

NASA/TP–20250010470

NDARC
NASA Design and Analysis of Rotorcraft

Input

Wayne Johnson
Ames Research Center
Moffett Field, California

November 2025

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain this
important role.

The NASA STI program operates under the auspices of
the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one of
the largest collections of aeronautical and space science
STI in the world. Results are published in both non-
NASA channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g., quick
release reports, working papers, and
bibliographies that contain minimal annotation.
Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include organizing and
publishing research results, distributing specialized
research announcements and feeds, providing
information desk and personal search support, and
enabling data exchange services.

For more information about the NASA STI program,
see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TP–20250010470

NDARC
NASA Design and Analysis of Rotorcraft

Input

Wayne Johnson
Ames Research Center
Moffett Field, California

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, CA 94035-1000

November 2025

This report is available in electronic form at

http://ntrs.nasa.gov

Contents

1. Data Structures and Input . 1

2. Input Based on Configuration . 13

3. Parameters . 21

4. Job . 22

5. Cases . 24

6. Size . 28

7. OffDesign . 32

8. Performance . 33

9. MapEngine . 34

10. MapAero . 37

11. FltCond . 40

12. Mission . 45

13. MissSeg . 50

14. FltState . 55

15. Solution . 66

16. Cost . 70

17. Emissions . 75

18. Aircraft . 77

19. Systems . 88

20. Fuselage . 96

Contents ii

21. LandingGear . 103

22. Rotor . 105

23. Wing . 131

24. Tail . 145

25. FuelTank . 150

26. Propulsion . 155

27. EngineGroup . 161

28. JetGroup . 170

29. ChargeGroup . 176

30. EngineModel . 181

31. EngineParamN . 187

32. EngineTable . 189

33. RecipModel . 191

34. CompressorModel . 195

35. MotorModel . 197

36. JetModel . 200

37. FuelCellModel . 203

38. SolarCellModel . 205

39. BatteryModel . 207

40. Location . 210

1

Chapter 1

Data Structures and Input

1–1 Overview

The NDARC code performs design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks
can include off-design mission performance analysis, flight performance calculation for point operating conditions, and generation of subsystem or component performance
maps. Figure 1-1 illustrates the tasks. The principal tasks (sizing, mission analysis, flight performance analysis) are shown in the figure as boxes with heavy borders. Heavy
arrows show control of subordinate tasks.

The aircraft description (figure 1-1) consists of all the information, input and derived, that defines the aircraft. The aircraft consists of a set of components, including fuselage,
rotors, wings, tails, and propulsion. This information can be the result of the sizing task; can come entirely from input, for a fixed model; or can come from the sizing task in
a previous case or previous job. The aircraft description information is available to all tasks and all solutions (indicated by light arrows).

The sizing task determines the dimensions, power, and weight of a rotorcraft that can perform a specified set of design conditions and missions. The aircraft size is characterized
by parameters such as design gross weight, weight empty, rotor radius, and engine power available. The relations between dimensions, power, and weight generally require
an iterative solution. From the design flight conditions and missions, the task can determine the total engine power or the rotor radius (or both power and radius can be fixed),
as well as the design gross weight, maximum takeoff weight, drive system torque limit, and fuel tank capacity. For each propulsion group, the engine power or the rotor
radius can be sized.

Missions are defined for the sizing task, and for the mission performance analysis. A mission consists of a number of mission segments, for which time, distance, and fuel
burn are evaluated. For the sizing task, certain missions are designated to be used for design gross weight calculations; for transmission sizing; and for fuel tank sizing. The
mission parameters include mission takeoff gross weight and useful load. For specified takeoff fuel weight with adjustable segments, the mission time or distance is adjusted
so the fuel required for the mission (burned plus reserve) equals the takeoff fuel weight. The mission iteration is on fuel weight or energy.

Flight conditions are specified for the sizing task, and for the flight performance analysis. For the sizing task, certain flight conditions are designated to be used for design gross
weight calculations; for transmission sizing; for maximum takeoff weight calculations; and for antitorque or auxiliary thrust rotor sizing. The flight condition parameters
include gross weight and useful load.

For flight conditions and mission takeoff, the gross weight can be maximized, such that the power required equals the power available.

A flight state is defined for each mission segment and each flight condition. The aircraft performance can be analyzed for the specified state, or a maximum effort performance
can be identified. The maximum effort is specified in terms of a quantity such as best endurance or best range, and a variable such as speed, rate of climb, or altitude. The
aircraft must be trimmed, by solving for the controls and motion that produce equilibrium in the specified flight state. Different trim solution definitions are required for
various flight states. Evaluating the rotor hub forces may require solution of the blade flap equations of motion.

Data Structures and Input 2

Sizing Task
size iteration Engine

Performance Map

Mission Analysis

Flight
Performance

Analysis

Mission
adjust & fuel wt iteration

max takeoff GW

Flight Condition
max GW

Flight State
max effort / trim aircraft / flap equations

Airframe
Aerodynamics Map

Aircraft
Description

DESIGN ANALYZE

fixed model or
previous job or
previous case

design
conditions design

missions

each segment

Figure 1-1 Outline of NDARC tasks.

Data Structures and Input 3

design

geometry

performance

airframe
aerodynamics

engine
performance

design and
performance

aircraft
description

solution

input

additional
output
additional
cases

PRINT

INTERFACE
FILES

NDARC

COMPREHENSIVE
ANALYSIS

STRUCTURAL
DESIGN
LAYOUT DESIGN

COMPREHENSIVE
ANALYSIS

Figure 1-2 NDARC Interfaces.

Data Structures and Input 4

&JOB INIT_input=0,INIT_data=0,&END
&DEFN action=’ident’,created=’time-date’,title=’standard input’,&END
!##
&DEFN action=’open file’,file=’engine.list’,&END
&DEFN action=’open file’,file=’helicopter.list’,&END
!==
&DEFN quant=’Cases’,&END
&VALUE title=’Helicopter’,TASK_size=0,TASK_mission=1,TASK_perf=1,&END
&DEFN quant=’Size’,&END
&VALUE nFltCond=0,nMission=0,&END
!==
&DEFN quant=’OffDesign’,&END
&VALUE title=’mission analysis’,nMission=1,&END
&DEFN quant=’OffMission’,&END
&VALUE

(one mission, mission segment parameters as arrays)
&END
!==
&DEFN quant=’Performance’,&END
&VALUE title=’performance analysis’,nFltCond=2,&END
&DEFN quant=’PerfCondition’,&END
&VALUE

(one condition)
&END
&DEFN quant=’PerfCondition’,&END
&VALUE

(one condition)
&END
!==
&DEFN action=’endofcase’,&END
!##
&DEFN action=’endofjob’,&END

Figure 1-3a Illustration of NDARC input (primary input).

Data Structures and Input 5

&DEFN action=’ident’,created=’time-date’,title=’Helicopter’,&END
!##
! default helicopter
&DEFN action=’configuration’,&END
&VALUE config=’helicopter’,rotate=1,&END
!==
&DEFN quant=’Cases’,&END
&VALUE title=’Helicopter’,FILE_design=’helicopter.design’,&END
&DEFN quant=’Size’,&END
&VALUE
title=’Helicopter’,
SIZE_perf=’none’,SET_rotor=’radius+Vtip+sigma’,’radius+Vtip+sigma’,
FIX_DGW=1,SET_tank=’input’,SET_SDGW=’input’,SET_WMTO=’input’,

&END
&DEFN quant=’Solution’,&END
&VALUE &END
!==
&DEFN quant=’Aircraft’,&END
&VALUE (Aircraft parameters) &END
&DEFN quant=’Geometry’,&END
&VALUE (geometry) &END
&DEFN quant=’Rotor 1’,&END
&VALUE (Rotor 1 parameters) &END
!==

(other parameters in other structures)
!==
&DEFN quant=’TechFactors’,&END
&VALUE (technology factors) &END
!##
&DEFN action=’endoffile’,&END

Figure 1-3b Illustration of NDARC input (secondary input file).

Data Structures and Input 6

1–2 NDARC Input and Output

Figure 1-2 illustrates the input and output environment of NDARC. Table 1-1 lists the possible input and output files. A job reads input from one or more files. The primary
input is obtained from standard input (perhaps redirected to a file). The primary input can direct the code to read other files, identified by file name or logical name. The
input data are read in namelist format. Unit numbers are part of the job input. Output file names are part of the case input. Input files names are defined in the input itself.

Table 1-1. Input and output files.

file logical name unit number (and default)

INPUT
Primary Input standard input nuin = 5
Secondary Input File FILE nufile = 40
Aircraft Description FILE nufile = 40
Solution FILE nufile = 40

OUTPUT
Output standard output nuout = 6
Design DESIGNn nudesign = 41
Performance PERFn nuperf = 42
Airframe Aerodynamics AEROn nuaero = 43
Engine Performance ENGINEn nuengine = 44
Geometry GEOMETRYn nugeom = 45
Aircraft Description AIRCRAFTn nuacd = 46
Solution SOLUTIONn nusoln = 47
Sketch SKETCHn nusketch = 48
Errors ERRORn nuerror = 49

1-2.1 Input

Figure 1-3 illustrates NDARC input. The primary input starts with a JOB namelist, then DEFN namelists are read to define the action and contents of the subsequent
information. The job parameters include initialization control, error action, and input/output unit numbers. Job parameters can be read during case input using QUANT=’Job’.
The initialization takes place before case input, so changed initialization parameters in QUANT=’Job’ input take effect for the next case. The DEFN namelist has the following
parameters.

Data Structures and Input 7

a) ACTION: character string (length = 32; case independent).

b) QUANT: character string (length = 32, case independent); corresponds to data structure in input; string includes structure
number (1 or next condition/mission if absent).

c) SOURCE: integer; for copy action.

d) FILE: file name or logical name (length = 256).

e) CREATED: character string of creation time and date (length = 20).

f) TITLE: character string of title identifying input file (length = 80).

g) VERSION: code version number as character string (length = 6).

h) MODIFICATION: character string of code modification (length = 32).

Table 1-2 describes the options for the ACTION variable in the DEFN namelist. The code searches for the keyword in the ACTION character string. A solution file (text or
binary) can be written by an NDARC job and then read by a subsequent job, restoring the solution to the state that existed when the file was created. Then additional output
and additional cases can be obtained. An aircraft description file can be written by an NDARC job and then read by a subsequent job, restoring the aircraft model (but not the
solution). A secondary input file has DEFN namelists to define action and contents. When ACTION=’end’ (or EOF) is encountered in a secondary input file, the file is closed
and the code returns to primary input.

A DEFN namelist with ACTION=’ident’ identifies the file; probably there is only one identification per file, and only the last occurrence is stored. The identification consists
of the CREATED, TITLE, VERSION, MODIFICATION variables. CREATED and TITLE are written when a file is created by NDARC, and read and stored for each input file.
If present, VERSION and MODIFICATION are compared with the version and modification of the code, and input continues only if they match.

The parameter QUANT identifies the data structure to be read (namelist format), initialized, or copied. Table 1-3 describes the options. The input corresponds to the
data structures of the analysis. The QUANT string includes the structure number; if absent, the number is 1, or the next condition or mission. Note that each mission,
with the mission segment parameters as arrays, is input with QUANT=’SizeMission’ or QUANT=’OffMission’; and each condition is input with QUANT=’SizeCondition’ or
QUANT=’PerfCondition’.

A case inherits input for flight conditions and missions from the previous case if INIT_input = last-case-input (default). A DEFN namelist with ACTION=’delete’ deletes
this input as specified by QUANT=’SizeCondition n’, QUANT=’SizeMission n’, QUANT=’OffMission n’, or QUANT=’PerfCondition n’. ACTION=’delete all’ deletes all (ignore
structure number); ACTION=’delete one’ deletes structure n (all if number absent); ACTION=’delete last’ deletes structure n and subsequent structures (all if number absent).

For ACTION=’nosize’, input variables in the Size structure are set for no size iteration: SIZE_perf=’none’, SIZE_engine=’none’, SIZE_jet=’none’, SIZE_charge=’none’,
SET_rotor=’radius+Vtip+sigma’, SET_wing=’area+span’, FIX_DGW=1, SET_tank=’input’, SET_limit_ds=’input’, SET_SDGW=’input’, SET_WMTO=’input’.

Data Structures and Input 8

Table 1-2. ACTION options.
ACTION keyword QUANT function

Primary Input Only
blank — blank open and read secondary input file, name = FILE

’open file’ file, open open and read secondary input file, name = FILE

’load aircraft’ aircraft, desc load aircraft description file, name = FILE

’read solution’ solution ’text’ read complete solution file, name = FILE (text)
’read solution’ solution not ’text’ read complete solution file, name = FILE (binary)
’end of case’ end+case stop case input, execute case
’end of job’ end+job, quit stop job input, execute case, exit code

Primary or Secondary Input
blank — ’structure’ read VALUE namelist
’read namelist’ list ’structure’ read VALUE namelist
’copy input’ copy ’structure’ copy input from source (same structure), SOURCE=SRCnumber

’initialize’ init ’structure’ set structure variables to default values
’delete all’ del+all ’structure’ delete all conditions or missions
’delete one’ del+one ’structure’ delete one condition or mission
’delete last’ del+last ’structure’ delete last conditions or missions
’configuration’ config set input based on aircraft configuration
’nosize’ nosize set input for no size iteration
’identification’ ident identify file
’end’ end (or EOF) Secondary: close file, return to primary input
’end’ end (or EOF) Primary: same as ACTION=’endofjob’

Data Structures and Input 9

Table 1-3. QUANT options.
QUANT data structures read maximum n

’Job’ Job
’Cases’ Cases

’Size’ SizeParam
’SizeCondition n’ one FltCond+FltState nFltCond
’SizeMission n’ one MissParam, MissSeg+FltState as array nMission
’OffDesign’ OffParam
’OffMission n’ one MissParam, MissSeg+FltState as array nMission
’Performance’ PerfParam
’PerfCondition n’ one FltCond+FltState nFltCond
’MapEngine’ MapEngine
’MapAero’ MapAero

’Solution’ Solution

’Cost’ Cost
’Emissions’ Emissions
’Aircraft’ Aircraft
’Systems’ Systems, WFltCont, WDeIce
’Fuselage’ Fuselage, AFuse, WFuse
’LandingGear’ LandingGear, AGear, WGear
’Rotor n’ Rotor, PRotorInd, PRotorPro, PRotorTab, IRotor, DRotor, WRotor nRotor
’Wing n’ Wing, AWing, WWing, WWingTR nWing
’Tail n’ Tail, ATail, WTail nTail
’FuelTank n’ FuelTank, WTank nTank
’Propulsion n’ Propulsion, WDrive nPropulsion
’EngineGroup n’ EngineGroup, DEngSys, WEngSys nEngineGroup
’JetGroup n’ JetGroup, DJetSys, WJetSys nJetGroup
’ChargeGroup n’ ChargeGroup, DChrgSys, WChrgSys nChargeGroup

’EngineModel n’ EngineModel nEngineModel
’EngineParamN n’ EngineParamN nEngineParamN
’EngineTable n’ EngineTable nEngineTable
’RecipModel n’ RecipModel nRecipModel
’CompressorModel n’ CompressorModel nCompressorModel
’MotorModel n’ MotorModel nMotorModel
’JetModel n’ JetModel nJetModel
’FuelCellModel n’ FuelCellModel nFuelCellModel
’SolarCellModel n’ SolarCellModel nSolarCellModel
’BatteryModel n’ BatteryModel nBatteryModel

’TechFactors’ all TECH_xxx
’Geometry’ all Location

Data Structures and Input 10

1-2.2 Formats

Namelist input has the following format (see also figure 1-3).

&DEFN action=’IDENT’,created=’time-date’,title=’xxx’,version=’n.n’,modification=’xxx’,&END
&DEFN quant=’STRUCTURE n’,&END
&VALUE param=value,&END
&DEFN action=’NAMELIST’,quant=’STRUCTURE n’,&END
&VALUE param=value,&END
&DEFN action=’COPY’,quant=’STRUCTURE n’,source=#,&END

An aircraft description file is written in a separate file by NDARC, from theDesign(kcase):

&DEFN action=’IDENT’,created=’time-date’,title=’xxx’,version=’n.n’,modification=’xxx’,&END
&VALUE_ADIMEN nrotor=m,nwing=m,ntail=m,ntank=m,npropulsion=m,nenginegroup=m,njetgroup=m,nchargegroup=m,

nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m,nmotormodel=m,njetmodel=m,
nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m,&END

&VALUE theStructure%xxx,&END
&VALUE theStructure%xxx,&END
&VALUE theStructure%xxx,&END

This aircraft description file is read by identifying it in the primary input:

&DEFN action=’AIRCRAFT’,file=’aircraft.acd’,&END

A solution file is written in a separate file by NDARC, from theDesign(kcase), in binary or text format:

&DEFN action=’IDENT’,created=’time-date’,title=’xxx’,version=’n.n’,modification=’xxx’,&END
&VALUE_ADIMEN nrotor=m,nwing=m,ntail=m,ntank=m,npropulsion=m,nenginegroup=m,njetgroup=m,nchargegroup=m,

nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m,nmotormodel=m,njetmodel=m,
nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m,&END

&VALUE_SDIMEN nsizecond=m,nsizemiss=m,nperfcond=m,noffmiss=m,&END
&VALUE theStructure%xxx,&END
&VALUE theStructure%xxx,&END
&VALUE theStructure%xxx,&END

This solution file is read by identifying it in the primary input, with QUANT identifying the file as text or binary:

&DEFN action=’SOLUTION,quant=’TEXT’,file=’aircraft.soln’&END

Data Structures and Input 11

1-2.3 Conventions

Each flight condition (FltCond and FltState variables) is input in a separate SizeCondition or PerfCondition namelist.

Each mission (MissParam, MissSeg, and FltState variables) is input in a separate SizeMission or OffMission namelist. All mission segments are defined in
this namelist, so MissSeg and FltState variables are arrays. Each variable gets one more dimension, with the first array index always segment number.

Geometry input includes Location variables, which are read as elements of the data structure (for example, loc_rotor%SL).

Variables can appear in more than one namelist. Specifically there are separate namelists for all technology factors (all TECH_xxx variables), and all geometry (all Location

variables), with corresponding options for output. A variable that is a scalar in the Rotor, Wing, Tail, Propulsion, EngineGroup, JetGroup, or ChargeGroup
input becomes an array in the TechFactors or Geometry input. Note that it is the Location variable that is the array (for example, loc_rotor(1)%SL).

Case is not important in character string input. Character string input consists of keywords; the code searches for the keywords in the string.

Default values are specified in the dictionary (blank implies a default of zero); all elements of arrays have the same default value.

Tasks, aircraft, and components have title variables. There are also notes variables (long character string) to record information about the input.

1–3 Software Tool

All information about data structures is contained in a dictionary file. This information includes the parameter name, dimension, type, default value, description, identification
as input, and formats for write of the parameter. A software tool was created to manage the data, including construction of the module of data structures. The software tool
reads this dictionary file and creates subroutines for the input process: namelist read, copy, print of input, initialization, set to default. This software tool is a program that
manipulates character strings, to produce compilable module and subroutines for NDARC.

1–4 Data Structures

Table 1-4 outlines the data structures used for NDARC. The following chapters describe the contents of each structure. Note that a ”+” sign in the column between the type
and description identifies input variables. Input variables can be changed by the analysis, so may not be the same at the end of a case as at the beginning. All variables, input
and other, are initialized to zero or blank. If default values exist (only for input variables), they supersede that initialization.

Data Structures and Input 12

Table 1-4. NDARC data structures.

Design Fuselage FuelTank(ntankmax) FltState(nfltmax)

Cases [Location]loc_fuselage [Location]loc_auxtank(nauxtankmax) FltAircraft

Size AFuse Weight FltFuse

SizeParam Weight WTank FltGear

FltCond(nfltmax) WFuse Propulsion(npropmax) FltRotor(nrotormax)

FltState(nfltmax) LandingGear Weight FltWing(nwingmax)

Mission(nmissmax) [Location]loc_gear WDrive FltTail(ntailmax)

MissParam AGear EngineGroup(nengmax) FltTank(ntankmax)

MissSeg(nsegmax) Weight [Location]loc_engine FltProp(npropmax)

FltState(nsegmax) WGear DEngSys FltEngn(nengmax)

OffDesign Rotor(nrotormax) Weight FltJet(njetmax)

OffParam [Location]loc_rotor WEngSys FltChrg(nchrgmax)

Mission(nmissmax) [Location]loc_pylon JetGroup(njetmax)

MissParam [Location]loc_pivot [Location]loc_jet

MissSeg(nsegmax) [Location]loc_nac DJetSys

FltState(nsegmax) PRotorInd Weight

Performance PRotorPro WJetSys

PerfParam PRotorTab ChargeGroup(nchrgmax)

FltCond(nfltmax) IRotor [Location]loc_charger

FltState(nfltmax) DRotor DChrgSys

MapEngine Weight Weight

MapAero WRotor WChrgSys

Solution Wing(nwingmax) EngineModel(nengmax)

Cost [Location]loc_wing EngineParamN(nengpmax)

Emissions AWing EngineTable(nengmax)

Aircraft Weight RecipModel(nengmax)

[Location]loc_cg WWing CompressorModel(nengmax)

Weight WWingTR MotorModel(nengmax)

XAircraft Tail(ntailmax) JetModel(njetmax)

Systems [Location]loc_tail FuelCellModel(nchrgmax)

Weight ATail SolarCellModel(nchrgmax)

WFltCont Weight BatteryModel(ntankmax)

WDeIce WTail

13

Chapter 2

Input Based on Configuration

The rotorcraft configuration is identified by the variable config in the QUANT=’Aircraft’ input. With ACTION=’configuration’, the analysis defines a number of input parameters
in order to facilitate modelling of conventional configurations. The input required to execute ACTION=’configuration’ is:

&DEFN action=’configuration’,&END
&VALUE config=’aaaa’,nRotor=#,rotate=#,#,overlap_tandem=#,#,ang_multicopter=#,#,&END

The VALUE namelist contains only the parameters Aircraft%config (rotorcraft configuration), Aircraft%nRotor (number of rotors, only for multicopter), Rotor%rotate (direction
of rotation, each rotor), Rotor%overlap_tandem (each rotor, only for tandem helicopter), and Rotor%ang_multicopter (each rotor, only for multicopter). The convention is that
the first rotor is the main rotor for the helicopter or compound configuration; the front rotor for the tandem configuration; the right rotor for the tiltrotor configuration. This
capability has been implemented for rotorcraft, helicopter, tandem, coaxial, tiltrotor, compound, multicopter, and airplane configurations. There is common input for all
configurations, and special input for each except the rotorcraft. The analysis creates the following input, through information at the end of the NDARC structures file. Note
that default values are defined for all input quantities.

2–1 All Configurations

a) Components: nRotor=2 (except multicopter), nWing=0, nTail=2; nPropulsion=1, nEngineGroup=1, nEngineModel=1, nJetGroup=0, nChargeGroup=0

b) Aircraft
Aircraft controls: ncontrol=7, IDENT_control=’coll’,’latcyc’,’lngcyc’,’pedal’,’tailinc’,’elevator’,’rudder’

Control states: nstate_control=1

Trim states: nstate_trim=10, selected by FltAircraft%STATE_trim=IDENT_trim; compound state not active

IDENT_trim mtrim trim_quant trim_var

6-variable ’free’ 6 ’force x’,’force y’,’force z’,’moment x’,’moment y’,’moment z’ ’coll’,’latcyc’,’lngcyc’,’pedal’,’pitch’,’roll’

longitudinal ’long’ 4 ’force x’,’force z’,’moment y’,’moment z’ ’coll’,’lngcyc’,’pitch’,’pedal’

symmetric 3-variable ’symm’ 3 ’force x’,’force z’,’moment y’ ’coll’,’lngcyc’,’pitch’

weight and drag ’force’ 2 ’force x’,’force z’ ’coll’,’pitch’

hover thrust and torque ’hover’ 2 ’force z’,’moment z’ ’coll’,’pedal’

hover thrust ’thrust’ 1 ’force z’ ’coll’

hover rotor CT /σ ’rotor’ 1 ’CTs rotor 1’ ’coll’

wind tunnel ’windtunnel’ 3 ’CTs rotor 1’,’betac 1’,’betas 1’ ’coll’,’latcyc’,’lngcyc’

full power ’power’ 1 ’P margin 1’ ’coll’

ground run ’ground’ 1 ’force x’ ’coll’

compound ’comp’ 6 ’force x’,’force y’,’force z’,’moment x’,’moment y’,’moment z’ ’coll’,’latcyc’,’lngcyc’,’pedal’,’prop’,’roll’

Input Based on Configuration 14

c) Systems: MODEL_FWfc=0, MODEL_CVfc=0 (no fixed wing flight controls, no conversion controls)

d) Landing Gear: KIND_LG=0 (fixed gear), Wgear%nLG=3

e) Fuel Tank: place=1 (internal tank), Mauxtanksize=1, WTank%ntank_int=1, WTank%nplumb=2

f) Rotor
First rotor is primary: kPropulsion=1, KIND_xmsn=1

Second and other rotors are dependent: kPropulsion=1, KIND_xmsn=0, INPUT_gear=1 (input quantity is tip speed)
Configuration: direction=’main’

Drag: SET_aeroaxes=1 (helicopter), Idrag=0. (not tilt); DRotor%SET_Dspin=1, DRotor%DoQ_spin=0. (no spinner drag)
Weight: WRotor%MODEL_config=1 (rotor), WRotor%KIND_rotor=2 (not tilting)
Control:

INPUT_coll=0, INPUT_cyclic=0, INPUT_incid=0, INPUT_cant=0, INPUT_diam=0 (no connection to aircraft controls)
T_coll=0., T_latcyc=0., T_lngcyc=0., T_incid=0., T_cant=0., T_diam=0. (all controls, all states)
KIND_control=1 (1 for thrust and TPP command)
KIND_coll=2 (1 for thrust, 2 for CT /σ)
KIND_cyclic=1 (1 for TPP tilt, 2 for hub moment, 3 for lift offset)
KIND_tilt=0 (fixed shaft)

g) Wing
Control:

INPUT_flap=0, INPUT_flaperon=0, INPUT_aileron=0, INPUT_incid=0 (no connection to aircraft controls)
T_flap=0., T_flaperon=0., T_aileron=0., T_incid=0. (all controls, all states, all panels)

Drag: Idrag=0. (not tilt)

h) Tail
First tail is horizontal tail: KIND_tail=1, WTail%MODEL_Htail=1 (helicopter)
Second tail is vertical tail: KIND_tail=2, WTail%MODEL_Vtail=1 (helicopter)
Configuration: KIND_TailVol=2, TailVolRef=1 (rotor reference)
Control:

INPUT_cont=1 (tail control connection to aircraft controls), INPUT_incid=0 (no connection of tail incidence to aircraft controls)
T_cont=0., T_incid=0. (all controls, all states)

i) Propulsion: nGear=1, STATE_gear_wt=1, INPUT_DN=0

Input Based on Configuration 15

j) Engine Group
Configuration: kPropulsion=1, INPUT_gear=1 (gear ratio from N_spec), SET_power=0 (sized), fPsize=1., direction=’x’, SET_geom=0 (standard position)
Drag: MODEL_drag=1, Idrag=0. (not tilt)

k) Engine Group, Jet Group, Charge Group
Control:

INPUT_amp=0, INPUT_mode=0, INPUT_incid=0, INPUT_yaw=0 (no connection to aircraft controls)
T_amp=0., T_incid=0., T_yaw=0. (all controls, all states)

2–2 Helicopter

a) Rotor
First rotor is main rotor: config=’main’, fDGW=1., fArea=1., SET_geom=’standard’

rotation: r = 1; if (Rotor(1)%rotate < 0) r = −1
control: INPUT_coll=1, INPUT_latcyc=1, INPUT_lngcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_latcyc(2,1)= − r, T_lngcyc(3,1)=-1.

Second rotor is tail rotor: config=’tail+antiQ’, fThrust=1., fArea=0., SET_geom=’tailrotor’, mainRotor=1

direction=’tail’, WRotor%MODEL_config=2 (tail rotor)
rotation: r = 1; if (Rotor(1)%rotate < 0) r = −1
control: KIND_control=2 (thrust and NFP command); INPUT_coll=1, T_coll(4,1)= − r (rotor collective connection to aircraft control ’pedal’)

Performance: PRotorInd%MODEL_twin=’none’

Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

b) Tail
Control: INPUT_incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T_incid(5,1)=1. (incidence connection to aircraft control ’tailinc’), T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(7,1)=1. (rudder direct control)

c) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15

2–3 Tandem

a) Components: nTail=0 (no tail)

b) Fuel Tank: place=2 (sponson)

Input Based on Configuration 16

c) Rotor
Configuration: config=’main+tandem’, fDGW=.5, SET_geom=’tandem’, fRadius=1.

fArea=1 − m/2, from m = (2/π)(cos−1 h − h
√

1 − h2), h = 1 − overlap_tandem

First rotor is front rotor: otherRotor=2

rotation: r = 1, if (Rotor(1)%rotate < 0) r = −1
control: INPUT_coll=1, INPUT_latcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(3,1)=-1., T_latcyc(2,1)= − r, T_latcyc(4,1)= − r

Second rotor is aft rotor: otherRotor=1, rotate=-Rotor(1)%rotate

rotation: r = 1, if (Rotor(1)%rotate < 0) r = −1; r = −r
control: INPUT_coll=1, INPUT_latcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(3,1)= 1., T_latcyc(2,1)= − r, T_latcyc(4,1)=r

Performance: PRotorInd%MODEL_twin=’tandem’, PRotorInd%Kh_twin=1., PRotorInd%Kf_twin=0.85, IRotor%MODEL_int_twin=2

Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

d) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

2–4 Coaxial

a) Rotor
Configuration: config=’main+coaxial’, fDGW=.5, fArea=.5, SET_geom=’coaxial’, fRadius=1.

First rotor is lower rotor: otherRotor=2

rotation: r = 1, if (Rotor(1)%rotate < 0) r = −1
control: INPUT_coll=1, INPUT_latcyc=1, INPUT_lngcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(4,1)=r, T_latcyc(2,1)= − r, T_lngcyc(3,1)=-1.

Second rotor is upper rotor: otherRotor=1, rotate=-Rotor(1)%rotate

rotation: r = 1, if (Rotor(1)%rotate < 0) r = −1; r = −r
control: INPUT_coll=1, INPUT_latcyc=1, INPUT_lngcyc=1 (rotor control connection to aircraft controls)
control: T_coll(1,1)=1., T_coll(4,1)=r, T_latcyc(2,1)= − r, T_lngcyc(3,1)=-1.

Performance: PRotorInd%MODEL_twin=’coaxial’, PRotorInd%Kh_twin=1., PRotorInd%Kf_twin=0.85, IRotor%MODEL_int_twin=2

Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

b) Tail
Horizontal tail: T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(7,1)=1. (rudder direct control)

c) Propulsion: WDrive%ngearbox=1, WDrive%ndriveshaft=0, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

Input Based on Configuration 17

2–5 Tiltrotor

a) Components: nWing=1, nEngineGroup=2 (engine at each nacelle)

b) Aircraft
Aircraft controls: ncontrol=10, IDENT_control=’coll’,’latcyc’,’lngcyc’,’pedal’,’tilt’,’flap’,’flaperon’,’elevator’,’aileron’,’rudder’

Control states: nstate_control=2 (state 1 for helicopter mode, state 2 for airplane mode)
Control state in conversion: kcont_hover=1, kcont_conv=1, kcont_cruise=2

Drive state in conversion: kgear_hover(1)=1, kgear_conv(1)=1, kgear_cruise(1)=1

c) Systems: MODEL_FWfc=1, MODEL_CVfc=1 (fixed wing flight controls, conversion control)

d) Landing Gear: KIND_LG=1 (retractable)

e) Fuel Tank: place=3 (wing), fFuelWing(1)=1.

f) Rotor
Configuration: config=’main+tiltrotor’, fDGW=.5, fArea=1.; SET_geom=’tiltrotor’, KIND_TRgeom=1 (from clearance), fRadius=1., WingForRotor=1

First rotor is right rotor: otherRotor=2

helicopter mode control: INPUT_coll=1, INPUT_lngcyc=1 (rotor control connection to aircraft controls)
helicopter mode control: T_coll(1,1)=1., T_coll(2,1)=-1., T_lngcyc(3,1)=-1., T_lngcyc(4,1)=1.

Second rotor is left rotor: otherRotor=1, rotate=-Rotor(1)%rotate; INPUT_gear=2 (input quantity is gear ratio)
helicopter mode control: INPUT_coll=1, INPUT_lngcyc=1 (rotor control connection to aircraft controls)
helicopter mode control: T_coll(1,1)=1., T_coll(2,1)=1., T_lngcyc(3,1)=-1., T_lngcyc(4,1)=-1.

Airplane mode control state: T_coll(1,2)=1. (collective connection to aircraft control ’coll’)
Tilt: KIND_tilt=1 (shaft control = incidence), incid_ref=90. (helicopter mode reference), SET_Wmove=1, fWmove=1. (wing tip weight move)

control: INPUT_incid=1, T_incid(5,1)=1., T_incid(5,2)=1. (incidence connection to aircraft control ’tilt’)
Performance: PRotorInd%MODEL_twin=’tiltrotor’, PRotorInd%Kh_twin=1., PRotorInd%Kf_twin=1., IRotor%MODEL_int_twin=2

Weight: WRotor%KIND_rotor=1 (tilting)
Drag: SET_aeroaxes=2 (tiltrotor), Idrag=90. (tiltrotor)

DRotor%SET_Dhub=1, DRotor%DoQ_hub=0., DRotor%CD_hub=0., DRotor%SET_Vhub=1, DRotor%DoQV_hub=0., DRotor%CDV_hub=0. (no hub drag)

g) Wing
Configuration: fDGW=1., nRotorOnWing=2, RotorOnWing(1)=1, RotorOnWing(2)=2, SET_ext=0

Control: KIND_flaperon=3 (independent), nVincid=1

INPUT_flap=1, INPUT_flaperon=1, INPUT_aileron=1 (wing control connection to aircraft controls)
T_aileron(2,2)=-1. (airplane mode aileron connection to aircraft control ’latcyc’)

Input Based on Configuration 18

T_flap(6,1)=1., T_flap(6,2)=1. (flap direct control)
T_flaperon(7,1)=1., T_flaperon(7,2)=1. (flaperon direct control)
T_aileron(9,1)=1., T_aileron(9,2)=1. (aileron direct control)

Weight: WWing%MODEL_wing=3 (tiltrotor)

h) Tail
Configuration: KIND_TailVol=1, TailVolRef=1 (wing reference); Wtail%MODEL_Htail=2, Wtail%MODEL_Vtail=2 (tiltrotor)
Horizontal tail control: nVincid=1

T_cont(3,2)=1. (airplane mode elevator connection to aircraft control ’lngcyc’)
T_cont(8,1)=1., T_cont(8,2)=1. (elevator direct control)

Vertical tail control: nVincid=1

T_cont(4,2)=1. (airplane mode rudder connection to aircraft control ’pedal’)
T_cont(10,1)=1., T_cont(10,2)=1. (rudder direct control)

i) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

j) Engine Group
Configuration: fPsize=0.5, SET_geom=1 (tiltrotor)
First engine group: RotorForEngine=1

Second engine group: RotorForEngine=2

Control: INPUT_incid=1; T_incid(5,1)=1., T_incid(5,2)=1. (nacelle incidence connection to aircraft control ’tilt’)
Drag: SET_Swet=1, Swet=0., MODEL_drag=0, Idrag=90. (no engine nacelle drag)

DEngSys%SET_drag=1, DEngSys%DoQ=0., DEngSys%CD=0.; DEngSys%SET_Vdrag=1, DEngSys%DoQV=0., DEngSys%CDV=0.

2–6 Compound

a) Components: nRotor=3, nWing=1

b) Aircraft
Aircraft controls: ncontrol=10, IDENT_control=’coll’,’latcyc’,’lngcyc’,’pedal’,’tailinc’,’elevator’,’rudder’,’prop’,’aileron’,’flap’

Trim states: nstate_trim=11; compound state active

c) Rotor
First rotor is main rotor: config=’main’, fDGW=1., fArea=1., SET_geom=’standard’

rotation: r = 1; if (Rotor(1)%rotate < 0) r = −1
control: INPUT_coll=1, INPUT_latcyc=1, INPUT_lngcyc=1 (rotor control connection to aircraft controls)

Input Based on Configuration 19

control: T_coll(1,1)=1., T_latcyc(2,1)= − r, T_lngcyc(3,1)=-1.

Second rotor is tail rotor: config=’tail+antiQ’, fThrust=1., fArea=0., SET_geom=’tailrotor’, mainRotor=1

direction=’tail’, WRotor%MODEL_config=2 (tail rotor)
rotation: r = 1; if (Rotor(1)%rotate < 0) r = −1
control: KIND_control=2 (thrust and NFP command); INPUT_coll=1, T_coll(4,1)= − r (rotor collective connection to aircraft control ’pedal’)

Third rotor is propeller: config=’prop+auxT’, fThrust=1., fArea=0., SET_geom=’standard’

direction=’prop’, WRotor%MODEL_config=3 (auxiliary thrust)
control: KIND_control=2 (thrust and NFP command); INPUT_coll=1, T_coll(8,1)=1. (rotor collective connection to aircraft control ’prop’)

Performance: PRotorInd%MODEL_twin=’none’

Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

d) Wing
Configuration: fDGW=1.

Control: nVincid=1

INPUT_flap=1, INPUT_flaperon=1, INPUT_aileron=1 (wing control connection to aircraft controls)
T_aileron(9,1)=1. (aileron direct control)
T_flap(10,1)=1. (flap direct control)

Weight: WWing%MODEL_wing=2 (parametric)

e) Tail
Control: INPUT_incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T_incid(5,1)=1. (incidence connection to aircraft control ’tailinc’), T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(7,1)=1. (rudder direct control)

f) Propulsion: WDrive%ngearbox=3, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15

2–7 Multicopter

a) Components: nTail=0 (no tail)

b) Rotor
Configuration: config=’main+multirotor’, fDGW=1/nRotor, fArea=1., SET_geom=’multicopter’

Control: KIND_control=2 (thrust and NFP command); INPUT_coll=1

rotation: r = 1; if (rotate < 0) r = −1; a =ang_multicopter

T_coll(1,1)=1., T_coll(2,1)=− sin(a), T_coll(3,1)=cos(a), T_coll(4,1)=r (rotor collective connection to aircraft controls)

Input Based on Configuration 20

Performance: PRotorInd%MODEL_twin=’multirotor’; xh_multi=0., xp_multi=0., xf_multi=0., except 1.0 for this rotor
Drag: SET_Sspin=1, Swet_spin=0., DRotor%SET_Dspin=1, DRotor%DoQ_spin=0., DRotor%CD_spin=0. (no spinner drag)

c) Propulsion: WDrive%ngearbox=nRotor, WDrive%ndriveshaft=nRotor-1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6

2–8 Airplane

a) Components: nRotor=1, nWing=1

b) Solution: KIND_Lscale=2 (wing span reference)

c) Aircraft
Geometry: INPUT_geom=2, KIND_scale=2, kScale=1 (geometry scaled with wing span); KIND_Ref=2, kRef=1 (wing reference)
Aircraft controls: ncontrol=9, IDENT_control=’coll’,’latcyc’,’lngcyc’,’pedal’,’tailinc’,’elevator’,’rudder’,’aileron’,’flap’

coll = propeller, latcyc = lateral stick, lngcyc = longitudinal stick

d) Systems: MODEL_FWfc=1 (fixed wing flight controls)

e) Rotor
Propeller: config=’prop+auxT’, fThrust=1., fDGW=0., SET_geom=’standard’

direction=’prop’, WRotor%MODEL_config=3 (auxiliary thrust)
Control: KIND_control=2 (thrust and NFP command); INPUT_coll=1, T_coll(1,1)=1. (rotor collective connection to aircraft control ’coll’)

f) Wing
Configuration: fDGW=1.

Control: nVincid=1

INPUT_flap=1, INPUT_aileron=1 (wing control connection to aircraft controls)
T_aileron(2,1)=1. (lateral stick), T_aileron(8,1)=1. (aileron direct control)
T_flap(9,1)=1. (flap direct control)

Weight: WWing%MODEL_wing=2 (parametric)

g) Tail: KIND_TailVol=1, TailVolRef=1 (wing reference)
Control: INPUT_incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T_incid(5,1)=1. (incidence connection to aircraft control ’tailinc’), T_cont(3,1)=1. (longitudinal stick), T_cont(6,1)=1. (elevator direct control)
Vertical tail: T_cont(4,1)=1. (pedal), T_cont(7,1)=1. (rudder direct control)

h) Propulsion: WDrive%ngearbox=1, WDrive%ndriveshaft=1, WDrive%fShaft=0.1

21

Chapter 3

Parameters

Parameters Value

ncasemax 10 nfltmax 21 nauxtankmax 4
nfilemax 40 ndesignmax 41 ngearmax 8
nrotormax 16 ncontmax 20 nratemax 20
npropmax 16 nsweepmax 200 nengtmax 20
nengmax 16 qsweepmax 4 nengkmax 6
njetmax 4 ntrimstatemax 20 nengrmax 40
nchrgmax 4 mtrimmax 16 nengpmax 20
nstatemax 10 nvelmax 20 nengcmax 80
nwingmax 8 ntablemax 32 nspeedmax 8
ntailmax 6 nrmax 51 nrowmax 4000
ntankmax 4 mrmax 40 naeromax 100
nmissmax 20 mpsimax 36
nsegmax 40 npanelmax 5

22

Chapter 4

Common: Job

Variable Type Description Default

+ Initialization
INIT_input int + input parameters (0 default, 1 last case input, 2 last case solution) 1

INIT_data int + other parameters (0 default, 1 start of last case, 2 end of last case) 0

INIT_input:
if default, all input variables set to default values
if last-case-input, then case inherits input at beginning of previous case
if last-case-solution, then case inherits input at end of previous case

use INIT_input=2 to analyze case #1 design in subsequent cases
INIT_data: if always start-last-case, then case starts from default

if default, all other variables set to default values

+ Errors
ACT_error int + action on error (0 none, 1 exit) 1

ACT_version int + action on version mismatch in input (0 none, 1 exit) 0

+ File open
OPEN_status int + status keyword for write (0 unknown, 1 replace, 2 new, 3 old) 2

+ Input/output unit numbers
+ input

nuin int + standard input 5

nufile int + secondary file input 40

+ output
nuout int + standard output 6

nudesign int + design (DESIGNn) 41

Common: Job 23

nuperf int + performance (PERFn) 42

nuaero int + airframe aerodynamics (AEROn) 43

nuengine int + engine performance (ENGINEn) 44

nugeom int + geometry output (GEOMETRYn) 45

nuacd int + aircraft description (AIRCRAFTn) 46

nusoln int + solution (SOLUTIONn) 47

nusketch int + sketch output (SKETCHn) 48

nuerror int + errors (ERRORn) 49

default input/output unit numbers usually acceptable
default OPEN_status can be changed as appropriate for computer OS

24

Chapter 5

Structure: Cases

Variable Type Description Default

+ Case Description
title c*100 + title
subtitle1 c*100 + subtitle
subtitle2 c*100 + subtitle
subtitle3 c*100 + subtitle
notes c*1000 + notes
ident c*32 + identification

+ Case Tasks (0 for none)
TASK_Size int + size aircraft for design conditions 1

TASK_Mission int + mission analysis 1

TASK_Perf int + flight performance analysis 1

TASK_Map_engine int + map of engine performance 0

TASK_Map_aero int + map of airframe aerodynamics 0

Turn off all tasks to just initialize and check the model, including geometry and weights

+ Write Input Parameters
WRITE_input int + selection (0 none, 1 all, 2 first case) 2

WRITE_input_TechFactors int + TechFactors (0 for none) 1

WRITE_input_Geometry int + Geometry (0 for none) 1

+ Output
+ selection (0 for none)

OUT_design int + design file 0

Structure: Cases 25

OUT_perf int + performance file 0

OUT_geometry int + geometry file 0

OUT_aircraft int + aircraft description file 0

OUT_solution int + solution file (1 text, 2 binary) 0

OUT_sketch int + sketch file 0

OUT_error int + errors file 0

+ file name or logical name (blank for default logical name)
FILE_design c*256 + design file (DESIGNn) ’ ’

FILE_perf c*256 + performance file (PERFn) ’ ’

FILE_geometry c*256 + geometry file (GEOMETRYn) ’ ’

FILE_aircraft c*256 + aircraft description file (AIRCRAFTn) ’ ’

FILE_solution c*256 + solution file (SOLUTIONn) ’ ’

FILE_sketch c*256 + sketch file (SKETCHn) ’ ’

FILE_engine c*256 + engine performance file (ENGINEn) ’ ’

FILE_aero c*256 + airframe aerodynamics file (AEROn) ’ ’

FILE_error c*256 + errors file (ERRORn) ’ ’

+ formats
WRITE_page int + page control (0 none, 1 form feed, 2 extended Fortran) 1

WRITE_design int + design (1 first case only, 2 all cases) 2

WRITE_wt_level int + weight statement, max level (1 to 5) 5

WRITE_wt_long int + weight statement, style (0 omit zero lines, 1 all lines) 0

WRITE_energy int + fuel energy for burn weight (0 for none) 1

WRITE_flight int + flight state, component loads (0 for none) 0

WRITE_files int + design, performance, or geometry (1 single file of all cases) 0

WRITE_sketch_load int + sketch component forces (0 none) 1

WRITE_sketch_cond int + sketch flight condition (0 none, 1 design, 2 performance) 0

ksketch int + flight condition number 0

selected files are generated for each case (n = case number in default name)
option single file of all cases for design, performance, or geometry (form feed between cases)

size and analysis tasks can produce design and performance files
same information as in standard output, in tab-delimited form

aircraft or solution file can be read by subsequent case or job
geometry file has information for graphics and other analyses

Structure: Cases 26

sketch file has information to check geometry and solution (DXF format)
flight condition required to use Euler angles, control and incidence, component forces

engine map task (TASK_Map_engine) produces engine performance file
airframe aerodynamics map task (TASK_Map_aero) produces airframe aerodynamics file
error messages to standard output (OUT_error=0) or separate file (OUT_error=1)

+ Gravity
SET_grav int + specification (0 standard, 1 input) 0

grav real + input gravitational acceleration g
+ Environment

density_ref real + reference density (0. for air at SLS) 0.

csound_ref real + reference speed of sound (0. for air at SLS) 0.

+ Units
Units int + analysis units (1 English, 2 SI) 1

+ units for input of missions and flight conditions
Units_miss int + override default units (0 no, 1 yes) 0

Units_vel int + velocity units (0 knots; 1 mile/hr, 2 km/hr, 3 ft/sec, 4 m/sec) 0

Units_alt int + altitude units (0 ft or m; 1 ft, 2 m) 0

Units_pay int + payload units (0 lb or kg; 1 lb, 2 kg) 0

Units_time int + time units (0 minutes; 1 hours) 0

Units_dist int + distance units (0 nm; 1 miles; 2 km) 0

Units_temp int + temperature (0 F or C; 1 F, 2 C) 0

Units_drag int + drag units (0 ft2 or m2; 1 ft2, 2 m2) 0

Units_ROC int + rate of climb units (0 ft/min; 1 ft/sec, 2 m/sec) 0

+ units for parameters
Units_Dscale int + input D/q scaled with gross weight (0 analysis default, 1 English, 2 SI) 0

Units_energy int + units for energy input and output (1 MJ, 2 kWh) 1

Analysis units: must be same for all cases in job
English: ft-slug-sec-F; weights in lb, power in hp (internal units)
SI: m-kg-sec-C; weights in kg, power in kW (internal units)

Structure: Cases 27

Weight in the design description is actually mass
pounds converted to slugs using reference gravitational acceleration

Default units for flight condition and mission: override with Units_xxx

speed in knots, time in minutes, distance in nm, ROC in ft/min
Input Efuel_cap, Eaux_cap always MJ; internal energy units MJ
If load aircraft description or solution file, checked that Units not changed

28

Chapter 6

Structure: Size

Variable Type Description Default

+ Size Aircraft for Design Conditions and Missions
title c*100 + title
notes c*1000 + notes

+ Sizing Method
SIZE_perf(npropmax) c*16 + quantity sized from performance ’engine’

SIZE_engine(nengmax) c*16 + engine group sized from performance ’none’

SIZE_jet(njetmax) c*16 + jet group sized from performance ’jet’

SIZE_charge(nchrgmax) c*16 + charge group sized from performance ’none’

SIZE_param int + parameter iteration (0 not required) 0

SET_rotor(nrotormax) c*32 + rotor parameters ’DL+Vtip+CWs’

SET_wing(nwingmax) c*16 + wing parameters ’WL+aspect’

FIX_DGW int + design gross weight (0 calculated, 1 fixed) 0

FIX_WE int + weight empty (0 calculated, 1 fixed, 2 scaled) 0

SET_tank(ntankmax) c*16 + fuel tank capacity ’miss’

SET_SDGW c*16 + structural design gross weight ’f(DGW)’

SET_WMTO c*16 + maximum takeoff weight ’f(DGW)’

SET_limit_ds(npropmax) c*16 + drive system torque limit ’ratio’

size task (Cases%TASK_Size=1): at least one nFltCond or nMission

no size task (Cases%TASK_Size=0): size input specifies how fixed aircraft determined

SIZE_perf: size power-producing engines of propulsion group
’engine’ = power from maximum of power required for all designated conditions and missions
’rotor’ = radius from maximum of power required for all designated conditions and missions
’none’ = power required not used to size engine/rotor

flight conditions and missions (max GW, max effort, or trim)
that have zero power margin are not used to size engine or rotor
that have zero torque margin are not used to size transmission

Structure: Size 29

SIZE_engine: size power-consuming engines of engine group
’engine’ = power from maximum of power required for all designated conditions and missions

flight conditions and missions (max GW, max effort, or trim)
that have zero power margin are not used to size engine group

designated only for engine groups that consume power
engine groups that produce power sized with propulsion group (SIZE_perf)

’none’ = power required not used to size engine group
SIZE_jet:

’jet’ = thrust from maximum of thrust required for all designated conditions and missions
’none’ = thrust required not used to size jet group

flight conditions and missions (max GW, max effort, or trim)
that have zero thrust margin are not used to size jet group

SIZE_charge:
’charge’ = power from maximum of power required for all designated conditions and missions
’none’ = power required not used to size charge group

’SIZE_param’: use to force parameter iteration

SET_rotor, rotor parameters: required for each rotor
rotor parameters: input three or two quantities, others derived

SET_rotor = input three of (’radius’ or disk loading ’DL’ or ’ratio’), ’CWs’, ’Vtip’, ’sigma’

except if SIZE_perf=’rotor’: SET_rotor = input two of ’CWs’, ’Vtip’, ’sigma’ for one or more main rotors
SET_rotor = ’ratio+XX+XX’ to calculate radius from radius of another rotor
tip speed is Vtip_ref for drive state #1

rotor parameters for an antitorque or aux thrust rotor:
SET_rotor = input three of (’radius’ or ’DL’ or ’ratio’ or ’scale’), ’CWs’, ’Vtip’, ’sigma’

SET_rotor = ’scale+XX+XX’ to calculate tail rotor radius from parametric equation,
using main rotor radius and disk loading

thrust from designated sizing conditions and missions (DESIGN_thrust)

SET_wing, wing parameters: for each wing; input two quantities, other two derived
SET_wing = input two of (’area’ or wing loading ’WL’), (’span’ or ’ratio’ or ’radius’or ’width’ or ’hub’ or ’panel’),

’chord’, aspect ratio ’aspect’

SET_wing = ’ratio+XX’ to calculate span from span of another wing
SET_wing = ’radius+XX’ to calculate span from rotor radius
SET_wing = ’width+XX’ to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)

Structure: Size 30

SET_wing = ’hub+XX’ to calculate span from rotor hub position (tiltrotor)
SET_wing = ’panel+XX’ to calculate span from wing panel widths

FIX_DGW: input DGW restricts SIZE_perf, SET_GW parameters
FIX_WE: fixed or scaled weight empty obtained by adjusting contingency weight

scaled with design gross weight: WE=dWE+fWE*WD

SET_tank, fuel tank sizing: usable fuel capacity Wfuel_cap (weight) or Efuel_cap (energy)
’input’ = input Wfuel_cap or Efuel_cap

’miss’ = calculate from mission fuel used
Wfuel_cap or Efuel_cap = max(fFuel_cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))

’f(miss)’ = function of mission fuel used
Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*((maximum mission fuel)+(reserve fuel))

’used’ = calculate from maximum fuel quantity in tank during mission
Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*(maximum fuel in tank)

’XX+power’ = and calculate from mission battery discharge power

SET_SDGW, structural design gross weight:
’input’ = input
’f(DGW)’ = based on DGW; WSD=dSDGW+fSDGW*WD

’f(WMTO)’ = based on WMTO; WSD=dSDGW+fSDGW*WMTO

’maxfuel’ = based on fuel state; WSD=dSDGW+fSDGW*WG, WG = WD–Wfuel_DGW+fFuelSDGW*Wfuel−cap

’perf’ = calculated from maximum gross weight at SDGW sizing conditions (DESIGN_sdgw)
Aircraft input parameters: dSDGW, fSDGW, fFuelSDGW

SET_WMTO, maximum takeoff weight:
’input’ = input
’f(DGW)’ = based on DGW; WMTO=dWMTO+fWMTO*WD

’f(SDGW)’ = based on SDGW; WMTO=dWMTO+fWMTO*WSD

’maxfuel’ = based on maximum fuel; WMTO=dWMTO+fWMTO*WG, WG = WD–Wfuel_DGW+Wfuel−cap

’perf’ = calculated from maximum gross weight at WMTO sizing conditions (DESIGN_wmto)
Aircraft input parameters: dWMTO, fWMTO

Structure: Size 31

SET_limit_ds, drive system torque limit: input (use Plimit_xx) or calculate (from fPlimit_xx)
’input’ = Plimit_ds input
’ratio’ = from takeoff power, fPlimit_ds

∑
(NengPeng)

’Pav’ = from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Ωref/Ωprim)

∑
(NengPav)

’Preq’ = from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Ωref/Ωprim)

∑
(NengPreq)

engine shaft limit also uses EngineGroup%SET_limit_es

rotor shaft limit also uses Rotor%SET_limit_rs, rotor limits only use power required (or input)

input required to transmit sized rotorcraft to another job (through aircraft description file) or to following case:
turn off sizing: Cases%TASK_size=0, Cases%TASK_mission=1, Cases%TASK_perf=1

fix aircraft: use ACTION=’nosize’, or
SIZE_perf=’none’, SIZE_engine=’none’, SIZE_jet=’none’, SIZE_charge=’none’

SET_rotor=’radius+Vtip+sigma’, SET_wing=’area+span’, FIX_DGW=1

SET_tank=’input’, SET_limit_ds=’input’, SET_SDGW=’input’, SET_WMTO=’input’

with wing panels: SET_wing=’WL+panel’, Wing%SET_panel=’width+taper’,’span+taper’

+ Sizing Flight Conditions
nFltCond int + number of conditions (maximum nfltmax) 0

+ Design Missions
nMission int + number of missions (maximum nmissmax) 0

input one condition (FltCond and FltState variables) in SizeCondition namelist

input one mission (MissParam, MissSeg, and FltState variables) in SizeMission namelist
all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays
each variable gets one more dimension, first array index is always segment number

32

Chapter 7

Structure: OffDesign

Variable Type Description Default

+ Mission Analysis
title c*100 + title
notes c*1000 + notes

+ Missions
nMission int + number of missions (maximum nmissmax) 0

mission analysis input required if Cases%TASK_Mission=1

input one mission (MissParam, MissSeg, and FltState variables) in OffMission namelist
all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays
each variable gets one more dimension, first array index is always segment number

33

Chapter 8

Structure: Performance

Variable Type Description Default

+ Flight Performance Analysis
title c*100 + title
notes c*1000 + notes

+ Performance Flight Conditions
nFltCond int + number of conditions (maximum nfltmax) 0

flight performance analysis input required if Cases%TASK_Perf=1

input one condition (FltCond and FltState variables) in PerfCondition namelist

34

Chapter 9

Structure: MapEngine

Variable Type Description Default

+ Map of Engine Performance
title c*100 + title
notes c*1000 + notes

+ Identification
kEngineGroup int + engine group 1

KIND_map int + Kind (1 performance, 2 model) 1

engine map only available for RPTEM model and reciprocating engine model (performance only)

engine map input required if Cases%TASK_Map_engine=1

only performance parameters or only model parameters used

+ Performance
+ independent variables (0 none, 1 altitude, 2 temperature, 3 flight speed, 4 engine speed, 5 power)

SET_var(5) int + first set 0

SET_var2(5) int + second set 0

WRITE_header int + output format (1 single header, 2 header for inner variable) 2

SET_atmos c*12 + atmosphere specification ’std’

+ altitude h (Units_alt)
altitude_min real + minimum 0.

altitude_max real + maximum 20000.

altitude_inc real + increment 1000.

altitude_base real + baseline 0.

Structure: MapEngine 35

+ temperature τ or temperature increment ΔT (Units_temp)
temp_min real + minimum 0.

temp_max real + maximum 100.

temp_inc real + increment 10.

temp_base real + baseline 0.

+ flight speed V (TAS, Units_vel)
Vkts_min real + minimum 0.

Vkts_max real + maximum 200.

Vkts_inc real + increment 50.

Vkts_base real + baseline 0.

SET_rpm int + engine speed N (1 rpm, 2 percent) 2

Nturbine_min real + minimum 90.

Nturbine_max real + maximum 110.

Nturbine_inc real + increment 5.

Nturbine_base real + baseline 100.

SET_power int + power required (1 power, 2 fraction of power available (0. to 1.+) 2

power_min real + minimum .1

power_max real + maximum 1.

power_inc real + increment .1

power_base real + baseline 1.

STATE_IRS int + IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust) 0

KIND_loss int + installation losses (0 for none) 0

independent variables: 1 to 5 variables, last is innermost loop; outer loop is always rating
quantities not identified as independent variables fixed at baseline values

SET_atmos, atmosphere specification:
determines whether temp_xxx is temperature or temperature increment
’std’ = standard day at specified altitude (use altitude_xxx)
’temp’ = standard day at specified altitude, and specified temperature (use altitude_xxx, temp_xxx)
’dtemp’ = standard day at specified altitude, plus temperature increment (use altitude_xxx, temp_xxx)
see FltState%SET_atmos for other options (polar, tropical, and hot days)

Structure: MapEngine 36

+ Model
+ flight speeds V (TAS, Units_vel)

nV_model int + number (maximum 10) 1

V_model(10) real + values 0.

V_min real + minimum 0.

V_max real + maximum 400.

V_inc real + increment 50.

+ temperature ratio T/T0

ntheta_model int + number (maximum 10) 1

theta_model(10) real + values 1.

theta_min real + minimum .8

theta_max real + maximum 1.1

theta_inc real + increment .02

+ engine speed, N/Nspec (percent)
fN_min real + minimum 90.

fN_max real + maximum 110.

fN_inc real + increment 5.

+ fraction static MCP power, P/P0C

fP_min real + minimum .1

fP_max real + maximum 2.

fP_inc real + increment .1

RPTEM model
performance: fuel flow, mass flow, net jet thrust, optimum turbine speed

vs power fraction and airspeed (use fP and V_model)
turbine speed: power ratio vs turbine speed and airspeed (use fN and V_model)
power available: specific power, mass flow, power, fuel flow

vs temperature ratio (use theta and V_model)
vs airspeed (use V and theta_model)

37

Chapter 10

Structure: MapAero

Variable Type Description Default

+ Map of Airframe Aerodynamics
title c*100 + title
notes c*1000 + notes

+ Tables
KIND_table int + kind (1 one-dimensional, 2 multi-dimensional) 1

+ aerodynamic loads (0 for components off)
SET_fuselage int + fuselage and landing gear 1

SET_tail int + tails 1

SET_wing int + wings 1

SET_rotor int + rotors 1

SET_engine int + engines and fuel tank 1

airframe aerodynamics map input required if Cases%TASK_Map_aero=1

multi-dimensional: generate 6 files of three-dimensional tables
one file for each load=DRAG, SIDE, LIFT, ROLL, PITCH, YAW
filename=FILE_aero//load or AEROn//load

one-dimensional: generate 1 file of all six loads
function of single independent variable = var_lift(1)

+ Operating Condition
STATE_control int + aircraft control state 1

STATE_LG c*12 + landing gear state ’retract’

Nauxtank(nauxtankmax,ntankmax)

int + number of auxiliary fuel tanks Nauxtank (each aux tank size) 0

Structure: MapAero 38

SET_extkit int + wing extension kit on aircraft (0 none, 1 present) 1

KIND_alpha int + angle of attack and sideslip angle representation (1 conventional, 2 reversed) 1

SET_comp_control int + use component control (0 for c = TcAC ; 1 for c = TcAC + c0) 0

control(ncontmax) real + aircraft controls 0.

tilt real + tilt 0.

alpha real + angle of attack α 0.

beta real + sideslip angle β 0.

landing gear state: STATE_LG=’extend’, ’retract’ (keyword = ext, ret)

+ Independent variables
var_lift(3) c*16 + lift
var_drag(3) c*16 + drag
var_side(3) c*16 + side force
var_pitch(3) c*16 + pitch moment
var_roll(3) c*16 + roll moment
var_yaw(3) c*16 + yaw moment

+ Variable range
+ angle of attack and sideslip variation

angle_lowinc real + low range increment (deg) 2.

angle_highinc real + high range increment (deg) 5.

angle_low real + low range value (deg) 40.

angle_max real + maximum value (deg) 180.

+ control variation
control_lowinc real + low range increment (deg) 2.

control_highinc real + high range increment (deg) 2.

control_low real + low range value (deg) 45.

control_max real + maximum value (deg) 90.

Structure: MapAero 39

+ third independent variable
gamma_lowinc real + low range increment (deg) 20.

gamma_highinc real + high range increment (deg) 20.

gamma_low real + low range value (deg) 60.

gamma_max real + maximum value (deg) 60.

var_load identify independent variables
only var_lift(1) used for KIND_table=one-dimensional
values: ’alpha’, ’beta’, IDENT_control(ncontrol)

var_load(2) blank for 1D table, var_load(3) blank for 2D table
alpha/beta/controls/tilt fixed if not independent variable (tilt replace control(ktilt))
assume control system defined so aircraft controls connected to flaperon, elevator, aileron, rudder

angle, control, gamma variation: by lowinc for -low to +low; by highinc to -max and +max

maximum total values = naeromax

40

Chapter 11

Structure: FltCond

Variable Type Description Default

+ Sizing or Performance Flight Condition
title c*100 + title
label c*8 + label

+ Specification
SET_GW c*12 + gross weight ’DGW’

GW real + input gross weight WG 0.

dGW real + gross weight increment 0.

fGW real + gross weight factor 1.

dPav(npropmax) real + power increment, each propulsion group 0.

fPav(npropmax) real + power factor, each propulsion group 1.

dTav(njetmax) real + thrust increment, each jet group 0.

fTav(njetmax) real + thrust factor, each jet group 1.

SET_Wlimit c*12 + gross weight limit ’none’

Wlimit real + input gross weight limit 0.

SET_alt int + altitude (0 input, 1 from KIND_source) 0

+ source for gross weight and altitude
KIND_source int + kind (1 size mission, 2 size condition, 3 off design mission, 4 performance condition) 1

kSource int + mission or condition number 0

kSegment int + segment number 0

seg_source int + segment (1 start, 2 midpoint) 1

SET_UL c*12 + useful load ’pay’

Wpay real + input payload weight Wpay (Units_pay) 0.

Npass int + number of passengers Npass 0

Wpay_cargo real + cargo Wcargo (Units_pay) 0.

Wpay_extload real + external load Wext−load (Units_pay) 0.

Wpay_ammo real + ammunition Wammo (Units_pay) 0.

Wpay_weapons real + weapons Wweapons (Units_pay) 0.

Structure: FltCond 41

+ fuel tank system
dFuel(ntankmax) real + fuel weight or energy increment 0.

fFuel(ntankmax) real + fuel capacity factor 1.

SET_auxtank(ntankmax) int + auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 0 no change) 1

mauxtank(ntankmax) int + tank size changed (–1 first, –2 first size already used, m for m-th size) -1

dNauxtank(ntankmax) int + number tanks added or dropped 1

Nauxtank(nauxtankmax,ntankmax)

int + number of auxiliary fuel tanks Nauxtank (each aux tank size)
+ fixed useful load

dWcrew real + crew weight increment 0.

dNcrew int + number of crew increment δNcrew 0

dWoful(10) real + other fixed useful load increment (nWoful categories) 0.

dWequip real + equipment weight increment 0.

dNcrew_seat int + crew seat increment δNcrew−seat 0

dNpass_seat int + passenger seat increment δNpass−seat 0

+ kits on aircraft (0 none, 1 present)
SET_foldkit int + folding kit 1

SET_extkit(nwingmax) int + wing extension kit 1

SET_wingkit(nwingmax) int + wing kit on aircraft 1

SET_otherkit int + other kit on aircraft 0

DESIGN_engine int + design condition for power (1 to use for engine sizing) 1

DESIGN_jet int + design condition for jet thrust (1 to use for jet group sizing) 1

DESIGN_charge int + design condition for charge power (1 to use for charge group sizing) 1

DESIGN_GW int + design condition for DGW (1 to use for DGW calculation) 1

DESIGN_xmsn int + design condition for transmission (1 to use for transmission sizing) 1

DESIGN_sdgw int + design condition for SDGW (1 to use for SDGW calculation) 1

DESIGN_wmto int + design condition for WMTO (1 to use for WMTO calculation) 1

DESIGN_thrust int + design condition for antitorque or aux thrust (1 to use for rotor sizing) 1

label is short description for output
sizing flight condition: use all parameters except sweep

fixed gross weight conditions not used to determine DGW, SDGW, WMTO
(set DESIGN_GW=0, DESIGN_sdgw=0, DESIGN_wmto=0)

condition not used to size engine or rotor if power margin fixed (max GW, max effort, or trim)
condition not used to size transmission if zero torque margin (max GW, max effort, or trim)

Structure: FltCond 42

performance flight condition: not use DESIGN_xx

SET_GW, SET_UL values determine which input parameters used

SET_GW, set gross weight WG:
’DGW’ = design gross weight WD; input (FIX_DGW) or calculated
’SDGW’ = structural design gross weight WSD (may depend on DGW)
’WMTO’ = maximum takeoff gross weight WMTO (may depend on DGW)
’f(DGW)’ = function DGW: fGW*WD+dGW

’f(SDGW)’ = function SDGW: fGW*WSD+dGW

’f(WMTO)’ = function WMTO: fGW*WMTO+dGW

’input’ = input (use GW)
’source’ = gross weight from specified mission segment or flight condition (KIND_source)
’f(source)’ = function of source: fGW*Wsource+dGW

’maxP’, ’max’ = maximum GW for power required equal specified power: Preq = fPavPav + dPav

min((fPavPG + d) − PreqPG) = 0, over all propulsion groups
’maxQ’ = maximum GW for transmission torque equal limit: zero torque margin

min(Plimit − Preq) = 0, over all propulsion groups, engine groups, and rotors
’maxPQ’, ’maxQP’ = maximum GW for power required equal specified power and transmission torque equal limit

most restrictive of power and torque margins
’maxJ’ = maximum GW for jet thrust required equal specified thrust: Treq = fTavTav + dTav

min((fTavJG + d) − TreqJG) = 0, over all jet groups
’maxPJ’, ’maxQJ’, ’maxPQJ’ = maximum GW for most restrictive of power, torque, and thrust margins
’pay+fuel’ = input payload and fuel weights; gross weight fallout

SET_Wlimit: weight limit for SET_GW=’max’

’none’ = no limit
’f(DGW)’ = function DGW: fGW*WD+dGW

’f(SDGW)’ = function SDGW: fGW*WSD+dGW

’f(WMTO)’ = function WMTO: fGW*WMTO+dGW

’input’ = input (use Wlimit)

SET_UL, set useful load: with fixed useful load adjustments in fallout weight
’pay’ = input payload weight (Wpay); fuel weight fallout
’fuel’ = input fuel weight (dFuel, fFuel, Nauxtank); payload weight fallout
’pay+fuel’ = input payload and fuel weights; gross weight fallout

if SET_GW=’pay+fuel’, assume SET_UL same (actual SET_UL ignored)

Structure: FltCond 43

KIND_source, source for gross weight or altitude: source must be solved before this condition
calculation order: size missions, size conditions, off design missions, performance conditions

input fuel weight: Wfuel = min(dFuel+fFuel∗Wfuel−cap, Wfuel−cap) +
∑

Nauxtank∗Waux−cap

auxiliary fuel tanks: SET_auxtank used for fallout fuel weight (SET_UL=’pay’)
adjust Nauxtank for first fuel tank system with SET_auxtank > 0
otherwise number of auxiliary fuel tanks fixed at input value

payload: only Wpay used if SET_Wpayload = no details
crew: only dWcrew used if SET_Wcrew = no details
equipment: dNcrew_seat and dNpass_seat require non-zero weight per seat

+ Parameter sweep
SET_sweep int + sweep (0 for none, 1 from list, 2 from range) 0

KIND_sweep int + kind (1 single sweep sequence, 2 nested sweeps) 1

INIT_sweep int + initialize trim (0 for not) 0

nquant_sweep int + number of swept quantities (1 to qsweepmax) 1

quant_sweep(qsweepmax) c*12 + quantity (parameter name)
+ range

sweep_first(qsweepmax) real + first parameter value
sweep_last(qsweepmax) real + last parameter value
sweep_inc(qsweepmax) real + parameter increment

+ list
nsweep(qsweepmax) int + number of values (maximum nsweepmax)
sweep(nsweepmax,qsweepmax) real + parameter values

Parameter sweep: only for performance flight conditions, not sizing flight conditions
maximum total number of values for all conditions is nsweepmax

KIND_sweep: single sweep, simultaneously varying nquant_sweep quantities; or nquant_sweep nested sweeps
Sweeps executed from sweep_last to sweep_first

sweep analyzed using single data structure, only solution for sweep_first saved (last value executed)
sweep_last (first value executed) should be condition that will converge
sign of parameter step determined by sign of (sweep_last-sweep_first); sign of sweep_inc ignored

Structure: FltCond 44

Single sweep sequence: only use nsweep(1)

sweep_inc of first quantity determines number of values, sweep_inc of other quantities not used
INIT_sweep: control/pitch/roll values of trim iteration initialized from previous condition of sweep
Available parameters: quant_sweep = parameter name

GW, dGW, fGW, dPavn, fPavn, dTavn, fTavn, Wpay, dFueln, fFueln, dWcrew, dWequip

Vkts, Mach, ROC, climb, side, pitch, roll, rate_turn, nz_turn, bank_turn, rate_pullup, nz_pullup

ax_linear, ay_linear, az_linear, nx_linear, ny_linear, nz_linear

altitude, dtemp, temp, density, csound, viscosity, HAGL

controln, coll, latcyc, lngcyc, pedal, tilt, Vtipn, Npecn, fPower, fThrust, fCharge, fTorque

DoQ_pay, fDoQ_pay, DoQV_pay, dSLcg, dBLcg, dWLcg, trim_targetn

n = propulsion group (Vtip, Nspec, dPav, fPav), jet group (dTav, fTav), fuel tank system, control number, or trim quantity
n = 1 if absent from quant_sweep

for fPower, value is factor on input fPower for all engine groups, all propulsion groups
for fThrust, value is factor on input fThrust for all jet groups
for fCharge, value is factor on input fCharge for all charge groups
for fTorque, value is factor on input fTorque for for all propulsion groups

45

Chapter 12

Structure: Mission

Variable Type Description Default

+ Mission Profile
title c*100 + title
label c*8 + label

+ Specification
SET_GW c*16 + mission takeoff gross weight WG ’pay+miss’

GW real + input gross weight 0.

dGW real + gross weight increment 0.

fGW real + gross weight factor 1.

SET_Wlimit c*16 + gross weight limit ’none’

Wlimit real + input gross weight limit 0.

SET_UL c*16 + useful load ’pay+miss’

Wpay real + input takeoff payload weight Wpay (Units_pay) 0.

Npass int + number of passengers Npass 0

Wpay_cargo real + cargo Wcargo (Units_pay) 0.

Wpay_extload real + external load Wext−load (Units_pay) 0.

Wpay_ammo real + ammunition Wammo (Units_pay) 0.

Wpay_weapons real + weapons Wweapons (Units_pay) 0.

SET_pay c*16 + payload changes ’delta’

+ fuel tank systems
FIX_missfuel(ntankmax) int + mission fuel weight (0 calculated, 1 fixed) 0

dFuel(ntankmax) real + fuel weight or energy increment 0.

fFuel(ntankmax) real + fuel capacity factor 1.

SET_auxtank(ntankmax) int + auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 3 increase at start and drop, 0 no change) 1

mauxtank(ntankmax) int + tank size changed (–1 first, –2 first size already used, m for m-th size) -1

dNauxtank(ntankmax) int + number tanks added or dropped 1

Nauxtank(nauxtankmax,ntankmax)

int + number of auxiliary fuel tanks Nauxtank (each aux tank size)

Structure: Mission 46

+ fixed useful load
SET_foldkit int + folding kit on aircraft (0 none, 1 present) 1

SET_reserve int + fuel reserve (1 fraction mission fuel, 2 fraction fuel capacity, 3 only mission segments) 1

fReserve real + fuel reserve fraction fres 0.

+ split segments
dist_inc real + distance increment (Units_dist) 100.

time_inc real + time increment (Units_time) 30.

alt_inc real + altitude increment (Units_alt) 2000.

VTO_inc real + takeoff velocity increment 10.

hTO_inc real + takeoff height increment 10.

DESIGN_engine int + design mission for power (1 to use for engine sizing) 1

DESIGN_jet int + design mission for jet thrust (1 to use for jet group sizing) 1

DESIGN_charge int + design mission for charge power (1 to use for charge group sizing) 1

DESIGN_GW int + design mission for DGW (1 to use for DGW calculation) 1

DESIGN_xmsn int + design mission for transmission (1 to use for transmission sizing) 1

DESIGN_tank int + design mission for fuel tank (1 to use for fuel tank capacity) 1

DESIGN_thrust int + design mission for antitorque or aux thrust (1 to use for rotor sizing) 1

label is short description for output
sizing mission: use all parameters

fixed gross weight missions not used to determine DGW (set DESIGN_GW=0)
mission segment not used to size engine or rotor if power margin fixed (max GW, max effort, or trim)
mission segment not used to size transmission if zero torque margin (max GW, max effort, or trim)
mission segment not used for sizing if set MissSeg%SizeZZZ=0

off design mission: not use DESIGN_xx

SET_GW, SET_UL values determine which input parameters used

SET_GW, set mission takeoff gross weight WG:
’DGW’ = design gross weight WD; input (FIX_DGW) or calculated
’SDGW’ = structural design gross weight WSD (may depend on DGW)
’WMTO’ = maximum takeoff gross weight WMTO (may depend on DGW)
’f(DGW)’ = function DGW: fGW*WD+dGW

’f(SDGW)’ = function SDGW: fGW*WSD+dGW

’f(WMTO)’ = function WMTO: fGW*WMTO+dGW

Structure: Mission 47

’input’ = input (use GW)
’maxP’, ’max’ = maximum GW for power required equal specified power: Preq = fPavPav + dPav

at mission segment MaxGW, minimum gross weight of designated segments
min((fPavPG + d) − PreqPG) = 0, over all propulsion groups

’maxQ’ = maximum GW for transmission torque equal limit: zero torque margin
at mission segment MaxGW, minimum gross weight of designated segments
min(Plimit − Preq) = 0, over all propulsion groups, engine groups, and rotors

’maxPQ’, ’maxQP’ = maximum GW for power required equal specified power and transmission torque equal limit
at mission segment MaxGW, minimum gross weight of designated segments
most restrictive of power and torque margins

’maxJ’ = maximum GW for jet thrust required equal specified thrust: Treq = fTavTav + dTav

at mission segment MaxGW, minimum gross weight of designated segments
min((fTavJG + d) − TreqJG) = 0, over all jet groups

’maxPJ’, ’maxQJ’, ’maxPQJ’ = maximum GW for most restrictive of power, torque, and thrust margins
’pay+fuel’ = input payload and fuel weights; gross weight fallout
’pay+miss’ = input payload, fuel weight from mission; gross weight fallout

SET_Wlimit: weight limit for SET_GW=’max’

’none’ = no limit
’f(DGW)’ = function DGW: fGW*WD+dGW

’f(SDGW)’ = function SDGW: fGW*WSD+dGW

’f(WMTO)’ = function WMTO: fGW*WMTO+dGW

’input’ = input (use Wlimit)

SET_UL, set useful load:
’pay’ = input payload weight (Wpay); fuel weight fallout
’fuel’ = input fuel weight (dFuel, fFuel, Nauxtank); initial payload weight fallout
’miss’ = fuel weight from mission; initial payload weight fallout
’pay+fuel’ = input payload and fuel weights; gross weight fallout
’pay+miss’ = input payload, fuel weight from mission; gross weight fallout

if SET_GW=’pay+fuel’ or ’pay+miss’, assume SET_UL same (actual SET_UL ignored)
FIX_missfuel only used for SET_UL=’miss’ or ’pay+miss’, with more than one fuel tank system

Structure: Mission 48

SET_pay, set payload changes: mission segment payload (use of MissSeg%xWpay)
’none’ = no changes
’input’ = value; payload = xWpay (not use Wpay)
’delta’ = increment; payload = (initial payload weight)+(xWPay–xWpay(seg1))
’scale’ = factor; payload = (initial payload weight)*(xWPay/xWpay(seg1))

when SET_GW=’max’ and SET_UL=’fuel’ or ’miss’ (so payload is fallout), payload (from SET_pay and xWpay) must
not be zero at the maximum GW segments

payload: only Wpay and xWpay used if SET_Wpayload = no details

input fuel weight: Wfuel = min(dFuel+fFuel∗Wfuel−cap, Wfuel−cap) +
∑

Nauxtank∗Waux−cap

for fallout fuel weight, this is the initial value for the mission iteration

auxiliary fuel tanks:
SET_auxtank options: fixed; or adjust Nauxtank for each segment; or

increase at mission start, then constant; or increase at start, then drop
for input fuel (SET_UL = ’fuel’ or ’pay+fuel’), start with input Nauxtank, then drop
for mission fuel (SET_UL = ’miss’ or ’pay+miss’), fixed Wfuel or Efuel at start
for fallout (SET_UL = ’pay’), adjust Wfuel with change in Nauxtank (fixed WG − Wpay = WO + Wfuel)
for all SET_UL, adjust WO with change in Nauxtank

fuel tank design mission: Nauxtank=0, allow Wfuel or Efuel to exceed tank capacity

SET_reserve: maximum of fuel for designated reserve mission segments
and fraction of fuel (fresWburn or fresEburn) or fraction of fuel capacity (fresWfuel−cap or fresEfuel−cap)

+ Segment integration
KIND_SegInt int + method (0 segment start, 1 segment midpoint, 2 trapezoidal) 1

+ Mission iteration (supersede Solution input if nonzero)
relax_miss real + relaxation factor (mission fuel) 0.

relax_range real + relaxation factor (range credit) 0.

relax_gw real + relaxation factor (max takeoff GW) 0.

toler_miss real + tolerance (fraction reference) 0.

trace_miss int + trace iteration (0 for none) 0

Structure: Mission 49

+ Mission Segments
nSeg int + number of mission segments (maximum nsegmax) 1

input all mission segments as arrays in single mission namelist

50

Chapter 13

Structure: MissSeg

Variable Type Description Default

+ Segment definition
label_seg c*8 + label ’ ’

kind c*12 + kind ’dist’

dist real + distance D (Units_dist) 0.

time real + time T (Units_time) 0.

+ segment
reserve int + reserve (0 for not) 0

adjust int + adjustable for flexible mission (0 for not) 0

range_credit int + segment number for range credit (0 for no reassignment) 0

ignore int + ignore segment (0 for not) 0

copy int + copy segment (source segment number) 0

split int + split segment (number segments; –1 calculated; 0 for not split) 0

SET_tank(ntankmax) int + segment fuel use or replace 0

dTank(ntankmax) real + fuel increment 0.

fTank(ntankmax) real + fuel factor 1.

SET_refuel(ntankmax) int + refuel (0 not, 1 fill all tanks, 2/8 add fuel, 3/9 drop fuel, 4-5 fill/add below rWfuel, 6-7 fill/add below mWfuel) 0

xWfuel(ntankmax) real + fuel weight or energy change 0.

rWfuel(ntankmax) real + threshold fraction 0.

mWfuel(ntankmax) real + threshold weight or energy 0.

+ gross weight
MaxGW int + maximize gross weight (0 not) 0

dPav(npropmax) real + power increment, each propulsion group 0.

fPav(npropmax) real + power factor, each propulsion group 1.

dTav(njetmax) real + thrust increment, each jet group 0.

fTav(njetmax) real + thrust factor, each jet group 1.

+ useful load
xWpay real + payload weight change (Units_pay) 0.

xNpass int + number of passengers increment δNpass 0

Structure: MissSeg 51

+ fixed useful load
dWcrew real + crew weight increment 0.

dNcrew int + number of crew increment δNcrew 0

dWoful(10) real + other fixed useful load increment (nWoful categories) 0.

dWequip real + equipment weight increment 0.

dNcrew_seat int + crew seat increment δNcrew−seat 0

dNpass_seat int + passenger seat increment δNpass−seat 0

+ kits on aircraft (0 none, 1 present)
SET_extkit(nwingmax) int + wing extension kit 1

SET_wingkit(nwingmax) int + wing kit 1

SET_otherkit int + other kit 0

SET_alt int + altitude at start of segment (0 input, 1 from previous segment, 2 from kSeg_alt) 0

kSeg_alt int + source of altitude 0

+ design mission (0 to not use segment for sizing)
SizeEngine int + power 1

SizeJet int + jet thrust 1

SizeCharge int + charger power 1

SizeGW int + DGW 1

SizeXmsn int + transmission 1

SizeThrust int + antitorque or aux thrust 1

segment kind

kind=’taxi’, ’idle’: taxi/warm-up mission segment (use time)
kind=’dist’: fly segment for specified distance (use dist)
kind=’time’: fly segment for specified time (use time)
kind=’hold’, ’loiter’: fly segment for specified time (use time), fuel burned but no distance added to range
kind=’climb’: climb/descend from present altitude to next segment altitude
kind=’spiral’: climb/descend from present altitude to next segment altitude, fuel burned but no dist added to range
kind=’fuel’: use or replace specified fuel amount, calculate time and distance
kind=’burn’, ’charge’: use or replace specified fuel amount, calculate time but no distance added to range
kind=’takeoff’, ’TO’: takeoff distance calculation

only one of reserve, adjust, range_credit designations for each segment
reserve: time and distance not included in block time and range

Structure: MissSeg 52

range credit: to facilitate specification of range
range calculated for this segment credited to segment = range_credit

range_credit segment must be kind=’dist’, specified distance is for group of segments
actual distance flown in range_credit segment is specified dist less distances from other segments

if credit to earlier segment, iteration required
adjustable: for SET_UL not ’miss’, can adjust one or more segments

if more than one segment adjusted, must be all kind=’dist’ or all kind=’time’/’hold’

adjust time or distance based on fuel burn (proportional to initial values)

split segment: number specified, or calculated from MissParam%dest_inc, time_inc, alt_inc

ignore segment: removed from input; segments using MaxGW, range_credit, FltCond%KIND_source can not be ignored

SET_tank: segment fuel use or replace for kind=’fuel’ or ’burn’; distance and time calculated
SET_tank = 0: no requirement
SET_tank = 1: target dTank+fTank*Wfuel−cap or dTank+fTank*Efuel−cap

SET_tank = 2: target dTank+fTank*Wfuel or dTank+fTank*Efuel

SET_tank = 3: increment dTank+fTank*Wfuel−cap or dTank+fTank*Efuel−cap

SET_tank = 4: increment dTank+fTank*Wfuel or dTank+fTank*Efuel

charge if Ė < 0 (not based on keyword, increment always positive)
target limited by capacity, if target already achieved then no requirement
increment limited by current fuel (use) or capacity minus current fuel (replace)

SET_refuel, refuel: change at start of segment; weight or energy; no contribution to distance or time
SET_refuel = 1: fill all tanks (including any auxiliary tanks installed)
SET_refuel = 2: add fuel xWfuel

SET_refuel = 3: drop fuel xWfuel

SET_refuel = 4: if below fraction rWfuel of fuel capacity (including auxiliary tanks), fill all tanks
SET_refuel = 5: if below fraction rWfuel of fuel capacity (including auxiliary tanks), add xWfuel

SET_refuel = 6: if below mWfuel, fill all tanks
SET_refuel = 7: if below mWfuel, add xWfuel

SET_refuel = 8: add fraction rWfuel of fuel capacity (including auxiliary tanks)
SET_refuel = 9: drop fraction rWfuel of fuel capacity (including auxiliary tanks)
added fuel limited by capacity (unless sizing fuel tank); not used for first segment
xWfuel positive (add or drop determined by SET_refuel)

Structure: MissSeg 53

maximize gross weight: MaxGW designate segments if SET_GW=’maxP’ or ’maxQ’ or ’maxPQ’

climb/descend or spiral segment: end altitude is that of next segment; last segment kind can not be climb or spiral
begin altitude is that input for this segment (SET_alt=0), or altitude of previous segment (SET_alt=1),

payload: only Wpay and xWpay used if SET_Wpayload = no details
xNpass is change from MissParam%Npass

crew: only dWcrew used if SET_Wcrew = no details
equipment: dNcrew_seat and dNpass_seat require non-zero weight per seat

+ Takeoff distance calculation
SET_takeoff c*12 + takeoff segment kind ’none’

Vkts_takeoff real + ground speed or climb speed (knots, CAS) 0.

climb_takeoff real + climb angle relative ground γ (deg) 0.

height_takeoff real + height during climb h (ft or m) 0.

slope_ground real + slope of ground γG (+ for uphill; deg) 0.

friction real + friction coefficient μ 0.04

t_decision real + decision delay after engine failure t1 (sec) 1.5

t_rotation real + rotation time tR (sec) 2.0

nz_transition real + transition load factor nTR 1.2

takeoff distance calculation: set of consecutive kind=’takeoff’ segments
first segment identified by SET_takeoff=’start’ (V = 0)
last segment if next segment is not kind=’takeoff’, or is SET_takeoff=’start’

takeoff segment kind
SET_takeoff=’start’, ’ground run’ (keyword = ground or run), ’engine fail’ (keyword = eng or fail)
SET_takeoff=’liftoff’, ’rotation’, ’transition’, ’climb’, ’brake’

each segment requires appropriate configuration, trim option, max effort specification
not use dist, time, reserve, adjust, range_credit, SET_refuel, MaxGW, SET_alt

max_var=’alt’ not allowed in maximum effort
velocity specification (SET_vel) and HAGL superseded; SET_turn=SET_pullup=0

can split segment (except start, rotation, transition): split height for climb, velocity for others
splitting liftoff or engine failure segment produces additional ground run segments

separate definition of multiple ground run, climb, brake segments allows configuration variations

Structure: MissSeg 54

define takeoff profile in terms of velocities
integrate acceleration vs velocity to obtain time and distance
segments correspond to ends of integration intervals
analysis checks for consistency of input velocity and calculated acceleration
analysis checks for consistency of input height and input/calculated climb angle

takeoff distance definition: includes SET_takeoff=’liftoff’ segment
order: start, ground run, engine failure, ground run, liftoff, rotation, transition, climb
only one liftoff; only one engine failure, rotation, transition (or none)
engine failure before liftoff; all ground run before liftoff, all climb after liftoff

accelerate-stop distance definition: does not have SET_takeoff=’liftoff’ segment
order: start, ground run, engine failure, brake
only one engine failure (or none)

engine failure segment (if present) identifies point for decision delay
until t_decision after engine failure segment, use engine rating, fPower, fraction of engine failure segment
so engine failure segment corresponds to conditions before failure

number of inoperative engines specified by nEngInop for each segment
if engine failure segment present, nEngInop specification must be consistent

55

Chapter 14

Structure: FltState

Variable Type Description Default

+ Flight State
+ Specification

SET_max int + maximum effort performance (maximum 2, 0 to analyze specified condition) 0

max_quant(2) c*12 + quantity ’ ’

max_var(2) c*12 + variable ’ ’

max_limit(2) int + switch quantity if exceed limit (0 not, 1 power margin, 2 torque margin, 3 both) 0

max_Vlimit(2) int + velocity limited by VNE (0 not) 0

fVel(2) real + flight speed factor 1.

SET_vel c*12 + flight speed ’general’

Vkts real + horizontal velocity Vh (TAS or CAS, Units_vel) 0.

Mach real + horizontal velocity M (Mach number) 0.

ROC real + vertical rate of climb Vc (Units_ROC) 0.

climb real + climb angle θV (deg) 0.

side real + sideslip angle ψV (deg) 0.

+ aircraft motion
SET_pitch int + pitch motion specification (0 Aircraft value, 1 FltState input) 1

SET_roll int + roll motion specification (0 Aircraft value, 1 FltState input) 1

pitch real + pitch θF 0.

roll real + roll φF 0.

SET_turn int + turn specification (0 zero, 1 turn rate, 2 load factor, 3 bank angle) 0

rate_turn real + turn rate ψ̇F (deg/sec) 0.

nz_turn real + load factor n (g) 1.

bank_turn real + bank angle φF (deg) 0.

SET_pullup int + pullup specification (0 zero, 1 pitch rate, 2 load factor) 0

rate_pullup real + pitch rate θ̇F (deg/sec) 0.

nz_pullup real + load factor n (g) 1.

SET_acc int + linear acceleration specification (0 zero, 1 acceleration, 2 load factor) 0

ax_linear real + x-acceleration aACx (ft/sec2 or m/sec2) 0.

Structure: FltState 56

ay_linear real + y-acceleration aACy (ft/sec2 or m/sec2) 0.

az_linear real + z-acceleration aACz (ft/sec2 or m/sec2) 0.

nx_linear real + x-load factor increment nLx (g) 0.

ny_linear real + y-load factor increment nLy (g) 0.

nz_linear real + z-load factor increment nLz (g) 0.

altitude real + altitude h (Units_alt) 0.

SET_atmos c*12 + atmosphere specification ’std’

temp real + temperature τ (Units_temp)
dtemp real + temperature increment ΔT (Units_temp) 0.

density real + density ρ
csound real + speed of sound cs

viscosity real + viscosity μ
SET_wind int + wind specification (0 none, 1 headwind, 2 tailwind) 0

dWind real + wind increment, knots (dWind+fWind*altitude) 0.

fWind real + wind gradient, knots (dWind+fWind*altitude) 0.

SET_GE int + ground effect (0 OGE, 1 IGE) 0

HAGL real + height of landing gear above ground level hLG 999.

STATE_LG c*12 + landing gear state ’default’

STATE_control int + aircraft control state 1

SET_control(ncontmax) int + control specification (0 Aircraft value, 1 FltState input) 1

SET_coll int + collective stick 1

SET_latcyc int + lateral cyclic stick 1

SET_lngcyc int + longitudinal cyclic stick 1

SET_pedal int + pedal 1

SET_tilt int + tilt (0 Aircraft value, 1 FltState input, 2 Aircraft conversion schedule) 1

control(ncontmax) real + aircraft controls
coll real + collective stick cAC0 0.

latcyc real + lateral cyclic stick cACc 0.

lngcyc real + longitudinal cyclic stick cACs 0.

pedal real + pedal cACp 0.

tilt real + tilt αtilt 0.

SET_comp_control int + use component control (0 for c = TcAC ; 1 for c = TcAC + c0) 1

SET_cg int + center of gravity specification (0 baseline plus increment, 1 input) 0

dSLcg real + stationline 0.

Structure: FltState 57

dBLcg real + buttline 0.

dWLcg real + waterline 0.

+ Specification, each propulsion group
SET_Vtip(npropmax) c*12 + rotor tip speed specification ’hover’

Vtip(npropmax) real + tip speed
Mtip(npropmax) real + tip Mach number Mtip

mu_Vtip(npropmax) real + tip speed from μ
Mat_Vtip(npropmax) real + tip speed from Mat

Nrotor(npropmax) real + rotor speed (rpm)
Nspec(npropmax) real + engine speed (rpm)
STATE_gear(npropmax) int + drive system state 1

rating_ds(npropmax) c*12 + drive system rating ’ ’

fTorque(npropmax) real + fraction of rated drive system torque limit fQ (0. to 1.+) 1.

SET_Plimit(npropmax) int + drive system limit (0 not applied to power available) 1

SET_Qlimit_rs(npropmax) int + rotor shaft limit (0 not used for torque margin) 1

SET_Pmargin(npropmax) int + power and torque margin (0 not used for maximum effort) 1

dPacc(npropmax) real + accessory power increment dPacc 0.

+ Specification, each engine group
rating(nengmax) c*12 + engine rating ’MCP’

fPower(nengmax) real + fraction of rated engine power available fP (0. to 1.+) 1.

nEngInop(nengmax) int + number of inoperative engines Ninop 0

SET_Preq(nengmax) int + power required (1 distributed, 2 fixed A, 3 fixed APav , 4 fixed APeng) 1

STATE_IRS(nengmax) int + IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust) 0

+ Specification, each jet group
rating_jet(njetmax) c*12 + jet rating ’MCT’

fThrust(njetmax) real + fraction of rated jet thrust available fT (0. to 1.+) 1.

nJetInop(njetmax) int + number of inoperative jets Ninop 0

SET_Jreq(njetmax) int + thrust required (1 from component, 2 fixed A, 3 fixed ATav , 4 fixed ATjet) 2

STATE_IRS_jet(njetmax) int + IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust) 0

+ Specification, each charge group
rating_charge(nchrgmax) c*12 + charger rating ’MCP’

fCharge(nchrgmax) real + fraction of rated charger power available fC (0. to 1.+) 1.

nChrgInop(nchrgmax) int + number of inoperative chargers Ninop 0

SET_Creq(nchrgmax) int + power required (2 fixed A, 3 fixed APav , 4 fixed APchrg) 2

Structure: FltState 58

dPeq(ntankmax) real + Equipment power increment dPeq, each fuel tank 0.

+ Specification, each fuel tank (battery)
ffade(ntankmax) real + battery capacity fade factor 1.

Tcell(ntankmax) real + cell temperature (deg C) 20.

fcurrent(ntankmax) real + maximum current (fraction xmbd or xCCmax) 1.

+ Specification, each rotor
STOP_rotor(nrotormax) int + rotor stop/stow (0 not, 1 stop, 2 stop and stow, 3 stop as wing) 0

STATE_deice int + Deice system state (0 off) 0

+ Performance
DoQ_pay real + payload forward flight drag increment D/q (Units_drag) 0.

fDoQ_pay real + payload drag increment scaling with weight Δ(D/q)/Wpay (Units_drag) 0.

DoQV_pay real + payload vertical drag increment D/q (Units_drag) 0.

+ Rotor (nonzero to supersede rotor model)
Ki(nrotormax) real + induced power factor κ 0.

cdo(nrotormax) real + profile power mean cd 0.

MODEL_Ftpp(nrotormax) int + inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory) 0

MODEL_Fpro(nrotormax) int + inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect) 0

KIND_control(nrotormax) int + control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP) 0

+ Engine group (nonzero to supersede engine model)
sfc_engine(nengmax) real + specific fuel consumption 0.

Kffd_engine(nengmax) real + deterioration factor 0.

eta_motor(nengmax) real + motor-generator efficiency 0.

+ Jet group (nonzero to supersede jet model)
sfc_jet(njetmax) real + specific fuel consumption 0.

Kffd_jet(njetmax) real + deterioration factor 0.

+ Trim solution
STATE_trim c*12 + aircraft trim state (match IDENT_trim, ’none’ for no trim) ’none’

trim_target(mtrimmax) real + trim quantity targets
+ Iterations (supersede Solution input if nonzero)
+ relaxation factor

relax_rotor real + all rotors 0.

relax_trim real + trim 0.

relax_fly(2) real + maximum effort 0.

relax_maxgw real + maximum gross weight 0.

Structure: FltState 59

+ tolerance (fraction reference)
toler_rotor real + all rotors 0.

toler_trim real + trim 0.

toler_fly(2) real + maximum effort 0.

toler_maxgw real + maximum gross weight 0.

+ reinitialize aircraft controls (0 no, 1 force retrim)
init_trim int + trim 0

init_fly int + maximum effort 0

+ variable perturbation amplitude (fraction reference, 0. for no limit)
perturb_trim real + trim 0.

perturb_fly(2) real + maximum effort 0.

perturb_maxgw real + maximum gross weight 0.

+ maximum derivative amplitude (0. for no limit)
maxderiv_fly(2) real + maximum effort 0.

maxderiv_maxgw real + maximum gross weight 0.

+ maximum increment fraction (0. for no limit)
maxinc_fly(2) real + maximum effort 0.

maxinc_maxgw real + maximum gross weight 0.

+ solution method
method_flymax(2) int + maximum effort 0

+ trace iteration (0 for none)
trace_rotor int + all rotors 0

trace_trim int + trim (2 for component controls) 0

trace_fly(2) int + maximum effort 0

trace_maxgw int + maximum gross weight 0

maximum effort performance: one or two quantity/variable identified; first is inner loop
two variables must be unique
two variables can be identified for same maximized quantity (endurance, range, climb)
quantity identified by max_quant maximized for endurance, range, climb, or ceiling; otherwise driven to zero

ROC or altitude can be outer loop quantity only if it is also inner loop variable
fVel is only used for max_var=’speed’ or ’ROC’

ceiling calculation should use ’Pmargin’/’alt’ as inner loop, ’power’/’speed’ as outer loop
best range calculation often requires maxinc_fly=0.1 for convergence

Structure: FltState 60

ROC for zero power margin initialized based on level flight power margin if input ROC=0

max_quant=’rotor(s) n’ uses Rotor%CTs_steady, max_quant=’rotor(t) n’ uses Rotor%CTs_tran

max_quant=’rotor(e) n’ uses equation for rotor thrust capability (Rotor%K0_limit and Rotor%K1_limit)
if energy burned (not weight) or multiple fuels, use equivalent fuel flow obtained from weighted energy flow
max_var=’Vtip’ or ’Nspec’ requires FltAircraft%SET_Vtip=’input’

if trailing “n” is absent, use first component (n=1)

max_limit: switch quantity to power and/or torque margin if margin negative; useful for best range

description max_quant

endurance ’end’ maximum (1/fuelflow)
range (high side) ’range’ 0.99 maximum (V /fuelflow)
range ’range(100)’ maximum (V /fuelflow)
range (low side) ’range(low)’ 0.99 maximum (V /fuelflow), low side
range (high side), ground speed ’rangeVg’ 0.99 maximum (Vg/fuelflow)
range, ground speed ’range(100)Vg’ maximum (Vg/fuelflow)
range (low side), ground speed ’range(low)Vg’ 0.99 maximum (Vg/fuelflow), low side
climb or descent rate ’climb’, ’ROC’ maximum (ROC)
climb rate (power) ’power’ maximum (1/Power)
climb or descent angle ’angle’ maximum (ROC/V)
climb angle (power) ’power/V’ maximum (V /Power)
ceiling ’alt’ maximum (altitude)
power margin ’P margin’ min(Pav − Preq) = 0 (all propulsion groups)
torque margin ’Q margin’, min(Qlimit − Qreq) = 0 (all limits)
jet thrust margin ’J margin’, min(Tav − Treq) = 0 (all jet groups)
power and torque margin ’PQ margin’, most restrictive
power and thrust margin ’PJ margin’, most restrictive
torque and thrust margin ’QJ margin’, most restrictive
power, torque, thrust margin ’PQJ margin’, most restrictive
battery power margin ’B margin’ min(Pmax − |Ėbatt|) = 0 (all fuel tanks)
rotor thrust margin ’rotor(t) n’ (CT /σ)max − |CT /σ| = 0 (transient)
rotor thrust margin ’rotor(s) n’ (CT /σ)max − |CT /σ| = 0 (sustained)
rotor thrust margin ’rotor(e) n’ (CT /σ)max − |CT /σ| = 0 (equation)
wing lift margin ’stall n’ CLmax − CL = 0

Structure: FltState 61

description max_var

horizontal velocity ’speed’ times fVel

vertical rate of climb ’ROC’ times fVel

aircraft velocity ’side’ sideslip angle
altitude ’alt’

aircraft angular rate ’pullup’, ’turn’ Euler angle rates
aircraft acceleration ’xacc’, ’yacc’, ’zacc’ linear, airframe axes
aircraft acceleration ’xaccI’, ’yaccI’, ’zaccI’ linear, inertial axes
aircraft acceleration ’xaccG’, ’yaccG’, ’zaccG’ linear, ground axes
aircraft control match IDENT_control

aircraft orientation ’pitch’, ’roll’ body axes relative inertial axes
propulsion group tip speed ’Vtip n’

propulsion group engine speed ’Nspec n’

SET_vel, velocity specification:
’general’ = general (use Vkts=horizontal, ROC, side)
’hover’ = hover (zero velocity)
’vert’ = hover or VROC (use ROC; Vkts=0, climb=0/+90/–90)
’right’ = right sideward (use Vkts, ROC; side=90)
’left’ = left sideward (use Vkts, ROC; side=–90)
’rear’ = rearward (use Vkts, ROC, side=180)
’Vfwd’ = general (use Vkts=forward velocity, ROC, side)
’Vmag’ = general (use Vkts=velocity magnitude, ROC, side)
’climb’ = general (use Vkts=velocity magnitude, climb, side)
’VNE’ = never-exceed speed
’+Mach’ = use Mach not Vkts

’+CAS’ = Vkts is CAS not TAS
velocities: forward Vf = Vh cos(side), side Vs = Vh sin(side), climb Vc = Vh tan(climb)

Structure: FltState 62

aircraft motion:
orientation velocity relative inertial axes defined by climb and sideslip angles (θV , ψV)

sideslip positive aircraft moving to right, climb positive aircraft moving up
specify horizontal velocity, vertical rate of climb, and sideslip angle

orientation body relative inertial axes defined by Euler angles, yaw/pitch/roll (ψF , θF , φF)
yaw positive to right, pitch positive nose up, roll positive to right

SET_PITCH and SET_roll, pitch and roll motion specification:
Aircraft values (perhaps function speed) or flight state input
initial values specified if motion is trim variable; otherwise fixed for flight state

SET_turn, bank angle and load factor in turn: use turn rate, load factor, or bank angle
tan(roll) =

√
n2 − 1 = (turn)V/g; calculated using input Vkts for flight speed

SET_pullup, load factor in pullup: use pullup rate or load factor
n = 1 + (pullup)V/g; calculated using input Vkts for flight speed

SET_acc, linear acceleration: use acceleration or load factor

SET_atmos, atmosphere specification:
’std’ = standard day at specified altitude (use altitude)
’polar’ = polar day at specified altitude (use altitude)
’trop’ = tropical day at specified altitude (use altitude)
’hot’ = hot day at specified altitude (use altitude)
’xxx+dtemp’ = specified altitude, plus temperature increment (use altitude, dtemp)
’xxx+temp’ = specified altitude, and specified temperature (use altitude, temp)
’hot+table’ = hot day table at specified altitude (use altitude)
’dens’ = input density and temperature (use density, temp)
’input’ = input density, speed of sound, and viscosity (use density, csound, viscosity)
’notair’ = input, not air on earth (use density, csound, viscosity)

SET_GE: use HAGL; out-of-ground-effect (OGE) if rotor more than 1.5Diameter above ground
height rotor = landing gear above ground + hub above landing gear = HAGL + (WL_hub–WL_gear+d_gear)

STATE_LG: ’default’ (based on retraction speed), ’extend’, ’retract’ (keyword = def, ext, ret)

Structure: FltState 63

STATE_control, aircraft control state: identifies control matrix
STATE_control=0 to use conversion schedule, STATE_control=n (1 to nstate_control) to use state#n

SET_control, control specification: Aircraft values (perhaps function speed) or flight state input
coll/latcyc/lngcyc/pedal/tilt specification and values put in SET_control and control, based on IDENT_control

initial values specified if control is trim variable; otherwise fixed for flight state
SET_control=0 to use Aircraft%cont and Aircraft%Vcont; 1 to use FltState%control

SET_tilt: 0 to use Aircraft%tilt and Aircraft%Vtilt; 1 to use FltState%tilt

2 to use conversion speeds Aircraft%Vconv_hover and Aircraft%Vconv_cruise

SET_cg, center of gravity position: input for this flight state; or
baseline cg position plus shift due to nacelle tilt, plus input cg increment

tip speed, engine, transmission: for each propulsion group
SET_Vtip, primary rotor tip speed: for primary rotor of propulsion group

’input’ = use input Vtip for this flight state
’Mtip’ = use input Mtip for this flight state
’Nrotor’ = use input Nrotor (rpm) for this flight state
’ref’ = use Vtip_ref (for drive state STATE_gear)
’speed’ = use default Vtip(speed)

’conv’ = use conversion schedule (Vtip_hover or Vtip_cruise)
’hover’ = use default Vtip_hover = Vtip_ref(1)

’cruise’, ’man’, ’OEI’, ’xmsn’ = use default Vtip_cruise, Vtip_man, Vtip_oei, Vtip_xmsn

’mu’ = use tip speed from μ (mu_Vtip)
’Mat’ = use tip speed from Mat (Mat_Vtip)
’xxx+Mat’ = for tip speed limited by Mat (Mat_Vtip)
’xxx+diam’ = for variable diameter rotor, scale Vtip with radius ratio
without rotors, specify engine group speed by SET_Vtip=’input’ (use input Nspec) or ’ref’

STATE_gear, drive system state: identifies gear ratio set for multiple speed transmissions
state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n

drive system rating: match rating designation in propulsion group; blank for same as rating of first engine group
rating_ds=’speed’ to use schedule with speed
if Propulsion%nrate_ds≤ 1, drive system rating not used

fTorque reduces drive system torque limit (fTorque = 0. to 1.; > 1 is an acceptable input)
SET_Plimit: usually should not be applied for flight conditions and mission segments that size transmission

Structure: FltState 64

engine rating: match rating designation in engine model; e.g. ’ERP’,’MRP’,’IRP’,’MCP’

or rating=’idle’ or rating=’takeoff’

fPower reduces engine group power available (fPower = 0. to 1.; > 1 is an acceptable input)
the engine model gives the power available, accounting for installation losses and mechanical limits

then the power available is reduced by the factor fPower

next torque limits are applied (unless SET_Plimit=off), first engine shaft limit and then drive system limit
for SET_GW=’maxP’ or ’maxPQ’ (flight condition or mission), the gross weight is determined
such that PreqPG = fPavPG + d

either fPower or fPav can be used to reduce the available power
with identical results, unless the engine group is operating at a torque limit

nEngInop, number inoperative engines: 1 for one engine inoperative (OEI), maximum nEngine

SET_Preq: distribution of propulsion group power required among engine groups
distributed (SET_Preq=1): PreqEG from PreqPG, proportional Peng

except for rotor reaction drive, PreqEG from power needed to supply reaction force
and for fuselage or wing flow control, PreqEG from power needed to supply momentum flux

fixed options use engine group amplitude control variable A, for each operable engine
engine group that consumes shaft power (generator or compressor) only uses fixed option
engine group that produces no shaft power (converted to turbo jet or reaction drive) only uses fixed option

EngineGroup%SET_Power, fPsize defines power distribution for sizing

jet rating: match rating designation in jet model; or rating_jet=’idle’ or rating_jet=’takeoff’

fThrust reduces jet group thrust available (fThrust = 0 to 1; > 1 is an acceptable input)
nJetInop, number inoperative jets: 1 for one jet inoperative (OEI), maximum nJet

SET_Jreq: fixed options use jet group amplitude control variable A, for each operable jet
from component (SET_Jreq=1): only for reaction drive or flow control, TreqJG from required FGreq

charger rating: match rating designation in charger model; or rating_charge=’idle’ or rating_charge=’takeoff’

fCharge reduces charger group power available (fCharge = 0 to 1; > 1 is an acceptable input)
nChrgInop, number inoperative chargers: 1 for one charger inoperative (OEI), maximum nCharge

SET_Creq: use charge group amplitude control variable A, for each operable charger

STOP_rotor: only for stoppable rotor; if stopped, model sets KIND_control=1, MODEL_Ftpp=1, MODEL_Fpro=3

it is neither required nor appropriate to set small or zero tip speed for a stopped rotor

Structure: FltState 65

STATE_trim, aircraft trim state: match IDENT_trim, ’none’ for no trim
identifies trim variables and quantities
ACTION=’configuration’ defines trim states with following identification:

IDENT_trim=’free’, ’symm’, ’hover’, ’thrust’, ’rotor’, ’windtunnel’, ’power’, ’ground’, ’comp’

requirement for trim_target depends on designation of Aircraft%trim_quant

66

Chapter 15

Structure: Solution

Variable Type Description Default

+ Solution Procedures
title c*100 + title
notes c*1000 + notes

+ Rotor
+ convergence control

niter_rotor(nrotormax) int + maximum number of iterations 40

toler_rotor(nrotormax) real + tolerance (deg) .01

relax_rotor(nrotormax) real + relaxation factor .5

deriv_rotor(nrotormax) int + derivative (1 first order, 2 second order) 1

maxinc_rotor(nrotormax) real + maximum increment amplitude (0. for no limit) 4.

trace_rotor(nrotormax) int + trace iteration (0 for none) 0

+ Trim
+ convergence control

niter_trim int + maximum number of iterations 40

toler_trim real + tolerance (fraction reference) .001

relax_trim real + relaxation factor .5

+ perturbation identification of derivative matrix
deriv_trim int + perturbation (1 first order, 2 second order) 1

mpid_trim int + number of iterations between identification (0 for never recalculated) 0

perturb_trim real + variable perturbation amplitude (fraction reference) .002

init_trim int + reinitialize aircraft controls in maximum effort iteration (0 no, 1 force retrim) 0

start_trim int + initialize controls from solution of previous case (0 no) 0

trace_trim int + trace iteration (0 for none, 2 for component controls) 0

start_trim=1: initialize FltAircraft%control from FltAircraft%control_trim of previous case
require INIT_input=INIT_data=2 or read solution file; and same missions and conditions as previous case
requirements not checked

Structure: Solution 67

+ Maximum effort
method_fly int + method (1 secant, 2 false position) 1

method_flymax int + maximization method (1 secant, 2 false position, 3 golden section search, 4 curve fit) 3

+ convergence control
niter_fly int + maximum number of iterations 80

toler_fly real + tolerance (fraction reference) .002

relax_fly real + relaxation factor .5

perturb_fly real + variable perturbation amplitude (fraction reference) .05

maxderiv_fly real + maximum derivative amplitude (0. for no limit) 0.

maxinc_fly real + maximum increment fraction (0. for no limit) 0.

rfit_fly real + extent of curve fit (fraction maximum) .98

nfit_fly int + order of curve fit (2 quadradic, 3 cubic) 3

init_fly int + reinitialize aircraft controls (0 no, 1 force retrim) 0

trace_fly int + trace iteration (0 for none) 0

+ Maximum gross weight (flight condition or mission takeoff)
method_maxgw int + method (1 secant, 2 false position) 1

+ convergence control
niter_maxgw int + maximum number of iterations 40

toler_maxgw real + tolerance (fraction reference) .002

relax_maxgw real + relaxation factor .5

perturb_maxgw real + variable perturbation amplitude (fraction reference) .02

maxderiv_maxgw real + maximum derivative amplitude (0. for no limit) 0.

maxinc_maxgw real + maximum increment fraction (0. for no limit) 0.

trace_maxgw int + trace iteration (0 for none) 0

+ Mission
+ convergence control

niter_miss int + maximum number of iterations 40

toler_miss real + tolerance (fraction reference) .01

relax_miss real + relaxation factor (mission fuel) 1.

relax_range real + relaxation factor (range credit) 1.

relax_gw real + relaxation factor (max takeoff GW) 1.

trace_miss int + trace iteration (0 for none) 0

Structure: Solution 68

+ Size aircraft
+ convergence control

niter_size int + maximum number of iterations (performance loop) 40

niter_param int + maximum number of iterations (parameter loop) 40

toler_size real + tolerance (fraction reference) .01

+ relaxation factors
relax_size real + power or radius 1.

relax_DGW real + gross weight 1.

relax_xmsn real + drive system limit 1.

relax_wmto real + WMTO and SDGW 1.

relax_tank real + fuel tank capacity 1.

relax_thrust real + rotor thrust 1.

+ maximum increment fraction (0. for no limit)
maxinc_size real + power or radius 0.

maxinc_DGW real + gross weight 0.

maxinc_xmsn real + drive system limit 0.

maxinc_wmto real + WMTO and SDGW 0.

maxinc_tank real + fuel tank capacity 0.

maxinc_thrust real + rotor thrust 0.

trace_size int + trace iteration (0 for none, 2 for power) 0

with niter_param=1, parameter iteration is part of performance loop (can be faster than niter_param > 1)

+ Case
trace_case int + trace operation (0 for none, 1 trace, 2 for all iterations) 1

trace_start int + counter at start trace of iterations 0

use trace_case=2 to identify point at which analysis diverges
counter written if trace_case=1 or 2; trace of iterations suppressed until counter > trace_start

then turn on trace selectively for mission/segment/condition

Structure: Solution 69

+ Flight condition and mission segment
toler_check real + check Preq, Qlimit, Wfuel (fraction reference) .005

+ Tolerance and perturbation scales
KIND_Wscale int + weight scale (1 design gross weight, 2 nominal CT /σ) 1

KIND_Pscale int + power scale (1 aircraft power, 2 derived from weight scale) 1

KIND_Lscale int + length scale (1 rotor radius, 2 wing span, 3 fuselage length) 1

scaleRotor int + rotor number 1

scaleWing int + wing number 1

+ External solution procedure (0 for internal)
SETextsol_size int + size iteration 0

SETextsol_miss int + mission iteration 0

SETextsol_trim int + trim iteration 0

SETextsol_rotor int + rotor iteration 0

for external solution procedure (SETextsol = 1), suppress iteration and calculate residual
the solution problem (such as size parameters, trim variables) must still be defined
residuals (and error ratios) are in structures SizeParam, MissParam, FltAircraft, FltRotor

with external solution for maximum gross weight or maximum effort, there is no residual; do not specify internal
iteration

70

Chapter 16

Structure: Cost

Variable Type Description Default

+ Cost
title c*100 + title
notes c*1000 + notes

+ Inflation
MODEL_inf int + model (1 only input factor, 2 CPI, 3 DoD) 3

year_inf int + year for internal inflation factor (0 for current year) 0

inflation real + inflation factor (per cent, relative 1994 or year_inf) 100.00

EXTRAP_inf int + year beyond CPI/DoD table data (0 error, 1 extrapolate factor) 1

inflation: Fi multiplies airframe purchase price and maintenance cost
factor inflation always used, even with internal table
CPI or DoD table: Fi = inflation×

(
Ftable(year_inf)/Ftable(1994)

)

input factor: Fi = inflation (relative 1994)
cost factors and rates include technology and inflation, correspond to year_inf

+ Cost
MODEL_cost int + model (0 none, 1 cost, 2 only CTM purchase price) 1

FuelPrice(ntankmax) real + fuel price Gfuel ($/gallon or $/liter) 5.0

EnergyPrice(ntankmax) real + energy price Genergy ($/MJ or $/kWh, Units_energy) 0.04

EnergyCredit(ntankmax) real + credit for generated energy ($/MJ or $/kWh, Units_energy) 0.

Npass int + number of passengers Npass 100

+ Purchase Price, airframe composite construction
rComp real + additional cost rate rcomp for composite construction ($/lb or $/kg) 0.

fWcomp_body real + composite weight in body (fraction body weight) 0.

Structure: Cost 71

fWcomp_tail real + composite weight in tail (fraction tail weight) 0.

fWcomp_pylon real + composite weight in pylon (fraction pylon weight) 0.

fWcomp_wing real + composite weight in wing (fraction wing weight) 0.

KIND_maint int + Maintenance factors (0 input, 1 best practice, 2 average practice) 1

+ Battery
rBatt real + purchase cost factor rbatt, battery ($/MJ or $/kWh, Units_energy) 50.

Mbatt real + battery maintenance factor Mbatt ($/MJ or $/kWh per flight hour, Units_energy) .10

equivalent energy price for fuel burned: $/MJ∼=($/gal)/126.2 (based on 42.8 MJ/kg and 6.5 lb/gal of JP-4/JP-8)
EnergyCredit=0. if no credit for generated energy

cost factors and rates include technology and inflation, correspond to year_inf

rComp negative for cost reduction

battery: rBatt and Mbatt are for actual tank capacity (including unusable SOC)
maintenance includes replacement, for just replacement Mbatt=rBatt/(time-between-replacement)

+ Direct Operating Cost
BlockHours real + available block hours per year B 3751.

NonFlightTime real + non-flight time per trip TNF (min) 12.

DepPeriod real + depreciation period D (years) 15.

LoanPeriod real + loan period L (years) 15.

IntRate real + interest rate i (%) 8.

ResidValue real + residual value V (%) 10.

Spares real + spares per aircraft S (% purchase price) 25.

LoadFactor real + passenger load factor (%) 75.

+ DOC model
MODEL_DOC_price int + purchase price model for DOC (1 CTM, 2 Scott) 1

MODEL_DOC_maint int + maintenance cost model for DOC (1 CTM, 2 Scott) 1

MODEL_DOC_cdi int + crew+depreciation+insurance estimate (1 total only, 2 separate components) 2

Kcdi real + crew+depreciation+insurance factor Kcdi 1.0

Kcrew real + crew cost factor Kcrew 1.0

Structure: Cost 72

Kins real + insurance cost Kins (fraction aircraft cost) .0056

KETS real + emissions trading scheme cost KETS ($/kg CO2) .02

+ Technology Factors
TECH_cost_af real + airframe χAF 0.87

TECH_cost_maint real + maintenance χmaint 1.0

TECH_cost_cmpnt real + components χcmpnt 1.0

+ CTM rotorcraft cost model
+ Purchase Price

MODEL_CTM int + CTM model (1 original, 2 original with Scott Modern Complexity factor, 3 revisited) 1

KIND_engine int + engine (1 turbine, 2 piston) 1

fmotor real + weighting factor for electric motor or generator 0.5

+ systems (fixed useful load)
rFCE real + cost factor rFCE, flight control electronics ($/lb or $/kg) 10000.

rMEP real + cost factor rMEP, mission equipment package ($/lb or $/kg) 10000.

+ Maintenance
MODEL_maint int + maintenance cost estimate (1 total only, 2 separate components) 2

rLabor real + labor rate ($ per hour) 160.

MMHperFH real + maintenance man hours per flight hour 0.

Mlabor real + MMH/FH factor Mlabor 0.0017

Mparts real + parts factor Mparts 34.

Mengine real + engine overhaul factor Mengine 1.45

Mmajor real + major periodic maintenance factor Mmajor 18.

labor rate includes inflation, corresponds to year_inf

cost factors and rates include technology and inflation, correspond to year_inf

current best practice: Mlabor=0.0017, Mparts=34, Mengine=1.45, Mmajor=18

current average practice: Mlabor=0.0027, Mparts=56, Mengine=1.74, Mmajor=28

maintenance man hours per flight hour calculated from sum of fixed term (MMHperFH) and term scaling with weight
empty (Mlabor)

Structure: Cost 73

+ Scott rotorcraft component cost model
+ Flyaway Price
+ production

year_proc int + year of procurement (0 same as year_inf, not used if <1955) 0

Nprod int + aircraft production number (0 not used) 0

Nlot int + number aircraft in this production lot (0 not used) 0

Nprod_eng int + engine production number (0 not used) 0

+ systems
drFCE real + cost factor ΔrFCE, additional flight control electronics ($/lb or $/kg) 0.

drMEP real + cost factor ΔrMEP, additional mission equipment package ($/lb or $/kg) 0.

+ component cost models
f_sec real + fuselage, fraction of secondary fuselage weight 0.35

KIND_fuse_boom int + fuselage, includes tail boom (0 not) 1

KIND_fuse_dev int + fuselage, early LRIP of new design (0 not) 0

Pr_avg real + engine, stage-averaged compressor pressure ratio 1.6

TBO_eng real + engine, time between overhaul (hours) 2000.

KIND_eng_mar int + engine, marinized (0 not) 0

KIND_eng_FADEC int + engine, FADEC equipped (0 not) 1

KIND_motor_PM int + motor, complexity (1 induction, 2 permanent magnet) 2

Kcompress real + compressor cost factor 0.1

Kjet real + jet cost factor 0.1

Kchrg real + charger cost factor 0.1

KIND_xmsn_rg int + transmission, engine group includes reduction gearbox (0 direct drive) 0

KIND_xmsn_mar int + transmission, marinized (0 not) 0

KIND_av_dev int + avionics, early LRIP of new package (0 not) 0

KIND_av_UAV int + avionics, unmanned medium to long endurance aircraft (0 not, 1 LOS, 2 BLOS) 0

f_env real + environmental group, fraction prime equipment cost 0.03

f_arm_furn_LH real + armament provisions, furnishings, and load and handling groups, fraction fuselage cost 0.12

KIND_int_SE_prof int + integration and assembly, systems engineering, and profit (1 government, 2 commercial) 2

f_int_SE_prof real + integration and assembly, systems engineering, and profit (commercial), fraction prime equipment cost 0.25

+ cost adjustment factors
xwing real + wing 1.0

xrotor real + all rotors 1.0

xfuse real + fuselage 1.0

Structure: Cost 74

xeng(nengmax) real + engine group 1.0

xjet(njetmax) real + jet group 1.0

xchrg(nchrgmax) real + charge group 1.0

xxmsn real + drive system 1.0

xav real + avionics 1.0

xss real + small structures 1.0

xpropsys real + propulsion systems 1.0

xfc real + flight controls 1.0

xelec real + electrical 1.0

+ Maintenance
+ maintenance cost factors

Slabor real + personnel 1.0

KIND_labor_UAV int + personnel cost factor, UAV (0 not) 0

Scsi real + continuing system improvements 0.0621

Srotor real + all rotors 0.0219

Sxmsn(npropmax) real + drive system 0.0178

Seng(nengmax) real + engine group 0.1412

Sjet(njetmax) real + jet group 0.1

Schrg(nchrgmax) real + charge group 0.1

Sacsys real + aircraft systems 0.0978

Sinspect real + inspections 0.1234

TBR_motor real + motor time-between-replacement (hours) 5000.

funsched real + unscheduled maintenance fraction 0.25

Ccrew not used in DOC with Scott maintenance model (included in personnel cost)

maintenance cost factors
current best practice: Srotor=0.0219, Sxmsn=0.0178, Seng=0.1412 (turboshaft), Seng=0.0941 (reciprocating)

Sacsys=0.0978, Sinspect=0.1234

current average practice: Srotor=0.0514, Sxmsn=0.0417, Seng=0.2256 (turboshaft), Seng=0.1506 (reciprocating)
Sacsys=0.1983, Sinspect=0.3086

continuing system improvements: Scsi=0.1071 (UAV), Scsi=0.0621 (other)

75

Chapter 17

Structure: Emissions

Variable Type Description Default

+ Emissions
title c*100 + title
notes c*1000 + notes

MODEL_emissions int + Emissions model (0 none, 1 ETS and ATR, 2 only ETS) 1

+ Emissions Trading Scheme (ETS)
Kfuel(ntankmax) real + CO2 emissions from fuel used, Kfuel (kg/kg) 3.75

Kenergy(ntankmax) real + CO2 emissions from energy used, Kenergy (kg/MJ or kg/kWh, Units_energy) 0.14

+ Average Temperature Response (ATR)
H real + aircraft operating lifetime H (yr) 30.

U real + aircraft utilization rate U (missions/yr) 350.

r real + ATR discount rate r 0.03

tmax real + ATR integration period tmax (yr) 500.

+ emission index (kg/kg)
EI_CO2(ntankmax) real + carbon dioxide, EICO2 3.16

EI_H2O(ntankmax) real + water vapor, EIH2O 1.26

EI_SO4(ntankmax) real + sulphates, EISO4 0.0002

EI_soot(ntankmax) real + soot, EIsoot 0.00004

EI_NOx(ntankmax) real + nitrogen oxides, EINOx
0.01

MODEL_NOx(ntankmax) int + turboshaft engine NOx emission model (0 input EINOx
, 1 DLR, 2 Swiss) 1

KIND_NOx(ntankmax) int + model parameters (0 input, 1 low emissions, 2 high emissions) 1

KEI0(ntankmax) real + DLR model, KEI0 0.0036739

KEI1(ntankmax) real + DLR model, KEI1 0.00748

KEIs(ntankmax) real + Swiss model, KEIs 0.004

fAIC real + aviation induced cloudiness factor, fAIC 1.0

+ energy emission factor (kg/MJ or kg/kWh, Units_energy)
K_CO2(ntankmax) real + carbon dioxide, KCO2 0.14

K_H2O(ntankmax) real + water vapor, KH2O 0.

Structure: Emissions 76

K_SO4(ntankmax) real + sulphates, KSO4 0.

K_soot(ntankmax) real + soot, Ksoot 0.

K_NOx(ntankmax) real + nitrogen oxides, KNOx
0.

SET_credit int + Emissions credit for energy generated (0 for none) 1

EI default values are for turboshaft engine

emission index (EI and Kfuel) only used for tanks that store and use fuel as weight (SET_burn=1)
energy emission factor (K and Kenergy) only used for tanks that store and use fuel as energy (SET_burn=2)

ATR discount rate: r ≥ 100000 evaluated as r = ∞

77

Chapter 18

Structure: Aircraft

Variable Type Description Default

+ Aircraft
title c*100 + title
notes c*1000 + notes
config c*16 + Configuration ’helicopter’

config: identifies rotorcraft configuration
config = ’rotorcraft’, ’helicopter’, ’tandem’, ’coaxial’, ’tiltrotor’, ’compound’, ’multicopter’, ’airplane’

+ Aircraft Controls
ncontrol int + number of aircraft controls (maximum ncontmax) 4

IDENT_control(ncontmax) c*16 + labels of aircraft controls
nstate_control int + number of control states (maximum nstatemax) 1

pilot’s controls (control number)
+ control values (function speed)

nVcont(ncontmax) int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
nVcoll int + collective stick 0

nVlatcyc int + lateral cyclic stick 0

nVlngcyc int + longitudinal stick 0

nVpedal int + pedal 0

nVtilt int + tilt 0

cont(nvelmax,ncontmax) real + values
coll(nvelmax) real + collective stick cAC0

latcyc(nvelmax) real + lateral cyclic stick cACc

lngcyc(nvelmax) real + longitudinal cyclic stick cACs

pedal(nvelmax) real + pedal cACp

tilt(nvelmax) real + tilt αtilt

Structure: Aircraft 78

Vcont(nvelmax,ncontmax) real + speeds (CAS or TAS, knots)
Vcoll(nvelmax) real + collective stick
Vlatcyc(nvelmax) real + lateral cyclic stick
Vlngcyc(nvelmax) real + longitudinal cyclic stick
Vpedal(nvelmax) real + pedal
Vtilt(nvelmax) real + tilt

control system: set of aircraft controls cAC defined
aircraft controls connected to individual controls of each component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)

use of component control c0 can be suppressed for flight state using SET_comp_control

aircraft controls: identified by IDENT_control

typical aircraft controls are pilot’s controls; default IDENT_control=’coll’,’latcyc’,’lngcyc’,’pedal’,’tilt’

available for trim (flight state specifies trim option)
initial values specified if control is trim variable; otherwise fixed for flight state

each aircraft control can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
coll/latcyc/lngcyc/pedal/tilt input put in appropriate nVcont-cont-Vcont, based on IDENT_control

flight state input can override
by connecting aircraft control to component control, flight state can specify component control value

sign conventions for pilot’s controls: collective + up, lat cyclic + right, long cyclic + forward, pedal + nose right
rotor controls are positive Fourier series, with azimuth measured in direction of rotation

+ Aircraft Motion
+ aircraft pitch angle θF

nVpitch int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
pitch(nvelmax) real + values
Vpitch(nvelmax) real + speeds (CAS or TAS, knots)

+ aircraft roll angle φF

nVroll int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
roll(nvelmax) real + values
Vroll(nvelmax) real + speeds (CAS or TAS, knots)

Structure: Aircraft 79

aircraft motion
available for trim (depending on flight state)
each motion can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
flight state input can override; initial value if trim variable

+ Conversion
Vconv_hover real + maximum speed for hover and helicopter mode (CAS or TAS, knots)
Vconv_cruise real + minimum speed for cruise (CAS or TAS, knots)

+ control state
kcont_hover int + hover and helicopter mode (V ≤ Vconv−hover) 1

kcont_conv int + conversion mode (Vconv−hover < V < Vconv−cruise) 1

kcont_cruise int + cruise mode (V ≥ Vconv−cruise) 1

+ drive system state (each propulsion group)
kgear_hover(npropmax) int + hover and helicopter mode (V ≤ Vconv−hover) 1

kgear_conv(npropmax) int + conversion mode (Vconv−hover < V < Vconv−cruise) 1

kgear_cruise(npropmax) int + cruise mode (V ≥ Vconv−cruise) 1

conversion control: use depends on STATE_control, SET_tilt, SET_Vtip of FltState

hover and helicopter mode (V ≤ Vconv−hover): use tilt=90, Vtip_hover, kgear_hover, kcont_hover

cruise mode (V ≥ Vconv−cruise): use tilt=0, Vtip_cruise, kgear_cruise, kcont_cruise

conversion mode: tilt linear with V , use Vtip_hover, kgear_conv, kcont_conv

nacelle tilt angle: 0 for cruise, 90 deg for helicopter mode flight

+ Never-exceed speed
SET_VNE c*32 + model ’none’

VNE_TAS real + TAS limit (knots)
VNE_CAS real + CAS limit (knots)
KIND_VNE_stall(nrotormax) int + stall model, each rotor (0 for no limit, 1 steady, 2 transient, 3 equation) 3

Mat_VNE(nrotormax) real + advancing tip Mach number Mat, each rotor (0. for no limit) 1.

Structure: Aircraft 80

never-exceed speed: calculate VNE in knots TAS
SET_VNE = ’none’, or one to four of (’TAS’, ’CAS’, ’stall’, ’comp’)
stall limit: VNEs from rotor thrust capability (CT /σ vs μ)
compressibility limit: VNEc from advancing tip Mach number Mat

SET_Vschedule int + Velocity schedules (1 CAS, 2 TAS) 1

velocity schedules: all described as function CAS or TAS (knots)
conversion, controls and motion, rotor tip speed, landing gear retraction, trim targets, drive system ratings

+ Trim states
nstate_trim int + number of trim states (maximum ntrimstatemax) 1

IDENT_trim(ntrimstatemax) c*12 + label of trim state
mtrim(ntrimstatemax) int + number of trim variables (maximum mtrimmax) 0

trim_quant(mtrimmax,ntrimstatemax)

c*16 + trim quantity name
trim_var(mtrimmax,ntrimstatemax)

c*16 + trim variable name
trim_target(mtrimmax,ntrimstatemax)

int + target source (1 FltState, 2 component) 1

trim state: one or more set of quantities and variables for trim iteration
FltState identifies trim state (STATE_trim match IDENT_trim),

trim variable:

description trim_var

aircraft control match IDENT_control
aircraft orientation ’pitch’, ’roll’ body axes relative inertial axes
aircraft velocity ’speed’, ’ROC’ horizontal, vertical flight speed
aircraft velocity ’side’ sideslip angle
aircraft angular rate ’pullup’, ’turn’ Euler angle rates
propulsion group tip speed ’Vtip n’
propulsion group engine speed ’Nspec n’

Structure: Aircraft 81

trim quantity:

description trim_quant target

aircraft total force ’force x’, ’force y’, ’force z’ zero
aircraft total moment ’moment x’, ’moment y’, ’moment z’ zero
aircraft load factor ’nx’, ’ny’, ’nz’ FltState%trim_target
propulsion group power ’power n’ FltState%trim_target
power margin ’P margin n’ FltState%trim_target
torque margin ’Q margin n’ FltState%trim_target
engine group power ’power EG n’ FltState%trim_target
power margin ’E margin n’ FltState%trim_target
momentum margin ’FE margin n’ FltState%trim_target
jet group thrust ’jet n’ FltState%trim_target
jet thrust margin ’J margin n’ FltState%trim_target
momentum margin ’FJ margin n’ FltState%trim_target
charge group power ’charge n’ FltState%trim_target
charge power margin ’C margin n’ FltState%trim_target
fuel tank energy flow ’tank n’ FltState%trim_target
battery power margin ’B margin n’ FltState%trim_target
rotor lift ’lift rotor n’, ’flift rotor n’ FltState%trim_target, Rotor%Klift
rotor lift ’CLs rotor n’, ’vert rotor n’ FltState%trim_target, Rotor%Klift
rotor propulsive force ’prop rotor n’, ’fprop rotor n’ FltState%trim_target, Rotor%Kprop
rotor propulsive force ’CXs rotor n’, ’X/q rotor n’ FltState%trim_target, Rotor%Kprop
rotor thrust ’CTs rotor n’ FltState%trim_target, Rotor%Klift
rotor thrust margin ’T margin n’ FltState%trim_target
rotor thrust margin ’T margin tran n’, ’T margin eqn n’ FltState%trim_target
rotor shaft power ’power rotor n’ FltState%trim_target
rotor flapping ’betac n’, ’lngflap n’ FltState%trim_target
rotor flapping ’betas n’, ’latflap n’ FltState%trim_target
rotor hub moment ’hub Mx n’, ’roll n’ FltState%trim_target
rotor hub moment ’hub My n’, ’pitch n’ FltState%trim_target
rotor torque ’hub Mz n’, ’torque n’ FltState%trim_target
wing lift ’lift wing n’, ’flift wing n’ FltState%trim_target, Wing%Klift
wing lift coefficient ’CL wing n’ FltState%trim_target, Wing%Klift
wing lift margin ’L margin n’ FltState%trim_target
tail lift ’lift tail n’ FltState%trim_target

Structure: Aircraft 82

if trim_target=1, trim quantity target value is FltState%trim_target; otherwise component Klift or Kprop used
if trailing “n” is absent, use first component (n=1)

trim_quant=’flift rotor n’ or trim_quant=’flift wing n’: target is fraction total aircraft lift (GW*nAC(3))
trim_quant=’fprop rotor n’: target is fraction total aircraft drag (qAC*DoQ)
trim_quant=’T margin n’ uses Rotor%CTs_steady, trim_quant=’T margin tran n’ uses Rotor%CTs_tran

trim_quant=’T margin eqn n’ uses equation for rotor thrust capability (Rotor%K0_limit and Rotor%K1_limit)

trim_var=’Vtip’ or ’Nspec’: requires FltAircraft%SET_Vtip=’input’

+ Geometry
INPUT_geom int + input (1 fixed, SL/BL/WL; 2 scaled, from XoL/YoL/ZoL) 2

+ scaled geometry
+ reference length

KIND_scale int + kind (1 rotor radius, 2 wing span, 3 fuselage length) 1

kScale int + identification (component number) 1

+ reference point
KIND_Ref int + kind (0 input, 1 rotor, 2 wing, 3 fuselage, 4 center of gravity) 0

kRef int + identification (component number) 1

SL_Ref real + stationline
BL_Ref real + buttline
WL_Ref real + waterline

calculated reference point (input or component)
loc_cg Location + baseline center of gravity location

Geometry: Location for each component
fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL

stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m
scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale)

XoL + aft, YoL + right, ZoL + up; from reference point
option to fix some geometry (FIX_geom in Location override INPUT_geom)
option to specify reference length (KIND_scale in Location override this global KIND_scale)

Structure: Aircraft 83

reference point: KIND_Ref, kRef; input dimensional XX_Ref, or position of identified component
component reference must be fixed

certain Locations can be calculated from other parameters (configuration specific)
center of gravity: baseline is for nacelle angle = 90

flight state has calculated or input actual cg location

+ Takeoff flight condition
SET_atmos c*12 + atmosphere specification ’std’

temp real + temperature τ
dtemp real + temperature increment ΔT 0.

density real + density ρ
csound real + speed of sound cs

viscosity real + viscosity μ
altitude real + altitude

takeoff condition (density) used for CT /σ in rotor sizing
SET_atmos, atmosphere specification:

’std’ = standard day at specified altitude (use altitude)
’dtemp’ = standard day at specified altitude, plus temperature increment (use altitude, dtemp)
’temp’ = standard day at specified altitude, and specified temperature (use altitude, temp)
’dens’ = input density and temperature (use density, temp)
’input’ = input density, speed of sound, and viscosity (use density, csound, viscosity)
’notair’ = input, not air on earth (use density, csound, viscosity)
see FltState%SET_atmos for other options (polar, tropical, and hot days)

Structure: Aircraft 84

+ Weight
DGW real + design gross weight WD

Wfuel_DGW real + mission fuel Wfuel corresponding to DGW
Wpay_DGW real + payload Wpay corresponding to DGW
WE real + weight empty WE

dWE real + weight increment
fWE real + weight factor

+ structural design gross weight
SDGW real + structural design gross weight WSD

dSDGW real + weight increment 0.

fSDGW real + weight factor 1.

fFuelSDGW real + fraction main fuel tanks filled at SDGW 1.

+ maximum takeoff weight
WMTO real + maximum takeoff weight WMTO

dWMTO real + weight increment 0.

fWMTO real + weight factor 1.

nz_ult real + design ultimate flight load factor nzult at SDGW 6.0

input or calculated: design gross weight WD (FIX_DGW), structural design gross weight WSD (SET_SDGW), maximum
takeoff weight WMTO (SET_WMTO), weight empty WE (FIX_WE)

if calculated, then input parameter is initial value

DGW, design gross weight: used for rotor disk loading and blade loading, wing loading, power loading, thrust loading
to obtain aircraft moments of inertia from radii of gyration
for tolerance and perturbation scales of the solution procedures
optionally to define structural design gross weight and maximum takeoff weight
optionally to specify the gross weight for missions and flight conditions

Wfuel_DGW and Wpay_DGW usually calculated (identified as input so inherited by next case)

FIX_WE: fixed or scaled weight empty obtained by adjusting contingency weight
scaled with design gross weight: WE=dWE+fWE*WD

SET_SDGW, structural design gross weight:
’input’ = input
’f(DGW)’ = based on DGW; WSD=dSDGW+fSDGW*WD

Structure: Aircraft 85

’f(WMTO)’ = based on WMTO; WSD=dSDGW+fSDGW*WMTO

’maxfuel’ = based on fuel state; WSD=dSDGW+fSDGW*WG, WG = WD–Wfuel_DGW+fFuelSDGW*Wfuel−cap

’perf’ = calculated from maximum gross weight at SDGW sizing conditions (DESIGN_sdgw)
SET_WMTO, maximum takeoff weight:

’input’ = input
’f(DGW)’ = based on DGW; WMTO=dWMTO+fWMTO*WD

’f(SDGW)’ = based on SDGW; WMTO=dWMTO+fWMTO*WSD

’maxfuel’ = based on maximum fuel; WMTO=dWMTO+fWMTO*WG, WG = WD–Wfuel_DGW+Wfuel−cap

’perf’ = calculated from maximum gross weight at WMTO sizing conditions (DESIGN_wmto)
SDGW used for weights (fuselage, rotor, wing)
WMTO used for cost, drag (scaled aircraft and hub drag), and weights (system, fuselage, landing gear, engine group)
nz_ult, design ultimate flight load factor at SDGW: used for weights (fuselage, rotor, wing)

+ Weight
+ moments of inertia (based on design gross weight, scaled with reference length)

kx real + roll radius of gyration kx/L
ky real + pitch radius of gyration ky/L
kz real + yaw radius of gyration kz/L

weight empty = structure + propulsion + systems and equipment + vibration + contingency
operating weight = weight empty + fixed useful load
weight statement defines fixed useful load and operating weight for design configuration

so for flight state, additional fixed useful load = auxiliary fuel tank and kits and increments
flight state can also increment crew weight or equipment weight

flight state: gross weight, useful load (payload, usable fuel, fixed useful load), operating weight
gross weight = weight empty + useful load = operating weight + payload + usable fuel
useful load = fixed useful load + payload + usable fuel

Structure: Aircraft 86

+ Drag
FIX_drag int + total aircraft D/q (0 calculated; 1 fixed, input D/q; 2 scaled, input CD; 3 scaled, from k) 0

DoQ real + area D/q 0.

CD real + coefficient CD (based on rotor area, D/q = ArefCD) 0.008

kDrag real + k = (D/q)/(WMTO/1000)2/3 (Units_Dscale) 2.5

FIX_DL int + total aircraft download (0 calculated; 1 fixed, input D/qV ; 2 scaled, from kDL) 0

DoQV real + area (D/q)V 0.

kDL real + kDL = (D/q)V /Aref 0.05

fixed drag or download: obtained by adjusting contingency D/q or (D/q)V

FIX_drag: minimum drag, excludes drag due to lift and angle of attack
use only one of input DoQ, CD, kDrag (others calculated)
Aref = reference rotor area; units of kDrag are ft2/klb2/3 or m2/Mg2/3

CD = 0.02 for old helicopter, 0.008 for current low drag helicopters
kDrag = 9 for old helicopter, 2.5 for current low drag helicopters,

1.6 for current tiltrotors, 1.4 for turboprop aircraft (English units)
FIX_DL, download: Aref = reference rotor area, kDL ∼ DL/T

use only one of DoQV, kDL (other calculated)

+ Aerodynamics
KIND_alpha int + angle of attack and sideslip angle representation (1 conventional, 2 reversed for sideward flight) 2

angle of attack and sideslip angle: reversed definition best for sideward flight

+ Number of Components
nRotor int + rotors (maximum nrotormax) 2

nWing int + wings (maximum nwingmax) 0

nTail int + tails (maximum ntailmax) 1

nTank int + fuel tank systems (maximum ntankmax) 1

Structure: Aircraft 87

nPropulsion int + propulsion groups (maximum npropmax) 1

nEngineGroup int + engine groups (maximum nengmax) 1

nJetGroup int + jet groups (maximum njetmax) 0

nChargeGroup int + charge groups (maximum nchrgmax) 0

nEngineModel int + engine models (maximum nengmax) 1

nEngineParamN int + engine model parameters (maximum nengpmax) 0

nEngineTable int + engine tables (maximum nengmax) 0

nRecipModel int + reciprocating engine models (maximum nengmax) 0

nCompressorModel int + compressor models (maximum nengmax) 0

nMotorModel int + motor models (maximum nengmax) 0

nJetModel int + jet models (maximum njetmax) 0

nFuelCellModel int + fuel cell models (maximum nchrgmax) 0

nSolarCellModel int + solar cell models (maximum nchrgmax) 0

nBatteryModel int + battery models (maximum ntankmax) 0

propulsion group is set of components and engine groups, connected by drive system
engine model or engine table or reciprocating engine or motor model describes particular engine,

used in one or more engine groups
jet model describes particular jet, used in one or more jet groups
fuel cell model or solar cell model describes particular charger, used in one or more charge groups
battery model describes particular battery, used in one or more fuel tanks

88

Chapter 19

Structure: Systems

Variable Type Description Default

+ Systems
title c*100 + title
notes c*1000 + notes

+ Weight
SET_Wpayload int + payload (1 no details; 2 all terms) 1

Upass real + weight per passenger
+ fixed useful load

SET_Wcrew int + crew weight (1 no details; 2 all terms) 1

Wcrew real + weight or adjustment
Ucrew real + weight per crew
Ncrew int + number of crew
Wtrap real + trapped fluids and engine oil weight 0.

+ other fixed useful load
nWoful int + number of categories (0 for one value without name; maximum 10) 0

Woful_name(10) c*24 + category name ’ ’

Woful(10) real + baseline weight 0.

Wotherkit real + other kit 0.

SET_Wpayload: payload specified by flight condition or mission
SET_Wcrew: no details (only Wcrew) or all terms (Ucrew*Ncrew+Wcrew)

other fixed useful load: can include baggage, gun installations, weapons provisions, aircraft survivability equipment,
survival kits, life rafts, oxygen

Structure: Systems 89

SET_fold int + folding (0 none, 1 fold weights, 2 with kit) 0

+ folding weight in kit ffoldkit (fraction wing/rotor/tail/body fold weight)
fWfoldkitW(nwingmax) real + wing 0.5

fWfoldkitR(nrotormax) real + rotor 0.5

fWfoldkitT(ntailmax) real + tail 0.5

fWfoldkitFw real + body (wing and rotor fold) 0.5

fWfoldkitFt real + body (tail fold) 0.5

SET_Wvib int + vibration treatment weight (1 fraction weight empty, 2 input) 1

Wvib real + weight Wvib

fWvib real + fraction weight empty fvib

SET_Wcont int + contingency weight (1 fraction weight empty, 2 input) 1

Wcont real + weight Wcont

fWcont real + fraction weight empty fcont

WE = (structure + propulsion group + systems and equipment) + Wvib + Wcont

SET_Wvib: Wvib input or Wvib = fvibWE

SET_Wcont: Wcont input or Wcont = fcontWE ; or adjust Wcont for input or scaled WE (FIX_WE=1 or 2)

SET_fold, folding:
set component dWxxfold=0 and fWxxfold=0 for no rotor/wing/tail/body fold weight
fraction fWfoldkit of fold weight in fixed useful load as kit, remainder kept in component weight
kit weight removable, absent for specified flight conditions and missions

+ systems and equipment
Wauxpower real + auxiliary power group (APU) 0.

Winstrument real + instruments group 0.

Wpneumatic real + pneumatic group 0.

Wenviron real + environmental control group 0.

SET_Welectrical int + electrical group (1 no details; 2 all terms) 1

Welectrical real + aircraft 0.

Welect_supply real + power supply 0.

Structure: Systems 90

Welect_conv real + power conversion 0.

Welect_distrib real + power distribution and controls 0.

Welect_lights real + lights and signal devices 0.

Welect_support real + equipment supports 0.

SET_WMEQ int + avionics group (1 no details; 2 all terms) 1

WMEQ real + avionics 0.

Wavionics_com real + communications 0.

Wavionics_nav real + navigation 0.

Wavionics_ident real + identification 0.

Wavionics_disp real + control and display 0.

Wavionics_survive real + aircraft survivability 0.

Wavionics_mission real + mission system equipment 0.

+ armament group
SET_Warmor int + armor (1 no details; 2 all terms) 1

Warmor real + armor 0.

Uarmor_floor real + cabin floor armor weight per area
Uarmor_wall real + cabin wall armor weight per area
Uarmor_crew real + armor weight per crew
SET_Warmprov int + armament provisions (1 no details; 2 all terms) 1

Warmprov real + armament provisions 0.

Warmprov_gun real + gun provisions 0.

Warmprov_turret real + turret systems 0.

Warmprov_expend real + expendable weapons provisions 0.

Warm_elect real + armament electronics (avionics group) 0.

SET_Wfurnish int + furnishings and equipment group (1 no details; 2 all terms) 1

Wfurnish real + furnishings and equipment 0.

+ accommodations for personnel
Useat_crew real + each crew seat
Useat_pass real + each passenger seat
Uaccom_crew real + miscellaneous accommodation per crew seat
Uaccom_pass real + miscellaneous accommodation per passenger seat
Uox_crew real + oxygen system per crew seat
Uox_pass real + oxygen system per passenger seat
Wfurnish_misc real + miscellaneous equipment 0.

Structure: Systems 91

+ furnishings
Wfurnish_trim real + trim 0.

Uinsulation real + acoustic and thermal insulation weight per cabin area
+ emergency equipment

Wemerg_fire real + fire detection and extinguishing 0.

Wemerg_other real + other emergency equipment 0.

SET_Wload int + load and handling group (1 no details; 2 all terms) 1

Wload real + load and handling 0.

Whandling_aircraft real + aircraft handling 0.

+ load handling
Uhandling_cargo real + cargo handling weight per cabin floor area
Wload_hoist real + hoist 0.

Wload_extprov real + external load provisions 0.

+ systems and equipment
Ncrew_seat int + number of crew seats 0

Npass_seat int + number of passenger seats 0

Ucrew_seat_inc real + equipment weight increment per crew seat (0. for default) 0.

Upass_seat_inc real + equipment weight increment per passenger seat (0. for default) 0.

SET_Welectrical=1: only Welectrical+WDIelect

SET_WMEQ=1: only WMEQ; equipment weights include installation
SET_Warmor=1: only Warmor

SET_Warmprov=1: only Warmprov

SET_Wfurnish=1: only Wfurnish

miscellaneous accommodation includes galleys and toilets
miscellaneous equipment includes cockpit displays
trim includes floor covering, partitions, crash padding, acoustic and thermal insulation

excluding vibration absorbers
other emergency equipment includes first aid, survival kit, life raft

SET_Wload=1: only Wload

equipment weight increment is for flight condition and mission; default (if SET_furnish=2 and SET_armor=2):
Ucrew_seat_inc=Useat_crew+Uaccom_crew+Uox_crew+Uarmor_crew

Upass_seat_inc=Useat_pass+Uaccom_pass+Uox_pass

Structure: Systems 92

+ Weight
+ systems and equipment
+ flight control group and hydraulic group

MODEL_fc int + model (0 input, 1 NDARC, 2 custom) 1

MODEL_RWfc int + rotary wing flight controls (0 not present, 1 global, 2 for each rotor) 1

refRotor int + reference rotor number for global 1

KIND_RWfc(nrotormax) int + kind control for each rotor (0 fixed pitch, 1 swashplate, 2 collective only) 1

TF_RWfc_coll(nrotormax) real + addition weight factor, collective control only 0.5

TF_RWfc_b(nrotormax) real + addition weight factor, boosted 1.0

TF_RWfc_mb(nrotormax) real + addition weight factor, control boost mechanisms 1.0

TF_RWfc_nb(nrotormax) real + addition weight factor, non-boosted 1.0

TF_RWfc_hyd(nrotormax) real + addition weight factor, hydraulic 1.0

MODEL_FWfc int + fixed wing flight controls (0 for not present) 1

MODEL_CVfc int + conversion controls (0 for not present) 1

+ flight control weight increment
dWRWfc_b real + rotary wing, boosted 0.

dWRWfc_mb real + rotary wing, control boost mechanisms 0.

dWRWfc_nb real + rotary wing, non-boosted 0.

dWFWfc_mb real + fixed wing, control boost mechanisms 0.

dWFWfc_nb real + fixed wing, non-boosted 0.

dWCVfc_mb real + conversion, boosted 0.

dWCVfc_nb real + conversion, control boost mechanisms 0.

+ fixed flight controls
Wfc_cc real + cockpit controls 0.

Wfc_afcs real + automatic flight control system 0.

+ hydraulic weight increment
dWRWhyd real + rotary wing 0.

dWFWhyd real + fixed wing 0.

dWCVhyd real + conversion 0.

WEQhyd real + equipment hydraulics 0.

Structure: Systems 93

+ anti-icing group
MODEL_DI int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWDIelect real + electrical system 0.

dWDIsys real + anti-ice system 0.

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

MODEL_RWfc=1: global option is based on just main rotor (refRotor)
MODEL_RWfc=2: sums separate contributions from all rotors; uses KIND_RWfc and TF_RWfc_xxxx

each rotor designated fixed pitch (no weight), swashplate (collective and cyclic), or collective control only

tiltrotor wing weight model requires weight on wing tip: distributed to designated rotor;
sum rotary wing and conversion flight controls, hydraulic group, trapped fluids

+ Technology Factors
+ rotary wing flight control weight

TECH_RWfc_b real + boosted χRWb 1.0

TECH_RWfc_mb real + control boost mechanisms χRWmb 1.0

TECH_RWfc_nb real + non-boosted χRWnb 1.0

+ fixed wing flight control weight
TECH_FWfc_mb real + control boost mechanisms χFWmb 1.0

TECH_FWfc_nb real + non-boosted χFWnb 1.0

+ conversion flight control weight
TECH_CVfc_mb real + control boost mechanisms χCV mb 1.0

TECH_CVfc_nb real + non-boosted χCV nb 1.0

+ flight control hydraulics
TECH_RWhyd real + rotary wing χRWhyd 1.0

TECH_FWhyd real + fixed wing χFWhyd 1.0

TECH_CVhyd real + conversion χCV hyd 1.0

+ anti-icing
TECH_DIelect real + electrical system χDIelect 1.0

TECH_DIsys real + anti-ice system χDIsys 1.0

Structure: Systems 94

+ Flight Control Group, NDARC Weight Model
+ rotary wing flight controls

MODEL_WRWfc int + model (1 fraction, 2 parametric, 3 Boeing, 4 GARTEUR, 5 Tishchenko, 6 generic) 1

fRWfc_nb real + AFDD: non-boosted control weight fRWnb (fraction boost mechanisms weight) 0.6

xRWfc_red real + AFDD: hydraulic system redundancy/complexity factor fRW red 3.0

KIND_WRWfc int + AFDD: survivability (1 baseline, 2 UTTAS/AAH level of survivability) 2

fRWfc_b real + Boeing, GARTEUR, Tishchenko, or generic: boosted weight fRWb (fraction boosted + boost mech, or total) 0.2

fRWfc_mb real + GARTEUR, Tishchenko, or generic: boost mechanisms weight fRWmb (fraction total weight) 0.2

KRW real + generic: factor KRW 0.

XRWN real + exponent XRWN 0.

XRWR real + exponent XRWR 0.

XRWc real + exponent XRWc 0.

XRWW real + exponent XRWW 0.

XRWb real + exponent XRWb 0.

+ fixed wing flight controls
MODEL_WFWfc int + model (1 full controls, 2 only on hor tail, 3 GARTEUR, Raymer (4 transport, 5 general aviation), 6 generic) 1

fFWfc_nb real + non-boosted weight fFWnb (fraction total fixed wing flight control weight) 0.10

nfunction int + Raymer: number of control functions 6

fmech real + Raymer: number of mechanical functions (fraction total) 0.2

KFW real + generic, factor KFW 0.

XFW real + exponent XFW 0.

+ conversion controls
fCVfc_mb real + boost mechanisms weight fCV mb (fraction maximum takeoff weight) 0.02

fCVfc_nb real + non-boosted weight fCV nb (fraction boost mechanisms weight) 0.10

+ cockpit controls
MODEL_cc int + model (1 fixed Wfc_cc, 2 scaled with DGW) 1

Kcc real + factor Kcc 1.7

Xcc real + exponent Xcc 0.41

+ Hydraulic Group, NDARC Model
+ flight control hydraulics

fRWhyd real + rotary wing fRWhyd (fraction rotary wing boost mechanisms + hydraulic weight) 0.40

fFWhyd real + fixed wing fFWhyd (fraction fixed wing boost mechanisms weight) 0.10

fCVhyd real + conversion fCV hyd (fraction conversion boost mechanisms weight) 0.10

Structure: Systems 95

flight controls = non-boosted (do not see aero surface or rotor loads) + boost mechanisms (actuators) + boosted

MODEL_WRWfc = fraction: parametric except for non-boosted controls (from fRWfc_nb)

typically fRWfc_nb = 0.6 (data range 0.3 to 1.8), fRWhyd = 0.4
xRWfc_red = 1.0 to 3.0

+ Custom Weight Model
WtParam_fc(8) real + parameters 0.

+ Anti-Icing Group, NDARC Weight Model
kDeIce_elec(nrotormax) real + weight factor for electrical system Kelec (lb/ft2 or kg/m2) 0.25

kDeIce_rotor(nrotormax) real + weight factor for main rotor Krotor (lb/ft2 or kg/m2) 0.25

kDeIce_wing(nwingmax) real + weight factor for wing Kwing (lb/ft or kg/m) 0.

kDeIce_air(nengmax) real + weight factor for engine air intake Kair (lb/lb or kg/kg) 0.006

kDeIce_jet(njetmax) real + weight factor for jet air intake Kjet (lb/lb or kg/kg) 0.006

+ Custom Weight Model
WtParam_DI(8) real + parameters 0.

96

Chapter 20

Structure: Fuselage

Variable Type Description Default

+ Fuselage
title c*100 + title
notes c*1000 + notes

+ Geometry
loc_fuselage Location + fuselage location
SET_length int + fuselage length (1 input, 2 calculated, 3 from rotor and tail only, 4 from rotor only) 1

Length_fus real + length �fus

SET_nose int + nose length (distance forward of hub; 1 input, 2 calculated) 1

Length_nose real + nose length �nose

fLength_nose real + nose length (fraction reference length)
SET_aft int + aft length (distance aft of hub; 1 input, 2 calculated) 1

Length_aft real + aft length �aft
fLength_aft real + aft length (fraction reference length)
fRef_fus real + fuselage SL location relative nose fref (fraction fuselage length)
Width_fus real + fuselage width wfus

SET_Swet int + fuselage wetted area (1 input, 2 input plus boom, 3 from nose length, 4 from fuselage length, 5 from weight) 2

Swet real + wetted area Swet

Sproj real + projected area Sproj

fSwet real + factor for wetted area fwet or kwet 1.

fSproj real + factor for projected area fproj or kproj 1.

Height_fus real + fuselage height hfus

Circum_boom real + tail boom effective circumference Cboom

Width_boom real + tail boom effective width wboom

SET_Scabin int + cabin area (1 input, 2 calculated) 2

Scabin real + total cabin surface area Scabin

Scabin_floor real + cabin floor area Scabin−floor

Scabin_wall real + cabin wall area Scabin−wall

Structure: Fuselage 97

fScabin real + factor for total cabin surface area fcabin 0.6

fScabin_floor real + factor for cabin floor area fcabin−floor 0.6

fScabin_wall real + factor for cabin wall area fcabin−wall 0.6

KIND_scale int + reference length (1 rotor radius, 2 wing span, 3 fuselage length) 1

refRotor int + rotor number (for rotor radius) 1

refWing int + wing number (for wing span) 1

SET_length: input (use Length_fus) or calculated (from nose and aft lengths)
calculated uses rotor, tail, wing locations; or just rotor and tail, or just rotor

which can not then be scaled with fuselage length
SET_nose: input (use Length_nose) or calculated (from fLength_nose); used for Length_fus and Swet

SET_aft: input (use Length_aft) or calculated (from fLength_aft); used for Length_fus

fRef_fus=(SL_fuselage–SL_nose)/Length_fus; used for operating length and sketch
input required if SET_length = input, otherwise calculated

SET_Swet: both wetted area and projected area; input (use Swet, Sproj),
or calculated (from fSwet, fSproj, Width_fus, Height_fus, and fuselage or nose length)
or from weight, units of kwet = fSwet and kproj = fSproj are ft2/klb2/3 or m2/Mg2/3

boom circumference and width used if SET_Swet not input and not from weight (set to zero if no boom)

SET_Scabin: cabin areas used for systems and equipment weights

+ Geometry (for graphics)
Height_ramp real + height of cargo ramp
fLength_cargo real + fraction of fuselage length used for cargo 0.60

+ Controls
+ flow control momentum coefficient Cμ

INPUT_flow int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_flow(ncontmax,nstatemax) real + control matrix
nVflow int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

flow(nvelmax) real + values
Vflow(nvelmax) real + speeds (CAS or TAS, knots)

Structure: Fuselage 98

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Aerodynamics
MODEL_aero int + model (0 none, 1 standard) 1

DoQ_cont real + contingency drag, area (D/q)cont 0.

DoQV_cont real + contingency vertical drag, area (D/q)V cont 0.

DoQ_cont calculated if total drag fixed (Aircraft FIX_drag); otherwise input
DoQV_cont calculated if total download fixed (Aircraft FIX_DL); otherwise input

+ Weight
+ fuselage group

MODEL_weight int + fuselage group model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWbody real + basic body 0.

dWmar real + body marinization 0.

dWpress real + pressurization 0.

dWcrash real + body crashworthiness 0.

dWftfold real + tail fold 0.

dWfwfold real + wing fold 0.

+ Technology Factors
TECH_body real + basic body χbasic 1.0

TECH_mar real + body marinization χmar 1.0

TECH_press real + pressurization χpress 1.0

TECH_crash real + body crashworthiness χcw 1.0

TECH_ftfold real + tail fold χtfold 1.0

TECH_fwfold real + wing fold χwfold 1.0

Structure: Fuselage 99

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

+ Aerodynamics, Standard Model
AoA_zl real + zero lift angle of attack αzl (deg) 0.

AoA_max real + angle of attack for maximum lift αmax (deg) 10.

+ lift
SET_lift int + specification (1 fixed, L/q; 2 scaled, CL) 2

dLoQda real + lift slope, d(L/q)/dα (per rad) 0.

dCLda real + lift slope, CLα = dCL/dα (per rad; based on wetted area, L/q = SCL) 0.

+ pitch moment
SET_moment int + specification (1 fixed, M/q; 2 scaled, CM) 2

MoQ0 real + moment at zero lift, (M/q)0 0.

CM0 real + moment at zero lift, CM0 (based on wetted area and fuselage length, M/q = S�CM) 0.

dMoQda real + moment slope, d(M/q)/dα (per rad) 0.

dCMda real + moment slope, CMα = dCM/dα (per rad; based on wetted area and fuselage length, M/q = S�CM) 0.

SS_zy real + sideslip angle for zero side force βzy (deg) 0.

SS_max real + sideslip angle for maximum side force βmax (deg) 10.

+ side force
SET_side int + specification (1 fixed, Y/q; 2 scaled, CY) 2

dYoQdb real + side force slope, d(Y/q)/dβ (per rad) 0.

dCYdb real + side force slope, CY β = dCY /dβ (per rad; based on wetted area, Y/q = SCY) 0.

+ yaw moment
SET_yaw int + specification (1 fixed, N/q; 2 scaled, CN) 2

NoQ0 real + moment at zero lift, (N/q)0 0.

CN0 real + moment at zero lift, CN0 (based on wetted area and fuselage length, N/q = S�CN) 0.

dNoQdb real + moment slope, d(N/q)/dβ (per rad) 0.

dCNdb real + moment slope, CNβ = dCN/dβ (per rad; based on wetted area and fuselage length, N/q = S�CN) 0.

SET_xxx: fixed (use XoQ) or scaled (use CX); other parameter calculated

Structure: Fuselage 100

+ Drag, Standard Model
+ forward flight drag

SET_drag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ real + area (D/q)0
CD real + coefficient CD0 (based on wetted area, D/q = SCD) 0.005

+ fixtures and fittings
SET_Dfit int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ_fit real + area (D/q)fit

CD_fit real + coefficient CDfit (based on wetted area, D/q = SCD) 0.

+ rotor-body interference
SET_Drb int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ_rb(nrotormax) real + area (D/q)rb

CD_rb(nrotormax) real + coefficient CDrb (based on wetted area, D/q = SCD) 0.

+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV real + area (D/q)V

CDV real + coefficient CDV (based on projected area, D/q = SprojCD) 0.

+ sideward drag
SET_Sdrag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQS real + area (D/q)S

CDS real + coefficient CDS (based on wetted area, D/q = SCD) 0.

+ drag variation with angle of attack
MODEL_drag int + model (0 none, 1 general, 2 quadratic) 2

AoA_Dmin real + angle of attack for fuselage minimum drag CDmin (deg) 0.

Kdrag real + drag increment Kd, ΔCD = CD0Kd|αe|Xd 0.

Xdrag real + drag increment Xd, ΔCD = CD0Kd|αe|Xd 2.

+ transition from forward flight drag to vertical drag
MODEL_trans int + model (1 input transition angle of attack, 2 calculate for quadratic) 1

AoA_tran real + angle of attack for transition αt (deg) 25.

Structure: Fuselage 101

+ Flow Control; ΔCL = CLα(Lμs

√
Cμ + Lμ1Cμ + Lμ2C

2
μ), ΔCLmax = XμCμ, ΔCM = MμCμ, ΔCD = DμCμ

MODEL_flow int + model (0 none) 0

Lmus real + lift Lμs 0.0

Lmu1 real + lift Lμ1 0.0

Lmu2 real + lift Lμ2 0.0

Xmu real + maximum lift Xμ 1.0

Mmu real + moment Mμ 0.0

Dmu real + drag Dμ 0.0

Cmu_limit real + flow limit Cμlimit 1.0

+ Fuselage Group, NDARC Weight Model
MODEL_body int + model (1 AFDD84, 2 AFDD82, 3 other) 1

MODEL_other int + model (1 Boeing, GARTEUR (2 air, 3 hel), 4 Tishchenko, 5 Torenbeek, Raymer (6 transport, 7 gen av), 8 generic)
KIND_ramp int + AFDD: rear cargo ramp (0 none) 0

fLength_crg real + Boeing: cabin length + ramp length + cg range (fraction fuselage length) 0.6

Vdive real + Boeing or Torenbeek or Raymer: design dive speed Vdive (knots) 200.

ndoor int + Raymer: number of cargo doors 0

Pdelta real + Raymer: cabin pressure differential (psi) 8.

Kfus real + generic: factor Kfus 0.

XfusW real + exponent XfusW 0.

Xfusn real + exponent Xfusn 0.

XfusS real + exponent XfusS 0.

Xfusl real + exponent Xfus� 0.

fWbody_mar real + body weight for marinization fmar (fraction basic body weight) 0.

fWbody_press real + body weight for pressurization fpress (fraction basic body weight) 0.

fWbody_crash real + body weight for crashworthiness fcw (fraction body weight) 0.

fWbody_tfold real + tail fold weight ftfold (fraction tail (AFDD84 or other) or body (AFDD82) weight) 0.

fWbody_wfold real + wing fold weight fwfold (fraction wing+tip (AFDD84 or other) or body+tailfold (AFDD82) weight) 0.

AFDD84 (UNIV) is universal body weight model, for tiltrotor and tiltwing as well as for helicopters
AFDD82 (HELO) is helicopter body weight model, should not be used for tiltrotor or tiltwing
dive speed: Vmax = SLS max speed, Vdive = 1.25Vmax

Structure: Fuselage 102

fLength_crg = (�c + �r + ΔCG)/�body
∼= 1.0 for tandem, 0.3-0.6 for single main rotor (0.7-0.8 with ramp)

typically fWbody_crash = 0.06
typically fWbody_tfold = 0.30 (AFDD84 or other) or 0.05 (AFDD82) for folding tail

+ Custom Weight Model
WtParam_fuse(8) real + parameters 0.

103

Chapter 21

Structure: LandingGear

Variable Type Description Default

+ Landing Gear
title c*100 + title
notes c*1000 + notes

+ Geometry
loc_gear Location + landing gear location
d_gear real + distance from bottom of landing gear to WL_gear dLG 0.

place int + placement (1 located on body, 2 located on wing) 1

KIND_LG int + retraction (0 fixed, 1 retracts) 1

speed real + retraction speed (CAS or TAS, knots)

landing gear location: with HAGL (FltState) determines rotor height above ground level
height rotor = landing gear above ground + hub above landing gear = HAGL + (WL_hub–WL_gear+d_gear)

place: used for weight (fuselage and wing)

+ Aerodynamics
MODEL_aero int + model (0 none, 1 standard) 1

+ Weight
+ alighting gear group

MODEL_weight int + alighting gear group model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWLG real + basic landing gear 0.

dWLGret real + retraction 0.

dWLGcrash real + crashworthiness 0.

Structure: LandingGear 104

+ Technology Factors
TECH_LG real + basic landing gear χLG 1.0

TECH_LGret real + retraction χLGret 1.0

TECH_LGcrash real + crashworthiness χLGcw 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

+ Drag, Standard Model
DoQ real + drag area extended, D/q

+ Landing Gear Group, NDARC Weight Model
MODEL_LG int + model (1 fraction, 2 parametric rotary wing (wheel), 3 parametric fixed wing, 4 parametric skid) 2

nLG int + number of landing gear assemblies NLG 3

fWLG_basic real + basic landing gear weight fLG (fraction maximum takeoff weight) 0.0325

fWLG_ret real + landing gear weight for retraction fLGret (fraction basic weight) 0.08

fWLG_crash real + landing gear weight for crashworthiness fLGcw (fraction basic+retraction weight) 0.14

MODEL_LG=fraction: uses fWLG_basic; typically fWLG_basic = 0.0325 (wheel) or 0.014 (skid)
MODEL_LG=skid: for tall gear, technology factor TECH_LG should include form factor 1.11

design ultimate flight load factor nz_ult used for landing gear design load factor nzL

typically fWLG_ret = 0.087, fWLG_crash = 0.14

+ Custom Weight Model
WtParam_gear(8) real + parameters 0.

105

Chapter 22

Structure: Rotor

Variable Type Description Default

+ Rotor
title c*100 + title
notes c*1000 + notes
config c*32 + Configuration ’main’

configuration designation: principal designation required, rest identify special characteristics
principal designation = ’main’, ’tail’, ’prop’

antitorque = ’antiQ’, ’auxT’

twin rotor = ’coaxial’, ’tandem’, ’tiltrotor’ (keyword = tan, coax, tilt)
others = ’variable diameter’, ’stop’, ’ducted fan’, ’reaction drive’, ’multirotor’ (keyword = var, stop, duct, react, multi)

principal designation determines where weight put in weight statement, and designates main rotors (isMainRotor)
separately specify appropriate performance and weight models

multiple rotor configurations have special options for geometry and performance
options defined by variables SET_geom, MODEL_twin, MODEL_int_twin

antitorque or aux thrust rotor has special options for sizing
options defined by variables SET_rotor, fThrust, Tdesign

reaction drive still requires propulsion group

+ Propulsion group
kPropulsion int + group number 1

KIND_xmsn int + drive system branch (1 primary, 0 dependent) 1

Vtip_ref(ngearmax) real + reference tip speed
INPUT_gear int + gear ratio input for dependent branch (1 Vtip_ref, 2 gear) 1

gear(ngearmax) real + gear ratio r = Ωdep/Ωprim (ratio rpm to rpm of primary rotor) 1.0

+ Reaction drive
r_react real + effective radial station of force (fraction Radius) 1.0

Structure: Rotor 106

drive system branch: only one primary rotor per propulsion group
tip speed and gear ratio required for each drive system state
primary: specify Vtip_ref and default tip speeds; Vtip−hover = Vtip_ref(1)

dependent: specify gear ratio, or specify Vtip_ref and calculate gear (depend on rotor radius)
can not specify gear ratio if sizing changes dependent rotor Vtip (SET_rotor)

if size task changes Vtip_ref(1), then rVtip_ref used to change Vtip_ref(n) for n>1
variable speed transmission: for drive system state STATE_gear_var, gear ratio factor fgear (control) included

when evaluate rotational speed of dependent rotor

reaction drive requires one and only one propulsion system (engine group or jet group)

+ Default rotor tip speeds (primary rotor)
INPUT_Vtip int + input form (1 tip speed, 2 hover Vtip and rpm ratio) 1

+ function of flight speed
nVrpm int + number of speeds (1 constant; ≥ 2 piecewise linear, maximum nvelmax) 1

Vrpm(nvelmax) real + speeds (CAS or TAS, knots)
+ tip speed

Vtip_cruise real + cruise
Vtip_man real + maneuvering flight
Vtip_oei real + OEI
Vtip_xmsn real + transmission sizing
Vtip(nvelmax) real + function of flight speed

+ rpm ratio (Vtip/Vtip−hover)
fRPM_cruise real + cruise 1.

fRPM_man real + maneuvering flight 1.

fRPM_oei real + OEI 1.

fRPM_xmsn real + transmission sizing 1.

fRPM(nvelmax) real + function of flight speed 1.

default rotor tip speeds (including conversion): selectable by SET_Vtip of FltState

only for primary rotor; Vtip calculated from gear(state) for dependent branch

Structure: Rotor 107

+ Drive system torque limit
SET_limit_rs int + rotor shaft (0 input, 1 fraction power, 2 fraction drive system limit) 1

Plimit_rs real + rotor shaft power limit PRSlimit

fPlimit_rs real + rotor shaft power limit factor 1.

drive system torque limit: Size%SET_limit_ds = input (use Plimit_rs) or calculated (from fPlimit_rs)
SET_limit_ds=’input’: Plimit_rs input
SET_limit_ds�=’input’: from rotor power required at transmission sizing flight conditions (DESIGN_xmsn)

rotor shaft: options for SET_limit_ds�=’input’

SET_limit_rs=0: Plimit_rs

SET_limit_rs=1: fPlimit_rs × (rotor Preq)
SET_limit_rs=2: fPlimit_rs ×PDSlimit

rotor shaft power limit: corresponds to one rotor
can be used for max effort in flight state (max_quant=’Q margin’)
can be used for max gross weight in flight condition or mission (SET_GW=’maxQ’ or ’maxPQ’)
always check and print whether exceed torque limit

+ Parameters
diskload real + disk loading (lb/ft2 or N/m2)
fArea real + fraction rotor area for reference disk area fA

fDGW real + fraction DGW fW (for disk loading and blade loading)
fThrust real + thrust factor (antitorque or aux thrust rotor) 1.0

Radius real + radius R
CWs real + blade loading CW /σ (thrust-weighted)
sigma real + solidity σ = Nc/πR (thrust-weighted)
Tdesign real + thrust for antitorque or aux thrust rotor
Pdesign real + power for antitorque or aux thrust rotor
Ndesign real + rotor speed (rpm) at Pdesign

SET_thrust int + rotor thrust for disk loading and blade loading (0 default; 1 fDGW*DGW, 2 fThrust*Tdesign) 0

rotor disk loading = T/A; aircraft disk loading = WD/Aref , Aref =
∑

(fAA)
W = fW WD (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor); can specify using SET_thrust

Tdesign and Pdesign obtained from thrust design conditions and missions (DESIGN_thrust)

Structure: Rotor 108

if rotor sized from disk loading (SET_rotor=’DL+xx+xx’), area = T /diskload

if SET_rotor specify ’Vtip’, use Vtip_ref(1)

if SET_rotor not specify ’Vtip’, calculate Vtip_ref(1), and then Vtip_ref for dependent rotors
if SET_rotor=’CWs+xx+xx’, then CW /σ from fDGW*DGW, takeoff condition, Vtip_ref, and thrust-weighted solidity

for antitorque or aux thrust rotor, need design conditions and missions (DESIGN_thrust) to identify Tdesign

otherwise use fDGW and design gross weight
Tdesign and Pdesign generally calculated (identified as input so inherited by next case)

+ Geometry
SET_geom c*12 + position (standard, tiltrotor, coaxial, tandem, tailrotor, multicopter) ’std’

KIND_TRgeom int + tiltrotor (1 from clearance, 2 at wing tip, 3 at wing panel edge) 0

+ twin rotors
fRadius real + ratio rotor radius to that of other rotor 1.0

otherRotor int + other rotor number
positionOfRotor int + rotor position (+1/–1 for right/left, lower/upper, front/aft) 0

WingForRotor int + wing number 1

PanelForRotor int + wing panel number 1

clearance_fus real + tiltrotor clearance between rotor and fuselage dfus 0.6

fclearance_fus real + tiltrotor clearance factor 1.0

sep_coaxial real + coaxial rotor separation s (fraction Diameter) 0.08

overlap_tandem real + tandem rotor overlap o (fraction Diameter) 0.25

+ tail rotor
mainRotor int + main rotor number 1

fRadius_tr real + radius scale factor 1.0

clearance_tr real + clearance between tail rotor and main rotor dtr 0.5

+ multicopter
ang_multicopter real + angle ψ (clockwise from forward, deg) 0.

len_multicopter real + arm length � (fraction Radius) 1.5

+ variable diameter rotor
SET_VarDiam int + set diameter (1 conversion schedule, 2 function speed)
fRcruise real + ratio cruise radius to hover radius (variable diameter only)

+ rotor stopped as wing
StopAsWing int + wing number (0 not) 0

Structure: Rotor 109

SET_geom: calculation override part of location input
SET_geom=’tiltrotor’: calculate lateral position (BL)

KIND_TRgeom=clearance: from WingForRotor, Width_fus, clearance_fus, fclearance_fus

KIND_TRgeom=wing tip: from WingForRotor, wing span
KIND_TRgeom=wing panel edge: from WingForRotor, PanelForRotor, panel edge and wing span
positionOnRotor specifies right or left position
BL or YoL in loc_pylon, loc_pivot, loc_naccg is relative calculated loc_rotor BL

SET_geom=’coaxial’: calculate position from sep_coaxial

same sep_coaxial for otherRotor, positionOnRotor specifies lower or upper position
loc_rotor (SL,BL,WL or XoL,YoL,ZoL) is midpoint between hubs
loc_pylon (SL,BL,WL or XoL,YoL,ZoL) is relative calculated loc_rotor

SET_geom=’tandem’: calculate longitudinal position (SL) from overlap_tandem

same overlap_tandem for otherRotor, positionOnRotor specifies front or aft position
loc_rotor (SL or XoL only) is midpoint between hubs
loc_pylon SL or XoL is relative calculated loc_rotor

SET_geom=’tailrotor’: calculate longitudinal position (SL) from clearance_tr, mainRotor

loc_pylon SL or XoL is relative calculated loc_rotor

SET_geom=’multicopter’: calculate longitudinal and lateral position from ang_multicopter, len_multicopter

loc_rotor (SL,BL or XoL,YoL) is center of rotors
loc_pylon (SL,BL,WL or XoL,YoL,ZoL) is relative calculated loc_rotor

ang_multicopter also used for Aircraft%config=’multicopter’ to define control
if rotor number ≤ 2 and positionOnRotor=0: first rotor is right/lower/front, second rotor is left/upper/aft

sizing:
if SET_rotor=’ratio’, Radius=fRadius*Radius(otherRotor); otherRotor not SET_rotor=’ratio’

twin rotors: config identify as twin rotor
antitorque: config identify as antitorque rotor

if SET_rotor=’scale’, Radius=fRadius_tr*(main rotor Radius)*function(DiskLoad)
variable diameter: Radius is hover or reference radius; can be commanded by aircraft controls

conversion schedule: R =Radius in hover and helicopter mode (V ≤ Vconv−hover)
R =Radius*fRcruise in cruise mode (V ≥ Vconv−cruise); linear with V in conversion mode

function of speed: use nVdiam, fdiam, Vdiam to calculate R

Structure: Rotor 110

stoppable rotor: zero rotor flapping, forces, and power when stopped
stopped (FltAircraft%STOP_rotor=1) uses stopped rotor hub and blade drag
stopped and stowed (FltAircraft%STOP_rotor=2) uses stowed rotor hub drag
stopped as wing (FltAircraft%STOP_rotor=3) uses wing aero (wing number StopAsWing) with zero hub drag

+ Geometry, Dynamics, Aerodynamics
rotate int + direction of rotation (1 counter-clockwise, –1 clockwise) 1

nBlade int + number of blades N
+ planform and twist

SET_chord int + chord distribution (1 linear from fTWsigma, 2 linear from taper, 3 nonlinear from fchord) 1

fTWsigma real + ratio thrust-weighted solidity to geometric solidity f = σt/σg 1.

taper real + taper ratio t (tip chord/root chord) 1.

SET_twist int + twist distribution (1 linear from twistL, 2 nonlinear from twist) 1

twistL real + linear twist θL (deg, root to tip) -10.

nprop int + number of radial stations (maximum nrmax) 2

rprop(nrmax) real + radial stations (rroot/R)
fchord(nrmax) real + chord distribution c(r)/cref 1.

twist(nrmax) real + twist θtw(r) (deg)
+ flap dynamics

KIND_hub int + hub type (1 articulated, 2 hingeless) 1

flapfreq real + first flapwise natural frequency ν (per-rev at hover tip speed) 1.04

conefreq real + coning natural frequency ν (0. to use flapfreq) 0.

gamma real + blade Lock number γ 8.

precone real + precone βp (deg) 0.

delta3 real + pitch-flap coupling δ3 (deg) 0.

+ aerodynamics
dclda real + blade section 2D lift-curve slope a = c�α (per-rad) 5.7

tiploss real + tip loss factor B (lift zero from BR to tip) 0.97

xroot real + root cutout (rroot/R) 0.1

Blockage real + blockage factor B = ΔT/T 0.

mu_blockage real + advance ratio μB (0. for no correction) 0.

Structure: Rotor 111

SET_chord: use one of fTWsigma, taper, or fchord(r); others calculated (including root cutout)
fTWsigma = sigma_tw/sigma_geom

from fTWsigma: calculate equivalent linear taper, and fc = c/cref

from taper (linear): calculate fTWsigma, and fc = c/cref

from fchord(r): integrate for cg and ct, fTWsigma= ct/cg , calculate taper, fc = scaled fchord

SET_twist: use one of twistL or twist(r); other calculated
for nonlinear distribution, twist relative 0.75R obtained from input

flap frequency and Lock number are used for flap dynamics and hub moments due to flap
specified for hover radius and rotational speed
KIND_hub determines how flap frequency and hub moment spring vary with rotor speed and R
weight models can have separate blade and hub values for flap frequency

blade Lock number gamma: for SLS density, a = 5.7, thrust-weighted chord
SET_Iblade determines whether Lock number input or calculated

blockage: force acting on aircraft includes fBT opposing rotor thrust
blockage B is for hover, blockage factor zero for μ > μB

+ Geometry (for graphics)
thick real + blade thickness-to-chord ratio 0.12

+ Blade element theory solution
+ integration

mr int + number of radial stations (xroot to 1; maximum mrmax) 4

mpsi int + number of azimuth angles (maximum mpsimax) 8

Structure: Rotor 112

+ Geometry
loc_rotor Location + hub location
loc_pylon Location + pylon location
loc_pivot Location + pivot location
loc_naccg Location + nacelle cg location
direction c*16 + nominal orientation (’+x’, ’–x’, ’+y’, ’–y’, ’+z’, ’–z’; ’main’ (–z), ’tail’ (ry), ’prop’ (x)) ’main’

KIND_tilt int + shaft control (0 fixed shaft, 1 incidence, 2 cant, 3 both controls) 0

+ orientation of rotor shaft
incid_hub real + incidence θh (deg) 0.

cant_hub real + cant angle φh (deg) 0.

+ orientation of pivot axes
dihedral_pivot real + pivot dihedral angle φp (deg)
pitch_pivot real + pivot pitch angle θp (deg)
sweep_pivot real + pivot sweep angle ψp (deg)

+ reference shaft control
incid_ref real + incidence iref (deg) 0.

cant_ref real + cant angle cref (deg) 0.

+ moving weight for cg shift
SET_Wmove int + weight (1 wing tip weight, 2 Wgbrs, 3 Wgbrs and WES) 1

fWmove real + fraction moving weight 1.

dz_hub(3) real + hub position increment due to tilt ΔzF
hub (SL/BL/WL) 0.

loc_naccg, loc_pivot, orientation of pivot axes, and reference shaft control angles not used for KIND_tilt=fixed shaft
for tiltrotor, locations and orientation specified in helicopter mode, so incid_ref = 90

SET_Wmove: cg shift calculated using incidence and cant rotation of loc_naccg relative loc_pivot

moving weight fWmove*Wmove, Wmove = Wtip_total/nRotorOnWing or w/Nrotor

w = Wgbrs (drive system) or Wgbrs +
∑

(WES) (drive system and engine system)

+ Controls
KIND_control int + rotor control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP) 1

KIND_cyclic int + cyclic input (1 tip-path-plane tilt, 2 hub moment, 3 lift offset) 1

KIND_coll int + collective input (1 thrust, 2 CT /σ) 2

SCALE_coll int + scale collective T matrix (0 for none) 1

Structure: Rotor 113

+ collective (magnitude of thrust vector)
INPUT_coll int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_coll(ncontmax,nstatemax) real + control matrix
nVcoll int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

coll(nvelmax) real + values
Vcoll(nvelmax) real + speeds (CAS or TAS, knots)

+ longitudinal cyclic (tip-path plane tilt or no-feathering plane tilt)
INPUT_lngcyc int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_lngcyc(ncontmax,nstatemax)

real + control matrix
nVlngcyc int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

lngcyc(nvelmax) real + values
Vlngcyc(nvelmax) real + speeds (CAS or TAS, knots)

+ lateral cyclic (tip-path plane tilt or no-feathering plane tilt)
INPUT_latcyc int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_latcyc(ncontmax,nstatemax)

real + control matrix
nVlatcyc int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

latcyc(nvelmax) real + values
Vlatcyc(nvelmax) real + speeds (CAS or TAS, knots)

+ incidence i (nacelle tilt)
INPUT_incid int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_incid(ncontmax,nstatemax)

real + control matrix
nVincid int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

incid(nvelmax) real + values
Vincid(nvelmax) real + speeds (CAS or TAS, knots)

+ cant c
INPUT_cant int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_cant(ncontmax,nstatemax) real + control matrix
nVcant int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

cant(nvelmax) real + values
Vcant(nvelmax) real + speeds (CAS or TAS, knots)

Structure: Rotor 114

+ diameter fdiam (variable diameter only)
INPUT_diam int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_diam(ncontmax,nstatemax) real + control matrix
nVdiam int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

fdiam(nvelmax) real + values
Vdiam(nvelmax) real + speeds (CAS or TAS, knots)

+ gear ratio factor fgear (variable speed transmission only)
INPUT_fgear int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_fgear(ncontmax,nstatemax)

real + control matrix
nVfgear int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

fgear(nvelmax) real + values
Vfgear(nvelmax) real + speeds (CAS or TAS, knots)

+ reaction drive net force Freact

INPUT_Freact int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_Freact(ncontmax,nstatemax)

real + control matrix
nVFreact int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

Freact(nvelmax) real + values
VFreact(nvelmax) real + speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to component control, flight state can specify component control value
initial values if control is connected to trim variable; otherwise fixed for flight state

pylon moves with rotor; nontilting part is engine nacelle

Structure: Rotor 115

+ Trim Targets
+ rotor lift

nVlift int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
Klift(nvelmax) real + target
Vlift(nvelmax) real + speeds (CAS or TAS, knots)

+ rotor propulsive force
nVprop int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
Kprop(nvelmax) real + target
Vprop(nvelmax) real + speeds (CAS or TAS, knots)

target definition determined by Aircraft%trim_quant

Klift can be fraction total aircraft lift, lift, CL/σ, or CT /σ
Kprop can be fraction total aircraft drag, propulsive force −X , −CX/σ, or −X/q)

+ Rotor Thrust Capability (CT /σ vs μ)
+ sustained

nsteady int + number of points (maximum 20) 16

mu_steady(20) real + advance ratio
CTs_steady(20) real + CT /σ

+ transient
ntran int + number of points (maximum 20) 16

mu_tran(20) real + advance ratio
CTs_tran(20) real + CT /σ

+ equation, CT /σ = K0 − K1μ
2

K0_limit real + constant K0 0.17

K1_limit real + constant K1 0.25

CTs_steady, CTS_tran used to calculate rotor thrust margin, which available for max effort or trim
defaults used if CTs(1)=0.

default CTs_steady = .170,.168,.161,.149,.131,.109,.084,.050,.049,.048,.047,.046,.045,.044,.043,.042
default CTs_tran = .200,.197,.190,.177,.156,.135,.110,.080,.075,.070,.065,.060,.055,.050,.045,.040
default mu_steady = 0.,.10,.20,.30,.40,.50,.60,.70,.71,.72,.73,.74,.75,.76,.77,.78
default mu_tran = 0.,.10,.20,.30,.40,.50,.60,.70,.72,.74,.76,.78,.80,.82,.84,.86

Structure: Rotor 116

+ Performance
MODEL_perf int + power model (1 standard, 2 table model) 1

MODEL_Ftpp int + inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory) 2

MODEL_Fpro int + inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect) 2

if thrust and TPP command, and neglect inplane forces relative TPP, then pitch control angles not required

+ Interference
MODEL_int int + model (0 none, 1 standard, 2 with transition) 1

+ transition
Vint_low real + low velocity (knots) 0.

Vint_high real + high velocity (knots) 0.

Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all
with transition: interference factors linearly vary from Kint at V ≤ Vint_low to 0 at V ≥ Vint_high

+ Geometry
SET_aeroaxes int + hub/pylon aerodynamic axes (0 input pitch, 1 helicopter, 2 propeller or tiltrotor) 1

pitch_aero real + pitch relative shaft axes θref , CBS = Y−θref 0.

SET_Spylon int + pylon wetted area (1 fixed, input Swet; 2 scaled, Wgbrs; 3 scaled, Wgbrs and WES ; 4 scaled, disk area) 2

Swet_pylon real + area Spylon 0.

kSwet_pylon real + factor, k = Spylon/(w/Nrotor)2/3 (Units_Dscale) or k = Spylon/A 1.0

SET_Sduct int + duct area (1 fixed, input S_duct; 2 scaled, from fLength_duct) 2

S_duct real + area Sduct 0.

fLength_duct real + duct length (fraction rotor radius) 1.2

SET_Sspin int + spinner wetted area (1 fixed, input Swet; 2 scaled, from fSwet) 2

Swet_spin real + area Sspin 0.

fSwet_spin real + factor, k = Sspin/Aspin 1.0

fRadius_spin real + spinner radius (fraction rotor radius) 0.

Structure: Rotor 117

only SET_aeroaxes=input uses pitch_aero; pitch_aero=180 for helicopter, 90 for propeller

SET_Spylon, pylon wetted area: input (use Swet_pylon) or calculated (from kSwet_pylon)
units of kSwet are ft2/lb2/3 or m2/kg2/3

w = Wgbrs (drive system) or Wgbrs +
∑

WES (drive system and engine system)
pylon wetted area used for pylon drag
rotor pylon must be consistent with engine group nacelle

SET_Sduct, duct area: input (use S_duct) or calculated (from fLength_duct)
Sduct = (2πR)�duct, �duct =fLength_duct*R; used for drag (wetted area 2Sduct) and weight

SET_Sspin, spinner wetted area: (use Swet_spin) or calculated (from fSwet_spin)
Aspin = πR2

spin = spinner frontal area (from fRadius_spin*R); spinner radius used for drag and weight

+ Drag
MODEL_drag int + model (0 none, 1 standard) 1

Idrag real + incidence angle for helicopter nominal drag (deg; 0 for not tilt) 0.

+ Weight
+ rotor group (or empennage or propulsion group)

MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWblade real + blade 0.

dWhub real + hub and hinge 0.

dWshaft real + inter-rotor shaft 0.

dWspin real + fairing/spinner 0.

dWrfold real + blade fold 0.

dWtr real + tail rotor 0.

dWaux real + auxiliary thrust 0.

dWrsupt real + rotor support structure 0.

dWduct real + duct 0.

Structure: Rotor 118

SET_Iblade int + blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from AI) 1

AI real + autorotation index KE/P = 1
2NbladeIbladeΩ2/P (sec) 3.0

Wblade_tip real + tip weight (per blade) 0.

rWblade_tip real + location tip weight (fraction blade radius) 0.9

fWblade_tip real + distributed weight for centrifugal force (fraction Wblade_tip) 1.0

rblade real + radius of gyration for distributed mass (fraction blade radius) 0.6

xWblade real + blade weight (fraction total tail rotor or auxiliary thrust rotor weight) 0.55

+ Technology Factors
TECH_blade real + blade weight χblade 1.0

TECH_hub real + hub and hinge weight χhub 1.0

TECH_shaft real + inter-rotor shaft χshaft 1.0

TECH_spin real + fairing/spinner weight χspin 1.0

TECH_rfold real + blade fold weight χfold 1.0

TECH_tr real + tail rotor weight χtr 1.0

TECH_aux real + auxiliary thrust weight χat 1.0

TECH_rsupt real + rotor support structure weight χsupt 1.0

TECH_duct real + duct weight χduct 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

blade weight: Wblade = χbladewblade + dWblade + (1 + f)WtipNblade

SET_Iblade: calculate blade moment of inertia Iblade

0 from Lock number gamma, independent of blade weight
1 from blade weight
2 from Lock number gamma, tip weight Wblade_tip calculated from Iblade

3 from autorotation index AI, tip weight Wblade_tip calculated from Iblade

for tail rotor or aux thrust weight model (MODEL_config = 2 or 3), blade weight Wblade = xWblade*Wtr or xWblade*Wat

rotor weight = blade + hub + spinner + fold + shaft + support + duct
rotor config determines where weight put in weight statement

main rotor: rotor group
tail rotor: empennage group (tail rotor)
propeller: propulsion group (propeller/fan installation)

Structure: Rotor 119

+ Rotor Induced Power, Standard Energy Performance Method
MODEL_ind int + model (0 none, 1 constant, 2 standard, 3 simple) 2

MODEL_ind=constant uses only Ki_hover, Ki_prop, Ki_edge

MODEL_ind=simple uses only Ki_hover, Ki_prop, Ki_edge, mu_axtran, mu_prop, Xa, mu_edge, Xe

nonzero values of Ki in FltState supersede calculated value

+ induced velocity factors (ratio to momentum theory induced velocity)
Ki_hover real + hover κhover 1.12

Ki_climb real + axial climb κclimb 1.08

Ki_prop real + axial cruise (propeller) κprop 2.0

Ki_edge real + edgewise flight (helicopter) κedge 2.0

+ variation with thrust
CTs_Hind real + (CT /σ)ind for hover κh variation 0.08

kh1 real + coefficient kh1 for κh 0.

kh2 real + coefficient kh2 for κh 0.

Xh2 real + exponent Xh2 for κh 2.

CTs_Pind real + (CT /σ)ind for axial κp variation 0.08

kp1 real + coefficient kp1 for κp 0.

kp2 real + coefficient kp2 for κp 0.

Xp2 real + exponent Xp2 for κp 2.

CTs_Tind real + (CT /σ)ind for edgewise κe variation 0.08

kt1 real + coefficient kt1 for κe 0.

kt2 real + coefficient kt2 for κe 0.

Xt2 real + exponent Xt2 for κe 2.

+ variation with shaft angle
kpa real + coefficient kpα for κp 0.

Xpa real + exponent Xpα for κp 2.

+ variation with propulsive force
kpx real + coefficient kpx for κp 0.

Xpx real + exponent Xpx for κp 1.

+ axial flight transition
Maxial real + constant Maxial from hover to climb 1.176

Structure: Rotor 120

Xaxial real + exponent Xaxial from hover to climb 0.65

mu_axtran real + advance ratio μztran from hover to axial 0.

+ variation with axial velocity
mu_prop real + advance ratio μzprop for Ki_prop 1.0

ka1 real + coefficient ka1 for κ(μz) (linear) 0.

ka2 real + coefficient ka2 for κ(μz) (quadratic) 0.

ka3 real + coefficient ka3 for κ(μz) 0.

Xa real + exponent Xa for κ(μz) 4.5

+ variation with edgewise velocity
MODEL_edge int + model for edgewise κ relative axial κ (0 replace, 1 sum) 0

mu_edge real + advance ratio μedge for Ki_edge 0.35

ke1 real + coefficient ke1 for κ(μ) (linear) 0.8

ke2 real + coefficient ke2 for κ(μ) (quadratic) 0.

ke3 real + coefficient ke3 for κ(μ) 1.

Xe real + exponent Xe for κ(μ) 4.5

kea real + variation with rotor drag keα 0.

+ variation with lift offset
ko1 real + coefficient ko1 for foff 0.

ko2 real + factor ko2 for foff 8.

Ki_min real + minimum κmin 1.

Ki_max real + maximum κmax 10.

+ Momentum theory
MODEL_grad int + inflow gradient in forward flight (0 none, 1 White and Blake, 2 Coleman and Feingold) 1

fGradx real + longitudinal gradient factor fx 1.

fGrady real + lateral gradient factor fy 1.

fGradm real + hub moment inflow gradient factor fm 1.

+ Ground effect
MODEL_GE int + model (0 none, 1 Cheeseman, 2 BE Cheeseman, 3 Law, 4 Hayden, 5 Zbrozek, 6 Maryland, 7 generic equation) 3

Cge real + effective height correction Cg 1.

+ generic equation
AGE real + coefficient for height A 1.

BGE(3) real + coefficient for height Bn 0.

FGE real + coefficient for thrust F 1.

Structure: Rotor 121

GGE real + coefficient for thrust G 0.

XGEt real + exponent for thrust Xt 1.

XGEz real + exponent for height Xz 1.

Cge: for tiltrotors, typically Cg = 0.5; smaller effective height accounting for increased influence of ground compared
to isolated rotor

+ Ducted fan
MODEL_duct int + model (1 specify area ratio, 2 specify thrust ratio) 1

fDuctA real + area ratio fA (fan area/far wake area) 1.

fDuctT real + thrust ratio fT (rotor thrust/total thrust) 0.5

fDuctVx real + velocity ratio fV x (fan edgewise velocity/free stream velocity) 1.

fDuctVz real + velocity ratio fV z (fan axial velocity/free stream velocity) 1.

eta_duct real + duct efficiency ηD (total pressure loss through duct) 1.

ducted fan model used only if config=’duct’

+ Twin rotors
MODEL_twin c*12 + model (based on config, none, side-by-side, coaxial, tandem, multirotor) ’config’

Kh_twin real + ideal induced velocity correction for hover κhtwin 1.00

Kp_twin real + ideal induced velocity correction for propeller κptwin 1.00

Kf_twin real + ideal induced velocity correction for forward flight κftwin 0.85

Cind_twin real + constant C in axial to forward flight transition 1.0

Caxial_twin real + constant Ca in hover to propeller transition 1.0

A_coaxial real + coaxial rotor nonuniform disk loading factor ᾱ 1.05

xh_multi(nrotormax) real + multirotor thrust factor xh for hover 1.0

xp_multi(nrotormax) real + multirotor thrust factor xp for propeller 1.0

xf_multi(nrotormax) real + multirotor thrust factor xf for forward flgiht 1.0

MODEL_twin: ’config’, ’none’, ’side-by-side’ or ’tiltrotor’, ’coaxial’, ’tandem’, or ’multirotor’

Structure: Rotor 122

’config’ must identify rotor as twin or multiple rotors
coaxial: MODEL_twin=’coaxial’ (use A_coaxial; Kh_twin not used)

or MODEL_twin=’tandem’ with zero horizontal separation (typically Kh_twin=0.90)
coaxial and tandem: Kf_twin = 0.88 to 0.81 for rotor separation 0.06D to 0.12D

thrust factors x calculated for twin rotors, input for multiple rotors
correction factors and transition constants (κtwin, C, Ca) used for twin or multiple rotors

+ Rotor Profile Power, Standard Energy Performance Method
MODEL_pro int + model (0 none, 1 constant, 2 standard) 2

cdmean real + constant mean drag coefficient 0.009

MODEL_pro=constant uses only cdmean

nonzero values of cdo in FltState supersede calculated cdmean

TECH_drag real + technology factor for profile power χ 1.0

Re_ref real + reference Reynolds number Reref (0. for no correction) 0.

X_Re real + exponent for Reynolds number correction XRe 0.2

MODEL_basic int + Basic model cdbasic (0 none, 1 array, 2 equation) 2

+ array (cd vs thrust-weighted CT /σ)
ncd int + number of points (maximum 24) 24

CTs_cd(24) real + blade loading
cd(24) real + drag coefficient

+ equation
CTs_Dmin real + (CT /σ)Dmin for minimum profile drag (Δ = |CT /σ − (CT /σ)Dmin|) 0.07

d0_hel real + coefficient d0hel in drag, cdh = d0hel + d1helΔ + d2helΔ2 + Δcdsep (hover/edgewise) 0.009

d1_hel real + coefficient d1hel in drag (hover/edgewise) 0.

d2_hel real + coefficient d2hel in drag (hover/edgewise) 0.5

d0_prop real + coefficient d0prop in drag, cdp = d0prop + d1propΔ + d2propΔ2 + Δcdsep (axial) 0.009

d1_prop real + coefficient d1prop in drag (axial) 0.

d2_prop real + coefficient d2prop in drag (axial) 0.5

Structure: Rotor 123

dprop real + variation with shaft angle, coefficient dpα for cdp 0.

Xprop real + variation with shaft angle, exponent Xpα for cdp 2.

CTs_sep real + (CT /σ)sep for separation (Δcdsep = dsep(|CT /σ| − (CT /σ)sep)Xsep) 0.07

dsep real + factor dsep in drag increment 4.0

Xsep real + exponent Xsep in drag increment 3.0

df1 real + variation with edgewise velocity, coefficient df1 0.

df2 real + variation with edgewise velocity, coefficient df2 0.

Xf real + variation with edgewise velocity, exponent Xf 2.

dz1 real + variation with axial velocity, coefficient dz1 0.

dz2 real + variation with axial velocity, coefficient dz2 0.

Xz real + variation with axial velocity, exponent Xz 2.

default array (cd(1)=0.): CT /σ = 0. to 0.23 (uniform increments)
cd = .01100,.01075,.01025,.01000,.01010,.01070,.01050,.00975,.00925,.00926,.00938,.00977,

.01048,.01152,.01336,.01593,.01920,.02381,.03014,.04000,.08000,.16000,.32000,1.0000

MODEL_stall int + Stall model cdstall (0 none) 1

+ CT /σ at stall (Δs = |CT /σ| − (fs/fαfoff)(CT /σ)s, Δcd = ds1ΔXs1
s + ds2ΔXs2

s)
nstall int + number of points (maximum 20) 10

mu_stall(20) real + advance ratio V/Vtip

CTs_stall(20) real + (CT /σ)s

fstall real + constant fs in stall drag increment 1.0

dstall1 real + factor ds1 in stall drag increment 2.

dstall2 real + factor ds2 in stall drag increment 40.

Xstall1 real + exponent Xs1 in stall drag increment 2.0

Xstall2 real + exponent Xs2 in stall drag increment 3.0

+ variation with lift offset
do1 real + coefficient do1 for foff 0.

do2 real + factor do2 for foff 8.

dsa real + variation with rotor drag dsα 0.

default used if CTs_stall(1)=0.

default CTs_stall = 0.17,0.16,0.15,0.14,0.13,0.12,0.11,0.10,0.10,0.10
default mu_stall = 0.00,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.80

Structure: Rotor 124

MODEL_comp int + Compressibility model cdcomp (0 none, 1 drag divergence, 2 similarity) 1

+ similarity model
fSim real + factor f 1.0

thick_tip real + blade tip thickness-to-chord ratio τ 0.08

+ drag divergence model (Δm = Mat − Mdd, Δcd = dm1Δm + dm2ΔXm
m)

dm1 real + coefficient dm1 in drag increment 0.056

dm2 real + coefficient dm2 in drag increment 0.416

Xm real + exponent Xm in drag increment 2.0

+ drag divergence Mach number (Mdd = Mdd0 − Mddcl c�)
Mdd0 real + Mdd0 at zero lift 0.88

Mddcl real + derivative with lift κ = ∂Mdd/∂c� 0.16

+ Performance, Table Method
MODEL_indTab int + induced power model (0 standard, 1 table, 2 table with equations) 1

nvar_ind int + number independent variables (1 to 3) 0

var_ind(3) c*12 + variables ’ ’

nv_ind(3) int + number of variable values (maximum ntablemax) 0

v_ind(ntablemax,3) real + independent variable
MODEL_proTab int + profile power model (0 standard, 1 table, 2 table with equations) 1

KIND_proTab int + profile power model (0 standard, 1 table cdmean, 2 table cdmeanF = 8CPo/σ) 1

nvar_pro int + number independent variables (1 to 3) 0

var_pro(3) c*12 + variables ’ ’

nv_pro(3) int + number of variable values (maximum ntablemax) 0

v_pro(ntablemax,3) real + independent variable
+ table

Ki(ntablemax,ntablemax,ntablemax)

real + induced power factor κ
cdo(ntablemax,ntablemax,ntablemax)

real + profile power mean cd

independent variables: var_ind and var_pro

’V’: flight speed V/Vtip

’Vh’: horizontal speed Vh/Vtip

’mu’, ’muHP’: edgewise advance ratio μ (hub plane)

Structure: Rotor 125

’muz’, ’muzHP’: axial velocity ratio μz (hub plane)
’alpha’, ’alphaHP’: shaft angle-of-attack α = tan−1(μz/μ) (hub plane)
’muTPP’: edgewise advance ratio μ (tip-path plane)
’muzTPP’: axial velocity ratio μz (tip-path plane)
’alphaTPP’: shaft angle-of-attack α = tan−1(μz/μ) (tip-path plane)
’CTs’, ’CT/s’: blade loading CT /σ
’Mx’, ’offset’: lift offset Mx/TR
’Mtip’: tip Mach number Mtip

’Mat’: advancing tip Mach number Mat

nonzero values of Ki and/or cdo in FltState supersede table (or table with equations) values

+ Rotor Drag, Standard Model
+ forward flight drag

SET_Dhub int + hub drag specification (1 fixed, D/q; 2 scaled, CD; 3 scaled, squared-cubed; 4 scaled, square-root) 2

DoQ_hub real + area (D/q)hub

CD_hub real + coefficient CDhub (based on rotor area, D/q = SCD) 0.0024

kDrag_hub real + k = (D/q)/(W/1000)2/3 or (D/q)/W 1/2 (Units_Dscale) 0.8

SET_Dpylon int + pylon drag specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ_pylon real + area (D/q)pylon

CD_pylon real + coefficient CDpylon (based on pylon wetted area, D/q = SCD) 0.

SET_Dduct int + duct drag specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ_duct real + area (D/q)duct

CD_duct real + coefficient CDduct (based on duct wetted area, D/q = SCD) 0.

SET_Dspin int + spinner drag specification (1 fixed, D/q; 2 scaled, CD) 1

DoQ_spin real + area (D/q)spin 0.

CD_spin real + coefficient CDspin (based on spinner wetted area, D/q = SCD) 0.

+ vertical drag
SET_Vhub int + hub drag specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV_hub real + area (D/q)V hub

CDV_hub real + coefficient CDV hub (based on rotor area, D/q = SCD) 0.

Structure: Rotor 126

SET_Vpylon int + pylon drag specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV_pylon real + area (D/q)V pylon

CDV_pylon real + coefficient CDV pylon (based on pylon wetted area, D/q = SCD) 0.

SET_Vduct int + duct drag specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV_duct real + area (D/q)V duct

CDV_duct real + coefficient CDV duct (based on duct wetted area, D/q = SCD) 0.

+ stopped/stowed rotor
+ forward flight hub drag

DoQ_hubstop real + area (D/q)hub−stop 0.

CD_hubstop real + coefficient CDhub−stop (based on rotor area, D/q = SCD) 0.

DoQ_hubstow real + area (D/q)hub−stow 0.

CD_hubstow real + coefficient CDhub−stow (based on rotor area, D/q = SCD) 0.

+ vertical hub drag
DoQV_hubstop real + area (D/q)V hub−stop 0.

CDV_hubstop real + coefficient CDV hub−stop (based on rotor area, D/q = SCD) 0.

DoQV_hubstow real + area (D/q)V hub−stow 0.

CDV_hubstow real + coefficient CDV hub−stow (based on rotor area, D/q = SCD) 0.

+ stopped blade drag
CD_bladestop real + coefficient CDblade (based on blade area, D/q = SCD) 0.

+ transition from forward flight drag to vertical drag
MODEL_Dhub int + hub drag model (0 none, 1 general, 2 quadratic) 2

MODEL_Dpylon int + pylon drag model (0 none, 1 general, 2 quadratic) 2

MODEL_Dduct int + duct drag model (0 none, 1 general, 2 quadratic) 2

X_hub real + hub drag, transition exponent Xd 2.

X_pylon real + pylon drag, transition exponent Xd 2.

X_duct real + duct drag, transition exponent Xd 2.

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

component drag contributions must be consistent; pylon is rotor support, and nacelle is engine support
tiltrotor with tilting engines use pylon drag (and no nacelle drag), since pylon connected to rotor shaft axes
tiltrotor with nontilting engines: use nacelle drag as well
rotor with a spinner (such as on a tiltrotor aircraft) likely not have hub drag

Structure: Rotor 127

SET_Dhub, hub drag: use one of DoQ_hub, CD_hub, kDrag_hub

units of kDrag are ft2/klb2/3 or m2/Mg2/3; ft2/lb1/2 or m2/kg1/2

CD = 0.0040 for typical hubs, 0.0024 for current low drag hubs, 0.0015 for faired hubs
kDrag (2/3 power) = 1.4 for typical hubs, 0.8 for current low drag hubs, 0.5 for faired hubs (English units)
kDrag (1/2 power) = 0.074 for single rotor helicopters, 0.049 for tandem helicopters,

0.038 for hingeless rotors, 0.027 for faired hubs (English units)
W = fW WMTO (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor)

stopped/stowed rotor: areas or coefficients (based on SET_Dhub and SET_Vhub) replace hub drag

+ Rotor Interference, Standard Model
+ model

MODEL_develop int + development along wake axis (1 step function, 2 nominal, 3 input Xdevelop) 3

Xdevelop real + rate parameter t 0.2

MODEL_boundary int + immersion in wake (1 step function, 2 always immersed, 3 input Xboundary) 3

MODEL_contract int + far wake contraction (0 no, 1 yes) 1

Xboundary real + boundary transition s (fraction contracted radius) 0.2

MODEL_int_twin int + twin rotor interference (1 no correction, 2 nominal, 3 input Ktwin) 1

Ktwin real + velocity factor in overlap region KT 1.4142

Nint_wing(nwingmax) int + number wing span stations 6

Nint_tail(ntailmax) int + number tail span stations 2

+ interference factors Kint (0. for no interference)
Kint_fus real + at fuselage 1.0

Kint_wing(nwingmax) real + at wing 1.0

Kint_tail(ntailmax) real + at tail 1.0

Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all
interference factor linearly transition from Kint at V ≤ Vint_low to 0 at V ≥ Vint_high

to account for wing or tail area in wake, interference averaged at Nint points along span

Structure: Rotor 128

MODEL_develop: step function same as Xdevelop=0; nominal same as Xdevelop=1.

MODEL_boundary: step function same as Xboundary=0; always immersed same as Xboundary=∞
MODEL_twin: only for coaxial or tandem or side-by-side; nominal same as Ktwin=

√
2

+ Induced power interference at wing
KIND_int_wing int + kind (1 wing-like, 2 propeller-like) 1

Cint_wing(nwingmax) real + factor Cint (0. for no interference) 0.

For tiltrotors, typically the interference is wing-like, with Cint
∼= −0.06

+ Rotor Group, NDARC Weight Model
MODEL_config int + model (1 rotor, 2 tail rotor, 3 auxiliary thrust) 1

MODEL_Wblade int + blade weight model (1 AFDD82, 2 AFDD00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic) 1

MODEL_Whub int + hub and hinge weight model (1 AFDD82, 2 AFDD00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko, 7 generic) 1

MODEL_Wshaft int + inter-rotor shaft weight (0 none, 1 from lift offset, 2 from shaft length) 0

+ AFDD00 weight models
MODEL_type int + hub weight equation depend on blade weight (for hub weight; 0 no, 1 yes) 1

KIND_rotor int + rotor kind (for blade weight; 1 tilting, 2 not) 2

+ AFDD00 and AFDD82: first flapwise natural frequency ν (per-rev at hover tip speed)
flapfreq_blade real + blade (0. to use flapfreq) 0.

flapfreq_hub real + hub (0. to use flapfreq_blade) 0.

+ lift offset rotor
MODEL_offset int + rotor tip clearance (for blade weight; 1 scaled, 2 fixed) 1

offset real + design lift offset L (roll moment/TR) 0.3

thick20 real + blade airfoil thickness-to-chord ratio τ.2R (at 20%R) 0.21

clearance_tip real + tip clearance, scaled s/R or fixed s (ft or m) 0.05

Structure: Rotor 129

thick25 real + Boeing: blade airfoil thickness-to-chord ratio τ.25R (at 25%R) 0.15

rattach real + Boeing (blade, hub, tail rotor, aux thrust): blade attachment (fraction rotor radius) 0.09

+ generic blade
Kblade real + factor Kblade 0.

XbldN real + exponent XbldN 0.

XbldR real + exponent XbldR 0.

Xbldc real + exponent Xbldc 0.

XbldV real + exponent XbldV 0.

Xbldf real + exponent Xbldν 0.

XbldW real + exponent XbldW 0.

+ generic hub
Khub real + factor Khub 0.

XhubN real + exponent XhubN 0.

XhubR real + exponent XhubR 0.

Xhubc real + exponent Xhubc 0.

XhubV real + exponent XhubV 0.

Xhubf real + exponent Xhubν 0.

XhubW real + exponent XhubW 0.

MODEL_tr int + tail rotor weight model (1 AFDD, 2 Boeing, 3 GARTEUR) 1

thick70 real + GARTEUR: blade airfoil thickness-to-chord ratio τ.7R (at 70%R) 0.11

MODEL_aux int + auxiliary thrust weight model (1 AFDD10, 2 AFDD82, 3 Boeing, 4 GARTEUR, 5 Torenbeek, 6 generic) 1

thrust_aux real + AFDD82: design maximum thrust Tat 0.

power_aux real + AFDD10: design maximum power Pat 0.

material_aux real + AFDD10: material factor fm 1.

+ generic propeller
Kat real + factor Kat 0.

XatN real + exponent XatN 0.

XatR real + exponent XatR 0.

Xatc real + exponent Xatc 0.

XatV real + exponent XatV 0.

XatP real + exponent XatP 0.

fWfold real + blade fold weight ffold (fraction total blade weight) 0.

fWsupt real + rotor support structure weight (fraction maximum takeoff weight) 0.

Structure: Rotor 130

Usupt real + rotor support weight per length Usupt (lb/ft or kg/m) 0.

fshaft real + rotor shaft length (fraction rotor radius) fshaft 0.

Ushaft real + rotor shaft weight per length Ushaft (lb/ft or kg/m) 0.

Uduct real + duct weight per area Uduct (lb/ft2 or kg/m2) 1.5

MODEL_config: tail rotor and auxiliary thrust models use only rotor, support, and duct weights (not shaft, fold, or
separate blade and hub weights)
duct weight only used for ducted fan configuration

for teetering and gimballed rotors, the flap frequency flapfreq_blade should be the coning frequency

The AFDD00 hub weight equation using the calculated blade weight (MODEL_type = 0) results in a lower average
error, and best represents legacy rotor systems.
Using the actual actual blade weight (MODEL_type = 1) is best for advanced technology rotors with blades lighter than
trend.

if thrust_aux�= 0, supersedes design maximum thrust of rotor from sizing task
if power_aux�= 0, supersedes design maximum power of rotor from sizing task
material_aux=1 for composite construction, 1.20 for wood, 1.31 for aluminum spar, 1.44 for aluminum construction
default Ωprop is the reference rotor speed

typically fWfold = 0.04 for manual fold, 0.28 for automatic fold

rotor support structure weight must be consistent with engine support and pylon support weights of engine section

+ Custom Weight Model
WtParam_rotor(8) real + parameters 0.

131

Chapter 23

Structure: Wing

Variable Type Description Default

+ Wing
title c*100 + title
notes c*1000 + notes

+ Geometry
wingload real + wing loading W/S = fW WD/S
fDGW real + fraction DGW fW (for wing loading) 1.0

area real + area S
span real + span b
chord real + chord c
AspectRatio real + aspect ratio AR

wing parameters: for each wing; input two quantities, other two derived (SizeParam input)
SET_wing = input two of (’area’ or wing loading ’WL’), (’span’ or ’ratio’ or ’radius’ or ’width’ or ’hub’ or ’panel’),

’chord’, aspect ratio ’aspect’

SET_wing = ’ratio+XX’ to calculate span from span of another wing
SET_wing = ’radius+XX’ to calculate span from rotor radius
SET_wing = ’width+XX’ to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
SET_wing = ’hub+XX’ to calculate span from rotor hub position (tiltrotor)
SET_wing = ’panel+XX’ to calculate span from wing panel widths

if wing sized from wing loading (SET_wing=’WL+xx’), area = fDGW*DGW/wingload

rotor stopped as wing: identified by wing number Rotor%StopAsWing for stoppable rotor
use SET_wing=’area+span’, area = blade geometric area, span = 2R, nPanel=1, zero weight
wing aerodynamic loads calculated when FltAircraft%STOP_rotor = stopped as wing

Structure: Wing 132

+ Geometry
+ rotors

nRotorOnWing int + number of rotors mounted on wing 0

RotorOnWing(nrotormax) int + rotor numbers
+ span calculation

fSpan real + ratio wing span to span of other wing, or to rotor radius 1.0

otherWing int + other wing number 0

RotorForSpan int + rotor number for span (if nRotorOnWing=0) 0

RotorOnPanel(npanelmax) int + rotor at wing panel edge
thick real + thickness ratio τw .23

fWidth_box real + wing torque box chord wtb (fraction wing chord) 0.45

SET_ac int + aerodynamic center offset from pivot, at zero incidence (0 none, 1 fixed, 2 scale with chord) 0

dSLac real + stationline 0.

dBLac real + buttline 0.

dWLac real + waterline 0.

SET_cg int + center of gravity offset from pivot, at zero incidence (0 none, 1 fixed, 2 scale with chord) 0

dSLcg real + stationline 0.

dWLcg real + waterline 0.

RotorOnWing required for SET_wing = ’radius’ or ’width’ or ’hub’; MODEL_wing = tiltrotor; SET_Vdrag = airfoil cd90

RotorOnPanel required for SET_panel = ’radius’ or ’width’ or ’hub’

SET_wing = ’radius’ gets radius from RotorOnWing or RotorForSpan

taper, sweep, thickness used by weight equations
taper and sweep calculated for entire wing from wing panel geometry

fWidth_box used by tiltrotor weight equations
thick and fWidth_box used for fuel in wing

+ Geometry (for graphics)
twist real + twist 0.

Structure: Wing 133

+ Geometry
loc_wing Location + aerodynamic center location
nPanel int + number of wing panels (maximum npanelmax) 1

KIND_ACoffset int + aero center offset (1 fixed, 2 fraction root chord, 3 fraction inboard chord) 1

+ Wing Panels
SET_panel(npanelmax) c*24 + panel parameters ’span+taper’

span_panel(npanelmax) real + span (one side), bp

area_panel(npanelmax) real + area (both sides), Sp

chord_panel(npanelmax) real + mean chord, cp

fspan_panel(npanelmax) real + ratio span to wing span (one side), bp/(b/2) 1.

farea_panel(npanelmax) real + ratio area to wing area (both sides), Sp/S 1.

fchord_panel(npanelmax) real + ratio mean chord to wing chord, cp/c 1.

+ panel edges
edge_panel(npanelmax) real + outboard edge, yE

fedge_panel(npanelmax) real + outboard edge, ηE = y/(b/2) 1.

lambdaI(npanelmax) real + inboard chord ratio, cI/cref 1.

lambdaO(npanelmax) real + outboard chord ratio, cO/cref 1.

+ aerodynamic center locus
sweep_panel(npanelmax) real + sweep Λp (deg, + aft) 0.

dihedral_panel(npanelmax) real + dihedral δp (deg, + up) 0.

dxAC_panel(npanelmax) real + chordwise offset at panel inboard edge xIp (+ aft) 0.

dzAC_panel(npanelmax) real + vertical offset at panel inboard edge zIp (+ up) 0.

+ control surfaces
fchord_flap(npanelmax) real + flap chord �F = cF /cp (fraction panel chord) 0.25

fchord_flaperon(npanelmax) real + flaperon/aileron chord �f = cf/cp (fraction panel chord) 0.25

fspan_flap(npanelmax) real + flap span fb = bF /bp (fraction panel span) 0.5

fspan_flaperon(npanelmax) real + flaperon/aileron span fb = bf/bp (fraction panel span) 0.5

fAC_aileron(npanelmax) real + aileron aerodynamic center lateral position y 0.7

SET_wing, wing parameters: for each wing; input two quantities, other two derived
SET_wing = input two of (’area’ or wing loading ’WL’), (’span’ or ’ratio’ or ’radius’ or ’width’ or ’hub’ or ’panel’)
SET_wing = ’chord’, aspect ratio ’aspect’

SET_wing = ’ratio+XX’ to calculate span from span of another wing
SET_wing = ’radius+XX’ to calculate span from rotor radius

Structure: Wing 134

SET_wing = ’width+XX’ to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
SET_wing = ’hub+XX’ to calculate span from rotor hub position (tiltrotor)
SET_wing = ’panel+XX’ to calculate span from wing panel widths

wing panels: SET_panel not required with only one panel
SET_panel: specify consistent definition of panels (span, edge, area, chord)

panel span: ’span’ or ’bratio’, else free
’span’ = input span_panel, bp

’bratio’ = input ratio to wing span, fspan_panel, bp/(b/2)
panel outboard edge: ’edge’, ’station’, ’width’, ’hub’, or ’adjust’ (not used for tip panel)

’edge’ = input edge_panel, yE

’station’ = input fraction wing semispan fedge_panel, ηE = y/(b/2)
’radius’ = from rotor radius
’width’ = from rotor radius, fuselage width, and clearance (tiltrotor)
’hub’ = from rotor hub position (tiltrotor)
’adjust’ = from adjacent input panel span or span ratio

panel area or chord: ’area’, ’Sratio’, ’chord’, ’cratio’, ’taper’, else free
’area’ = input area_panel, Sp

’Sratio’ = input ratio to wing area, farea_panel, Sp/S
’chord’ = input chord_panel, cp

’cratio’ = input ratio to wing chord, fchord_panel, cp/c
’taper’ = from chord ratios lambdaI and lambdaO

require consistent definition of panel spans and outboard edges, and consistent with SET_wing

all edges known (from input edge or station, or from adjacent panel span or span ratio)
resulting edges unique and sequential
if wing span calculated from panel widths:

one and only one input panel span or span ratio that not used to define edge
if known span: no input panel span or span ratio that not used to define edge
usually best that any free span defined for inboard panel, not outboard panel

panel area or chord:
if one or more taper (and no free), calculate cref from wing area
if one (and only one) free, calculate Sp from wing area

fAC_aileron: from panel inboard edge, fraction panel span
for nPanel=1, from centerline and fraction wing semispan

Structure: Wing 135

Example input for typical wing geometry
Tiltrotor, one panel:

Size: SET_wing=’WL+width’, ! span from radius, fuselage width, and clearance; and wing loading
Rotor: SET_geom=’tiltrotor’,KIND_TRgeom=1, ! rotor lateral position (BL) from clearance

WingForRotor=1,otherRotor=1/2,

clearance_fus=x.,

fclearance_fus=1.,

Fuselage: Width_fus=x.,

Wing: wingload=x.,

nRotorOnWing=2,RotorOnWing=1,2,

nPanel=1,

SET_panel=’span+taper’,lambdaI=1.,lambdaO=1., ! not required with only one panel

Tiltrotor with wing extension, two panels
Size: SET_wing=’WL+panel’, ! span from wing panel widths; and wing loading
Rotor: SET_geom=’tiltrotor’,KIND_TRgeom=1, ! rotor lateral position (BL) from clearance

WingForRotor=1,otherRotor=1/2,PanelForRotor=1,

clearance_fus=x.,

fclearance_fus=1.,

Fuselage: Width_fus=x.,

Wing: wingload=x.,

nRotorOnWing=2,RotorOnWing=1,2,

nPanel=2,

SET_panel=’width+taper’,’span+taper’, ! outboard edge from R, Width_fus, and clearance; from span_panel

RotorOnPanel=1, 0,

span_panel=0., x.,

lambdaI=1., 1.,

lambdaO=1., x.,

sweep_panel=x., x.,

dihedral_panel=x., x.,

SET_ext=1,kPanel_ext=2,KIT_ext=0, ! wing extension

Structure: Wing 136

General wing, two panels, define chord and span of both
Size: SET_wing=’panel+area’, ! span from wing panel widths; and wing area
Rotor: SET_geom=’standard’,

Wing: area=x.,

nPanel=2,

SET_panel=’span+chord’,’span+free’, ! span from span_panel; chord from inboard chord_panel and area
span_panel=x., x.,

chord_panel=x., x.,

Tiltwing, three panels, four rotors
inboard hub at 1.75R (R + .25R clearance + .50R fuselage)
outboard hub at 3.6R (1.85R between hubs, overlap = .075)
wing tip at 4.2R (0.6R from outboard hub)
Size: SET_wing=’WL+radius’, ! calculate span from rotor radius; and wing loading
Rotor: right/right-inboard/left-inboard/left

SET_geom=’tiltrotor’,KIND_TRgeom=3, ! rotor lateral position (BL) from wing panel edge
WingForRotor=1,

positionOfRotor=1/1/-1/-1, ! right/left
PanelForRotor=2/1/1/2,

Wing: wingload=x.,

nRotorOnWing=4,RotorOnWing=1,2,3,4,

fSpan=4.2, ! fSpan = b/D
nPanel=3,

SET_panel=’station+cratio’,’station+cratio’,’station+free’,

fedge_panel=0.4167, 0.8571, 1., ! inboard-rotor/semispan, outboard-rotor/semispan, 1
fchord_panel=1., 1., 1.,

+ Wing Extensions
SET_ext int + extension (0 for none) 0

kPanel_ext int + wing panel number 2

KIT_ext int + wing extension as kit (0 not kit) 0

+ Wing Kit
KIT_wing int + wing as kit (0 not, 1 kit, 2 kit as fixed useful load) 0

fWkit real + kit weight (fraction total wing weight) 0.

Structure: Wing 137

+ Controls (each panel)
+ kind deflection

KIND_flap(npanelmax) int + flap (1 fraction root flap; 2 increment relative root flap; 3 independent) 3

KIND_aileron(npanelmax) int + aileron (1 fraction root aileron; 2 increment relative root aileron; 3 independent) 3

KIND_incid(npanelmax) int + incidence (1 fraction root incidence; 2 increment relative root incidence; 3 independent) 3

KIND_flaperon(npanelmax) int + kind flaperon deflection (1 fraction flap; 2 increment relative flap; 3 independent) 1

+ flap δFp

INPUT_flap(npanelmax) int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_flap(ncontmax,nstatemax,npanelmax)

real + control matrix
nVflap(npanelmax) int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

flap(nvelmax,npanelmax) real + values
Vflap(nvelmax,npanelmax) real + speeds (CAS or TAS, knots)

+ flaperon δfp

INPUT_flaperon(npanelmax) int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_flaperon(ncontmax,nstatemax,npanelmax)

real + control matrix
nVflaperon(npanelmax) int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

flaperon(nvelmax,npanelmax)

real + values
Vflaperon(nvelmax,npanelmax)

real + speeds (CAS or TAS, knots)
+ aileron δap

INPUT_aileron(npanelmax) int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_aileron(ncontmax,nstatemax,npanelmax)

real + control matrix
nVaileron(npanelmax) int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

aileron(nvelmax,npanelmax) real + values
Vaileron(nvelmax,npanelmax)

real + speeds (CAS or TAS, knots)

Structure: Wing 138

+ incidence ip
INPUT_incid(npanelmax) int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_incid(ncontmax,nstatemax,npanelmax)

real + control matrix
nVincid(npanelmax) int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

incid(nvelmax,npanelmax) real + values
Vincid(nvelmax,npanelmax) real + speeds (CAS or TAS, knots)

+ flow control momentum coefficient Cμ

INPUT_flow(npanelmax) int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_flow(ncontmax,nstatemax,npanelmax)

real + control matrix
nVflow(npanelmax) int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

flow(nvelmax,npanelmax) real + values
Vflow(nvelmax,npanelmax) real + speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Trim Target
+ wing lift

nVlift int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
Klift(nvelmax) real + target
Vlift(nvelmax) real + speeds (CAS or TAS, knots)

target definition determined by Aircraft%trim_quant

Klift can be fraction total aircraft lift, lift, or CL

+ Aerodynamics
MODEL_aero int + model (0 none, 1 standard) 1

Idrag real + incidence angle i for helicopter nominal drag (deg; 0 for not tilt) 0.

Structure: Wing 139

+ Weight
+ wing group

MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWprim real + wing primary structure 0.

dWext real + wing extension 0.

dWfair real + fairing 0.

dWfit real + fittings 0.

dWflap real + flaps and control surfaces 0.

dWwfold real + wing fold 0.

dWefold real + wing extension fold 0.

+ tiltrotor model
fWtip real + factor for weight on wing tips 1.

xWtip real + increment for weight on wing tips 0.

+ Technology Factors
TECH_prim real + wing primary structure (torque box) weight χprim 1.0

TECH_ext real + wing extension weight χext 1.0

TECH_fair real + fairing weight χfair 1.0

TECH_fit real + fittings weight χfit 1.0

TECH_flap real + flaps and control surfaces weight χflap 1.0

TECH_wfold real + wing fold weight χfold 1.0

TECH_efold real + wing extension fold weight χefold 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

tiltrotor model requires weight on wing tips: both sides; calculated as sum of
rotor group, engine section or nacelle group, air induction group,
engine system, drive system (less drive shaft), rotary wing and conversion flight controls,
hydraulic group, trapped fluids, wing tip extensions

fWtip and xWtip adjust Wtip_total, without changing weight statements
negative increment required when engine and transmission not at tip location with rotor

Structure: Wing 140

+ Wing Aerodynamics, Standard Model
AoA_zl real + zero lift angle of attack αzl (deg) 0.

CLmax real + maximum lift coefficient CLmax 1.5

SET_compress int + compressibility correction (0 none, 1 lift, 2 drag, 3 both) 0

+ lift
SET_lift int + specification (2 2D dCL/dα; 3 3D dCL/dα) 2

dCLda real + lift curve slope CLα = dCL/dα (per rad) 5.73

Tind real + lift curve slope non-elliptical loading correction τ 0.25

Eind real + Oswald or span efficiency e (CDi = (CL − CL0)2/(πeAR)) 0.8

CL_Dmin real + lift coefficient for minimum induced drag CL0 0.

Mdiv real + lift-divergence Mach number Mdiv 0.75

+ control (each wing panel)
eta0(npanelmax) real + lift effectiveness factor η0, η0 − η1|δ| 0.85

eta1(npanelmax) real + lift effectiveness factor η1, η0 − η1|δ| 0.43

Kconl(npanelmax) real + calibration or correction factor for lift K� 1.

Kconm(npanelmax) real + calibration or correction factor for moment Km 1.

Kcond(npanelmax) real + calibration or correction factor for drag Kd 1.

Kconx(npanelmax) real + calibration or correction factor for maximum lift Kx 1.

+ pitch moment
CMac real + pitch moment coefficient about aerodynamic center CMac 0.

+ Wing Drag, Standard Model
+ forward flight drag

SET_drag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ real + area (D/q)0
CD real + coefficient CD0 (based on wing area, D/q = SCD) 0.012

+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, CD; 3 airfoil cd90) 2

DoQV real + area (D/q)V

CDV real + coefficient, CDV (based on wing area, D/q = SCD) 2.

cd90 real + airfoil drag coefficient cd90 (–90 deg) 1.4

fd90 real + airfoil drag coefficient flap effectiveness factor fd90 2.5

CDcc real + compressibility drag increment CDcc at Mcc 0.0011

Mcc0 real + critical Mach number constant Mcc0 0.74

Mcc1 real + critical Mach number constant Mcc1 0.31

Structure: Wing 141

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

+ drag variation with angle of attack
MODEL_drag int + model (0 none, 1 general, 2 quadratic) ΔCD = CD0Kd|αe|Xd 2

AoA_Dmin real + angle of attack for wing minimum drag αDmin (deg) 0.

Kdrag real + drag increment Kd 0.

Xdrag real + drag increment Xd 2.

MODEL_sep int + separated flow model (0 none, 1 general, 2 quadratic, 3 cubic) ΔCD = CD0Ks(|αe| − αs)Xs 3

AoA_sep real + angle of attack for separation αs (deg) 10.

Ksep real + drag increment Ks 0.

Xsep real + drag increment Xs 2.

+ transition from forward flight drag to vertical drag
AoA_tran real + angle of attack for transition αt (deg) 25.

Conventionally the Oswald efficiency e represents the wing parasite drag variation with lift, as well as the induced drag.
If CDp varies with angle-of-attack, then e is just the span efficiency factor for the induced power (and CL0 should be
zero).

+ wing-body interference drag
SET_wb int + specification (1 fixed, D/q 2 scaled, CD) 1

DoQ_wb real + area (D/q)wb 0.

CD_wb real + coefficient CDwb (based on wing area, D/q = SCD) 0.

+ Interference
Etail(ntailmax) real + angle of attack change at tail, E = dε/dα (rad/rad) 0.

Kint_wing(nwingmax) real + interference factor Kint at other wings (0. for no interference) 0.

+ rotor induced power increment (0. for no interference)
Kinth_rotor(nrotormax) real + helicopter Kinth 0.

Kintp_rotor(nrotormax) real + propeller Kintp 0.

Structure: Wing 142

for tandem wings, typically
Kint_wing(aftwing)=2. for front-on-aft interference
Kint_wing(frontwing)=0. for aft-on-front interference

for biplane wings, typically Kint_wing(otherwing)=0.7

with mutual interference (as for biplane), require trim or other iteration for convergence

+ Flow Control; ΔCL = CLα(Lμs

√
Cμ + Lμ1Cμ + Lμ2C

2
μ), ΔCLmax = XμCμ, ΔCM = MμCμ, ΔCD = DμCμ

MODEL_flow int + model (0 none) 0

Lmus(npanelmax) real + lift Lμs 1.4

Lmu1(npanelmax) real + lift Lμ1 0.0

Lmu2(npanelmax) real + lift Lμ2 0.0

Xmu(npanelmax) real + maximum lift Xμ 1.0

Mmu(npanelmax) real + moment Mμ 0.0

Dmu(npanelmax) real + drag Dμ 0.0

Cmu_limit(npanelmax) real + flow limit Cμlimit 1.0

+ Wing Group, NDARC Weight Model
MODEL_wing int + model (1 area, 2 parametric, 3 tiltrotor, 4 other) 2

MODEL_other int + model (1 Boeing, 2 GARTEUR, Torenbeek (3 light, 4 transport), Raymer (5 transport, 6 general aviation))
fLift real + lift factor 1.0

bFold real + parametric method: fraction wing span that folds bfold (0 to 1) 0.

wfus real + Boeing: maximum fuselage width (fraction wing span)
Vdive real + Boeing or Raymer: design dive speed Vdive (knots) 200.

rflaplift real + GARTEUR: ratio maximum lift with and without flaps
+ area method

Uprim real + weight per area Uprim, wing primary structure (lb/ft2 or kg/m2) 5.

Uext real + weight per area Uext, wing extension (lb/ft2 or kg/m2) 3.

Structure: Wing 143

+ weight factors (fraction total wing weight)
fWfair real + fairing ffair 0.10

fWfit real + fittings ffit 0.12

fWflap real + flaps and control surfaces fflap 0.10

fWfold real + wing fold ffold 0.

fWefold real + wing extension fold fefold (fraction wing extension weight) 0.

+ Custom Weight Model
WtParam_wing(8) real + parameters 0.

+ Wing Group, NDARC Tiltrotor Weight Model
+ jump takeoff condition

CTs_jump real + rotor maximum blade loading CT /σ 0.20

n_jump real + load factor njump at SDGW 2.0

Vtip_jump real + rotor tip speed (0. to use hover Vtip) 750.0

thickTR real + wing airfoil thickness-to-chord ratio τw 0.23

+ width of wing structural attachments to body
SET_Attach int + definition (0 input wAttach, 1 fraction fuselage width, 2 fraction wing span) 1

fAttach real + fraction width wattach/wfus 1.

wAttach real + width wattach (ft or m) 0.

fRG_pylon real + pylon radius of gyration rpylon/R (fraction rotor radius) 0.30

+ wing mode frequencies (per rev, fraction rotor speed)
freq_beam real + beam bending frequency ωB 0.5

freq_chord real + chord bending frequency ωC 0.8

freq_tors real + torsion frequency ωT 0.9

SET_refrpm int + reference rotor speed (0 from input Vtip_freq, 1 hover Vtip, 2 cruise Vtip) 0

Vtip_freq real + rotor tip speed 600.

MODEL_form int + form factors (1 calculate, 2 input) 1

form_beam real + torque box beam bending FB 0.6048

form_chord real + torque box chord bending FC 0.4874

form_tors real + torque box torsion FT 1.6384

form_spar real + spar caps vertical/horizontal bending FV H 0.5018

eff_spar real + spar structural efficiency esp 0.8

eff_box real + torque box structural efficiency etb 0.8

Structure: Wing 144

+ tapered spar cap correction factors
C_t real + weight correction Ct (equivalent stiffness) 0.75

C_j real + weight correction Cj (equivalent strength) 0.50

C_m real + strength correction Cm (equivalent stiffness) 1.5

+ material (lb/in2, in/in, lb/in3; or N/m2, m/m, kg/m3)
E_spar real + spar modulus Esp 10.E6

E_box real + torque box modulus Etb 10.E6

G_box real + torque box shear modulus Gtb 4.0E6

StrainU_spar real + spar ultimate strain allowable εU 0.01

StrainU_box real + torque box ultimate strain allowable εU 0.01

density_spar real + density spar cap ρsp 0.06

density_box real + density torque box ρtb 0.06

+ weight per area (lb/ft2 or kg/m2)
Ufair real + fairing Ufair 2.

Uflap real + flaps and control surfaces Uflap 3.

UextTR real + wing extension Uext 3.

+ weight factor
fWfitTR real + fittings ffit (fraction maximum thrust of one rotor) 0.01

fWfoldTR real + wing fold ffold (fraction total wing weight excluding fold) 0.

fWefoldTR real + wing extension fold fefold (fraction wing extension weight) 0.

jump takeoff: hover Vtip obtained from RotorOnWing(1) rotor

wing frequencies: reference rotor rotation speed from rotor Vtip and radius
from RotorOnWing(1) rotor; hover tip speed Vtip_ref(1), cruise Vtip_cruise

thickTR only used for tiltrotor wing weight

SET_Attach: attachment width used for both torsion stiffness and fairing area

+ Custom Weight Model
WtParam_wingtr(8) real + parameters 0.

145

Chapter 24

Structure: Tail

Variable Type Description Default

+ Empennage
title c*100 + title
notes c*1000 + notes
KIND_tail int + kind (1 horizontal tail, 2 vertical tail, 3 V-tail horizontal, 4 V-tail vertical) 1

+ Geometry
SET_tail c*16 + specification ’vol+aspect’

area real + area S
span real + span b
chord real + chord c
AspectRatio real + aspect ratio AR
TailVol real + tail volume V
KIND_TailVol int + tail volume reference (1 wing, 2 rotor) 2

TailVolRef int + wing or rotor number for tail volume 1

otherVtail int + other V-tail number

KIND_tail used for geometry, baseline orientation, tail volume, tail weight model
tail parameters: input two quantities, others calculated

SET_tail = input two of (’area’ or tail volume ’vol’), (’span’ or aspect ratio ’aspect’ or ’chord’)
tail volume reference: tail volume V = S�/RA (tailarea * taillength / (diskarea * radius))

or horizontal tail volume V = S�/Swcw (tailarea * taillength / (wingarea * wingchord))
or vertical tail volume V = S�/Swbw (tailarea * taillength / (wingarea * wingspan))

V-tail: modeled as pair of horizontal and vertical tails (identified by otherVtail)
separately sized, aerodynamic loads for each; dihedral calculated, cant set to zero
weight only for second tail, based on V-tail area and aspect ratio

Structure: Tail 146

+ Geometry (for graphics and weights)
taper real + taper ratio 1.0

sweep real + sweep (+ aft, deg) 0.

dihedral real + dihedral (deg) 0.

thick real + thickness ratio .12

+ Geometry
loc_tail Location + aerodynamic center location
cant real + cant angle φ (deg) 0.

fchord_cont real + control surface chord cf/c (fraction tail chord) 0.25

fspan_cont real + control surface span bf/b (fraction tail span) 1.0

+ Controls
+ elevator δe or rudder δr

INPUT_cont int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_cont(ncontmax,nstatemax) real + control matrix
nVcont int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

cont(nvelmax) real + values
Vcont(nvelmax) real + speeds (CAS or TAS, knots)

+ incidence i
INPUT_incid int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_incid(ncontmax,nstatemax)

real + control matrix
nVincid int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

incid(nvelmax) real + values
Vincid(nvelmax) real + speeds (CAS or TAS, knots)

horizontal tail cant angle: + to left (vertical tail for cant = 90)
vertical tail cant angle: + to right (horizontal tail for cant = 90)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

Structure: Tail 147

+ Aerodynamics
MODEL_aero int + model (0 none, 1 standard) 1

+ Weight
+ tail (empennage group)

MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWtail real + basic 0.

dWfold real + fold 0.

+ Technology Factors
TECH_tail real + tail weight χht or χvt 1.0

TECH_tfold real + fold weight χfold 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

+ Tail Aerodynamics, Standard Model
AoA_zl real + zero lift angle of attack αzl (deg) 0.

CLmax real + maximum lift coefficient CLmax 1.

SET_compress int + compressibility correction (0 none, 1 lift, 2 drag, 3 both) 0

+ lift
SET_lift int + specification (2 2D dCL/dα; 3 3D dCL/dα) 2

dCLda real + lift curve slope CLα = dCL/dα (per rad) 5.73

Tind real + lift curve slope non-elliptical loading correction τ 0.25

Eind real + Oswald efficiency e (CDi = (CL − CL0)2/(πeAR)) 0.8

CL_Dmin real + lift coefficient for minimum induced drag CL0 0.

Mdiv real + lift-divergence Mach number Mdiv 0.75

+ control
eta0 real + lift effectiveness factor η0, η0 − η1|δ| 0.85

eta1 real + lift effectiveness factor η1, η0 − η1|δ| 0.43

Structure: Tail 148

Kconl real + calibration or correction factor for lift K� 1.

Kconm real + calibration or correction factor for moment Km 1.

Kcond real + calibration or correction factor for drag Kd 1.

Kconx real + calibration or correction factor for maximum lift Kx 1.

+ Tail Drag, Standard Model
+ forward flight drag

SET_drag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ real + area (D/q)0
CD real + coefficient CD0 (based on tail area, D/q = SCD) 0.011

+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV real + area (D/q)V

CDV real + coefficient CDV (based on tail area, D/q = SCD) 1.

CDcc real + compressibility drag increment CDcc at Mcc 0.0011

Mcc0 real + critical Mach number constant Mcc0 0.74

Mcc1 real + critical Mach number constant Mcc1 0.31

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

+ drag variation with angle of attack
MODEL_drag int + model (0 none, 1 general, 2 quadratic) ΔCD = CD0Kd|αe|Xd 2

AoA_Dmin real + angle of attack for tail minimum drag αDmin (deg) 0.

Kdrag real + drag increment Kd 0.

Xdrag real + drag increment Xd 2.

+ transition from forward flight drag to vertical drag
AoA_tran real + angle of attack for transition αt (deg) 25.

Structure: Tail 149

+ Tail, NDARC Weight Model
MODEL_tail int + model (1 horizontal tail, 2 vertical tail, 3 based on KIND_tail) 3

+ horizontal tail
MODEL_Htail int + model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other) 1

MODEL_Hother int + model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))
KIND_Htail int + Torenbeek or Raymer: kind (1 fixed, 2 variable incidence) 1

wfus real + Raymer: fuselage width at horizontal tail wf/bht (fraction span) 0.2

+ vertical tail
MODEL_Vtail int + model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other) 1

MODEL_Vother int + model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))
place_AntiQ int + AFDD: antitorque placement (0 none, 1 on tail boom, 2 on vertical tail) 1

KIND_Vtail int + Torenbeek or Raymer: kind (1 conventional, 2 T-tail) 1

fTtail real + Torenbeek: T-tail factor (Shthht)/(Svtbvt) 0.8

Vdive real + design dive speed Vdive (knots) 200.

+ area method
Utail real + weight per area Utail (lb/ft2 or kg/m2) 3.

fTfold real + fold weight factor ffold (fraction total tail weight excluding fold) 0.

weight models can use taper ratio, sweep, and thickness ratio
dive speed: Vmax = SLS max speed, Vdive = 1.25Vmax

+ Custom Weight Model
WtParam_tail(8) real + parameters 0.

150

Chapter 25

Structure: FuelTank

Variable Type Description Default

+ Fuel Tank System
title c*100 + title
notes c*1000 + notes

+ Configuration
SET_burn int + fuel quantity stored and used (1 weight, 2 energy) 1

+ fuel weight properties
fuel_density real + fuel weight per volume ρfuel (lb/gallon or kg/liter) 6.5

specific_energy real + fuel energy per weight efuel (MJ/kg) 42.8

fFuelWing(nwingmax) real + fraction wing torque box filled by fuel tanks 1.0

+ fuel tank sizing
Wfuel_cap real + fuel capacity Wfuel−cap (weight, lb or kg)
Efuel_cap real + fuel capacity Efuel−cap (energy, MJ)
fFuel_cap real + ratio capacity to mission fuel ffuel−cap 1.0

dFuel_cap real + capacity increment dfuel−cap 0.

IDENT_battery c*16 + battery identification ’ ’

store and use weight: energy calculated from weight; capacity is usable fuel weight
use Wfuel_cap, Waux_cap, fuel_density, specific_energy, fFuelWing; fWtank, fWauxtank, other weight parameters
units of specific_energy = MJ/kg, regardless of Units_energy

store and use energy: fuel weight zero; capacity is usable fuel energy
use Efuel_cap, Eaux_cap, IDENT_battery; eWtank, eWauxtank, energy_density, other weight parameters
units of Efuel_cap, Eaux_cap = MJ, regardless of Units_energy

Structure: FuelTank 151

fuel tank sizing: usable fuel capacity Wfuel_cap (weight) or Efuel_cap (energy)
SET_tank=’input’: input Wfuel_cap or Efuel_cap

SET_tank=’miss’: calculate from mission fuel used
Wfuel_cap or Efuel_cap = max(fFuel_cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))

SET_tank=’miss+power’ = calculate from mission fuel used and mission battery discharge power
SET_tank=’f(miss)’ = function of mission fuel used

Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*((maximum mission fuel)+(reserve fuel))

battery identification: energy storage only, match ident of BatteryModel

+ Geometry
loc_tank Location + location
place int + placement (for graphics; 1 internal, 2 sponson, 3 wing, 4 combination) 1

SET_length_wire int + wiring length (1 input, 2 from component positions) 1

Length_wire real + length �wire

fLength_wire real + factor 1.0

+ Auxiliary Fuel Tank
Mauxtanksize int + number of auxiliary tank sizes (minimum 1, maximum nauxtankmax) 1

Waux_cap(nauxtankmax) real + fuel capacity Waux−cap (weight) 1000.

Eaux_cap(nauxtankmax) real + fuel capacity Eaux−cap (energy) 20000.

fWauxtank(nauxtankmax) real + tank weight fauxtank (fraction auxiliary fuel weight) 0.

eWauxtank(nauxtankmax) real + tank weight eauxtank (MJ/kg or kWh/kg, Units_energy) 0.

DoQ_auxtank(nauxtankmax) real + drag (D/q)auxtank (each tank)
loc_auxtank(nauxtankmax) Location + location

+ Equipment power
MODEL_Peq int + model (0 for none) 0

sfc real + specific fuel consumption 0.

Peq_0 real + power loss Peq0, constant 0.

Peq_d real + power loss Peqd, scale with density 0.

Peq_t real + power loss Peqt, scale with temperature 0.

KPeq_w real + power loss Peqw, weight factor 0.

XPeq_w real + power loss Peqw, weight exponent 0.

Peq_deice real + deice power loss Peqi 0.

Structure: FuelTank 152

specific fuel consumption: weight (lb/hp-hr or kg/kWh) or energy (hp/hp or kW/kW)

+ Thermal management system
SET_TMS int + design rejected power Prej−design (0 none, 1 input, 2 fraction Pcap) 0

Prej_design real + power (hp or kW) 0.

fPrej_design real + fraction 0.004

SET_FN int + net jet force (0 for no force) 1

+ Power distribution losses
eta_dist real + efficiency at Pcap 1.

+ Cooling drag
DoQ_cool real + area (D/q)cool 0.

The design rejected power Prej−design can be specified as a fraction of the battery power capacity Pcap,
which is the product of the maximum burst discharge current xmbd and the actual battery capacity.
The fraction fPref_design accounts for the fact that the design operating current is significantly less than xmbd.

+ Weight
+ fuel system (propulsion group)

MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWtank real + tanks and support; battery (including BMS and TMS) 0.

dWplumb real + plumbing; power distribution (wiring) 0.

battery (W_fuel_tank=TECH_tank*(Wbatt+WBMS+WTMS)+dWtank, W_fuel_plumb=TECH_plumb*Wwire+dWplumb)
+ Technology Factors

TECH_tank real + fuel tank weight χtank 1.0

TECH_plumb real + plumbing weight χplumb 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

Structure: FuelTank 153

+ Fuel System, NDARC Weight Model
+ weight storage
+ fuel tank

MODEL_tank int + model (1 fraction, 2 parametric, Torenbeek (3 integral, 4 generic), Raymer (5 transport, 6 general aviation)) 2

ntank_int int + number of internal tanks Nint 4

fWtank real + tank weight ftank (fraction fuel capacity weight) 0.09

Ktoler real + parametric: ballistic tolerance factor fbt (1.0 to 2.5) 2.5

KIND_crash int + parametric: survivability (1 baseline, 2 UTTAS/AAH level of survivability) 2

Ktank real + Torenbeek (generic): factor Ktank 3.2

Xtank real + Torenbeek (generic): exponent Xtank 0.727

fint real + Raymer: integral tank capacity (fraction total) 1.0

fprot real + Raymer: protected tank capacity (fraction total) 1.0

+ plumbing
MODEL_plumb int + model (1 fraction, 2 parametric) 2

nplumb int + total number of fuel tanks (internal and auxiliary) for plumbing Nplumb 4

K0_plumb real + weight increment K0plumb (lb) 150.

K1_plumb real + weight factor K1plumb (lb) 2.0

fWplumb real + plumbing weight fplumb (fraction total fuel system weight) 0.4

MODEL_tank: fraction method uses fWtank; parametric method uses ntank_int, Ktoler, KIND_crash

K1_plumb is a crashworthiness and survivability factor; typically K1_plumb = 2.
K0_plumb is the sum of weights for auxiliary fuel, in-flight refueling, pressure refueling, inerting system, etc.; typically
K0_plumb = 50 to 250 lb

+ energy storage
eWtank real + tank weight etank (MJ/kg or kWh/kg, Units_energy)
energy_density real + tank volume density ρtank (MJ/liter or kWh/liter, Units_energy)
fBMS real + battery management system (fraction basic tank weight) 0.2

+ power distribution (wiring) weight
Uwire real + weight per length 0.62

fwire real + fraction basic tank weight 0.2

Structure: FuelTank 154

specific energy etank and energy density ρtank based on usable fuel capacity (consistent with dmax − dmin)

+ Custom Weight Model
WtParam_tank(8) real + parameters 0.

155

Chapter 26

Structure: Propulsion

Variable Type Description Default

+ Propulsion Group
title c*100 + title
notes c*1000 + notes

propulsion group is set of components and engine groups, connected by drive system
components (rotors) define power required, engine groups define power available
drive system defines ratio of rotational speeds of components (relative primary rotor speed)

+ Drive system
nGear int + number of states (maximum ngearmax) 1

STATE_gear_var int + drive system state for variable speed transmisson (0 for none) 0

drive system branches: one primary rotor per propulsion group (specify Vtip), others dependent (specify gear ratio)
specify primary engine group only if no rotors in propulsion group

drive system state: identifies gear ratio set for multiple speed transmissions
state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n

variable speed transmission: for drive system state STATE_gear_var, gear ratio factor fgear (control) included
when evaluate rotational speed of dependent rotors and engines

+ Transmission losses
MODEL_Xloss int + model (1 fraction component power required; 2 with function drive shaft limit) 2

fPloss_xmsn real + gear box loss �xmsn (fraction total component power required) 0.04

Ploss_windage real + power loss due to windage Pwindage 0.

Structure: Propulsion 156

+ Accessory losses
Pacc_0 real + power loss Pacc0, constant 0.

Pacc_d real + power loss Paccd, scale with density 0.

Pacc_n real + power loss Paccn, scale with density and rpm 0.

Pacc_deice real + deice power loss Pacci 0.

fPacc_ECU real + ECU (etc.) power loss �acc (fraction component+transmission power) 0.

fPacc_IRfan real + IRS fan loss �IRfan (fraction total engine power) 0.

+ Geometry
SET_length int + drive shaft length (1 input, 2 from hub positions, 3 scale with radius) 2

Length_ds real + length �DS

fLength_ds real + factor 0.9

SET_length: input (use Length_ds) or calculated (from fLength_ds)

+ Drive system torque limit
Plimit_ds real + drive system power limit PDSlimit

fPlimit_ds real + drive system power limit factor 1.0

SET_Plimit_size int + drive system limit when sizing transmission (0 not applied to power available) 0

+ Drive system ratings
nrate_ds int + number of ratings (maximum nratemax) 1

rating_ds(nratemax) c*12 + drive system rating designation ’ ’

frating_ds(nratemax) real + torque limit factor 1.0

+ schedule
Vdrive_hover real + maximum speed for hover and helicopter mode (CAS or TAS, knots)
Vdrive_cruise real + minimum speed for cruise (CAS or TAS, knots)
rating_ds_hover c*12 + rating for hover and helicopter mode (V ≤ Vdrive−hover) ’ ’

rating_ds_conv c*12 + rating for conversion mode (Vdrive−hover < V < Vdrive−cruise) ’ ’

rating_ds_cruise c*12 + rating for cruise mode (V ≥ Vdrive−cruise) ’ ’

drive system torque limits: SET_limit_ds = input (use Plimit_xx) or calculate (from fPlimit_xx)
SET_limit_ds=’input’: Plimit_ds input
SET_limit_ds=’ratio’: from takeoff power, fPlimit_ds

∑
(NengPeng)

Structure: Propulsion 157

SET_limit_ds=’Pav’: from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Ωref/Ωprim)

∑
(NengPav)

SET_limit_ds=’Preq’: from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Ωref/Ωprim)

∑
(NengPreq)

engine shaft: options for SET_limit_ds�=’input’

SET_limit_es=0: Plimit_es

SET_limit_es=1: fPlimit_es × (engine group Peng or Pav or Preq , depending on SET_limit_ds)
SET_limit_es=2: fPlimit_es ×PDSlimit(PengEG/PengPG)

drive system power limit: corresponds to power of all engines of propulsion group (all engine groups)
can be used for trim (trim_quant=’Q margin’)
used for drive system weight, tail rotor weight, transmission losses
limits propulsion group Pav (if FltState%SET_Plimit=on)

engine shaft power limit: corresponds to all engines of engine group (nEngine × Peng)
limits engine group Pav (if FltState%SET_Plimit=on)

rotor shaft power limit: corresponds to one rotor
all limits

can be used for max effort in flight state (max_quant=’Q margin’)
can be used for max gross weight in flight condition or mission (SET_GW=’maxQ’ or ’maxPQ’)
always check and print whether exceed torque limit

the engine model gives the power available, accounting for installation losses and mechanical limits
then the power available is reduced by the factor FltState%fPower

next torque limits are applied (unless FltState%SET_Plimit=off), first engine shaft limit and then drive system limit

SET_Plimit_size=0: drive system limits are not applied for transmission sizing conditions and mission segments
(DESIGN_xmsn); otherwise use FltState%SET_Plimit

drive system ratings: blank to use engine ratings of first engine group
limit at flight state is rxfQPlimit, where r is the rotor speed ratio and x is the rating factor frating_ds

if nrate_ds≤ 1, drive system rating not used
schedule used if FltAircraft%rating_ds=’speed’

Structure: Propulsion 158

+ Control
+ rotational speed increment ΔN , primary rotor or primary engine (rpm)

INPUT_DN int + connection to aircraft controls (0 none, 1 input T matrix) 0

T_DN(ncontmax,nstatemax) real + control matrix
nVDN int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

DN(nvelmax) real + values
VDN(nvelmax) real + speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Weight
+ drive system (propulsion group)

MODEL_DS int + model (0 input, 1 NDARC, 2 custom) 1

+ weight increment
dWgb real + gear box 0.

dWrs real + rotor shaft 0.

dWds real + drive shaft 0.

dWrb real + rotor brake 0.

dWcl real + clutch 0.

dWgd real + gas drive 0.

STATE_gear_wt int + drive system state for weight 1

kEngineGroup_wt(2) int + EngineGroup for weight (input, output) 1

+ Technology Factors
TECH_gb real + gear box weight χgb 1.0

TECH_rs real + rotor shaft weight χrs 1.0

TECH_ds real + drive shaft weight χds 1.0

TECH_rb real + rotor brake weight χrb 1.0

TECH_cl real + clutch weight χcl 1.0

TECH_gd real + gas drive weight χgd 1.0

Structure: Propulsion 159

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

kEngineGroup_wt: always identify engine group for drive system input
if propulsion group has rotors, primary rotor speed used for drive system output
if propulsion group does not have rotors, must identify engine group for drive system output

drive system weight = gear box (including rotor shaft) + drive shaft + rotor brake + clutch + gas drive
tiltrotor wing weight model requires weight on wing tip (drive system, without rotor shaft)

+ Drive System, NDARC Weight Model
+ gear box (including rotor shafts)

MODEL_gbrs int + model (1 AFDD83, 2 AFDD00, 3 other) 1

MODEL_other int + model (1 Boeing, 2 Boeing (alternate), GARTEUR (3 helicopter, 4 tiltrotor), 5 Tishchenko, 6 generic)
fShaft real + rotor shaft weight frs (fraction gear box and rotor shaft weight) 0.13

ngearbox int + AFDD83: number of gear boxes Ngb 7

fTorque real + AFDD83: second (main or tail) rotor rated torque fQ (fraction total drive system rated torque) 0.03

nstage int + Boeing: number of stages in main-rotor drive 4

+ generic gearbox
Kgbrs real + factor Kgbrs 0.

XgbP real + exponent XgbP 0.

Xgbe real + exponent Xgbe 0.

Xgbr real + exponent Xgbr 0.

KIND_other int + other: separate tail rotor drive weight increment (0 none) 0

Ktrgb real + tail rotor drive weight increment factor Ktrgb 1.0

fPower_tr real + tail rotor power (fraction total drive system rated power) 0.15

gear_tr real + tail rotor gear ratio 5.0

+ drive shaft and rotor brake
MODEL_dsrb int + model (0 none, 1 AFDD82) 1

ndriveshaft int + AFDD82: number of intermediate drive shafts Nds (excluding rotor shafts) 6

fPower real + AFDD82: second (main or tail) rotor rated power fP (fraction total drive system rated power) 0.15

Structure: Propulsion 160

fPower = fTorque*(otherrotor RPM)/(mainrotor RPM)
typically fTorque=fPower=0.6 for twin main rotors (tandem, coaxial, tiltrotor)
for single main rotor and tail rotor, fTorque = 0.03, fPower = 0.15 (0.18 for 2-bladed teeter)

typically fShaft = 0.13 (data range 0.06 to 0.20)

+ Custom Weight Model
WtParam_drive(8) real + parameters 0.

161

Chapter 27

Structure: EngineGroup

Variable Type Description Default

+ Engine Group
title c*100 + title
notes c*1000 + notes

+ Description
MODEL_engine c*32 + engine model ’RPTEM’

IDENT_engine c*16 + engine identification ’Engine’

IDENT_system2 c*16 + second system identification ’ ’

nEngine int + number of engines Neng 1

nEngine_main int + number of main engines 1

Peng real + engine power Peng (SLS static at takeoff rating, 0. for P0_ref(rating_to)) 0.

rating_to c*12 + takeoff power rating ’MCP’

rating_idle c*12 + idle power rating ’MCP’

kFuelTank int + fuel tank system number 1

kRotor_react int + rotor number for reaction drive
fuselage_flow int + fuselage flow control (0 not) 1

wing_flow(nwingmax) int + wing flow control (0 not) 1

+ Propulsion Group
kPropulsion int + group number 1

KIND_xmsn int + drive system branch (1 primary, 0 dependent) 0

INPUT_gear int + gear ratio input (1 from Nspec, 2 gear) 1

gear(ngearmax) real + engine gear ratio r = Ωspec/Ωprim (ratio rpm to rpm of primary rotor in propulsion group) 1.0

MODEL_engine: engine model
’RPTEM’, ’shaft’ = turboshaft engine (RPTEM); IDENT_engine → EngineModel; fuel is weight
’table’ = turboshaft engine (table); IDENT_engine → EngineTable; fuel is weight
’recip’ = reciprocating engine; IDENT_engine → RecipModel; fuel is weight
’comp’ = compressor; IDENT_engine → CompressorModel; not use fuel

Structure: EngineGroup 162

’comp+react’ = compressor for reaction drive; IDENT_engine → CompressorModel; not use fuel
’comp+flow’ = compressor for flow control; IDENT_engine → CompressorModel; not use fuel
’motor’ = electric motor; IDENT_engine → MotorModel; fuel is energy
’gen’ = electric generator; IDENT_engine → MotorModel; fuel is energy (generated, not burned)
’motor+gen’ = motor + generator (mode B ≥ 0 for motor); IDENT_engine → MotorModel; fuel is energy
’simple’ = simple engine; no model identified; fuel is weight or energy

MODEL_engine: convertible engine; only with turboshaft
’+react’ = reaction drive (mode B = 1); IDENT_system2 → EngineModel

’+jet’, ’+fan’ = turbojet/turbofan (mode B = 1); IDENT_system2 → EngineModel

engine identification: match ident of EngineModel or EngineTable or RecipModel or CompressorModel or MotorModel

second system identification: match ident of EngineModel; not use weight
number of main engines: for fuel tank weight

for fixed engine: use Peng = 0. and no size task (or engine power not sized)
takeoff power rating: for engine scaling, aircraft power loading, fuel tank weight
FltState%rating can be set to ’idle’ (rating_idle) or ’takeoff’ (rating_to)

fuel tank system identified for burn must store and use weight (turboshaft, reciprocating)
or energy (motor, may have BatteryModel)

fuel tank system identified for generation must store and use energy (may have BatteryModel)

drive system branch: primary engine group only designated if no rotors for propulsion group
INPUT_gear: calculate gear from Nspec and Vtip_ref of primary rotor of propulsion group, or specify gear ratio
variable speed transmission: for drive system state STATE_gear_var, gear ratio factor fgear (control) included

when evaluate rotational speed of engine

+ Sizing
SET_power int + specification (0 sized, 1 fixed) 0

fPsize real + sized power ratio fn 1.0

SET_Pother int + sized power from other engine group (0 not) 0

fEsize(nengmax) real + fraction other engine group power fE 0.

Structure: EngineGroup 163

SET_power: if SIZE_perf=’engine’, used to distribute propulsion group power required among engine groups
Peng = fnPsized/Neng for n-th engine group, Psized = PPG − ∑

fixed NengPeng

must size at least first engine group, so SET_power and fPsize values not used for first group
fPsize calculated for first engine group, must be > 0.

not used (SET_power=1) if group consumes power (compressor or generator, which sized if SIZE_engine=’engine’)
FltState%SET_Preq specifies distribution of power required for flight state

SET_Pother: size power from engine group of other propulsion groups, max(Peng, fEPeng−other)

+ Drive system torque limit
SET_limit_es int + engine shaft (0 input, 1 fraction power, 2 fraction drive system limit) 1

Plimit_es real + engine shaft power limit PESlimit

fPlimit_es real + engine shaft power limit factor 1.0

drive system torque limits: SET_limit_ds = input (use Plimit_es) or calculated (from fPlimit_es)
SET_limit_ds=’input’: Plimit_ds input
SET_limit_ds=’ratio’: from takeoff power, fPlimit_ds

∑
(NengPeng)

SET_limit_ds=’Pav’: from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Ωref/Ωprim)

∑
(NengPav)

SET_limit_ds=’Preq’: from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)
fPlimit_ds(Ωref/Ωprim)

∑
(NengPreq)

engine shaft: options for SET_limit_ds�=’input’

SET_limit_es=0: Plimit_es

SET_limit_es=1: fPlimit_es × (engine group Peng or Pav or Preq , depending on SET_limit_ds)
SET_limit_es=2: fPlimit_es ×PDSlimit(PengEG/PengPG)

engine shaft power limit: corresponds to all engines of engine group (nEngine × Peng)
limits engine group Pav (if FltState%SET_Plimit=on)
can be used for max effort in flight state (max_quant=’Q margin’)
can be used for max gross weight in flight condition or mission (SET_GW=’maxQ’ or ’maxPQ’)
always check and print whether exceed torque limit

Structure: EngineGroup 164

+ Installation
Kffd real + deterioration factor on engine fuel flow or performance Kffd 1.05

eta_d real + engine inlet efficiency ηd (fraction, for δM) 0.98

+ power losses (fraction power available, Ploss/Pa)
fPloss_inlet real + engine inlet loss �in 0.

fPloss_ps real + inlet particle separator loss �in 0.

fPloss_exh real + engine exhaust loss �ex (IRS off) 0.015

+ auxiliary air momentum drag (IRS off)
fMF_auxair real + mass flow faux (fraction engine mass flow) 0.007

eta_auxair real + ram recovery efficiency ηaux 0.75

+ IR suppressor
+ power losses (IRS on)

fPloss_exh_IRon real + engine exhaust loss �ex 0.030

+ auxiliary air momentum drag (IRS on)
fMF_auxair_IRon real + mass flow faux (fraction engine mass flow) 0.01

eta_auxair_IRon real + ram recovery efficiency ηaux 0.75

+ Convertible
Kffd_conv real + deterioration factor on engine fuel flow or performance Kffd 1.05

+ power losses (fraction power available, Ploss/Pa)
fPloss_exh_conv real + engine exhaust loss �ex 0.015

+ Thermal management system
SET_TMS int + design rejected power Prej−design for one engine (0 none, 1 input, 2 fraction Peng) 0

Prej_design real + power (hp or kW) 0.

fPrej_design real + fraction 0.02

+ Model
SET_FN int + net jet force (0 for no force) 1

SET_Daux int + auxiliary air momentum drag (0 for no drag) 1

installation power losses = inlet + particle separator + exhaust (including IRS)
IR suppressor state specified by STATE_IRS in operating condition
motor or generator: only use Kffd, thermal management system

Structure: EngineGroup 165

+ Simple engine
Pmax real + design maximum power at takeoff rating Pmax 0.

rMRP real + power ratio (MRP/MCP) 1.2

SET_burn int + fuel quantity used (1 weight, 2 energy) 1

sfc real + specific fuel consumption (weight) 0.4

eta real + efficiency (energy) 0.95

SW real + specific weight S 0.5

fuel tank system identified must be consistent with SET_burn

simple engine has two ratings: MCP and MRP

+ Geometry
loc_engine Location + location
direction c*16 + nominal orientation (’+x’, ’–x’, ’+y’, ’–y’, ’+z’, ’–z’) ’x’

SET_geom int + position (0 standard, 1 tiltrotor, 2 rotor) 0

RotorForEngine int + rotor number 1

SET_Swet int + nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, WES ; 3 scaled, WES and Wgbrs; 4 scaled, lengths) 2

Swet real + area Swet (per engine) 0.

kSwet real + factor, k = Swet/(w/Neng)2/3 (Units_Dscale) or k = Swet/(�Xfus
fus c

Xwing
wing RXrotor) 0.8

XSwet_fus real + exponent, Xfus 0.

XSwet_wing real + exponent, Xwing 0.

XSwet_rotor real + exponent, Xrotor 2.

refWing int + wing number (for wing chord) 1

refRotor int + rotor number (for rotor radius) 1

SET_geom: calculation override part of location input
SET_geom=tiltrotor: calculate lateral position (BL) from RotorForEngine

SET_geom=rotor: (SL,BL,WL or XoL,YoL,ZoL) is relative loc_rotor(RotorForEngine)

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)
units of kSwet are ft2/lb2/3 or m2/kg2/3

w = WES (engine system) or WES + Wgbrs/NEG (engine system and drive system)
nacelle wetted area used for nacelle drag, and for cowling weight
engine group nacelle must be consistent with rotor pylon

Structure: EngineGroup 166

+ Controls
+ amplitude A (fixed engine group power)

INPUT_amp int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_amp(ncontmax,nstatemax) real + control matrix
nVamp int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

amp(nvelmax) real + values
Vamp(nvelmax) real + speeds (CAS or TAS, knots)

+ mode B
INPUT_mode int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_mode(ncontmax,nstatemax) real + control matrix
nVmode int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

mode(nvelmax) real + values
Vmode(nvelmax) real + speeds (CAS or TAS, knots)

+ incidence i (tilt)
INPUT_incid int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_incid(ncontmax,nstatemax)

real + control matrix
nVincid int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

incid(nvelmax) real + values
Vincid(nvelmax) real + speeds (CAS or TAS, knots)

+ yaw ψ
INPUT_yaw int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_yaw(ncontmax,nstatemax) real + control matrix
nVyaw int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

yaw(nvelmax) real + values
Vyaw(nvelmax) real + speeds (CAS or TAS, knots)

+ gear ratio factor fgear (variable speed transmission only)
INPUT_fgear int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_fgear(ncontmax,nstatemax)

real + control matrix
nVfgear int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

fgear(nvelmax) real + values
Vfgear(nvelmax) real + speeds (CAS or TAS, knots)

Structure: EngineGroup 167

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Nacelle Drag
MODEL_drag int + model (0 none, 1 standard) 1

Idrag real + incidence angle i for helicopter nominal drag (deg; 0 for not tilt) 0.

component drag contributions must be consistent
pylon is rotor support, and nacelle is engine support

tiltrotor with tilting engines use pylon drag (and no nacelle drag),
since pylon connected to rotor shaft axes

tiltrotor with nontilting engines, use nacelle drag as well

+ Weight
+ engine weight

MODEL_weight int + model (0 input, 1 RPTEM or NASA, 2 custom) 1

dWEng real + weight increment (all engines) 0.

+ engine system (except engine), engine section or nacelle group, air induction group
+ model (0 input, 1 NDARC, 2 custom)

MODEL_sys int + engine system 1

MODEL_nac int + engine section or nacelle 1

MODEL_air int + air induction 1

+ weight increment
dWexh real + exhaust 0.

dWacc real + accessories 0.

dWsupt real + engine support 0.

dWcowl real + engine cowling 0.

dWpylon real + pylon support 0.

dWair real + air induction 0.

Structure: EngineGroup 168

+ Technology Factors
TECH_eng real + engine weight χeng 1.0

TECH_cowl real + engine cowling weight χcowl 1.0

TECH_pylon real + pylon structure weight χpylon 1.0

TECH_supt real + engine support structure weight χsupt 1.0

TECH_air real + air induction system weight χairind 1.0

TECH_exh real + exhaust system weight χexh 1.0

TECH_acc real + engine accessories weight χacc 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory (WES used for rotor pylon wetted area, engine nacelle wetted
area, rotor moving weight)
nacelle weight = support + cowl + pylon
engine weight parameters in EngineModel

tiltrotor wing weight model requires weight on wing tip:
engine section or nacelle group, air induction group, engine system

+ Nacelle Drag, Standard Model
+ forward flight drag

SET_drag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ real + area (D/q)0
CD real + coefficient CD0 (based on wetted area, D/q = SCD)

+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV real + area (D/q)V

CDV real + coefficient CDV (based on wetted area, D/q = SCD)
+ transition from forward flight drag to vertical drag

MODEL_Deng int + model (0 none) 1

Xdrag real + exponent Xd 2.0

Structure: EngineGroup 169

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

+ Cooling Drag
DoQ_cool real + area (D/q)cool 0.

+ Engine Section or Nacelle Group, NDARC Weight Model
MODEL_nacelle int + model (1 parametric, 2 scale with power, 3 Boeing, 4 Raymer (transport)) 1

fWpylon real + pylon support structure weight fpylon (fraction maximum takeoff weight) 0.

+ nacelle group weight, W vs P0C

Knac real + factor Knac

Xnac real + exponent Xnac

n_clf real + Boeing: crash load factor 20.

fWidth_nac real + Raymer: nacelle width (fraction nacelle length) 0.2

+ Air Induction Group, NDARC Weight Model
MODEL_airind int + model (1 parametric, 2 area) 1

fWair real + air induction weight fairind (fraction engine support plus air induction weight) 0.3

Uair real + weight per nacelle area Uairind (lb/ft2 or kg/m2)
+ Engine System, NDARC Model
+ exhaust system weight, per engine, including IR suppressor; Wexh vs P0C

Kwt0_exh real + K0exh 0.

Kwt1_exh real + K1exh 0.002

+ engine accessories
MODEL_lub int + lubrication system weight (1 in engine weight, 2 in accessory weight) 1

typically fWair = 0.3 (data range 0.1 to 0.6)

engine support and pylon support weights must be consistent with rotor support structure weight

+ Custom Weight Model
WtParam_engsys(8) real + parameters 0.

170

Chapter 28

Structure: JetGroup

Variable Type Description Default

+ Jet Group
title c*100 + title
notes c*1000 + notes

+ Description
MODEL_jet c*32 + jet model ’RPJEM’

IDENT_jet c*16 + jet identification ’Jet’

IDENT_system2 c*16 + second system identification ’ ’

nJet int + number of jets Njet 1

Tjet real + jet thrust Tjet (SLS static at takeoff rating, 0. for T0_ref(rating_to)) 0.

rating_to c*12 + takeoff thrust rating ’MCT’

rating_idle c*12 + idle thrust rating ’MCT’

kFuelTank int + fuel tank system number 1

kRotor_react int + rotor number for reaction drive
fuselage_flow int + fuselage flow control (0 not) 1

wing_flow(nwingmax) int + wing flow control (0 not) 1

MODEL_jet: jet model
’RPJEM’, ’jet’, ’fan’ = turbojet/turbofan engine (RPJEM); IDENT_jet → JetModel; fuel is weight
’react’ = reaction drive (RPJEM)); IDENT_jet → JetModel; fuel is weight
’flow’ = flow control (RPJEM)); IDENT_jet → JetModel; fuel is weight
’simple’ = simple force generator; no model identified; fuel is weight or energy

MODEL_jet: convertible engine; only with turbojet/turbofan
’+react’ = reaction drive (mode B = 1); IDENT_system2 → JetModel

jet identification: match ident of JetModel

second system identification: match ident of JetModel; not use weight

Structure: JetGroup 171

for fixed jet: use Tjet = 0. and no size task (or jet thrust not sized)

+ Installation
Kffd real + deterioration factor on jet fuel flow Kffd 1.05

eta_d real + jet inlet efficiency ηd (fraction, for δM) 0.98

+ power losses (fraction thrust available, Tloss/Ta)
fTloss_inlet real + engine inlet loss �in 0.

fTloss_exh real + engine exhaust loss �ex (IRS off) 0.01

+ auxiliary air momentum drag (IRS off)
fMF_auxair real + mass flow faux (fraction engine mass flow) 0.007

eta_auxair real + ram recovery efficiency ηaux 0.75

+ IR suppressor
+ power losses (IRS on)

fTloss_exh_IRon real + engine exhaust loss �ex 0.03

+ auxiliary air momentum drag (IRS on)
fMF_auxair_IRon real + mass flow faux (fraction engine mass flow) 0.01

eta_auxair_IRon real + ram recovery efficiency ηaux 0.75

+ Convertible
Kffd_conv real + deterioration factor on jet fuel flow Kffd 1.05

+ power losses (fraction thrust available, Tloss/Ta)
fTloss_exh_conv real + engine exhaust loss �ex 0.01

installation power losses = inlet + exhaust (including IRS)
IR suppressor state specified by STATE_IRS_jet in operating condition

+ Simple force generator
Tmax real + design maximum thrust Tmax 0.

SET_burn int + fuel quantity used (1 weight, 2 energy) 1

sfc real + thrust specific fuel consumption (weight or energy) 1.0

SW real + specific weight S
KIND_simple int + weight group (1 engine system, 2 propeller/fan installation, 3 tail rotor) 1

Structure: JetGroup 172

fuel tank system identified must be consistent with SET_burn

+ Geometry
loc_jet Location + location
direction c*16 + nominal orientation (’+x’, ’–x’, ’+y’, ’–y’, ’+z’, ’–z’) ’x’

SET_Swet int + nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, WES ; 4 scaled, lengths) 2

Swet real + area Swet (per jet) 0.

kSwet real + factor, k = Swet/(WES/Njet)2/3 (Units_Dscale) or k = Swet/(�Xfus
fus c

Xwing
wing RXrotor) 0.8

XSwet_fus real + exponent, Xfus 0.

XSwet_wing real + exponent, Xwing 0.

XSwet_rotor real + exponent, Xrotor 2.

refWing int + wing number (for wing chord) 1

refRotor int + rotor number (for rotor radius) 1

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)
units of kSwet are ft2/lb2/3 or m2/kg2/3

nacelle wetted area used for nacelle drag, and for cowling weight

+ Controls
+ amplitude A

INPUT_amp int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_amp(ncontmax,nstatemax) real + control matrix
nVamp int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

amp(nvelmax) real + values
Vamp(nvelmax) real + speeds (CAS or TAS, knots)

+ mode B
INPUT_mode int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_mode(ncontmax,nstatemax) real + control matrix
nVmode int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

mode(nvelmax) real + values
Vmode(nvelmax) real + speeds (CAS or TAS, knots)

Structure: JetGroup 173

+ incidence i (tilt)
INPUT_incid int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_incid(ncontmax,nstatemax)

real + control matrix
nVincid int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

incid(nvelmax) real + values
Vincid(nvelmax) real + speeds (CAS or TAS, knots)

+ yaw ψ
INPUT_yaw int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_yaw(ncontmax,nstatemax) real + control matrix
nVyaw int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

yaw(nvelmax) real + values
Vyaw(nvelmax) real + speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Nacelle Drag
MODEL_drag int + model (0 none, 1 standard) 1

Idrag real + incidence angle i for helicopter nominal drag (deg; 0 for not tilt) 0.

+ Weight
+ jet weight

MODEL_weight int + model (0 input, 1 RPJEM, 2 custom) 1

dWJet real + weight increment (all jets) 0.

+ engine system (except jet), engine section or nacelle group, air induction group
+ model (0 input, 1 NDARC, 2 custom)

MODEL_sys int + engine system 1

Structure: JetGroup 174

MODEL_nac int + engine section or nacelle 1

MODEL_air int + air induction 1

+ weight increment
dWexh real + exhaust 0.

dWacc real + accessories 0.

dWsupt real + engine support 0.

dWcowl real + engine cowling 0.

dWpylon real + pylon support 0.

dWair real + air induction 0.

+ Technology Factors
TECH_jet real + jet weight χjet 1.0

TECH_jetcowl real + engine cowling weight χcowl 1.0

TECH_jetpylon real + pylon structure weight χpylon 1.0

TECH_jetsupt real + engine support structure weight χsupt 1.0

TECH_jetair real + air induction system weight χairind 1.0

TECH_jetexh real + exhaust system weight χexh 1.0

TECH_jetacc real + engine accessories weight χacc 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory (WES used for nacelle wetted area)
nacelle weight = support + cowl + pylon
jet weight parameters in JetModel

+ Nacelle Drag, Standard Model
+ forward flight drag

SET_drag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ real + area (D/q)0
CD real + coefficient CD0 (based on wetted area, D/q = SCD)

+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV real + area (D/q)V

CDV real + coefficient CDV (based on wetted area, D/q = SCD)

Structure: JetGroup 175

+ transition from forward flight drag to vertical drag
MODEL_Djet int + model (0 none) 1

Xdrag real + exponent Xd 2.0

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

+ Cooling Drag
DoQ_cool real + area (D/q)cool 0.

+ Engine Section or Nacelle Group, NDARC Weight Model
MODEL_nacelle int + model (1 parametric, 2 scale with thrust, 3 Boeing, 4 Raymer (transport)) 1

fWpylon real + pylon support structure weight fpylon (fraction maximum takeoff weight) 0.

+ nacelle group weight, W vs T0C

Knac real + factor Knac

Xnac real + exponent Xnac

n_clf real + Boeing: crash load factor 20.

fWidth_nac real + Raymer: nacelle width (fraction nacelle length) 0.2

+ Air Induction Group, NDARC Weight Model
MODEL_airind int + model (1 parametric, 2 area) 1

fWair real + air induction weight fairind (fraction engine support plus air induction weight) 0.3

Uair real + weight per nacelle area Uairind (lb/ft2 or kg/m2)
+ Engine System, NDARC Model
+ exhaust system weight, per jet; Wexh vs T0C

Kwt0_exh real + K0exh 0.

Kwt1_exh real + K1exh 0.002

+ engine accessories
MODEL_lub int + lubrication system weight (1 in jet weight, 2 in accessory weight) 1

+ Custom Weight Model
WtParam_jetsys(8) real + parameters 0.

176

Chapter 29

Structure: ChargeGroup

Variable Type Description Default

+ Charge Group
title c*100 + title
notes c*1000 + notes

+ Description
MODEL_charge c*32 + charger model ’ ’

IDENT_charge c*16 + charger identification ’Charge’

nCharge int + number of chargers Nchrg 1

Pchrg real + charger power Pchrg (SLS static at takeoff rating, 0. for P0_ref(rating_to)) 0.

rating_to c*12 + takeoff power rating ’MCP’

rating_idle c*12 + idle power rating ’MCP’

kFuelTank int + fuel tank system number (generated) 1

kFuelTank_burn int + fuel tank system number (burned)

MODEL_charge: charger model
’fuel’ = fuel cell; IDENT_charge → FuelCellModel; fuel generated is energy; fuel burned is weight (kFuelTank_burn)
’solar’ = solar cell; IDENT_charge → SolarCellModel; fuel generated is energy
’simple’ = simple charger; no model identified; fuel generated is energy

charger identification: match ident of FuelCellModel or SolarCellModel

for fixed charger: use Pchrg = 0. and no size task (or charger power not sized)

fuel tank system identified for generation must store and use energy (may have BatteryModel)
fuel tank system identified for burn must store and use weight

Structure: ChargeGroup 177

+ Installation
Kffd real + deterioration factor on charger fuel flow or performance Kffd 1.05

eta_d real + charger inlet efficiency ηd (fraction, for δM) 0.98

+ auxiliary air momentum drag
fMF_auxair real + mass flow faux (fraction charger mass flow) 0.007

eta_auxair real + ram recovery efficiency ηaux 0.75

+ Simple charger
Pmax real + design maximum power Pmax 0.

eta_chrg real + efficiency ηchrg 1.0

SW real + specific weight S (per charger)

+ Geometry
loc_charger Location + location
direction c*16 + nominal orientation (’+x’, ’–x’, ’+y’, ’–y’, ’+z’, ’–z’) ’x’

SET_Swet int + nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, WES ; 4 scaled, lengths) 2

Swet real + area Swet (per charger) 0.

kSwet real + factor, k = Swet/(WES/Nchrg)2/3 (Units_Dscale) or k = Swet/(�Xfus
fus c

Xwing
wing RXrotor) 0.8

XSwet_fus real + exponent, Xfus 0.

XSwet_wing real + exponent, Xwing 0.

XSwet_rotor real + exponent, Xrotor 2.

refWing int + wing number (for wing chord) 1

refRotor int + rotor number (for rotor radius) 1

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet)
units of kSwet are ft2/lb2/3 or m2/kg2/3

nacelle wetted area used for nacelle drag

+ Controls
+ amplitude A

INPUT_amp int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_amp(ncontmax,nstatemax) real + control matrix
nVamp int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

amp(nvelmax) real + values
Vamp(nvelmax) real + speeds (CAS or TAS, knots)

Structure: ChargeGroup 178

+ mode B
INPUT_mode int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_mode(ncontmax,nstatemax) real + control matrix
nVmode int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

mode(nvelmax) real + values
Vmode(nvelmax) real + speeds (CAS or TAS, knots)

+ incidence i (tilt)
INPUT_incid int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_incid(ncontmax,nstatemax)

real + control matrix
nVincid int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

incid(nvelmax) real + values
Vincid(nvelmax) real + speeds (CAS or TAS, knots)

+ yaw ψ
INPUT_yaw int + connection to aircraft controls (0 none, 1 input T matrix) 1

T_yaw(ncontmax,nstatemax) real + control matrix
nVyaw int + number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax) 0

yaw(nvelmax) real + values
Vyaw(nvelmax) real + speeds (CAS or TAS, knots)

aircraft controls connected to individual controls of component, c = TcAC + c0

for each component control, define matrix T (for each control state) and value c0

flight state specifies control state, or that control state obtained from conversion schedule
c0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)
by connecting aircraft control to comp control, flight state can specify comp control value
initial values if control is connected to trim variable; otherwise fixed for flight state

+ Nacelle Drag
MODEL_drag int + model (0 none, 1 standard) 1

Idrag real + incidence angle i for helicopter nominal drag (deg; 0 for not tilt) 0.

Structure: ChargeGroup 179

+ Weight
+ charger weight

MODEL_weight int + model (0 input, 1 NDARC, 2 custom) 1

dWChrg real + weight increment (all chargers) 0.

+ Technology Factors
TECH_chrg real + charger weight χchrg 1.0

weight model result multiplied by technology factor and increment added:
Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory = charge group weight (WES used for nacelle wetted area)
charger weight parameters in FuelCellModel or SolarCellModel

+ Nacelle Drag, Standard Model
+ forward flight drag

SET_drag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQ real + area (D/q)0
CD real + coefficient CD0 (based on wetted area, D/q = SCD)

+ vertical drag
SET_Vdrag int + specification (1 fixed, D/q; 2 scaled, CD) 2

DoQV real + area (D/q)V

CDV real + coefficient CDV (based on wetted area, D/q = SCD)
+ transition from forward flight drag to vertical drag

MODEL_Dchrg int + model (0 none) 1

Xdrag real + exponent Xd 2.0

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

Structure: ChargeGroup 180

+ Cooling Drag
DoQ_cool real + area (D/q)cool 0.

+ Custom Weight Model
WtParam_chrgsys(8) real + parameters 0.

181

Chapter 30

Structure: EngineModel

Variable Type Description Default

+ Engine Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Engine’

engine identification: used by IDENT_engine of EngineGroup input (eg ’T800’)

installed: power available Pav , power required Preq , gross jet thrust FG, net jet thrust FN

uninstalled: power available Pa, power required Pq, gross jet thrust Fg , net jet thrust Fn

“0” = SLS static; “C” = MCP
mass flow = power / specific power (SP = P/ṁ); fuel flow = specific fuel consumption * power (sfc = ẇ/P)

engine model can be used by more than one engine group, so all parameters fixed

as model for turbojet or reaction drive of convertible engine:
only use sfc0C_ref, sfc0C_ref, and parameters for optimum speed, thrust available, and performance
P0_ref and SP0_ref required, but not used; weight, ratings, technology, and scaling variables not used

+ Weight
MODEL_weight int + RPTEM model (0 fixed, 1 W (P), 2 SW (ṁ)) 1

Weng real + engine weight (fixed) 0.

+ engine weight, Weng vs Peng model (W = K0eng + K1engP + K2engP
Xeng)

Kwt0_eng real + constant K0eng 0.

Kwt1_eng real + constant K1eng 0.25

Kwt2_eng real + constant K2eng 0.

Structure: EngineModel 182

Xwt_eng real + exponent Xeng 0.

+ engine weight, SW = Peng/Weng vs ṁ0C model
SW_ref real + specific weight reference SWref (ṁ = ṁtech) 4.

SW_limit real + specific weight limit SWlim (ṁ = ṁlim) 5.

+ Custom Weight Model
WtParam_engine(8) real + parameters 0.

+ Parameters
+ Engine Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

+ Reference
P0_ref(nratemax) real + power (P0) 2000.

SP0_ref(nratemax) real + specific power (SP0) 150.

Pmech_ref(nratemax) real + mechanical limit of power (Pmech) 2500.

sfc0C_ref real + specific fuel consumption at MCP (sfc0C) 0.45

SF0C_ref real + specific jet thrust (Fg0C = SF0Cṁ0C) 10.

Nspec_ref real + specification turbine speed (Nspec) 20000.

Nopt0C_ref real + optimum turbine speed at MCP (Nopt0C) 20000.

Reference Engine Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

engine rating: match rating designation in FltState; typically designated as
’ERP’ = Emergency Rated Power (OEI power)
’CRP’ = Contigency Rated Power (2.5 min)
’MRP’ = Maximum Rated Power (5 or 10 min)
’IRP’ = Intermediate Rated Power (30 min)
’MCP’ = Maximum Continuous Power (normal operations)
engine model being used may not contain data for all ratings

Structure: EngineModel 183

+ Technology
SP0C_tech real + specific power at MCP SPtech (0. for SP0_ref(MCP)) 0.

sfc0C_tech real + specific fuel consumption at MCP sfctech (0. for sfc0C_ref) 0.

Nspec_tech real + specification turbine speed Ntech (0. for Nspec_ref) 0.

+ Scaling
FIX_size int + engine size (0 scaled, 1 fixed) 0

MF_limit real + mass flow at limit SP and sfc (ṁlim) 30.

SP0C_limit real + specific power limit SPlim 200.

sfc0C_limit real + specific fuel consumption limit sfclim 0.34

KNspec real + specification turbine speed variation (KNs2) 0.

SP and sfc functions are defined by values SP0C_tech, sfc0C_tech, ṁtech=P0C_ref/SP0C_tech

and limits SP0C_limit, sfc0C_limit, MF_limit

defaults SP0C_tech=SP0_ref(MCP), sfc0C_tech=sfc0C_ref, Nspec_tech=Nspec_ref

require ṁtech < ṁlim (otherwise get SP0C = SP0C_tech and sfc0C = sfc0C_tech)

for no variation of SP , sfc, and SW with scale, use FIX_size=1 or MF_limit=0.

engine weight scaling determined by MODEL_weight

+ Optimum Power Turbine Speed
MODEL_OptN int + model (0 none, 1 linear, 2 cubic) 1

+ linear, Nopt/Nspec vs Pq/P0

KNoptA real + constant KNoptA 1.

KNoptB real + constant KNoptB 0.

+ cubic, Nopt/Nopt0C vs Pq/P0C

KNopt0 real + constant KNopt0 1.

KNopt1 real + constant KNopt1 0.

KNopt2 real + constant KNopt2 0.

KNopt3 real + constant KNopt3 0.

XNopt real + exponent XNopt 0.

+ power turbine efficiency function, ηt(N)/ηt(Nspec)
XNeta real + exponent XNη 2.0

Structure: EngineModel 184

engine power and performance variation with power turbine speed determined by Nopt and XNη

used only for INPUT_param = single set; no variation if MODEL_OptN=0

+ Power Available and Power Required Parameters
MODEL_Pav int + power available (0 constant, 1 referred, 2 general) 2

MODEL_perf int + performance at power required (1 referred, 2 general) 2

INPUT_param int + parameter input form (1 single set; 2 function of engine speed) 1

+ function of engine speed
nspeed int + number of engine speeds (maximum nspeedmax) 1

rNeng(nspeedmax) real + engine speed ratio, N/Nspec 1.

kEngineParamN(nspeedmax) int + identification of parameter sets (0 to use IDENT_param) 1

IDENT_param(nspeedmax) c*16 + identification of parameter sets ’ ’

constant or referred model does not use parameters, does not include effect of turbine speed
general model uses parameters for effects of temperature and ram, can include effect of turbine speed

function of engine speed (INPUT_param=2): parameters interpolated, rNeng unique and sequential
identification of parameter sets: IDENT_param match EngineParamN%ident

simple model: constant (MODEL_Pav=0) or constant referred (MODEL_Pav=1) power available
constant specific fuel consumption (MODEL_perf=1, sfc0C_tech=0., MF_limit=0.)
no jet force (EngineGroup%SET_FN=0), no auxiliary air momentum drag (EngineGroup%SET_Daux=0)

Structure: EngineModel 185

+ Power Available
INPUT_lin int + input form (1 coefficients K0, K1; 2 values θb, Kb) 1

+ referred specific power available, SPa/SP0 vs temperature
Nspa(nratemax) int + number of regions (maximum nengkmax-1) 0

Kspa0(nengkmax,nratemax) real + Kspa0 (piecewise linear Kspa = K0 + K1θ) 3.5

Kspa1(nengkmax,nratemax) real + Kspa1 (piecewise linear Kspa = K0 + K1θ) -2.5

Tspak(nengkmax,nratemax) real + θb

Kspab(nengkmax,nratemax) real + Kspa−b

Xspa0(nengkmax,nratemax) real + Xspa0 (piecewise linear Xspa = X0 + X1θ) -.2

Xspa1(nengkmax,nratemax) real + Xspa1 (piecewise linear Xspa = X0 + X1θ) 0.

Tspax(nengkmax,nratemax) real + θb

Xspab(nengkmax,nratemax) real + Xspa−b

+ referred mass flow at power available, ṁa/ṁ0 vs temperature
Nmfa(nratemax) int + number of regions (maximum nengkmax-1) 0

Kmfa0(nengkmax,nratemax) real + Kmfa0 (piecewise linear Kmfa = K0 + K1θ) .3

Kmfa1(nengkmax,nratemax) real + Kmfa1 (piecewise linear Kmfa = K0 + K1θ) -.3

Tmfak(nengkmax,nratemax) real + θb

Kmfab(nengkmax,nratemax) real + Kmfa−b

Xmfa0(nengkmax,nratemax) real + Xmfa0 (piecewise linear Xmfa = X0 + X1θ) 1.

Xmfa1(nengkmax,nratemax) real + Xmfa1 (piecewise linear Xmfa = X0 + X1θ) 0.

Tmfax(nengkmax,nratemax) real + θb

Xmfab(nengkmax,nratemax) real + Xmfa−b

piecewise linear function:
input form = coefficients K0, K1 (N sets) or values θb, Kb (N+1 values)
form not input is calculated (N-1 θb, Kb or N K0, K1)
input K0, K1: adjacent K1 different, resulting θb unique and sequential
input θb, Kb: θb unique and sequential

Nspec = specification power turbine speed
SPa, ṁa = referred specific power and mass flow available, at Nspec

SP0, ṁ0 = referred specific power and mass flow available, at Nspec, SLS static
N = power turbine speed, Nopt = optimum power turbine speed
ηt = power turbine efficiency; assume gas power available PG = Pa/ηt insensitive to N , so ηt(N) give Pa(N)

Structure: EngineModel 186

+ Performance at Power Required
+ referred fuel flow at power required, ẇreq/ẇ0C vs Pq/P0C

Kffq0 real + constant Kffq0 .2

Kffq1 real + constant Kffq1 .8

Kffq2 real + constant Kffq2 0.

Kffq3 real + constant Kffq3 0.

Xffq real + exponent Xffq 1.3

+ referred mass flow at power required, ṁreq/ṁ0C vs Pq/P0C

Kmfq0 real + constant Kmfq0 .6

Kmfq1 real + constant Kmfq1 .78

Kmfq2 real + constant Kmfq2 -.48

Kmfq3 real + constant Kmfq3 .1

Xmfq real + exponent Xmfq 3.5

+ gross jet thrust at power required, Fg/Fg0C vs Pq/P0C

Kfgq0 real + constant Kfgq0 .2

Kfgq1 real + constant Kfgq1 .8

Kfgq2 real + constant Kfgq2 0.

Kfgq3 real + constant Kfgq3 0.

Xfgq real + exponent Xfgq 2.0

+ installed net jet thrust at power required, FG/Fg (installed thrust loss) vs �ex

Kfgr0 real + constant Kfgr0 .8

Kfgr1 real + constant Kfgr1 .6

Kfgr2 real + constant Kfgr2 0.

Kfgr3 real + constant Kfgr3 0.

187

Chapter 31

Structure: EngineParamN

Variable Type Description Default

+ Engine Model Parameters
title c*100 + title
notes c*1000 + notes
ident c*16 + identification

identification: used by IDENT_param of EngineModel

+ Power Available
nrate int + number of ratings 1

INPUT_lin int + input form (1 coefficients K0, K1; 2 values θb, Kb) 1

+ referred specific power available, SPa/SP0 vs temperature
Nspa(nratemax) int + number of regions (maximum nengkmax-1) 0

Kspa0(nengkmax,nratemax) real + Kspa0 (piecewise linear Kspa = K0 + K1θ) 3.5

Kspa1(nengkmax,nratemax) real + Kspa1 (piecewise linear Kspa = K0 + K1θ) -2.5

Tspak(nengkmax,nratemax) real + θb

Kspab(nengkmax,nratemax) real + Kspa−b

Xspa0(nengkmax,nratemax) real + Xspa0 (piecewise linear Xspa = X0 + X1θ) -.2

Xspa1(nengkmax,nratemax) real + Xspa1 (piecewise linear Xspa = X0 + X1θ) 0.

Tspax(nengkmax,nratemax) real + θb

Xspab(nengkmax,nratemax) real + Xspa−b

+ referred mass flow at power available, ṁa/ṁ0 vs temperature
Nmfa(nratemax) int + number of regions (maximum nengkmax-1) 0

Kmfa0(nengkmax,nratemax) real + Kmfa0 (piecewise linear Kmfa = K0 + K1θ) .3

Kmfa1(nengkmax,nratemax) real + Kmfa1 (piecewise linear Kmfa = K0 + K1θ) -.3

Tmfak(nengkmax,nratemax) real + θb

Structure: EngineParamN 188

Kmfab(nengkmax,nratemax) real + Kmfa−b

Xmfa0(nengkmax,nratemax) real + Xmfa0 (piecewise linear Xmfa = X0 + X1θ) 1.

Xmfa1(nengkmax,nratemax) real + Xmfa1 (piecewise linear Xmfa = X0 + X1θ) 0.

Tmfax(nengkmax,nratemax) real + θb

Xmfab(nengkmax,nratemax) real + Xmfa−b

number of ratings consistent with EngineModel

+ Performance at Power Required
+ referred fuel flow at power required, ẇreq/ẇ0C vs Pq/P0C

Kffq0 real + constant Kffq0 .2

Kffq1 real + constant Kffq1 .8

Kffq2 real + constant Kffq2 0.

Kffq3 real + constant Kffq3 0.

Xffq real + exponent Xffq 1.3

+ referred mass flow at power required, ṁreq/ṁ0C vs Pq/P0C

Kmfq0 real + constant Kmfq0 .6

Kmfq1 real + constant Kmfq1 .78

Kmfq2 real + constant Kmfq2 -.48

Kmfq3 real + constant Kmfq3 .1

Xmfq real + exponent Xmfq 3.5

+ gross jet thrust at power required, Fg/Fg0C vs Pq/P0C

Kfgq0 real + constant Kfgq0 .2

Kfgq1 real + constant Kfgq1 .8

Kfgq2 real + constant Kfgq2 0.

Kfgq3 real + constant Kfgq3 0.

Xfgq real + exponent Xfgq 2.0

+ installed net jet thrust at power required, FG/Fg (installed thrust loss) vs �ex

Kfgr0 real + constant Kfgr0 .8

Kfgr1 real + constant Kfgr1 .6

Kfgr2 real + constant Kfgr2 0.

Kfgr3 real + constant Kfgr3 0.

189

Chapter 32

Structure: EngineTable

Variable Type Description Default

+ Engine Table
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Engine’

engine identification: used by IDENT_engine of EngineGroup input

engine table can be used by more than one engine group, so all parameters fixed

engine not scaled (SET_power, fPsize not used); eta_d not used
fixed engine weight dWEng (MODEL_weight=0)
no mass flow value, so no momentum drag of auxillary air flow (fMF_auxair, eta_auxair not used)
obtain Peng from table; mechanical limits included in power available data
tables intended for installed engine, including losses (fPloss_inlet, fPloss_ps, fPloss_exh not used)
fuel flow multiplied by Kffd, accounting for deterioration of engine efficiency

+ Engine ratings
nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

Nspec real + Specification turbine speed (Nspec)

Structure: EngineTable 190

+ Technology factors
Kp real + power available 1.0

Kw real + fuel flow 1.0

Kf real + net thrust 1.0

+ Table
nalt int + number of altitudes (maximum nengtmax)
nspeed int + number of speeds (maximum nengtmax)
alt(nengtmax) real + altitude h
speed(nengtmax) real + speed V (TAS)
Tp(nengtmax,nengtmax,nratemax)

real + power available Pa(h, V, R)
Tw(nengtmax,nengtmax,nratemax)

real + fuel flow ẇ(h, V, R)
Tf(nengtmax,nengtmax,nratemax)

real + net thrust FN (h, V, R)

191

Chapter 33

Structure: RecipModel

Variable Type Description Default

+ Reciprocating Engine Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Engine’

engine identification: used by IDENT_engine of EngineGroup input

installed: power available Pav , power required Preq , gross jet thrust FG, net jet thrust FN

uninstalled: power available Pa, power required Pq, gross jet thrust Fg , net jet thrust Fn

fuel flow = specific fuel consumption * power (sfc = ẇ/P); mass flow = fuel flow / fuel-air ratio

reciprocating engine model can be used by more than one engine group, so all parameters fixed

+ Weight
MODEL_weight int + model (0 fixed, 1 W (P)) 1

Weng real + engine weight (fixed) 0.

+ engine weight, Weng vs Peng model (W = K0eng + K1engP + K2engP
Xeng)

Kwt0_eng real + constant K0eng 0.

Kwt1_eng real + constant K1eng 0.25

Kwt2_eng real + constant K2eng 0.

Xwt_eng real + exponent Xeng 0.

+ Custom Weight Model
WtParam_recip(8) real + parameters 0.

Structure: RecipModel 192

+ Parameters
+ Engine Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

+ Reference
P0_ref(nratemax) real + power (P0) 1000.

sfc0_ref(nratemax) real + specific fuel consumption (sfc0) 0.60

F0_ref(nratemax) real + fuel-air ratio (F0) 0.08

SF0_ref(nratemax) real + specific jet thrust (Fg = SF0ṁ) 0.

Pmep_ref(nratemax) real + mean effective pressure limit (Pmep) 1000.

Pcrit_ref(nratemax) real + critical (throttle) limit (Pcrit) 1000.

N0_ref(nratemax) real + reference engine speed (N0) 2000.

Nspec_ref real + specification engine speed (Nspec) 2000.

Reference Engine Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

engine rating: match rating designation in FltState; typically designated as
’MRP’ = Maximum Rated Power (5 or 10 min)
’MCP’ = Maximum Continuous Power (normal operations)

ratings encompass mixture settings and supercharger speeds

Pmep_ref: zero for no mechanical (mep) limit
Pcrit_ref: zero for no critical (throttle) limit; Xcrit = 0. for limit independent of engine speed

+ Scaling
FIX_size int + engine size (0 scaled, 1 fixed) 0

Xo real + specific output exponent Xo 0.2

Xs real + mean piston speed exponent Xs 0.3

Xf real + specific fuel consumption exponent Xf 0.1

Ksfc1 real + specific fuel consumption constant Ksfc1 1.

Ksfc2 real + specific fuel consumption constant Ksfc2 0.

KN1 real + engine speed constant KNspec1 1.

KN2 real + engine speed constant KNspec2 0.

Structure: RecipModel 193

+ Power Available
MODEL_Pav int + model (0 constant Pa) 1

Kp(nratemax) real + factor Kp 1.

Kram(nratemax) real + constant Kram 1.

XpN(nratemax) real + exponent XpN 1.

Xpt(nratemax) real + exponent Xpθ 0.5

Xcrit(nratemax) real + exponent Xcrit 3.0

+ Performance at Power Required
+ fuel flow, ẇreq/ẇ0 vs Pq/P0

MODEL_Kffq int + model (1 polynomial, 2 piecewise linear, 3 table) 1

+ polynomial
Kffq0(nratemax) real + constant Kffq0 0.

Kffq1(nratemax) real + constant Kffq1 1.

Kffq2(nratemax) real + constant Kffq2 0.

Kffq3(nratemax) real + constant Kffq3 0.

+ piecewise linear
Nffq(nratemax) int + number of values (maximum nengrmax) 0

Pffq(nengrmax,nratemax) real + power ratio Pq/P0

Kffq(nengrmax,nratemax) real + factor Kffq

XffN(nratemax) real + exponent XffN 0.

Xffs(nratemax) real + exponent Xffσ 0.

+ table
nqff int + number of powers (maximum nengtmax)
nrff int + number of speeds (maximum nengtmax)
qff(nengtmax) real + power ratio q = Pq/P0

rff(nengtmax) real + speed ratio r = N/N0

Tff(nengtmax,nengtmax,nratemax)

real + fuel flow factor Tff (q, r)
+ fuel-air ratio, Freq/F0 vs Pq/P0

MODEL_KFq int + model (1 polynomial, 2 piecewise linear) 1

+ polynomial
KFq0(nratemax) real + constant KFq0 1.

KFq1(nratemax) real + constant KFq1 0.

KFq2(nratemax) real + constant KFq2 0.

Structure: RecipModel 194

KFq3(nratemax) real + constant KFq3 0.

+ piecewise linear
NFq(nratemax) int + number of values (maximum nengrmax) 0

PFq(nengrmax,nratemax) real + power ratio Pq/P0

KFq(nengrmax,nratemax) real + factor KFq

XFN(nratemax) real + exponent XFN 0.

+ installed net jet thrust, Kfgr = FG/Fg (installed thrust loss)
Kfgr(nratemax) real + constant Kfgr 1.

Simple model: constant power available (MODEL_Pav=0)
constant specific fuel consumption (defaults Kffq1=1. and Xffq=0., and Xf=0.)
constant fuel-air ratio (defaults KFq0=1. and XFq=0.)
no jet force (EngineGroup%SET_FN=0), no auxiliary air momentum drag (EngineGroup%SET_Daux=0)

195

Chapter 34

Structure: CompressorModel

Variable Type Description Default

+ Compressor Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Comp’

compressor identification: used by IDENT_engine of EngineGroup input

“0” = SLS static; “C” = MCP
mass flow = power / specific power (SP = P/ṁ); gross thrust = specific thrust * mass flow (ST = T/ṁ)

compressor model can be used by more than one engine group, so all parameters fixed

+ Weight
MODEL_weight int + model (0 fixed, 1 W (P)) 1

Wcomp real + compressor weight (fixed) 0.

+ compressor weight, Wcomp vs Peng model (W = K0comp + K1compP + K2compPXcomp)
Kwt0_comp real + constant K0comp 0.

Kwt1_comp real + constant K1comp 0.2

Kwt2_comp real + constant K2comp 0.

Xwt_comp real + exponent Xcomp 0.

+ Custom Weight Model
WtParam_comp(8) real + parameters 0.

Structure: CompressorModel 196

+ Parameters
+ Compressor Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

+ Reference
P0_ref(nratemax) real + power (P0)
SP0_ref(nratemax) real + specific power (SP0)
Pmech_ref(nratemax) real + mechanical limit of power (Pmech)
SF0C_ref real + specific jet thrust (Fg0C = SF0Cṁ0C)
Nspec_ref real + specification compressor speed (Nspec)

Reference Compressor Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

compressor rating: match rating designation in FltState

+ Power Available
+ referred specific power available, SPa/SP0

Xspa real + exponent Xspa 1.

+ referred mass flow at power available, ṁa/ṁ0

Xmfa real + exponent Xmfa 1.

+ Performance at Power Required
+ referred mass flow at power required, ṁreq/ṁ0C vs Pq/P0C

Kmfq0 real + constant Kmfq0

Kmfq1 real + constant Kmfq1

Kmfq2 real + constant Kmfq2

Kmfq3 real + constant Kmfq3

Xmfq real + exponent Xmfq 1.

+ gross jet thrust at power required, Fg/Fg0C vs Pq/P0C

Kfgq0 real + constant Kfgq0 1.

Kfgq1 real + constant Kfgq1 0.

Kfgq2 real + constant Kfgq2 0.

Kfgq3 real + constant Kfgq3 0.

Xfgq real + exponent Xfgq 2.0

197

Chapter 35

Structure: MotorModel

Variable Type Description Default

+ Motor Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Motor’

motor identification: used by IDENT_engine of EngineGroup input

“0” = SLS static; “C” = MCP

motor model can be used by more than one engine group, so all parameters fixed

+ Weight
MODEL_weight int + model (0 fixed, 1 W (P), 2 NASA15 W (Q)) 2

Wmotor real + motor weight (fixed) 0.

+ motor weight W (P): Wmotor vs Peng model (W = K0motor + K1motorP + K2motorP
XmotorQXqmotorSXsmotor)

Kwt0_motor real + constant K0motor 0.

Kwt1_motor real + constant K1motor 0.

Kwt2_motor real + constant K2motor 0.

Xwt_motor real + exponent Xmotor 0.

Xwtq_motor real + exponent Xqmotor 0.

Xwts_motor real + exponent Xsmotor 0.

+ motor weight W (Q): NASA15 Wmotor vs Qpeak model
KIND_design int + torque-to-weight design (0 only high Q/W ; 1 high Q/W , 2 low Q/W factor) 0

+ controller weight (ΔW = KESCPXESC)
Kwt_ESC real + constant KESC 0.

Xwt_ESC real + exponent XESC 0.

+ Custom Weight Model
WtParam_motor(8) real + parameters 0.

Structure: MotorModel 198

+ Parameters
+ Motor Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

MODEL_Qlimit int + Torque limit (1 constant Qpeak, 2 with high speed limit) 1

+ Reference
P0_ref(nratemax) real + power (P0) 0.

Ppeak_ref(nratemax) real + mechanical limit of power (Ppeak)
Nspec_ref real + specification motor speed (Nspec)
Nmax_ref real + maximum (no load) motor speed (Nmax)

Reference Motor Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

motor rating: match rating designation in FltState

+ Performance
+ Motor/Generator Efficiency

KIND_eff int + kind (1 fixed, 2 function power, 3 map) 2

+ fixed or function power
eta_motor real + reference efficiency (at Peng) 1.00

loss_motor real + power loss (fraction Peng) 0.00

+ efficiency map (Ploss = Pengfloss

∑3
i=0

∑3
j=0 Cijt

inj)
Closs(4,4) real + loss coefficients Closs(i+1,j+1)= Cij 0.00

floss real + factor floss 1.00

eta_cont real + controller efficiency 1.00

+ Scaling
KNspec real + specification motor speed variation (KNs) 0.

KNbase real + base motor speed variation (KNb) 0.

Nspec used by efficiency map; Nbase affects Ppeak scaling
for no variation of motor speeds with scale, use KNspec = KNbase = 0.

Structure: MotorModel 199

+ Thermal Management System
+ mass flow (lb/sec or kg/sec) from rejected heat (hp or kW)

KTMSm0 real + constant KTMSm0 0.

KTMSm1 real + constant KTMSm1 0.07

XTMSm real + exponent XTMSm 1.

+ power (hp or kW) from mass flow (lb/sec or kg/sec)
KTMSp0 real + constant KTMSp0 0.

KTMSp1 real + constant KTMSp1 0.6

XTMSp real + exponent XTMSp 1.

+ gross jet force (lb or N) from mass flow (lb/sec or kg/sec)
KTMSf0 real + constant KTMSf0 0.

KTMSf1 real + constant KTMSf1 6.0

XTMSf real + exponent XTMSf 1.

+ weight (lb or kg)
KTMSw0 real + constant KTMSw0 4.0

KTMSw1 real + constant KTMSw1 0.3

XTMSwp real + exponent XTMSwp 1.

XTMSwm real + exponent XTMSwm 0.

200

Chapter 36

Structure: JetModel

Variable Type Description Default

+ Jet Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Jet’

jet identification: used by IDENT_jet of JetGroup input

installed: thrust available Tav , thrust required Treq

uninstalled: thrust available Ta, thrust required Tq

“0” = SLS static; “C” = MCT
mass flow = thrust / specific thrust (ST = T/ṁ); fuel flow = specific fuel consumption * thrust (sfc = ẇ/T)

jet model can be used by more than one jet group, so all parameters fixed

as model for reaction drive of convertible engine:
only use sfc0C_ref and parameters for thrust available and performance at thrust required
T0_ref and ST0_ref required, but not used; weight, ratings, technology, and scaling variables not used

+ Weight
MODEL_weight int + RPJEM model (0 fixed, 1 W (T)) 1

Wjet real + jet weight (fixed) 0.

+ jet weight, Wjet vs Tjet model (W = K0jet + K1jetT + K2jetT
Xjet)

Kwt0_jet real + constant K0jet 0.

Kwt1_jet real + constant K1jet 0.2

Kwt2_jet real + constant K2jet 0.

Xwt_jet real + exponent Xjet 0.

+ Custom Weight Model
WtParam_jet(8) real + parameters 0.

Structure: JetModel 201

+ Parameters
+ Jet Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCT’

+ Reference
T0_ref(nratemax) real + thrust (T0) 0.

ST0_ref(nratemax) real + specific thrust (ST0)
Tmech_ref(nratemax) real + mechanical limit of thrust (Tmech)
sfc0C_ref real + specific fuel consumption at MCT (sfc0C)

Reference Jet Rating: SLS, static
if MCT scaled, ratios to MCT values kept constant

jet rating: match rating designation in FltState

+ Technology
ST0C_tech real + specific thrust at MCT STtech (0. for ST0_ref(MCT)) 0.

sfc0C_tech real + specific fuel consumption at MCT sfctech (0. for sfc0C_ref) 0.

+ Scaling
FIX_size int + engine size (0 scaled, 1 fixed) 0

MF_limit real + mass flow at limit ST and sfc (ṁlim) 0.

ST0C_limit real + specific thrust limit STlim 0.

sfc0C_limit real + specific fuel consumption limit sfclim

ST and sfc functions are defined by values ST0C_tech, sfc0C_tech, ṁtech=T0C_ref/ST0C_tech

and limits ST0C_limit, sfc0C_limit, MF_limit

defaults ST0C_tech=ST0_ref(MCT), sfc0C_tech=sfc0C_ref

require ṁtech < ṁlim (otherwise get ST0C = ST0C_tech and sfc0C = sfc0C_tech)

for no variation of ST and sfc with scale, use FIX_size=1 or MF_limit=0.

Structure: JetModel 202

bypass real + Turbofan bypass ratio (0. for turbojet) 0.

+ Thrust Available
+ referred specific thrust available, STa/ST0

Xsta real + exponent Xsta 1.

+ referred mass flow at thrust available, ṁa/ṁ0

Xmfa real + exponent Xmfa 1.

+ Performance at Thrust Required
+ referred fuel flow at thrust required, ẇreq/ẇ0C vs Tq/T0C

Kffq0 real + constant Kffq0 0.

Kffq1 real + constant Kffq1 1.

Kffq2 real + constant Kffq2 0.

Kffq3 real + constant Kffq3 0.

Xffq real + exponent Xffq 1.

+ referred mass flow at thrust required, ṁreq/ṁ0C vs Tq/T0C

Kmfq0 real + constant Kmfq0 0.

Kmfq1 real + constant Kmfq1 1.

Kmfq2 real + constant Kmfq2 0.

Kmfq3 real + constant Kmfq3 0.

Xmfq real + exponent Xmfq 1.

203

Chapter 37

Structure: FuelCellModel

Variable Type Description Default

+ Fuel Cell Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Cell’

fuel cell identification: used by IDENT_charge of ChargerGroup input

“0” = SLS static; “C” = MCP

fuel cell model can be used by more than one charger group, so all parameters fixed

+ Weight
MODEL_weight int + model (0 fixed, 1 W (P)) 1

Wcell real + fuel cell weight (fixed) 0.

+ fuel cell weight, Wcell vs Pchrg model (W = K0cell + K1cellP + K2cellP
Xcell)

Kwt0_cell real + constant K0cell 0.

Kwt1_cell real + constant K1cell 0.

Kwt2_cell real + constant K2cell 0.

Xwt_cell real + exponent Xcell 0.

+ Custom Weight Model
WtParam_fuelcell(8) real + parameters 0.

Structure: FuelCellModel 204

+ Parameters
+ Fuel Cell Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

+ Reference
P0_ref(nratemax) real + power (P0) 0.

sfc0C_ref real + specific fuel consumption at MCP (sfc0C) 0.

Reference Fuel Cell Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

fuel cell rating: match rating designation in FltState

+ Performance
idesign real + design current density id
pi_comp real + compressor pressure ratio πC

+ cell characteristics (at cell pressure δc = 1)
ncell int + number of values (maximum nengcmax) 1

icell(nengcmax) real + current density ic 1.

vcell(nengcmax) real + voltage vc 1.

Xfc real + pressure scaling exponent Xfc 0.38

Kmf real + mass flow ratio (ṁ/ẇ) 86.

reference sfc corresponds to fuel specific energy and design cell current, including technology impact
units of idesign and icell must be consistent

icell values unique and sequential; icell(1)=0.

vcell monotonically decreasing (reversed vcell unique and sequential)

simple model: define power P0_ref and specific fuel consumption sfc0C_ref, mass flow from Kmf

ncell=1 for constant vc, hence constant efficiency, constant power and sfc (idesign, pi_comp, Xfc not used)

205

Chapter 38

Structure: SolarCellModel

Variable Type Description Default

+ Solar Cell Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Cell’

solar cell identification: used by IDENT_charge of ChargerGroup input

“0” = SLS static; “C” = MCP

solar cell model can be used by more than one charge group, so all parameters fixed

+ Weight
MODEL_weight int + model (0 fixed, 1 W (A)) 1

Wsolar real + solar cell weight (fixed) 0.

ssolar real + weight density (kg/m2)
+ Custom Weight Model

WtParam_solarcell(8) real + parameters 0.

+ Parameters
+ Solar Cell Ratings

nrate int + number of ratings (maximum nratemax) 1

rating(nratemax) c*12 + rating designations ’MCP’

+ Reference
P0_ref(nratemax) real + power (P0) 0.

Structure: SolarCellModel 206

Reference Solar Cell Rating: SLS, static
if MCP scaled, ratios to MCP values kept constant

solar cell rating: match rating designation in FltState

+ Performance
esolar real + power density (W/m2)

+ Efficiency
KIND_eff int + kind (1 fixed, 2 function power) 2

eta_cell real + reference efficiency (at Pchrg) 1.00

loss_cell real + power loss (fraction Pchrg) 0.00

simple model: power density esolar and weight density ssolar; with efficiency in esolar (KIND_eff=1 and eta_cell=1.)

207

Chapter 39

Structure: BatteryModel

Variable Type Description Default

+ Battery Model
title c*100 + title
notes c*1000 + notes
ident c*16 + identification ’Battery’

battery identification: used by IDENT_battery of FuelTank input

battery model can be used by more than one fuel tank system, so all parameters fixed

+ Performance
MODEL_battery int + model (1 equivalent circuit, 2 lithium-ion) 1

Vref real + reference voltage Vref 4.2

xmbd real + maximum burst discharge current xmbd (1/hr) 20.

xCCmax real + maximum charge current xCCmax (1/hr) 4.

+ actual cell depth-of-discharge (dact = dmin + (dmax − dmin)duse)
DoDmin real + minimum dmin 0.0

DoDmax real + maximum dmax 0.8

+ Thermal Management System
+ mass flow (lb/sec or kg/sec) from rejected heat (hp or kW)

KTMSm0 real + constant KTMSm0 0.

KTMSm1 real + constant KTMSm1 0.07

XTMSm real + exponent XTMSm 1.

+ power (hp or kW) from mass flow (lb/sec or kg/sec)
KTMSp0 real + constant KTMSp0 0.

KTMSp1 real + constant KTMSp1 0.6

XTMSp real + exponent XTMSp 1.

Structure: BatteryModel 208

+ gross jet force (lb or N) from mass flow (lb/sec or kg/sec)
KTMSf0 real + constant KTMSf0 0.

KTMSf1 real + constant KTMSf1 6.0

XTMSf real + exponent XTMSf 1.

+ weight (lb or kg)
KTMSw0 real + constant KTMSw0 4.0

KTMSw1 real + constant KTMSw1 0.3

XTMSwp real + exponent XTMSwp 1.

XTMSwm real + exponent XTMSwm 0.

+ Equivalent Circuit Model
KIND_eff int + kind (1 fixed, 2 function power) 2

+ discharge
eta_dischrg real + reference efficiency (at Pref) 1.00

loss_dischrg real + power loss (fraction Pref) 0.00

+ charge
eta_chrg real + reference efficiency (at Pref) 1.00

loss_chrg real + power loss (fraction Pref) 0.00

simple model: constant efficiencies eta_dischrg and eta_chrg (KIND_eff=1)

+ Lithium-Ion Model
+ discharge

fcrit real + critical voltage factor (FV = fcrit is capacity) 0.6

fd real + nominal discharge voltage (Vd = fdVref) 1.0

+ open circuit voltage ratio (Vo = VdFV (d))
nFV int + number of points (maximum 40) 0

DoD(40) real + depth-of-discharge d (fraction) 0.

FV(40) real + FV 0.

Tref real + reference temperature Tref (deg C) 20.

fTC real + temperature control power loss fTC (fraction component power) 0.01

Structure: BatteryModel 209

+ current influence on discharge voltage
R real + internal resistance xmbdCR/Vref 0.1

kdI real + depth-of-discharge kdIxmbdC 0.05

+ temperature influence on discharge voltage
kVT real + voltage increment kV T 0.005

kdT real + depth-of-discharge kdT 0.000005

+ charge
fc real + nominal charge voltage (Vc = fcVref) 1.0

kcV real + CC phase starting voltage decrement kcV 0.1

ks real + CV phase parameter kσ 0.2

open circuit voltage ratio: monotonically decreasing; default used if nFV=0

default DoD = 0.,.1,.2,.3,.4,.5,.6,.7,.8,.9,.91,.92,.93,.94,.95,.96,.97,.98,.99,1.,1.01,1.02
default FV = 1.,.97,.95,.93,.915,.90,.89,.88,.87,.85,.847,.842,.835,.826,.815,.8,.78,.75,.7,.6,.4,0.

FV (d) defined for actual depth-of-discharge, used from dmin to dmax

210

Chapter 40

Structure: Location

Variable Type Description Default

+ Location
+ input
+ fixed (dimensional, arbitrary origin)

FIX_geom c*8 + input ’ ’

SL real + stationline
BL real + buttline
WL real + waterline

+ scaled (based on reference length, from reference point)
XoL real + x/L
YoL real + y/L
ZoL real + z/L

+ reference length
KIND_scale int + kind (0 global, 1 rotor radius, 2 wing span, 3 fuselage length) 0

kScale int + identification (component number) 1

Fixed input: FIX_geom = ’x’, ’y’, ’z’ (or combination) to override INPUT_geom=2

Geometry: Location for each component
fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL

stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m
scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale)

XoL + aft, YoL + right, ZoL + up; from reference point
option to fix some geometry (FIX_geom in Location override INPUT_geom)
option to specify reference length (KIND_scale in Location override global KIND_scale)

Reference point: KIND_Ref, kRef; input dimensional XX_Ref, or position of identified component
component reference must be fixed

Locations can be calculated from other parameters (configuration specific)

