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 There exists challenges in leveraging CFD solutions
of rotors in early-stage conceptual design.

— Limited usage of CAD rotor representations
— Coupling to structural and trim solvers
— Rapidly evolving design space

« Scriptable grid generation programs exist to
complete parametrized CFD studies.

— These scripts require significant user expertise to
generate

 There is a need for a high-level, simplified tool for
parsing conceptual design-level rotor definitions
and rapidly generating high-fidelity CFD cases.
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Objectives of RotorGen

 The objective of RotorGen is to automatically generate OVERFLOW CFD cases based on
conceptual design-level rotor definitions.

* In pursuit of this objective, RotorGen promotes the use of high-fidelity solutions among
a broader range of rotorcraft-based conceptual design groups.
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High Level Workflow with RotorGen

« The NASA RVLT Conceptual Design Toolchain
is utilized to identify a limited number of
interesting cases.

« Conceptual design-level definitions for rotor
geometric and operating conditions are entered
into a single RotorGen input file.

 Chimera Grid Tools (CGT) generates multiple
overset volume grids to model the rotor.

e Time to submit CFD cases reduced from
several days to a few seconds.

— Reduce required expertise to run simulation
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Defining the Blade Planform

- Blade planform definitions are provided by
the user, detailing geometry.

— Definitions define blade spanwise chord,
twist, sweep, droop, ...

— Defines blade Y2 chord line

« Users provide a specific set of airfoil
profiles.

 User is further allowed detailed control of
spanwise mesh refinement.

— Varying refinement at user-specified radial
stations
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Defining the Blade Tip/Root Cap

 Tip cap, overset grid generation remains a
notoriously rigorous task.

— Often a significant source of time spent in grid
generation, particularly among non-expert users

« To maximize the robustness of cap grid
generation, three overset grids are used.

— Leading Edge (L.E.) Grid
— Center Line (C.L.) Grid
— Trailing Edge (T.E.) Grid

« The splitting of this cap grid has thus far
provided sufficient robustness in generating a
broad range of rotor tip caps.
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Rapid Rotor Grid Generation Examples

1:4.71 Scaled S-76

NASA Urban Air Mobility Reference Vehicle
(Quiet Single Main Rotor)

NASA Urban Air Mobility Reference Vehicle
(Multi-Tiltrotor)

 We've tested grid generation against multiple rotors.
— Time to generate cases reduces from multiple days to a few seconds
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S-76 Validation Study

 RotorGen was leveraged to complete a collective
sweep for an S-76 hovering rotor.

— Four collectives are simulated: 4, 6, 8, 10 degs.
— Radius: 4.67 ft, Tip Mach: 0.61

« Cases are generated using conceptual design-level
definitions.

— 5 spanwise rotor definitions
— 3 airfoil files: SC1013R8, SC1095R8, and SC1095

 CFD solutions are validated against both experimental

measurements and CFD simulations.

— Balch, David T. "Experimental study of main rotor/tail rotor/airframe interaction
in hover." Journal of the American Helicopter Society 30.2 (1985): 49-56.

— Jain, Rohit K., and Mark A. Potsdam. "Hover predictions on the Sikorsky S-76
rotor using Helios." 52nd Aerospace Sciences Meeting. 2014.
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S-76 Performance Coefficients and Figure of Merit
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SUI Endurance Validation Study

« RotorGen was leveraged to complete an RPM sweep
for an SUI-Endurance hovering rotor.

— Five RPMs are simulated: 2500, 3000, 3500, 4000,
4500 RPM

— Radius: 0.6 ft, Maximum Tip Mach: 0.3

« Cases are generated using conceptual design-level
definitions.

— 22 spanwise rotor definitions
— 22 airfoil files generated from rotor blade scans

 CFD solutions are validated against experimental

measurements obtained by Carl Russell.

— Russell, Carl R, et al. "Wind tunnel and hover performance test results for
multicopter uas vehicles." American Helicopter Society (AHS) International

Annual Forum and Technology Display. No. ARC-E-DAA-TN31096. 2016.
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SUl Endurance Performance Versus RPM
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Summary of Validation Effort @/

 RotorGen-generated cases provided reasonably accurate hovering predictions.

 Hovering performance predictions were achieved for various rotor geometries and scales.
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Concluding Remarks @

Thus far, this effort has completed several key, initial tasks.
— A robust, high-level procedure for generating rotor grids has been identified.
— This procedure has been validated for two hovering rotor performance predictions.

* In the near term, the preliminary validation effort will be expanded to include a broadened
range of applications.

« As next steps, we plan to expand RotorGen’s capability to include the automation of
coupling between CAMRADII and OVERFLOW for aeroelastic modeling and rotor trimming.

« The long-term objective of this effort is to publicly release RotorGen.

This effort requires feedback from the community.
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