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11.2 Handbook of Grid Generation

grid components. Since available software has not been designed with overlapping grids in mind, problem
components are typically gridded independently in a sequential fashion. Given the level of geotnetric
and physical complexity that is often required for Aow simulation, this practice places a heavy burden
on the analyst in terms of time and expertise required to generate needed grids. Fortunately, grid
generation schemnes that exploit the flexibility inherent to an averset approach are active areas of research
[Petersson, 1995; Chan and Meakin, 1997). Efficient and highly automated methods of overset grid
generation and domain decomposition should be available in the near future,

The present chapter is divided into three main sections covering the topics of domain decomposition,
domain connectivity, and research issues. These sections are followed by brief sections that define terms,
references, and sources for more detailed information on subjects related to overset grids. Terms peculiar
to overset grid nomenclature appear in italic at their first occurrence, and are defined in Section 11.5.

For the purposes of this chapter, the starting point for grid generation is assumed to be a trimmed
“water-tight” definition of problem surface geometry in a suitable format {e.g.., NURBS, or panel net-
works). Note that the subjects of surface and volume grid generation are covered in other chapters of
the handbook (Chapter 9 and 4, respectively) and will be referred to only indirectly in the present chapter.
Chapter 5 on hyperbolic grid generation should be of particular interest to anyone seeking more infor-
mation about the overset grid approach.

11.2 Domain Decomposition

This section covers domain decomposition issues for composite overset structured grids. Included in the
discussion are surface geometry decomposition, volune decompesition, and issues peculiar to multiple-
body applications,

11.2.1 Surface Geometry Decomposition

All real objects can be viewed as composites of discontinuities (point and line) and simple surfaces. A
finite cone, for example, has both point and line discontinuities. Surface geometry entities not associated
with point or line discontinuities are simple surfaces. The task of surface geometry decomposition is to
partition given problem definitions into sets of surface areas that can readily be converted into overlapping
surface grid components. It is worth noting that surface geometry decomposition problems do not have
unique solutions. A number of trivial shapes can be represented very well with a single surface {e.g., a
sphere, a rectangular flat plate, etc.). However, even simple shapes can be decomposed into component
parts and represented with an infinite variety of sets of component surface areas. The present objective
is simply to define a convenient set of surface areas to form the basis for surface grid generation. In this
chapter, the term seam is used to denote surface areas that are associated with either point or line
discontinuities in a geometry definition. The term block is used to denote simple surface areas. Hence,
the task of surface geometry decomposition can be restated as one of partitioning a given problem
geometry into a quilt” of overlapping seams and blocks (see Figure 11.1),

Once a surface definition has been decomposed into seams and blocks, generation of a corresponding
number of overlapping surface grids is a conceptually simple task. Most of the basic algorithms needed
to develop fuily automated surface grid generation software currently exist. Algebraic and elliptic surface
grid generation techniques, appropriate for simple surfaces, have long been available (see Chapter 9 of
this handbook). The idea for hyperbolic surface grid generation (Chapter 5) was put forward more
recently {Steger, 1989], and has since been generalized [Chan and Buning, 1995].

*Quilt nomendlature has heen adopred here to describe surface geometry decomposition issues unique to com-
pusite overset structured grids. The patches of material stitched tagether in “patchwork quilts” are commonly know
as “Blocks” Hence. in this analogy, seam and block surface components correspond to quult stitches and square quilt
patches, respectively,
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FGURE 11,1 Surface geometry decompuosition into & quilt of seams and blocks, (a) X-38 surface geometry defi-
nition, {b} seams over contrel lings and line discontinuities, (¢} blocks over simple surfaces.

11.2.1.1 Seam Topologies

Point discontinuities can exist as a natural feature of an object, such as the tip of a cone. Such situations
may dictate the use of a tip topology for the surface area in the immediate vicinity of the discontinuity.
A tip topology is defined by placing a grid point coincident with the discontinuity and marching away
from the point an acceptable distance on the surface. A tip decomposition preserves the point disconti-
nuity in the corresponding surface grid. In addition, a volume grid generated from the surface will have
a polar axis that extends from the discontinuity. The existence of an axis generally implies that the flow
solver will be required to implement special boundary conditions along the axis. Typically, this means
that the flow solution along the axis will be derived from an averaging process involving the nearby off-
axis solution. If the point discontinuity is mild, as in 2 wide-angle cone, it may be acceptable to ignore
the discontinuity and use a block topology in the vicinity of the point.

Figure 11.2 indicates two surfaces that could be decomposed with a tip topology. The tip of a generic
finned-store is shown in Figure 11.2a, and an aircraft fuselage nose tip is shown in Figure 11.2b. The
figure contrasts narrow and wide-angle tips, and illustrates how a wide-angle tip can be appropriately
represented as a block (e, a simple surface} rather than as a seam.

Surface intersections on an object result in line discontinuities, such as at the junction between an
aircrafl fuselage and wing. An object can also have line discontinuities as a result of “forced contouring,”
such as exterior mold lines on an automobile, or crease lines that result from plastic deformation of an
object due to stress, or fold lines as on the edges of a box. All line discontinuities that are germane [o
the flow analysis problem at hand must be faithfully represented in the surface grid system. A seam
topology can be defined in the vicinity of a line discontinaity by marching in both line-normat directions
away from the line an acceptable distance on the surface, resulting in a quadrilateral patch. In this way,
a seam topology can be used as the basis for surface grids that are aligned with the discontinuity and
accurately represent the surface shape. Figure 11.3 indicates three example scams aligned with surface
line discontinuities. Seam components are indicated in the figure fora fuselage crease-line, rotor-blade
traifing edge line, and finestore intersection line. In some of the Chimera literature®, seam topologies
like that shown in Figure 11.5¢ are referred to as collars [Parks et al., 19915
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FIGURE11.2  Seam topologies. {a} Sharp nose of a store decomposed into a sarface tip, The radial houndary of
the seam is indicated by a thin black line, (b} blunt nose of a fuselage decompeosed into a quadritateral surface area.
Searn boundaries are indicated by thin black line segments. Dots indicate seam boundary corners.

FIGURE 113 Surface geometry decomposition into seams over line discontinuities, Discontinuities are indicated
by thick black lines. Seam boundaries are indicated by thin black lines. Dots indicate seam boundary corners, {ay V-
22 fuselagefsponson crease, (b} rotor-blade trailing edge, (¢} fin-store intersections.

in addition to actual iine discontinuities in an object surface, it is sometimes desirable to align grid
lines on a surface for other reasons. For example, even though the feading edge of a wing generally has
4 smooth radius of curvature, and is not a surface discontinuity, accurate flow simulations require 2 high
degree of geometric fidelity of this aspect of a wing surface definition. This is casily done by identitying
the wing leading edge as a surface control line, and decomposing the wing surface with a seam topology
in the vicinity of the leading edge {see Figure 11.4a). Other examples of seam topologies are shown in
Figures 11.1 and 11.4b. Figure 11.1 shows a possible surface geometry decomposition of the X-38 (crew
return vehicle). Specifically, Figure 11.1b shows seam compornents at the vehicle nose, around the canopy,
and over the rims of the twin vertical tails. Additional seam topologies are also indicated in the figure

(less visible: for various components of the aft portion of the vehicle. Figure ] 1.4b shows a seam

component over the tip of a rotor blade, which avoids the special beundary conditions required by “slit”
topologies commonly used as wing and blade rip endings. Seams like this can provide & higher degree
of geometric fidelity to the grid system employed than is realizable by collapsing a wing, or blade-tip,
into a sht.

*A°Chimera is a mythological creature made up of incongruent parts of ather beasts, Steper appropriately coined

vhe term “Chimera overset erids” to ndicate a powerful way to apply structured grid selution techniques o geomet-
£ k P E: &

rically complex multibody contigurations,
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FIGURE 114  Surface geometry decomposition into seams over control lines, {a) Rotor-blade leading edge cantrol
line, {b} outhoard blade-tip ending control fine. Controf lines are indicated by thick black lines. Seam topology
boundaries are indicated by thin black lines. Dots indicate seam boundary corners.

a)

FIGURE1L3 Surface geometry decomposition in the vicinity of a point discontinuity, (a) Intersection of three line
discontinuities, {b} seam topology aver the point of intersection, Line discontinuities are indicated by thick black
lines. Seam topology boundaries are indicated by thin black lines. Dots indicate seam boundary corners.

A final topology that deserves mention here is one for point discontinuities that result from the
mtersection of three surfaces, such as exist at the corners of a box. This type of discontinuity defines the
point of intersection of three line discontinuities. In most cases of this type, the appropriate decompo-
sition is a seam topology like that which is used for simple line discontinuities. The situation is illustrated
i Figure 11.5 for a component of the X-38, For this type of decomposition, two of the three intersecting
lines are concatenated inte one coordinate line. The seam is then defined by marching in both line-
normal directions away from the concatenated line an acceptable distance on the surface, while con-
straining one of the line-normal seam lines to be co-linear with the third line discontinuity. If the three
angles of intersection of a corner point are alf narrow, then the corner will approximate a cone and a tip
topology can be used instead.

11.2.1.2 Block Topologies

Blocks are simple surface areas, or areas that contain mild discontinuities that can effectivelv be ignored
fas in the case shown in Figure 11.2b). Typically the surface area of a giver: geometry definition can be
decomposed primarily into such blocks. For example, Figure 11.1¢ shows the blocks corresponding to
one possible decomposition of the X-38. Block houndaries are always quadrilateral and represent the
simplest basis from which structured surface grid components can be generated.

11.2.2 Volume Geometry Decomposition

A convenient way to think of vohsne decomposition is to caregorize the physical domain of 2 problem
into near-body and off-body regions. The near-body portion of 2 domain is defined 1o include all seams
and blocks required to describe problem surface geometry and the volume of space exiending a short
distance away from the respective sarfaces. The off-body portion of 5 domain is defined to he the domain




11-6 Handbook of Grid Ceneration

Peninsula

a) b)

FIGURE11.6 Overset grid components for unsteady simulation of basin-scale vceanic tlows. {a) Body-fitted grid
components for the Gulf of Mexico and the Greater Antilles Islands, () background Cattesian grid component boundaries,
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FIGURE 11, 7 Grid components for a flapped-wing configuration. (a) Background Cartesian grid with Chimera
hole caused by the wing, (b) body-fitted grid components about the wing and doubie-slotted flap.

volume not covered {except that required for minimurm overlap} by the near-bedy volumes. The aspect
of a Chimera overset grid approach. that trivializes off-body grid generation is the fact that off-body
volume compenents car overlap the near-body domain by an arbitrary amount. Hence, the oft-body
domain can be filled using any convenient set of topologies. Typically, Cartesian systems are used for this
purpose {e.g., see Figures 11.6b and 11.7a). Hyperbolic grid generation schemes can efficiently generate
high quality near-body grids radiating from appropriate quilts of overlapping surface grid components.
Generation of off-body Cartesian volume grids (Chapter 22) is trivial for this application.

Although the idea of solving differential equations on overlapping domains is very old [Schwarz, 1869},
the idea did not blossom inte a practical analysis tool until relatively recent times. Steger et al. [1983]
introduced the Chimera method of domain decomposition to treat geometrically complex multiple-body
configurations using composite over-set structured grids. In the approach, curvilinear body-fitted struc-
tured grids are generated about body compenents and overset onto systems of topologically simple
background grid components. Solutions to the governing flow equations are then obtained by solving
the requisite systems of difference equations according to some prescribed sequence on all grid compo-
nents, Physical beundary conditions aze enforced as usual {e.g., no-slip conditions at solid surfaces),
while intergrid boundary conditions are supplied from solutions in the overlap regions of neighboring
grid components. The solution procedure is repeated iteratively to facilitate free transfer of information
between all grids, and to drive the overall solution to convergence. Intergrid boundary conditions are
typically updated explicitiy.
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FIGURE11.8  Selected surface grid components for a tiltrotor and flapped-wing configuration. Rotor blade grids

move relative to stationary wing nacelle, and background grid components.

Examples of the Chimera imethad of domain decomposition are Jlustrated in Figures 11.6 through
11.9 isee Chapter 5 of this handbook for more examples). Figure 11.6 indicates a set of overlapping grids
for unsteady simulation of basin-scale oceanic flows in the Gulf of Mexico [Barnette and Ober, 19941.
Body-fitted grids are used to discretize the Gulf coastline and the Greater Antiltes Istands. The body-
figted grids are overset onto @ system of Cartesian grids that cover the rest of the oceanic region enclosed
within the Gulf Coast solution domain. In the figure, the outlines of nine Cartesian grid components
are indicated. However, the number of off-body Cartesian grids used is arbitrary. The body-fitted island
arids of Figure 11.6 are topologically similar to the body-fitted grids used to discretize the flapped-wing

7 and 11.8. Figure 11.8 is Mastrative of the capacity of an overset grid approach

iHustrated in Figures 11
1o accommodate relative motion between problem components. The grid components shown i
kin, 1995]. Grids associated with the

Figure 11.8 are fora tittrotor and flapped-wing configuration {Mea
rator-hiades move relative 1o stationary wing and background grid components. Figure 11.9 shows a

detail of some of the overlapping sutface grid components of the integrated space shuttle vehicle {Gomez
and Ma, 1994]. The figure indicates the degree of geometric complexity and fidelity that has been realized

with the approach.
The novel contribution of Chimera to the overall approach of structured grid based domain decom-
he rotor-blade grids shown in

position is the allowance for holes within grid components. For example, U
Figure 11.8 cat through several other grid components during the course of a simulation. Likewise, the

flapped-wing grids cut holes in background Cartesian grid systems. A detail of this is shown in Figure 11.7,
where a hole 1s cut in 2 background Cartesian grid by the flapped-wing. As indicated in the figure, &
Chimera domain decomposition gives Tise 1o two Lypes of intergrid boundary points: hote fringe points

and grid component guter boundary poins,
T¢ is a relatively simple matter 10 adapt anv viable structured grid flow solver 1o function within the

framework of Chimera overset grids. For example, the implicit approsinately factored atgorithm of
Warming and Beam (1678] for the thin-layer Navier-Stokes equations

{111}

3.0+a b0 fraGe R3S
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FIGURE 11.9  Selected surface grid components from a composite overset grid discretization of the integrated space
shuttle vehicle,

is easily expressed in Chimera form as

|1+ i, A A7 |1+ 808, B |[7+i,a08,C" i AR5, i ifagr =
' ' j (11.2)
L8B4 8 F 48,67 - Re'5 5"

The single and overset grid versions of the algorithim are identical except for the variable i, which
accommodates the possibility of having arbitrary holes in the grid. The array i, has values of either §
tfor hole points), or 1 {for conventional freld poinis). Accordingly, points inside a hole are not updated
fi.e, AQ = 0) and the solution values on intergrid boundary points are supplied via interpolation from
corresponding solutions in the overlap region of neighboring grid systems. By using the 1, array, it is not
necessary to provide special branching logic to avoid hole points, and all vector and parallel properties
of the basic algorithm remain unchanged [Steger et al,, 1983].

11.2.3 Chimera Hole-Cutting

Definition of the Chimera i, array is an important step in the realization of the several advantages of a
general composite overset structured grid approach. The i, array accommodates the possibility of arbi-
trary holes in grid components, and thereby, allows efficient execution of the structured grid flow solver
being used. The only nontrivial task associated with the definition of i, is to determine whether points
in a given grid component lie inside specified hole-cutting surfaces, A number of procedures are available
to make this determination. Consider point P and a surface § defined by a group of sarface grid
components taken from an existing set of volume grids (see Figure 11.10).

11.2.3.1 Surface Normal Vector Test

Let r, be the position vector of point I r,, the position vectors” of discrete points on 3, and n,; the surface
normal vectors at points r. Point P is outside of surface $if any of the dot products {r, ~ 7 -1, > 0

“Npte that the use of " here 18 to denote grid indices, rather than enser rank.
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FIGURE 11,10 Chimera hole cutting. Given cutting surface 5, determine the hole/field status of point P. (a} Hole cutting
surface defined by collection of surfaces from existing grid components. (b} Approximate hele cutting surface represented

with a uniform Cartestan “hole-map.”

The cost of this operation is proportional to the number of points in the grid component being tested
and the number of points ased to define the hole-cutting surfaces. Typically, the cost of the test is reduced
by trading dot product computations for computations to determine the Eugclidean distance between
point couples. Hence, the hole-cutter surface point nearest to point F is first identified. Then, only the
dot product between P and the nearest hole-cutter surface point needs to be computed.

The surface normal vector test has one significant failure mode. Hole-cutting surfaces, viewed from
the outside, must be convex. Bven if hole-cutting surfaces are constructed from multiple surface grid
components, the composite surface must be closed and convex. Hole-cutting suzfaces that have concav-

ities must be broken into multiple closed convex surfaces,

11.2.3.2 Vector Intersection Test
The number of intersections between an arbitrary ray extended from a point P and any closed hole-
cutting surface can be used as the basis of 2 robust and unambiguous inside/outside test. If a ray intersects
the closed surface an odd number of times, then the point is inside. If the ray intersects the surface zero
or an even number of times, the point is outside. The test is Hustrated i Figure 11.10a with ap arbitrary
ray drawn from a test point in the proximity of S. Results of the test are independent of the direction in
which rays are extended from the test points, and do not require that the hole-cutting surfaces be convex.
If a ray extended from a test point intersects the hole-cutting surface at an edge of a face that is coplanar
with the ray, the test wil fail. However, the failure is easily avercome by redefining the ray in a random
direction away from the offending face. Implementation of this test is more complicated than for the
curface normal vector test. Still, the test is practical and may provide a more robust mechanism for hole

determination.
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11.2.3.3 Uniform Cartesian Test

An idea suggested by Steger [1992] offers an efficient means of hole point determination that may prove
10 be the basis of future fully automatic domain connectivity algorithms. A closed surface 5 can be
enclosed within a uniform Cartesian grid, as indicated in Figure £1.10b. Points in the grid can be marked
as being inside or outside of § very easily [Chiu and Meakin, 1995]. A uniform Carfesian grid so marked
becomes an approximate representation of S and is referred to as a hole-map. The proximity of any point
P with respect to surface § can be determined by consulting the hole-map of S.

Given the coordinates of B the corresponding bounding hole-map element can be computed directly as

j= (v =) 1 k= e=n), LoI= (z-2) (113}

where x,, y,, 2, are the coordinates of the hole-map origin, and Ax, Ay, Az are the hole-map spacings. If
the eight vertices of hole-map element j, k, [are all marked as 2 hole, then P is inside the hole-cutting
surface. If the eight vertices are all unmarked, P is outside the surface. However, if the eight vertices are
of mixed type (marked and unmarked), P is near a hole-cutting plane and a simple radius test, or the
vector intersection test can be used to determine the actual status of P

11.2.4 tdentification of Intergrid Boundary Points

The solution of field equations on overlapping systerns of grids requires numerical boundary conditions
to be supplied at all intergrid boundary points. Given a definition of the i, array, it is very easy to identity
the intergrid boundary points that exist in all components of an overset system of grids. Points on grid
component outer boundaries that are not physical boundaries (eg., no-slip surfaces), conventional
numerical boundaries (e.g., planes of symmetry, inflow/outflow, etc.), or Chimera hole-points, are
intergrid boundary points. In addition, field points bordered by one or more hole-paints are also intergrid
boundary points (Le., fringe-points).

Accordingly, a list of all intergrid boundary points can be made by inspecting the i, array on a grid-
by-grid basis. The list must include the grid component identity, and the j, k. Tand x, y; z coordinates of
each intergrid boundary point in the system of grids. Such a list completely defines the domain connec-
tivity needs associated with a given overset system of grids and specified hole-cutter definitions.

11.3 Domain Connectivity

The costs of the advantages inherent to an overset grid approach are reflected in the need to establish
domain connectivity, Domain connectivity is the communication of dependent variable information
between grid components. Transmission of this information occurs through the intergrid boundary
points of a problem. Specifically, values of the dependent variables are defined on intergrid boundary
points by interpolation from the interior of overlapping neighboring grid systems. Accordingly, the
domain connectivity solution for a given system of overlapping grids is the identity of a suitable donor
element for each intergrid boundary peint in the system. The present section describes basic algorithms
for establishing domain connectivity among general systems of overlapping structured grids.

General implementations of the method must aliow for grid components posed in curvilinear coor-
dinate systems. This fact makes the task of establishing domain connectivity nontrivial. The position of
points within all grid components is defined relative to a fixed reference frame. Data structure is realized
on a component-wise basis due to the fact that grid points are distributed along curvilinear coordinate
lines. However, the coordinate systems of the respective grid components are mutually independent.
Hence, there is no direct correspondence between the computational space of one grid component and

that of any other component in the system. The task of establishing domain connectivity can be stated
for a single intergrid boundary point as follows. Given an intergrid boundary point E identify a grid
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a) Overlapping grid components. b} Detail of intergrid boundaries.
FIGURE11.11 Donor grid identification using simple min/max bounding boxes. (a) Three overlapping grid com-
ponents overset onto a background Cartesian grid, Bounding-boxes are indicated by light dashed lines, Black dots
are used to indicate bounding box diagonal end points. {b) Detail of intergrid boundaries. Point P is bounded by an
element from component 3 and from component 4.

component that can satisfy the domain connectivity needs of B and the position of P within the
computational space of the donating component. The following sections of this chapter describe alter-
native methods of establishing domain connectivity for a single intergrid boundary point. Of course, to
establish domain connectivity for an entire overset system of grids, any such method would need to be

applied to all of the intergrid boundary points in the system.

11.3.1 Donor Grid Identification

Typically, only one donor element will exist for a given intergrid boundary point. Indeed, an individual
intergrid boundary point can be bounded by only one element from any one overlapping grid component.
However, it is not uncommon for some intergrid boundary points to be overlapped by more than one
neighboring grid component, leading to the possibility of multiple donor elements for such points. The
situation is illustrated in Figure 11.11, where intergrid boundary point P is overlapped by an element
frop two different grid components. Identification of the grid which provides interpolation information
for point P depends on which donor element provides the best match. A discussion of “best” donor is
given shortly. However, first consider a method for identifying all grid components that might contain
a donor element for point B

The extreme values, (X ¥ Zmin) 200 (Knao Frao Zpe)s Of the reference frame coordinates of any
grid component define the diagonal end-points of a rectilinear box that encompasses the entire compo-
nent (e.g., sce Figure 11.11a). Even for an overset system of grids that contains numerous grid compo-
nents, the information required to define ail diagonal end-points is minimal (viz, 6 x N, where Nis the
number of grids). A necessary condition for donor grid identification is that Pbe bounded by the diagonal

end-points of the grid component in question, Le.,

X <Xp <X Vo <Vp o Lo < L Lo (11.4}
If the grid component is Cartesian, theni Eq. 11.4 is sufficient proof that the compoenent contains a donor
clement for P However, in general, overset grid discretizations are comprised of (at least some) non-
Cartesian grid components. Therefore, in general, Eq. 11.4 is only an indicator of donor potential. For
example, Figure 11.11a illustrates three overlapping grid components overset onto a background Cartesian




.
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grid compoenent. The bounding-box diagonals readily indicate donor potential between the four com-
ponents shown. The present discussion considers identification of the donor grid and element for a single
intergrid boundary point. In practice, this information is sought for groups of intergrid boundary points
at a time. In this sense, the information available through Eq. 11.4 also provides a simple mechanism for
identifying all intergrid boundary points that may have a denor in a given grid component.

For intergrid boundary points that are bounded by an element from more than one neighboring grid
compottent, a choice must be made as to which element will be allowed to provide the needed donor
information. Current domain connectivity algorithms employ only a rudimentary set of rules for deter-
mining the acceptability of available donor elements. The most fundamental rule is that none of the
vertices which define a donor element can be hole points. Values of the dependent variables are not
defined at hole points. Hence, acceptance of donor elements with any number of hole-point vertices
would corrupt the transfer of dependent variable information to the receiving intergrid boundary point.
Typically, the first donor element identified that satisfies the rudimentary set of donor acceptability rules
is used when more than one bounding element exists for a given intergrid boundary point.

The accuracy of dependent variable information transfer is maximum when the geometric properties
of donor and recipient elements are comparable, The relative volume size, orientation, and aspect ratios
between donor and recipient elements govern sources of numerical error in the intergrid communication
process. Of course, the magnitude of numerical error is proportional to the gradients of the dependent
variables being communicated between the grids. Hence, if the dependent variables are represented
smoothly in donor and recipient grids, then the error will be small. Indeed, formal solution accuracy
can be maintained on overlapped systems of grids using simple interpolation [Meakin, 1994]. Hence,
given a robust method of adaption to guarantee smooth variation of dependent flow variables in com-
putational space, the existing rudimental rules of donor element acceptability should be sufficient.

There are two reasons why this is not the case in practice, and that donor acceptability rule definition
constitutes a valid area of research. First, very few flow solvers that accommodate an overset grid approach
also have an adaptive capability. Therefore, resolution of gradients of the dependent variables cannot be
ensured in most overset grid solvers currently available. In addition, the magnitude of interpolation error
for resulting applications can only be estimated after the fact. Second, donor acceptability rules based
on geometric measures of goodness will accept only the best available donor element in instances where
multiple donors exist. Probably much more significantly, rules based on geometric measures of goodness
can form the basis of an iterative procedure to obtain the best realizable domain connectivity solution
from a given system of grids. Maximization of domain connectivity solution quality will even contribute
to error reduction when coupled with solution adaption.

11.3.2 Donor Element Identification

Once it has been determined that a given grid component may contain a suitable donor for an intergrid
boundary point B the task remains to identify the actual element that bounds P and evaluate its
acceptability. Some of the acceptability issues have been discussed in the previous section. In the present
section, methods of donor element identification are given. By far the simplest method of donor element
identification is an exhaustive search. Such a scheme would involve testing all possible elements within
a grid component to determine if point P is instde, or not. Although simple inside/outside tests can be
devised, the cost of an exhaustive search is prohibitive for all but highly idealized problems. Fortunately,
a variety of alternatives to an exhaustive search exist. Since all search procedures require an inside/outside
test, a particularly useful test is described below. Then, some of the search algorithms in common use
within available domain connectivity codes are discussed.

11.3.2.1 Inside/Qutside Test

Let x{s,} define the reference frame coordinates of intergrid boundary point P as a function of the
computational space coordinates s of a candidate mterpolation donor element. Values of x and s are
known for the eight vertices of the candidate donor element. The value of x is also known for point P
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FIGURE11.12 Reration to solve Eq. 11.5 for the computational space pasition of a point relative to the origin of
a candidate interpolation donor element.
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FIGURE 11.13  The computational space of 2 candidate interpolation donor element for point 2

We seek values of s for point B s, If P is inside the element, values of s, will be bounded between 0 and
1. A quadratically convergent iterative scheme for s, can be constructed from Eq. 11.5 and is outlined in
Figure 11.12.

X, =x{s,)+[A]5s (11.5)
If the solution to Eq. 11.5 produces values of s, < 0, or 5, > 1, Pis cutside the candidate donor element.
The expressions used to define x{s;) and [A] depend on the specific interpolation scheme used to define

the variation s of within the donor efement. A definition of x(s,) is given by Eq. 11.6 below, assuming
the use of trilinear interpolation and the element notation indicated in Figure 1113,

X(Sp}m X, + (Mx 4»&,)54—(«—-7;! +x4)r§+(«»xg -H:S;E

""(X X, hX —X, }53

‘*(x;“&“x +x, )64 (11.8)
+{x, - x, %+ x

4( RS VRS S R TS S A2 )ﬁﬁrgu
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Poael o a2
FIGURE 1184 Cradient search of a given grid compuonent for the slement that bounds point B Search initiated in
element “37 and terminated in bounding dement "¢
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General implementations of the method must take into account certain grid topological situations
that can obscure the path {in computational space} to needed donor elements. A periodic plane, for
example, poses a minor difficulty. The same is true for “slit” topologies (e.g, wake cuts}. The search
procedure will step in computational space toward the element that bounds P from the side of the periodic
(or slit) plane where the search is initiated. The search will terminate on either the actual bounding
clement, or on the element nearest P on the “wrong” side of the periodic {or shit} plane. A grid about 2
thin body may also pose a similar type of problem:. If a search is initiated for the element that bounds
P near the actual bounding element in phsical space, but far from it in computational space {i.e., because
it's on the opposite side of the body), the search may fail. In this case, the search procedure would step
in computational space toward the actual bounding element, but terminate on the thin body surface
nearest the actual bounding element, but on the “wrong” side of the body. Pathological search situations
that arise because of topological issues can easily be remedied by allowing for restart locations within
the grid component,

General search algorithms must alsc allow for degenerate elements. For example, the donor element
for a given intergrid boundary point may reside in the volume grid generated from a surface seam
component that has a “tip” topology. Accordingly, the volume grid will have a polar axis that emanates
from the point discontinuity at the body surface, and all grid elements associated with the axis will have
a collapsed edge. Axis elements are prismatic, rather than hexahedral. This type of element can be
acceptable. Therefore, a robust domain connectivity algorithm must detect candidate donor element
degencracies and allow the gradient search procedure to continue when encountered.

11.3.2.3 Spatial Partitioning

A viable alternative to an exhaustive search approach to donor identification is spatial partitioning. There
are pumerous methods of this type. Applied to the domain connectivity problem, the methods involve
partitioning the physical space of a grid component into rectilinear volumes of space, and establishing
a correspondence between partitions and the grid points they contain. Then, the task of domain con-
nectivity is to identify the partition that bounds a given intergrid boundary point, and apply an exhaustive
search within the partition to find the actual bounding element. The methods differ primarily in the
allowable levels and mechanisms of partitioning.

The simplest spatial partitioning approach is known as the “bucket” method, and allows only one level
of partitioning. Applied to the domain connectivity problem, the approach partitions the domain of a
grid component into a three-dimensional array of rectilinear buckets, Then, the grid points are sorted
into the resulting buckets. In order to find the grid component element that bounds intergrid boundary
point B the bucket that contains P is first identified. If the data structure used to define the buckets is
Cartesian, identification of the bucket that bounds P is trivial, otherwise this step could become com-
putationally significant for large problems. Given the identity of the bucket that bounds F an exhaustive
search of the grid points contained in the bucket is conducted to find the actual bounding element.

It is possible that none of the points inside the bucket that bounds P define the origin of the grid
elemnent that bounds P In fact, since the possibility of empty buckets exists, it is possible that the bucket
that bounds Pis empty, Accordingly, if the search of the bounding bucket fails, neighboring buckets must
be searched until the actual bounding element is identified. The bucket method is an improvement over
an exhaustive search, but is fmited by costs associated with nomumiform distribution of grid points
among existing buckets. Large numbers of empty buckets may exist, requiring cost to identify the bucket
which contains the donor elernent. Other buckets may have a large number of points, requiring substantial
computational effort to do an exhaustive search of individual buckets.

Multilevel partitioning methods exist thai remedy many of the shortcomings of the simple bucket
method. A “split tree” (binary alternating direction tree) is one exampie. In this approach, the physical
space of a grid component is split into two partitions at each level. The partitioning occurs alternately
along planes of constant x, y; and z. Ideally, positioning of the planes is done such that the grid points
are divided equally between the two partitions that exist at any level. e this approach, the empty bucket
problem does not exist, and grid points are more evenly distyibuted among partitions. However, the
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FIGURE1L.15  Simple spatial partitioning of curvilinear grid component. {a} Curvilinear grid, (b) partition bound-
aries, or “buckets” {c) j. k space of curvilinear grid mapped to uniform Cartesian points within a partition,
{dj partition uniform Cartesian grid that is coarse relative to the curvilinear grid component being mapped,
{e} x-coordinate of curvilinear grid component mapped onto uniform Cartesian grids of several partitions,
{f) definition of symbols used in (¢) and (d).

guaranteed to be near the element identified by the spatial partitioning, only a few steps {at most} of the
gradient search routine should be required.

11.4 Research Issues

The preceding sections have described basic concepts in domain decomposition and domain connectivity
required for implementation of a composite overset structured grid approach. It has been noted that the
approach has been used advantageously on a wide variety of applications of practical importance. The
approach is indeed vervy powerful. However, it is stilf a maturing technology. The following paragraphs

provide a brief statement of areas that require further development to realize the full advantages inherent
to the approach.

11.4.1 Surface Geometry Decomposition

Software tools are needed o simplify the task of surface geometry decomposition. Automation of many
aspects of this task are possible (see Chapter 29). This aspect of grid generation is the most fundamental
part of grid generation and affects all subsequent processes of analysis from grid generation to solution
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of PDEs on the final system of grids, Moreover, this aspect of grid generation currently relies most heavily
on user expertise, but has the least amount of software availahle to assist in the task. Some research is
being carried wut in this area by Petersson {19951, and Chan and Meakin [1997]. Cantinued effore in

the area is needed.

11.4.2 Surface and Volume Grid Generation

Hesearch in the areas of surface and volume grid generation for overset grid applications is much less
pressing than for surface geometry decomposition. This is 50 because a number of excellent software
teols aiready exist for performing these rasks automatically (see Chapter 5 of this handbook). The main
problers here is that grid generation software desigmed for overset grids exist as stand-alone entities. A user
must be familiar with many codes and input requirements to use the software, A software engineering effort

to combine existing overset grid generation tools into a stand-alone and easy-to-use package is needed.

11.4.3 Adaptive Refinement

A criticism sometimes leveled against structured grid approaches is that adaptive refinement cannot be
done, or i very difficult to do within a structured grid framework. This s simply not true. Adaptive
refinement schemes have been developed and applied within structured grid codes for many vears. The
first adaptive mesh refinement (AMR) schemes hegan to appear int the international literature in the
sarly 1980s [Berger and Oliger, 1984]. Many sdvances have been realized since rhen. Perbaps a more
scenrate criticism would be to note that siruceared-grid adapiive refinernent applications involving geomet-

sically complex configurations have been very limited. Adaptive refinement needs to be demonstrated for
applications of practical importance using overset structured grids. In general. all methods of adaptive
refinement require further research to improve generality and robustness. The area of error estimation and
feature detection is independent of discretization methodelogy, and requires further investigation.

11.4.4 Domain Connectivity

Qefeware exists to establish domain connectivity amuong systems of overset structured grids [Benek et al.,
1986: Brown et al.,, 1989; Meakin, 1991; Suhs and Tramel, 1991; Maple and Bell, 1994] Existing domain
connectivity software is very close to providing the degree of automation required for this task. Software
advances in the areas of surface geometry decomposition and volume grid generation will eliminate many
of the overset grid related problems that currently do not become apparent until domain connectivity
is attempted. Still, existing domain conpectivity software s deficient in some respects. Requirements for
user specified hole cutting surfaces need to be eliminated. For problems of practical importance, hole-
cutter shape specification is a tedious task that is prone to human error. Criven a set of volume grids and
corresponding topotogical and boundary condition information, fully autornatic, high-quality domain
connectivity solutions should be realizable. Advances in methods to create Chimera holes and the
establishiment of robust definitions of geometric measures of donor clement goodness are hasic to the
realization of fully automatic domain connectivity software.

Even with fully automatic domain connectivity, improved computational efficiency in the areas of
Chimera hole-cutting and donor element identification will probably atways be desirable. This is espe-
ially true for unsteady moving body applications that require domain connectivity to be extablished at

every time-step.

s e

Defiping Terms

Block: ssmple surface area in a geometry definition that can be covered with a quadrifateral patch {see
Figure 11 1c)

Chimera: a type of domain decomposition that allows arbitrary hofes in overlapping grid components

[see Figure 11.7).
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Collar: grid component generated from a seam about the junction of two surfaces, such as the junction
between an aircraft wing and fuselage (see Figure 11.3c),

Donor element: the clement of a grid component used to supply values of the dependent variables
{typically by interpolation} to an Intergrid boundary point {see Figure 11.14).

Field points: points in a grid component where values of the dependent variables are determined by
numerical solution to the governing set of equations to be solved on the grid system.

Fringe points: points in a grid component that define the border between conventional field points and
Chimera hole points (see Figure 11.7).

Hole-map: an approximate representation of a Chimera hole-cutting surface (see Figure 11.15¢).

Hole points: points in a grid component for which values of the dependent variables will not be updated
or defined (see Figure 11.7),

Outer boundary points: points on the exterior surfaces of a grid component that are not flow boundaries
or hole points {see Figure 11.7).

Quilt: surface geometry decomposition that results in a set of overlapping searrs and blocks (see
Figure 11.1).

Seam: surface areas that are associated with peint or line discontinuities, or control lines, in a gecmetry
definition {see Figure 11.1b).

Tip: surface topology for an area associated with a point discontinuity in the geometry definition (see
Figure 11.2a),
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A chapter on composite overset structured grids, such as presented here, must include an acknowledgment
of the seminal role of the late Professor Joseph L. Steger to this area of computational mechanics. Recently,
the Third Symposium on Overset Composite Grid and Solution Technology was held at the Los Alamos
National Laboratory, The impact of Steger’s “Chimers” method of domain decomposition was clearly
apparent. Applications ranging from biological issues regarding the mechanisms of food particle entrap-
ment inside the oral cavities of vertebrate suspension feeding fish, to the serodynamic performance of
atmospheric reentry vehicles were also presented. Simulations of blast wave propagation to consider
safety regulations for launch facilities located near populated regions, studies of the acoustic noise levels
of high-speed trains passing through tunnels, and simudations of the aercacoustic performance of rotary
wing aircrafi were also presented. Demonstrations of analysis capability that relate to many other aspects
of our soclety were also given. Truly, Professor Steger’s influence has been great.

Further Information

Many domain connectivity issues are actually problems in computational geometry, which has a large
literature of its own. The text by O'Rourke {1994] is very good. Melton's Ph.D. thesis [ 1996} alse describes
a number of algorithms that are particularly relevant to domain connectivity, A complete discussion of
spatial partitioning methods is given in the book by Samet [ 1990]. Computational Fluid Dynamies Review
1995 includes a review article on “The Chimera Method of Simulation for Unsteady Three-Ditnensional
Viscous Flow” [Meakin, 1995a] and has a substantial set of references that point to basic research being
carried out in a number of areas related 1o composite overset structured grids. Henshaw [1996] recently
published a review paper on automatic grid generation that devotes a section to overlapping grid generation.
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