trace_fly(2)
trace_maxgw

real
real
real
real

int
int

real
real
real

real
real

real
real

int
int
int
int
int

Ik Tk T T T T T S e S e R N T I T T I

tolerance (fraction reference)
all rotors
trim
maximum effort
maximum gross weight
reinitialize aircraft controls (0 no, 1 force retrim)
trim
maximum effort
variable perturbation amplitude (fraction reference, 0. for no limit)
trim
maximum effort
maximum gross weight
maximum derivative amplitude (0. for no limit)
maximum effort
maximum gross weight
maximum increment fraction (0. for no limit)
maximum effort
maximum gross weight
solution method
maximum effort
trace iteration (0 for none)
all rotors
trim (2 for component controls)
maximum effort
maximum gross weight

maximum effort performance: one or two quantity/variable identified; first is inner loop
two variables must be unique
two variables can be identified for same maximized quantity (endurance, range, climb)
quantity identified by max_quant maximized for endurance, range, climb, or ceiling; otherwise driven to zero

ROC or altitude can be outer loop quantity only if it is also inner loop variable

fVel is only used for max_var="speed’ or 'ROC’

ceiling calculation should use 'Pmargin’/’alt’ as inner loop, 'power’/’speed’ as outer loop
best range calculation often requires maxinc_fly=0.1 for convergence

59

cocoo

o

O O O o

Structure: FltState

60

ROC for zero power margin initialized based on level flight power margin if input ROC=0
max_quant="rotor(s) n' uses Rotor%CTs_steady, max_quant="rotor(t) n’ uses Rotor%CTs_tran
max_quant='rotor(e) n' uses equation for rotor thrust capability (Rotor%KO0_limit and Rotor%K1_limit)

if energy burned (not weight) or multiple fuels, use equivalent fuel flow obtained from weighted energy flow
max_var="Vtip' or 'Nspec’ requires FltAircraft%SET_Vtip='input’

w9

if trailing “n” is absent, use first component (n=1)

max_limit: switch quantity to power and/or torque margin if margin negative; useful for best range

description max_quant

endurance ‘'end’ maximum (1/fuelflow)

range (high side) "range’ 0.99 maximum (V /fuelflow)

range "range(100)’ maximum (V /fuelflow)

range (low side) "range(low)’ 0.99 maximum (V /fuelflow), low side
range (high side), ground speed 'rangeVg' 0.99 maximum (V,/fuelflow)

range, ground speed "range(100)Vg' maximum (V,/fuelflow)

range (low side), ground speed "range(low)Vg' 0.99 maximum (Vy/fuelflow), low side
climb or descent rate "climb’, 'ROC’ maximum (ROC)

climb rate (power) "power’ maximum (1/Power)

climb or descent angle "angle’ maximum (ROC/V)

climb angle (power) "'power/V' maximum (V' /Power)

ceiling "alt’ maximum (altitude)

power margin 'P margin’ min(Py, — Preq) = 0 (all propulsion groups)
torque margin 'Q margin’, min(Qlimit — @req) = 0 (all limits)
jet thrust margin 'J margin’, min(Ty, — Treq) = 0 (all jet groups)
power and torque margin 'PQ margin’, most restrictive

power and thrust margin 'PJ margin’, most restrictive

torque and thrust margin 'QJ margin’, most restrictive

power, torque, thrust margin 'PQJ margin’, most restrictive

battery power margin 'B margin’ min(Prax — |E‘batt|) = 0 (all fuel tanks)
rotor thrust margin 'rotor(t) n' (C7/0)max — |Cr/o| = 0 (transient)
rotor thrust margin 'rotor(s) n’ (Cr/0)max — |Cr/o| = 0 (sustained)
rotor thrust margin 'rotor(e) n’ (Cr/0)max — |Cr/o| = 0 (equation)

wing lift margin 'stall n’ Crmax —CL =0

Structure: FltState

61

description max_var

horizontal velocity "speed’ times fVel

vertical rate of climb 'ROC’ times fVel

aircraft velocity 'side’ sideslip angle
altitude "alt’

aircraft angular rate "pullup’, "turn’ Euler angle rates
aircraft acceleration 'xacc’, 'yacc’, 'zacc’ linear, airframe axes
aircraft acceleration "xaccl’, 'yaccl’, 'zaccl’ linear, inertial axes
aircraft acceleration 'xaccG', 'yaccG’, 'zaccG’ linear, ground axes
aircraft control match IDENT_control

aircraft orientation "pitch’, 'roll’ body axes relative inertial axes
propulsion group tip speed "Vtip n’

propulsion group engine speed "Nspec n’

SET _vel, velocity specification:
'general’ = general (use Vkts=horizontal, ROC, side)
"hover’ = hover (zero velocity)
'vert’ = hover or VROC (use ROC; Vkts=0, climb=0/+90/-90)
'right’ = right sideward (use Vkts, ROC; side=90)
"left’ = left sideward (use Vkts, ROC; side=—90)
"rear’ = rearward (use Vkts, ROC, side=180)
"Vfwd' = general (use Vkts=forward velocity, ROC, side)
'Vmag' = general (use Vkts=velocity magnitude, ROC, side)
‘climb’ = general (use Vkts=velocity magnitude, climb, side)
'VNE' = never-exceed speed
'+Mach’ = use Mach not Vkts
'+CAS’ = Vkts is CAS not TAS

velocities: forward Vy = V}, cos(side), side V = V}, sin(side), climb V, = V}, tan(climb)

Structure: FltState

aircraft motion:

orientation velocity relative inertial axes defined by climb and sideslip angles (8, ¥y/)
sideslip positive aircraft moving to right, climb positive aircraft moving up
specify horizontal velocity, vertical rate of climb, and sideslip angle
orientation body relative inertial axes defined by Euler angles, yaw/pitch/roll (Y g, 0, ¢r)
yaw positive to right, pitch positive nose up, roll positive to right
SET_PITCH and SET _roll, pitch and roll motion specification:
Aircraft values (perhaps function speed) or flight state input
initial values specified if motion is trim variable; otherwise fixed for flight state
SET_turn, bank angle and load factor in turn: use turn rate, load factor, or bank angle
tan(roll) = v/n? — 1 = (turn)V/g; calculated using input Vkts for flight speed
SET_pullup, load factor in pullup: use pullup rate or load factor
n = 1+ (pullup)V/g; calculated using input Vkts for flight speed
SET acc, linear acceleration: use acceleration or load factor

SET_atmos, atmosphere specification:
'std’ = standard day at specified altitude (use altitude)
'polar’ = polar day at specified altitude (use altitude)
"trop’ = tropical day at specified altitude (use altitude)
'hot’ = hot day at specified altitude (use altitude)
'xxx+dtemp’ = specified altitude, plus temperature increment (use altitude, dtemp)
'xxx+temp’ = specified altitude, and specified temperature (use altitude, temp)
'hot+table’ = hot day table at specified altitude (use altitude)
'dens’ = input density and temperature (use density, temp)
'input’ = input density, speed of sound, and viscosity (use density, csound, viscosity)
'notair’ = input, not air on earth (use density, csound, viscosity)

SET_GE: use HAGL; out-of-ground-effect (OGE) if rotor more than 1.5Diameter above ground
height rotor = landing gear above ground + hub above landing gear = HAGL + (WL_hub—WL_gear+d_gear)

STATE_LG: 'default’ (based on retraction speed), 'extend’, 'retract’ (keyword = def, ext, ret)

62

Structure: FltState

63

STATE_control, aircraft control state: identifies control matrix
STATE_control=0 to use conversion schedule, STATE_control=n (1 to nstate_control) to use state#n
SET_control, control specification: Aircraft values (perhaps function speed) or flight state input
coll/latcyc/Ingeyc/pedal/tilt specification and values put in SET_control and control, based on IDENT_control
initial values specified if control is trim variable; otherwise fixed for flight state
SET _control=0 to use Aircraft%cont and Aircraft%Vcont; 1 to use FltState%control
SET _tilt: O to use Aircraft%tilt and Aircraft%Vtilt; 1 to use FltState%itilt
2 to use conversion speeds Aircraft%Vconv_hover and Aircraft%Vconv_cruise

SET_cg, center of gravity position: input for this flight state; or
baseline cg position plus shift due to nacelle tilt, plus input cg increment

tip speed, engine, transmission: for each propulsion group
SET_Vtip, primary rotor tip speed: for primary rotor of propulsion group
'input’ = use input Vtip for this flight state
"Mtip’ = use input Mtip for this flight state
"Nrotor’ = use input Nrotor (rpm) for this flight state
'ref’ = use Vtip_ref (for drive state STATE_gear)
'speed’ = use default Vtip(speed)
'conv’ = use conversion schedule (Vtip_hover or Vtip_cruise)
"hover’ = use default Vtip_hover = Vtip_ref(1)
"cruise’, 'man’, 'OEI’, 'xmsn’ = use default Vtip_cruise, Vtip_man, Vtip_oei, Vtip_xmsn
'mu’ = use tip speed from g (mu_Vtip)
'Mat’ = use tip speed from M,; (Mat_Vtip)
'xxx+Mat’ = for tip speed limited by M,; (Mat_Vtip)
"xxx+diam’ = for variable diameter rotor, scale V};;, with radius ratio
without rotors, specify engine group speed by SET_Vtip='input’ (use input Nspec) or 'ref’
STATE_gear, drive system state: identifies gear ratio set for multiple speed transmissions
state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n
drive system rating: match rating designation in propulsion group; blank for same as rating of first engine group
rating_ds='"speed’ to use schedule with speed
if Propulsion%nrate_ds< 1, drive system rating not used
fTorque reduces drive system torque limit (fTorque = 0. to 1.;> 1 is an acceptable input)
SET_Plimit: usually should not be applied for flight conditions and mission segments that size transmission

Structure: FltState

64

engine rating: match rating designation in engine model; e.g. '"ERP’,MRP’,IRP’,MCP’
or rating="idle’ or rating="takeoff’
fPower reduces engine group power available (fPower = 0. to 1.; > 1 is an acceptable input)
the engine model gives the power available, accounting for installation losses and mechanical limits
then the power available is reduced by the factor fPower
next torque limits are applied (unless SET_Plimit=off), first engine shaft limit and then drive system limit
for SET_GW="maxP’ or 'maxPQ’ (flight condition or mission), the gross weight is determined
such that Preqpq = fPavprc +d
either fPower or fPav can be used to reduce the available power
with identical results, unless the engine group is operating at a torque limit
nEnglnop, number inoperative engines: 1 for one engine inoperative (OEI), maximum nEngine

SET_Preq: distribution of propulsion group power required among engine groups
distributed (SET_Preq=1): P..qrqg from P,.,pq, proportional Pep,g
except for rotor reaction drive, P,..qrc from power needed to supply reaction force
and for fuselage or wing flow control, P,.,rc from power needed to supply momentum flux
fixed options use engine group amplitude control variable A, for each operable engine
engine group that consumes shaft power (generator or compressor) only uses fixed option
engine group that produces no shaft power (converted to turbo jet or reaction drive) only uses fixed option
EngineGroup%SET_Power, fPsize defines power distribution for sizing

jet rating: match rating designation in jet model; or rating_jet="idle’ or rating_jet="takeoff’
fThrust reduces jet group thrust available (fThrust =0 to 1; > 1 is an acceptable input)
nJetlnop, number inoperative jets: 1 for one jet inoperative (OEI), maximum nJet
SET_Jreq: fixed options use jet group amplitude control variable A, for each operable jet
from component (SET_Jreq=1): only for reaction drive or flow control, T}..4 ;¢ from required Fig,eq

charger rating: match rating designation in charger model; or rating_charge='idle' or rating_charge="takeoff’
fCharge reduces charger group power available (fCharge = 0 to 1; > 1 is an acceptable input)

nChrglnop, number inoperative chargers: 1 for one charger inoperative (OEI), maximum nCharge
SET_Creq: use charge group amplitude control variable A, for each operable charger

STOP_rotor: only for stoppable rotor; if stopped, model sets KIND_control=1, MODEL_Ftpp=1, MODEL_Fpro=3
it is neither required nor appropriate to set small or zero tip speed for a stopped rotor

Structure: FltState

STATE_trim, aircraft trim state: match IDENT _trim, 'none’ for no trim
identifies trim variables and quantities
ACTION="configuration’ defines trim states with following identification:
IDENT _trim="free’, 'symm’, 'hover’, 'thrust’, 'rotor’, 'windtunnel’, 'power’, 'ground’, 'comp’
requirement for trim_target depends on designation of Aircraft%trim_quant

65

Chapter 15

66

Structure: Solution

Variable Type Description Default
+ Solution Procedures
title c*100 + title
notes c*1000 + notes
+ Rotor
+ convergence control
niter_rotor(nrotormax) int + maximum number of iterations 40
toler_rotor(nrotormax) real + tolerance (deg) .01
relax_rotor(nrotormax) real + relaxation factor 5
deriv_rotor(nrotormax) int + derivative (1 first order, 2 second order) 1
maxinc_rotor(nrotormax) real + maximum increment amplitude (0. for no limit) 4.
trace_rotor(nrotormax) int + trace iteration (0 for none) 0
+ Trim
+ convergence control
niter_trim int + maximum number of iterations 40
toler_trim real + tolerance (fraction reference) .001
relax_trim real + relaxation factor 5
+ perturbation identification of derivative matrix
deriv_trim int + perturbation (1 first order, 2 second order) 1
mpid_trim int + number of iterations between identification (0 for never recalculated) 0
perturb_trim real + variable perturbation amplitude (fraction reference) .002
init_trim int + reinitialize aircraft controls in maximum effort iteration (0 no, 1 force retrim) 0
start_trim int + initialize controls from solution of previous case (0 no) 0
trace_trim int + trace iteration (0 for none, 2 for component controls) 0

start_trim=1: initialize FltAircraft%control from FltAircraft%control_trim of previous case
require INIT_input=INIT_data=2 or read solution file; and same missions and conditions as previous case

requirements not checked

Structure: Solution 67

+ Maximum effort
method_fly int + method (1 secant, 2 false position) 1
method_flymax int + maximization method (1 secant, 2 false position, 3 golden section search, 4 curve fit) 3

+ convergence control
niter_fly int + maximum number of iterations 80
toler_fly real + tolerance (fraction reference) .002
relax_fly real + relaxation factor 5
perturb_fly real + variable perturbation amplitude (fraction reference) .05
maxderiv_fly real + maximum derivative amplitude (0. for no limit) 0.
maxinc_fly real + maximum increment fraction (0. for no limit) 0.
rfit_fly real + extent of curve fit (fraction maximum) .98
nfit_fly int + order of curve fit (2 quadradic, 3 cubic) 3
init_fly int + reinitialize aircraft controls (0 no, 1 force retrim) 0
trace fly int + trace iteration (O for none) 0

+ Maximum gross weight (flight condition or mission takeoff)
method_maxgw int + method (1 secant, 2 false position) 1

+ convergence control
niter_maxgw int + maximum number of iterations 40
toler_maxgw real + tolerance (fraction reference) .002
relax_maxgw real + relaxation factor 5
perturb_maxgw real + variable perturbation amplitude (fraction reference) .02
maxderiv_maxgw real + maximum derivative amplitude (0. for no limit) 0.
maxinc_maxgw real + maximum increment fraction (0. for no limit) 0.
trace_maxgw int + trace iteration (0 for none) 0

+ Mission

+ convergence control
niter_miss int + maximum number of iterations 40
toler_miss real + tolerance (fraction reference) .01
relax_miss real + relaxation factor (mission fuel) 1.
relax_range real + relaxation factor (range credit) 1.
relax_gw real + relaxation factor (max takeoff GW) 1.
trace_miss int + trace iteration (O for none) 0

Structure: Solution

niter_size
niter_param
toler_size

relax_size
relax DGW
relax_xmsn
relax_wmto
relax_tank
relax_thrust

maxinc_size
maxinc_ DGW
maxinc_xmsn
maxinc_wmto
maxinc_tank
maxinc_thrust
trace_size

trace_case
trace_start

int
int
real

real
real
real
real
real
real

real
real
real
real
real
real
int

int
int

R I T T T e T S S e e e e S e A

+ 4+ +

Size aircraft
convergence control
maximum number of iterations (performance loop)
maximum number of iterations (parameter loop)
tolerance (fraction reference)
relaxation factors
power or radius
gross weight
drive system limit
WMTO and SDGW
fuel tank capacity
rotor thrust
maximum increment fraction (0. for no limit)
power or radius
gross weight
drive system limit
WMTO and SDGW
fuel tank capacity
rotor thrust
trace iteration (O for none, 2 for power)

with niter_param=1, parameter iteration is part of performance loop (can be faster than niter_param > 1)

Case
trace operation (O for none, 1 trace, 2 for all iterations)
counter at start trace of iterations

use trace_case=2 to identify point at which analysis diverges
counter written if trace_case=1 or 2; trace of iterations suppressed until counter > trace_start
then turn on trace selectively for mission/segment/condition

68

40
40

Ll

coococoo

o

Structure: Solution

toler_check

KIND_Wscale
KIND_Pscale
KIND_Lscale
scaleRotor
scaleWing

SETextsol_size
SETextsol_miss
SETextsol_trim
SETextsol_rotor

real

int
int
int
int
int

int
int
int
int

+ 4+ + + + + +

+ 4+ + + +

Flight condition and mission segment

check Preq, Qlimit, Wfuel (fraction reference)

Tolerance and perturbation scales

weight scale (1 design gross weight, 2 nominal Cr /o)
power scale (1 aircraft power, 2 derived from weight scale)
length scale (1 rotor radius, 2 wing span, 3 fuselage length)
rotor number

wing number

External solution procedure (O for internal)

size iteration
mission iteration
trim iteration
rotor iteration

for external solution procedure (SETextsol = 1), suppress iteration and calculate residual
the solution problem (such as size parameters, trim variables) must still be defined
residuals (and error ratios) are in structures SizeParam, MissParam, FltAircraft, FItRotor

with external solution for maximum gross weight or maximum effort, there is no residual; do not specify internal

iteration

69

.005

N

o O O o

Chapter 16

70

Structure: Cost

Variable Type Description Default
+ Cost
title c*100 + title
notes c*1000 + notes
+ Inflation
MODEL _inf int + model (1 only input factor, 2 CPI, 3 DoD) 3
year_inf int + year for internal inflation factor (O for current year) 0
inflation real + inflation factor (per cent, relative 1994 or year_inf) 100.00
EXTRAP_inf int + year beyond CPI/DoD table data (O error, 1 extrapolate factor) 1
inflation: F; multiplies airframe purchase price and maintenance cost
factor inflation always used, even with internal table
CPI or DoD table: F; = inflationx (Ftable (year_inf)/Ftable(1994))
input factor: F; = inflation (relative 1994)
cost factors and rates include technology and inflation, correspond to year_inf
+ Cost
MODEL_cost int + model (0 none, 1 cost, 2 only CTM purchase price) 1
FuelPrice(ntankmax) real + fuel price Gyyel ($/gallon or $/liter) 5.0
EnergyPrice(ntankmax) real + energy price Genergy ($/MJ or $/kWh, Units_energy) 0.04
EnergyCredit(ntankmax) real + credit for generated energy ($/MJ or $/kWh, Units_energy) 0.
Npass int + number of passengers Npaqs 100
+ Purchase Price, airframe composite construction
rComp real + additional cost rate 7comp for composite construction ($/1b or $/kg) 0.
fWcomp_body real + composite weight in body (fraction body weight) 0.

Structure: Cost

fWcomp _tail
fWcomp_pylon
fWcomp_wing
KIND_maint

rBatt
Mbatt

BlockHours
NonFlightTime
DepPeriod
LoanPeriod
IntRate
ResidValue
Spares
LoadFactor

MODEL_DOC_price
MODEL_DOC_maint
MODEL_DOC_cdi

Kcdi
Kcrew

real
real
real
int

real
real

real
real
real
real
real
real
real
real

int
int
int
real
real

+ 4+ + + + + +

+ 4+ A+ A+t

composite weight in tail (fraction tail weight)
composite weight in pylon (fraction pylon weight)
composite weight in wing (fraction wing weight)

Maintenance factors (0 input, 1 best practice, 2 average practice)
Battery

purchase cost factor 7,4, battery ($/MJ or $/kWh, Units_energy)
battery maintenance factor My,,¢¢ ($/MJ or $/kWh per flight hour, Units_energy)

71

e

50.
.10

equivalent energy price for fuel burned: $/MJ=($/gal)/126.2 (based on 42.8 MJ/kg and 6.5 1b/gal of JP-4/JP-8)
EnergyCredit=0. if no credit for generated energy

cost factors and rates include technology and inflation, correspond to year_inf
rComp negative for cost reduction

battery: rBatt and Mbatt are for actual tank capacity (including unusable SOC)
maintenance includes replacement, for just replacement Mbatt=rBatt/(time-between-replacement)

Direct Operating Cost

available block hours per year B
non-flight time per trip Ty r (min)
depreciation period D (years)

loan period L (years)

interest rate 7 (%)

residual value V' (%)

spares per aircraft S (% purchase price)
passenger load factor (%)

DOC model

purchase price model for DOC (1 CTM, 2 Scott)

maintenance cost model for DOC (1 CTM, 2 Scott)
crew+depreciation+insurance estimate (1 total only, 2 separate components)
crew+depreciation+insurance factor K g;

crew cost factor K. ew

3751.
12.
15.
15.

10.
25.
75.

1.0
1.0

Structure: Cost

Kins
KETS

TECH cost_af
TECH_cost_maint
TECH_cost_cmpnt

MODEL_CTM
KIND_engine
fmotor

rFCE
rMEP

MODEL_maint
rLabor
MMHperFH
Milabor

Mparts
Mengine
Mmajor

real
real

real
real
real

int
int
real

real
real

int

real
real
real
real
real
real

+ +

+ + + +

R T T S S S S S S S e

insurance cost K, (fraction aircraft cost)
emissions trading scheme cost Kgrg ($/kg CO2)

Technology Factors
airframe x 4 r
maintenance Xmaint
components Xcmpnt

CTM rotorcraft cost model
Purchase Price
CTM model (1 original, 2 original with Scott Modern Complexity factor, 3 revisited)
engine (1 turbine, 2 piston)
weighting factor for electric motor or generator
systems (fixed useful load)
cost factor rpcg, flight control electronics ($/1b or $/kg)
cost factor rypp , mission equipment package ($/1b or $/kg)
Maintenance
maintenance cost estimate (1 total only, 2 separate components)
labor rate ($ per hour)
maintenance man hours per flight hour
MMH/FH factor M)apor
parts factor Mparts
engine overhaul factor Mepgine
major periodic maintenance factor My, jor

72

.0056
.02

0.87
1.0
1.0

10000.
10000.

160.

0.0017
34.
1.45
18.

labor rate includes inflation, corresponds to year_inf

cost factors and rates include technology and inflation, correspond to year_inf
current best practice: Mlabor=0.0017, Mparts=34, Mengine=1.45, Mmajor=18
current average practice: Mlabor=0.0027, Mparts=56, Mengine=1.74, Mmajor=28

maintenance man hours per flight hour calculated from sum of fixed term (MMHperFH) and term scaling with weight

empty (Mlabor)

Structure: Cost

year_proc
Nprod

Nlot
Nprod_eng

drFCE
drMEP

f sec

KIND fuse boom
KIND fuse dev
Pr_avg

TBO_eng
KIND_eng_mar
KIND_eng_FADEC
KIND_motor_PM
Kcompress

Kjet

Kchrg
KIND_xmsn_rg
KIND_xmsn_mar
KIND av_dev
KIND_av_UAV
f_env

f arm_furn_LH
KIND_int_SE_prof
f int SE_prof

Xwing
xrotor
xfuse

int
int
int
int

real
real

real
int
int
real
real
int
int
int
real
real
real
int
int
int
int
real
real
int
real
real

real
real

I T i i S S S S e e e e e S e T Ik Tk T T T S T i i o

Scott rotorcraft component cost model
Flyaway Price
production

year of procurement (0 same as year_inf, not used if <1955)
aircraft production number (0 not used)

number aircraft in this production lot (0 not used)

engine production number (0 not used)

systems

cost factor Argcg, additional flight control electronics ($/1b or $/kg)
cost factor Arygp, additional mission equipment package ($/1b or $/kg)

component cost models

fuselage, fraction of secondary fuselage weight
fuselage, includes tail boom (0 not)

fuselage, early LRIP of new design (0 not)

engine, stage-averaged compressor pressure ratio
engine, time between overhaul (hours)

engine, marinized (0 not)

engine, FADEC equipped (0 not)

motor, complexity (1 induction, 2 permanent magnet)
compressor cost factor

jet cost factor

charger cost factor

transmission, engine group includes reduction gearbox (0 direct drive)
transmission, marinized (0 not)

avionics, early LRIP of new package (0 not)

avionics, unmanned medium to long endurance aircraft (0 not, 1 LOS, 2 BLOS)

environmental group, fraction prime equipment cost

armament provisions, furnishings, and load and handling groups, fraction fuselage cost

integration and assembly, systems engineering, and profit (1 government, 2 commercial)

integration and assembly, systems engineering, and profit (commercial), fraction prime equipment cost
cost adjustment factors

wing
all rotors
fuselage

73

o O O o

©

0.35

1.6
2000.

Structure: Cost

xeng(nengmax)
xjet(njetmax)
xchrg(nchrgmax)
Xxmsn

xav

PES

Xpropsys

xfc

xelec

Slabor
KIND_labor_UAV
Scsi

Srotor
Sxmsn(npropmax)
Seng(nengmax)
Sjet(njetmax)
Schrg(nchrgmax)
Sacsys

Sinspect
TBR_motor
funsched

real
real
real
real
real
real
real
real
real

real
int

real
real
real
real
real
real
real
real
real
real

I T T T S S S S S R I Ik T s

engine group

jet group

charge group

drive system
avionics

small structures
propulsion systems
flight controls
electrical

Maintenance
maintenance cost factors

personnel

personnel cost factor, UAV (0 not)
continuing system improvements
all rotors

drive system

engine group

jet group

charge group

aircraft systems

inspections

motor time-between-replacement (hours)

unscheduled maintenance fraction

74

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1.0

0.0621
0.0219
0.0178
0.1412
01
0.1
0.0978
0.1234
5000.
0.25

Crrew not used in DOC with Scott maintenance model (included in personnel cost)

maintenance cost factors
current best practice: Srotor=0.0219, Sxmsn=0.0178, Seng=0.1412 (turboshaft), Seng=0.0941 (reciprocating)

Sacsys=0.0978, Sinspect=0.1234

current average practice: Srotor=0.0514, Sxmsn=0.0417, Seng=0.2256 (turboshaft), Seng=0.1506 (reciprocating)

Sacsys=0.1983, Sinspect=0.3086

continuing system improvements: Scsi=0.1071 (UAV), Scsi=0.0621 (other)

Chapter 17

75

Structure: Emissions

Variable Type Description Default
+ Emissions

title c*100 + title

notes c*1000 + notes

MODEL_emissions int + Emissions model (0 none, 1 ETS and ATR, 2 only ETS) 1
+ Emissions Trading Scheme (ETS)

Kfuel(ntankmax) real + COs emissions from fuel used, Ky, (kg/kg) 3.75

Kenergy(ntankmax) real + CO; emissions from energy used, Kepergy (kg/MIJ or kg/kWh, Units_energy) 0.14
+ Average Temperature Response (ATR)

H real + aircraft operating lifetime H (yr) 30.

U real + aircraft utilization rate U (missions/yr) 350.

r real + ATR discount rate 0.03

tmax real + ATR integration period tyax (Y1) 500.
+ emission index (kg/kg)

El_CO2(ntankmax) real + carbon dioxide, Flco, 3.16

El_H20(ntankmax) real + water vapor, Ely,0 1.26

El_SO4(ntankmax) real + sulphates, Elg0, 0.0002

El_soot(ntankmax) real + soot, F'lgoot 0.00004

EI_NOx(ntankmax) real + nitrogen oxides, EIno, 0.01

MODEL_NOx(ntankmax) int + turboshaft engine NOx emission model (0 input Elno, , 1 DLR, 2 Swiss) 1

KIND_NOx(ntankmax) int + model parameters (0 input, 1 low emissions, 2 high emissions) 1

KEIO(ntankmax) real + DLR model, Kgo 0.0036739

KEI1(ntankmax) real + DLR model, Kg 0.00748

KEls(ntankmax) real + Swiss model, Ky 0.004

fAIC real + aviation induced cloudiness factor, faic 1.0
+ energy emission factor (kg/MJ or kg/kWh, Units_energy)

K_CO2(ntankmax) real + carbon dioxide, Kco, 0.14

K_H20(ntankmax) real + water vapor, Ki,0 0.

Structure: Emissions

K_SO4(ntankmax)
K_soot(ntankmax)
K_NOx(ntankmax)
SET credit

real
real
real
int

+ 4+ + +

sulphates, Kgo,
soot, Koot
nitrogen oxides, Kno,
Emissions credit for energy generated (0O for none)

E'T default values are for turboshaft engine

emission index (£ and Kf,e1) only used for tanks that store and use fuel as weight (SET_burn=1)
energy emission factor (K and Kepergy) only used for tanks that store and use fuel as energy (SET_burn=2)

ATR discount rate: » > 100000 evaluated as » = oo

76

©

Chapter 18

77

Structure: Aircraft

Variable Type Description Default

+ Aircraft
title c*100 + title
notes c*1000 + notes
config c*16 + Configuration "helicopter’

config: identifies rotorcraft configuration
config = "rotorcraft’, 'helicopter’, 'tandem’, 'coaxial’, 'tiltrotor’, 'compound’, 'multicopter’, "airplane’

+ Aircraft Controls
ncontrol int + number of aircraft controls (maximum ncontmax) 4
IDENT _control(ncontmax) c*16 + labels of aircraft controls
nstate_control int + number of control states (maximum nstatemax) 1

pilot’s controls (control number)

+ control values (function speed)
nVcont(ncontmax) int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
nVcoll int + collective stick 0
nVlatcyc int + lateral cyclic stick 0
nVlingcyc int + longitudinal stick 0
nVpedal int + pedal 0
nVtilt int + tilt 0
cont(nvelmax,ncontmax) real + values
coll(nvelmax) real + collective stick caco
latcyc(nvelmax) real + lateral cyclic stick cac.
Ingcyc(nvelmax) real + longitudinal cyclic stick cacs
pedal(nvelmax) real + pedal cacyp
tilt(nvelmax) real + tilt cvgire

Structure: Aircraft

Vcont(nvelmax,ncontmax)
Veoll(nvelmax)
Vlatcyc(nvelmax)
Vingcyc(nvelmax)
Vpedal(nvelmax)
Vtilt(nvelmax)

nVpitch
pitch(nvelmax)
Vpitch(nvelmax)

nVroll
roll(nvelmax)
Vroll(nvelmax)

real
real
real
real
real
real

int
real
real

int
real
real

+ 4+ + + + +

+ 4+ + + + + + + o+

78

speeds (CAS or TAS, knots)
collective stick
lateral cyclic stick
longitudinal cyclic stick
pedal
tilt

control system: set of aircraft controls c4¢ defined
aircraft controls connected to individual controls of each component, c = T'cac + ¢
for each component control, define matrix 7" (for each control state) and value ¢,
flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
use of component control ¢y can be suppressed for flight state using SET_comp_control
aircraft controls: identified by IDENT_control
typical aircraft controls are pilot’s controls; default IDENT _control="coll’,'latcyc’,'Ingcyc’,'pedal’, 'tilt’
available for trim (flight state specifies trim option)
initial values specified if control is trim variable; otherwise fixed for flight state
each aircraft control can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
coll/latcyc/Ingcyc/pedal/tilt input put in appropriate nVcont-cont-Vcont, based on IDENT_control
flight state input can override
by connecting aircraft control to component control, flight state can specify component control value
sign conventions for pilot’s controls: collective + up, lat cyclic + right, long cyclic + forward, pedal + nose right
rotor controls are positive Fourier series, with azimuth measured in direction of rotation

Aircraft Motion

aircraft pitch angle 6
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

aircraft roll angle ¢
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

Structure: Aircraft 79

aircraft motion
available for trim (depending on flight state)
each motion can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
flight state input can override; initial value if trim variable

+ Conversion
Vconv_hover real + maximum speed for hover and helicopter mode (CAS or TAS, knots)
Vconv_cruise real + minimum speed for cruise (CAS or TAS, knots)
+ control state
kcont_hover int + hover and helicopter mode (V' < V_onv—hover)
kcont_conv int + conversion mode (Veony—hover < V' < Veonv—cruise) 1
kcont_cruise int + cruise mode (V' > Vionv—cruise)
+ drive system state (each propulsion group)
kgear_hover(npropmax) int + hover and helicopter mode (V' < Vionv—hover)
kgear_conv(npropmax) int + conversion mode (Veonv—hover < V' < Veonv—cruise)
kgear_cruise(npropmax) int + cruise mode (V' > Vionv—cruise) 1
conversion control: use depends on STATE_control, SET _tilt, SET_Vtip of FltState
hover and helicopter mode (V' < Vionv—hover): Use tilt=90, Vtip_hover, kgear_hover, kcont_hover
cruise mode (V' > Vionv—cruise): Use tilt=0, Vtip_cruise, kgear_cruise, kcont_cruise
conversion mode: tilt linear with V', use Vtip_hover, kgear_conv, kcont_conv
nacelle tilt angle: O for cruise, 90 deg for helicopter mode flight
+ Never-exceed speed
SET_VNE c*32 + model 'none’
VNE_TAS real + TAS limit (knots)
VNE_CAS real + CAS limit (knots)
KIND_VNE_stall(nrotormax) int + stall model, each rotor (0 for no limit, 1 steady, 2 transient, 3 equation) 3
Mat_VNE(nrotormax) real + advancing tip Mach number M,;, each rotor (0. for no limit) 1.

Structure: Aircraft

never-exceed speed: calculate Vg in knots TAS
SET_VNE = 'none’, or one to four of ('TAS’, 'CAS’, 'stall’, "comp’)
stall limit: Vg, from rotor thrust capability (Cr /o vs p)
compressibility limit: Vxg. from advancing tip Mach number M,

SET_Vschedule int + Velocity schedules (1 CAS, 2 TAS)

velocity schedules: all described as function CAS or TAS (knots)
conversion, controls and motion, rotor tip speed, landing gear retraction, trim targets, drive system ratings

+ Trim states

nstate_trim int + number of trim states (maximum ntrimstatemax)
IDENT_trim(ntrimstatemax) c*12 + label of trim state
mtrim(ntrimstatemax) int + number of trim variables (maximum mtrimmax)
trim_quant(mtrimmax,ntrimstatemax)

c*16 + trim quantity name
trim_var(mtrimmax,ntrimstatemax)

c*l6 + trim variable name
trim_target(mtrimmax,ntrimstatemax)

int + target source (1 FltState, 2 component)

trim state: one or more set of quantities and variables for trim iteration
FltState identifies trim state (STATE_trim match IDENT _trim),
trim variable:

description trim_var

aircraft control match IDENT_control

aircraft orientation "pitch’, "roll’ body axes relative inertial axes
aircraft velocity "speed’, 'ROC’ horizontal, vertical flight speed
aircraft velocity 'side’ sideslip angle

aircraft angular rate "pullup’, "turn’ Euler angle rates

propulsion group tip speed "Vitip n’'

propulsion group engine speed "Nspec n’

Structure: Aircraft

trim quantity:

description trim_quant target
aircraft total force 'force x', 'force y’, 'force z' Zero
aircraft total moment 'moment x', 'moment y', 'moment z’' Zero

aircraft load factor

’ [

nx', 'ny’, 'nz’

FltState%trim_target

81

propulsion group power "power n’ FltState%trim_target

power margin 'P margin n’ FltState%trim_target

torque margin 'Q margin n’ FltState%trim_target

engine group power 'power EG n’ FltState%trim_target

power margin 'E margin n’ FltState%trim_target

momentum margin 'FE margin n’ FltState%trim_target

jet group thrust ‘jet n’ FltState%trim_target

jet thrust margin 'J margin n’ FltState%trim_target

momentum margin 'FJ margin n’ FltState%trim_target

charge group power 'charge n’ FltState%trim_target

charge power margin 'C margin n’ FltState%trim_target

fuel tank energy flow "tank n’ FltState%trim_target

battery power margin 'B margin n’ FltState%trim_target

rotor lift 'lift rotor n’, 'flift rotor n’ FltState%trim_target, Rotor%KIift
rotor lift 'CLs rotor n’, 'vert rotor n’ FltState%trim_target, Rotor%KiIift
rotor propulsive force "prop rotor n’, 'fprop rotor n’ FltState%trim_target, Rotor%Kprop
rotor propulsive force 'CXs rotor n', "X/q rotor n’' FltState%trim_target, Rotor%Kprop
rotor thrust "CTs rotor n’ FltState%trim_target, Rotor%KiIift
rotor thrust margin 'T margin n’ FltState%trim_target

rotor thrust margin 'T margin tran n’, 'T margin eqn n’ FltState%trim_target

rotor shaft power
rotor flapping

rotor flapping

rotor hub moment
rotor hub moment
rotor torque

wing lift

wing lift coefficient
wing lift margin
tail lift

'power rotor n’

'betac n’, 'Ingflap n’
'betas n’, 'latflap n’

'hub Mx n’, 'roll n’

'hub My n’, 'pitch n’
'hub Mz n’, 'torque n’
'lift wing n’, 'flift wing n’
'CL wing n’

'L margin n’

'lift tail n’

FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target
FltState%trim_target

FltState%trim_target, Wing%Klift
FltState%trim_target, Wing%Klift

FltState%trim_target
FltState%trim_target

Structure: Aircraft

INPUT_geom

KIND scale
kScale

KIND_Ref
kRef
SL_Ref
BL_Ref
WL_Ref

loc_cg

int

int
int

+
+
+
+
+
+
+
int +
int +
real +
real +
real +

Location +

if trim_target=1, trim quantity target value is FltState%trim_target; otherwise component Klift or Kprop used

[N 1]

if trailing “n” is absent, use first component (n=1)

trim_quant="flift rotor n’ or trim_quant="flift wing n': target is fraction total aircraft lift (GW*nAC(3))
trim_quant="fprop rotor n': target is fraction total aircraft drag (qAC*DoQ)

trim_quant='T margin n' uses Rotor%CTs_steady, trim_quant="T margin tran n’ uses Rotor%CTs_tran
trim_quant="T margin eqn n’ uses equation for rotor thrust capability (Rotor%KO0_limit and Rotor%K1_limit)

trim_var="Vtip' or 'Nspec’: requires FltAircraft%SET_Vtip="input’

Geometry
input (1 fixed, SL/BL/WL; 2 scaled, from XoL/YoL/ZoL)
scaled geometry
reference length
kind (1 rotor radius, 2 wing span, 3 fuselage length)
identification (component number)
reference point
kind (O input, 1 rotor, 2 wing, 3 fuselage, 4 center of gravity)
identification (component number)
stationline
buttline
waterline
calculated reference point (input or component)
baseline center of gravity location

Geometry: Location for each component
fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL
stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m
scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale)
XoL + aft, YoL + right, ZoL + up; from reference point
option to fix some geometry (FIX_geom in Location override INPUT_geom)
option to specify reference length (KIND_scale in Location override this global KIND_scale)

82

Structure: Aircraft

SET _atmos
temp
dtemp
density
csound
viscosity
altitude

c*12
real
real
real
real
real
real

83

reference point: KIND_Ref, kRef; input dimensional XX_Ref, or position of identified component
component reference must be fixed
certain Locations can be calculated from other parameters (configuration specific)
center of gravity: baseline is for nacelle angle = 90
flight state has calculated or input actual cg location

speed of sound c;
viscosity i
altitude

+ Takeoff flight condition

+ atmosphere specification "std’
+ temperature 7

+ temperature increment AT’ 0.
+ density p

+

+

+

takeoff condition (density) used for C' /o in rotor sizing
SET_atmos, atmosphere specification:
'std’ = standard day at specified altitude (use altitude)
'dtemp’ = standard day at specified altitude, plus temperature increment (use altitude, dtemp)
'temp’ = standard day at specified altitude, and specified temperature (use altitude, temp)
'dens’ = input density and temperature (use density, temp)
"input’ = input density, speed of sound, and viscosity (use density, csound, viscosity)
'notair’ = input, not air on earth (use density, csound, viscosity)
see FltState%SET_atmos for other options (polar, tropical, and hot days)

Structure: Aircraft

DGW
Wfuel_DGW
Wpay DGW
WE

dWE

fWE

SDGW
dSDGW
fSDGW
fFuelSDGW

WMTO
dWMTO
fWMTO
nz_ult

real
real
real
real
real
real

real
real
real
real

real
real
real
real

+ 4+ A+ o+

84

Weight
design gross weight Wp
mission fuel Wiy corresponding to DGW
payload W,y corresponding to DGW
weight empty Wg
weight increment
weight factor
structural design gross weight
structural design gross weight Wgp
weight increment .
weight factor 1.
fraction main fuel tanks filled at SDGW 1.
maximum takeoff weight
maximum takeoff weight Wjy,ro
weight increment
weight factor
design ultimate flight load factor n,;; at SDGW 6.0

= o

input or calculated: design gross weight Wp, (FIX_DGW), structural design gross weight Wsp (SET_SDGW), maximum
takeoff weight Wa,ro (SET_WMTO), weight empty W (FIX_WE)
if calculated, then input parameter is initial value

DGW, design gross weight: used for rotor disk loading and blade loading, wing loading, power loading, thrust loading
to obtain aircraft moments of inertia from radii of gyration
for tolerance and perturbation scales of the solution procedures
optionally to define structural design gross weight and maximum takeoff weight
optionally to specify the gross weight for missions and flight conditions
Wfuel_DGW and Wpay_DGW usually calculated (identified as input so inherited by next case)

FIX_WE: fixed or scaled weight empty obtained by adjusting contingency weight
scaled with design gross weight: Wgp=dWE+WE*Wp

SET_SDGW, structural design gross weight:
"input’ = input
'f(DGW)' = based on DGW; W p=dSDGW+SDGW*W p

Structure: Aircraft

kx

ky
kz

real
real
real

85

"f(WMTO)' = based on WMTO; W p=dSDGW+SDGW*W ;70
'maxfuel’ = based on fuel state; Wsp=dSDGW+SDGW*Wq, Wg = Wp—-Wfuel DGW+FuelSDGW*Wiyel—cap
'perf’ = calculated from maximum gross weight at SDGW sizing conditions (DESIGN_sdgw)
SET_WMTO, maximum takeoff weight:
"input’ = input
'f(DGW)' = based on DGW; W;70=dWMTO+WMTO*W p
'f(SDGW)' = based on SDGW; W;70=dWMTO+WMTO*Wsp
'maxfuel’ = based on maximum fuel; W7o=dWMTO+HWMTO*W g, Wg = Wp-Wfuel DGW+Wryel—cap
'perf’ = calculated from maximum gross weight at WMTO sizing conditions (DESIGN_wmto)
SDGW used for weights (fuselage, rotor, wing)
WMTO used for cost, drag (scaled aircraft and hub drag), and weights (system, fuselage, landing gear, engine group)
nz_ult, design ultimate flight load factor at SDGW: used for weights (fuselage, rotor, wing)

Weight

moments of inertia (based on design gross weight, scaled with reference length)
roll radius of gyration k, /L
pitch radius of gyration k, /L
yaw radius of gyration k, /L

weight empty = structure + propulsion + systems and equipment + vibration + contingency

operating weight = weight empty + fixed useful load

weight statement defines fixed useful load and operating weight for design configuration
so for flight state, additional fixed useful load = auxiliary fuel tank and kits and increments
flight state can also increment crew weight or equipment weight

flight state: gross weight, useful load (payload, usable fuel, fixed useful load), operating weight
gross weight = weight empty + useful load = operating weight + payload + usable fuel
useful load = fixed useful load + payload + usable fuel

Structure: Aircraft

FIX _drag
DoQ

CD
kDrag
FIX_DL
DoQV
kDL

KIND_alpha

nRotor
nWing
nTail
nTank

int

real
real
real
int

real
real

int

int
int
int
int

+ 4+ 4+ + + + + +

+ 4+ + + +

Drag

total aircraft D /q (0 calculated; 1 fixed, input D /g; 2 scaled, input Cp; 3 scaled, from k)
area D/q
coefficient C'p (based on rotor area, D/q = A.tCp)
k= (D/q)/(Warro/1000)/3 (Units_Dscale)

total aircraft download (0 calculated; 1 fixed, input D /gy ; 2 scaled, from kpy,)
area (D/q)v
kpr = (D/q)V/Aref

86

0.008
25

0.05

fixed drag or download: obtained by adjusting contingency D/q or (D/q)v
FIX_drag: minimum drag, excludes drag due to lift and angle of attack
use only one of input DoQ, CD, kDrag (others calculated)
A,or = reference rotor area; units of kDrag are ft2/k1b%/3 or mQ/Mg
CD = 0.02 for old helicopter, 0.008 for current low drag helicopters
kDrag = 9 for old helicopter, 2.5 for current low drag helicopters,
1.6 for current tiltrotors, 1.4 for turboprop aircraft (English units)
FIX_DL, download: A, = reference rotor area, kDL ~ DL /T
use only one of DoQV, kDL (other calculated)

2/3

Aerodynamics

angle of attack and sideslip angle representation (1 conventional, 2 reversed for sideward flight)

angle of attack and sideslip angle: reversed definition best for sideward flight

Number of Components
rotors (maximum nrotormax)
wings (maximum nwingmax)
tails (maximum ntailmax)
fuel tank systems (maximum ntankmax)

= = O N

Structure: Aircraft

nPropulsion
nEngineGroup
nJetGroup
nChargeGroup
nEngineModel
nEngineParamN
nEngineTable
nRecipModel
nCompressorModel
nMotorModel
nJetModel
nFuelCellModel
nSolarCellModel
nBatteryModel

int
int
int
int
int
int
int
int
int
int
int
int
int
int

+ 4+ + o+

propulsion groups (maximum npropmax)
engine groups (maximum nengmax)

jet groups (maximum njetmax)

charge groups (maximum nchrgmax)

engine models (maximum nengmax)

engine model parameters (maximum nengpmax)
engine tables (maximum nengmax)
reciprocating engine models (maximum nengmax)
compressor models (maximum nengmax)

motor models (maximum nengmax)

jet models (maximum njetmax)

fuel cell models (maximum nchrgmax)

solar cell models (maximum nchrgmax)

battery models (maximum ntankmax)

propulsion group is set of components and engine groups, connected by drive system

engine model or engine table or reciprocating engine or motor model describes particular engine,
used in one or more engine groups

jet model describes particular jet, used in one or more jet groups

fuel cell model or solar cell model describes particular charger, used in one or more charge groups

battery model describes particular battery, used in one or more fuel tanks

87

O OO O OO0 O0OO K OO -

88

Chapter 19

Structure: Systems

Variable Type Description Default
+ Systems
title c*100 + title
notes c*1000 + notes
+ Weight
SET_Wopayload int + payload (1 no details; 2 all terms) 1
Upass real + weight per passenger
+ fixed useful load
SET_Wecrew int + crew weight (1 no details; 2 all terms) 1
Werew real + weight or adjustment
Ucrew real + weight per crew
Ncrew int + number of crew
Wtrap real + trapped fluids and engine oil weight 0.
+ other fixed useful load
nWoful int + number of categories (0 for one value without name; maximum 10) 0
Woful_name(10) c*24 + category name '
Woful(10) real + baseline weight 0.
Wotherkit real + other kit 0.

SET_Whpayload: payload specified by flight condition or mission
SET_Wcrew: no details (only Wcrew) or all terms (Ucrew*Ncrew+Wcrew)

other fixed useful load: can include baggage, gun installations, weapons provisions, aircraft survivability equipment,
survival kits, life rafts, oxygen

Structure: Systems

SET fold

fWfoldkitW (nwingmax)
fWfoldkitR(nrotormax)
fWfoldkitT (ntailmax)
fWfoldkitFw
fWfoldkitFt

SET Wvib
Whvib

fWvib

SET Wcont
Wocont
fWcont

Wauxpower
Winstrument
Wpneumatic
Wenviron
SET_Welectrical
Welectrical
Welect_supply

int

real
real
real
real
real

int
real
real
int
real
real

real
real
real
real
int

real
real

+ 4+ + + + + +

+ 4+ + + + +

+ 4+ + + + + + o+

folding (0 none, 1 fold weights, 2 with kit)
folding weight in kit ff,qkit (fraction wing/rotor/tail/body fold weight)
wing
rotor
tail
body (wing and rotor fold)
body (tail fold)

vibration treatment weight (1 fraction weight empty, 2 input)
weight Wi,
fraction weight empty fyip

contingency weight (1 fraction weight empty, 2 input)
weight Weont
fraction weight empty feont

WEg = (structure + propulsion group + systems and equipment) + Wb + Weont
SET_Wvib: Wy, input or Wy, = foibWe
SET_Wecont: Weont input or Weont = feont Wg; or adjust Wyt for input or scaled Wy (FIX_WE=1 or 2)

SET _fold, folding:
set component dWxxfold=0 and fWxxfold=0 for no rotor/wing/tail/body fold weight
fraction fWfoldkit of fold weight in fixed useful load as kit, remainder kept in component weight
kit weight removable, absent for specified flight conditions and missions

systems and equipment

auxiliary power group (APU)

instruments group

pneumatic group

environmental control group

electrical group (1 no details; 2 all terms)
aircraft
power supply

89

0.5
0.5
0.5
0.5
0.5

co oo

© o

Structure: Systems

Welect_conv
Welect_distrib
Welect_lights
Welect_support
SET_WMEQ
WMEQ
Wavionics_com
Wavionics_nav
Wavionics_ident
Wavionics_disp
Wavionics_survive
Wavionics_mission

SET_Warmor
Warmor
Uarmor_floor
Uarmor_wall
Uarmor_crew
SET_Warmprov
Warmprov
Warmprov_gun
Warmprov_turret
Warmprov_expend
Warm_elect
SET_Wfurnish
Wfurnish

Useat_crew
Useat_pass
Uaccom_crew
Uaccom_pass
Uox_crew
Uox_pass
Wrfurnish_misc

real
real
real
real
int

real
real
real
real
real
real
real

int

real
real
real
real
int

real
real
real
real
real
int

real

real
real
real
real
real
real
real

I T i i T o S S e e e e e S R e Tk Tk Tt T ik 2 S T S o S S

power conversion

power distribution and controls
lights and signal devices
equipment supports

avionics group (1 no details; 2 all terms)

avionics

communications
navigation

identification

control and display
aircraft survivability
mission system equipment

armament group

armor (1 no details; 2 all terms)
armor
cabin floor armor weight per area
cabin wall armor weight per area
armor weight per crew
armament provisions (1 no details; 2 all terms)
armament provisions
gun provisions
turret systems
expendable weapons provisions
armament electronics (avionics group)

furnishings and equipment group (1 no details; 2 all terms)

furnishings and equipment

accommodations for personnel
each crew seat
each passenger seat
miscellaneous accommodation per crew seat
miscellaneous accommodation per passenger seat
oxygen system per crew seat
oxygen system per passenger seat

miscellaneous equipment

90

cocoe o

sy

Cococoo0oe

ISR

[y

Structure: Systems

Wfurnish_trim
Uinsulation

Wemerg_fire
Wemerg_other
SET_Wload

Wload
Whandling_aircraft

Uhandling_cargo
Wload_hoist
Wload_extprov

Ncrew seat
Npass_seat
Ucrew_seat_inc
Upass_seat_inc

real
real

real
real
int

real
real

real
real
real

int
int
real
real

+ 4+ A+ F o+

91

furnishings
trim 0.
acoustic and thermal insulation weight per cabin area

emergency equipment

fire detection and extinguishing 0.
other emergency equipment 0.
load and handling group (1 no details; 2 all terms) 1
load and handling 0.
aircraft handling 0.
load handling
cargo handling weight per cabin floor area
hoist 0.
external load provisions 0.
systems and equipment
number of crew seats 0
number of passenger seats 0
equipment weight increment per crew seat (0. for default) 0.
equipment weight increment per passenger seat (0. for default) 0.

SET_Welectrical=1: only Welectrical+WDlelect
SET_WMEQ=1: only WMEQ; equipment weights include installation
SET_Warmor=1: only Warmor
SET_Warmprov=1: only Warmprov
SET_Wfurnish=1: only Wfurnish
miscellaneous accommodation includes galleys and toilets
miscellaneous equipment includes cockpit displays
trim includes floor covering, partitions, crash padding, acoustic and thermal insulation
excluding vibration absorbers
other emergency equipment includes first aid, survival kit, life raft
SET_Wload=1: only Wload

equipment weight increment is for flight condition and mission; default (if SET_furnish=2 and SET_armor=2):
Ucrew_seat_inc=Useat_crew+Uaccom_crew-+Uox_crew-+Uarmor_crew
Upass_seat_inc=Useat_pass+Uaccom_pass+Uox_pass

Structure: Systems

MODEL _fc
MODEL_RWfc

refRotor
KIND_RWfc(nrotormax)
TF_RWfc_coll(nrotormax)
TF_RWfc_b(nrotormax)
TF_RWfc_mb(nrotormax)
TF_RWfc_nb(nrotormax)
TF_RWfc_hyd(nrotormax)
MODEL_FWfc
MODEL_CVfc

dWRWfc_b
dWRWfc_mb
dWRWfc_nb
dWFWfc_mb
dWFWfc_nb
dWCVfc_mb
dWCVfc_nb

Wrfc_cc
Wric_afcs

dWRWhyd
dWFWhyd
dWCVhyd

WEQhyd

int
int
int
int
real
real
real
real
real
int
int

real
real
real
real
real
real
real

real
real

real
real
real
real

R T T T o S S S e S e S e T T e T T T T T i o o s

Weight
systems and equipment
flight control group and hydraulic group

model (0 input, 1 NDARC, 2 custom)

rotary wing flight controls (0 not present, 1 global, 2 for each rotor)
reference rotor number for global
kind control for each rotor (O fixed pitch, 1 swashplate, 2 collective only)
addition weight factor, collective control only
addition weight factor, boosted
addition weight factor, control boost mechanisms
addition weight factor, non-boosted
addition weight factor, hydraulic

fixed wing flight controls (0 for not present)

conversion controls (0 for not present)

flight control weight increment
rotary wing, boosted
rotary wing, control boost mechanisms
rotary wing, non-boosted
fixed wing, control boost mechanisms
fixed wing, non-boosted
conversion, boosted
conversion, control boost mechanisms

fixed flight controls
cockpit controls
automatic flight control system

hydraulic weight increment
rotary wing
fixed wing
conversion

equipment hydraulics

92

e

1.0
1.0
1.0
1.0

©Cocooo0coo

cocoeo

Structure: Systems

MODEL DI

dWDlelect
dWDlsys

TECH_RWfc b
TECH_RWfc_mb
TECH_RWfc_nb

TECH_FWfc_mb
TECH_FWfc_nb

TECH_CVfc_mb
TECH_CVfc_nb

TECH_RWhyd
TECH_FWhyd
TECH_CVhyd

TECH Dlelect
TECH_Dilsys

int

real
real

real
real
real

real
real

real
real

real
real
real

real
real

+ + + + +

+ 4+ A+ A+ +

93

anti-icing group

model (0 input, I NDARC, 2 custom) 1
weight increment
electrical system 0.
anti-ice system 0.

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

MODEL_RWfc=1: global option is based on just main rotor (refRotor)
MODEL_RWfc=2: sums separate contributions from all rotors; uses KIND_RWfc and TF_RWfc_xxxx
each rotor designated fixed pitch (no weight), swashplate (collective and cyclic), or collective control only

tiltrotor wing weight model requires weight on wing tip: distributed to designated rotor;
sum rotary wing and conversion flight controls, hydraulic group, trapped fluids

Technology Factors
rotary wing flight control weight

boosted x rwb 1.0

control boost mechanisms X pywmb 1.0

non-boosted X pwnb 1.0
fixed wing flight control weight

control boost mechanisms X ryymp 1.0

non-boosted X Fiynp 1.0
conversion flight control weight

control boost mechanisms X cvmp 1.0

non-boosted X cvnp 1.0
flight control hydraulics

rotary wing X Riwhyd 1.0

fixed wing X Fivhyd 1.0

CONVErsion X Cvhyd 1.0
anti-icing

electrical system X prelect 1.0

anti-ice system X prsys 1.0

Structure: Systems

MODEL_WRWfc
fRWfc_nb
xRWfc_red
KIND_WRWfc
fRWfc_b
fRWfc_mb
KRW

XRWN

XRWR

XRWc

XRWW

XRWb

MODEL_WFWfc
fFWfc_nb
nfunction

fmech

KFW

XFW

fCVfc_mb
fCVfc_nb

MODEL cc
Kcc
Xcc

fRWhyd
fFWhyd
fCVhyd

int

real
real
int

real
real
real
real
real
real
real
real

int
real
int
real
real
real

real
real

int
real
real

real
real
real

T T S S S S S S S e T T T T T T T T 2t Tt S o S S S S S S

Flight Control Group, NDARC Weight Model
rotary wing flight controls
model (1 fraction, 2 parametric, 3 Boeing, 4 GARTEUR, 5 Tishchenko, 6 generic)
AFDD: non-boosted control weight fryy . (fraction boost mechanisms weight)
AFDD: hydraulic system redundancy/complexity factor fry red
AFDD: survivability (1 baseline, 2 UTTAS/AAH level of survivability)
Boeing, GARTEUR, Tishchenko, or generic: boosted weight fryy, (fraction boosted + boost mech, or total)
GARTEUR, Tishchenko, or generic: boost mechanisms weight fry..p (fraction total weight)
generic: factor K gy
exponent X gy v
exponent X pw r
exponent X pyyc
exponent X gpyyw
exponent X rivp
fixed wing flight controls
model (1 full controls, 2 only on hor tail, 3 GARTEUR, Raymer (4 transport, 5 general aviation), 6 generic)
non-boosted weight fryy ., (fraction total fixed wing flight control weight)
Raymer: number of control functions
Raymer: number of mechanical functions (fraction total)
generic, factor K gy
exponent X gy
conversion controls
boost mechanisms weight foy,,p (fraction maximum takeoff weight)
non-boosted weight foy,,p (fraction boost mechanisms weight)
cockpit controls
model (1 fixed Wfc_cc, 2 scaled with DGW)
factor K.
exponent X ..
Hydraulic Group, NDARC Model
flight control hydraulics
rotary wing frwnyd (fraction rotary wing boost mechanisms + hydraulic weight)
fixed wing frwnya (fraction fixed wing boost mechanisms weight)
conversion fcoynya (fraction conversion boost mechanisms weight)

94

0.02
0.10

1.7
0.41

0.40
0.10
0.10

Structure: Systems

WtParam_fc(8)

kDelce_elec(nrotormax)
kDelce_rotor(nrotormax)
kDelce_wing(nwingmax)
kDelce_air(nengmax)
kDelce_jet(njetmax)

WtParam_DI(8)

real

real
real
real
real
real

real

+ +

+ 4+ + + + +

+ +

95

flight controls = non-boosted (do not see aero surface or rotor loads) + boost mechanisms (actuators) + boosted
MODEL_WRWfc = fraction: parametric except for non-boosted controls (from fRWfc_nb)

typically fRWfc_nb = 0.6 (data range 0.3 to 1.8), fRWhyd = 0.4
xRWfc red=1.0t0 3.0

Custom Weight Model
parameters

Anti-Icing Group, NDARC Weight Model
weight factor for electrical system Ko (Ib/ft? or kg/m?)
weight factor for main rotor Kooy (Ib/ft? or kg/mz)
weight factor for wing King (Ib/ft or kg/m)
weight factor for engine air intake K,;, (Ib/Ib or kg/kg)
weight factor for jet air intake Kj¢; (Ib/Ib or kg/kg)

Custom Weight Model
parameters

0.25
0.25

0.006
0.006

Chapter 20

96

Structure: Fuselage

Variable Type Description Default
+ Fuselage
title c*100 + title
notes c*1000 + notes
+ Geometry
loc_fuselage Location + fuselage location
SET_length int + fuselage length (1 input, 2 calculated, 3 from rotor and tail only, 4 from rotor only) 1
Length_fus real + length £,
SET_nose int + nose length (distance forward of hub; 1 input, 2 calculated) 1
Length_nose real + nose length £, e
fLength_nose real + nose length (fraction reference length)
SET aft int + aft length (distance aft of hub; 1 input, 2 calculated) 1
Length_aft real + aft length £,
fLength_aft real + aft length (fraction reference length)
fRef_fus real + fuselage SL location relative nose f,o (fraction fuselage length)
Width_fus real + fuselage width wgy,s
SET_Swet int + fuselage wetted area (1 input, 2 input plus boom, 3 from nose length, 4 from fuselage length, 5 from weight) 2
Swet real + wetted area Syt
Sproj real + projected area Spyo;
fSwet real + factor for wetted area [y OF Kyet 1.
fSproj real + factor for projected area fproj OF Kproj 1.
Height_fus real + fuselage height hg,s
Circum_boom real + tail boom effective circumference Cpoom
Width_boom real + tail boom effective width wy,oom
SET_Scabin int + cabin area (1 input, 2 calculated) 2
Scabin real + total cabin surface area Scapin
Scabin_floor real + cabin floor area Scapin—floor
Scabin_wall real + cabin wall area S.apin—wall

Structure: Fuselage

fScabin
fScabin_floor
fScabin_wall
KIND _scale
refRotor
refWing

Height_ramp
fLength_cargo

INPUT _flow
T_flow(ncontmax,nstatemax)
nVflow

flow(nvelmax)
Vflow(nvelmax)

real
real
real
int
int
int

real
real

int
real
int
real
real

+ 4+ + + + +

+ + +

+ 4+ + + + + +

factor for total cabin surface area fcapin
factor for cabin floor area f..bin_fioor
factor for cabin wall area feapin_wall
reference length (1 rotor radius, 2 wing span, 3 fuselage length)
rotor number (for rotor radius)
wing number (for wing span)

97

0.6
0.6
0.6

SET_length: input (use Length_fus) or calculated (from nose and aft lengths)
calculated uses rotor, tail, wing locations; or just rotor and tail, or just rotor
which can not then be scaled with fuselage length
SET_nose: input (use Length_nose) or calculated (from fLength_nose); used for Length_fus and Swet
SET_aft: input (use Length_aft) or calculated (from fLength_aft); used for Length_fus
fRef_fus=(SL_fuselage—SL_nose)/Length_fus; used for operating length and sketch
input required if SET_length = input, otherwise calculated

SET_Swet: both wetted area and projected area; input (use Swet, Sproj),
or calculated (from fSwet, fSproj, Width_fus, Height_fus, and fuselage or nose length)
or from weight, units of ke, = fSwet and kp,o; = fSproj are ft2/klb%/3 or m?/Mg?/3
boom circumference and width used if SET_Swet not input and not from weight (set to zero if no boom)

SET_Scabin: cabin areas used for systems and equipment weights

Geometry (for graphics)

height of cargo ramp
fraction of fuselage length used for cargo

Controls

flow control momentum coefficient C,
connection to aircraft controls (0 none, 1 input 7' matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

0.60

Structure: Fuselage

MODEL_aero
DoQ cont
DoQV _cont

MODEL_weight

dWhbody
dWmar
dWopress
dWcrash
dWftfold
dWfwfold

TECH_body
TECH_mar
TECH_press
TECH crash
TECH_ftfold
TECH_fwfold

int
real
real

int

real
real
real
real
real
real

real
real
real
real
real
real

+ 4+ 4+ A+ A+ F A+ +

aircraft controls connected to individual controls of component, c = T'cac + g
for each component control, define matrix 7" (for each control state) and value ¢
flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

Aerodynamics
model (0 none, 1 standard)
contingency drag, area (D/q)cont
contingency vertical drag, area (D/q)v cont

DoQ_cont calculated if total drag fixed (Aircraft FIX_drag); otherwise input
DoQV_cont calculated if total download fixed (Aircraft FIX_DL); otherwise input

Weight
fuselage group
fuselage group model (0 input, 1 NDARC, 2 custom)
weight increment
basic body
body marinization
pressurization
body crashworthiness
tail fold
wing fold
Technology Factors
basic body Xpasic
body marinization X mar
pressurization Xpress
body crashworthiness X cw
tail fold xtfo1q
wing fold Xwfold

98

©Cococooe 0o

1.0
1.0
1.0
1.0
1.0

Structure: Fuselage

AoA_zI
AoA_max

SET lift
dLoQda
dCLda

SET_moment
MoQO

CcMo
dMoQda
dCMda

SS_zy

SS max

SET side
dYoQdb
dCYdb

SET_yaw
NoQO
CNO
dNoQdb
dCNdb

real
real

int
real
real

int

real
real
real
real

real
real

int
real
real

int

real
real
real
real

+ 4+ A+ ++

+ 4+ + + A+ o+

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

Aerodynamics, Standard Model

zero lift angle of attack a,; (deg)

angle of attack for maximum lift o, .x (deg)

lift
specification (1 fixed, L/q; 2 scaled, Cf,)
lift slope, d(L/q)/dc (per rad)
lift slope, C'r, = dC,/dc (per rad; based on wetted area, L/q = SCT)

pitch moment
specification (1 fixed, M/q; 2 scaled, Cs)
moment at zero lift, (M/q)o
moment at zero lift, Cso (based on wetted area and fuselage length, M/q = SLC)y)
moment slope, d(M/q)/da (per rad)
moment slope, Cpro = dChy/da (per rad; based on wetted area and fuselage length, M /q = S¢C)y)

sideslip angle for zero side force 3., (deg)
sideslip angle for maximum side force fBy,ax (deg)
side force
specification (1 fixed, Y/q; 2 scaled, Cy)
side force slope, d(Y/q)/d (per rad)
side force slope, Cy g = dCy /d3 (per rad; based on wetted area, Y/q = SCy)
yaw moment
specification (1 fixed, N/g; 2 scaled, Cy)
moment at zero lift, (N/q)o
moment at zero lift, Cv (based on wetted area and fuselage length, N/q = S¢C)
moment slope, d(N/q)/df (per rad)
moment slope, Cyg = dCn /d (per rad; based on wetted area and fuselage length, N/q = S¢Cn)

SET _xxx: fixed (use XoQ) or scaled (use CX); other parameter calculated

99

10.

© o

N

cooo

10.

©

N

co oo

Structure: Fuselage

SET _drag
DoQ
CD

SET Dfit
DoQ fit
CD _fit

SET Drb
DoQ_rb(nrotormax)
CD_rb(nrotormax)

SET Vdrag
DoQV
CbV

SET_Sdrag
DoQS
CDS

MODEL_drag
AoA Dmin
Kdrag

Xdrag

MODEL_trans
AoA_tran

int
real
real

int
real
real

int
real
real

int
real
real

int
real
real

int

real
real
real

int
real

+ 4+ 4+ A+ ++

+ 4+ + + + + o+

+ 4+ + + + + + +

Drag, Standard Model

forward flight drag

specification (1 fixed, D/g; 2 scaled, Cp)

area (D/q)o

coefficient Cpg (based on wetted area, D/q = SCp)
fixtures and fittings

specification (1 fixed, D/q; 2 scaled, Cp)

area (D/q)qt

coefficient Cpgy (based on wetted area, D/q = SCp)
rotor-body interference

specification (1 fixed, D/q; 2 scaled, Cp)

area (D/q)p

coefficient Cp,;, (based on wetted area, D/q = SCp)

vertical drag

specification (1 fixed, D/g; 2 scaled, Cp)

area (D/q)v

coefficient Cpy (based on projected area, D/q = Spr0iCp)
sideward drag

specification (1 fixed, D/q; 2 scaled, Cp)

area (D/q)s

coefficient Cpg (based on wetted area, D/q = SCp)

drag variation with angle of attack
model (0 none, 1 general, 2 quadratic)
angle of attack for fuselage minimum drag C'p,i, (deg)
drag increment K4, ACp = CpoKg|ae| X4
drag increment X4, ACp = CpoKg|ae|*¢
transition from forward flight drag to vertical drag
model (1 input transition angle of attack, 2 calculate for quadratic)
angle of attack for transition «; (deg)

100

0.005

N oo

25.

Structure: Fuselage

MODEL_flow
Lmus

Lmul

Lmu2

Xmu

Mmu

Dmu
Cmu_limit

MODEL_body
MODEL_other
KIND_ramp
fLength_crg
Vdive

ndoor

Pdelta

Kfus

XfusW

Xfusn

XfusS

Xfusl

fWbody_mar

fWbody press
fWbody_crash
fWbody_tfold
fWbody_wfold

int

real
real
real
real
real
real
real

int
int
int
real
real
int
real
real
real
real
real
real

real
real
real
real
real

+ 4+ 4+ + + + + + o+

+ 4+ + o+

+ 4+ + + +

Flow Control; ACL, = Cra(Lyus\/Cp 4 LinCp + Ly2CE), ACLmax = X,.Cpu, ACy = M,C,, ACp = D, C,,
model (0 none)
lift L,
lift L,y
lift L2
maximum lift X,
moment M,
drag D,
flow limit Culimit

Fuselage Group, NDARC Weight Model
model (1 AFDD84,2 AFDDS82, 3 other)
model (1 Boeing, GARTEUR (2 air, 3 hel), 4 Tishchenko, 5 Torenbeek, Raymer (6 transport, 7 gen av), 8 generic)
AFDD: rear cargo ramp (0 none)
Boeing: cabin length + ramp length + cg range (fraction fuselage length)
Boeing or Torenbeek or Raymer: design dive speed Vgive (knots)
Raymer: number of cargo doors
Raymer: cabin pressure differential (psi)
generic: factor Ky,
exponent Xy
exponent Xrus,
exponent Xfyss
exponent Xrgp

body weight for marinization f,,,, (fraction basic body weight)

body weight for pressurization fp,qess (fraction basic body weight)

body weight for crashworthiness f.,, (fraction body weight)

tail fold weight fifo1q (fraction tail (AFDD84 or other) or body (AFDD82) weight)

wing fold weight fyt01q (fraction wing+tip (AFDD84 or other) or body+tailfold (AFDD82) weight)

101

0.0
0.0
0.0
1.0
0.0
0.0
1.0

200.

o

CooCcoo®

cooco e

AFDD84 (UNIV) is universal body weight model, for tiltrotor and tiltwing as well as for helicopters
AFDD82 (HELO) is helicopter body weight model, should not be used for tiltrotor or tiltwing
dive speed: Vi,ax = SLS max speed, Vdive = 1.25V 1.5

Structure: Fuselage 102

fLength_crg = (¢ + ¢, + ACG) /lp0ay = 1.0 for tandem, 0.3-0.6 for single main rotor (0.7-0.8 with ramp)

typically fWbody_crash = 0.06
typically fWbody_tfold = 0.30 (AFDD84 or other) or 0.05 (AFDDS2) for folding tail

+ Custom Weight Model
WtParam_fuse(8) real + parameters 0.

103

Chapter 21

Structure: LandingGear

Variable Type Description Default
+ Landing Gear
title c*100 + title
notes c*1000 + notes
+ Geometry
loc_gear Location + landing gear location
d_gear real + distance from bottom of landing gear to WL_gear dr.¢ 0.
place int + placement (1 located on body, 2 located on wing)
KIND_LG int + retraction (0 fixed, 1 retracts)
speed real + retraction speed (CAS or TAS, knots)
landing gear location: with HAGL (FItState) determines rotor height above ground level
height rotor = landing gear above ground + hub above landing gear = HAGL + (WL_hub—WL_gear+d_gear)
place: used for weight (fuselage and wing)
+ Aerodynamics
MODEL_aero int + model (0 none, 1 standard) 1
+ Weight
+ alighting gear group
MODEL_weight int + alighting gear group model (0 input, | NDARC, 2 custom) 1
+ weight increment
dWLG real + basic landing gear 0.
dWLGret real + retraction 0.
dWLGcrash real + crashworthiness 0.

Structure: LandingGear

TECH LG
TECH_LGret
TECH_LGcrash

DoQ

MODEL_LG
nLG
fWLG_basic
fWLG_ret
fWLG_crash

WtParam_gear(8)

Technology Factors

104

+
real + basic landing gear x ¢ 1.0
real + retraction X 1, cret 1.0
real + crashworthiness X r.Gew 1.0
weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.
+ Drag, Standard Model
real + drag area extended, D/q
+ Landing Gear Group, NDARC Weight Model
int + model (1 fraction, 2 parametric rotary wing (wheel), 3 parametric fixed wing, 4 parametric skid) 2
int + number of landing gear assemblies N1 3
real + basic landing gear weight f o (fraction maximum takeoff weight) 0.0325
real + landing gear weight for retraction f7gret (fraction basic weight) 0.08
real + landing gear weight for crashworthiness f1,ccw (fraction basic+retraction weight) 0.14
MODEL_LG=fraction: uses fWLG_basic; typically fWLG_basic = 0.0325 (wheel) or 0.014 (skid)
MODEL_LG=skid: for tall gear, technology factor TECH_LG should include form factor 1.11
design ultimate flight load factor nz_ult used for landing gear design load factor nr,
typically fWLG_ret = 0.087, fWLG_crash =0.14
+ Custom Weight Model
real + parameters 0.

Chapter 22

105

Structure: Rotor

Variable Type Description Default
+ Rotor

title c*100 + title

notes c*1000 + notes

config c¢*32 + Configuration 'main’

kPropulsion
KIND_xmsn
Vtip_ref(ngearmax)
INPUT _gear
gear(ngearmax)

r_react

configuration designation: principal designation required, rest identify special characteristics
principal designation = 'main’, 'tail’, "prop’
antitorque = 'antiQ’, 'auxT’
twin rotor = 'coaxial’, 'tandem’, 'tiltrotor’ (keyword = tan, coax, tilt)
others = 'variable diameter’, 'stop’, 'ducted fan’, 'reaction drive’, 'multirotor’ (keyword = var, stop, duct, react, multi)
principal designation determines where weight put in weight statement, and designates main rotors (isMainRotor)
separately specify appropriate performance and weight models
multiple rotor configurations have special options for geometry and performance
options defined by variables SET_geom, MODEL_twin, MODEL _int_twin
antitorque or aux thrust rotor has special options for sizing
options defined by variables SET_rotor, fThrust, Tdesign
reaction drive still requires propulsion group

+ Propulsion group
int + group number 1
int + drive system branch (1 primary, 0 dependent) 1
real + reference tip speed
int + gear ratio input for dependent branch (1 Vtip_ref, 2 gear) 1
real + gear ratio 7 = Qgep/Qprim (ratio rpm to rpm of primary rotor) 1.0
+ Reaction drive
real + effective radial station of force (fraction Radius) 1.0

Structure: Rotor

INPUT Vtip

nVrpm
Vrpm(nvelmax)

Vtip_cruise
Vtip_man
Vtip_oei
Vtip_xmsn
Vtip(nvelmax)

fRPM_cruise
fRPM_man
fRPM_ oei
fRPM_xmsn
fRPM(nvelmax)

int

int
real

real
real
real
real
real

real
real
real
real
real

+ 4+ A+ A+ +

106

drive system branch: only one primary rotor per propulsion group
tip speed and gear ratio required for each drive system state
primary: specify Vtip_ref and default tip speeds; Viip—nhover = Vtip_ref(1)
dependent: specify gear ratio, or specify Vtip_ref and calculate gear (depend on rotor radius)
can not specify gear ratio if sizing changes dependent rotor V;;;, (SET _rotor)
if size task changes Vtip_ref(1), then rVtip_ref used to change Vtip_ref(n) for n>1
variable speed transmission: for drive system state STATE_gear_var, gear ratio factor fgear (control) included
when evaluate rotational speed of dependent rotor

reaction drive requires one and only one propulsion system (engine group or jet group)

Default rotor tip speeds (primary rotor)
input form (1 tip speed, 2 hover Vi;;, and rpm ratio) 1
function of flight speed

number of speeds (1 constant; > 2 piecewise linear, maximum nvelmax) 1
speeds (CAS or TAS, knots)
tip speed
cruise
maneuvering flight
OEI
transmission sizing
function of flight speed
rpm ratio (%ip/‘/tip—hover)
cruise
maneuvering flight
OEI
transmission sizing
function of flight speed

e

default rotor tip speeds (including conversion): selectable by SET_Vtip of FltState
only for primary rotor; V;;;, calculated from gear(state) for dependent branch

Structure: Rotor

SET _limit_rs
Plimit_rs
fPlimit_rs

diskload
fArea
fDGW
fThrust
Radius
CWs
sigma
Tdesign
Pdesign
Ndesign
SET thrust

int
real
real

real
real
real
real
real
real
real
real
real
real
int

+ 4+ + + A+ ++

107

Drive system torque limit
rotor shaft (0 input, 1 fraction power, 2 fraction drive system limit) 1
rotor shaft power limit Prg1imit
rotor shaft power limit factor 1.

drive system torque limit: Size%SET _limit_ds = input (use Plimit_rs) or calculated (from fPlimit_rs)
SET_limit_ds='input’: Plimit_rs input
SET_limit_ds#'input’: from rotor power required at transmission sizing flight conditions (DESIGN_xmsn)
rotor shaft: options for SET_limit_ds#'input’
SET _limit_rs=0: Plimit_rs
SET _limit_rs=1: fPlimit_rs x (rotor P,,)
SET _limit_rs=2: fPlimit_rs X Ppgiimit
rotor shaft power limit: corresponds to one rotor
can be used for max effort in flight state (max_quant='Q margin’)
can be used for max gross weight in flight condition or mission (SET_GW="maxQ’ or 'maxPQ")
always check and print whether exceed torque limit

Parameters
disk loading (Ib/ft? or N/m?)
fraction rotor area for reference disk area f4
fraction DGW fy (for disk loading and blade loading)
thrust factor (antitorque or aux thrust rotor) 1.0
radius R
blade loading Cyy /o (thrust-weighted)
solidity o = N¢/m R (thrust-weighted)
thrust for antitorque or aux thrust rotor
power for antitorque or aux thrust rotor
rotor speed (rpm) at Pdesign
rotor thrust for disk loading and blade loading (0 default; 1 fDGW*DGW, 2 fThrust*Tdesign) 0

rotor disk loading = T/ A; aircraft disk loading = Wp /Ayer, Aver = > (faA)
W = fwWp (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor); can specify using SET_thrust
Tdesign and Pdesign obtained from thrust design conditions and missions (DESIGN_thrust)

Structure: Rotor

SET_geom
KIND_TRgeom

fRadius
otherRotor
positionOfRotor
WingForRotor
PanelForRotor
clearance fus
fclearance_fus
sep_coaxial
overlap_tandem

mainRotor
fRadius_tr
clearance_tr

ang_multicopter
len_multicopter

SET_VarDiam
fRcruise

StopAsWing

c*12
int

real
int
int
int
int
real
real
real
real

int
real

real

real
real

int
real

int

T T T T T T S e S e R N T I I I I

if rotor sized from disk loading (SET_rotor="DL+xx+xx"), area = T'/diskload

if SET_rotor specify 'Vtip', use Vtip_ref(1)

if SET_rotor not specify 'Vtip’, calculate Vtip_ref(1), and then Vtip_ref for dependent rotors

if SET_rotor="CWs-+xx+xx', then Cyy /o from fDGW*DGW, takeoff condition, Vtip_ref, and thrust-weighted solidity

for antitorque or aux thrust rotor, need design conditions and missions (DESIGN_thrust) to identify Tdesign
otherwise use fDGW and design gross weight
Tdesign and Pdesign generally calculated (identified as input so inherited by next case)

108

Geometry
position (standard, tiltrotor, coaxial, tandem, tailrotor, multicopter)
tiltrotor (1 from clearance, 2 at wing tip, 3 at wing panel edge)
twin rotors
ratio rotor radius to that of other rotor
other rotor number
rotor position (+1/-1 for right/left, lower/upper, front/aft)
wing number
wing panel number
tiltrotor clearance between rotor and fuselage dg,s
tiltrotor clearance factor
coaxial rotor separation s (fraction Diameter)
tandem rotor overlap o (fraction Diameter)
tail rotor
main rotor number
radius scale factor
clearance between tail rotor and main rotor dy,
multicopter
angle 1) (clockwise from forward, deg)
arm length ¢ (fraction Radius)
variable diameter rotor
set diameter (1 conversion schedule, 2 function speed)
ratio cruise radius to hover radius (variable diameter only)
rotor stopped as wing
wing number (0 not)

'std’

1.0

= O

1.0
0.08
0.25

1.0
0.5

Structure: Rotor

SET_geom: calculation override part of location input

SET_geom="tiltrotor": calculate lateral position (BL)
KIND_TRgeom=clearance: from WingForRotor, Width_fus, clearance_fus, fclearance_fus
KIND_TRgeom=wing tip: from WingForRotor, wing span
KIND_TRgeom=wing panel edge: from WingForRotor, PanelForRotor, panel edge and wing span
positionOnRotor specifies right or left position
BL or Yol in loc_pylon, loc_pivot, loc_naccg is relative calculated loc_rotor BL
SET_geom="coaxial’: calculate position from sep_coaxial
same sep_coaxial for otherRotor, positionOnRotor specifies lower or upper position
loc_rotor (SL,BL,WL or XoL,YoL,ZolL) is midpoint between hubs
loc_pylon (SL,BL,WL or XoL,YoL,Zol) is relative calculated loc_rotor
SET_geom="tandem’: calculate longitudinal position (SL) from overlap_tandem
same overlap_tandem for otherRotor, positionOnRotor specifies front or aft position
loc_rotor (SL or XoL only) is midpoint between hubs
loc_pylon SL or XolL is relative calculated loc_rotor
SET_geom="tailrotor’: calculate longitudinal position (SL) from clearance_tr, mainRotor
loc_pylon SL or Xol is relative calculated loc_rotor

SET_geom="multicopter’: calculate longitudinal and lateral position from ang_multicopter, len_multicopter

loc_rotor (SL,BL or XoL,Yol) is center of rotors
loc_pylon (SL,BL,WL or XoL,YoL,Zol) is relative calculated loc_rotor
ang_multicopter also used for Aircraft%config="multicopter’ to define control

if rotor number < 2 and positionOnRotor=0: first rotor is right/lower/front, second rotor is left/upper/aft
sizing:

if SET_rotor='ratio’, Radius=fRadius*Radius(otherRotor); otherRotor not SET_rotor="ratio’

twin rotors: config identify as twin rotor
antitorque: config identify as antitorque rotor

if SET_rotor='scale’, Radius=fRadius_tr*(main rotor Radius)*function(DiskLoad)

variable diameter: Radius is hover or reference radius; can be commanded by aircraft controls

conversion schedule: R =Radius in hover and helicopter mode (V' < Vi onyv—hover)
R =Radius*fRcruise in cruise mode (V' > Vi gnv—_cruise); linear with V' in conversion mode
function of speed: use nVdiam, fdiam, Vdiam to calculate R

109

Structure: Rotor

rotate
nBlade

SET_chord
fTWsigma
taper
SET_twist
twistL

nprop
rprop(nrmax)
fchord(nrmax)
twist(nrmax)

KIND_hub
flapfreq
conefreq
gamma
precone
delta3

dclda

tiploss

Xroot
Blockage
mu_blockage

int
int

int
real
real
int
real
int
real
real
real

int

real
real
real
real
real

real
real
real
real
real

T T T T S S S I I I I I T T

110

stoppable rotor: zero rotor flapping, forces, and power when stopped
stopped (FltAircraft%STOP_rotor=1) uses stopped rotor hub and blade drag
stopped and stowed (FltAircraft%STOP_rotor=2) uses stowed rotor hub drag
stopped as wing (FItAircraft%STOP_rotor=3) uses wing aero (wing number StopAsWing) with zero hub drag

Geometry, Dynamics, Aerodynamics
direction of rotation (1 counter-clockwise, —1 clockwise) 1
number of blades NV
planform and twist

chord distribution (1 linear from fTWsigma, 2 linear from taper, 3 nonlinear from fchord) 1
ratio thrust-weighted solidity to geometric solidity f = o¢/0, 1.
taper ratio ¢ (tip chord/root chord) 1.

twist distribution (1 linear from twistL, 2 nonlinear from twist) 1
linear twist 6, (deg, root to tip) -10.

number of radial stations (maximum nrmax) 2
radial stations (ryo0t/R)
chord distribution ¢(7) /cyef 1.

twist Oz, (1) (deg)
flap dynamics

hub type (1 articulated, 2 hingeless) 1
first flapwise natural frequency v (per-rev at hover tip speed) 1.04
coning natural frequency v (0. to use flapfreq) 0.
blade Lock number ~ 8.
precone 3, (deg) 0.
pitch-flap coupling d3 (deg) 0.
aerodynamics
blade section 2D lift-curve slope a = ¢y, (per-rad) 5.7
tip loss factor B (lift zero from BR to tip) 0.97
root cutout (ryoot/R) 0.1
blockage factor B = AT/T 0.
advance ratio pp (0. for no correction) 0.

Structure: Rotor 111

SET _chord: use one of fTWsigma, taper, or fchord(r); others calculated (including root cutout)
fTWSsigma = sigma_tw/sigma_geom
from fTWsigma: calculate equivalent linear taper, and f. = ¢/cyet
from taper (linear): calculate fTWsigma, and f. = ¢/cref
from fchord(r): integrate for ¢, and ¢;, fTWsigma= ¢, /¢, calculate taper, f, = scaled fchord

SET_twist: use one of twistL or twist(r); other calculated
for nonlinear distribution, twist relative 0.75 R obtained from input

flap frequency and Lock number are used for flap dynamics and hub moments due to flap
specified for hover radius and rotational speed
KIND_hub determines how flap frequency and hub moment spring vary with rotor speed and R
weight models can have separate blade and hub values for flap frequency

blade Lock number gamma: for SLS density, a = 5.7, thrust-weighted chord
SET_lblade determines whether Lock number input or calculated

blockage: force acting on aircraft includes fp7" opposing rotor thrust
blockage B is for hover, blockage factor zero for ;n > up

+ Geometry (for graphics)
thick real + blade thickness-to-chord ratio 0.12
+ Blade element theory solution
+ integration
mr int + number of radial stations (xroot to 1; maximum mrmax) 4
mpsi int + number of azimuth angles (maximum mpsimax) 8

Structure: Rotor

loc_rotor
loc_pylon
loc_pivot
loc_naccg
direction
KIND _tilt

incid_hub
cant_hub

dihedral_pivot
pitch_pivot
sweep_pivot

incid_ref
cant_ref

SET_Wmove
fWmove
dz_hub(3)

KIND_control
KIND_cyclic
KIND_coll
SCALE _coll

+
Location +
Location +
Location +
Location +
c*16 +
int

real
real

real
real
real

real
real

int
real
real

T T e o S S S S A SR

int
int
int
int

+ 4+ + + +

Geometry

hub location
pylon location
pivot location
nacelle cg location

nominal orientation ('+x’, '-x’, '+y’, '=y’, '+z', '=z'; 'main’ (—z), 'tail’ (ry), 'prop’ (X))

shaft control (0 fixed shaft, 1 incidence, 2 cant, 3 both controls)
orientation of rotor shaft
incidence 60}, (deg)
cant angle ¢y, (deg)
orientation of pivot axes
pivot dihedral angle ¢,, (deg)
pivot pitch angle 0,, (deg)
pivot sweep angle v, (deg)
reference shaft control
incidence 7.t (deg)
cant angle ¢t (deg)
moving weight for cg shift
weight (1 wing tip weight, 2 Wy, 3 Wyprs and Wgg)
fraction moving weight
hub position increment due to tilt Az{ | (SL/BL/WL)

112

'main’

loc_naccg, loc_pivot, orientation of pivot axes, and reference shaft control angles not used for KIND_tilt=fixed shaft
for tiltrotor, locations and orientation specified in helicopter mode, so incid_ref = 90
SET_Wmove: cg shift calculated using incidence and cant rotation of loc_naccg relative loc_pivot

moving weight fWmove*Wmove, Wmove = Wtip_total /nRotorOnWing or w/Nyotor

w = Wpyps (drive system) or Wy,s + > (Wgg) (drive system and engine system)

Controls
rotor control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP)
cyclic input (1 tip-path-plane tilt, 2 hub moment, 3 lift offset)

collective input (1 thrust,2 Cr /o)
scale collective T" matrix (O for none)

—= N =

Structure: Rotor

INPUT _coll int
T_coll(ncontmax,nstatemax) real
nVcoll int
coll(nvelmax) real
Vcoll(nvelmax) real
INPUT _Ingcyc int
T_Ingcyc(ncontmax,nstatemax)

real
nVingcyc int
Ingcyc(nvelmax) real
Vingcyc(nvelmax) real
INPUT latcyc int
T_latcyc(ncontmax,nstatemax)

real
nVlatcyc int
latcyc(nvelmax) real
Vlatcyc(nvelmax) real
INPUT _incid int
T_incid(ncontmax,nstatemax)

real
nVincid int
incid(nvelmax) real
Vincid(nvelmax) real
INPUT _cant int
T_cant(ncontmax,nstatemax) real
nVcant int
cant(nvelmax) real

Vcant(nvelmax) real

T i T S e S S R I I I T

+ 4+ + + + + + + o+

collective (magnitude of thrust vector)
connection to aircraft controls (0 none, 1 input 7" matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
longitudinal cyclic (tip-path plane tilt or no-feathering plane tilt)
connection to aircraft controls (0 none, 1 input 7' matrix)

control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
lateral cyclic (tip-path plane tilt or no-feathering plane tilt)
connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
incidence 7 (nacelle tilt)
connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
cant ¢
connection to aircraft controls (0 none, 1 input 7' matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

113

Structure: Rotor

INPUT _diam int
T_diam(ncontmax,nstatemax) real
nVdiam int
fdiam(nvelmax) real
Vdiam(nvelmax) real
INPUT_fgear int
T_fgear(ncontmax,nstatemax)

real
nVfgear int
fgear(nvelmax) real
Vfgear(nvelmax) real
INPUT _Freact int
T_Freact(ncontmax,nstatemax)

real
nVFreact int
Freact(nvelmax) real
VFreact(nvelmax) real

+ 4+ 4+ + + + + +

+ + + + + +

+ 4+ + +

diameter fqiam (variable diameter only)

connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

gear ratio factor fgear (variable speed transmission only)

connection to aircraft controls (0 none, 1 input 7' matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

reaction drive net force Floact

connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, ¢ = T'c4c + ¢g

for each component control, define matrix 7" (for each control state) and value ¢y

flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to component control, flight state can specify component control value

initial values if control is connected to trim variable; otherwise fixed for flight state

pylon moves with rotor; nontilting part is engine nacelle

114

Structure: Rotor

nVIift
Klift(nvelmax)
Vlift(nvelmax)

nVprop
Kprop(nvelmax)
Vprop(nvelmax)

nsteady
mu_steady(20)
CTs_steady(20)

ntran
mu_tran(20)
CTs_tran(20)

KO_limit
K1_limit

int
real
real

int
real
real

int
real
real

int
real

real

real
real

+ 4+ 4+ + + + + + o+

+ 4+ + A+ ++

Trim Targets

rotor lift
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
target
speeds (CAS or TAS, knots)

rotor propulsive force
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
target
speeds (CAS or TAS, knots)

115

target definition determined by Aircraft%trim_quant
Klift can be fraction total aircraft lift, lift, ' /o, or Cr /o
Kprop can be fraction total aircraft drag, propulsive force — X, —Cx /o, or —X/q)

Rotor Thrust Capability (Cr /o vs ()

sustained
number of points (maximum 20)
advance ratio
Cr/o

transient
number of points (maximum 20)
advance ratio
Cr/o

equation, Cr /o = Ko — Ky u?
constant K
constant Ky

16

16

0.17
0.25

CTs_steady, CTS_tran used to calculate rotor thrust margin, which available for max effort or trim
defaults used if CTs(1)=0.

default CTs_steady = .170,.168,.161,.149,.131,.109,.084,.050,.049,.048,.047,.046,.045,.044,.043,.042
default CTs_tran = .200,.197,.190,.177,.156,.135,.110,.080,.075,.070,.065,.060,.055,.050,.045,.040
default mu_steady = 0.,.10,.20,.30,.40,.50,.60,.70,.71,.72,.73,.74,.75,.76,.77,.78

default mu_tran =0.,.10,.20,.30,.40,.50,.60,.70,.72,.74,.76,.78,,.80,.82,.84,.86

Structure: Rotor

MODEL_perf
MODEL_Ftpp
MODEL_Fpro

MODEL int

Vint_low
Vint_high

SET aeroaxes
pitch_aero
SET_Spylon
Swet_pylon
kSwet_pylon
SET Sduct
S_duct
fLength_duct
SET _Sspin
Swet_spin
fSwet_spin
fRadius_spin

int
int
int

int

real
real

int
real
int
real
real
int
real
real
int
real
real
real

+ 4+ + +

+ 4+ + + +

+ 4+ A+ ++

Performance
power model (1 standard, 2 table model)
inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory)
inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect)

if thrust and TPP command, and neglect inplane forces relative TPP, then pitch control angles not required

Interference
model (0 none, 1 standard, 2 with transition)
transition
low velocity (knots)
high velocity (knots)

Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all
with transition: interference factors linearly vary from Kint at V' < Vint_low to 0 at V' > Vint_high

Geometry

hub/pylon aerodynamic axes (0 input pitch, 1 helicopter, 2 propeller or tiltrotor)
pitch relative shaft axes Oy¢f, C' BS — Y_ g,

pylon wetted area (1 fixed, input Swet; 2 scaled, Wyy,.s; 3 scaled, Wyp,.s and Wgs; 4 scaled, disk area)
area Spylon
factor, k = Spylon/(w/Nmtor)Q/?’ (Units_Dscale) or k = Spyion/A

duct area (1 fixed, input S_duct; 2 scaled, from fLength_duct)
area Squct
duct length (fraction rotor radius)

spinner wetted area (1 fixed, input Swet; 2 scaled, from fSwet)
area Sgpin
factor, k = Sspin/Aspin

spinner radius (fraction rotor radius)

116

' = =
CoPrvMNMPNOC Ve -

[ary

Structure: Rotor

MODEL_drag
Idrag

MODEL_weight

dWhblade
dWhub
dWshaft
dWspin
dWrfold
dWtr
dWaux
dWrsupt
dWduct

int
real

int

real
real
real
real
real
real
real
real
real

+ + +

+ 4+ +

only SET_aeroaxes=input uses pitch_aero; pitch_aero=180 for helicopter, 90 for propeller

SET_Spylon, pylon wetted area: input (use Swet_pylon) or calculated (from kSwet_pylon)
units of kSwet are ft*/1b%/3 or m?/kg?/3
w = Wyprs (drive system) or Wy, + > Wgs (drive system and engine system)
pylon wetted area used for pylon drag
rotor pylon must be consistent with engine group nacelle

SET_Sduct, duct area: input (use S_duct) or calculated (from fLength_duct)
Sauct = (27 R)lauct > Lauct =fLength_duct* R; used for drag (wetted area 2S54,¢t) and weight

SET_Sspin, spinner wetted area: (use Swet_spin) or calculated (from fSwet_spin)

Agpin = wapin = spinner frontal area (from fRadius_spin*R); spinner radius used for drag and weight

Drag

model (0 none, 1 standard)
incidence angle for helicopter nominal drag (deg; O for not tilt)

Weight

rotor group (or empennage or propulsion group)

model (0 input, 1 NDARC, 2 custom)
weight increment

blade

hub and hinge

inter-rotor shaft

fairing/spinner

blade fold

tail rotor

auxiliary thrust

rotor support structure

duct

117

©Coco0coo0co0o0o0o

Structure: Rotor

SET_Iblade
Al
Whlade_tip
rWhlade_tip
fWhblade_tip
rblade
xWhblade

TECH_blade
TECH_hub
TECH_shaft
TECH_spin
TECH_rfold
TECH_tr
TECH_aux
TECH_rsupt
TECH_duct

int

real
real
real
real
real
real

real
real
real
real
real
real
real
real
real

+ 4+ F o+

118
blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from Al) 1
autorotation index KE/P = %Nbladejbladegz /P (sec) 3.0
tip weight (per blade) 0.
location tip weight (fraction blade radius) 0.9
distributed weight for centrifugal force (fraction Wblade_tip) 1.0
radius of gyration for distributed mass (fraction blade radius) 0.6
blade weight (fraction total tail rotor or auxiliary thrust rotor weight) 0.55
Technology Factors
blade weight Xplade 1.0
hub and hinge weight xnhup 1.0
inter-rotor shaft xshatt 1.0
fairing/spinner weight xspin 1.0
blade fold weight X014 1.0
tail rotor weight x4, 1.0
auxiliary thrust weight y ¢ 1.0
rotor support structure weight Xqupt 1.0
duct weight X gyt 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

blade weight: Whiiade = XbladeWnlade + AWhlade + (1 + f) Wiip Nblade
SET _Iblade: calculate blade moment of inertia Iblade
0 from Lock number gamma, independent of blade weight
1 from blade weight
2 from Lock number gamma, tip weight Whblade_tip calculated from Iblade
3 from autorotation index Al, tip weight Wblade_tip calculated from Iblade
for tail rotor or aux thrust weight model (MODEL _config =2 or 3), blade weight Whaqe = xWhblade*W;,. or xWblade*W

rotor weight = blade + hub + spinner + fold + shaft + support + duct
rotor config determines where weight put in weight statement

main rotor: rotor group

tail rotor: empennage group (tail rotor)

propeller: propulsion group (propeller/fan installation)

Structure: Rotor

MODEL _ind

Ki_hover
Ki_climb
Ki_prop
Ki_edge

CTs_Hind
kh1

kh2

Xh2
CTs_Pind
kpl

kp2

Xp2
CTs_Tind
ktl

kt2

Xt2

kpa
Xpa

kpx
Xpx

Maxial

int

real
real
real
real

real
real
real
real
real
real
real
real
real
real
real
real

real
real

real
real

real

T T T T S S S R e I I I I I I T T

Rotor Induced Power, Standard Energy Performance Method
model (0 none, 1 constant, 2 standard, 3 simple)

119

MODEL_ind=constant uses only Ki_hover, Ki_prop, Ki_edge
MODEL_ind=simple uses only Ki_hover, Ki_prop, Ki_edge, mu_axtran, mu_prop, Xa, mu_edge, Xe

nonzero values of Ki in FltState supersede calculated value

induced velocity factors (ratio to momentum theory induced velocity)

hover Knover
axial climb K¢jjmp
axial cruise (propeller) Kprop
edgewise flight (helicopter) Kedge
variation with thrust
(C7/0)ina for hover k, variation
coefficient ky; for kp,
coefficient ko for Ky,
exponent Xpo for kp,
(Cr/0)ina for axial k, variation
coefficient k1 for x,
coefficient k3 for x,
exponent X o for k,,
(C1/0)ina for edgewise k. variation
coefficient k¢q for k.
coefficient ko for k.
exponent X5 for k.
variation with shaft angle
coefficient &, for x,,
exponent X, for x,,
variation with propulsive force
coefficient k,,,, for k,,
exponent X, for
axial flight transition
constant M, i, from hover to climb

1.12
1.08

1.176

Structure: Rotor

Xaxial
mu_axtran

mu_prop
kal

ka2

ka3

Xa

MODEL_edge
mu_edge

kel

ke2

ke3

Xe

kea

kol
ko2
Ki_min
Ki_max

MODEL_grad
fGradx
fGrady
fGradm

MODEL_GE
Cge

AGE
BGE(3)
FGE

real
real

real
real
real
real
real

int

real
real
real
real
real
real

real
real
real
real

int

real
real
real

int
real
real

real
real

T i S S S S e N I A I

+ 4+ 4+ 4+ +

+ 4+ + + + + +

exponent X ,xia1 from hover to climb
advance ratio fi,t;ay from hover to axial

variation with axial velocity
advance ratio (i prop for Ki_prop
coefficient k1 for x(p) (linear)
coefficient ko for k(u,) (quadratic)
coefficient k3 for s (u)
exponent X, for k()

variation with edgewise velocity
model for edgewise « relative axial x (0 replace, 1 sum)
advance ratio fieqge fOr Ki_edge
coefficient k. for x(u) (linear)
coefficient k.o for x(u) (quadratic)
coefficient k.3 for x(u)
exponent X, for x(u)

variation with rotor drag k..,

variation with lift offset
coefficient k,; for fog
factor ko for fog

minimum Kpin

maximum Kpax

Momentum theory
inflow gradient in forward flight (0 none, 1 White and Blake, 2 Coleman and Feingold)
longitudinal gradient factor f,
lateral gradient factor f,
hub moment inflow gradient factor f,,,

Ground effect
model (0 none, 1 Cheeseman, 2 BE Cheeseman, 3 Law, 4 Hayden, 5 Zbrozek, 6 Maryland, 7 generic equation)
effective height correction Cj,
generic equation
coefficient for height A
coefficient for height B,,
coefficient for thrust F’

120

0.65

= o

10.

Structure: Rotor

GGE
XGEt
XGEz

MODEL_duct
fDuctA
fDuctT
fDuctVx
fDuctVz

eta duct

MODEL_twin
Kh_twin
Kp_twin

Kf twin
Cind_twin
Caxial_twin
A_coaxial

xh_multi(nrotormax)
xp_multi(nrotormax)
xf_multi(nrotormax)

real
real
real

int

real
real
real
real
real

c*12
real
real
real
real
real
real
real
real
real

+

+ 4+ 4+ 4+ + + o+

+ 4+ 4+ + o+

coefficient for thrust G
exponent for thrust X,
exponent for height X,

121

Cge: for tiltrotors, typically C; = 0.5; smaller effective height accounting for increased influence of ground compared

to isolated rotor

Ducted fan
model (1 specify area ratio, 2 specify thrust ratio)
area ratio f4 (fan area/far wake area)
thrust ratio fr (rotor thrust/total thrust)
velocity ratio fy, (fan edgewise velocity/free stream velocity)
velocity ratio fy ., (fan axial velocity/free stream velocity)
duct efficiency np (total pressure loss through duct)

o
Lo S L =

ducted fan model used only if config="duct’

Twin rotors
model (based on config, none, side-by-side, coaxial, tandem, multirotor)
ideal induced velocity correction for hover Kptwin
ideal induced velocity correction for propeller Ky twin
ideal induced velocity correction for forward flight & fiyin
constant C' in axial to forward flight transition
constant C, in hover to propeller transition
coaxial rotor nonuniform disk loading factor &
multirotor thrust factor x;, for hover
multirotor thrust factor x,, for propeller
multirotor thrust factor x ¢ for forward flgiht

'config’
1.00
1.00
0.85

1.0
1.0
1.05
1.0
1.0
1.0

MODEL_twin: 'config’, 'none’, 'side-by-side’ or 'tiltrotor’, 'coaxial’, 'tandem’, or 'multirotor’

Structure: Rotor

MODEL_pro
cdmean

TECH_drag
Re_ref

X_Re
MODEL_basic

ncd
CTs_cd(24)
cd(24)

CTs_Dmin
d0_hel

dl _hel
d2_hel
d0_prop
dl prop
d2_prop

int
real

real
real
real
int

int
real
real

real
real
real
real
real
real
real

+ +

+ 4+ 4+ A+ A+ +

‘config’ must identify rotor as twin or multiple rotors
coaxial: MODEL_twin="coaxial’ (use A_coaxial; Kh_twin not used)
or MODEL_twin="tandem’ with zero horizontal separation (typically Kh_twin=0.90)
coaxial and tandem: Kf_twin =0.88 to 0.81 for rotor separation 0.06D to 0.12D
thrust factors x calculated for twin rotors, input for multiple rotors
correction factors and transition constants (Ktwin, C, Cy) used for twin or multiple rotors

122

Rotor Profile Power, Standard Energy Performance Method
model (0 none, 1 constant, 2 standard)
constant mean drag coefficient

0.009

MODEL_pro=constant uses only cdmean

nonzero values of cdo in FltState supersede calculated cdmean

technology factor for profile power x

reference Reynolds number Re,.t (0. for no correction)
exponent for Reynolds number correction Xge

Basic model cgpasic (0 none, 1 array, 2 equation)

array (cq vs thrust-weighted Cr /o)
number of points (maximum 24)
blade loading
drag coefficient

equation
(Cr/0) Dmin for minimum profile drag (A = |Cr /o — (C1/0) Dmin|)
coefficient dope) in drag, cqn = donel + dinelA + donel A% + Acgsep (hover/edgewise)
coefficient dyy,) in drag (hover/edgewise)
coefficient doye) in drag (hover/edgewise)
coefficient doprop in drag, cap = doprop + d1propA + daprop A% + Acqsep (axial)
coefficient d;p,rop in drag (axial)
coefficient dapop in drag (axial)

1.0

0.2

24

0.07
0.009

0.5
0.009

0.5

Structure: Rotor

dprop
Xprop
CTs_sep
dsep
Xsep
dfl
df2

Xf
dzl
dz2
Xz

MODEL _stall

nstall
mu_stall(20)
CTs_stall(20)
fstall

dstalll

dstall2
Xstalll
Xstall2

dol
do2
dsa

real
real
real
real
real
real
real
real
real
real
real

int

int

real
real
real
real
real
real
real

real
real
real

+ 4+ + + A+ o+

+ 4+ A+ +

variation with shaft angle, coefficient d,, for cgp
variation with shaft angle, exponent X, for cqy,
(Cr/0)sep for separation (Acasep = dsep(|Cr /0| — (CT/U)Sep)XSEP)
factor dgep in drag increment

exponent X, in drag increment

variation with edgewise velocity, coefficient d¢;
variation with edgewise velocity, coefficient d 2
variation with edgewise velocity, exponent X ¢
variation with axial velocity, coefficient d;
variation with axial velocity, coefficient d 5
variation with axial velocity, exponent X,

123

0.07
4.0
3.0

Moo o

default array (cd(1)=0.): Cr/o =0. to 0.23 (uniform increments)
cd =.01100,.01075,.01025,.01000,.01010,.01070,.01050,.00975,.00925,.00926,.00938,.00977,
01048,.01152,.01336,.01593,.01920,.02381,.03014,.04000,.08000,.16000,.32000,1.0000

Stall model cggpa11 (0 none)

Cr/oatstall (Ay = |Cr/o| — (fs/fafor)(Cr/0)s, Acg = d AFt + dga AY+2)
number of points (maximum 20)
advance ratio V/ Vi,

(Cr/o)s

constant f in stall drag increment

factor dg; in stall drag increment

factor dgs in stall drag increment
exponent X in stall drag increment
exponent X o in stall drag increment
variation with lift offset

coefficient d,; for fog

factor d,o for fog
variation with rotor drag d,,

10

1.0

40.
2.0
3.0

«©

default used if CTs_stall(1)=0.
default CTs_stall =0.17,0.16,0.15,0.14,0.13,0.12,0.11,0.10,0.10,0.10
default mu_stall = 0.00,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.80

Structure: Rotor

MODEL_comp

fSim
thick_tip

dml
dm2
Xm

Mddo
Mddcl

MODEL_indTab
nvar_ind
var_ind(3)
nv_ind(3)

v_ind(ntablemax,3)

MODEL_proTab
KIND_proTab
nvar_pro
var_pro(3)
nv_pro(3)

v_pro(ntablemax,3)

int

real
real

real
real
real

real
real

int
int
c*12
int
real
int
int
int
c*12
int
real

Ki(ntablemax,ntablemax,ntablemax)

cdo(ntablemax,ntablemax,ntablemax)

real

real

+ 4+ + + o+

+ 4+ A+ o+

+

Compressibility model ¢jcomp (0 none, 1 drag divergence, 2 similarity)
similarity model
factor f
blade tip thickness-to-chord ratio 7
drag divergence model (A, = My; — Mgq, Acqg = dpm1 A + dmgAfgm)
coefficient d,,; in drag increment
coefficient d,,> in drag increment
exponent X, in drag increment
drag divergence Mach number (M4 = Mdd0 — Mddcl cy)
M gq0 at zero lift
derivative with lift Kk = OMgq/0cy

Performance, Table Method

induced power model (0 standard, 1 table, 2 table with equations)
number independent variables (1 to 3)
variables
number of variable values (maximum ntablemax)
independent variable

profile power model (0 standard, 1 table, 2 table with equations)
profile power model (0 standard, 1 table cgmean, 2 table CgmeanF' = 8Cpy/0)
number independent variables (1 to 3)
variables
number of variable values (maximum ntablemax)
independent variable

table

induced power factor x

profile power mean cq

124

1.0
0.08

0.056
0.416
2.0

0.88
0.16

Lo+

SO == o

o

independent variables: var_ind and var_pro
'V': flight speed V/V4ip,
'Vh': horizontal speed V3, /Viip,
'mu’, 'muHP’: edgewise advance ratio p (hub plane)

Structure: Rotor

SET_Dhub
DoQ_hub
CD_hub
kDrag_hub
SET Dpylon
DoQ_pylon
CD_pylon
SET_Dduct
DoQ duct
CD_duct
SET_Dspin
DoQ_spin
CD_spin

SET Vhub
DoQV_hub
CDV_hub

int
real
real
real
int
real
real
int
real
real
int
real
real

int
real
real

T T o T S S S e e &

'muz’, 'muzHP’: axial velocity ratio j, (hub plane)

‘alpha’, "alphaHP’: shaft angle-of-attack o = tan~1(u. /p) (hub plane)
'muTPP’: edgewise advance ratio p (tip-path plane)

'muzTPP’: axial velocity ratio p, (tip-path plane)

'alphaTPP': shaft angle-of-attack ov = tan~!(j1, /u) (tip-path plane)
'CTs', 'CT/s': blade loading Cr /o

'Mx’, "offset’: lift offset M, /TR

'"Mtip": tip Mach number Mj;,

'Mat’: advancing tip Mach number M,

nonzero values of Ki and/or cdo in FltState supersede table (or table with equations) values

125

Rotor Drag, Standard Model
forward flight drag
hub drag specification (1 fixed, D/q; 2 scaled, Cp; 3 scaled, squared-cubed; 4 scaled, square-root)

area (D /q)hub

coefficient Cppyp (based on rotor area, D/q = SCp)

k = (D/q)/(W/1000)%/3 or (D/q)/W/2 (Units_Dscale)
pylon drag specification (1 fixed, D/q; 2 scaled, Cp)

area (D/q)pylon

coefficient C'ppyion (based on pylon wetted area, D/q = SCp)
duct drag specification (1 fixed, D/q; 2 scaled, Cp)

area (D/q)duct

coefficient Cpquct (based on duct wetted area, D/q = SCp)
spinner drag specification (1 fixed, D/q; 2 scaled, Cp)

area (D/q)spin

coefficient C'pgpin (based on spinner wetted area, D/q = SCp)

vertical drag

hub drag specification (1 fixed, D/q; 2 scaled, C'p)

area (D/q)vhub

coefficient Cpy b (based on rotor area, D/q = SCp)

0.0024
0.8

Structure: Rotor

SET_Vpylon
DoQV_pylon
CDV_pylon
SET_Vduct
DoQV _duct
CDV_duct

DoQ_hubstop
CD_hubstop
DoQ_hubstow
CD_hubstow

DoQV_hubstop
CDV_hubstop
DoQV_hubstow
CDV_hubstow

CD_bladestop

MODEL_Dhub
MODEL_Dpylon
MODEL_Dduct
X_hub

X _pylon

X duct

int
real
real
int
real
real

real
real
real
real

real
real
real
real

real

int
int
int
real
real
real

T T o S S S e T T T T 2 N S SRS S e

126

pylon drag specification (1 fixed, D/q; 2 scaled, C'p) 2
arca (D/q)v pylon
coefficient Cpypyion (based on pylon wetted area, D/q = SCp) 0.
duct drag specification (1 fixed, D/g; 2 scaled, Cp) 2
area (D/Q)Vduct
coefficient Cpy quct (based on duct wetted area, D/q = SCp) 0.
stopped/stowed rotor
forward flight hub drag
area (D/q)hub—stop 0.
coefficient Cphyb—stop (based on rotor area, D/q = SCp) 0.
area (D/Q)hub—stow 0.
coefficient Cppub—stow (based on rotor area, D/q = SCp) 0.
vertical hub drag
area (D/q)thbfstop 0.
coefficient Cpyhub—stop (based on rotor area, D/q = SCp) 0.
area (D/q)thb—stow 0.
coefficient Cpyhub—stow (based on rotor area, D/q = SCp) 0.
stopped blade drag
coefficient Cpplade (based on blade area, D/q = SCp) 0.
transition from forward flight drag to vertical drag
hub drag model (0 none, 1 general, 2 quadratic) 2
pylon drag model (0 none, 1 general, 2 quadratic) 2
duct drag model (0 none, 1 general, 2 quadratic) 2
hub drag, transition exponent X4 2.
pylon drag, transition exponent X4 2.
duct drag, transition exponent X, 2.

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

component drag contributions must be consistent; pylon is rotor support, and nacelle is engine support
tiltrotor with tilting engines use pylon drag (and no nacelle drag), since pylon connected to rotor shaft axes
tiltrotor with nontilting engines: use nacelle drag as well
rotor with a spinner (such as on a tiltrotor aircraft) likely not have hub drag

Structure: Rotor

MODEL_develop
Xdevelop
MODEL_boundary
MODEL_contract
Xboundary

MODEL _int_twin
Ktwin
Nint_wing(nwingmax)
Nint_tail(ntailmax)

Kint_fus
Kint_wing(nwingmax)
Kint_tail(ntailmax)

int
real
int
int
real
int
real
int
int
real

real
real

+ 4+ A+ A+ +

SET_Dhub, hub drag: use one of DoQ_hub, CD_hub, kDrag_hub
units of kDrag are ft?/klb%/3 or m?/Mg?/3; ft2/1b'/2 or m?/kg!/?
CD = 0.0040 for typical hubs, 0.0024 for current low drag hubs, 0.0015 for faired hubs
kDrag (2/3 power) = 1.4 for typical hubs, 0.8 for current low drag hubs, 0.5 for faired hubs (English units)
kDrag (1/2 power) = 0.074 for single rotor helicopters, 0.049 for tandem helicopters,
0.038 for hingeless rotors, 0.027 for faired hubs (English units)
W = fwwWarro (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor)

stopped/stowed rotor: areas or coefficients (based on SET_Dhub and SET_Vhub) replace hub drag

127

Rotor Interference, Standard Model
model
development along wake axis (1 step function, 2 nominal, 3 input Xdevelop)
rate parameter ¢
immersion in wake (1 step function, 2 always immersed, 3 input Xboundary)
far wake contraction (0 no, 1 yes)
boundary transition s (fraction contracted radius)
twin rotor interference (1 no correction, 2 nominal, 3 input Ktwin)
velocity factor in overlap region K
number wing span stations
number tail span stations
interference factors Kj,; (0. for no interference)
at fuselage
at wing
at tail

0.2

0.2

1.4142

1.0
1.0
1.0

Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all
interference factor linearly transition from Kint at V' < Vint_low to 0 at V' > Vint_high

to account for wing or tail area in wake, interference averaged at Nint points along span

Structure: Rotor

KIND_int_wing
Cint_wing(nwingmax)

MODEL_config

MODEL_Whblade
MODEL_Whub
MODEL_Wshaft

MODEL_type
KIND_rotor

flapfreq_blade
flapfreq_hub

MODEL_offset
offset

thick20
clearance_tip

int
real

int

int
int
int

int
int

real
real

int

real
real
real

+ +

+ 4+ A+ +

MODEL_develop: step function same as Xdevelop=0; nominal same as Xdevelop=1.
MODEL_boundary: step function same as Xboundary=0; always immersed same as Xboundary=00
MODEL_twin: only for coaxial or tandem or side-by-side; nominal same as Ktwin=1/2

128

Induced power interference at wing
kind (1 wing-like, 2 propeller-like)
factor Cj,, (0. for no interference)

For tiltrotors, typically the interference is wing-like, with Ci,s = —0.06

Rotor Group, NDARC Weight Model
model (1 rotor, 2 tail rotor, 3 auxiliary thrust)

blade weight model (1 AFDD82, 2 AFDDO00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic)
hub and hinge weight model (1 AFDDS82,2 AFDDOO, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic)
inter-rotor shaft weight (0 none, 1 from lift offset, 2 from shaft length)
AFDDO00 weight models
hub weight equation depend on blade weight (for hub weight; 0 no, 1 yes)
rotor kind (for blade weight; 1 tilting, 2 not)
AFDDO00 and AFDDS2: first flapwise natural frequency v (per-rev at hover tip speed)
blade (0. to use flapfreq)
hub (0. to use flapfreq_blade)

lift offset rotor

rotor tip clearance (for blade weight; 1 scaled, 2 fixed)
design lift offset L (roll moment/T"R)

blade airfoil thickness-to-chord ratio 755 (at 20%R)
tip clearance, scaled s/ R or fixed s (ft or m)

0.3
0.21
0.05

Structure: Rotor 129

thick25 real + Boeing: blade airfoil thickness-to-chord ratio 725 (at 25%R) 0.15
rattach real + Boeing (blade, hub, tail rotor, aux thrust): blade attachment (fraction rotor radius) 0.09
+ generic blade
Kblade real + factor Kpjade 0.
XbldN real + exponent Xpiqn 0.
XbldR real + exponent Xyiqr 0.
Xbldc real + exponent Xpiqe 0.
XbldV real + exponent Xp 4y 0.
Xbldf real + exponent Xp1q, 0.
XbldW real + exponent Xpiqw 0.
+ generic hub
Khub real + factor Knup 0.
XhubN real + exponent Xy, pN 0.
XhubR real + exponent XyubRr 0.
Xhubc real + exponent Xpyube 0.
XhubV real + exponent Xtupy 0.
Xhubf real + exponent Xpyupy 0.
XhubW real + exponent Xy, bw 0.
MODEL _tr int + tail rotor weight model (1 AFDD, 2 Boeing, 3 GARTEUR) 1
thick70 real + GARTEUR: blade airfoil thickness-to-chord ratio 7.7z (at 70%R) 0.11
MODEL_aux int + auxiliary thrust weight model (1 AFDD10, 2 AFDD82, 3 Boeing, 4 GARTEUR, 5 Torenbeek, 6 generic) 1
thrust_aux real + AFDDS82: design maximum thrust 7, 0.
power_aux real + AFDD10: design maximum power P, 0.
material_aux real + AFDD10: material factor f, 1.
+ generic propeller
Kat real + factor K 0.
XatN real + exponent X 4N 0.
XatR real + exponent Xt 0.
Xatc real + exponent X 0.
XatV real + exponent X,y 0.
XatP real + exponent X, p 0.
fWfold real + blade fold weight f;,1q (fraction total blade weight) 0.
fWsupt real + rotor support structure weight (fraction maximum takeoff weight) 0.

Structure: Rotor

Usupt
fshaft
Ushaft
Uduct

WtParam_rotor(8)

real
real
real
real

real

+ 4+ + +

130

rotor support weight per length Ugyp¢ (Ib/ft or kg/m) 0.
rotor shaft length (fraction rotor radius) fshast 0.
rotor shaft weight per length Ugp s (Ib/ft or kg/m) 0.
duct weight per area Ugyc; (Ib/ft? or kg/m?) 15
MODEL_config: tail rotor and auxiliary thrust models use only rotor, support, and duct weights (not shaft, fold, or
separate blade and hub weights)
duct weight only used for ducted fan configuration
for teetering and gimballed rotors, the flap frequency flapfreq_blade should be the coning frequency
The AFDDO00 hub weight equation using the calculated blade weight (MODEL _type = 0) results in a lower average
error, and best represents legacy rotor systems.
Using the actual actual blade weight (MODEL _type = 1) is best for advanced technology rotors with blades lighter than
trend.
if thrust_aux# 0, supersedes design maximum thrust of rotor from sizing task
if power_aux 0, supersedes design maximum power of rotor from sizing task
material_aux=1 for composite construction, 1.20 for wood, 1.31 for aluminum spar, 1.44 for aluminum construction
default €., is the reference rotor speed
typically fWfold = 0.04 for manual fold, 0.28 for automatic fold
rotor support structure weight must be consistent with engine support and pylon support weights of engine section
+ Custom Weight Model
parameters 0.

+

131

Chapter 23

Structure: Wing

Variable Type Description Default
+ Wing

title c*100 + title

notes c*1000 + notes
+ Geometry

wingload real + wing loading W/S = fywWp/S

fDGW real + fraction DGW fy (for wing loading) 1.0

area real + area S

span real + span b

chord real + chord ¢

AspectRatio real + aspect ratio AR

wing parameters: for each wing; input two quantities, other two derived (SizeParam input)
SET_wing = input two of ('area’ or wing loading 'WL'), ('span’ or 'ratio’ or 'radius’ or 'width’ or 'hub’ or 'panel’),
"chord’, aspect ratio 'aspect’
SET_wing = 'ratio+XX' to calculate span from span of another wing
SET_wing = 'radius+XX’ to calculate span from rotor radius
SET_wing = 'width+XX' to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
SET_wing = "hub+XX’ to calculate span from rotor hub position (tiltrotor)
SET_wing = 'panel+XX’ to calculate span from wing panel widths
if wing sized from wing loading (SET_wing="WL+xx'), area = fDGW*DGW/wingload

rotor stopped as wing: identified by wing number Rotor%StopAsWing for stoppable rotor
use SET_wing='area+span’, area = blade geometric area, span = 2R, nPanel=1, zero weight
wing aerodynamic loads calculated when FltAircraft%STOP_rotor = stopped as wing

Structure: Wing

nRotorOnWing
RotorOnWing(nrotormax)

fSpan
otherWing
RotorForSpan
RotorOnPanel(npanelmax)
thick
fWidth_box
SET _ac
dSLac

dBLac
dWLac

SET cg
dSLcg
dWlLcg

twist

int
int

real
int
int
int
real
real
int
real
real
real
int
real
real

real

+ 4+ A+ A+ o+

Geometry
rotors

number of rotors mounted on wing

rotor numbers
span calculation

ratio wing span to span of other wing, or to rotor radius

other wing number

rotor number for span (if nRotorOnWing=0)
rotor at wing panel edge

thickness ratio 7,

wing torque box chord wy;, (fraction wing chord)
aerodynamic center offset from pivot, at zero incidence (0 none, 1 fixed, 2 scale with chord)

stationline
buttline
waterline

center of gravity offset from pivot, at zero incidence (0 none, 1 fixed, 2 scale with chord)

stationline
waterline

132

o

.23
0.45

©C O oL Co

RotorOnWing required for SET_wing = 'radius’ or 'width’ or 'hub’; MODEL_wing = tiltrotor; SET_Vdrag = airfoil c49¢
RotorOnPanel required for SET_panel = 'radius’ or 'width’ or 'hub’
SET_wing = "radius’ gets radius from RotorOnWing or RotorForSpan

taper, sweep, thickness used by weight equations

taper and sweep calculated for entire wing from wing panel geometry
fWidth_box used by tiltrotor weight equations
thick and fWidth_box used for fuel in wing

Geometry (for graphics)
twist

Structure: Wing

loc_wing
nPanel
KIND_ACoffset

SET_panel(npanelmax)
span_panel(npanelmax)
area_panel(npanelmax)
chord_panel(npanelmax)
fspan_panel(npanelmax)
farea_panel(npanelmax)
fchord_panel(npanelmax)

edge_panel(npanelmax)
fedge_panel(npanelmax)
lambdal(npanelmax)
lambdaO(npanelmax)

sweep_panel(npanelmax)
dihedral_panel(npanelmax)
dxAC_panel(npanelmax)
dzAC_panel(npanelmax)

fchord_flap(npanelmax)
fchord_flaperon(npanelmax)
fspan_flap(npanelmax)
fspan_flaperon(npanelmax)
fAC_aileron(npanelmax)

+
Location +
int
int

+

c*24
real
real
real
real
real
real

real
real
real
real

real
real
real
real

real
real
real
real
real

R T T o o S S S S S e T S SN S SRR G

133

Geometry
aerodynamic center location
number of wing panels (maximum npanelmax) 1
aero center offset (1 fixed, 2 fraction root chord, 3 fraction inboard chord)
Wing Panels
panel parameters 'span-+taper’
span (one side), b,
area (both sides), S,
mean chord, ¢,

ratio span to wing span (one side), b, /(b/2) 1.
ratio area to wing area (both sides), S,,/S 1.
ratio mean chord to wing chord, ¢, /c 1.
panel edges

outboard edge, yg

outboard edge, ng = y/(b/2) 1.
inboard chord ratio, ¢y /cret 1.
outboard chord ratio, ¢o /¢yef 1.
aerodynamic center locus

sweep A, (deg, + aft) 0.

dihedral 6, (deg, + up) 0.

chordwise offset at panel inboard edge x 1, (+ aft) 0.

vertical offset at panel inboard edge z7, (+ up) 0.
control surfaces

flap chord ¢z = ¢ /c, (fraction panel chord) 0.25

flaperon/aileron chord ¢ = ¢y /c, (fraction panel chord) 0.25

flap span f, = bg /b, (fraction panel span) 05

flaperon/aileron span f, = by /b, (fraction panel span) 0.5

aileron aerodynamic center lateral position y 0.7

SET_wing, wing parameters: for each wing; input two quantities, other two derived
SET_wing = input two of ('area’ or wing loading 'WL'), ("span’ or 'ratio’ or 'radius’ or 'width’ or 'hub’ or 'panel’)
SET_wing = 'chord’, aspect ratio 'aspect’
SET_wing = 'ratio+XX' to calculate span from span of another wing
SET_wing = "radius+XX’ to calculate span from rotor radius

Structure: Wing

134

SET_wing = 'width+XX’ to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
SET_wing = 'hub+XX’ to calculate span from rotor hub position (tiltrotor)
SET_wing = 'panel+XX’ to calculate span from wing panel widths

wing panels: SET_panel not required with only one panel
SET_panel: specify consistent definition of panels (span, edge, area, chord)
panel span: 'span’ or 'bratio’, else free
'span’ = input span_panel, b,
'bratio’ = input ratio to wing span, fspan_panel, b, /(b/2)
panel outboard edge: 'edge’, 'station’, 'width’, 'hub’, or "adjust’ (not used for tip panel)
'edge’ = input edge_panel, yg
'station’ = input fraction wing semispan fedge_panel, np = y/(b/2)
'radius’ = from rotor radius
'width’ = from rotor radius, fuselage width, and clearance (tiltrotor)
"hub’ = from rotor hub position (tiltrotor)
'adjust’ = from adjacent input panel span or span ratio
panel area or chord: 'area’, 'Sratio’, 'chord’, 'cratio’, 'taper’, else free
‘area’ = input area_panel, S,
'Sratio’ = input ratio to wing area, farea_panel, S, /S
"chord’ = input chord_panel, ¢,
‘cratio’ = input ratio to wing chord, fchord_panel, ¢, /¢
"taper’ = from chord ratios lambdal and lambdaO

require consistent definition of panel spans and outboard edges, and consistent with SET_wing
all edges known (from input edge or station, or from adjacent panel span or span ratio)
resulting edges unique and sequential
if wing span calculated from panel widths:
one and only one input panel span or span ratio that not used to define edge
if known span: no input panel span or span ratio that not used to define edge
usually best that any free span defined for inboard panel, not outboard panel
panel area or chord:
if one or more taper (and no free), calculate c,¢f from wing area
if one (and only one) free, calculate .S;, from wing area

fAC_aileron: from panel inboard edge, fraction panel span
for nPanel=1, from centerline and fraction wing semispan

Structure: Wing

Example input for typical wing geometry
Tiltrotor, one panel:
Size: SET_wing="WL+width’, ! span from radius, fuselage width, and clearance; and wing loading
Rotor: SET_geom="tiltrotor’, KIND_TRgeom=1, ! rotor lateral position (BL) from clearance
WingForRotor=1,otherRotor=1/2,
clearance fus=x.,
fclearance fus=1.,
Fuselage: Width_fus=x.,
Wing: wingload=x.,
nRotorOnWing=2,RotorOnWing=1,2,
nPanel=1,
SET_panel="span+taper’ lambdal=1.,lambdaO=1., ! not required with only one panel

Tiltrotor with wing extension, two panels

Size: SET_wing="WL+panel’, | span from wing panel widths; and wing loading

Rotor: SET_geom="tiltrotor’,KIND_TRgeom=1, ! rotor lateral position (BL) from clearance
WingForRotor=1,otherRotor=1/2,PanelForRotor=1,
clearance fus=x.,
fclearance fus=1.,

Fuselage: Width_fus=x.,

Wing: wingload=x.,
nRotorOnWing=2,RotorOnWing=1,2,
nPanel=2,

SET_panel="width+taper’,’span+taper’, | outboard edge from R, Width_fus, and clearance; from span_panel

RotorOnPanel=1, 0,

span_panel=0., x.,

lambdal=1., 1.,

lambdaO=1., x.,

sweep_panel=x., x.,

dihedral_panel=x., x.,
SET_ext=1,kPanel_ext=2,KIT_ext=0, ! wing extension

135

Structure: Wing 136

General wing, two panels, define chord and span of both

Size: SET_wing='panel+area’, ! span from wing panel widths; and wing area

Rotor: SET_geom='"standard’,

Wing: area=x.,
nPanel=2,
SET_panel="span+-chord’,’span+free’, ! span from span_panel; chord from inboard chord_panel and area
span_panel=x., x.,
chord_panel=x., x.,

Tiltwing, three panels, four rotors
inboard hub at 1.75R (R + .25R clearance + .50R fuselage)
outboard hub at 3.6R (1.85R between hubs, overlap = .075)
wing tip at 4.2R (0.6R from outboard hub)
Size: SET_wing="WL+radius’, ! calculate span from rotor radius; and wing loading
Rotor: right/right-inboard/left-inboard/left
SET_geom="tiltrotor’,KIND_TRgeom=3, ! rotor lateral position (BL) from wing panel edge
WingForRotor=1,
positionOfRotor=1/1/-1/-1, ! right/left
PanelForRotor=2/1/1/2,
Wing: wingload=x.,
nRotorOnWing=4,RotorOnWing=1,2,3,4,
fSpan=4.2, ! fSpan =b/D
nPanel=3,
SET_panel='station+cratio’, station+cratio’, 'station-+free’,
fedge _panel=0.4167, 0.8571, 1., ! inboard-rotor/semispan, outboard-rotor/semispan, 1
fchord panel=1., 1., 1.,

+ Wing Extensions
SET ext int + extension (0 for none) 0
kPanel_ext int + wing panel number 2
KIT ext int + wing extension as kit (0 not kit) 0
+ Wing Kit
KIT_wing int + wing as kit (0 not, 1 kit, 2 kit as fixed useful load) 0
fWkit real + kit weight (fraction total wing weight) 0.

Structure: Wing 137

+ Controls (each panel)
+ kind deflection
KIND_flap(npanelmax) int + flap (1 fraction root flap; 2 increment relative root flap; 3 independent) 3
KIND_aileron(npanelmax) int + aileron (1 fraction root aileron; 2 increment relative root aileron; 3 independent) 3
KIND_incid(npanelmax) int + incidence (1 fraction root incidence; 2 increment relative root incidence; 3 independent) 3
KIND_flaperon(npanelmax) int + kind flaperon deflection (1 fraction flap; 2 increment relative flap; 3 independent) 1
+ flap dp
INPUT _flap(npanelmax) int + connection to aircraft controls (0 none, 1 input 7' matrix) 1
T_flap(ncontmax,nstatemax,npanelmax)
real + control matrix
nVflap(npanelmax) int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax) 0
flap(nvelmax,npanelmax) real + values
Vflap(nvelmax,npanelmax) real + speeds (CAS or TAS, knots)
+ flaperon d ¢,
INPUT _flaperon(npanelmax) int + connection to aircraft controls (0 none, 1 input 7" matrix) 1
T_flaperon(ncontmax,nstatemax,npanelmax)
real + control matrix
nVflaperon(npanelmax) int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax) 0
flaperon(nvelmax,npanelmax)
real + values
Vflaperon(nvelmax,npanelmax)
real + speeds (CAS or TAS, knots)
+ aileron d,y
INPUT _aileron(npanelmax) int + connection to aircraft controls (0 none, 1 input 7" matrix) 1
T_aileron(ncontmax,nstatemax,npanelmax)
real + control matrix
nVaileron(npanelmax) int + number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax) 0
aileron(nvelmax,npanelmax) real + values

Vaileron(nvelmax,npanelmax)

real + speeds (CAS or TAS, knots)

Structure: Wing

+

INPUT _incid(npanelmax) int +
T_incid(ncontmax, nstatemax,npanelmax)

real +

nVincid(npanelmax) int +

incid(nvelmax,npanelmax) real +

Vincid(nvelmax,npanelmax) real +

+

INPUT_flow(npanelmax) int +
T_flow(ncontmax,nstatemax,npanelmax)

real +

nVflow(npanelmax) int +

flow(nvelmax,npanelmax) real +

Vflow(nvelmax,npanelmax) real +

+

+

nVlift int +

Klift(nvelmax) real +

Vlift(nvelmax) real +

+

MODEL _aero int +

Idrag real +

incidence i,,
connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
flow control momentum coefficient C,
connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, ¢ = T'c4c + ¢g
for each component control, define matrix 7" (for each control state) and value ¢y
flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

Trim Target
wing lift
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
target
speeds (CAS or TAS, knots)

target definition determined by Aircraft%trim_quant
Klift can be fraction total aircraft lift, lift, or C'y,

Aerodynamics
model (0 none, 1 standard)
incidence angle 7 for helicopter nominal drag (deg; O for not tilt)

Structure: Wing

MODEL_weight

dWprim
dWext
dWfair
dWfit
dWflap
dWwfold
dWefold

fWtip
xWtip

TECH_prim
TECH_ext
TECH_fair
TECH_fit
TECH_flap
TECH_wfold
TECH_efold

int

real
real
real
real
real
real
real

real
real

real
real
real
real
real
real
real

T T T T S S S S N I I I

Weight
wing group
model (0 input, 1 NDARC, 2 custom)
weight increment
wing primary structure
wing extension
fairing
fittings
flaps and control surfaces
wing fold
wing extension fold
tiltrotor model
factor for weight on wing tips
increment for weight on wing tips
Technology Factors
wing primary structure (torque box) weight Xprim
wing extension weight Xext
fairing weight X faiy
fittings weight gt
flaps and control surfaces weight xqap,
wing fold weight xto1q
wing extension fold weight Xefold

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

tiltrotor model requires weight on wing tips: both sides; calculated as sum of
rotor group, engine section or nacelle group, air induction group,
engine system, drive system (less drive shaft), rotary wing and conversion flight controls,
hydraulic group, trapped fluids, wing tip extensions
fWtip and xWtip adjust Wtip_total, without changing weight statements
negative increment required when engine and transmission not at tip location with rotor

139

©cCocooo0coo

=

1.0
1.0
1.0
1.0
1.0
1.0
1.0

Structure: Wing

AoA zI
CLmax
SET_compress

SET _lift
dCLda
Tind
Eind
CL_Dmin
Mdiv

eta0(npanelmax)
etal(npanelmax)
Kconl(npanelmax)
Kconm(npanelmax)
Kcond(npanelmax)
Kconx(npanelmax)

CMac

SET_drag
DoQ
CD

SET_Vdrag
DoQV

Cbv

cd90

fd90

CDcc

MccO

Mccl

real
real
int

int

real
real
real
real
real

real
real
real
real
real
real

real

int
real
real

int

real
real
real
real
real
real
real

R I T T i e T S S e S e e e S S T

+ 4+ A+ +

Wing Aerodynamics, Standard Model
zero lift angle of attack «,; (deg)
maximum lift coefficient Cr, .y
compressibility correction (0 none, 1 lift, 2 drag, 3 both)

lift

specification (2 2D dC7, /da; 3 3D dC'p /da)

lift curve slope C'r, = dC,/da (per rad)

lift curve slope non-elliptical loading correction 7

Oswald or span efficiency e (Cp; = (Cr — Cro)?/(meAR))
lift coefficient for minimum induced drag C'r¢
lift-divergence Mach number M ;.

control (each wing panel)

lift effectiveness factor 79, 79 — 11|9]

lift effectiveness factor 71, 79 — 11|9|

calibration or correction factor for lift K,
calibration or correction factor for moment K,
calibration or correction factor for drag K
calibration or correction factor for maximum lift X,

pitch moment

pitch moment coefficient about aerodynamic center C'ysq.

Wing Drag, Standard Model
forward flight drag

specification (1 fixed, D/q; 2 scaled, Cp)
area (D/q)o
coefficient C'pg (based on wing area, D/q = SCp)

vertical drag

specification (1 fixed, D/q; 2 scaled, Cp; 3 airfoil c490)
arca (D/q)v

coefficient, C'py (based on wing area, D/q = SCp)
airfoil drag coefficient c499 (—90 deg)

airfoil drag coefficient flap effectiveness factor fz90

compressibility drag increment C'p.. at M.
critical Mach number constant M ..
critical Mach number constant M.,

140

0.012

1.4
25
0.0011
0.74
0.31

Structure: Wing

MODEL_drag
AoA_Dmin
Kdrag

Xdrag
MODEL_sep
AoA sep
Ksep

Xsep

AoA_tran

SET wb
DoQ_wb
CD_wb

Etail(ntailmax)
Kint_wing(nwingmax)

Kinth_rotor(nrotormax)
Kintp_rotor(nrotormax)

int

real
real
real
int

real
real
real

real

int
real
real

real
real

real
real

+ 4+ + + o+

+ + + +

+ 4+ + + + +

141

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

drag variation with angle of attack

model (0 none, 1 general, 2 quadratic) ACp = CpoK g|ae|X¢ 2
angle of attack for wing minimum drag a.ppin (deg) 0.
drag increment K4 0.
drag increment X4 2.
separated flow model (0 none, 1 general, 2 quadratic, 3 cubic) ACp = CpoK(|ae| — as)X 3
angle of attack for separation o, (deg) 10.
drag increment K 0.
drag increment X 2.
transition from forward flight drag to vertical drag
angle of attack for transition «; (deg) 25.
Conventionally the Oswald efficiency e represents the wing parasite drag variation with lift, as well as the induced drag.
If Cp, varies with angle-of-attack, then e is just the span efficiency factor for the induced power (and C' should be
Z€ero).
wing-body interference drag
specification (1 fixed, D/q 2 scaled, Cp) 1
area (D/q)wb 0.
coefficient C'p,,;, (based on wing area, D/q = SCp) 0.
Interference
angle of attack change at tail, £ = de/d« (rad/rad) 0.
interference factor Kj, at other wings (0. for no interference) 0.
rotor induced power increment (0. for no interference)
helicopter Kintp 0.

propeller K, 0.

Structure: Wing

MODEL_flow
Lmus(npanelmax)
Lmul(npanelmax)
Lmu2(npanelmax)
Xmu(npanelmax)
Mmu(npanelmax)
Dmu(npanelmax)
Cmu_limit(npanelmax)

MODEL_wing
MODEL_other
fLift

bFold

wfus

Vdive

rflaplift

Uprim
Uext

int

real
real
real
real
real
real
real

int

int

real
real
real
real
real

real
real

+ 4+ 4+ + + + + + +

+ 4+ 4+ 4+ + o+

142

for tandem wings, typically
Kint_wing(aftwing)=2. for front-on-aft interference
Kint_wing(frontwing)=0. for aft-on-front interference
for biplane wings, typically Kint_wing(otherwing)=0.7
with mutual interference (as for biplane), require trim or other iteration for convergence

Flow Control; ACL, = Cra(Lus/Cy + L Cy + LM2C3), ACrmax = Xu,C,, ACy = M,,C,, ACp = D,,C,,

model (0 none) 0
lift L, 1.4
lift L1 0.0
lift L0 0.0
maximum lift X, 1.0
moment M), 0.0
drag D, 0.0
flow limit C,ulimit 1.0

Wing Group, NDARC Weight Model

model (1 area, 2 parametric, 3 tiltrotor, 4 other) 2
model (1 Boeing, 2 GARTEUR, Torenbeek (3 light, 4 transport), Raymer (5 transport, 6 general aviation))

lift factor 1.0
parametric method: fraction wing span that folds bg,1q (0 to 1) 0.
Boeing: maximum fuselage width (fraction wing span)

Boeing or Raymer: design dive speed Ve (knots) 200.

GARTEUR: ratio maximum lift with and without flaps
area method

weight per area Upyim , Wing primary structure (Ib/ft? or kg/m?) 5.
weight per area U, wing extension (Ib/ft?> or kg/m?) 3.

Structure: Wing

fWrair
Wit
fWilap
fWfold
fWefold

WtParam_wing(8)

CTs_jump
n_jump
Vtip_jump
thickTR

SET_Attach
fAttach
wAttach
fRG_pylon

freq_beam
freq_chord
freq_tors
SET_refrpm
Vtip_freq
MODEL_form
form_beam
form_chord
form_tors
form_spar
eff_spar

eff box

real
real
real
real
real

real

real
real
real
real

int

real
real
real

real
real
real
int

real
int

real
real
real
real
real
real

+ 4+ + + + +

+ +

R I T T T S S S S

weight factors (fraction total wing weight)
fairing frais
fittings fgt
flaps and control surfaces fqap
wing fold fo1q
wing extension fold feo1q (fraction wing extension weight)

Custom Weight Model
parameters

Wing Group, NDARC Tiltrotor Weight Model
jump takeoff condition
rotor maximum blade loading Cr /o
load factor 1y, at SDGW
rotor tip speed (0. to use hover V;;;,)
wing airfoil thickness-to-chord ratio 7,
width of wing structural attachments to body
definition (0 input wAttach, 1 fraction fuselage width, 2 fraction wing span)
fraction width wattach /Weas
width waitach (ft or m)
pylon radius of gyration 7py10n/ R (fraction rotor radius)
wing mode frequencies (per rev, fraction rotor speed)
beam bending frequency wp
chord bending frequency w¢
torsion frequency wy
reference rotor speed (0 from input Vtip_freq, 1 hover Vi;p, 2 cruise Viip)
rotor tip speed
form factors (1 calculate, 2 input)
torque box beam bending F'ip
torque box chord bending Fio
torque box torsion Frp
spar caps vertical/horizontal bending Fy
spar structural efficiency e,
torque box structural efficiency ey,

143

0.10
0.12
0.10

0.20
2.0
750.0
0.23

0.5
0.8
0.9

600.

0.6048
0.4874
1.6384
0.5018
0.8
0.8

Structure: Wing

Ct
CJ
Cm

E_spar
E box
G_box
StrainU_spar
StrainU_box
density_spar
density_box

Ufair
Uflap
UextTR

fWfitTR

fWfoldTR
fWefoldTR

WiParam_wingtr(8)

real
real
real

real
real
real
real
real
real
real

real
real
real

real

real
real

real

I T T i e T S S e S e e S e S T

tapered spar cap correction factors
weight correction C' (equivalent stiffness)
weight correction C; (equivalent strength)
strength correction C,, (equivalent stiffness)
material (Ib/inZ, in/in, 1b/in?; or N/m?, m/m, kg/m?)
spar modulus E,
torque box modulus E,
torque box shear modulus Gy,
spar ultimate strain allowable €
torque box ultimate strain allowable e
density spar cap pg,
density torque box py,
weight per area (Ib/ft? or kg/m?)
fairing Uty
flaps and control surfaces Ugap
wing extension Uegyy
weight factor
fittings fg¢ (fraction maximum thrust of one rotor)
wing fold fr,1q (fraction total wing weight excluding fold)
wing extension fold foo1q (fraction wing extension weight)

144

0.75
0.50
1.5

10.E6
10.E6
4.0E6
0.01
0.01
0.06
0.06

jump takeoff: hover Vj;, obtained from RotorOnWing(1) rotor

wing frequencies: reference rotor rotation speed from rotor Vi;, and radius
from RotorOnWing(1) rotor; hover tip speed Vtip_ref(1), cruise Vtip_cruise

thick TR only used for tiltrotor wing weight

SET_Attach: attachment width used for both torsion stiffness and fairing area

+ Custom Weight Model

+

parameters

145

Chapter 24

Structure: Tail

Variable Type Description Default
+ Empennage

title c*100 + title

notes c*1000 + notes

KIND _tail int + kind (1 horizontal tail, 2 vertical tail, 3 V-tail horizontal, 4 V-tail vertical) 1
+ Geometry

SET _tail c*16 + specification 'vol+aspect’

area real + area S

span real + span b

chord real + chord ¢

AspectRatio real + aspect ratio AR

TailVol real + tail volume V'

KIND_TailVol int + tail volume reference (1 wing, 2 rotor) 2

TailVolRef int + wing or rotor number for tail volume 1

otherVtail int + other V-tail number

KIND_tail used for geometry, baseline orientation, tail volume, tail weight model
tail parameters: input two quantities, others calculated
SET_tail = input two of ("area’ or tail volume 'vol), ('span’ or aspect ratio 'aspect’ or 'chord’)
tail volume reference: tail volume V' = S¢/RA (tailarea * taillength / (diskarea * radius))
or horizontal tail volume V = S¢/S,,¢,, (tailarea * taillength / (wingarea * wingchord))
or vertical tail volume V' = S¢/S,,b,, (tailarea * taillength / (wingarea * wingspan))
V-tail: modeled as pair of horizontal and vertical tails (identified by otherVtail)
separately sized, aerodynamic loads for each; dihedral calculated, cant set to zero
weight only for second tail, based on V-tail area and aspect ratio

Structure: Tail

taper
sweep
dihedral
thick

loc_tail
cant
fchord_cont
fspan_cont

INPUT cont
T_cont(ncontmax,nstatemax)
nVcont

cont(nvelmax)
Vcont(nvelmax)

INPUT _incid
T_incid(ncontmax,nstatemax)

nVincid
incid(nvelmax)
Vincid(nvelmax)

real
real
real
real

Location
real
real
real

int
real
int
real
real

int
real
int
real
real

T i S S S S e e T T

+ 4+ + +

Geometry (for graphics and weights)
taper ratio
sweep (+ aft, deg)
dihedral (deg)
thickness ratio

Geometry
aerodynamic center location
cant angle ¢ (deg)
control surface chord ¢ /c (fraction tail chord)
control surface span b /b (fraction tail span)
Controls
elevator ¢, or rudder 6,
connection to aircraft controls (0 none, 1 input 7' matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
incidence ¢
connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

146

o

12

0.25
1.0

horizontal tail cant angle: + to left (vertical tail for cant = 90)
vertical tail cant angle: + to right (horizontal tail for cant = 90)

aircraft controls connected to individual controls of component, ¢ = T'c4c + ¢g
for each component control, define matrix 7" (for each control state) and value cg

flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

Structure: Tail

MODEL_aero

MODEL_weight

dWhtail
dWfold

TECH_tail
TECH_tfold

AoA zl
CLmax
SET_compress

SET_lift
dCLda
Tind
Eind
CL_Dmin
Mdiv

etal
etal

int

int

real
real

real
real

real
real
int

int

real
real
real
real
real

real
real

+ +

+ 4+ + + + + + + o+

I T i i S S S S S A R

Aerodynamics
model (0 none, 1 standard)

Weight
tail (empennage group)
model (0 input, 1 NDARC, 2 custom)
weight increment
basic
fold
Technology Factors
tail weight ¢ Or Xt
fold weight X014

147

1.0
1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

Tail Aerodynamics, Standard Model

zero lift angle of attack a,; (deg)

maximum lift coefficient C'1max

compressibility correction (0 none, 1 lift, 2 drag, 3 both)

lift
specification (2 2D dC',/da; 3 3D dC, /dar)
lift curve slope Cr,, = dC'r,/do (per rad)
lift curve slope non-elliptical loading correction 7
Oswald efficiency e (Cp; = (Cr, — Cro)?/(reAR))
lift coefficient for minimum induced drag C'ro
lift-divergence Mach number My;,

control
lift effectiveness factor ng, 19 — 11|4]
lift effectiveness factor 71, 179 — 719

5.73
0.25
0.8

0.75

0.85
0.43

Structure: Tail

Kconl
Kconm
Kcond
Kconx

SET_drag
DoQ
CDh

SET_Vdrag
DoQV

Cbv

CDcc

MccO

Mccl

MODEL_drag
AoA_Dmin
Kdrag

Xdrag

AoA tran

real
real
real
real

int
real
real

int

real
real
real
real
real

int

real
real
real

real

+ 4+ + +

+ 4+ A+ A+ ++

+ 4+ + + + + +

calibration or correction factor for lift X,
calibration or correction factor for moment K,
calibration or correction factor for drag Ky
calibration or correction factor for maximum lift &,

Tail Drag, Standard Model
forward flight drag
specification (1 fixed, D/q; 2 scaled, Cp)
area (D/q)o
coefficient Cpg (based on tail area, D/q = SCp)
vertical drag
specification (1 fixed, D/g; 2 scaled, Cp)
area (D/q)v
coefficient Cpy (based on tail area, D/q = SCp)
compressibility drag increment Cp .. at M.,
critical Mach number constant M_..q
critical Mach number constant M.

148

e

0.011

0.0011
0.74
0.31

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

drag variation with angle of attack

model (0 none, 1 general, 2 quadratic) ACp = CpoKg|ae|X
angle of attack for tail minimum drag cp,i, (deg)

drag increment K4
drag increment X4
transition from forward flight drag to vertical drag
angle of attack for transition «; (deg)

N OO

25.

Structure: Tail

MODEL._tail

MODEL_Htail
MODEL_Hother
KIND_Htail
wfus

MODEL_Vziail
MODEL_Vother
place AntiQ
KIND_Vtail
fTtail

Vdive

Utail
fTfold

WtParam_tail(8)

int

int
int
int
real

int
int
int
int
real
real

real
real

real

+ 4+ F o+

+

Tail, NDARC Weight Model

model (1 horizontal tail, 2 vertical tail, 3 based on KIND_tail)

horizontal tail
model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other)
model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))
Torenbeek or Raymer: kind (1 fixed, 2 variable incidence)
Raymer: fuselage width at horizontal tail wy /by, (fraction span)

vertical tail
model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other)
model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))
AFDD: antitorque placement (0 none, 1 on tail boom, 2 on vertical tail)
Torenbeek or Raymer: kind (1 conventional, 2 T-tail)
Torenbeek: T-tail factor (Spihnt)/(Svtbut)

design dive speed Vgiye (knots)

area method
weight per area Uy,; (Ib/ft? or kg/m?)

fold weight factor fi,1q (fraction total tail weight excluding fold)

149

0.8
200.

weight models can use taper ratio, sweep, and thickness ratio
dive speed: Vi,ax = SLS max speed, Vdive = 1.25V 1.5

Custom Weight Model
parameters

Chapter 25

150

Structure: FuelTank

Variable Type Description Default
+ Fuel Tank System

title c*100 + title

notes c*1000 + notes
+ Configuration

SET_burn int + fuel quantity stored and used (1 weight, 2 energy) 1
+ fuel weight properties

fuel_density real + fuel weight per volume py,e (Ib/gallon or kg/liter) 6.5

specific_energy real + fuel energy per weight eg,e; (MJ/kg) 42.8

fFuelWing(nwingmax) real + fraction wing torque box filled by fuel tanks 1.0
+ fuel tank sizing

Wfuel_cap real + fuel capacity Weyel—cap (Weight, 1b or kg)

Efuel_cap real + fuel capacity Efyel—cap (energy, MJ)

fFuel_cap real + ratio capacity to mission fuel fruel—cap 1.0

dFuel_cap real + capacity increment deyel—cap 0.

IDENT _battery c*16 + battery identification Y

store and use weight: energy calculated from weight; capacity is usable fuel weight
use Wfuel_cap, Waux_cap, fuel_density, specific_energy, fFuelWing; fWtank, fWauxtank, other weight parameters
units of specific_energy = MJ/kg, regardless of Units_energy

store and use energy: fuel weight zero; capacity is usable fuel energy
use Efuel_cap, Eaux_cap, IDENT_battery; eWtank, eWauxtank, energy_density, other weight parameters
units of Efuel_cap, Eaux_cap = MJ, regardless of Units_energy

Structure: FuelTank

loc_tank

place

SET length_wire
Length_wire
fLength_wire

Mauxtanksize
Waux_cap(nauxtankmax)
Eaux_cap(nauxtankmax)
fWauxtank(nauxtankmax)
eWauxtank(nauxtankmax)
DoQ_auxtank(nauxtankmax)
loc_auxtank(nauxtankmax)

MODEL_Peq
sfc

Peq 0

Peq d

Peq_ t
KPeq_w
XPeq_w
Peq_deice

Location
int

int

real

real

int

real

real

real

real

real
Location

int

real
real
real
real
real
real
real

+
+
+

+ 4+ + + + + + o+

fuel tank sizing: usable fuel capacity Wfuel_cap (weight) or Efuel_cap (energy)

SET_tank='input': input Wfuel_cap or Efuel_cap
SET_tank="miss’: calculate from mission fuel used

151

Wfuel_cap or Efuel_cap = max(fFuel_cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))

SET_tank="miss+power’ = calculate from mission fuel used and mission battery discharge power

SET_tank="f(miss)" = function of mission fuel used

Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*((maximum mission fuel)+(reserve fuel))

battery identification: energy storage only, match ident of BatteryModel

Geometry
location
placement (for graphics; 1 internal, 2 sponson, 3 wing, 4 combination)
wiring length (1 input, 2 from component positions)
length £yire
factor

Auxiliary Fuel Tank
number of auxiliary tank sizes (minimum 1, maximum nauxtankmax)
fuel capacity Waux—cap (Weight)
fuel capacity Epyx—cap (€ENEIZY)
tank weight fouxtank (fraction auxiliary fuel weight)
tank weight e yuxtank (MJI/kg or kWh/kg, Units_energy)
drag (D/q)auxtank (each tank)
location

Equipment power
model (0 for none)
specific fuel consumption
power loss Pqo, constant
power loss FP.qq, scale with density
power loss Py, scale with temperature
power loss P, weight factor
power loss P, , Weight exponent
deice power loss Py

1.0

1000.
20000.

o

©Cocooocoo

Structure: FuelTank

SET_TMS
Prej_design
fPrej_design
SET_FN
eta_dist

DoQ cool

MODEL_weight
dWtank
dWplumb

TECH_tank
TECH_plumb

int
real
real
int

real

real

int
real

real

real
real

+ 4+ + + + + + o+

+ 4+ + + + +

+ +

152

specific fuel consumption: weight (Ib/hp-hr or kg/kWh) or energy (hp/hp or kW/kW)

Thermal management system

design rejected power Prej—design (0 none, 1 input, 2 fraction Pe,p) 0

power (hp or kW) 0.

fraction 0.004

net jet force (0 for no force) 1
Power distribution losses

efficiency at P,y 1.
Cooling drag

area (D/q)cool 0.

The design rejected power Pcj_design can be specified as a fraction of the battery power capacity Peap,
which is the product of the maximum burst discharge current x,,,4 and the actual battery capacity.
The fraction fPref_design accounts for the fact that the design operating current is significantly less than x,,4.

Weight
fuel system (propulsion group)
model (0 input, 1 NDARC, 2 custom) 1
weight increment
tanks and support; battery (including BMS and TMS) 0.
plumbing; power distribution (wiring) 0.

battery (W_fuel_tank=TECH_tank*(Wbatt+WBMS+WTMS)+dWtank, W_fuel_plumb=TECH_plumb*Wwire+dWplumb)
Technology Factors

fuel tank weight Y ¢ank L0

plumbing weight X p1umb Lo

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

Structure: FuelTank

MODEL_tank
ntank_int
fWtank
Ktoler
KIND_crash
Ktank

Xtank

fint

fprot

MODEL_plumb
nplumb
KO_plumb

K1 plumb
fWplumb

eWtank
energy density
fBMS

Uwire
fwire

int
int
real
real
int
real
real
real
real

int
int
real
real
real

real
real
real

real
real

+ 4+ 4+ A+ F o+

+ 4+ + + + + +

153

Fuel System, NDARC Weight Model
weight storage
fuel tank

plumbing

model (1 fraction, 2 parametric, Torenbeek (3 integral, 4 generic), Raymer (5 transport, 6 general aviation)) 2
number of internal tanks Nj,¢ 4
tank weight fi.ni (fraction fuel capacity weight) 0.09
parametric: ballistic tolerance factor f5; (1.0 to 2.5) 25
parametric: survivability (1 baseline, 2 UTTAS/AAH level of survivability) 2
Torenbeek (generic): factor K,k 3.2
Torenbeek (generic): exponent X¢ank 0.727
Raymer: integral tank capacity (fraction total) 1.0
Raymer: protected tank capacity (fraction total) 1.0
model (1 fraction, 2 parametric) 2
total number of fuel tanks (internal and auxiliary) for plumbing Npjymb 4
weight increment Kopiumb, (Ib) 150.
weight factor K p,1ymp, (Ib) 2.0
plumbing weight forumpb (fraction total fuel system weight) 0.4

MODEL_tank: fraction method uses fWtank; parametric method uses ntank_int, Ktoler, KIND_crash

K1_plumb is a crashworthiness and survivability factor; typically K1_plumb = 2.
KO_plumb is the sum of weights for auxiliary fuel, in-flight refueling, pressure refueling, inerting system, etc.; typically
KO_plumb =50 to 250 1b

energy storage
tank weight egank (MJ/kg or kWh/kg, Units_energy)
tank volume density pyankx (MJ/liter or kWh/liter, Units_energy)
battery management system (fraction basic tank weight) 0.2
power distribution (wiring) weight

weight per length 0.62
fraction basic tank weight 0.2

Structure: FuelTank 154

specific energy e,k and energy density pi.nx based on usable fuel capacity (consistent with dyax — dimin)

+ Custom Weight Model
WtParam_tank(8) real + parameters 0.

Chapter 26

155

Structure: Propulsion

Variable Type Description Default
+ Propulsion Group
title c*100 + title
notes c*1000 + notes
propulsion group is set of components and engine groups, connected by drive system
components (rotors) define power required, engine groups define power available
drive system defines ratio of rotational speeds of components (relative primary rotor speed)
+ Drive system
nGear int + number of states (maximum ngearmax) 1
STATE_gear_var int + drive system state for variable speed transmisson (0 for none) 0

MODEL_Xloss
fPloss_xmsn
Ploss_windage

drive system branches: one primary rotor per propulsion group (specify V4;,), others dependent (specify gear ratio)
specify primary engine group only if no rotors in propulsion group

drive system state: identifies gear ratio set for multiple speed transmissions
state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n

variable speed transmission: for drive system state STATE_gear_var, gear ratio factor fgca, (control) included
when evaluate rotational speed of dependent rotors and engines

+ Transmission losses
int + model (1 fraction component power required; 2 with function drive shaft limit) 2
real + gear box loss /sy (fraction total component power required) 0.04
real + power loss due to windage Pyindage 0.

Structure: Propulsion

Pacc_0
Pacc d
Pacc n
Pacc_deice
fPacc_ECU
fPacc_IRfan

SET length
Length_ds
fLength_ds

Plimit_ds
fPlimit_ds
SET_Plimit_size

nrate_ds
rating_ds(nratemax)
frating_ds(nratemax)

Vdrive_hover
Vdrive_cruise
rating_ds_hover
rating_ds_conv
rating_ds_cruise

real
real
real
real
real
real

int
real
real

real
real
int

int
c*12
real

real
real
c*12
c*12
c*12

+ 4+ + + + + +

+ + + +

+ 4+ + o+

Accessory losses
power loss P,.co, constant
power loss P,.cq, scale with density
power loss P,.cy, , scale with density and rpm
deice power 10ss Pycc;
ECU (etc.) power loss ¢, (fraction component+transmission power)
IRS fan loss {1ty (fraction total engine power)

Geometry
drive shaft length (1 input, 2 from hub positions, 3 scale with radius)
length {pg
factor

SET _length: input (use Length_ds) or calculated (from fLength_ds)

Drive system torque limit
drive system power limit Pp gjimit
drive system power limit factor
drive system limit when sizing transmission (0 not applied to power available)
Drive system ratings
number of ratings (maximum nratemax)
drive system rating designation
torque limit factor
schedule
maximum speed for hover and helicopter mode (CAS or TAS, knots)
minimum speed for cruise (CAS or TAS, knots)
rating for hover and helicopter mode (V' < Viyive—hover)
rating for conversion mode (Vgrive—nover < V' < Vidrive—cruise)
rating for cruise mode (V' > Viyive—cruise)

drive system torque limits: SET_limit_ds = input (use Plimit_xx) or calculate (from fPlimit_xx)
SET_limit_ds='input’: Plimit_ds input
SET_limit_ds='ratio": from takeoff power, fPlimit_ds (Neng Peng)

156

Cococooe o

0.9

Structure: Propulsion

157

SET_limit_ds='Pav’: from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Qrer /Qprim) Y (Neng Pav)

SET_limit_ds="Preq’: from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Qref/Qprim) Y (Neng Preq)

engine shaft: options for SET_limit_ds#'input’

SET_limit_es=0: Plimit_es

SET _limit_es=1: fPlimit_es X (engine group Feng or Py, or P4, depending on SET _limit_ds)

SET limit_es=2: fPlimit_es X PDSlimit (PengEG/PengPG)

drive system power limit: corresponds to power of all engines of propulsion group (all engine groups)
can be used for trim (trim_quant='Q margin’)
used for drive system weight, tail rotor weight, transmission losses
limits propulsion group P, (if FltState%SET_Plimit=on)
engine shaft power limit: corresponds to all engines of engine group (nEngine X Peng)
limits engine group P,,, (if FltState%SET_Plimit=on)
rotor shaft power limit: corresponds to one rotor
all limits
can be used for max effort in flight state (max_quant="Q margin’)
can be used for max gross weight in flight condition or mission (SET_GW="maxQ’ or 'maxPQ’)
always check and print whether exceed torque limit

the engine model gives the power available, accounting for installation losses and mechanical limits
then the power available is reduced by the factor FltState%fPower
next torque limits are applied (unless FltState%SET_Plimit=off), first engine shaft limit and then drive system limit

SET_Plimit_size=0: drive system limits are not applied for transmission sizing conditions and mission segments
(DESIGN_xmsn); otherwise use FltState%SET_Plimit

drive system ratings: blank to use engine ratings of first engine group
limit at flight state is 72 fg Piimit, Where r is the rotor speed ratio and x is the rating factor frating_ds
if nrate_ds< 1, drive system rating not used
schedule used if FltAircraft%rating_ds='speed’

Structure: Propulsion

INPUT_DN
T_DN(ncontmax,nstatemax)
nVDN

DN(nvelmax)

VDN (nvelmax)

MODEL_DS

dWgb
dWrs

dWds

dWrb

dWcl

dWed

STATE gear wt
kEngineGroup_wt(2)

TECH_gb
TECH_rs
TECH_ds
TECH_rb
TECH_cl
TECH_gd

int
real
int
real
real

int

real
real
real
real
real
real
int

int

real
real
real
real
real
real

+ 4+ + + + + +

T T o T S S S S S S S A T T

Control
rotational speed increment AN, primary rotor or primary engine (rpm)
connection to aircraft controls (0 none, 1 input 7" matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, ¢ = T'cac + ¢g
for each component control, define matrix 7" (for each control state) and value cg
flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

Weight
drive system (propulsion group)
model (0 input, 1 NDARC, 2 custom)
weight increment
gear box
rotor shaft
drive shaft
rotor brake
clutch
gas drive
drive system state for weight
EngineGroup for weight (input, output)
Technology Factors
gear box weight x4
rotor shaft weight x5
drive shaft weight x4
rotor brake weight x,.
clutch weight x;
gas drive weight X 4q

158

coocooe0o

—

1.0
1.0
1.0
1.0
1.0

Structure: Propulsion

MODEL_gbrs
MODEL_other
fShaft
ngearbox
fTorque
nstage

Kgbrs

XgbP

Xgbe

Xgbr
KIND_other
Ktrgb
fPower_tr
gear_tr

MODEL _dsrb
ndriveshaft
fPower

int
int
real
int
real
int

real
real
real
real
int

real
real
real

int
int
real

T T i i S S e S

159

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

kEngineGroup_wt: always identify engine group for drive system input
if propulsion group has rotors, primary rotor speed used for drive system output
if propulsion group does not have rotors, must identify engine group for drive system output

drive system weight = gear box (including rotor shaft) + drive shaft + rotor brake + clutch + gas drive
tiltrotor wing weight model requires weight on wing tip (drive system, without rotor shaft)

Drive System, NDARC Weight Model
gear box (including rotor shafts)
model (1 AFDD83,2 AFDDO00, 3 other)
model (1 Boeing, 2 Boeing (alternate), GARTEUR (3 helicopter, 4 tiltrotor), 5 Tishchenko, 6 generic)
rotor shaft weight f,. ¢ (fraction gear box and rotor shaft weight)
AFDDB83: number of gear boxes Ny,
AFDD83: second (main or tail) rotor rated torque f¢ (fraction total drive system rated torque)
Boeing: number of stages in main-rotor drive
generic gearbox
factor K gy
exponent X g, p
exponent X gpc
exponent X g5,
other: separate tail rotor drive weight increment (0 none)
tail rotor drive weight increment factor Ky,
tail rotor power (fraction total drive system rated power)
tail rotor gear ratio
drive shaft and rotor brake
model (0 none, 1 AFDDS82)
AFDDS82: number of intermediate drive shafts Vs (excluding rotor shafts)
AFDDS82: second (main or tail) rotor rated power fp (fraction total drive system rated power)

Structure: Propulsion 160

fPower = fTorque*(otherrotor RPM)/(mainrotor RPM)
typically fTorque=fPower=0.6 for twin main rotors (tandem, coaxial, tiltrotor)
for single main rotor and tail rotor, fTorque = 0.03, fPower = 0.15 (0.18 for 2-bladed teeter)

typically fShaft = 0.13 (data range 0.06 to 0.20)

+ Custom Weight Model
WtParam_drive(8) real + parameters 0.

Chapter 27

161

Structure: EngineGroup

Variable Type Description Default
+ Engine Group
title c*100 + title
notes c*1000 + notes
+ Description
MODEL_engine c*¥32 + engine model 'RPTEM’
IDENT _engine c*l6 + engine identification "Engine’
IDENT _system2 c*l6 + second system identification "
nEngine int + number of engines Nepg 1
nEngine_main int + number of main engines 1
Peng real + engine power P, (SLS static at takeoff rating, 0. for P0_ref(rating_to)) 0.
rating_to c*12 + takeoff power rating 'MCP’
rating_idle c*12 + idle power rating "MCP’
kFuelTank int + fuel tank system number 1
kRotor_react int + rotor number for reaction drive
fuselage flow int + fuselage flow control (0 not) 1
wing_flow(nwingmax) int + wing flow control (0 not) 1
+ Propulsion Group
kPropulsion int + group number 1
KIND_xmsn int + drive system branch (1 primary, 0 dependent) 0
INPUT_gear int + gear ratio input (1 from Nspec, 2 gear) 1
gear(ngearmax) real + engine gear ratio r = Qgpec/Qprim (ratio rpm to rpm of primary rotor in propulsion group) 1.0

MODEL _engine: engine model
'RPTEM’, 'shaft’ = turboshaft engine (RPTEM); IDENT _engine — EngineModel; fuel is weight
'table’ = turboshaft engine (table); IDENT_engine — EngineTable; fuel is weight
'recip’ = reciprocating engine; IDENT_engine — RecipModel; fuel is weight
'comp’ = compressor; IDENT_engine — CompressorModel; not use fuel

Structure: EngineGroup

SET_ power
fPsize

SET Pother
fEsize(nengmax)

int
real
int
real

"'comp+react’ = compressor for reaction drive; IDENT_engine — CompressorModel; not use fuel
'comp-+flow’ = compressor for flow control; IDENT_engine — CompressorModel; not use fuel
"'motor’ = electric motor; IDENT_engine — MotorModel; fuel is energy
'gen’ = electric generator; IDENT_engine — MotorModel; fuel is energy (generated, not burned)
"'motor+gen’ = motor + generator (mode B > 0 for motor); IDENT_engine — MotorModel; fuel is energy
'simple’ = simple engine; no model identified; fuel is weight or energy

MODEL _engine: convertible engine; only with turboshaft
"+react’ = reaction drive (mode B = 1); IDENT _system2 — EngineModel
"+jet’, '+fan’ = turbojet/turbofan (mode B = 1); IDENT_system2 — EngineModel

engine identification: match ident of EngineModel or EngineTable or RecipModel or CompressorModel or MotorModel
second system identification: match ident of EngineModel; not use weight
number of main engines: for fuel tank weight

for fixed engine: use P, = 0. and no size task (or engine power not sized)
takeoff power rating: for engine scaling, aircraft power loading, fuel tank weight
FltState%rating can be set to 'idle’ (rating_idle) or "takeoff’ (rating_to)

fuel tank system identified for burn must store and use weight (turboshaft, reciprocating)
or energy (motor, may have BatteryModel)
fuel tank system identified for generation must store and use energy (may have BatteryModel)

drive system branch: primary engine group only designated if no rotors for propulsion group

INPUT _gear: calculate gear from Nspec and Vtip_ref of primary rotor of propulsion group, or specify gear ratio

variable speed transmission: for drive system state STATE_gear_var, gear ratio factor fgca, (control) included
when evaluate rotational speed of engine

Sizing

specification (0 sized, 1 fixed)

sized power ratio f,

sized power from other engine group (0 not)
fraction other engine group power fg

162

Structure: EngineGroup

SET limit_es
Plimit_es
fPlimit_es

163

SET_power: if SIZE_perf="engine’, used to distribute propulsion group power required among engine groups
Peng = fnpsized/Neng for n-th engiﬂe group, Fiiyed = Ppg — Zﬁxed NengPeng
must size at least first engine group, so SET_power and fPsize values not used for first group
fPsize calculated for first engine group, must be > 0.
not used (SET_power=1) if group consumes power (compressor or generator, which sized if SIZE_engine="engine")
FltState%SET_Preq specifies distribution of power required for flight state

SET_Pother: size power from engine group of other propulsion groups, maX(Peng7 fE Peng_other)

+ Drive system torque limit
int + engine shaft (0 input, 1 fraction power, 2 fraction drive system limit) 1
real + engine shaft power limit Pgsiimit
real + engine shaft power limit factor 1.0

drive system torque limits: SET_limit_ds = input (use Plimit_es) or calculated (from fPlimit_es)
SET_limit_ds="input’: Plimit_ds input
SET _limit_ds='ratio": from takeoff power, fPlimit_ds) (Neng Peng)
SET_limit_ds='Pav’: from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Qrer/Qprim) Y (Neng Pav)
SET_limit_ds="Preq’: from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Qrer/Qprim) - (Neng Preq)
engine shaft: options for SET_limit_ds##'input’
SET _limit_es=0: Plimit_es
SET _limit_es=1: fPlimit_es x (engine group FPeyg or Py, or P,.4, depending on SET _limit_ds)
SET _limit_es=2: fPlimit_es X Ppgiimit (PengEG/PengPG)

engine shaft power limit: corresponds to all engines of engine group (nEngine x Peng)
limits engine group P,,, (if FltState%SET_Plimit=on)
can be used for max effort in flight state (max_quant='Q margin’)
can be used for max gross weight in flight condition or mission (SET_GW="maxQ’ or 'maxPQ")
always check and print whether exceed torque limit

Structure: EngineGroup

Kffd
eta d

fPloss_inlet
fPloss_ps
fPloss_exh

fMF_auxair
eta_auxair

fPloss_exh IRon

fMF_auxair_IRon
eta_auxair_IRon

Kffd_conv
fPloss_exh_conv

SET_TMS
Prej_design
fPrej_design

SET_FN
SET Daux

real
real

real
real
real
real
real

real

real
real

real
real
int

real

real

int
int

T i S S S S S e e e T Tk T T T T T i T S o

164

Installation
deterioration factor on engine fuel flow or performance Kyq 1.05
engine inlet efficiency ng (fraction, for das) 0.98
power losses (fraction power available, Plogss/P,)
engine inlet loss /;;, 0.
inlet particle separator loss £;,, 0.
engine exhaust loss /., (IRS off) 0.015
auxiliary air momentum drag (IRS off)
mass flow fpux (fraction engine mass flow) 0.007
ram recovery efficiency 7,,x 0.75

IR suppressor
power losses (IRS on)

engine exhaust loss /., 0.030
auxiliary air momentum drag (IRS on)
mass flow faux (fraction engine mass flow) 0.01
ram recovery efficiency 7,,x 0.75
Convertible
deterioration factor on engine fuel flow or performance Kyq 1.05
power losses (fraction power available, Poss/Py)
engine exhaust loss /., 0.015
Thermal management system
design rejected power Pej_design for one engine (0 none, 1 input, 2 fraction FPey,g) 0
power (hp or kW) 0.
fraction 0.02

Model
net jet force (0 for no force)
auxiliary air momentum drag (0 for no drag)

installation power losses = inlet + particle separator + exhaust (including IRS)
IR suppressor state specified by STATE_IRS in operating condition
motor or generator: only use Kffd, thermal management system

Structure: EngineGroup 165

+ Simple engine
Pmax real + design maximum power at takeoff rating Ppax 0.
rMRP real + power ratio (MRP/MCP) 1.2
SET_burn int + fuel quantity used (1 weight, 2 energy) 1
sfc real + specific fuel consumption (weight) 0.4
eta real + efficiency (energy) 0.95
SwW real + specific weight S 0.5
fuel tank system identified must be consistent with SET_burn
simple engine has two ratings: MCP and MRP
+ Geometry

loc_engine Location + location

direction c*16 + nominal orientation ('+x', '=x’, '+y', '=y’, '+z', '=z') X'
SET _geom int + position (0 standard, 1 tiltrotor, 2 rotor) 0
RotorForEngine int + rotor number 1
SET_Swet int + nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, Wgg; 3 scaled, Wgg and Wy,.; 4 scaled, lengths) 2
Swet real + area Syet (per engine) 0.
kSwet real + factor, k = Syet/(w/Neng)?/® (Units_Dscale) or k = Syet/ (zﬁgﬂcff;;jgg RXrotor) 0.8
XSwet_fus real + exponent, Xy 0.
XSwet_wing real + exponent, Xy ing 0.
XSwet_rotor real + exponent, X otor 2.
refWing int + wing number (for wing chord) 1
refRotor int + rotor number (for rotor radius) 1

SET_geom: calculation override part of location input
SET_geom=tiltrotor: calculate lateral position (BL) from RotorForEngine
SET_geom=rotor: (SL,BL,WL or XoL,YoL,ZoL) is relative loc_rotor(RotorForEngine)
SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)
units of kSwet are ft%/Ib%/3 or m?/kg?/?
w = WEgg (engine system) or Wgg + Wyprs /NE¢ (engine system and drive system)
nacelle wetted area used for nacelle drag, and for cowling weight
engine group nacelle must be consistent with rotor pylon

Structure: EngineGroup

INPUT _amp
T_amp(ncontmax,nstatemax)
nVamp

amp(nvelmax)
Vamp(nvelmax)

INPUT_mode
T_mode(ncontmax,nstatemax)
nVmode

mode(nvelmax)
Vmode(nvelmax)

INPUT _incid
T_incid(ncontmax,nstatemax)

nVincid
incid(nvelmax)
Vincid(nvelmax)

INPUT _yaw
T_yaw(ncontmax,nstatemax)
nVyaw

yaw(nvelmax)
Vyaw(nvelmax)

INPUT _fgear
T_fgear(ncontmax,nstatemax)

nVfgear
fgear(nvelmax)
Vfgear(nvelmax)

int
real
int
real
real

int
real
int
real
real

int

real
int

real
real

int
real
int
real
real

int

real
int

real
real

+ A+ A+ +

+ 4+ + + + +++++ o+

+ 4+ + +

Controls

amplitude A (fixed engine group power)
connection to aircraft controls (0 none, 1 input 7" matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

mode B
connection to aircraft controls (0 none, 1 input 7" matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

incidence i (tilt)
connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
yaw ¢
connection to aircraft controls (0 none, 1 input 7" matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)
gear ratio factor fgea, (variable speed transmission only)
connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

Structure: EngineGroup

MODEL_drag
Idrag

MODEL_weight
dWEng

MODEL_sys
MODEL_nac
MODEL_air

dWexh
dWacc
dWsupt
dWcowl
dWpylon
dWair

int
real

int
real

int
int
int

real
real
real
real
real
real

R T T o S S S S S S A

aircraft controls connected to individual controls of component, c = T'cac + g
for each component control, define matrix 7" (for each control state) and value ¢
flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

Nacelle Drag
model (0 none, 1 standard)
incidence angle 7 for helicopter nominal drag (deg; O for not tilt)

component drag contributions must be consistent
pylon is rotor support, and nacelle is engine support
tiltrotor with tilting engines use pylon drag (and no nacelle drag),
since pylon connected to rotor shaft axes
tiltrotor with nontilting engines, use nacelle drag as well

Weight
engine weight
model (0 input, 1 RPTEM or NASA, 2 custom)
weight increment (all engines)

engine system (except engine), engine section or nacelle group, air induction group

model (0 input, 1 NDARC, 2 custom)
engine system
engine section or nacelle
air induction
weight increment
exhaust
accessories
engine support
engine cowling
pylon support
air induction

167

—_

e o

Structure: EngineGroup

TECH_eng
TECH_cowl
TECH_pylon
TECH_supt
TECH_air
TECH_exh
TECH_acc

SET _drag
DoQ
CD

SET_Vdrag
DoQV
CDV

MODEL_Deng
Xdrag

real
real
real
real
real
real
real

int
real
real

int
real
real
int
real

+ 4+ 4+ + + + + +

+ 4+ + + o+

Technology Factors
engine weight Yeng
engine cowling weight X cowl
pylon structure weight X pyion
engine support structure weight Xsupt
air induction system weight X airind
exhaust system weight Xexn
engine accessories weight Yacc

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory (WES used for rotor pylon wetted area, engine nacelle wetted
area, rotor moving weight)

nacelle weight = support + cowl + pylon

engine weight parameters in EngineModel

tiltrotor wing weight model requires weight on wing tip:
engine section or nacelle group, air induction group, engine system

Nacelle Drag, Standard Model

forward flight drag

specification (1 fixed, D/q; 2 scaled, Cp)

area (D/q)o

coefficient Cpg (based on wetted area, D/q = SCp)
vertical drag

specification (1 fixed, D/q; 2 scaled, Cp)

area (D/q)v

coefficient Cpy (based on wetted area, D/q = SCp)
transition from forward flight drag to vertical drag

model (0 none)

exponent Xy

168

1.0
1.0
1.0
1.0
1.0
1.0
1.0

Structure: EngineGroup

DoQ _cool

MODEL_nacelle
fWpylon

Knac
Xnac
n_clf
fWidth_nac

MODEL_airind

fWair
Uair

Kwt0_exh
Kwtl_exh

MODEL_lub

WitParam_engsys(8)

real

int

real
real
real
real
real
int

real
real

real

real

int

real

+ +

T T i o T S S e S

+

169

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

Cooling Drag
arca (D/Q)cool

Engine Section or Nacelle Group, NDARC Weight Model
model (1 parametric, 2 scale with power, 3 Boeing, 4 Raymer (transport))
pylon support structure weight fi, 1on (fraction maximum takeoff weight)
nacelle group weight, W vs Py
factor K.
exponent X, ¢
Boeing: crash load factor
Raymer: nacelle width (fraction nacelle length)
Air Induction Group, NDARC Weight Model
model (1 parametric, 2 area)
air induction weight faiinq (fraction engine support plus air induction weight)
weight per nacelle area U,iring (Ib/ft? or kg/mQ)
Engine System, NDARC Model
exhaust system weight, per engine, including IR suppressor; Weyn vs Poc
K Oexh
Kiexn
engine accessories
lubrication system weight (1 in engine weight, 2 in accessory weight)

20.
0.2

typically fWair = 0.3 (data range 0.1 to 0.6)

engine support and pylon support weights must be consistent with rotor support structure weight

Custom Weight Model
parameters

Chapter 28

170

Structure: JetGroup

Variable Type Description Default
+ Jet Group
title c*100 + title
notes c*1000 + notes
+ Description
MODEL_jet c*32 + jet model 'RPJEM’
IDENT_jet c*16 + jet identification "Jet’
IDENT _system2 c*16 + second system identification "
nJet int + number of jets Nje; 1
Tjet real + jet thrust Tjc¢ (SLS static at takeoff rating, 0. for TO_ref(rating_to)) 0.
rating_to c*12 + takeoff thrust rating 'MCT’
rating_idle c*12 + idle thrust rating "MCT’
kFuelTank int + fuel tank system number 1
kRotor_react int + rotor number for reaction drive
fuselage_flow int + fuselage flow control (0 not) 1
wing_flow(nwingmax) int + wing flow control (0 not) 1

MODEL_jet: jet model
'RPJEM’, 'jet’, 'fan’ = turbojet/turbofan engine (RPJEM); IDENT_jet — JetModel; fuel is weight
'react’ = reaction drive (RPJEM)); IDENT_jet — JetModel; fuel is weight
'flow’ = flow control (RPJEM)); IDENT_jet — JetModel; fuel is weight
'simple’ = simple force generator; no model identified; fuel is weight or energy
MODEL_jet: convertible engine; only with turbojet/turbofan
"+react’ = reaction drive (mode B = 1); IDENT _system2 — JetModel

jet identification: match ident of JetModel
second system identification: match ident of JetModel; not use weight

Structure: JetGroup

Kffd
eta d

fTloss_inlet
fTloss_exh

fMF_auxair
eta_auxair

fTloss_exh_IRon

fMF_auxair_IRon
eta_auxair_IRon

Kffd_conv

fTloss_exh conv

Tmax

SET burn
sfc

SwW
KIND_simple

real
real

real
real

real
real
real

real
real

real

real

real
int
real
real
int

SR T S T e e i i T T S S S

+ 4+ + + + +

for fixed jet: use Tje; = 0. and no size task (or jet thrust not sized)

171

Installation
deterioration factor on jet fuel flow Kyq
jet inlet efficiency 7y (fraction, for ;)
power losses (fraction thrust available, Tioss/T5)
engine inlet loss /;;,
engine exhaust loss /., (IRS off)
auxiliary air momentum drag (IRS off)
mass flow foux (fraction engine mass flow)
ram recovery efficiency 7,,x
IR suppressor
power losses (IRS on)
engine exhaust loss /.,
auxiliary air momentum drag (IRS on)
mass flow fpux (fraction engine mass flow)
ram recovery efficiency 7,,x
Convertible
deterioration factor on jet fuel flow Ky ¢q
power losses (fraction thrust available, Tioss/T0)
engine exhaust loss /.,

1.05
0.98
0.01
0.007
0.75
0.03

0.01
0.75

1.05

0.01

installation power losses = inlet + exhaust (including IRS)
IR suppressor state specified by STATE_IRS_jet in operating condition

Simple force generator
design maximum thrust T}, ,x
fuel quantity used (1 weight, 2 energy)
thrust specific fuel consumption (weight or energy)
specific weight S
weight group (1 engine system, 2 propeller/fan installation, 3 tail rotor)

Structure: JetGroup

loc_jet
direction
SET_Swet
Swet

kSwet
XSwet_fus
XSwet_wing
XSwet_rotor
refWing
refRotor

INPUT _amp
T_amp(ncontmax,nstatemax)
nVamp

amp(nvelmax)
Vamp(nvelmax)

INPUT _mode
T_mode(ncontmax,nstatemax)
nVmode

mode(nvelmax)
Vmode(nvelmax)

fuel tank system identified must be consistent with SET_burn

+ Geometry

Location +
c*16 +
int

real
real
real
real
real
int

int

+ 4+ + + + + 4+

int
real
int
real
real

int
real
int
real
real

+ 4+ +

location
nominal orientation ('+x', '=x', '+y', '=y’, '+2', '-z')
nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, Wgg; 4 scaled, lengths)

area Syet (per jet)

. : 2/3 . _ Xfus X wing Xrotor
factor, k = Swet/(Wgs/Njet)?/? (Units_Dscale) or k = Syet/ (€7, Comp B)
exponent, Xfyg
exponent, Xy ing
exponent, X, otor
wing number (for wing chord)
rotor number (for rotor radius)

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)

units of kSwet are ft2/1b%/% or m?/kg?/?

nacelle wetted area used for nacelle drag, and for cowling weight

Controls
amplitude A

connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

mode B

connection to aircraft controls (0 none, 1 input 7' matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

172

o
N OO xm oo X

—

Structure: JetGroup

INPUT _incid
T_incid(ncontmax,nstatemax)

nVincid
incid(nvelmax)
Vincid(nvelmax)

INPUT _yaw
T_yaw(ncontmax,nstatemax)
nVyaw

yaw(nvelmax)
Vyaw(nvelmax)

MODEL_drag
Idrag

MODEL_weight
dWJet

MODEL _sys

int

real
int

real
real

int
real
int
real
real

int
real

int
real

int

+ +

+ 4+ 4+ + + + + + + o+

+ + +

+ 4+ + + + + +

incidence ¢ (tilt)

connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

yaw ¢

connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, ¢ = T'cac + ¢g

for each component control, define matrix 7" (for each control state) and value ¢,

flight state specifies control state, or that control state obtained from conversion schedule
¢y can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

Nacelle Drag
model (0 none, 1 standard)
incidence angle 7 for helicopter nominal drag (deg; O for not tilt)

jet weight

model (0 input, 1 RPJEM, 2 custom)
weight increment (all jets)

engine system (except jet), engine section or nacelle group, air induction group

model (0 input, 1 NDARC, 2 custom)
engine system

173

Structure: JetGroup 174

MODEL_nac int + engine section or nacelle 1
MODEL_air int + air induction 1
+ weight increment
dWexh real + exhaust 0.
dWacc real + accessories 0.
dWsupt real + engine support 0.
dWcowl real + engine cowling 0.
dWopylon real + pylon support 0.
dWair real + air induction 0.
+ Technology Factors
TECH_jet real + jet weight et 1.0
TECH_jetcowl real + engine cowling weight Xcowl 1.0
TECH_jetpylon real + pylon structure weight X pyion 1.0
TECH_jetsupt real + engine support structure weight Xsupt 1.0
TECH_jetair real + air induction system weight X airind 1.0
TECH_jetexh real + exhaust system weight Xexn 1.0
TECH_jetacc real + engine accessories weight Xacc 1.0
weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.
engine system weight = engine + exhaust + accessory (WES used for nacelle wetted area)
nacelle weight = support + cowl + pylon
jet weight parameters in JetModel
+ Nacelle Drag, Standard Model
+ forward flight drag
SET _drag int + specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQ real + area (D/q)o
(@] real + coefficient C'pg (based on wetted area, D/q = SCp)
+ vertical drag
SET Vdrag int + specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQV real + area (D/q)v
CDhV real + coefficient Cpy (based on wetted area, D/q = SCp)

Structure: JetGroup

+ transition from forward flight drag to vertical drag
MODEL_Djet int + model (0 none)
Xdrag real + exponent X,

175

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

+ Cooling Drag

DoQ cool real + area (D/q)cool
+ Engine Section or Nacelle Group, NDARC Weight Model
MODEL _nacelle int + model (1 parametric, 2 scale with thrust, 3 Boeing, 4 Raymer (transport))
fWhpylon real + pylon support structure weight fi,y1on (fraction maximum takeoff weight)
+ nacelle group weight, W vs T
Knac real + factor Ky,
Xnac real + exponent X,
n_clf real + Boeing: crash load factor
fWidth_nac real + Raymer: nacelle width (fraction nacelle length)
+ Air Induction Group, NDARC Weight Model
MODEL_airind int + model (1 parametric, 2 area)
fWair real + air induction weight f,iying (fraction engine support plus air induction weight)
Uair real + weight per nacelle area U, ing (Ib/ft? or kg/m2)
+ Engine System, NDARC Model
+ exhaust system weight, per jet; Wexn, vs Toco
Kwt0_exh real + Koexh
Kwtl_exh real + Kioxn
+ engine accessories
MODEL_lub int + lubrication system weight (1 in jet weight, 2 in accessory weight)
+ Custom Weight Model
WtParam_jetsys(8) real + parameters

20.
0.2

176

Chapter 29

Structure: ChargeGroup

Variable Type Description Default
+ Charge Group
title c*100 + title
notes c*1000 + notes
+ Description
MODEL_charge c*32 + charger model v
IDENT _charge c*16 + charger identification "Charge’
nCharge int + number of chargers Nepyg 1
Pchrg real + charger power P, (SLS static at takeoff rating, 0. for PO_ref(rating_to)) 0.
rating_to c*12 + takeoff power rating "MCP’
rating_idle c*12 + idle power rating 'MCP’
kFuelTank int + fuel tank system number (generated) 1
kFuelTank_burn int + fuel tank system number (burned)

MODEL_charge: charger model
"fuel’ = fuel cell; IDENT _charge — FuelCellModel; fuel generated is energy; fuel burned is weight (kFuelTank_burn)
'solar’ = solar cell; IDENT_charge — SolarCellModel; fuel generated is energy
'simple’ = simple charger; no model identified; fuel generated is energy

charger identification: match ident of FuelCellModel or SolarCellModel
for fixed charger: use Pu,ye = 0. and no size task (or charger power not sized)

fuel tank system identified for generation must store and use energy (may have BatteryModel)
fuel tank system identified for burn must store and use weight

Structure: ChargeGroup

Kffd
eta d

fMF_auxair
eta_auxair

Pmax
eta_chrg
S\

loc_charger
direction
SET Swet
Swet

kSwet
XSwet fus
XSwet_wing
XSwet_rotor
refWing
refRotor

INPUT _amp
T_amp(ncontmax,nstatemax)
nVamp

amp(nvelmax)
Vamp(nvelmax)

real
real

real
real

real
real
real

Location
c*16
int

real

real

real

real

real

int

int

int
real
int
real
real

+ 4+ + + + +

+ + + +

+ 4+ 4+ A+ A+ o+ A+ 4+

+ 4+ + + + + +

Installation
deterioration factor on charger fuel flow or performance Kyq
charger inlet efficiency 7, (fraction, for d5;)
auxiliary air momentum drag
mass flow f,ux (fraction charger mass flow)
ram recovery efficiency 7,,x

Simple charger
design maximum power P, ,x
efficiency 7chrg
specific weight S (per charger)

Geometry

location

nominal orientation ('+x', '=x', '+y', '=y', '+z', '-z')

nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, Wgg; 4 scaled, lengths)
area Syet (per charger)
factor, k = cht/(WES/Nchrg)2/3 (Units_Dscale) or k = cht/(ﬁfifs“scfflfgg RXrotor)
exponent, Xy,
exponent, Xying
exponent, X otor
wing number (for wing chord)
rotor number (for rotor radius)

177

1.05
0.98

0.007
0.75

== N OO 5 O v X

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)
units of kSwet are ft%/Ib%/3 or m?/kg?/?
nacelle wetted area used for nacelle drag

Controls
amplitude A
connection to aircraft controls (0 none, 1 input 7' matrix)
control matrix
number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values
speeds (CAS or TAS, knots)

Structure: ChargeGroup

INPUT_mode int
T_mode(ncontmax,nstatemax) real
nVmode int
mode(nvelmax) real
Vmode(nvelmax) real
INPUT _incid int
T_incid(ncontmax,nstatemax)

real
nVincid int
incid(nvelmax) real
Vincid(nvelmax) real
INPUT _yaw int
T_yaw(ncontmax,nstatemax) real
nVyaw int
yaw(nvelmax) real
Vyaw(nvelmax) real
MODEL_drag int

Idrag real

+ 4+ 4+ + + + + +

+ 4+ 4+ + + + + + + o+

mode B

connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

incidence 17 (tilt)

connection to aircraft controls (0 none, 1 input 7' matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

yaw ¢

connection to aircraft controls (0 none, 1 input 7" matrix)

control matrix

number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
values

speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, ¢ = T'cac + ¢g

for each component control, define matrix 7" (for each control state) and value cg

flight state specifies control state, or that control state obtained from conversion schedule
co can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value

initial values if control is connected to trim variable; otherwise fixed for flight state

+ Nacelle Drag

+
+

model (0 none, 1 standard)
incidence angle 7 for helicopter nominal drag (deg; O for not tilt)

Structure: ChargeGroup 179

+ Weight
+ charger weight
MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1
dWChrg real + weight increment (all chargers) 0.
+ Technology Factors
TECH_chrg real + charger weight ycprg 1.0
weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.
engine system weight = engine + exhaust + accessory = charge group weight (WES used for nacelle wetted area)
charger weight parameters in FuelCellModel or SolarCellModel
+ Nacelle Drag, Standard Model
+ forward flight drag
SET _drag int + specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQ real + area (D/q)o
CcD real + coefficient Cpg (based on wetted area, D/q = SCp)
+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, Cp) 2
DoQV real + area (D/q)v
CbhV real + coefficient Cpy (based on wetted area, D/q = SCp)
+ transition from forward flight drag to vertical drag
MODEL_Dchrg int + model (0 none) 1
Xdrag real + exponent X, 2.0

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

Structure: ChargeGroup 180

+ Cooling Drag

DoQ _cool real + area (D/q)cool 0.
+ Custom Weight Model

WtParam_chrgsys(8) real + parameters 0.

Chapter 30

181

Structure: EngineModel

Variable Type Description Default
+ Engine Model
title c*100 + title
notes c*1000 + notes
ident c*¥16 + identification "Engine’
engine identification: used by IDENT _engine of EngineGroup input (eg 'T800")
installed: power available P,,, power required P,..,, gross jet thrust F;, net jet thrust Iy
uninstalled: power available P, power required P, gross jet thrust F,, net jet thrust I,
“0” = SLS static; “C” = MCP
mass flow = power / specific power (SP = P/rm); fuel flow = specific fuel consumption * power (sfc = w/P)
engine model can be used by more than one engine group, so all parameters fixed
as model for turbojet or reaction drive of convertible engine:
only use sfcOC_ref, sfcOC_ref, and parameters for optimum speed, thrust available, and performance
PO_ref and SPO_ref required, but not used; weight, ratings, technology, and scaling variables not used
+ Weight
MODEL_weight int + RPTEM model (0 fixed, 1 W(P),2 SW(rn)) 1
Weng real + engine weight (fixed) 0.
+ engine weight, Weyg vs Popg model (W = Koeng + Kieng P + KgcngPXOHg)
Kwt0_eng real + constant Koeng 0.
Kwtl eng real + constant Kyeng 0.25
Kwt2_eng real + constant Koepg 0.

Structure: EngineModel

Xwt_eng

SW_ref
SW_limit

WtParam_engine(8)

nrate
rating(nratemax)

PO_ref(nratemax)
SPO_ref(nratemax)
Pmech_ref(nratemax)
sfcOC_ref

SFOC_ref

Nspec_ref
Nopt0C_ref

real

real
real

real

int
c*12

real
real
real
real
real
real
real

+ 4+ + +

+ +

+ 4+ + A+ + o+

exponent Xeng

engine weight, SW = Pong/Weng Vs 1o model
specific weight reference SWior (1h = Myech)
specific weight limit SWy;y, (1 = mym)

Custom Weight Model
parameters

Parameters

Engine Ratings
number of ratings (maximum nratemax)
rating designations

Reference
power (Fy)
specific power (S Fp)
mechanical limit of power (Ppech)
specific fuel consumption at MCP (sfcy¢)
specific jet thrust (Fyoc = SFycrioc)
specification turbine speed (Ngpec)
optimum turbine speed at MCP (Np00)

182

'MCP’

2000.
150.
2500.
0.45
10.
20000.
20000.

Reference Engine Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant
engine rating: match rating designation in FltState; typically designated as
'ERP’ = Emergency Rated Power (OEI power)
'CRP’ = Contigency Rated Power (2.5 min)
'"MRP’ = Maximum Rated Power (5 or 10 min)
'IRP’ = Intermediate Rated Power (30 min)
'MCP’ = Maximum Continuous Power (normal operations)
engine model being used may not contain data for all ratings

Structure: EngineModel

SPOC_tech
sfc0C_tech
Nspec_tech

FIX size
MF_limit
SPOC_limit
sfcOC_limit
KNspec

MODEL_OptN

KNoptA
KNoptB

KNopt0
KNoptl
KNopt2
KNopt3
XNopt

XNeta

real
real
real

int

real
real
real
real

int

real
real

real
real
real
real
real

real

+ 4+ + o+

+ 4+ A+ +

Technology
specific power at MCP S Pyecp, (0. for SPO_ref(MCP))
specific fuel consumption at MCP sfcyecp, (0. for sfcOC_ref)
specification turbine speed Niecp, (0. for Nspec_ref)
Scaling
engine size (0 scaled, 1 fixed)
mass flow at limit .S P and sfc (11im)
specific power limit S Py,
specific fuel consumption limit sfcy;,
specification turbine speed variation (K ys32)

183

o

30.
200.
0.34

S P and sfc functions are defined by values SPOC_tech, sfc0C_tech, 1iv¢ec,=POC_ref /SPOC_tech
and limits SPOC_limit, sfcOC_limit, MF_limit

defaults SPOC_tech=SP0_ref(MCP), sfcOC_tech=sfcOC_ref, Nspec_tech=Nspec_ref

require Myech < Miim (otherwise get SPyc = SPOC_tech and sfcoc = sfc0C_tech)

for no variation of S P, sfc, and SW with scale, use FIX_size=1 or MF_limit=0.
engine weight scaling determined by MODEL_weight

Optimum Power Turbine Speed
model (0 none, 1 linear, 2 cubic)
linear, Nopt /Nepec V8 Py /Py

constant K nopta
constant K noptB
cubic, Nopt/Noproc Vs Py/Poc
constant K nqpt0
constant K nyopi1
constant K nopt2
constant K nopt3
exponent X nopt
power turbine efficiency function, 7 (V) /7, (Ngpec)
exponent Xy,

©

cococo

2.0

Structure: EngineModel 184

engine power and performance variation with power turbine speed determined by Nop¢ and Xy,
used only for INPUT_param = single set; no variation if MODEL_OptN=0

+ Power Available and Power Required Parameters
MODEL_Pav int + power available (0 constant, 1 referred, 2 general) 2
MODEL_perf int + performance at power required (1 referred, 2 general)
INPUT _param int + parameter input form (1 single set; 2 function of engine speed) 1
+ function of engine speed
nspeed int + number of engine speeds (maximum nspeedmax) 1
rNeng(nspeedmax) real + engine speed ratio, N/Ngpec 1.
kEngineParamN(nspeedmax) int + identification of parameter sets (0 to use IDENT_param) 1
IDENT_param(nspeedmax) c*16 + identification of parameter sets "

constant or referred model does not use parameters, does not include effect of turbine speed
general model uses parameters for effects of temperature and ram, can include effect of turbine speed

function of engine speed (INPUT_param=2): parameters interpolated, rNeng unique and sequential
identification of parameter sets: IDENT_param match EngineParamN%ident

simple model: constant (MODEL_Pav=0) or constant referred (MODEL_Pav=1) power available
constant specific fuel consumption (MODEL_perf=1, sfcOC_tech=0., MF_limit=0.)
no jet force (EngineGroup%SET_FN=0), no auxiliary air momentum drag (EngineGroup%SET_Daux=0)

Structure: EngineModel

INPUT_lin

Nspa(nratemax)

KspaO(nengkmax,nratemax)
Kspal(nengkmax,nratemax)
Tspak(nengkmax,nratemax)

(
(
Kspab(nengkmax,nratemax)
XspaO(nengkmax,nratemax)
Xspal(nengkmax,nratemax)
Tspax(nengkmax,nratemax)

Xspab(nengkmax,nratemax)

Nmfa(nratemax)

KmfaO(nengkmax,nratemax)
Kmfal nengkmax,nratemax)
Tmfak(nengkmax,nratemax)

Xmfa0(nengkmax,nratemax
Xmfal(nengkmax,nratemax
Tmfax(nengkmax, nratemax

(

(
Kmfab(nengkmax,nratemax)

(

(

)
)
)
)

Xmfab(nengkmax,nratemax

int

int

real
real
real
real
real
real
real
real

int

real
real
real
real
real
real
real
real

T T T T S S S S e N A I I T

185
Power Available
input form (1 coefficients Ky, K1; 2 values 6, K3) 1
referred specific power available, SP, /S P, vs temperature
number of regions (maximum nengkmax-1) 0
Kspao (piecewise linear Ky, = Ko + K16) 35
Kpa1 (piecewise linear Ky, = Ko + K16) 25
Oy
Kspafb
Xspao (piecewise linear X, = Xo + X10) -2
Xspa1 (piecewise linear X, = Xo + X16) 0.
Oy
Xspa—b
referred mass flow at power available, 1, /1o Vs temperature
number of regions (maximum nengkmax-1) 0
K0 (piecewise linear Ky, pq = Ko + K16) 3
K pq1 (piecewise linear K, 7, = Ko + K10) -3
Oy
Kmfa—b
Xmrao (piecewise linear X,, o = Xo + X10) 1.
Xmta1 (piecewise linear X, rq = Xo + X16) 0.
Oy
Xnfa—b

piecewise linear function:
input form = coefficients Ky, K7 (N sets) or values 6, K; (N+1 values)
form not input is calculated (N-1 6, K or N K, K1)
input Ky, K;: adjacent K different, resulting 6, unique and sequential
input 6, K3: 0, unique and sequential

Nypec = specification power turbine speed

SP,,m, = referred specific power and mass flow available, at Ngpec

S Py, g = referred specific power and mass flow available, at Ngpec, SLS static

N = power turbine speed, N, = optimum power turbine speed

71 = power turbine efficiency; assume gas power available Pg = P, /n, insensitive to IV, so 1;(N) give P, (N)

Structure: EngineModel

Kffq0
Kffql
Kffq2
Kffq3
Xffq

Kmfq0
Kmfql
Kmfq2
Kmfq3
Xmfq

Kfgq0
Kfgql
Kfgq2
Kfgg3
Xfeq

Kfgr0
Kfgrl
Kfgr2
Kfgr3

real
real
real
real
real

real
real
real
real
real

real
real
real
real
real

real
real
real
real

R T T T T T e S e .

Performance at Power Required
referred fuel flow at power required, Wy, eq/wWoc Vs Py/Poc

constant Ky 40
constant Ky 741
constant Ky g0
constant Ky 43
exponent Xy,

referred mass flow at power required, 7ty¢q/moc Vs Py/Poc

constant K, f40
constant K, 741
constant K, r42
constant K, r43
exponent X, rq

gross jet thrust at power required, Fy/Fyoc vs Py/Poc

constant K7 gq0
constant K 441
constant K rgq0
constant K rg43
exponent X rg,

installed net jet thrust at power required, F; / Fy; (installed thrust loss) vs £c,

constant K r4,0
constant Ky,
constant K g0
constant K g3

186

w e L wiv

Chapter 31

187

Structure: EngineParamN

Variable Type Description Default
+ Engine Model Parameters
title c*100 + title
notes c*1000 + notes
ident c*16 + identification
identification: used by IDENT_param of EngineModel
+ Power Available
nrate int + number of ratings 1
INPUT _lin int + input form (1 coefficients Ky, K1; 2 values 6, K3) 1
+ referred specific power available, SP, /S P, vs temperature
Nspa(nratemax) int + number of regions (maximum nengkmax-1) 0
KspaO(nengkmax,nratemax) real + Kspao (piecewise linear Ky, = Ko + K16) 35
Kspal(nengkmax,nratemax) real + Kpa1 (piecewise linear K,p, = Ko + K10) -2.5
Tspak(nengkmax,nratemax) real + 0y
Kspab(nengkmax,nratemax) real + Kepa—s
XspaO(nengkmax,nratemax) real + Xspao (piecewise linear X, = Xo + X16) -2
Xspal(nengkmax,nratemax) real + Xspa1 (piecewise linear X, = Xo + X16) 0.
Tspax(nengkmax,nratemax) real + 0y
Xspab(nengkmax,nratemax) real + Xspa—b
+ referred mass flow at power available, 1, /7o Vs temperature
Nmfa(nratemax) int + number of regions (maximum nengkmax-1) 0
KmfaO(nengkmax,nratemax) real + K a0 (piecewise linear Ky, rq = Ko + K16) 3
Kmfal(nengkmax,nratemax) real + K pa1 (piecewise linear K, 7, = Ko + K10) -3
Tmfak(nengkmax,nratemax) real + Oy

Structure: EngineParamN

Kmfab(nengkmax,nratemax)
XmfaO(nengkmax,nratemax)
Xmfal(nengkmax,nratemax)
Tmfax(nengkmax,nratemax)
Xmfab(nengkmax,nratemax)

Kffq0
Kffql
Kffqg2
Kffq3
Xffq

Kmfq0
Kmfql
Kmfq2
Kmfq3
Xmfq

Kfgq0
Kfgql
Kfgq2
Kfga3
Xfgq

Kfgr0
Kfgrl
Kfgr2
Kfgr3

real
real
real
real
real

real
real
real
real
real

real
real
real
real
real

real
real
real
real
real

real
real
real
real

+ + + + +

T T i i S S S S S e e e I T I I I

Kmfa—b

Xmfao (piecewise linear X, rq = Xo + X10)
Xmra1 (piecewise linear X,, o = Xo + X10)
0

mea—b

188

number of ratings consistent with EngineModel

Performance at Power Required

referred fuel flow at power required, wW,eq/wWoc Vs Py/Poc
constant Ky rqo
constant K41
constant K42
constant K43
exponent Xy 4

referred mass flow at power required, 1,4 /m0c Vs Py/Poc
constant K, rq0
constant K, rq1
constant K, r42
constant K, 743
exponent X, 74

gross jet thrust at power required, Fy,/ Fyoc Vs Py/Poc
constant K rgq0
constant K g1
constant Ky gqo
constant K rg43
exponent X g,

installed net jet thrust at power required, F/F), (installed thrust loss) vs ¢,
constant K rg.o
constant K yg,q
constant Ky g.o
constant K g.3

w e Lo

189

Chapter 32

Structure: EngineTable

Variable Type Description Default
+ Engine Table

title c*100 + title

notes c*1000 + notes

ident c*¥16 + identification "Engine’

engine identification: used by IDENT _engine of EngineGroup input
engine table can be used by more than one engine group, so all parameters fixed

engine not scaled (SET_power, fPsize not used); eta_d not used

fixed engine weight dWEng (MODEL_weight=0)

no mass flow value, so no momentum drag of auxillary air flow (fMF_auxair, eta_auxair not used)
obtain Peng from table; mechanical limits included in power available data

tables intended for installed engine, including losses (fPloss_inlet, fPloss_ps, fPloss_exh not used)
fuel flow multiplied by Kffd, accounting for deterioration of engine efficiency

+ Engine ratings
nrate int + number of ratings (maximum nratemax) 1
rating(nratemax) c*12 + rating designations 'MCP’
Nspec real + Specification turbine speed (Ngpec)

Structure: EngineTable

Kp
Kw
Kf

nalt

nspeed
alt(nengtmax)
speed(nengtmax)

real
real
real

int
int
real
real

Tp(nengtmax,nengtmax,nratemax)

real

Tw(nengtmax,nengtmax,nratemax)

real

Tf(nengtmax,nengtmax,nratemax)

real

+ 4+ 4+ + 4+ + + + o+

+

+

Technology factors
power available
fuel flow
net thrust
Table
number of altitudes (maximum nengtmax)
number of speeds (maximum nengtmax)
altitude h
speed V' (TAS)

power available P, (h,V, R)
fuel flow w(h, V, R)

net thrust Fiy(h, V, R)

190

1.0
1.0
1.0

191

Chapter 33

Structure: RecipModel

Variable Type Description Default
+ Reciprocating Engine Model
title c*100 + title
notes c*1000 + notes
ident c*¥16 + identification "Engine’
engine identification: used by IDENT _engine of EngineGroup input
installed: power available P,,, power required P,..,, gross jet thrust F;, net jet thrust Iy
uninstalled: power available P, power required P, gross jet thrust F,, net jet thrust I,
fuel flow = specific fuel consumption * power (sfc = w/P); mass flow = fuel flow / fuel-air ratio
reciprocating engine model can be used by more than one engine group, so all parameters fixed
+ Weight
MODEL_weight int + model (0 fixed, 1 W(P)) 1
Weng real + engine weight (fixed) 0.
+ engine weight, Wepg vs Pope model (W = Koeng + Kieng P + KzengPXeng)
Kwt0_eng real + constant Koeng 0.
Kwtl_eng real + constant Kieng 0.25
Kwt2_eng real + constant Kogng 0.
Xwt_eng real + exponent Xepg 0.
+ Custom Weight Model
WtParam_recip(8) real + parameters 0.

Structure: RecipModel

nrate
rating(nratemax)

PO_ref(nratemax)
sfcO_ref(nratemax)
FO_ref(nratemax)
SFO_ref(nratemax)
Pmep_ref(nratemax)
Pcrit_ref(nratemax)
NO_ref(nratemax)
Nspec_ref

FIX size
Xo

Xs

Xf

Ksfcl
Ksfc2
KN1
KN2

int
c*12

real
real
real
real
real
real
real
real

int

real
real
real
real
real
real
real

+ 4+ 4+ + o+

+ 4+ + + + + + + +

Parameters
Engine Ratings

number of ratings (maximum nratemax)
rating designations

Reference

power (Fy)

specific fuel consumption (sfcg)
fuel-air ratio (Fp)

specific jet thrust (F, = SFym)
mean effective pressure limit (Ppep)
critical (throttle) limit (P,it)
reference engine speed (/Ng)
specification engine speed (Ngpec)

192

"MCP’

1000.
0.60
0.08

1000.
1000.
2000.
2000.

Reference Engine Rating: SLS, static

if MCP scaled, ratios to MCP values kept constant

engine rating: match rating designation in FltState; typically designated as
'MRP’ = Maximum Rated Power (5 or 10 min)
'MCP’ = Maximum Continuous Power (normal operations)

ratings encompass mixture settings and supercharger speeds

Pmep_ref: zero for no mechanical (mep) limit
Pcrit_ref: zero for no critical (throttle) limit; Xcrit = 0. for limit independent of engine speed

Scaling

engine size (0 scaled, 1 fixed)

specific output exponent X,

mean piston speed exponent X,

specific fuel consumption exponent X ¢
specific fuel consumption constant K1
specific fuel consumption constant Ko
engine speed constant K ygpect

engine speed constant K ygpeco

Structure: RecipModel

MODEL_Pav
Kp(nratemax)
Kram(nratemax)
XpN(nratemax)
Xpt(nratemax)
Xerit(nratemax)

MODEL_Kffq

KffqO(nratemax)
Kffql(nratemax)
Kffq2(nratemax)
Kffg3(nratemax)

Nffq(nratemax)
Pffq(nengrmax,nratemax)
Kffq(nengrmax,nratemax)
XffN(nratemax)
Xffs(nratemax)

nqff
nrff
qff(nengtmax)
rff(nengtmax)

int

real
real
real
real
real

int

real
real
real
real

int

real
real
real
real

int
int
real
real

Tff(nengtmax,nengtmax,nratemax)

MODEL_KFq

KFqO(nratemax)
KFqgl(nratemax)
KFg2(nratemax)

real
int
real

real
real

R T T o S S S e T Tk T 2 T I SRS S e

+ 4+ + + + + +

Power Available
model (O constant P,)
factor K,
constant K,
exponent X, n
exponent X pg
exponent X it
Performance at Power Required
fuel flow, wWy.eq /W0 vs Py/ Py
model (1 polynomial, 2 piecewise linear, 3 table)
polynomial
constant K40
constant K741
constant K ¢4
constant K 743
piecewise linear
number of values (maximum nengrmax)
power ratio P, /Py
factor Ky g4
exponent X ¢y
exponent Xy,
table
number of powers (maximum nengtmax)
number of speeds (maximum nengtmax)
power ratio ¢ = P,/ P
speed ratio r = N/Ny

fuel flow factor T's¢ (g, 1)
fuel-air ratio, F.cq/Fo vs Py/Po
model (1 polynomial, 2 piecewise linear)
polynomial
constant K g0
constant Kp g
constant K pgo

193

w o

co o

Structure: RecipModel

KFg3(nratemax)

NFq(nratemax)
PFq(nengrmax,nratemax)
KFq(nengrmax,nratemax)
XFN(nratemax)

Kfgr(nratemax)

real

int

real
real
real

real

+ 4+ 4+ + + + + +

constant K rg3
piecewise linear
number of values (maximum nengrmax)
power ratio P,/ P
factor K,
exponent X gy
installed net jet thrust, K, = F/F), (installed thrust loss)
constant K ¢4,

Simple model: constant power available (MODEL_Pav=0)
constant specific fuel consumption (defaults Kffql=1. and Xffq=0., and Xf=0.)
constant fuel-air ratio (defaults KFq0=1. and XFq=0.)
no jet force (EngineGroup%SET_FN=0), no auxiliary air momentum drag (EngineGroup%SET_Daux=0)

194

Chapter 34

195

Structure: CompressorModel

Variable Type Description Default
+ Compressor Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification "Comp’
compressor identification: used by IDENT_engine of EngineGroup input
“0” = SLS static; “C” = MCP
mass flow = power / specific power (SP = P/rn); gross thrust = specific thrust * mass flow (ST = T'/rn)
compressor model can be used by more than one engine group, so all parameters fixed
+ Weight
MODEL_weight int + model (0 fixed, 1 W(P)) 1
Wcomp real + compressor weight (fixed) 0.
+ compressor weight, Weomp VS Peng model (W = Kocomp + Kicomp P + KacompPXeom»)
Kwt0_comp real + constant Kocomp 0.
Kwtl_comp real + constant Kqcomp 0.2
Kwt2_comp real + constant Kocomp 0.
Xwt_comp real + exponent Xcomp 0.
+ Custom Weight Model
WtParam_comp(8) real + parameters 0.

Structure: CompressorModel

nrate
rating(nratemax)

PO_ref(nratemax)
SPO_ref(nratemax)
Pmech_ref(nratemax)
SFOC_ref

Nspec_ref

Xspa

Xmfa

Kmfq0
Kmfql
Kmfq2
Kmfq3
Xmfq

Kfgq0
Kfgql
Kfgq2
Kfgqg3
Xfgq

int
c*12

real
real
real
real
real

real

real

real
real
real
real
real

real
real
real
real
real

+ 4+ + o+

+ 4+ 4+ + A+ o+

Parameters

Compressor Ratings
number of ratings (maximum nratemax)
rating designations

Reference
power (Fy)
specific power (S Fp)
mechanical limit of power (Ppech)
specific jet thrust (Fyoc = SFycrioc)
specification compressor speed (Ngpec)

196

"MCP’

Reference Compressor Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant
compressor rating: match rating designation in FltState

Power Available
referred specific power available, SP, /S Py
exponent X,
referred mass flow at power available, 1, /g
exponent X, ¢,
Performance at Power Required
referred mass flow at power required, 1, /moc Vs P,/ Poc
constant K, r40
constant K, 41
constant K, r42
constant K, 743
exponent X, rq
gross jet thrust at power required, Fy/Fyoc vs Py/Poc
constant K740
constant K741
constant K rgqo
constant K ygq3
exponent Xy,

coo

197

Chapter 35

Structure: MotorModel

Variable Type Description Default
+ Motor Model

title c*100 + title

notes c*1000 + notes

ident c*16 + identification "Motor’

motor identification: used by IDENT_engine of EngineGroup input
“0” = SLS static; “C” = MCP

motor model can be used by more than one engine group, so all parameters fixed

+ Weight
MODEL_weight int + model (0 fixed, 1 W(P),2 NASALI5 W(Q)) 2
Wmotor real + motor weight (fixed) 0
+ motor weight W (P): Winotor VS Peng model (W = Komotor + Kimotor P + Komotor PXmeter QXamotor §Xomotor)
Kwt0_motor real + constant Komotor 0.
Kwtl_motor real + constant K1 yot0r 0.
Kwt2_motor real + constant Ko otor 0.
Xwt_motor real + exponent X otor 0.
Xwtq_motor real + exponent X motor 0.
Xwts_motor real + exponent X ¢motor 0.
+ motor weight W (Q): NASALS5 Wiotor VS Qpeax model
KIND_design int + torque-to-weight design (0 only high @Q/W; 1 high Q /W, 2 low Q /W factor) 0
+ controller weight (AW = Kggc PXes0)
Kwt_ESC real + constant Kggc 0.
Xwt_ESC real + exponent Xgsc 0.
+ Custom Weight Model
WtParam_motor(8) real + parameters 0.

Structure: MotorModel

nrate
rating(nratemax)
MODEL_QIlimit

PO_ref(nratemax)
Ppeak_ref(nratemax)
Nspec_ref

Nmax_ref

KIND_eff

eta_motor
loss_motor

Closs(4,4)
floss
eta_cont

KNspec
KNbase

int
c*12
int

real
real
real
real

int
real

real

real
real
real

real
real

+ 4+ + o+

+ 4+ A+ A+ A+ A+ 4+

+ 4+ +

Parameters
Motor Ratings
number of ratings (maximum nratemax)
rating designations
Torque limit (1 constant Qpeak, 2 With high speed limit)
Reference
power (FPy)
mechanical limit of power (Ppeax)
specification motor speed (Ngpec)
maximum (no load) motor speed (Npmax)

198

"MCP’

Reference Motor Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant
motor rating: match rating designation in FltState

Performance
Motor/Generator Efficiency
kind (1 fixed, 2 function power, 3 map)
fixed or function power
reference efficiency (at Pepg)
power loss (fraction Pyy,g)
efficiency map (Ploss = Peng fioss Zf:o Z?:o Ci;t'n?)
loss coefficients Closs(i+1,j+1)= Cj;
factor fioss
controller efficiency

Scaling
specification motor speed variation (K)
base motor speed variation (K)

1.00
0.00

0.00
1.00
1.00

Ngpec used by efficiency map; Npage affects Ppeax scaling

for no variation of motor speeds with scale, use KNspec = KNbase = 0.

Structure: MotorModel

KTMSmO
KTMSm1
XTMSm

KTMSpO
KTMSp1
XTMSp

KTMSf0
KTMSf1
XTMSf

KTMSwO0
KTMSwl
XTMSwp
XTMSwm

real
real
real

real
real
real

real
real
real

real
real
real
real

+ 4+ 4+ A+ F o+

Thermal Management System

mass flow (Ib/sec or kg/sec) from rejected heat (hp or kW)
constant K1ysmo
constant Krysm1
exponent Xnsm

power (hp or kW) from mass flow (Ib/sec or kg/sec)
constant Ktmspo
constant KTmsp1
exponent XTmsp

gross jet force (Ib or N) from mass flow (Ib/sec or kg/sec)
constant Ktysfo
constant Ktys f1
exponent XTwms ¢

weight (Ib or kg)
constant K1yswo
constant K1yisw1
exponent XTnswp
exponent X T\swm

199

Chapter 36

200

Structure: JetModel

Variable Type Description Default
+ Jet Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification "Jet'
jet identification: used by IDENT_jet of JetGroup input
installed: thrust available T, , thrust required 7.4
uninstalled: thrust available Ty, thrust required 75
“0” = SLS static; “C” = MCT
mass flow = thrust / specific thrust (ST = T'/n); fuel flow = specific fuel consumption * thrust (sfc = w/T)
jet model can be used by more than one jet group, so all parameters fixed
as model for reaction drive of convertible engine:
only use sfcOC_ref and parameters for thrust available and performance at thrust required
TO_ref and STO_ref required, but not used; weight, ratings, technology, and scaling variables not used
+ Weight
MODEL_weight int + RPJEM model (0 fixed, 1 W (T")) 1
Wijet real + jet weight (fixed) 0.
+ jet weight, Wi vs Tier model (W = Kpjer + KijetT + Kojer T-Xi¢)
Kwt0_jet real + constant Kojeq 0.
Kwtl jet real + constant Kyjet 0.2
Kwt2_ jet real + constant Kojes 0.
Xwt_jet real + exponent Xje; 0.
+ Custom Weight Model
WtParam_jet(8) real + parameters 0.

Structure: JetModel

nrate
rating(nratemax)

TO_ref(nratemax)
STO_ref(nratemax)
Tmech_ref(nratemax)
sfcOC_ref

STOC_tech
sfcOC_tech

FIX size
MF_limit
STOC_limit
sfcOC_limit

int
c*12

real
real
real
real

real
real

int

real
real
real

+ 4+ 4+ + + + + + o+

+ 4+ 4+ + + + + o+

Parameters

Jet Ratings
number of ratings (maximum nratemax)
rating designations

Reference
thrust (1)
specific thrust (S7p)
mechanical limit of thrust (T ,ech)
specific fuel consumption at MCT (sfcoc)

201

'MCT'

Reference Jet Rating: SLS, static
if MCT scaled, ratios to MCT values kept constant
jet rating: match rating designation in FltState

Technology

specific thrust at MCT STiecn (0. for STO_ref(MCT))

specific fuel consumption at MCT sfcecn (0. for sfcOC_ref)
Scaling

engine size (0 scaled, 1 fixed)

mass flow at limit ST and sfc (1115m)

specific thrust limit S73;,y,

specific fuel consumption limit sfcy;y,

ST and sfc functions are defined by values STOC_tech, sfcOC_tech, 7746, =TOC_ref/STOC_tech
and limits STOC_limit, sfc0C_limit, MF_limit

defaults STOC_tech=STO_ref(MCT), sfcOC_tech=sfcOC_ref

require Mech < Mym (otherwise get STyc = STOC_tech and sfcooc = sfc0C_tech)

for no variation of ST and sfc with scale, use FIX_size=1 or MF_limit=0.

Structure: JetModel

bypass

Xsta

Xmfa

Kffq0
Kffql
Kffg2
Kffq3
Xffq

Kmfq0
Kmfql
Kmfq2
Kmfq3
Xmfq

real

real

real

real
real
real
real
real

real
real
real
real
real

+ 4+ 4+ A+ A+ o+

Turbofan bypass ratio (0. for turbojet)
Thrust Available
referred specific thrust available, ST, /ST
exponent X,
referred mass flow at thrust available, 1, /11
exponent X, rq
Performance at Thrust Required
referred fuel flow at thrust required, Wyeq/Woc Vs Tq/Toc
constant K¢ ¢40
constant Ky 741
constant Ky g0
constant Ky g3
exponent X4
referred mass flow at thrust required, 7,¢q /Mo Vs Ty/Toc
constant K, t40
constant K, 41
constant K, r42
constant K, r43
exponent X, rq

202

rooro

Rooro

Chapter 37

203

Structure: FuelCellModel

Variable Type Description Default
+ Fuel Cell Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification "Cell’
fuel cell identification: used by IDENT_charge of ChargerGroup input
“0” = SLS static; “C” = MCP
fuel cell model can be used by more than one charger group, so all parameters fixed
+ Weight
MODEL_weight int + model (0 fixed, 1 W(P)) 1
Weell real + fuel cell weight (fixed) 0.
+ fuel cell weight, Ween vS Penrg model (W = Kocent + Kicenn P + Koo PXeen)
Kwt0_cell real + constant Kocen 0.
Kwtl_cell real + constant K¢ 0.
Kwt2_cell real + constant Kocen 0.
Xwt_cell real + exponent X en 0.
+ Custom Weight Model
WtParam_fuelcell(8) real + parameters 0.

Structure: FuelCellModel

nrate
rating(nratemax)

PO_ref(nratemax)
sfcOC_ref

idesign
pi_comp

ncell
icell(nengcmax)
veell(nengcmax)
Xfc

Kmf

int
c*12

real
real

real
real

int

real
real
real
real

+ 4+ + + + + +

+ 4+ + + + + + + +

Parameters
Fuel Cell Ratings
number of ratings (maximum nratemax)
rating designations
Reference
power (Fy)
specific fuel consumption at MCP (sfcoc)

204

"MCP’

Reference Fuel Cell Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant
fuel cell rating: match rating designation in FltState

Performance

design current density 74

compressor pressure ratio m¢

cell characteristics (at cell pressure 6, = 1)
number of values (maximum nengcmax)
current density @
voltage v,
pressure scaling exponent X ¢

mass flow ratio (m/w)

0.38
86.

reference sfc corresponds to fuel specific energy and design cell current, including technology impact

units of idesign and icell must be consistent

icell values unique and sequential; icell(1)=0.

vcell monotonically decreasing (reversed vcell unique and sequential)

simple model: define power PO_ref and specific fuel consumption sfcOC_ref, mass flow from Kmf
ncell=1 for constant v., hence constant efficiency, constant power and sfc (idesign, pi_comp, Xfc not used)

Chapter 38

205

Structure: SolarCellModel

Variable Type Description Default
+ Solar Cell Model
title c*100 + title
notes c*1000 + notes
ident c*l6 + identification "Cell’
solar cell identification: used by IDENT_charge of ChargerGroup input
“0” = SLS static; “C” = MCP
solar cell model can be used by more than one charge group, so all parameters fixed
+ Weight
MODEL_weight int + model (0 fixed, 1 W(A)) 1
Wsolar real + solar cell weight (fixed) 0.
ssolar real + weight density (kg/m?)
+ Custom Weight Model
WtParam_solarcell(8) real + parameters 0.
+ Parameters
+ Solar Cell Ratings
nrate int + number of ratings (maximum nratemax) 1
rating(nratemax) c*12 + rating designations "MCP’
+ Reference
PO_ref(nratemax) real + power (Fy) 0.

Structure: SolarCellModel

esolar

KIND_eff
eta cell
loss_cell

real

int
real
real

+ 4+ 4+ + + +

206

Reference Solar Cell Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant
solar cell rating: match rating designation in FltState

Performance
power density (W/m?)
Efficiency
kind (1 fixed, 2 function power)
reference efficiency (at Peprg)
power loss (fraction Pep,rg)

1.00
0.00

simple model: power density esolar and weight density ssolar; with efficiency in esolar (KIND_eff=1 and eta_cell=1.)

207

Chapter 39

Structure: BatteryModel

Variable Type Description Default
+ Battery Model

title c*100 + title

notes c*1000 + notes

ident c*¥16 + identification 'Battery’

battery identification: used by IDENT _battery of FuelTank input

battery model can be used by more than one fuel tank system, so all parameters fixed

+ Performance
MODEL_battery int + model (1 equivalent circuit, 2 lithium-ion) 1
Vref real + reference voltage Vet 4.2
xmbd real + maximum burst discharge current ,,,54 (1/hr) 20.
xCCmax real + maximum charge current zccmax (1/hr) 4,
+ actual cell depth-of-discharge (dact = dmin + (dmax — dmin)duse)
DoDmin real + minimum d,y;, 0.0
DoDmax real + maximum d,x 0.8
+ Thermal Management System
+ mass flow (Ib/sec or kg/sec) from rejected heat (hp or kW)
KTMSmO real + constant K1nsmo 0.
KTMSm1 real + constant Kryismi 0.07
XTMSm real + exponent Xnsm 1.
+ power (hp or kW) from mass flow (Ib/sec or kg/sec)
KTMSp0 real + constant KTmspo 0.
KTMSp1 real + constant Ktmsp1 0.6
XTMSp real + exponent XTmsp 1.

Structure: BatteryModel

KTMSf0
KTMSf1
XTMSf

KTMSwO0
KTMSw1
XTMSwp
XTMSwm

KIND_eff

eta_dischrg
loss_dischrg

eta_chrg
loss_chrg

ferit
fd

nFV
DoD(40)
FV(40)
Tref

fTC

real
real
real

real
real
real
real

int

real
real

real
real

real
real

int

real
real
real
real

+ 4+ 4+ + + + + + o+

+ 4+ + + + + + +

+ 4+ + + + + ++ + o+

gross jet force (Ib or N) from mass flow (Ib/sec or kg/sec)

constant Kwms fo
constant KTns 1
exponent XTns f
weight (Ib or kg)
constant K1yswo
constant Kyisw1

exponent XTmswp
exponent X Mswm

Equivalent Circuit Model

kind (1 fixed, 2 function power)

discharge

reference efficiency (at Ppef)
power loss (fraction Pqf)

charge

reference efficiency (at Pyef)
power loss (fraction Pef)

208

1.00
0.00

1.00
0.00

simple model: constant efficiencies eta_dischrg and eta_chrg (KIND_eff=1)

Lithium-Ion Model
discharge

critical voltage factor (Fy = f.it 1S capacity)

nominal discharge voltage (Vi = fqVier)

open circuit voltage ratio (V, = V3 Fy (d))
number of points (maximum 40)
depth-of-discharge d (fraction)

Fy

reference temperature T}..¢ (deg C)
temperature control power loss fr¢ (fraction component power)

0.6

S -

2
0.01

Structure: BatteryModel

kdl

kVT
kdT

fc
kecV
ks

real
real

real
real

real
real
real

+ 4+ + o+

current influence on discharge voltage
internal resistance 2,,pqC R/ Vief
depth-of-discharge k7 ,54C'

temperature influence on discharge voltage
voltage increment ky
depth-of-discharge k41

charge

nominal charge voltage (V. = f.Vief)

CC phase starting voltage decrement k.y

CV phase parameter &,

209

0.1
0.05

0.005
0.000005

1.0
0.1
0.2

open circuit voltage ratio: monotonically decreasing; default used if nFV=0

default DoD =0.,.1,.2,.3,4,.5,6,.7,.8,9,91,.92,93,94,95,96,97,98,99,1.,1.01,1.02
default FV =1.,.97,.95,93,915,.90,.89,.88,.87,.85,.847,.842,.835,.826,.815,.8,.78,.75,.7,.6,4 0.

Fyv (d) defined for actual depth-of-discharge, used from dpin t0 dpax

210

Chapter 40

Structure: Location

Variable Type Description Default
+ Location
+ input
+ fixed (dimensional, arbitrary origin)
FIX_geom c*8 + input Y
SL real + stationline
BL real + buttline
WL real + waterline
+ scaled (based on reference length, from reference point)
XolL real + x/L
Yol real + y/L
ZoL real + z/L
+ reference length
KIND_scale int + kind (0 global, 1 rotor radius, 2 wing span, 3 fuselage length) 0
kScale int + identification (component number) 1

[R A

Fixed input: FIX_geom ='x",'y’, 'z’ (or combination) to override INPUT_geom=2
Geometry: Location for each component
fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL
stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m
scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale)
XoL + aft, YoL + right, ZoL + up; from reference point
option to fix some geometry (FIX_geom in Location override INPUT_geom)
option to specify reference length (KIND_scale in Location override global KIND_scale)
Reference point: KIND_Ref, kRef; input dimensional XX_Ref, or position of identified component
component reference must be fixed
Locations can be calculated from other parameters (configuration specific)

