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The combination of modern advances in electric propulsion, fly-by-wire controls, auton-
omy, and increasing demand for short range air taxi operations, is currently producing an
outburst of vehicle designs more diverse than ever before. Advanced software tools are
needed to support the rapid and safe introduction of any design into the airspace, includ-
ing the safety of the deployed flight control system and vehicle handling qualities. This
paper presents a methodology for building air taxi vehicle models with distributed electric
propulsion for use in analyzing flight control system safety at the conceptual design level.
The approach builds on existing software tools capable of outputting aeromechanics-based
linear perturbation models for Vertical Take-off and Landing vehicles with multiple rotors.
Rotor torque inputs are then converted into equivalent voltage control inputs, and the lin-
ear state and input dynamics matrices are modified to include electric motor dynamics with
common parameters for direct-current electric motors. The linear perturbation dynamics
are then stitched across multiple operating points into a quasi-Linear Parameter Varying
model that covers the full flight envelope. A Model Predictive Controller is developed for
use with the full envelope model, and a tradeoff analysis between handling quality and
motor requirements is demonstrated using a six passenger NASA air taxi reference design.

Nomenclature

FlightCODE Flight dynamics and control modeling tool for COnceptual DEsign
LQR Linear Quadratic Regulator
MPC Model Predictive Control
NDI Nonlinear Dynamic Inversion
qLPV quasi-Linear Parameter Varying
RPM Rotations Per Minute
UAM Urban Air Mobility
VTOL Vertical Takeoff and Landing

I. Introduction

Recent demand for Urban Air Mobility (UAM), with advancements in control, automation, and electric
propulsion, have fostered the rapid emergence of novel Vertical Takeoff and Landing (VTOL) air taxi ve-
hicle concepts.1,2 While interest in these vehicles is driven by an expected increase in demand for air taxi
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transportation, to be satisfied ultimately with autonomous operation, the near term introduction of such
vehicles into the airspace requires a careful analysis of overall safety. In this regard, there are many questions
that should be addressed at the conceptual vehicle design level, chief among them, the degree to which a
vehicle can meet mission-based performance metrics for handling qualities, whether operated by a pilot or
autonomous system. Addressing these questions requires vehicle dynamics models sufficient for understand-
ing the flight control system design trade-space between widely varying UAM vehicle concepts. This includes
the ability to assess handling qualities ratings in accordance with accepted standards like ADS-33E-PRF3

through piloted simulation study.
Over the past decade, NASA, working in collaboration with the U.S. Army Aviation Development Direc-

torate, has established multi-disciplinary tools for evaluating rotorcraft conceptual designs including handling
qualities.4 Through this work, one can now use NASA Design and Analysis of Rotorcraft (NDARC)5 to per-
form mission-based air vehicle design and optimization. With the Flight dynamics and control modeling tool
for COnceptual DEsign (FlightCODE), flight dynamics models are generated from NDARC outputs, and
then linked with the established CONtrol Designer’s Unified InTerface (CONDUIT)6 to produce a vehicle
model with control system design suitable for handling qualities assessment.a

The established tool chain currently used at NASA is dependent on CONDUIT, and until recently,
was missing the incorporation of models for electric propulsion that are needed for handling qualities and
controls safety design studies, including the analysis of tradeoffs between traditional collective (or blade
pitch) control with rotor-speed (or RPM) control.7 In this paper we seek to extend the current capability
by showing how to build basic electric propulsion into the linear perturbation flight dynamics models output
from tools like FlightCODE or FLIGHTLAB,8 in a manner that is suitable for use with other modern
control methodologies such as Model Predictive Control and Nonlinear Dynamic Inversion.9,10 This will
eventually enable comparison with CONDUIT, and extend the tool set for studying the effects of reduced
or failed motor operating capacity on high-level performance capability during a vehicle’s conceptual design
stage. Such studies are needed to meet emerging safety requirements for UAM operations, that will require
continued safe operations in the event of any single failure, without requiring exceptional piloting skill or
strength.11

We proceed as follows. In Section II, a direct-current electric motor model is reviewed as a useful means
for capturing the conversion of electrical-power to mechanical-power, with design parameters for electrical
system losses, mechanical transmission losses, operating voltage, as well as, the rotor rate and torque needed
for hover. Section III then shows how the electric motor model is integrated with a given full-envelope
quasi-Linear-Parameter-Varying (qLPV) bare-airframe model. In Section IV, a discrete Model Predictive
Controller is developed for use with the integrated qLPV model. Finally, in Section V the proposed system
is used to analyze the tradeoff between ADS-33E handling qualities and motor requirements for a conceptual
NASA reference six-passenger quad-rotor air taxi design.

II. Electric Motor Model

The brushless Direct Current (DC) motor model is viewed as an approximate surrogate for the signifi-
cantly more sophisticated electric propulsion system that might be adopted in an actual vehicle. In the basic
model, applying Kirchhoff’s Voltage Law to a loop through the windings of a DC motor circuit yields

V = IR+ kbω (1)

where V is the effective control voltage input to the motor terminals, I is the current, R is the armature
resistance, kb is the back Electro-Motive Force (EMF) constant, and ω is the angular frequency of the motor
shaft. There is typically an inductance that acts in opposition to change in current through the motor, but
so far our analysis has shown it to have negligible effect at the time scale of interest.7

Multiplying (1) by the current, produces an expression for the net electrical power delivered to the motor
circuit, i.e.,

P = IV = I2R+ kbωI.

The I2R term is the electrical power loss, and the kbωI term is the power available for mechanical work. If

aFlightCODE is an integrated collection of software tools previously referred to as SIMPLI-FLYD (Simplified Flight Dynamics
for Conceptual Design).4
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the motor supplies torque τmotor, then the mechanical work done by the motor per unit time is

Pmotor = ωτmotor,

and it follows that ωτmotor = kbωI. Likewise, the mechanical work on the motor shaft per unit time is

Protor = Ωτrotor,

where Ω is the angular rate of the rotors, and τrotor is the torque supplied to the rotor shaft. Allowing for
loss in the motor-to-rotor transmission we set Protor = ηPmotor, where η ∈ [0, 1] is the transmission efficiency.
It follows that

τrotor = η
ω

Ω
τmotor = ηrkbI, (2)

where r = ω/Ω is the gear ratio. Next we substitute (1) into this expression and obtain

τrotor = ηrkb
V − kbω

R
=
ηrkb

R
V − η(rkb)2

R
Ω. (3)

Finally, to simplify notation for later define

kV =
ηrkb

R
, kΩ =

η(rkb)2

R
, τ = τrotor

so that the rotor torque is expressed as
τ = kV V − kΩΩ. (4)

Furthermore, the equivalent motor voltage needed to hold the vehicle in a trim condition is

Vt = τt
R

ηrkb
+ kbrΩt,

where τt and Ωt are, respectively, the torque and rotor rotational rate required for trim.

Units

Because the above electrical quantities are in Volts, Amps, and Watts, the units for the electrical constants
are all SI. The SI unit of torque is the [N ·m], and the corresponding english unit is the [ft · lbf]. Each [N ·m]
is 0.7375621493 [ft · lbf]. For calculations in [ft · lbf] this conversion factor should be multiplied into kV and
kΩ above. To keep the notation simple here though, the use of a consistent set of units commensurate with
all physics model equations (i.e., either appropriate SI or English units) is assumed.

Voltage Constraints

There are three primary sets of input limits that can be enforced on the system. The first is simply the
minimum and maximum voltage input permitted by the system, denoted by V in

min and V in
max. The second set

of voltage limits prevents exceeding the maximum burst current Imax of the power supply. From (1), these
are

V Imin = kbrΩ−RImax

V Imax = kbrΩ +RImax.

The third set of voltage limits ensure that the mechanical torque driven by the motor stays below the rotor
shaft limit. From (3), these are

V τmin = kbrΩ−
Rτmax

ηrkb

V τmax = kbrΩ +
Rτmax

ηrkb
,

where τmax is the maximum mechanical torque permitted on the rotor shaft. Notice that these limits change
in time with the rotor-speed Ω, which is assumed positive in these equations. The most restrictive limits for
the overall motor control voltage inputs are then

Vmin = max(V in
min, V

I
min, V

τ
min)

Vmax = min(V in
max, V

I
max, V

τ
max).
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Motor Parameters

When a particular motor specification is not available, the motor parameters can be chosen to meet other
design criteria as follows. The trim analysis of the bare-airframe model determines the mechanical torque
τh and rotor-speed Ωh required for hover. With knowledge of an optimal operating point for the motor rate
ωh, set r = ωh/Ωh. From (1), the power used by the motor at hover is

VhIh = I2
hR+ kbrΩhIh.

With the electro-mechanical power system operating at a given efficiency ηe, it follows that

kbrΩhIh = ηeVhIh, (5)

I2
hR = (1− ηe)VhIh, (6)

for the motor’s mechanical power and the electrical power loss, respectively. From (5) the back EMF constant
is

kb =
ηeVh

rΩh
.

With τh and (2) the hover current is found

Ih =
τh
ηrkb

,

where, as before, η is the mechanical transmission efficiency of the gear box. Finally, with (6) we get the
armature resistance

R =
(1− ηe)Vh

Ih
.

Thus, the motor parameters kb, and R, are determined from the design driven values for τh, Ωh, Vh, η, ηe,
and knowledge of the desired motor operating frequency to get r.

III. Full Flight Envelope Model Buildup

The FlightCODE tool (or FLIGHTLAB) can be used to get state-space models for the bare-airframe
dynamics in the form

ẋ = A(ν)[x− xt(ν)] +B(ν)[u− ut(ν)], (7)

where A, B, xt, and ut are functions of a model parameter vector ν. For the examples considered later in
this paper, ν is the aircraft x-body-axis airspeed, but in general ν may include other parameters such as
altitude, rotor tilt, flap settings, rotor-speed, etc. While FlightCODE has many configuration options, it is
used here for moderately sophisticated air taxi models with the following state and input vectors:b

x =



β1k lateral flapping angle for rotor k

β2k longitudinal flapping angle for rotor k

Ωk angular rate of rotor k

φ roll angle

θ pitch angle

u x-body-axis velocity

v y-body-axis velocity

w z-body-axis velocity

p roll rate around x-body-axis

q pitch rate around y-body-axis

r yaw rate around z-body-axis



u =


δcol collective input

δlat lateral stick input

δlon longitudinal stick input

δped pedal input

τk torque input to rotor k

 .

The use of subscript k, means one such term is included in the vector for each rotor in the model, k = 1, . . . N
— so for a quad-rotor model x ∈ R20 and u ∈ R8. The use of consistent units is assumed, with the typical

bThe general approach, however, is not limited to this case.
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right-handed coordinate frame for the aircraft body axes.c Also, note that ‘u’ is used for both the input vector,
and the x-body-axis velocity (‘x’ is also similarly overloaded), but the intended meaning is easily inferred
from context. The functions A(ν), B(ν), xt(ν), and ut(ν) are often determined by linear interpolation across
look-up tables. Such models are known as quasi-Linear Parameter Varying (qLPV) and are commonly used
to stitch full flight envelope models together from a series of linear perturbation models.12

Rotor-speed and Torque Sign Convention

In the development to follow, it is assumed that the sign of the rotor rate Ω indicates direction of rotation.
It follows that for a quad-rotor vehicle trimmed in a hover condition, two of the rotors are rotating in
the positive direction, with the application of positive torque, and the other two rotors are rotating in the
negative direction with the application of negative torque. In this case, the torque control derivatives are
all-positive. This is not necessarily the default sign convention used by the modeling tool that outputs
the bare-airframe model (7). For example, FlightCODE uses an all-positive rotor rate (and torque) sign
convention, where the actual direction of the rotors is implicit, and the torque input derivatives have mixed
positive and negative signs to establish the required balancing of torque in the dynamics.

A. Incorporating the Motor into the Bare-Airframe Model

The next step is to convert the mechanical torque input of the bare-airframe model into an equivalent voltage
control input. Using the torque relation (4) we set

τk = kV Vk − kΩΩk,

for each rotor, assuming the motor constants are the same for all rotors. Substituting this expression into u
produces

u =


δcol

δlat

δlon

δped

kV Vk

−


0

0

0

0

kΩΩk

 .
Further substituting this, and the corresponding relation for ut, into our state-space model

ẋ = A(x− xt) +B




δcol

δlat

δlon

δped

kV Vk

−


0

0

0

0

kΩΩk

−

δcol
t

δlat
t

δlon
t

δped
t

kV Vkt

+


0

0

0

0

kΩΩkt



 .

Expanding this result then produces

ẋ = A(x− xt) +B




δcol

δlat

δlon

δped

kV Vk

−

δcol
t

δlat
t

δlon
t

δped
t

kV Vkt



−B



0

0

0

0

kΩΩk

−


0

0

0

0

kΩΩkt



 .

Next, the kV motor constant is absorbed into B by multiplying it into the column of B that corresponds to
τk. Referring to this modified B as B̄, the model becomes

ẋ = A(x− xt) + B̄




δcol

δlat

δlon

δped

Vk

−

δcol
t

δlat
t

δlon
t

δped
t

Vkt



−B



0

0

0

0

kΩ(Ωk − Ωkt)



 .

cThe positive x-axis points through the nose of the vehicle, the y-axis points out the right side of the vehicle (along its wing
if it has one), and the z-axis points down through the floor.
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Applying the same trick to the right-most term, let bk be the column of B that corresponds to the τk input,
so that the expression for ẋ becomes

ẋ = A(x− xt) + B̄




δcol

δlat

δlon

δped

Vk

−

δcol
t

δlat
t

δlon
t

δped
t

Vkt



− bkkΩ(Ωk − Ωkt).

Now the right-most term can be absorbed into A by subtracting bkkΩ from the column of A that corresponds
to Ωk. Denoting this modified A matrix as Ā we have

ẋ = Ā(x− xt) + B̄




δcol

δlat

δlon

δped

Vk

−

δcol
t

δlat
t

δlon
t

δped
t

Vkt



 .

With this procedure, the motor model is directly incorporated into the bare-airframe qLPV model by mod-
ifying the look-up tables for A and B. In addition, the tables for ut are also modified to reflect that Vk now
replaces τk for each rotor.

B. Accounting for the Motor Inertia

With the motor inertia included, the torque supplied by the motor is really

τmotor = kbI − Jmω̇,

where Jm is the motor inertia. With the power equations developed in Section II, i.e.,

Protor = Ωτrotor = ηPmotor = ηωτmotor,

the torque transmitted to rotor from (3) becomes

τrotor =
ηrkb

R
V − η(rkb)2

R
Ω− ηr2JmΩ̇.

Expanding on our previous notation, let kΩ̇ = ηr2Jm so that the torque imparted to the kth rotor becomes

τk = kV Vk − kΩΩk − kΩ̇Ω̇k.

Notice that in a trim state Ω̇k = 0 for each rotor, so the extra term does not affect the trim condition.
Substituting this result into the bare-airframe input vector produces

u =


δcol

δlat

δlon

δped

kV Vk

−


0

0

0

0

kΩΩk

−


0

0

0

0

kΩ̇Ω̇k

 ,

and after inserting this expression for u into the state equations we obtain

ẋ = A(x− xt) +B




δcol

δlat

δlon

δped

kV Vk

−


0

0

0

0

kΩΩk

−

δcol
t

δlat
t

δlon
t

δped
t

kV Vkt

+


0

0

0

0

kΩΩkt



−B


0

0

0

0

kΩ̇Ω̇k.

 .
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From here, the steps from Section IIIA are repeated to absorb the terms involving kV and kΩ into the state
and control matrices. The result is

ẋ = Ā(x− xt) + B̄




δcol

δlat

δlon

δped

Vk

−

δcol
t

δlat
t

δlon
t

δped
t

Vkt



−B


0

0

0

0

kΩ̇Ω̇k

 . (8)

Now the term involving the state derivative Ω̇ is moved to the left-hand side, making the state equation

ẋ+B


0

0

0

0

kΩ̇Ω̇k

 = Ā(x− xt) + B̄




δcol

δlat

δlon

δped

Vk

−

δcol
t

δlat
t

δlon
t

δped
t

Vkt



 .

The left-hand side is then rewritten as

ẋ+B


0

0

0

0

kΩ̇Ω̇k

 = ẋ+ bkkΩ̇Ω̇k = ẋ+ bkkΩ̇e
T
k ẋ =

(
I + bkkΩ̇e

T
k

)
ẋ,

where ek is the natural basis vector corresponding to the Ωk element of x. Doing this for each of the rotor
torque inputs produces the matrix

M = I +

Nrotors∑
i=1

kΩ̇bie
T
i ,

and (8) becomes

Mẋ = Ā(x− xt) + B̄




δcol

δlat

δlon

δped

Vk

−

δcol
t

δlat
t

δlon
t

δped
t

Vkt



 .

Finally, if M is non-singular,

ẋ = M−1Ā(x− xt) +M−1B̄




δcol

δlat

δlon

δped

Vk

−

δcol
t

δlat
t

δlon
t

δped
t

Vkt



 ,

and the look-up tables for the bare-airframe model are updated to reflect this equation.

C. Gravity and Kinematics

The qLPV model (7) must include the gravitational acceleration in trim. This is because the net required
acceleration in a trim condition is zero when x = xt and u = ut. It follows that with the incorporation of
gravity

ẋ = A(ν)[x− xt(ν)] +B(ν)[u− ut(ν)] + g(φ, θ)− g(φt(ν), θt(ν)),
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where g(φ, θ) is the gravitational acceleration resolved in the body-axis, using the associated roll φ and pitch
θ Euler angles. With this equation, the net acceleration on the vehicle is zero when the state, input, and
Euler angles are trimmed, i.e., equal to x = xt, u = ut, φ = φt, and θ = θt.

The force and moment equations for a rigid-body with constant mass are

F = mV̇ + ω ×mV

M = Irω̇ + ω × Irω,

where F is the net force, M is the net moment, V = [u, v, w]T , ω = [p, q, r]T , Ir is the inertia matrix, and
m is the net vehicle mass. With xv = [VT ,ωT ]T we have[

F

M

]
=

[
mI 0

0 Ir

]
ẋv +

[
ω ×mV

ω × Irω

]
,

here I is an appropriately sized identity matrix. It follows that

ẋv =

[
mI 0

0 Ir

]−1 [
F

M

]
−

[
mI 0

0 Ir

]−1 [
ω ×mV

ω × Irω

]
.

This equation provides the body-axis dynamics contribution to our overall state vector x, which includes xv.
Using these equations the overall system is decomposed as

ẋ = f(x, u) + g(x) + h(x), (9)

where,
f(x, u) = A(ν)[x− xt(ν)] +B(ν)[u− ut(ν)]− g(φt(ν), θt(ν))

is the gravity-adjusted airframe and propulsion model. The function g(x) is the gravitational acceleration
in the body-axis, which is only a function of the φ and θ components of the state vector x. The remaining
kinematic terms are swept into h(x), including the differential equations for the Euler angles φ, and θ.

D. Wind and Gust Models

As stated, the nonlinear model equation (9) does not yet include the effects of steady-wind or gusts. Let xw

represent the constant steady-wind state vector, which contains the appropriate body-axis velocity elements
of the steady-wind vector. Since the aerodynamic accelerations are computed relative to the steady-wind,
equation (9) becomes

ẋ = f(x− xw, u) + g(x) + h(x), (10)

where x is now viewed as the inertial state of the vehicle, and x−xw is viewed as the wind-relative state. In
this case, the lookup parameter ν will also likely depend on the wind-relative airspeed (and hence the wind-
relative state). Gust or turbulence effects are often modeled for handling qualities simulation as equivalent
state or input disturbance signals that are injected into airframe model.13,14 This paper focuses on an
optimistic assessment of handling qualities where we assume the steady-wind is zero, i.e., xw = 0, with
negligible turbulence. However, it is well recognized that turbulence can degrade the handling qualities
ratings for a particular vehicle and control system.15

E. Linear Approximation

Model-based control system analysis and development typically requires the ability to establish an approxi-
mate linear model around an arbitrary operating point (x0, u0). The standard approach is to use a Taylor
series approximation

δẋ = Jxδx+ Juδu+ f(x0, u0), (11)

where δx = x−x0, δu = u−u0, f(x0, u0) is the total model (9). The matrix Jx ∈ Rn×n is the total Jacobian
matrix of f with respect to state x, i.e., Jx = Jfx +Jgx +Jhx , where Jfx , Jgx , and Jhx are the respective Jacobian
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matrices of f , g, and h with respect to x. The matrix Ju = Jfu , because the Jacobian matrix for g and h
with respect to u is zero.

Though tedious, it is straight-forward to compute the required component Jacobian matrices. Care,
however, is needed for Jfx in particular, because f(x) depends on A(ν), B(ν), xt(ν), ut(ν), and g(xt(ν)),
each of which depends on ν(x). Thus, an accurate calculation for Jfx requires a rather involved application
of the chain-rule. For the case with ν(x) : Rn → R, the result is

Jfx = A(ν) +

[
∂A

∂ν
(x− xt(ν))− (A(ν) + Jgx(xt))

∂xt

∂ν
+
∂B

∂ν
(u− ut(ν))−B(ν)

∂ut

∂ν

]
∇νT .

The partial derivative terms with respect to ν, are simply the slopes of the lines connecting the elements in
the look-up tables for A(ν), B(ν), xt(ν), and ut(ν).

IV. Controller

In order to study handling qualities and flight safety, the integration of a specific flight control system is
required. FlightCODE provides an automated means of accomplishing this through the use of CONDUIT,
as noted in the introduction. However, with the approach presented here one can look at alternative controls
technologies that utilize the flight dynamics model (9), such as Model Predictive Control (MPC) or Nonlinear
Dynamic Inversion (NDI).

Here, an MPC design under investigation in ongoing work is summarized. A reduced order model is
assumed for the controller design. In particular, the unobserved flapping states of the full nonlinear model
state vector are eliminated. For notational simplicity, this model is also referred to as f(x, u), where x now
represents an observable state vector.

A. Discrete MPC

Our approach is focused on MPC with quadratic cost, linear dynamics, and box constraints for the state
and control inputs of a discrete control system. This problem class is convex, and highly-efficient solver
algorithms are available that find the global optimal solution to the associated quadratic optimal control
problem:

minimize

T−1∑
k=0

z̄d(k)TQdz̄d(k) + rd(k)TRdrd(k) + z̄d(T )TQf z̄d(T )

subject to z̄d(k) = zd(k)− zcmd for k = 0, ..., T ,

zd(k + 1) = Adzd(k) +Bdrd(k) + wd for k = 0, ..., T − 1,

zmin ≤ zd(k) ≤ zmax for k = 1, ..., T ,

rmin ≤ rd(k) ≤ rmax for k = 0, ..., T − 1.

(12)

The variables in this problem are states zd(1), zd(2), . . . , zd(T ) and inputs rd(0), . . . , rd(T − 1). The given
problem data is zcmd, zd(0), Ad, Bd, wd, zmin, zmax, rmin, rmax and T . The optimal solution for rd(0) is taken
as the current input, and the process repeats in the next cycle.

In our implementation, the Fast MPC algorithm developed in [16] is used with a few modifications.
First, diagonal input and state cost matrices Rd, Qd, and Qf are assumed. This was done to get even better
computational performance. The external disturbance wd is also included in the state equality constraints.
This generalizes the approach in [16], for use with command tracking that permits non-linear dynamics model
linearization around non-equilibrium points where the Taylor series approximation will generally carry a fixed
bias term at the current state, i.e., f(x0, u0) in (11). However, care is needed here, as a fixed non-zero wd

can destabilize the system when its effect is beyond the limitations of the inputs. A more general discussion
of stability for MPC is available in [17].

B. Linearization and Rate Augmentation

It remains to map our continuous time nonlinear model f(x, u) to an acceptable discrete time approximation
for use in the above quadratic MPC problem formulation. This is accomplished with a three step process:
linearization, rate control augmentation, and discretization.
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At the current state and input (x0, u0), the Taylor approximation (11) is applied, and rate control is
augmented to the system producing,[

δẋ

δu̇

]
=

[
Jx Ju

0 0

][
δx

δu

]
+

[
0

I

]
r +

[
I

0

]
f(x0, u0). (13)

The system input now becomes r, which just drives δu̇. This processing step allows for the assumption of
constant rate inputs between time samples in the continuous system, and has several other benefits. First,
the discrete rate control system drives the actuator rates in the continuous system, which is more realistic
than trying to drive the actuator positions directly. This is because the discrete controller assumes that the
continuous input being driven can change instantaneously, an assumption which is less of an approximation
for rate control than it is for position control. Second, we can simulate the continuous system response with
the discrete controller using an ODE solver that requires continuous derivatives. Third, the final target input
positions are often a-priori unknown, while the final input rates are known as they are usually controlled to
zero. Finally, one can use the MPC problem box constraints to bound both the inputs (which are part of
the state vector z) and the input rates.

To simplify notation (13) is expressed as

ż = Az +Br + w (14)

where,

z =

[
δx

δu

]
, A =

[
Jx Ju

0 0

]
, B =

[
0

I

]
, w = f(x0, u0).

This system is the rate-augmented local linear approximation to the nonlinear model f(x, u). We also
introduce the continuous-time Linear Quadratic Regulator problem for the augmented system evaluated at
an equilibrium point (so w = 0),

minimize

∫ ∞
0

z(t)TQz(t) + r(t)TRr(t)dt

subject to ż = Az +Br,

(15)

with positive semi-definite state cost matrix Q ∈ R(n+m)×(n+m), and positive definite input cost matrix
R ∈ Rm×m. This well known optimal control problem has a unique constant gain feedback solution if (A,B)
is controllable (so that the system is always stabilizable), and (Q,A) observable (so that no nonzero state
can go unpenalized). Furthermore, when R is diagonal it known that the system has infinite upper gain
margin, gain reduction margin equal to 0.5, and at least 60 degree phase margin in each input control [18,
Ch. 9.2.2].

C. Discretization

We are now in a position to discretize the rate augmented system (14) in a manner such that the solution
to (12) without inequality constraints (at an equilibrium point) converges to the solution to (15) when the
discretization step size h goes to zero, and the MPC controller time horizon T goes to infinity. This is
accomplished by assuming a constant rate input over discretization step interval h, and integrating (14) over
this interval with initial condition z(kh). The integration for the linear system is accomplished by finding
matrices Ad and Fd, such that

exp

(
h

[
A I

0 0

])
=

[
Ad Fd

0 I

]
.

Then, after setting Bd = FdB, and wd = Fdw, the discrete system

zd(k + 1) = Adzd(k) +Bdr(k) + wd,

exactly evaluates the trajectory that satisfies (14) with initial condition z(0), under the assumption of a
constant rate input over each sample interval.
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Furthermore, use of the trapezoidal rule to estimate the integral of the cost function in (15) over the
sample time h with constant rate inputs produces

Rd =
h

2

(
2R+BTd QBd

)
, Qd =

h

2

(
Q+ATdQAd

)
.

This approximation ignores a cross term between zd(k) and rd(k) that appears in the trapezoidal rule. It
also captures an effect of the current state and input across the integration interval h, which contributes
to both Qd and Rd. Finally, since we restricted our MPC formulation to diagonal Qd and Rd, we also
drop the off-diagonal components that may appear in the calculation, i.e., by taking Qd = diag(Qd), and
Rd = diag(Rd).

D. Inner-Loop Control Algorithm

The algorithm for our discrete MPC controller runs at the simulation frame rate. In each frame, the linear
model is evaluated and discretized at the current state. Given a control command and constraints relative to
the current state, the MPC problem (12) is solved for the entire input sequence rd(k), k = 0, . . . , T − 1. The
value of rd(0) drives the rate input r(t) to the continuous qLPV model at the current simulation time, and
the process repeats again on the next simulation frame. In effect, the MPC algorithm “thinks ahead of the
aircraft” by planning a trajectory to hT [s] in the future with the linear model approximation at the current
time, and applies the optimal input that it finds for the current time. The process repeats each simulator
frame, and the linear approximation moves with the nonlinear dynamics model.

E. Simulation

With the flight dynamics model f(x, u) and our control law for the input rates u̇ = κ(xcmd) computed with
MPC, the nonlinear system response is simulated by integrating

ẏ =

[
ẋ

u̇

]
=

[
f(x, u)

κ(xcmd(t))

]
,

from initial condition y(0), where xcmd(t) is a given state command signal.

F. Outer-Loop Considerations

Piloted handling qualities simulation requires the ability to implement different control response types, such
as Attitude Command Attitude Hold (ACAH), Rate Command Attitude Hold (RCAH), Translational Rate
Command (TRC), Rate Command Height Hold (RCHH), Rate Command Direction Hold (RCDH), and
Turn Coordination (TC) in forward flight. For each of these, the ability to fine tune the controller response
is also desired. In principle, this might all be accomplished within the MPC controller by adjusting the
cost matrices Q and R. However, in practice we found it more convenient to use the MPC system to create
a fast inner-loop ACAH controller, and combine it with a simple adjustable command filtering system to
implement and tune the other control response types. Figure 1 shows a representative setup for an RCAH
system, where ωcmd [rad/sec] is a response bandwidth tuning parameter.

ωcmd
s+ωcmd

1
s

MPC–ACAH Vehicle
position cmdpilot rate cmd

Figure 1: Basic RCAH setup with command filter.

V. Demonstration

To demonstrate some of the analysis one can perform with the proposed system, we explore the case
of the NASA developed conceptual design shown in Figure 2. This is a 6-passenger, 50-nm range, 1200-lb
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payload, quad-rotor vehicle with electric propulsion.1 FlightCODE was used to generate the bare-airframe
model in the qLPV form (see Eq. (7)), for collective controlled (D1) and rotor-speed controlled (D2) design
variants. Details of the aero-mechanical modeling methodology are discussed in [7]. Using our motor
modeling approach, the rotor torque inputs were powered by direct-drive DC motors with the parameters
listed in Table 1.

Figure 2: Quad-rotor electric propulsion reference design.

Symbol D1 D2 units

Back EMF Constant kb 0.4048 0.3572 V-s

Armeture Resistance R 0.0483 0.0484 Ohm

Motor Inertia Jm 0.1266 0.1063 slug-ft

Gear Ratio r 19.97 18.76

Transmission Efficiency η 1.00 1.00

Electrical Efficiency ηe 0.966 0.955

Table 1: Motor Parameters for collective controlled (D1) and rotor-speed controlled (D2) design
variants.

The Model Predictive Controller discussed earlier was then incorporated and setup for an Attitude-
Command-Attitude-Hold response type, for each of the two vehicle configurations. For the first configuration
(D1), collective blade-pitch is used to control maneuvering while the voltage inputs are used to maintain
constant rotor-rate. For the second configuration (D2), the collective controls are held fixed, and the voltage
inputs are used to manipulate rotor-speed (or RPM) for maneuvering capability. In both cases, the controllers
have perfect knowledge of a reduced order qLPV model (9), with the eight blade flapping angle states
removed.d Also, for the initial analysis we present here, the state and control box constraints in the MPC
problem formulation (12) were effectively omitted, by setting xmin = umin = −108, and xmax = umax = 108.

A. MPC Convergence to LQR

With the full envelope qLPV model setup, the model linearization is first checked for controllability across
a hi-resolution sweep of the lookup parameter (ν). With the controllability property, one can drive the
linearized model to any level of performance if there are no bounds on the inputs and states. While this
is not a practical assumption, the initial interest is in quantifying the size of the inputs (voltages, currents,
and torques) required to achieve particular ADS-33E handling qualities metrics.

Before moving onto the ADS-33E analysis however, the MPC computation is validated by checking
convergence to the LQR response under the appropriate conditions. Figures 3 and 4 show the roll step and
the command-to-attitude frequency response for the collective controlled model (D1) governed by LQR and
MPC, with a particular choice of cost matrices Q and R. The figures show that the discrete MPC response
converges to the continuous system LQR response as expected. Figures 5 and 6 show the same analysis
for the rotor-speed controlled model (D2). Notice that the primary effect of the MPC discretization step is

dIn matlab, by applying modred() to the constituent A and B matrices used to define the qLPV model.
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to introduce delay in the system. For the remaining presentation, MPC is used with a three second time
horizon, configured with h = 0.05 [s] and T = 60.

Figure 3: Collective controlled, roll step-
response.

Figure 4: Collective controlled, roll fre-
quency response.

Figure 5: RPM controlled, roll step-
response.

Figure 6: RPM controlled, roll frequency
response.

B. A Performance Trade-Space

For the blade-pitch (collective) controlled design (D1), Figure 7 shows the ADS-33E moderate amplitude
metric for 10 and 20 degree pitch forward commands, with three different controller aggressiveness settings.
The aggressiveness setting is color-coded in the same way throughout this section. The most aggressive
controller is red, the moderate controller is blue, and the least aggressive controller is magenta. The ag-
gressiveness settings were obtained by adjusting the cost matrix (Q) terms associated with θ and q. In
general, by increasing the θ-cost we improve tracking performance, and by increasing the q-cost we reduce
aggressiveness (and the same for φ and p). Figures 8 and 9 show the motor input voltage and current that
is needed to regulate the motor rates in color correspondence with the respective performance metrics in
Figure 7. The voltage and current inputs are shown for the first and fourth motors as indicated in the plots.
The inputs for the remaining two motors are symmetric with these. The torque required, which is directly
proportional to the current, is also shown on the right y-axes of Figure 9. The collective controller was easily
configured to exceed Level 1 handling qualities, and required substantially less motor current and torque
than the rotor-speed controlled design, which is shown next.

Figures 10–12 show the analogous case for the rotor-speed controlled design (D2). For rotor-speed control,
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Figure 7: Collective controlled, ADS-33E
moderate amplitude pitch response metrics.

Figure 8: Collective controlled, Motor
voltage required to regulate rotor speeds.

Figure 9: Collective Controlled, Motor current required to
regulate rotor speeds.
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Figure 10: RPM controlled, ADS-33E
moderate amplitude pitch response metrics.

Figure 11: RPM controlled, Motor voltage
required for pitch response metrics.

Figure 12: RPM controlled, Motor current required for
pitch response metrics.
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the collective inputs are held fixed and the motor input voltages are manipulated to fully control the vehicle.
Notice the dramatic increase in the required motor current (and associated rotor torques).

Figure 13 shows the ADS-33E metrics, for the RPM controlled design, with roll commands of 10, 20,
and 40 degrees. For the same commanded input, the roll and pitch ADS-33E metrics are roughly the same
due to the symmetry of the vehicle. However, the ADS-33E requirement for Level 1 handling quality is
more stringent for roll, and the least aggressive controller does not satisfy the Level 1 rating. Figure 13 also
shows that the MPC controller, with fixed state and input cost matrices (Q and R), consistently maintains
ppk/∆φpk for each of the roll commands. However, Figures 14 and 15 show that a significant cost is paid in
the control voltage and motor current, as roughly double the peak voltage and current is required to hit the
same metric with 40 degree roll command.

Figure 13: RPM controlled, ADS-33E
moderate amplitude roll response metrics.

Figure 14: RPM controlled, Motor voltage
required for roll response metrics.

Figure 15: RPM controlled, Motor current required for roll
response metrics.

Figures 16 and 17 show the ADS-33E small amplitude metrics (phase-delay vs. bandwidth) associated
with each of the controller aggressiveness levels for the RPM controller, using the same color correspondence.
Cross referencing with Figures 12 and 15, we observe that increasing bandwidth and decreasing the phase
delay come at a significant cost in terms of the peak current and torque required.
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Figure 16: RPM controlled, ADS-33E
small amplitude roll response metrics.

Figure 17: RPM controlled, ADS-33E
small amplitude pitch response metrics.

Figure 18 shows the rate-command heave step response for each of our controller aggressiveness settings.
Figure 19 shows motor voltage and current (per motor) required in color correspondence with Figure 18.
Notice the time delay before the step response starts to ramp up. This is caused by the additional time
required for the rotor speeds to increase before the rotors can produce the lift needed to climb. For reference,
the collective controlled heave response (which in our configuration is the same for all three aggressiveness
levels) is also shown as the dotted red line in Figure 18. The higher order heave response of the rotor-speed
controlled vehicle is not well suited to the ADS-33E performance metric, which is based on a least-squares fit
to a time-delayed first order response. The performance analysis defined in NASA TM110399 for a shipboard
landing task is preferred, and is shown for our rotor-speed controllers in Figure 20.19

Overall, handling-qualities are synonymous with control safety because vehicles with good handling qual-
ities can avoid sudden obstacles and safely respond to wind gusts or other unexpected events. This is needed
for both human and autonomous pilots. Even though the ADS-33E standards may not be the most ap-
propriate metrics for air taxi operations in urban environments, the above analysis shows that a significant
tradeoff in the peak electrical current (or torque) is required for rotor-speed based control, independent of
the adopted standard. While designs with rotor-speed control will need to handle large peak-demands for
worst-case rapid maneuvering, the analysis also shows potential for significant power savings by maneuvering
slowly during nominal operations.

VI. Conclusion

An approach for developing electric air taxi models suitable for analysis of handing qualities and controls
safety was proposed and demonstrated. The method leverages the use of established tools for the conceptual
design of Vertical Takeoff and Landing aircraft, which includes the ability to output linear perturbation
models for the bare-airframe flight dynamics at various operating conditions. We then showed how to
augment a distributed electric propulsion system model in state-space form, and extended it for use across
the full flight envelope using a standard quasi-Linear Parameter Varying model stitching technique. Using a
Model Predictive Controller, an analysis of the trade-off between handling qualities and the transient motor
current and torque requirements was demonstrated for a six passenger quad-rotor NASA reference design.

Models developed with the proposed approach are now integrated into the Vertical Motion Simulator
facility at NASA Ames for pilot testing, and are producing qualitatively reasonable results. However, there
is currently no actual flight data available with which to perform a quantitative validation of the flight dy-
namics. There are also many important effects not explicitly treated in our approach, especially pertaining to
thermal effects on the electrical system performance or operating condition dependence of motor parameters.
However, if these effects can be mapped to the expected power transmission efficiency (η) or other already
included parameters then they too can be accounted for in the modeling framework.
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Figure 18: RPM controlled, heave step re-
sponse from hover.

Figure 19: RPM controlled, voltage and
current inputs for heave step response.

Figure 20: RPM controlled, NASA heave performance
metrics.
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