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From aircraft design to certification, a significant volume of aerodynamic data is required
to ensure optimal performance, meet regulatory standards, and maintain structural integrity.
These data must span the entire flight envelope, encompassing pressure and shear stress
distributions, global coefficients, and derivatives. Traditionally sourced from flight tests, wind
tunnel experiments, or numerical simulations, the data are often of varying fidelity, ranging from
handbook methods to high-resolution simulations. In recent years, the demand for efficient use
of these data has grown, driven by advancements in artificial intelligence and machine learning,
enabling the development of fast-running surrogate models. Unlike traditional high-fidelity
simulations or experimental setups, which can be resource-intensive, surrogate models trained
on these data sets deliver rapid predictions comparable to database queries. The AIAA Applied
Aerodynamics Surrogate Modeling (AASM) group was formed to bring focus to data-driven and
AI modeling in aerospace sciences, uniting experts from academia, industry, and government
agencies worldwide. The AASM group prioritizes the development, accuracy, and applicability
of surrogate modeling for aerospace applications, including design optimization, uncertainty
quantification, systems engineering, and mission analysis—all critical to a digital engineering
ecosystem. To support evaluation and comparison of methodologies, this paper introduces four
benchmark cases: an aerodynamic database of integrated airfoil performance coefficients, a
missile case for 6DOF generation, and two data sets focusing on surface pressure distributions.
These benchmarks highlight associated surrogate modeling challenges and will be made publicly
available through AIAA, offering valuable resources for the aerospace community.

I. Introduction
During aircraft design and certification aerodynamic data plays a fundamental role. It is crucial to accurately provide

aerodynamic data, whether they are scalar- or vector-valued quantities in order to analyze performance, comply with
certification requirements or ensure structural integrity to name just a few examples. In fact, a correct interpretation of
data helps the engineers to both gain insights into complex physical phenomena and reliably investigate new technologies.
In fact, aerodynamic data sets represent the common interface to other disciplines such as flight mechanics, loads
analysis or overall aircraft design. The quantity and quality of these data sets highly depend on the methodology used to
gather them. While flight tests are known to provide data within a real environment but at a substantial cost, numerical
analyses are a cheaper alternative at a reduced fidelity level. The efficient use, combination and handling of such data
sets have always been a focus of the aerodynamics community. However, in the past decade, this trend has significantly
intensified due to increasing computational resources available and the rise in popularity of machine learning (ML)
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methods. In fact, big data, machine learning, and deep learning (DL) are regularly seen as driving factors of the
aerospace industry in the upcoming years [1–3].

Providing comprehensive aerodynamic data sets for an aircraft configuration is one of the key tasks for aerodynamic
engineers. These data sets should contain performance values (lift and drag), handling quantities as well as loads at all
flight points throughout the envelope. Parametric variations of the geometry are also of interest for design activities and
can be introduced to the data set. High-fidelity analysis tools whether it be numerical simulations or wind tunnel tests
are routinely used to generate such data sets. However, they inherently entail a multi-query problem and quickly become
prohibitive with respect to computational cost. Also such complex analysis methods do not fulfill rapid turnaround
requirements that are becoming more crucial to be competitive. Data-driven models, which are able to draw information
from discrete sample points, are a potential way forward to circumvent these restrictions [4].

It should be mentioned that surrogate modeling techniques are not a new discipline and approaches like system
identification have a long-standing history in aerodynamics and are a core element in nearly all modern aircraft design
programs [5–7]. Over the past decades, various other surrogate models have been proposed and investigated to handle
aerodynamic data sets. Notable examples are radial basis functions, polynomial interpolation, and Gaussian Processes [8–
14]. More recently, neural networks have gained increased attention due to the availability of advanced hardware on the
one hand and powerful libraries that can be used and adapted on the other hand. With the ambition to further improve
the performance of surrogate models by transferring knowledge from other fields to aerodynamics, a multitude of
investigations are available in the literature for the prediction of scalar quantities, e.g. [15–18]. A similar statement can
be made for prediction of distributed quantities such as pressure distributions. Purely data-driven methods are especially
well-suited for integration into other workflows, e.g. overall aircraft design or multi-disciplinary optimization. The
arguably most common methodology is proper orthogonal decomposition (POD) [4] as a dimensionality reduction
technique combined with an interpolation method such as radial basis functions or Gaussian Processes. Application
examples within aerodynamics are widespread and can be found in [19–23]. Models are reported as easy to construct
but suffer from the underlying POD assumption of linearity that conflicts with the nonlinear nature of fluid dynamics
problems, especially at transonic flow conditions. Hence, several alternatives have been proposed in recent years
including Isomap [21] or deep neural networks [24–30].

Inspired by the rapid advancements in surrogate modeling and its potential impact, the AIAA Applied Aerodynamics
Technical Committee initiated the Applied Aerodynamics Surrogate Modeling (AASM) group. The objective of this
group is to unite experts in the field, fostering an environment for collaboration, exchange of ideas, and presentation of
cutting-edge research, while ensuring that the core challenges of applied aerodynamics are addressed. At the SciTech
2024 conference, three special sessions were organized to advance these objectives. These sessions featured a total of
10 papers covering a range of topics and application cases, including recent advancements and future directions for
software solutions relevant to surrogate modeling [31–40]. Additionally, an open discussion group was convened to
identify current limitations and blind spots in the field. A key issue highlighted during this meeting was the absence of
common, publicly available benchmark cases specifically tailored to applied aerodynamic challenges. While benchmark
cases are a well-established tool for evaluating methods in the general surrogate modeling domain—such as assessing
classifier performance—an equivalent resource for applied aerodynamics has yet to be developed.

This paper seeks to address this gap by introducing four distinct applied aerodynamics benchmark cases. These
include an aerodynamic database of integrated airfoil performance coefficients, a missile case featuring stability and
control values, and two data sets focused on surface pressure distributions. The paper begins with an overview of the
general setup and approach underlying these cases, followed by detailed descriptions of each benchmark data set. For
each case, the background and objectives are first outlined. This is followed by insights into the data generation process
and a summary of the resulting data sets. Finally, example surrogate modeling results are presented to demonstrate
potential applications of these data sets and highlight the types of insights they can provide. The paper concludes with a
discussion of envisioned community engagement and the steps needed to advance these benchmarks as a resource for
the broader aerospace community.

II. Surrogate Modeling Benchmark Cases
To advance the field of applied aerodynamics surrogate modeling, the AIAA Applied Aerodynamics Surrogate

Modeling (AASM) group has curated a set of benchmark cases tailored to the unique challenges of this domain. These
benchmarks aim to provide a standardized framework for evaluating surrogate modeling methods and foster collaboration
across academia, industry, and government. The initial set of cases, which includes diverse applications such as airfoil
performance, missile stability, distributed surface quantities, and full aircraft configurations, will be hosted on the AIAA
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AASM website. This centralized repository will serve as a living resource, expanding over time as new benchmarks are
introduced to address emerging needs in aerospace design and analysis. By offering detailed datasets and clearly defined
use cases, these benchmarks empower the community to test methodologies, compare results, and drive innovation in
data-driven modeling for aerospace engineering.

A. Benchmark Case 1 - PALMO Database
This section introduces the motivation for creating the OVERFLOW Machine Learning Airfoil Performance

(PALMO) database and the expected benefits it will provide to the aerospace community. The initial database contains
airfoil performance coefficients from 52,480 simulations generated using the OVERFLOW CFD solver second-order
accurate in space and fourth-order accurate in time with Spalart-Allmaras turbulence closure. These simulations are
a parametrization of the NACA 4-series airfoil family over a wide range of Mach number, Reynolds number, and
angle of attack relevant to many aerospace engineering applications. PALMO is well suited to be a benchmark data
set for the development and testing of machine learning methods in aerospace engineering, which enables access to
OVERFLOW-quality airfoil performance predictions without high-performance computing.

1. Background
Although the PALMO database was conceptualized to meet a need in the rotorcraft community, it is suitable for use

in fixed-wing, rotary-wing, and any other aerospace applications requiring efficient yet accurate airfoil performance
predictions.

In the aerospace community, airfoil look-up tables are often used in low- and mid-fidelity tools for the prediction
of aircraft and rotorcraft performance. In the rotorcraft community, these tables are used extensively in design
and analysis tools such as Blade Element Momentum Theory (BEMT) and Comprehensive Analysis (CA). For the
fixed-wing community, the same procedure is carried out in applications such as lifting-line tools towards aircraft
design, performance analysis, flight simulation, and design optimization. In either application, obtaining accurate
results requires a tailored set of look-up tables with the design airfoils at appropriate Reynolds and Mach numbers for
the unique wing or rotor design. An example rotor blade airfoil look-up table discretization is shown in Fig. 1. The rotor
blade is discretized into 10 stations to capture radial changes in these parameters. Higher discretization is especially
important for modeling variable-speed (varying RPM) rotor systems. In design applications with evolving geometry,
numerous airfoil look-up tables are required, which becomes laborious and computationally expensive to compute with
high-order accurate CFD data.

2. Data set Generation
The first release of the PALMO database includes 52,480 simulations, which is sixteen airfoil base-cubes each

having 3,280 data points. For each airfoil, simulations are parametrized across Mach number, Reynolds number, and
angle of attack as reported in Tab. 1.

The database is expanded beyond Mach number, Reynolds number, and angle of attack by further parametrizing
the airfoil. The NACA 4-series airfoil family is fully defined by two values: thickness and camber. The full database
consists of sixteen total base-cubes as shown in Fig. 2. Twelve of the base-cubes (in blue) parametrize a rectangular grid
of camber and thickness, while the red stars denote additional test data. Although the data can be used in many ways,

Fig. 1 Example Airfoil Look-up Table Discretization for a Rotor Blade.
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Parameter Discretization
Mach number 0.25, 0.35, 0.45, 0.55, 0.65, 0.70, 0.75, 0.80, 0.85, 0.9

Reynolds number 75k, 125k, 250k, 500k, 1M, 2M, 4M, 8M
Angle of attack -20 to 20 degrees, 1-degree increments

Table 1 The 3,280 Parametrized Conditions in a PALMO Base-cube.

Fig. 2 PALMO Database, NACA 4-series (Red stars are suggested test data).

one suggested implementation for surrogate model development and testing is to use the blue base-cubes for model
training and the red star base-cubes for testing.

Additional details about the database generation, including airfoil coordinate file generation, grid convergence
studies, and OVERFLOW setup have been documented [41]. This publication also has embedded within it the airfoil
coordinates and airfoil performance coefficients for all conditions.

3. Sample Surrogate Model Results
To demonstrate a possible downstream use of the PALMO database, a simple feed-forward neural network was

trained on the data set. The neural network has three layers with 200 neurons per layer and was trained on the 12 blue
base-cubes shown in Fig. 2. Predictions were made on part of the held-out test data, the NACA 3415. Fig. 3 shows

Fig. 3 PALMO Surrogate Model Predictions, NACA 3415, Mach Number 0.25, Reynolds Number 1M.
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Fig. 4 ARL’s Laboratory Technology Vehicle (LTV).

Parameter Lower Bound Upper Bound
Mach number 𝑀∞ 0.65 4.0
Angle of attack 𝛼 0 20
Sideslip angle 𝛽 0 20

Table 2 Input parameters for benchmark case 2, the LTV Missile.

the surrogate model prediction versus linear interpolation of the blue base-cubes to predict the actual OVERFLOW
CFD data. The surrogate model is observed to be a better fit to the CFD data in almost all conditions. It also correctly
captures the corner of the drag bucket, whereas linear interpolation of the training data does not.

This demonstrates the use of the PALMO database to predict airfoil performance with accuracy similar to
OVERFLOW without high-performance computing, which is useful in a variety of aerospace applications. OVERFLOW
level of accuracy airfoil look-up tables can be generated at any arbitrary combination of airfoil thickness, camber, Mach
number, Reynolds number, and angle of attack within the bounds of the database. The PALMO database also provides a
good benchmark data set for the development of best practices in aerospace surrogate modeling applications.

B. Benchmark Case 2 - Missile
Surrogate models can be an alternative to traditional aerodynamics databases for six-degree-of-freedom model

prediction for a vehicle of interest. Given a set of inputs that include the vehicle velocity (𝑢,𝑣,𝑤) , angle of attack 𝛼,
sideslip 𝛽, Mach number 𝑀∞, atmospheric conditions (𝜌, 𝑃), wind velocity, and control surface deflections (𝛿𝑒,𝛿𝑎,𝛿𝑟 ),
the surrogate is trained to provide aerodynamic forces (lift, drag, side force) and moments (pitch, roll, yaw) which
can be used to calculate the accelerations and rates for guidance and control, trajectory modeling, handling qualities
assessment, and more. This particular case is intended to explore techniques for generating surrogate models for a
3DOF or 6DOF model of a generic missile case using both steady and time-dependent data sets.

The US Army Combat Capabilities Development Command (DEVCOM) Army Research Laboratory (ARL)
introduced the Laboratory Technology Vehicle (LTV) as an engineering testbed in a public Technical Report [42] as well
as at the 2021 AIAA SciTech Meeting [43]. The LTV (compare Fig. 4) is composed of a symmetric cylindrical body
with four fins and moving control surfaces. For this initial data set steady calculations of the LTV are performed using
two different fidelity solvers; low-fidelity semi-empirical calculations using Missile DATCOM [44] and high-fidelity
implicit RANS calculations using HPCMP CREATE TM AV Kestrel [45]. The tradespace covers a range of Mach
numbers 𝑀∞, angles of attack 𝛼, and sideslip angle 𝛽 to create a 3D, or three-degree-of-freedom surrogate.

Table 2 shows the input variables for the 3D surrogate of the LTV. 𝑀∞ is varied between 0.65 and 4.0, and both 𝛼
and 𝛽 are varied between 0𝑜 and 20𝑜. Calculations of both Missile DATCOM and Kestrel are performed at 3𝑥3𝑥3 (27
samples), 6𝑥6𝑥6 (216 samples), and 9𝑥9𝑥9 (729 samples) uniform grid sampling points. Also included are 200 and 500
Latin Hypercube Sampling (LHS) points. These different fidelity results at different sampling points are intended to
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give users the opportunity to experiment with different combinations of sampling, fidelity, and surrogate construction
techniques.

In the future this benchmark case will add pitch, roll, and yaw control deflections to create a 6D design space which
could then act as a 6DOF model for stability and control, flight dynamics, or other analyses. It will also potentially
include time-dependent data which could be used to understand dynamic control. Finally, further variables that may be
considered are altitude and temperature. The size of the data set for this case is thus expected to grow with time.

C. Benchmark Case 3 - Airfoil
During aircraft design and optimization typically a configuration is varied based on a specific parameterization.

Besides integral performance as well as stability and control quantities surface distributions such as the pressure
or skin fiction distribution are often also of interest. These might be used to derive loads and perform further
analysis. Hence, the third benchmark case focuses on the prediction of the distributed surface quantities, i.e. pressure
coefficient and skin friction coefficients. The well-established transonic airfoil RAE2822 is selected to serve as baseline
upon which the parameterization is applied and new designs are derived. For the parameterization the class shape
function transformations(CST) is employed to model and modify the airfoil’s geometry as outlined in [46]. The CST
parameterization describes a two-dimensional geometry using a combination of a class function 𝐶 (𝑥/𝑐), a shape
function 𝑆(𝑥/𝑐) based on Bernstein binomials, and an additional term for the trailing edge thickness:

z
c
= 𝐶

(x
c

)
𝑆

(x
c

)
+ x

c
Δ𝑧𝑇𝐸

𝑐

𝐶

(x
c

)
=

(x
c

)𝑁1 (
1 − x

c

)𝑁2
for 0 ≤ x

c
≤ 1

𝑆

(x
c

)
=

𝑛∑︁
𝑖=0

[
𝑋𝑖𝐾𝑖,𝑛

(x
c

) 𝑖 (
1 − x

c

)𝑛−𝑖] (1)

In this equation, 𝐾𝑖,𝑛 = 𝑛!
𝑖!(𝑛−𝑖)! . The exponents 𝑁1 and 𝑁2 are chosen to reflect the desired geometry type. For an

airfoil, typically 𝑁1 = 1/2 and 𝑁2 = 1 are used, as
√︁
𝑥/𝑐 produces rounded leading edges and (1 − 𝑥/𝑐) leads to sharp

trailing edges. The weight factors 𝑋𝑖 represent the design variables. Note that, one equation with a set of coefficients is
used for the upper surface 𝑋𝑢,𝑖 and another for the lower surface 𝑋𝑙,𝑖 . CST parameterization ensures 𝐶2 continuity
of the surfaces and effectively captures a range of smooth airfoil shapes. Ten design parameters (five for the upper
surface and five for the lower surface) define this parameterization. However, in order to ensure 𝐶2 continuity, the
first CST parameter on the lower surface 𝑋𝑙,1 is chosen equivalent to the first parameter on the upper surface 𝑋𝑢,1,
effectively resulting in nine design parameters labeled CST𝑖 . Even though the theoretical range for CST parameters is
[−1, 1] to ensure somehow feasible airfoils the CST parameters are bound relative to the baseline RAE2822 transonic
airfoil design 𝒙0 allowing for a maximum deviation of 50%. The resulting upper and lower bounds for all 9 CST design
parameters are given in Tab. 3. Besides the CST parameters also the global flow parameters Mach number, angle of
attack and Reynolds number are varied. This enables to investigate airfoil performance and occurring loads throughout
the theoretical flight envelope. Bounds are also given in Tab. 3 and are supposed to be representative of an operating
envelope a civil aircraft configuration encounters.

The CFD solver DLR TAU is used to solve the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction
with the Spalart-Allmaras turbulence model to construct the data set. Once a specific set of CST parameters is defined, a
mesh deformation routine is employed to translate the new surface shape to the volume mesh reusing an initial mesh.
Fig 5 illustrates the initial volume mesh in close proximity to the airfoil as well as sample airfoil profiles together with
the RAE2822 baseline. A central scheme with scalar artificial dissipation for the inviscid fluxes discretization and
the Green-Gauss approach for the computation of the exact gradient of viscous and source terms are used. A four
level multigrid scheme is employed to accelerate convergence. The simulations are regarded as sufficiently converged
once the density residual is below 1 · 10−8. This has been achieved for the majority of the simulations but not for
all due to challenging flow conditions, e.g. high Mach number and angles of attack, combined with unconventional,
aerodynamically not beneficial airfoil shapes. These simulations are terminated once the maximum number of 100,000
iterations has been reached and a sufficient convergence of the integral coefficients has been ensured.

Note that, the ambition of this data set is not be the most physical accurate representation of the flow around the
geometry - which would potentially call for a more sophisticated turbulence model and/or stricter numerical settings -
but instead to provide a feasible data set that is representative for the underlying applied aerodynamic surrogate modeling
challenges.
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(a) Volume mesh around the airfoil (b) Sample airfoil shapes within the benchmark case 3

Fig. 5 Volume mesh around the airfoil surface together with several airfoil shape samples which are part of the
database.

A Design of Experiment (DoE) based on a Sobol [47] sequence is used to determine in total 600 combinations
of the parameters, CST plus operating parameters, within their bounds. Employing a quasi-random low-discrepancy
sequence has the benefit of trying to optimally invest the available computational budget, hence, spreading simulations
equally throughout the design space. Moreover, it enables adding further samples at a later point in time since the
Sobol sequence is deterministic. Out of the 600 simulations in total 3 simulations did not yield a result because the
combination of CST parameters did result in an invalid mesh. Hence, in total 597 surface results are available within
benchmark case 3. These are split in a training set of 497 and a fixed test set of 100 solutions. Note that, if the model of
interest requires a validation set, like most deep learning methods do, these validation samples should be taken from
the 498 solutions labeled training data set. The data set is accessible through the website of the applied aerodynamics
surrogate modeling challenge and consists of 597 surface solution files in ASCII format. Each file comprises first the

Parameter Lower Bound Upper Bound
Mach number 0.2 0.7

Angle of attack -3.0 5.0
Reynolds number 1e6 6.5e6

𝑋𝑢,1 = CST1 0.0644 0.1932
𝑋𝑢,2 = CST2 0.0688 0.2064
𝑋𝑢,3 = CST3 0.0961 0.2883
𝑋𝑢,4 = CST4 0.0961 0.2882
𝑋𝑢,5 = CST5 0.1010 0.3030
𝑋𝑙,2 = CST6 0.0680 0.2039
𝑋𝑙,3 = CST7 0.1126 0.3377
𝑋𝑙,4 = CST8 0.0381 0.1143
𝑋𝑙,5 = CST9 -0.0586 -0.0195

Table 3 Input parameters with their lower and upper bound for the benchmark case 3. Note that values for the
CST parameters are rounded to four digits after the decimal dot for better visualization.
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parameters used for this specific simulation together with the resulting global aerodynamic coefficient followed by a
data block containing the surface coordinates, normals, pressure coefficients as well as skin friction coefficients.

1. Sample Surrogate Modeling Results
Next some exemplary surrogate modeling results are presented for the benchmark case 3 using the 497 training

solutions to build a model and evaluating its prediction accuracy by comparing results to the 100 test solutions. The
intent is to showcase how the usage of the data set could look like and what type of information could in general be
presented. This is by any means not meant to be an exhaustive set of results but should rather be seen as an initial
guidance when approaching this case.

A surrogate model combining proper orthogonal decomposition (POD) combined with an interpolation method
acting on the latent space is the surrogate model of choice for showcasing some exemplary results for predicting
surface pressure distributions. Such a model is oftentimes also labeled as a POD+I model. More specifically a radial
basis function interpolation method based on a thin-plate spline is used as interpolation model. Surrogate Models
are constructed using the Surrogate Modeling for AeRo-data Toolbox in python (SMARTy) developed at DLR [48].
Model hyperparameters are selected based on previous experience and are a retained relative information content of
0.9999, a linear trend function for the interpolation model. Moreover, the mean is subtracted from all snapshots as a
pre-processing step and input parameters are scaled to unit-hypercube. Since, strictly speaking, no data is needed for
model validation during the training process, as hyperparameters are fixed beforehand, all 497 training samples are used
for model training. A straightforward extension would be to reserve some of the 498 solutions for model validation and
employ a model selection algorithm to automatically determine an optimal set of hyperparameters for this specific data
set. Once the model has been trained it can be used to rapidly predict solutions at all conditions within the test set. Such
solutions can afterwards be compared to the ground truth values and global error metrics such as the mean absolute
error, the root mean squared error and the coefficient of determination 𝑅2 can be computed. For the POD+I model
described above global errors are reported in Tab. 4. Besides global errors also individual solutions can be compared to
the reference values in more detail. Figure 6 shows comparisons of the surface pressure distributions for two selected
samples within the test set. While the model yields accurate results at benign flow conditions (compare Fig. 6a) the

mean absolute error the root mean squared error coefficient of determination 𝑅2

0.0313698 0.07793855 0.97371587
Table 4 Global error values of the exemplary POD+I model on the entire test set for benchmark case 3

(a) Test sample number 4 (b) Test sample number 81

Fig. 6 Sample POD+I surrogate modeling results for benchmark case 3
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Fig. 7 Control surface deflections of the NASA CRM. Only the half-configuration is shown for better visualization.

prediction accuracy deteriorates once non-linear flow phenomena such as shocks are present (compare Fig. 6b). This
is well-known for POD+I models and should not be discussed further here. Instead it clearly emphasizes that more
advanced modeling techniques are needed to achieve accurate surrogate model predictions for this benchmark case. It
could also be of interest to predict the skin friction coefficients alongside the pressure coefficients. Solutions including
local error estimates as well as other error metrics would further enable insight into employed modeling approaches.
Moreover, users are encourage to go beyond the aforementioned points in all aspects.

D. Benchmark Case 4 - NASA Common Research Model
Even though benchmark case 3 allows to investigate surrogate model performance for the prediction of distributed

surface quantities, the underlying geometrical complexity and, hence, also the size of each solution is still rather small
and far away from industrial-relevant configurations. In fact, the scaling of surrogate modeling techniques towards
large-scale 3D cases is often overlooked. Therefore, benchmark case 4 focuses on a civil aircraft configuration, namely
the NASA Common Research Model (CRM) that is well-established within the AIAA community as an open-source
configuration. For this case in total 6 parameters are varied. This includes the Mach number, angle of attack, inboard
aileron deflection angle, outboard aileron deflection angle, elevator deflection angle and horizontal tailplane (HTP)
deflection angle. Hence, this set-up tries to emulate the challenge of providing consistent aerodynamic data sets for
loads purposes throughout the envelope for a geometrically fixed configuration. Bounds for all 6 parameters are given in
Tab. 5 and the geometric layout of the control surfaces are shown in Figure 7. The altitude was set to 37, 000 ft and
kept fix for all investigations. This configuration and data set has been previously used to investigate surrogate model
performance in [28, 30].

The CFD solver DLR TAU is used determine solutions at different parameter combinations. For all of these solutions
the Reynolds-Averaged Navier-Stokes (RANS) equations together with the Spalart-Allmaras turbulence model are
solved. The computational grid comprises approximately 43 million points and the corresponding surface grid, shown in
Figure 8, consists of 454, 404 surface points. The grid generation approach is based on experience at DLR gained during
the AIAA Drag Prediction Workshop [49, 50]. A central scheme with scalar artificial dissipation for the inviscid fluxes

Parameter Lower Bound Upper Bound
Mach number 0.5 0.88

Angle of attack -2.5◦ 7.5◦

Outboard aileron angle -20.0◦ 10.0◦

Inboard aileron angle -20.0◦ 20.0◦

Elevator angle -10.0◦ 10.0◦

HTP angle -2.0◦ 2.0◦

Table 5 Input parameters with their lower and upper bound for the benchmark case 4.
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Fig. 8 Pairplot of sampling strategy and computational mesh for benchmark case 4.

discretization and the Green-Gauss approach for the computation of the exact gradient of viscous and source terms are
used. Further, a 5v multi-grid scheme was employed during all simulations to accelerate convergence. Simulations were
ran until a residual below e−8 was reached. Just as the grid generation approach these settings are based in experience at
DLR and closely correlation to settings used during the AIAA Drag Prediction Workshops. Hence, solutions provided
as part of this data set are expected to be comparable in accuracy. Even though the surface shape is assumed fixed
a realistic 1g flight load deformation is obtained using an initial fluid–structure simulation. Results of this initial
deformation simulation are compared to results from a European transonic wind-tunnel test campaign in [51] with
good agreement. For further details, such as mesh convergence studies, turbulence model influence and comparison to
experimental results as well as other codes, the interested reader is referred to the aforementioned literature. As for case
3 the ambition of the data set as part of the applied aerodynamic benchmark cases is not to be as physically accurate as
possible but instead being representative for challenges faces when investigating surrogate modeling techniques.

A Halton sequence was used to produce a set of in total 157 six-dimensional operational conditions, of which 149
were retained after running the CFD simulations. Out of the 149 total samples, the first 105 should be used for training,
while the remaining 44 samples are exclusively reserved for testing. If for a specific model type a set of validation
samples is needed, these are to be taken from the 105 training samples. In [30] the last 30 samples from the training set
are used for validation during model training resulting in a 75-30-44 split. The data set is accessible through the website
of the applied aerodynamics surrogate modeling challenge and consists of 149 surface solution files. Each file comprises
first the parameters used for this specific simulation together with the resulting global aerodynamic coefficient followed
by a data block containing the surface coordinates, normals, pressure coefficients as well as skin friction coefficients.
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mean absolute error the root mean squared error coefficient of determination 𝑅2

0.04173218 0.08256017 0.9326680
Table 6 Global error values of the POD+I model on the entire test set for benchmark case 4

(a) Upper wing surface for test sample number 12

(b) Upper wing surface for test sample number 13

Fig. 9 Sample POD+I surrogate modeling results showing pressure coefficient predictions for benchmark case 4

1. Sample Surrogate Modeling Results
Next some sample surrogate modeling results are presented for the benchmark case 4 using the 105 training solutions

to build a model and evaluating its prediction accuracy by comparing results to the 44 test solutions. The ambition is to
showcase how the usage of the data set could look like and what type of information could in general be of interest.
This is by any means not meant to be an exhaustive set of results but should rather be seen as an initial guidance when
approaching this case.

As for the surrogate modeling results for benchmark case 3, proper orthogonal decomposition (POD) combined
with an interpolation method is selected. Again, a radial basis function interpolation method based on a thin-plate spline
is used as interpolation model and the SMARTy toolbox is used [48]. Model hyperparameters are selected based on
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previous experience and are a retained relative information content of 0.99, a linear trend function for the interpolation
model. Moreover, the mean is subtracted from all snapshots as a pre-processing step and input parameters are scaled to
unit-hypercube. No data is needed for model validation during the training process of a POD+I model and, hence, all
105 training samples are used for model training. Once the model has been trained solutions at all conditions within the
test set are computed and compared to the ground truth values. Global error metrics are computed and reported in
Tab. 6. Individual solutions at specific parameter combinations can also be predicted by the model and then compared
to the reference values to get a deeper insight into the predictive performance. Figure 9 presents such a comparison
for surface pressure distributions for two selected samples within the test set. Just like before, the model yields more
accurate results at more benign flow conditions (compare Fig. 9a) while the prediction accuracy deteriorates significantly
once non-linear flow phenomena such as shocks are present (compare Fig. 9b). Similar to the benchmark case 3 the
investigations here could focus on various aspects beyond the few sample results presented herein and the community is
encourage to do so.

III. Conclusions and Outlook
This paper introduced four benchmark cases designed to address the need for publicly available data sets in applied

aerodynamics surrogate modeling. These benchmarks cover a range of challenges, including aerodynamic airfoil
performance coefficients, stability and control evaluation for missiles, and surface pressure distribution analysis. By
providing detailed descriptions of the data generation process, resulting data sets, and example surrogate modeling
results, this work aims to establish a foundation for consistent evaluation and comparison of surrogate modeling methods
in applied aerodynamics. The benchmark cases are intended to serve as a shared resource for the aerospace community,
facilitating advancements in design optimization, uncertainty quantification, and systems-level analysis.

Looking ahead, the Applied Aerodynamics Surrogate Modeling (AASM) group envisions an active community of
researchers and practitioners engaging with these benchmarks to refine methodologies and develop innovative solutions.
To support this engagement, a dedicated website has been created to host all benchmark case information, data sets, and
associated documentation. This resource will serve as a central hub for the community, enabling users to access data
sets, share results, and contribute feedback.

As surrogate modeling methods and processes evolve, the AASM group plans to add additional benchmarks and
standardized evaluation procedures to accommodate emerging needs and ensure continued relevance. Future updates
to the benchmark cases will incorporate additional complexities, such as multi-disciplinary data sets and unsteady
aerodynamic phenomena, to address new challenges in aerospace design.

Further, the group aims to expand the benchmarks to include a broader range of configurations and operational
conditions, such as transonic regimes, high angle of attack scenarios, and interactional aerodynamics. The integration
of multi-fidelity data sets, combining low- and high-fidelity simulations, will also be explored to extend the applicability
of surrogate models. By fostering collaboration among academia, industry, and government, the AASM group seeks
to establish these benchmarks as a cornerstone of data-driven aerospace engineering, advancing surrogate modeling
capabilities and promoting innovation across the field.
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