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Nomenclature

D = rotor diameter, m
Q = rotor torque, N ⋅m
S = inter-rotor spacing as percent of diameter
SA = shaft angle, deg, angle between freestream velocity and

rotor disk plane, negative nose-down
T = rotor thrust, N
V = flight speed, m/s
Vx = V � cos�SA�, rotor edgewise (forward) speed, m/s
Vz = −V � sin�SA�, rotor axial (vertical) speed, m/s
vh = equivalent hover induced velocity,

T∕�2 � density � A�, m/s

I. Introduction

T HE field of multirotor flight vehicles is continually attracting
increased attention from large aerospace companies all the way

to venture-capital-backed startups in Silicon Valley. More than 700
conceptual designs have been proposed within the urban air mobility
segment alone in the last 10 years [1]. The potential utility of these
vehicles is still being explored and broadened. NASA has recently
been getting involved with the design and use of multirotor configu-
rations for planetary exploration after two decades of conceptual
design [2–6]. Many of the conceptual designs exist only on paper
or in sketches, but some have flown prototypes here on Earth in
pursuit of FAA certification, while still others fly on different planets
[7–9]. Multirotor aircraft technology also continues to rapidly
expand in other sectors, such as the commercial hobby drone market
and even military applications.
Although there are many different configurations for multirotor

vehicles, the basic components are consistent across many of the
designs. The large differentiator comes down to the vehicle control
method to achieve a desired response, i.e., using blade collective and
cyclic control or controlling the speed of a fixed-pitch rotor. Many of
these multirotor aircraft are using the second approach and, more
specifically, can be categorized as stiff, fixed-pitch, RPM-controlled
rotors. This is very different from conventional rotorcraft operation
and, as such, has opened the door for novel techniques in the design
and analysis of these vehicles.
Several recent works have attempted to increase knowledge and

understanding of these multirotor systems.Wind tunnel testing at the

NASA Ames Research Center analyzed five multirotor unmanned
aerial systems in the Army 7-ft by 10-ft Wind Tunnel [10,11].
Computational fluid dynamics (CFD) has also been used to analyze
these systems [12–14]. A few examples of advanced computational
methods analyzing these multirotor configurations include those of
unstructured overset grids by Xu and Ye [15] and vortex particle
methods by Singh and Friedmann [16]. Reviews of rotorcraft and
multirotor analysis methods can be found in Refs. [17,18], which
document recent methods used for both rotor performance and loads.
Although much progress has been made in the capabilities to predict
these quantities, the highest-fidelity approaches remain computation-
ally prohibitive for more than a handful of cases in detailed design.
Low-fidelity tools appropriate for rapid conceptual design can be
used to generatemuchmore output, however, at amuch lower level of
confidence compared to the higher-fidelity CFD. As such, there
exists a need to cleverly combine the fidelity of various predic-
tive methods to obtain efficient yet accurate models of multirotor
performance.
This work documents the combination of various machine learn-

ing (ML) methods with a midfidelity CFD approach. The ML
approaches are used to develop surrogate models for rotor perfor-
mance based on a finite number of multirotor CFD simulations. The
result is a highly computationally efficient predictive tool for rotor
performance that has suitable accuracy for both conceptual and
preliminary design while being fast enough for real-time simulation.

II. Background

Many concepts and approaches ofML have been around for some
time, with the term itself dating back to 1959, but their adoption for
aerospace applications has been slower than for computer science
and other data-driven fields. The typical aerospace application
involves training ML tools with data derived from either experi-
mental testing or CFD, and then using this tool to further predict
performance under other conditions. Critics of ML in aerospace
applications argue that an ML black box is not an appropriate
substitute for modeling the complicated physics as we currently
understand it, such as the Navier–Stokes equations. There has been
much progress in the last several years, however, to develop meth-
odology for using ML in an appropriate manner to obtain substan-
tial reductions in computational cost for a given calculation. In one
example, Raissi, Perdikaris, andKarniadakis usedML to predict the
three-dimensional flowfield for a cylinder in crossflow [19,20].
Raissi et al. used physics-informed neural networks (PI-NN), mean-
ing that they used partial differential equations within the neural
networks (NNs), to guide the ML tool to a solution of the flowfield
characteristics. Notably, they also predicted the flowfield pressure
without using any pressure inputs in the training data set, which
shows the power of a PI-NN. Similarly, Wang et al. successfully
used a PI-NN for turbulence modeling [21]. Although PI-NN can
still be computationally expensive, which may make it less appeal-
ing than other ML approaches for some applications, it has been
successfully used to solve problems with numerically unstable
solutions such as shock discontinuities while avoiding the Gibbs
phenomenon [22]. PI-NNhas also successfully been used to upscale
experimentally acquired particle image velocimetry (PIV) data to
obtain the full three-dimensional flowfield ahead of and behind the
PIV plane [23]. Karniadakis et al. recently provided a thorough
review of PI-NN methods [24].
Another subset of ML is deep regression in deep neural networks

(DNNs). Martinez et al. developed a DNN approach to reconstruct
the vibration spectra of rotorcraft components with 95% accuracy
for health usage and monitoring systems [25]. The work states that
deep learning is a revolutionary aspect of ML and can be used on
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highly nonlinearmultivariate datawith additional layers (parameters)
improving the capacity for high-dimensionality and nonlinear obser-

vations. The group also reports that while random search algorithms
for tuning the DNN hyperparameters are more effective than a grid

search method, evolutionary algorithms and Bayesian search meth-
ods may still provide a more accurate result. In general, the work
found deep andwide networks to provide themost accurate surrogate

models. Additional resources on deep learning support the claim that
it is appropriate for mapping high-dimensional data [26].
Another study uses fully connected, recurrent, and convolutional

neural networks (FCNN, RNN, CNN) to implement ML surrogate

models in high-fidelity rotorcraft CFD to achieve speedup increases
while retaining much accuracy [27]. The CFD program developed
through these efforts, ROAM-ML, is being supported by the U.S.

Army’s Computational Aeromechanics group at NASA Ames
ResearchCenter [28,29]. The solver uses an actuator line representation
for the rotor set in the Helios three-dimensional flow solver. ML

surrogate models are used to create the source terms in the actuator
line model using virtual sensors ahead of the blades instead of the

conventional approach with C81 look-up tables. Similar to previous
findings, the convolutional layers are found to be efficient at reducing
complex data to a lower-dimensionality latent space, which is an

approach similar to proper orthogonal decomposition (POD), and this
approach has been pursued to further develop the work.
Chatterjee et al. also used a variety ofML approaches to model the

effects of manufacturing variability on helicopter rotor dynamics,
power required, and rotor stability [30]. The group used CNNs,

random forests, support vector machines (SVMs), and adaptive
Gaussian process regression (GPR) approaches to model the effects

of stochastic manufacturing error and uncertainty via probability
density functions. The work argues that surrogate models are more
computationally efficient than sampling-based techniques such as

Monte Carlo simulation. Both methods require high-fidelity simu-
lations, but in principle, theML surrogate models can be appliedwith
a much smaller training data set, reducing the number of higher-

fidelity simulations needed. The group found GPR and CNNs to
create the most accurate surrogate models. Another group used a

kriging approach, which is a form of GPR, to model and reduce
adverse aerodynamic interactions between a representative UH-60
main rotor and fuselage [31]. Another work successfully applied

GPR to linear parameter-varying models for the linearization of
flight controls in real-time simulation [32]. The work gives a good
overview of Gaussian process modeling and the associated math-

ematics. One key insight is that GPR scales in complexity with the
number of observations cubed, which means that GPR quickly loses
computational efficiency as the size of a dataset increases. One large

advantage, however, of using GPR models is that they can provide
an estimate of the model uncertainty at a similar computational cost

to training themodel. This means that GPRs can be used to iteratively
add more simulations where the uncertainty is deemed to be the
highest, thus increasing the accuracy of the models with the least

computational cost. Additional resources on ML implementation
for applications in fluid mechanics can be found in the reference
section [33–36].
Specific to rotorcraft design and performance estimation, Allen

et al. recently used ParFoil and simulation data from the two-
dimensional airfoil CFD tool ARC2D to train ML surrogate models
for airfoil shape optimization [37]. The team then coupled the surro-

gate airfoil performance model with a rotor design module using
the Department of Defense’s Dakota optimization tool to reduce the
rotor power coefficient of the UH-60A main rotor in forward flight

and hover. The group used supervised ML approaches such as NNs,
regression trees, and ensembles of trees. Another recent work from

Joby Aviation [38] used 1800 OVERFLOW CFD simulations of a
single propeller with nacelle to create a surrogate model for their
rotor blade loads. GPR was used to first develop a surrogate model

using results from a lower-fidelity Euler CFD code with a much
higher simulation point density, and then a second GPR was used to
account for the discrepancy between these lower-order results and the

OVERFLOW simulation data.

Although these studies are making much progress toward leverag-
ing ML in rotorcraft performance prediction applications, they still
require access to supercomputers andmillions of CPU hours, making
them cost prohibitive for the average user [29]. Additionally, the
authors do not desire to replace higher-fidelity computational meth-
ods such as CFD. On the contrary, this paper proposes the combina-
tion of midfidelity CFD training data with various ML approaches to
derive a very efficient tool for predicting multirotor performance
throughout the entire flight envelope from climb, through edgewise
flight and descent, and even in vortex ring state and windmill brake
state. The methodology developed in this work allows for a high-
accuracy real-time prediction of multirotor performance throughout
the full range of possible operating conditions. To the authors’
knowledge, this is the first application of various ML techniques to
identify the best approach for developing ML surrogate models for
multirotor performance prediction.
In this work, a methodology is proposed for developing accurate

ML surrogate models for the performance prediction of stiff mul-
tirotor aircraft. The major advantage of this approach is the reali-
zation of high-accuracy multirotor performance prediction in
millionths of a second. The results suggest that the methodology
and resulting surrogate models can be used for conceptual and
preliminary design of multirotor vehicles, closed-loop simulation,
Monte Carlo simulation, or in real-time flight dynamics models,
controllers, and simulators.

III. Machine Learning Methods

Machine learning (ML) is a subset within the very large field
of artificial intelligence. ML approaches and methods aim to
determine relationships between data and enable a user to make
predictions or determine outcomes based on new unseen data. The
typical aerospace application involves training ML tools with data
derived from either experimental testing or CFD, and then using
this tool to further predict performance under conditions similar
to but different from the training data set. The major branches of
ML and a few examples of each are summarized in Fig. 1. This work
focuses on the first branch of ML: supervised learning. Even within
supervised learning, there are still many different approaches and
algorithms. Table 1 summarizes the approaches used in this work.
Several existing studies typically focus on one of the approaches
from Table 1, based on assumptions about the data or which ML
approach may be best suited to represent it. This can lead to
inadequately representing the data, so this study considers all the
approaches and builds on the ones showing the most promise for
multirotor performance prediction.

IV. Rotor CFD Modeling for ML Surrogate Model
Training Data

As hinted at earlier, the process of creating a training data set can at
times outweigh the computational cost benefit of usingML. As such,
one must balance the computational cost of the training set with the
eventual use of theML surrogatemodel. Figure 2 summarizes several
approaches that could be used to create a multirotor performance
training data set and is reproduced from Cornelius et al. [39].
The state-of-the-art approaches are on the right side of the chart,

with the highest fidelity and the highest computational cost. On the
left side are the blade-modeled approaches, which are much faster
but of lower fidelity. The hybrid BEMT-URANS methodology,
highlighted orange in the middle of the chart, mixes the speed of
a blade-modeled approachwith the improved accuracy of aURANS
CFD-resolved inflow and wake. This provides a computational cost
somewhere in between the low- and high-fidelity methods due to its
blade-modeled description of the rotor. For time-averaged rotor
performance metrics such as thrust, torque, roll moment, and pitch-
ing moment, this method provides accuracy comparable with the
higher-fidelity methods. Although the blade-resolved models can
provide more accurate information in the form of a time-accurate
solution, a very carefully constructed model of the rotor blade
and its cross-sectional (two-dimensional) airfoil performance can
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provide very accurate results for the time-averaged values relevant
to the flight control system and vehicle conceptual and preliminary
design. As such, a hybrid BEMT-URANS multirotor approach,
coaxial in this work, will be used to efficiently create a training
data set to develop the subsequent ML surrogate models.
The commercial CFD toolset Rotorcraft CFD (RotCFD) is used in

this work to implement the hybrid BEMT-URANS methodology.
RotCFD is a self-contained program with provisions for the entire
workflow, from geometry creation through CFD solution and visuali-
zation of the results [40–43]. RotCFD uses discretized momentum
sources to interface the BEMT rotor module with a finite-volume,
unstructured Cartesian grid system. Implicit time integration is used to
solve the incompressible URANS equations with a two-equation k-ϵ
turbulence closure and the SIMPLE-based solution method [44]. One
of themainbenefits of this hybridBEMT-URANSmethodology is that

it enables multirotor CFD simulations to be massively parallelized
on GPUs while still retaining a high level of accuracy for steady rotor
performance predictions. This minimizes the time needed to create a
training dataset of adequate size and accuracy for the objectives of this
work on order thousands of flight conditions and accuracy of 5–10%
for rotor thrust and power [45].

V. Creating the Hybrid BEMT-URANS CFD Training
Dataset

The development and best practices for creating a high-fidelity
rotor model using this hybrid BEMT-URANS methodology have
been previously documented [46]. As such, only a very brief over-
viewwill be provided here. Cornelius and Schmitz [46] also detail the
mass parallelization of the solver on graphical processing units,
which will only be described here at a high level for its relevance
to quickly creating a large training dataset of CFD-resolved multi-
rotor performance data.
One of the most critical steps to assemble an accurate hybrid

BEMT-URANS model is the development of high-fidelity airfoil
performance tables. The CFD solver ARC2D, which was the pre-
cursor to OVERFLOW, has been used to create the C81 input decks
following best practices for airfoil CFD simulation. More recently,
the OVERFLOW2d CFD solver has been used to update the airfoil
performance input decks being run in RotCFD. Roughly 3000 two-
dimensional airfoil CFD simulations are run to create a single-rotor
input deck, which consists of 13 radial stations to account for varying
airfoil and thickness distributions, Reynolds number, and Mach
number along the blade as a function of rotor RPM. The tables con-
tain airfoil performance values for various RPMs of interest relevant
to experimental wind tunnel testing at the NASA Langley Research
Center [47].

A. RotCFD Model Creation

The next step was to assemble the RotCFDmodel. This work uses
rotor performance data relevant to the NASA Dragonfly Mission
[48]. Avisualization of the CFDmodel is depicted in Fig. 3, with the
rotor blades only included as a representation of the rotor model
inputs. The rotor twist and chord distributions were discretized every
2.5% of the blade radius from the root cutout to the blade tip. As
previously mentioned, the blade’s airfoil performance tables consist
of 13 radial stations from root to tip to accurately capture changes in
airfoil performance with a local Reynolds number, Mach number,
and airfoil profile. A grid-resolution study was carried out to ensure
converged upper and lower rotor performance predictions. An exam-
ple of the rotor grids used to interface the BEMT rotor module with
theURANS structured grid is also included in Fig. 3. TheCFDmodel

Table 1 Supervised ML approaches used in this work

ML approach Time to train Pros Cons

Linear regression Low Simple, fast Linear only
Regression trees Low Fast Difficult to use with

complex data
Ensemble of trees Low Fast
Support vector
machines (SVM)

Medium Fast

Gaussian process
regression (GPR)

Medium,
scales poorly

Efficient with
small–medium-

sized data

Inefficient with
large data sets

Neural network
(NN)

High, scales
well

Efficient with
medium–large

data sets

Hard to interpret,
can be abstract

Fig. 2 Computational cost vs model fidelity for various rotor analysis
approaches [39]. Reprinted with permission from Cornelius et al. [39].

Machine Learning

Supervised

Inputs and outputs 
defined by user. ML 

determines 
relationship.

Regression, 
Classification.

Semi-Supervised

Some data defined. 
ML determines 

relationship and learns 
to classify.

Regression, 
Classification.

Unsupervised

Data not defined. ML 
finds and determines 

patterns.

Clustering, 
dimensional reduction.

Reinforcement

Trial and error with 
rules of success and 

failure defined.

Resource management, 
artificial intelligence. 

Fig. 1 Summary of machine learning approaches and some common applications.
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has approximately one million grid points and requires about 2.5 h to
run each flight condition on a single GPU.

B. Parallelization of the Model on a Multi-GPU Desktop Workstation

Custom Linux bash scripting was developed for mass GPU
parallelization of the RotCFD solver on multi-GPU machines.
Information on two custom-built workstations, along with addi-
tional details on the bash scripting, is documented in Ref. [46]. The
largest time savings come from implementing GPU concurrency
for several simultaneous simulations on each card, with the total
available GPU memory and CPU power determining the maximum
number of simulations running concurrently. An example of the
most likely application for this type of script is a matrix of flight
performance predictions for rotor thrust and power with the param-
eterization of RPM, rotor shaft angle, and flight speed. In such a
scenario, a table of several thousand flight conditions is required for
closed-loop simulations to develop an aircraft’s flight control sys-
tem and forMonte Carlo simulations used to quantify the robustness
of the flight controller and vehicle performance under modeling
uncertainties. Themass parallelization across GPUs enabled by this
hybrid BEMT-URANS methodology allows a matrix of approxi-
mately 1000 three-dimensional multirotor URANS CFD simula-
tions to be completed in a few weeks on the previously mentioned
GPU workstations.

VI. Machine Learning Approach

A. Creation of the Multirotor CFD Training Datasets

Thiswork aims to reduce the total number ofCFDcases required to
build a multirotor performance matrix that can be used for controller
design and performance analysis. This section will show various

approaches in ML being applied to two training datasets consisting
of 150 single-rotor and 840 coaxial-rotor flight conditions spanning
the entire rotorcraft flight envelope. Flight conditions relevant to
planned wind tunnel testing in support of the Dragonfly program
were used.
The single-rotor CFD model is the same as the coaxial one

previously described, but with the lower rotor removed, and is used
first to quickly assess the best ML techniques for creating surrogate
models of rotor performance. The RPM range simulated for the
coaxial-rotor system went from 200 up to 1250, which corresponds
to blade-tipMach numbers of 0.07 and 0.46, respectively. Rotor shaft
angles, SA, ranged from −90 to�90 deg, covering the full range of
flight conditions from axial climb through axial descent. The shaft
angle is measured between the freestream flow vector and the rotor
disk plane. Simulated flight speeds ranged from 2.25 to 13.5m/s. For
the single-rotor dataset, the lowest RPM simulated was 600, and the
highest flight speed was 9 m/s. For each of these parameters, the
discretization was chosen to balance covering the full potential flight
envelope while limiting the number of CFD-resolved simulations.
The full parameterization for each dataset is reported in Table 2.
The flight conditions are a parameterization of the rotor shaft

angle, flight speed, and RPM, and are mapped onto rotor aerody-
namic state charts in Fig. 4. The y axis is a nondimensional vertical
speed parameter, and the x axis is a nondimensional forward speed
parameter. This allows mapping from the three-dimensional flight
condition matrix to a lower two-dimensional latent space.
The areas of the chart are broken down into shallow and steep

climbs, alongwith the same for descent. Additionally, tags are placed
on the descending flight side to identify the vortex ring state (VRS)
and windmill brake state (WBS) regions. The training datasets well
surpass the typical range of rotorcraft flight conditions. A gap is
observed between the hover condition at the origin of the graphs and
the first semicircle of points plotted out from the origin. The inner-
most data points are a function of the minimum flight speed and
maximum RPM. Since the rotors being analyzed will operate above
2.25m/s outside of hover, the datasets cover the full anticipated flight
envelope.

B. MATLAB Regression Learner App

Figure 1 and Table 1 provide some background information
on the various supervised ML models explored in this work for the

Fig. 3 Hybrid BEMT-URANS model of coaxial-rotor system, structured Cartesian grid (left) and rotor BEMT grids (right), D � 1.35 m, S � 25%.

Table 2 Parameterization of the CFD datasets

Parameter Coaxial rotor Single rotor

Shaft angle, SA [−90, −75, −60, −45,
−30, −15, −5, 0, 5, 15,
30, 45, 60, 75, 90] deg

[−90, −60, −30, −15, −5,
0, 15, 30, 60, 90] deg

Flight speed, V [2.25, 6, 9] m/s [2.25, 6, 9] m/s

RPM [600, 750, 900, 1050, 1250] [600, 750, 900, 1050, 1250]

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

0.0 1.0 2.0 3.0

V
z/v

h

Vx/vh

VRS

WBS

Descent

Climb

30

45607590

15

-15

-30

-45
-60-75-90

Steep 
Climb

Steep 
Descent

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

0.0 1.0 2.0 3.0

V
z/v

h

Vx/vh

VRS

WBS

Descent

Climb

30

45607590

15

-15

-30

-45
-60-75-90

Steep 
Climb

Steep 
Descent

Fig. 4 Flight conditions in the single-rotor (left) and coaxial-rotor (right) CFD training datasets.
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prediction of rotor performance. The MATLAB Regression Learner
App was used to train, validate, and test these models. This tool
allows the user to import datasets, train models, and analyze their
performance all within a user-friendly graphical user interface. The
MATLAB Regression Learner App help center on the MathWorks
website provides ample detailed information on the specific imple-
mentation of the various models that will be discussed in this
work [49].

VII. Results

A. Single-Rotor ML Surrogate Model Testing and Development

The various ML techniques from Table 1 were applied to the
single-rotor CFD training dataset to develop surrogate models for
predicting rotor thrust and torque. The resulting training time, R2

values, and root-mean-squared error (RMSE) for the various ML
models tested are reported in Table 3 for single-rotor thrust predic-
tion. Inputs to the model were the parameterized flight conditions
from Table 2, and the test statistics reported were calculated using
both a fivefold cross-validation and a 10%hold-out test dataset for the
prediction of rotor thrust. The k-fold cross-validation is one of the
most common cross-validation approaches and prevents overfitting

while still using the entire available dataset to train the model. This
validation approach is particularly well suited for the small datasets
used in this work. The approach segments the training data into five
partitions and does five training iterations, where each iteration trains
on a distinct set of four out of the five partitions. The last remaining
partition in each iteration is the test set used to estimate the model’s
accuracy. The results for the five iterations are averaged to create the

fivefold cross-validation metrics such as R2 and RMSE. The final
model is trained on all five partitions, but the averaged fivefold cross-
validation test statistics are still used. True test statistics are then
separately calculated using the 10% hold-out, which is all unseen

data. The R2 value is a nondimensional metric for how well the model
represents the test dataset. The RMSE calculation, Eq. (1), provides a
dimensional quantification of the mean error while also capturing the
effect of outliers. A smaller value for the RMSEmeans a given model
more precisely estimates the real data. The RMSE values are reported

for both the k-fold validation and using the 10% hold-out data. TheR2

values are only reported for the 10% hold-out calculation. The surro-
gate model results for single-rotor thrust are reported in Table 3. The
training times for themodels are also reported. Allmodelswere trained
in MATLAB using a single central processing unit (CPU) core.

RMSE � 1

N

N

i�1

�xi − x̂i�2; where xi � real value;

x̂i � predicted value; N � number of values (1)

The model requiring the longest training time for a single training
iteration was the Bayesian-optimized NN, which ran 30 iterations in
169.5 s on a single CPU core. The optimized NN had one layer with
263 neurons. Other, more basic models, however, performed much

better. A trilayered wide NN, e.g., achieved anR2 value of 1 and a test
RMSE of 4.8N. Themodel has three fully connected layers, eachwith
100 neurons, and uses ReLU activation. This trilayered NN was out-
performed by all GPR models tested. The best GPR model was
developed using Bayesian optimization on the model hyperpara-
meters. This optimized GPR, which was the best performing of all

surrogate models in Table 3, has anR2 value of 1.0, has the lowest test
RMSE of 1.5 N, and required 26.4 s for 30 training iterations. The
resulting model hyperparameters used a nonisotropic Matern 3/2
kernel. Figure 5 summarizes the predicted versus true response for
the optimized GPR model. The plot of residuals shows that the 10%
hold-out was pulled from axial climb, edgewise, and descent condi-
tions. The y axis of the residuals chart ranges from negative to positive
3 newtons, indicating the high accuracy of the model.
Since severalmodels performed quitewell, including an optimized

ensemble of trees and a SVM, all models were again trained and
tested for the prediction of single-rotor torque. The resulting training

Table 3 Single-rotor thrust, ML surrogate model testing

ML approach
Training
time, s

RMSE, N
validation

RMSE,
N test

R2

test

Support vector machine
(SVM) kernel

18.2 169.5 108.2 −0.42

Linear regression 2.6 90.1 56.4 0.61
Stepwise linear regression 3.4 62.3 28.0 0.90
Fine regression tree 2.8 0.77 82.3 80.8
NN with Bayesian
optimization, 30 iterations
(1 L: 263 N)

169.5 58.5 20.4 0.95

Ensemble of trees Bayesian
optimization, 30 iterations

95.2 34.6 12.9 0.98

Cubic support vector
machine (SVM)

0.8 44.0 11.9 0.98

Trilayered NN (3 L: 10 N) 17.7 22.4 9.2 0.99
Wide NN (1 L: 100 N) 12.7 31.1 8.0 0.99
Trilayered wide NN (3L:
100 N)

24.2 20.3 4.8 1.00

GPR, rational quadratic 2.8 19.7 2.6 1.00
GPR, exponential 3.3 26.3 2.5 1.00
GPR, Matern 5/2 4.0 19.1 2.2 1.00
GPR with Bayesian
optimizationa 30 iterations,
nonisotropic Matern 3/2

26.4 17.6 1.5 1.00

aBest-performing model.

Fig. 5 Single-rotor thrust—best model results: GPR, Matern 3/2 predicted vs true response (left) and thrust residuals vs shaft angle (right).
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times and test statistics for the single-rotor torque are reported in

Table 4. The GPR model with Bayesian optimization again per-

formed quite well, with 30 iterations yielding an RMSE of 0.8 N·m
and an R2 value of 0.99. The optimized GPR used the exponential

kernel. Various optimization methods, including grid and random

search were, used, but the Bayesian optimizer consistently produced

superior results. Optimization on the NN was performed, but the

trilayered wide NN with 100 neurons per layer was again the best

performing of all the NNs and was actually the best of all models

tested. The default GPR settings for various kernels also produced

results close to the optimized GPR, although in a fraction of the

training time. For larger datasets where the cost to train GPR models

increases rapidly, the default GPR models may be a good-enough

approach rather than training with Bayesian optimization.

The results for the best-performing model from Table 4, the

trilayered wide NN, are reported in Fig. 6. The response plots

again show very high accuracy of the surrogate model at predicting

the unseen test data from the 10% hold-out. The residual plot shows

test data covering the full range of shaft angle, from positive to

negative 90 deg. The largest error is observed for the higher shaft

angles, which correspond to challenging descent conditions where

the rotor performance is more nonlinear and harder to model. Still,

the model appears to predict the unseen data quite well, with a test

R2 value of 1.

B. Coaxial-Rotor ML Surrogate Model Testing and Development

The bestMLmodels from the single-rotor training studywere used

to create and test surrogate models for the coaxial-rotor system with

the much larger 840 flight condition training dataset. The training

data are again a parameterization of the flight speed, rotor shaft angle,

and rotor speed, as reported in Table 2. The point density and range

for this training dataset have been increased and include conditions in

deeper descents and at additional rotor shaft angles of attack. The

models were again checked by first using fivefold cross-validation

and then testing against the 10% hold-out data. The ML surrogate

model results for predicting upper rotor thrust in the coaxial system

are reported in Table 5.

A trilayered NN with 100 neurons per layer resulted in the best-

performing surrogate model for upper rotor thrust. The second-best

model was a GPR developed with Bayesian optimization. The opti-

mizer determined the squared exponential kernel to be the best GPR

model for the dataset, whichmay suggest the exponential kernel to be

a generally good approach for buildingML surrogate models of rotor

performance data. The best GPR kernel for the single-rotor thrust,

however, was the Matern 3/2. For this reason, it is advisable to

explore multiple available kernels when creating and training GPR

models for this application. The best-performing model for upper

rotor thrust prediction, the trilayered NN, has an R2 value of 1 and a

test RMSE of 6.5 Newtons. This model’s response plot and residuals

versus shaft angle for the test data are reported in Fig. 7.

With the much larger coaxial training dataset, which has 5.6 times

the number of flight conditions as the single-rotor matrix, the GPR

requires a much longer amount of time to train compared to the

single-rotor dataset. The GPR was significantly faster than the NN

approach for the single-rotor model training, but the larger coaxial

model dataset required a similar order of magnitude between the best

Table 4 Single-rotor torque, ML surrogate model testing

ML approach
Training
time, s

RMSE,
N ⋅m

validation

RMSE,
N ⋅m
test

R2

test

SVM, Gaussian kernel 14.9 7.2 6.2 0.26
Linear regression 2.8 3.5 3.6 0.75
Stepwise linear regression 1.3 3.6 3.6 0.74
Fine regression tree 6.2 3.6 3.5 0.77
NN with Bayesian optimization, 30
iterations (2 layers: 117, 3 neurons)

169.1 1.9 0.9 0.98

Ensemble of trees Bayesian
optimization, 30 iterations

197.3 2.2 1.2 0.97

Cubic support vector machine
(SVM)

1.4 2.9 1.7 0.94

Trilayered NN (3 L: 10 N) 14.4 2.4 1.1 0.98
Wide NN (1 L: 100 N) 11.8 2.0 0.8 0.99
Trilayered wide NN (3L: 100 N)a 24.3 1.6 0.4 1.00
GPR, rational quadratic 4.1 1.9 0.8 0.99
GPR, exponential 3.4 1.7 0.7 0.99
GPR, Matern 5/2 4.2 2.1 0.9 0.99
GPR with Bayesian optimization,
30 iterations, exponential

28.9 1.7 0.8 0.99

aBest-performing model.

Fig. 6 Single-rotor torque (best model results): trilayered wide NN predicted vs true response (left) and torque residuals vs shaft angle (right).

Table 5 Upper rotor thrust, ML surrogate model testing

ML approach
Training
time, s

RMSE, N
validation

RMSE,
N test

R2

test

NN with Bayesian optimization,
30 iterations (3 layers: 4, 81,
16 neurons)

267.6 98.8 90.2 0.74

Trilayered NN (3 L: 10 N) 8.4 20.5 15.9 0.99
Wide NN (1 L: 100 N) 14.2 15.3 9.6 1.00
Trilayered wide NN (3L: 100 N)a 63.9 14.9 6.5 1.00
GPR, rational quadratic 80.2 12.5 8.2 1.00
GPR, exponential 91.3 13.7 8.2 1.00
GPR, Matern 5/2 98.4 12.6 8.0 1.00
GPR with Bayesian optimization
30 iterations, squared exponential

316.4 12.4 7.7 1.00

aBest-performing model.
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models from each method, which highlights the poor scalability of
GPR. The relatively low number of inputs and outputs for this
application of time-averaged rotor performance prediction, however,
results in GPR still being a very suitablemethod, requiring only a few
minutes for the 840-flight condition dataset.
The same ML methods were used to create surrogate models for

the lower rotor thrust, and the results are reported in Table 6. Similar
trends in the model performance are observed, although with slightly
larger RMSE values than were reported for the upper rotor models in
Table 5. For the lower rotor thrust prediction, GPR using the expo-
nential kernel was observed to perform the best. The best-performing
lower rotor thrust surrogate model results are plotted in Fig. 8. More
scatter is observed in the prediction of lower rotor thrust, which,

along with the higher RMSE values, suggests that the lower rotor

is a bit harder to accurately model. This makes sense when consid-

ering the interactional aerodynamics of the coaxial-rotor system. The

lower rotor ingests the wake of the upper rotor differently as a

function of the coaxial-rotor system’s shaft angle. For example, axial

climb conditions have the full upper rotor wake impinging on the

lower rotor, while edgewise conditions can have almost no rotor–

rotor interactional effects. This means that, for some shaft angles, the

lower rotor thrust is degraded by the additional inflow from the upper

rotor, while in others it operates as if it is an isolated rotor.

For the coaxial-rotor torque, the same NNs and GPR models were

trained and tested. The model training results are reported in Table 7

for the upper rotor and Table 8 for the lower rotor. The upper rotor

torque appears to be better represented by the surrogate models,

which is in agreement with the previous observation of the upper

rotor thrust being better predicted since the rotor torque is in large part

a function of rotor thrust. Both the upper and lower rotor torqueswere

best predicted by GPR models. The upper rotor model was found

using Bayesian optimization with a Matern 3/2 kernel. The best

model for the lower rotor used a rational quadratic kernel.

When considering the results of Tables 5–8, GPR appears to be the

best ML model for coaxial-rotor performance prediction. The best

kernel, however, varies and indicates that multiple GPR kernels

should be trained and tested for future applications. The results for

the best GPR surrogate model for upper and lower rotor torque are

reported in Figs. 9 and 10, respectively. Although the response plots

for both upper and lower rotormodels look quite good, the lower rotor

does appear to havemore scatter.When considering the residuals, the

lower rotor again has slightly larger values. The largest residuals are

Fig. 7 Upper rotor thrust (best model results): GPR, squared exponential predicted vs true response (left) and thrust residuals vs shaft angle (right).

Table 6 Lower rotor thrust, ML surrogate model testing

ML approach
Training
time, s

RMSE, N
validation

RMSE,
N test

R2

test

Trilayered NN (3 L: 10 N) 8.0 20.8 12.8 1.00
Wide NN (1 L: 100 N) 15.3 16.9 10.3 1.00
Trilayered wide NN
(3L: 100 N)

62.6 18.1 14.1 1.00

GPR, rational quadratic 79.8 13.9 10.1 1.00
GPR, exponentiala 89.7 15.6 9.2 1.00
GPR, Matern 5/2 97.6 13.9 10.1 1.00
GPR with Bayesian
optimization, 30 iterations
squared exponential

437.5 14.5 10.6 1.00

aBest-performing model.

Fig. 8 Lower rotor thrust (best model results): GPR, squared exponential predicted vs true response (left) and thrust residuals vs shaft angle (right).
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again found at the highest positive shaft angles, corresponding to
descent-type conditions where the rotors are in challenging aerody-
namic flow states.

C. Testing the Computational Time of the Final ML Surrogate
Models

The previous section documented the ability of the best single-
rotor and coaxial-rotor surrogatemodels to predict rotor performance
for unseen data by using the 10% hold-out data. This characterized
the various models’ ability to predict rotor performance for new,
unseen flight conditions. Two practical uses of the resulting surrogate
models are data upscaling and real-time simulation. To demonstrate
the predictive speed, which is one of the major benefits of deriving
these ML surrogate models, the training datasets were upscaled.
Using the best single-rotor GPR surrogate model for predicting

thrust, a 1.6-million-flight-condition performance table was gener-
ated. This table, which is roughly eleven thousand times larger than
the training dataset, was created in about 5.9 s on a single core on the
CPU. This equates to about 3.7 millionths of a second per thrust
prediction. The best NN for single-rotor thrust prediction generated
the same size table in 2.3 s, or 1.4 millionths of a second per flight
condition.
The coaxial-rotor surrogate models were then used to generate

the same 1.6-million-flight-condition table. This coaxial-rotor per-
formance table was generated in 77.7 s using the best GPR models,
which is 48 millionths of a second per flight condition, or 12
millionths of a second per calculation. The best-performing NN
models for each calculation of the coaxial-rotor system generated
the same table in 7.5 s, or 4.6 millionths of a second per flight
condition and 1.1 millionths of a second per prediction. This shows
the immense power of using ML surrogate models for look-up table
performance generation, data upscaling, or even applications requir-
ing real-time performance estimation. These flight conditions are
plotted in Fig. 11 using the same rotor state chart as before. Themuch
higher point density is observed covering the full possible flight
envelope of all vehicle conditions. Such a table could be used in
Monte Carlo simulation or as a look-up in flight dynamics software to
increase the accuracy of linear interpolation on the look-up tables.
Alternatively, the ML surrogate models can be directly programmed
in for real-time continuous performance estimation, precluding the
need for any interpolation between points within the data range.
To put the previous numbers into context for computational cost

savings, an average flight condition from the 840 point coaxial-rotor
training dataset required 2.5 h on a Tesla V100 high-performance
GPU. Using the best-performing ML surrogate models, with R2

values of 0.99–1.0 calculated using a 10% hold-out, the rotor per-
formance was estimated in 48 millionths of a second per flight
condition. The best-performing NNs, which were close behind the

GPR models and had R2 values of 0.99–1.0, predicted the coaxial-
rotor performance in 4.6 millionths of a second per flight condition.
ML critics often argue that creating the training dataset requires a lot
of time and thus erodes the benefits of the ML approach. This
application of creating a relevant high-point-density flight condition
look-up table from a much smaller table, however, saved roughly
4,000,000 wall-clock compute hours, which is 456 years on the
previously described GPU workstation or 4.6 years on 100 Tesla
V100 GPUs using a supercomputer. Running that amount of CFD is
clearly impractical, while the resulting ML flight performance table,
with its associated accuracy, is highly applicable to many disciplines
within aircraft design and analysis. The resulting ML flight perfor-
mance table is discretized every 1 deg from axial climb through axial
descent, every 10 RPM from 600 through 1250, and every 0.1 m/s
flight speed from 0 through 13.5, which is a very reasonable, not
superfluous, discretization for the purposes of controller design and
Monte Carlo simulation of vehicle performance.

Table 7 Upper rotor torque, ML surrogate model testing

ML approach
Training
time, s

RMSE,
N ⋅m

validation

RMSE,
N ⋅m
test

R2

test

Trilayered NN (3 L: 10 N) 8.4 1.4 1.17 0.98
Wide NN (1 L: 100 N) 14.4 1.4 0.78 0.99
Trilayered wide NN
(3L: 100 N)

61.7 1.2 0.62 1.00

GPR, rational quadratic 83.3 1.5 0.63 1.00
GPR, exponential 93.7 1.3 0.83 1.00
GPR, Matern 5/2 103.8 1.5 0.63 1.00
GPR with Bayesian
optimization,a 30 iterations,
Matern 3/2

440.4 1.1 0.35 1.00

aBest-performing model.

Table 8 Lower rotor torque, ML surrogate model testing

ML approach
Training
time, s

RMSE,
N ⋅m

validation

RMSE,
N ⋅m
test

R2

test

Trilayered NN (3 L: 10 N) 7.9 1.2 1.06 0.98
Wide NN (1 L: 100 N) 15.0 1.2 1.16 0.98
Trilayered wide NN
(3L: 100 N)

60.0 0.9 0.70 0.99

GPR, rational quadratica 78.0 1.0 0.58 1.00
GPR, exponential 88.4 1.0 0.70 0.99
GPR, Matern 5/2 99.8 1.1 0.62 0.99
GPR with Bayesian
optimization, 30 iterations
exponential

432.89 0.9 0.69 0.99

aBest-performing model.

Fig. 9 Upper rotor torque (best model results): GPR, Matern 3/2 predicted vs true response (left) and torque residuals vs shaft angle (right).
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VIII. Conclusions

The novelty of this work lies in the exploration of applying various
supervised ML techniques to multirotor performance training data-
sets for the creation of multirotor performance surrogate models. The
training datasets were created using a previously documented meth-
odology for midfidelity CFD using a hybrid BEMT-URANS solver.
The CFD solver has been validated in previous studies to an accuracy
on the order of 5–10% for predicting multirotor steady thrust and
torque. A single-rotor training dataset was created with 150 flight
conditions, and a coaxial-rotor dataset was created with 840 flight
conditions. Each of the three-dimensional CFD simulations required
about 2.5 h on a GPU.
Various ML techniques were applied to the training datasets using

theMATLABRegressionLearnerApp to createMLsurrogatemodels.
Several of the models showed high accuracy with R2 values of 0.99–
1.0 using a 10% hold-out from the data for testing. The models were
trained to predict individual rotor thrust and torque. The two best
approaches were consistently NNs and GPR. For most cases, the

GPR model slightly outperformed the NNs, although both had R2

values of 0.99–1.0 calculated using the hold-out data. Analyzing plots
of the residual, or prediction error, for the various models typically
showed the highest error for positive shaft angles. This corresponds to
descent-type conditions, where the rotors are operating in a more
complicated aerodynamic state.Additionally, higher scatterwas obser-
ved in general for the lower rotor as compared to the upper rotor, which
indicates the lower rotor performance is harder to capture. This
makes sense when considering the flow physics, with the lower rotor
ingesting the upper rotor wake as a function of shaft angle.
For the small single-rotor training dataset, the GPRmodels trained

faster than the NN. The much larger coaxial-rotor training dataset,

however, required comparable time from each approach. This sug-
gests the NN may outperform the GPR from the perspective of
training time if much larger training datasets were to be used. The
best-performing surrogate models for both the single and coaxial-
rotor systems were used to create a 1.6-million-flight-condition
multirotor performance table. The single-rotor predictions required
about 3.7 millionths of a second per flight condition using the best
GPRmodels and about 1.4 millionths of a second using the best NN.
For the coaxial-rotor performance, the same 1.6-million-flight-con-
dition look-up table was generated in 77.7 s using the GPR models
and only 7.5 s using the NNs on a single CPU core. This equates to
about 48 and 4.6 millionths of a second per flight condition, respec-
tively. This demonstrates the poor scalability of GPR models for this
application and suggests that NNs are likely the best choice for larger
rotor performance tables and fast prediction times.
These surrogatemodel prediction speeds can be put into context by

comparing them to the 2.5 h required for each CFD simulation on a
high-performance GPU-accelerated workstation. The nearly five-
order-of-magnitude computational speedup with such high accuracy
of performance prediction shows the power of applying ML tech-
niques to create surrogate models for high-dimensionality nonlinear
multirotor performance estimation. The resulting flight performance
table saved roughly 4,000,000 computer wall-clock hours, or 4.6
years, on 100 Tesla V100 GPUs. ThemultirotorML surrogate model
methodology presented here can be applied to vehicle performance
analysis, flight control design, Monte Carlo simulation, closed-loop
simulation, and even real-time simulation.
Future studies should assess the applicability of this approach

when complex interactional aerodynamics are involved, such as
rotor–fuselage interactions. ML can also likely be leveraged in future
studies to decrease the computational cost associated with develop-
ing surrogate models, including transient aerodynamics. Addition-
ally, adding additional parameters such as rotor design and coaxial-
rotor spacing could be incorporated to create surrogate models
for conceptual and preliminary design optimization. As the num-
ber of parameters increases, the computational efficiency of some
approaches used in this work will rapidly degrade, which may push
the engineer toward a specific set of supervisedMLmethods, such as
neural networks.
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