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ABSTRACT 

 
 A technique is described, based on simple statistics, that can be used to assess the accuracy of analytical 
predictions compared to measurements.  It is demonstrated that the approach can be applied to a broad range of 
problems in the area of helicopter aeromechanics, including hover and forward flight performance, blade 
aerodynamic and structural loads, vibratory forces, stability, and rotorcraft icing.  The method described has both 
strengths and weaknesses and these are shown with examples and discussed.  It is also shown that there is currently 
a hierarchy of accuracy in aeromechanics problems, ranging from the necessarily accurate methods for performance 
prediction to the inaccurate and untrustworthy calculations of fixed-system vibration. 
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cm section pitching moment 
coefficient 

cn section normal force coefficient 

MC chord bending moment, in-lb 

M section Mach number 

MF flap bending moment, in-lb 

MT torsion moment, in-lb 

Mtip tip Mach number 

GW gross weight, lb 

m slope, linear regression 
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P power, HP 

PH power to hover, HP 

R blade radius, in 

r section radius, in 

Se standard error of estimate, linear 
regression 

T rotor thrust, lb 

VH ideal induced velocity in hover, 
ft/sec 

VROC vertical rate of climb, ft/sec 

VT rotor tip speed, ft/sec 

µ advance ratio 

ρ density of air, slugs/ft3 

σ standard deviation or rotor solidity 

INTRODUCTION 
 Under NASA’s Subsonic Rotary Wing 
(SRW) Project, a detailed assessment of the 
predictive accuracy of numerous analytical methods 
has been made, including those methods dealing with 
aeromechanics, acoustics, experimental methods, 
flight dynamics and control, propulsion, and 
structures and materials.  Within the general area of 
aeromechanics, this assessment has been divided into 
two parts, the first dealing with classical methods 
embodied in comprehensive analyses and the second 
dealing with Computational Fluid Dynamics (CFD) 
with a particular emphasis on coupled CFD/CSD 
methods and Navier-Stokes representations of the 
aerodynamic forces.  The present paper addresses the 
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first part of the aeromechanics assessment, that 
dealing with classical methods. 
 Progress in the aeromechanics disciplines 
over the last 70 to 80 years has been substantial, yet 
there have been few attempts at a quantitative 
assessment of analytical methods (Refs. 1-3).  Some 
30 plus years ago, at the Dynamic Specialists 
Meeting at Ames Research Center, Dick Bennett said 
“. . . correlation, like beauty, is in the eye of the 
beholder.” (Ref. 4).  These words, a fine example of 
Dr. Bennett’s wit, have lingered in the engineering 
community for decades.  Yet his statement has been 
taken out of context.  Dick used these words as an 
example of fuzzy thinking and in the next sentence he 
stated “So we must come up with a good definition, a 
workable definition of correlation.”   
 The primary purpose of this paper is to 
present one approach to quantitative correlation, 
using the work that has been done under NASA’s 
SRW Project.  Beyond that primary purpose, it will 
also be shown that the use of quantitative correlation 
provides insight into the accuracy of present 
analytical methods when applied over a range of 
aeromechanics problems. 

METHODOLOGY FOR QUANTITATIVE 
CORRELATION 

 A standardized approach to the quantitative 
assessment of predictive accuracy of analytical 
methods is described here.  The basic approach is to 
plot the calculation of an appropriate parameter as a 
function of its measurement.  Exact correlation is 
obtained if all the calculated and measured points lie 
on a 45° line.  This approach is illustrated in Figs. 1 
and 2.  Figure 1 shows the measured and calculated 
aircraft power coefficients, CP, for advance 
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Figure 1.  UH-60L with standard blades.  Power 

coefficient as a function of advance ratio; 
CW/σ = 0.0787 (Ref. 5). 

ratios from about 0.15 to 0.35 for a UH-60L with 
standard blades.  The aircraft weight coefficient in 
this case, CW/σ, is about 0.079.  The calculations 
have been made using CAMRAD II (Ref. 5).  A 
qualitative examination of Fig. 1 shows that there is 
fairly good agreement between analysis and data, but 
the power is underpredicted at low speeds and 
overpredicted for 0.25 ≤ µ ≤ 0.35.  Figure 2 shows 
the calculated Cp as a function of the measured Cp for 
the data.  A linear regression line is calculated for the 
correlation points and is shown as a solid line 
bracketed by dashed lines that represent the scatter of 
the data.  The scatter is indicated by ±Se  (the 
standard error of estimate, which is equivalent to 
±1σ).  The scatter in this case is a little more than 1% 
(based on the ordinate scale), which is typical of 
better performance calculations.  At low power 
coefficients there is an underprediction in Fig. 2, 
whereas at high power coefficients there is an 
overprediction, as was noted for Fig. 1.  The slope of 
the linear regression line is 1.093 in this case.  In this 
assessment approach, slopes greater than 1.0 are 
considered an overprediction and slopes less than 1.0 
are an underprediction. 
 The scatter in the correlation in the example 
in Fig. 2 is presumably caused by measurement 
errors.  But the difference in the slope of the 
regression line, in this case an overprediction, may be 
caused by errors in analysis or measurement. 
 In this example, the power coefficient varies 
over a range of about 2.5x, which provides a 
reasonable assessment of the correlation.  If this 
range or ratio were close to 1.0x, the lack of variation 
would be so limited that the regression fit would be 
meaningless.  In the example shown in Fig. 1, the 
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Figure 2.  Predictive accuracy of CAMRAD II for 
UH-60L with standard blades for CW/σ = 0.0787; 

m = 1.093, Se = ±1% (Ref. 5). 
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variation in the power coefficient is caused by 
changes in airspeed, but it is generally not important 
what the source of the variation is. 
 In the example of Fig. 2, the scatter is quite 
low, and quantitatively the predictive accuracy is 
usefully judged by the slope, m  = 1.093.  But in other 
cases, as will be shown below, the scatter may be 
much larger and this scatter may be more significant 
in assessing the accuracy of the prediction.  
Moreover, in other cases there will be a noticeable 
offset in values and this offset may be more 
important than either the slope or scatter. 
 It is useful in many cases to include 
additional independent variables and group 
comparisons together.  Thus, for the UH-60L flight 
test data, power coefficient data at other weight 
coefficients (airspeed sweeps) can be used, and the 
data are combined or grouped together, which may 
provide a better test, as suggested by Fig. 3.  In this 
example, data and calculations from four airspeed 
sweeps are combined and the overall slope is 1.024, 
indicating a calculation accuracy of +2.4%. 
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Figure 3.  Predictive accuracy of CAMRAD II for 
UH-60L with standard blade for four weight 
coefficients (Ref. 5); m = 1.024, Se = ±2%. 

 
 The combined analysis of the four airspeed 
sweeps in Fig. 3 is perhaps a better estimate of the 
predictive accuracy of CAMRAD II, since a wider 
parameter variation is used in the assessment.  But in 
some cases, combining data sets can obscure trends 
that may be important.  Table 1 shows the slopes and 
scatter for the four airspeed sweeps used in Fig. 3. 
For the three lower CW/σ values, the overprediction 
varies from 0.3% to 9.3%.  But for the highest weight 
coefficient, there is a 15.2% underprediction.  The 
scatter is relatively unchanged, but the change in 
slope suggests that the calculation has degraded at 
high blade loading, perhaps because of dynamic stall. 

Table 1.  Predictive accuracy of CAMRAD II for 
UH-60L with standard blade for four weight 

coefficients (Ref. 5). 
 

CW/σ m ±Se ,% 
0.0787 1.093 1.4 
0.0981 1.003 1.6 
0.1029 1.034 1.4 
0.1211 0.848 1.7 

 
 The choice of a relevant parameter for 
quantitative correlation can be difficult.  For 
performance, the choice of the power required at a 
single test point is straightforward.  But for that same 
test point, it is not so clear how to represent the blade 
aerodynamic or structural loads.  Figure 4 compares 
the measured and predicted nondimensional vibratory 

-15

-10

-5

0

5

10

15

0 90 180 270 360

 SA 330

 CAMRAD II

C
F

M
/!

 x
 1

0
-5

Azimuth, deg
   

Figure 4.  SA 330 (Puma) nondimensional vibratory 
flap bending moment as a function of blade azimuth 

at 0.46R and µ = 0.362 (Ref. 6). 
 
flap bending moment for the research Puma (Ref. 6).  
What number or numbers are the best choice to 
represent this correlation?  The peak-to-peak loads 
describe the total amplitude of the flap bending 
moment, but do not describe the frequency content, 
either in amplitude (generally) or phase.  The 
approach used here is to examine the predictive 
accuracy by sampling the data every 15 deg., which 
represents the frequency content of the measured 
time history.  Thus, the blade azimuth is treated as 
the independent variable.  The resulting linear 
regression for this example is shown in Fig. 5.  The 
vibratory loads in this case are underpredicted by 
about 35%, which is also clearly seen in the time 
history in Fig. 4.  The scatter is about ±7%, which is 
an increase from that observed in the UH-60L 
performance results in Fig. 3, but as will be shown 
below is quite good for structural load prediction. 
 But what happens when there is a phase shift 
in the structural loads?  Figure 6 shows a correlation  
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Figure 5.  SA 330 (Puma) linear regression of 

nondimensional vibratory flap bending moment at 
0.46R and µ = 0.362 (Ref. 6); m = 0.649, Se = ±7%. 
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Figure 6.  UH-60A nondimensional vibratory flap 
bending moment as a function of blade azimuth at 

0.50R and µ = 0.368 (Ref. 6). 
 

case for the vibratory flap bending moment for the 
UH-60A that includes a substantial phase shift.  The 
predicted amplitude in this case appears to be about 
75% of the measurement, but the phase difference 
has a severe effect on the linear regression fit as 
shown in Fig. 7.  Because of the phase difference the 
scatter is increased and the slope of the linear 
regression fit is essentially meaningless.  The 
examples shown in Figs. 6 and 7 provide a warning 
that the present methodology is sensitive to some 
aspects of correlation, particularly phase differences 
(which may be a good thing). 
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Figure 7.  UH-60A linear regression of 

nondimensional vibratory flap bending moment at 
0.50R and µ = 0.368 (Ref. 6); m = 0.180, Se = ±17%. 

Aeromechanics Topics 
 The remainder of this paper will look at a 
wide range of aeromechanics topics using the 
quantitative correlation approach described here.  
Topics range from basic rotorcraft performance, both 
in hover and forward flight, aerodynamic loads on the 
blade and fuselage, structural loads, vibration, and 
rotor stability along with a few miscellaneous topics.  
In selecting these topics, only results from the 
published literature have been used.  An effort has 
been made to use data sets where one analysis has 
been used for many different experimental cases and 
the investigators have applied their method in a 
uniform manner. 
 Although a broad range of topics are 
included here, the predictions of only a limited 
number of comprehensive analyses have been 
examined.  There are many other codes that are 
available, and the examination of their predictive 
capability would be valuable.  Moreover, the 
examination of additional cases would provide a 
better evaluation of the applicability of the present 
method. 
 In some cases words may be used here such 
as error, discrepancy, or difference, and these words 
are used interchangeably.  But it is important to 
recognize that differences between measurement and 
calculation may be caused by errors in the 
calculation, errors in the measurements, or errors in 
both.  When reasonably good correlation is obtained, 
as is the case currently for flight performance, it will 
be pointed out that improvement in calculation 
accuracy cannot be obtained until significant 
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improvements are made in measurement accuracy.  
But in other cases, the need for improvement lies 
with analysis. 

Hover Performance 
 Felker et al. (Ref. 7) applied the hover 
performance code EHPIC to a broad range of rotor 
tests, including four main rotors, two tail rotors, and 
three tiltrotors.  The EHPIC code is a lifting surface 
analysis that uses a free wake.  Drag is determined 
using table lookup.  More or less typical of the basic 
hover performance data used in Ref. 7, Fig. 8 shows 
the measured power coefficient as a function of thrust 
coefficient for the Boeing prototype YUH-61A main 
rotor tested on a whirl tower along with the EHPIC 
code prediction (consult Ref. 7 for 
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Figure 8.  CP as a function of CT  for the Boeing 

YUH-61A main rotor tested on a whirl tower 
compared to EHPIC code (Ref. 7). 

 
the original data sources).  The range of power 
coefficient values in this case is about 4.9x. 
 The accuracy of the EHPIC code for four 
main rotors is shown in Fig. 9.  For the combined 
analysis, the underprediction is about 1.5% and the 
scatter is low.  The four rotors analyzed include a 
two-bladed rotor with significant taper that was tested 
about 1958 and is referred to as the TN 4357 rotor 
(TN 4357 was the NACA technical note wherein the 
data were published).  This rotor, 53.6-feet in 
diameter, was tested on a whirl tower with a height-
to-diameter ratio of 0.78.  Because of ground plane 
effects, the data were corrected (about 5%).  Two 
different tip Mach numbers are included in the data 
set.  The second data set was for a three-bladed rotor, 
tested about 1951, and is referred to as the TN 2277 
rotor.  This rotor was untapered and had a 38-foot 
diameter.  As with the two-bladed test, two different 
tip Mach numbers were tested.  The third data set was  
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Figure 9.  Accuracy of EHPIC hover prediction for 
four main rotors (Ref. 7); m = 0.985, Se = ±2%. 

 
a CH-47B rotor tested on a whirl tower, also with 
three blades.  The fourth data set was for the four-
bladed YUH-61A rotor, also tested on a whirl tower 
(see Fig. 8).  Table 2 compares the accuracy metrics 
for the four data sets.  The hover performance is 
underpredicted for all main rotors, ranging from 7.2% 
to 2.7%. 
 
Table 2.  Accuracy of EHPIC for hover performance 

of four main rotors (Ref. 7). 
 

Main Rotor Blade No. m ±Se ,% 
TN 4357 2 0.973 1.0 
TN 2277 3 0.971 0.9 
CH-47B 3 0.927 1.3 
YUH-61A 4 0.966 2.6 

 
 
 Two untwisted tail rotors, the Bell Model 
222 and Model 214A, were tested on a tail rotor test 
stand.  The accuracy of the EHPIC code for these 
rotor tests is shown in Fig. 10.  There are two data 
sets for the Bell 214A, one at a tip Mach number, 
Mtip, of 0.69 and the other at Mtip = 0.73.  Hence, the 
analysis here is for the three combined data sets.  The 
combined analysis shows about a 10% overprediction 
of power but there is a wide variation of predictive 
accuracy for these two tail rotors as indicated in 
Table 3.  There is little scatter in the individual data 
sets. 
 The EHPIC accuracy for the three tiltrotor 
data sets is shown in Fig. 11.  The XV-15 rotor is the 
development rotor flown on the XV-15 over a 
number of years.  The Advanced Technology Blade 
(ATB) rotor was developed by Boeing Helicopters 
and underwent limited flight tests on the XV-15.  The
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Figure 10.  Accuracy of EHPIC hover prediction for 

two tail rotors (Ref. 7); m = 1.100, Se = ±4%. 
 

Table 3.  Accuracy of EHPIC for hover performance 
of two tail rotors (Ref. 7). 

 
Tail Rotor Mtip m ±Se ,% 

Bell 222 0.54 1.123 0.9 
Bell 214A 0.69 0.919 0.7 
Bell 214A 0.73 0.847 0.7 

 
scaled V-22 tiltrotor, an early version of the Navy’s 
Osprey tiltrotor, was tested extensively at NASA 
Ames Research Center.  All three of these highly 
twisted rotors were tested on a horizontal test stand at 
Ames.  The combined analysis shows an 
overprediction of 7.2%, but the scatter is quite low. 
The accuracies for the individual tests are shown in 
Table 4 and the predictions for the three rotors are 
similar. 
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Figure 11.  Accuracy of EHPIC hover prediction for 

three tiltrotors (Ref. 7); m = 1.072, Se = ±1%. 

Table 4.  Accuracy of EHPIC for hover performance 
of three tiltrotors (Ref. 7). 

 
Tiltrotor m ±Se ,% 

XV-15 1.067 1.4 
ATB (XV-15) 1.095 1.1 
V-22 (0.67-scale) 1.080 0.8 

 
 

 The CHARM comprehensive code, a 
follow-on to the EHPIC code, also uses lifting 
surface theory and a free-wake analysis.  Wachspress 
et al. (Ref. 8) have examined four different sets of 
hover performance data, including two main rotor 
hover data sets, a model-scale data set, and a tiltrotor 
data set.  The dependent variable in these cases is 
Figure of Merit rather than power coefficient.  The 
range of Figure of Merit values here is 2.4x, which is 
about half the range used in the EHPIC hover 
performance evaluation.  An example of these 
performance data, in this case the 0.17-scale model 
UH-60A data that were not available for the EHPIC 
evaluation in 1988, is shown in Fig. 12.  The 
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Figure 12.  Figure of Merit as a function of CT /σ for 
Sikorsky Aircraft 0.17-scale UH-60A rotor compared 

to CHARM code (Ref. 8). 
 
combined accuracy analysis for the four data sets are 
shown in Fig. 13.  The Figure of Merit is 
underpredicted by 2.2% and the scatter is low.  An 
examination of the individual hover data sets, as 
shown in Table 5, shows a wide variation in 
accuracy.  Moreover, two of these data sets were 
examined with the EHPIC code 15 years earlier and 
very different results were obtained.  But the overall 
accuracy is quite similar. 
 Kocurek et al. (Ref. 2) evaluated the Bell 
Helicopter Textron hover prediction methodology in 
the late 1970s.  Their analysis used a lifting surface 
method with an empirical wake model.  They 
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Figure 13.  Accuracy of CHARM hover prediction 

for four hover performance data sets (Ref. 8); 
m = 0.978, Se = ±2%. 

 
Table 5.  Accuracy of CHARM for hover 

performance of four data sets (Ref. 8). 
 

Rotor Blade 
No. 

m ±Se ,% 

CH-47B 3 0.794 0.3 
S-76 4 0.932 1.2 
UH-60A (0.17 scale) 4 1.007 0.9 
V-22 (0.67 scale) 3 0.815 1.3 

 
 
evaluated a number of isolated rotor data sets, but 
also included flight test results from 13 helicopters. 
Thus, their analysis calculated not only hover 
performance, but also fuselage download, tail rotor 
power, accessory losses, and transmission losses.  
They found that the differences between measured 
and predicted power varied for the most part between 
–3.2 and +3.2%.  It appears that predictive accuracy 
has not substantially changed in the last 30 years or 
so.  At the beginning of this paper, it was stated that 
the quantitative evaluation of predictive accuracy 
may benefit from comparisons with multiple data 
sets.  But as analytical methods become more 
accurate, the use of multiple data sets may be 
counterproductive because of unknown errors in 
some of these data sets. 

Vertical Rate-of-Climb 
 The U.S. Army requires a minimum 
maneuver capability at its design hover ceiling, 
usually expressed as a 500 ft/min vertical rate-of-
climb (VROC).  Harris (Ref. 9) has pointed out that 
the accuracy of power prediction for a vertical climb 

1.00

1.05

1.10

1.15

1.20

1.25

0.0 0.1 0.2 0.3 0.4 0.5

 OH-58D

 EHPIC

P
/P

H

V
ROC

/V
H

  
Figure 14.  OH-58D vertical rate-of-climb, power 
ratio as a function of nondimensional climb rate 

(Ref. 7). 
 
is poor.  He included flight test data in Ref. 9 from 
the OH-58D development program and these data 
have been used by Felker et al. (Ref. 7) to examine 
the accuracy of the EHPIC code for VROC 
prediction.  Figure 14 shows the power ratio in a 
vertical climb as a function of the nondimensional 
climb rate.  At these low climb rates (a VROC/VH ~ 0.3 
is equivalent to a 500 ft/min climb), the EHPIC code 
overpredicts the power required.  This is shown more 
clearly in Fig. 15, which shows the linear regression 
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 Figure 15.  Accuracy of EHPIC vertical rate-of-
climb prediction for OH-58D (Ref. 7); m = 0.862, 

Se = ±1%. 
 
fit to the data.  The slope of the regression line 
indicates a 14% underprediction, but the accuracy in 
this case is dominated by the offset rather than the 
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slope.  Thus, the average offset, which is about 
+2.5% high is the best measure of the correlation 
inaccuracy. 

Forward Flight Performance 
 The calculation of forward flight 
performance is particularly important at the 
maximum flight speed or at the best cruise speed, 
either of which may be a contractual guarantee.  Yeo 
et al. (Ref. 5) have used CAMRAD II to look at three 
sets of flight test data on the UH-60: data obtained 
with the standard blades during the Airloads Program 
on the UH-60A (Ref. 10), data obtained with the 
standard blades during a subsequent development 
program using the UH-60L, and data obtained on a 
UH-60L with wide chord blades (see Ref. 5 for 
discussion of data sources).  Figure 16 shows power 
coefficient calculations and measurements for the 
UH-60A (the data for the airspeed at CW/σ = 0.090 
are not included for clarity), and these show the 
typical form of the power required curve with 
airspeed and increasing weight.  The accuracy of this 
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Figure 16.  UH-60A CP as a function of µ for five 

weight coefficients (airspeed sweeps) compared with 
CAMRAD II (Ref. 5). 

 
calculation as well as calculations from the UH-60L 
tests with the standard blade is shown in Fig. 17.  For 
the UH-60A data, there are two independent 
measurements of power.  First, there is the power that 
is measured at the engine output shafts, which 
represents the total vehicle power and, second, there 
is the power based on the main rotor torque 
measurement.  These two sets of measurements are 
treated as independent data sets, hence Fig. 17 is a 
combined analysis of three data sets for the power 
required for a UH-60 with standard blades.  There is 
an overprediction of power of 3.7% and the scatter is 
high for performance measurements.  In particular, 
some solution points are well away from the 45° line, 
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Figure 17.  Accuracy of CAMRAD II for the three 

standard blade data sets (Ref. 5); m = 1.037, 
Se = ±3%. 

 
Table 6.  Accuracy of CAMRAD II for three standard 

blade data sets plus wide chord blades (Ref. 5). 
 

Aircraft Rotor m ±Se ,% 
UH-60A std 1.076 4.4 
UH-60A (M/R power) std 1.022 2.9 
UH-60L std 1.024 1.7 
UH-60L wide 

chord 
0.868 2.1 

 
 

generally those points at either end of the high weight 
coefficient speed sweeps. 
 Table 6 shows the individual accuracies for 
the three sets of data and also includes the accuracy 
values for the UH-60L with the wide chord blades 
(these data are proprietary and are not shown in Fig. 
17).  The total power for the UH-60A tested during 
the Airloads Program is overpredicted by 7.6% and 
the scatter is excessive.  Power based on the main 
rotor shaft torque is more accurate and is similar to 
the total power measurements on the UH-60L.  The 
wide chord blade data are underpredicted by 13.2%, 
which is an excessive error for performance data for 
any aircraft.  The problems with the accuracy 
measurements in Table 6 are caused in part by 
serious temperature calibration errors in the original 
flight test measurements that have not been resolved 
(Ref. 11).  It may be the case that these flight test 
measurements are not suitable for the assessment of 
flight performance accuracy. 
 A generation ago, Harris et al. (Ref. 1) 
examined cruise performance predictions for 11 
helicopters at various weight coefficients, providing 
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35 test cases.  Of the 35, 18 were within a ±3% error 
band and 30 were within ±6%.  No significant 
improvement in performance prediction has been 
demonstrated since 1979.  If accuracies for forward 
flight performance are required that are better than 
Harris et al. demonstrated 35 years ago, then 
improved measurements will be needed. 

OEI Performance 
 One-Engine-Inoperative (OEI) performance 
is evaluated near the minimum power speed, which 
for a typical helicopter is between an advance ratio of 
0.15 and 0.20.  Wachspress et al. (Ref. 8), using the 
CHARM code, have calculated power for a number 
of rotors near the minimum power speed, including 
the UH-60A rotor in the 80- by 120-Foot Wind 
Tunnel at NASA Ames Research Center and the Tilt 
Rotor Aeroacoustic Model (TRAM) in the German-
Dutch Wind Tunnel (DNW). 
 Figure 18 shows the main rotor power 
coefficient for the UH-60A rotor for three thrust 
coefficients over the range of 0.0 ≤ µ ≤ 0.20.  In this 
case, the CHARM analysis modeled the wind tunnel 
walls as panels and the Large Rotor Test Apparatus 
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Figure 18.  UH-60A CP/σ as a function of µ for three 
weight coefficients compared with CHARM (Ref. 8). 
 
(LRTA), which supports and powers the rotor, as a 
body of revolution.  The calculations appear quite 
accurate until deviations in the power prediction are 
seen at µ ≤ 0.04, presumably when flow breakdown 
on the tunnel walls occurs.  Of interest for OEI 
performance is the advance ratio range from 0.10 to 
0.20, and the accuracy of the CHARM analysis is 
assessed over this range in Fig. 19.  The CHARM 
analysis overpredicts the power required by 2.3% and 
there is very little scatter.  The CHARM code was 
also used to predict the main rotor power without 
modeling the wind tunnel walls or the LRTA.  In this 
case the power was overpredicted by 13.2%, showing  
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Figure 19.  Accuracy of CHARM for three thrust 

coefficients (Ref. 8) for µ ≥ 0.10; m = 1.023,  
Se = ±1%. 

 
that wall effects must be correctly modeled for rotors 
tested at these low speeds. 
 The CHARM analysis has also been used to 
predict the power of the TRAM model at µ = 0.15 in 
the DNW wind tunnel.  In this case, the variables 
causing variation in the power coefficient are shaft 
angle of attack and thrust coefficient, as shown in 
Fig. 20.  The calculation in this case is unusual in that 
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Figure 20.  TRAM CP/σ as a function of shaft angle 
and thrust coefficient as compared with CHARM 

(Ref. 8). 
 
it was made blind, that is, the data were not provided 
to CDI (the developers of CHARM) prior to their 
making the computation.  The accuracy of this 
calculation is judged in Fig. 21, which shows an 
underprediction of power by 1.4%, which is 
comparable to the UH-60A prediction discussed 
above. 



 10 

0.000

0.005

0.010

0.015

0.000 0.005 0.010 0.015

C
a
lc

u
la

te
d
 C

P
/!

Measured C
P
/!

 
Figure 21.  Accuracy of CHARM for TRAM at 

µ = 0.15 (Ref. 8); m = 0.986, Se = ±3%. 
 
 Yeo et al. (Ref. 5) have calculated forward 
flight performance for three UH-60 flight tests as 
discussed above (see Figs. 16 and 17).  These 
calculations and measurements are examined here for 
the range 0.12 ≤ µ ≤ 0.22 to assess the accuracy of 
predictions for OEI performance using the 
CAMRAD II analysis.  An example comparison of 
the power prediction over this range is shown in Fig. 
22 for the UH-60L with the standard blades at four 
weight coefficients (airspeed sweeps).  For this case, 
both advance ratio and weight coefficient are the 
source of variation in the power coefficient.  The 
accuracy of the CAMRAD II analysis is assessed in 
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Figure 22.  Power coefficient as a function of 
advance ratio and weight coefficient compared with 

CAMRAD II for UH-60L with standard blades 
(Ref. 5). 
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Figure 23.  Accuracy of CAMRAD II for OEI 
performance for three standard-blade data sets 

(Ref. 5); m = 1.054, Se = ±2%. 
 
Fig. 23 for the three data sets for the standard blades 
(again, the wide chord blade data are excluded).  
There is an overprediction of 5.4%. 
 Harris et al. (Ref. 1) also examined OEI 
performance in the Bell Helicopter Textron study of 
forward flight performance.  For the minimum power 
speed they included data from isolated rotor tests, 
model rotor tests, and 11 flight tests.  Including 
multiple weight or thrust conditions, this provided 45 
cases.  Of these, 29 were within a band of ±3% and 
39 were within ±6%.  As noted previously for the 
hover and forward flight performance, there is no 
apparent improvement in predictive capability in the 
last 30 years, although there is less empiricism in 
present analytical models. 

Forward Flight Airloads 
 There are few data sets that include rotor 
blade airloads.  Such experiments require chordwise 
arrays of pressure transducers, ideally at multiple 
radial stations.  Older experiments, using differential 
pressure transducers, are able to compute normal 
force and pitching moment; whereas more recent 
experiments, employing arrays of absolute pressure 
transducers, also obtain chord force (but not viscous 
drag). 
 Yeo and Johnson (Ref. 12) have looked at 
five sets of rotor airloads data.  Two of these data 
sets, that of the H-34 and the UH-60A, have 
measurements at radial stations along the blade span; 
whereas the other three data sets, flight tests of the 
research Puma, the SA 349/2, and model tests of the 
BO 105, have measurements at only a few stations 
near the blade tip.  The correlation effort by Yeo and 
Johnson selected an outboard radial station from the 
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five data sets, generally near 0.90R, and then picked 
two airspeeds: a low speed was selected near 
µ ~ 0.15, where there is strong loading from the 
vortex wake, and a high speed was selected that was 
representative of the maximum flight speed.  For the 
H-34, flight-test data were used for the low-speed 
case, whereas wind tunnel data (same rotor) were 
used for the high-speed case.  There was no high-
speed case for the BO 105 wind tunnel tests. 
 The CAMRAD II calculations were made 
using two wake models: a rolled-up wake model and 
a multi-trailer model.  Otherwise, analysis options 
were held constant for all of the cases.  Thus, there 
were 9 test conditions (5 rotors at low speed, 4 rotors 
at high speed) and two wake models, which resulted 
in 18 calculations for both normal force, M2cn, and 
pitching moment, M2cm.  An example of the 
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Figure 24.  Measured normal force as a function of 

azimuth on the research Puma compared with 
CAMRAD II (Ref. 12); r/R = 0.92 and µ = 0.141. 

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

 low speed

 high speed

C
al

cu
la

te
d

 M
2
c n

Measured M
2
c

n

 
Figure 25.  Accuracy of CAMRAD II for combined 

analysis of 5 rotors at 2 airspeeds (Ref. 12);  
m = 0.834, Se = ±10%. 

calculation for normal force for the research Puma at 
low speed is shown in Fig. 24.  The time history is 
sampled every 15 deg. so as to represent the 
frequency content.  The combined analysis of the 18 
cases is shown in Fig. 25.  There is a general 
underprediction of about 17% and the scatter is much 
greater than was seen for the performance 
calculations.  If the low- and high-speed cases are 
examined separately, the combined results are much 
the same: at low speed, m = 0.814 and at high speed, 
m = 0.839.  But if the accuracy of the individual 
rotors or helicopters is examined separately the 
results are variable.  They range from m = 0.138 for 
the low-speed BO 105 case to m = 1.403 for the low-
speed Puma case.  This range of variability makes it 
difficult to know if the overall slope in Fig. 25 is 
representative of analysis accuracy. 
 Similar results are obtained by assessing the 
accuracy of the blade pitching moments.  Figure 26 
shows an example for the SA 349/2 where µ = 0.14 
and r/R = 0.88.  This is one of 16 cases (there are no 
BO 105 data for pitching moment).  The poor 
correlation indicates that the lifting-line model in 
CAMRAD II does not adequately represent the disk 
vortex loading for this low-speed case.  The 
combined analysis of the 16 cases for pitching 
moment is shown in Fig. 27.  The underprediction for 
pitching moment is about 25% and the scatter is 
increased over that seen for normal force.  In the 
normal force case, little difference was seen in the 
computed slope for the separate analyses of the low- 
and high-speed cases.  But for pitching moment at 
low speed, m = 0.828 and Se = ±16%, whereas at high 
speed, m = 0.727 and Se = ±31%.  Analysis of the 
accuracy of the individual rotors shows considerable 
variation, as was seen for normal force.  The slopes 
vary from –0.040 for the SA 349/2 at low speed (see 
Fig. 26) to 1.029 for the H-34 at high speed. 
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Figure 26.  Measured pitching moment as a function 

of azimuth on the SA 349/2 compared with 
CAMRAD II (Ref. 12); r/R = 0.88 and µ = 0.14. 
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Figure 27.  Accuracy of CAMRAD II for combined 

analysis of 4 rotors at 2 airspeeds (Ref. 12);  
m = 0.747, Se = ±25%. 

Blade Structural Loads in Forward Flight 
 The correct calculation of blade structural 
loads, that is, the flap bending, chord bending, and 
torsion moments, is important for fatigue and 
vibration.  Yeo and Johnson (Ref. 5) have used 
CAMRAD II to compare with the structural loads 
from the same five experiments that were examined 
for their airloads in the previous section.  For this 
effort they selected loads measured roughly at the 
midspan on the blade.  Again, the same two airspeeds 
were selected, one near µ ~ 0.15, where there is 
strong loading from the vortex wake, and one at high 
speed.  For the low-speed case, flight test data was 
used for the H-34, whereas for the high-speed case, 
wind tunnel data were used (same rotor, different 
tests).  There was no high-speed case for the BO 105 
wind tunnel tests. 
 The CAMRAD II calculations were made 
using two wake models: a rolled-up wake model and 
a multi-trailer model.  Otherwise, analysis options 
were held constant for all of the cases.  Thus, there 
were 9 test conditions (5 rotors at low speed, 4 rotors 
at high speed) and two wake models, which resulted 
in 18 calculations each for the flap bending, chord 
bending, and torsion moments. 
 An example of flap bending moment on the 
research Puma at high speed is shown in Fig. 28.  For 
the comparisons of structural loads, the mean values 
of the measurements and calculations have been 
removed.  As with the blade airloads, the variation in 
the regression analysis is provided by sampling the 
time histories every 15 deg.  The combined analysis 
of the 18 sets of comparison are shown in Fig. 29.  
Based on this combined analysis there is an 
underprediction of 27%.  The predictive accuracy in 
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Figure 28.  Nondimensional flap bending moment as 

a function of azimuth on the Puma compared with 
CAMRAD II (Ref. 5); r/R = 0.46 and µ = 0.362. 
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Figure 29.  Accuracy of CAMRAD II for combined 

analysis of midspan flap bending moment for 5 rotors 
at 2 airspeeds (Ref. 5); m = 0.733, Se = ±14%. 

 
this case is less than was observed in the previous 
normal force comparisons.  This is not surprising 
since the blade normal forces largely determine the 
flap bending moments.  As with the previous normal 
force assessment, there is little difference between 
the low- and high-speed cases for flap bending 
moment, m = 0.761 at low speed and m = 0.722 high 
speed.  Also, as seen for the airloads comparisons, 
there is a wide variation in the slope values for the 18 
cases, the range at low speed extends from a slope of 
0.372 for the BO 105 to 1.080 for the UH-60A. 
 An example of the CAMRAD II prediction 
of chord bending moment is shown in Fig. 30 for the 
SA 349/2 at high speed.  The combined analysis of 
the 18 cases for chord bending is shown in Fig. 31.  
The combined accuracy in this case is poor.  The 
underprediction of 73% is so large as to make the 
calculations largely untrustworthy.  There are 
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Figure 30.  Nondimensional chord bending moment 
as a function of azimuth on the SA 349/2 compared 

with CAMRAD II (Ref. 5); r/R = 0.54 and µ = 0.361. 
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Figure 31.  Accuracy of CAMRAD II for combined 

analysis of midspan chord bending moment for 5 
rotors at 2 airspeeds (Ref. 5); m = 0.271, Se = ±11%. 

 
differences between the airspeed regimes, with the a 
64% underprediction at low speed and 75% at high 
speed.  The variation between individual cases ranges 
from –86% for the Puma to –25% for the SA 349/2 
(both at high speed).   
 It is expected that the chord bending 
calculation will be influenced by the rotor’s lead-lag 
damper, particularly at inboard locations.  The H-34, 
research Puma, and UH-60A all use hydraulic 
dampers that have strong nonlinearities.  The SA 
349/2 uses an elastomeric damper with weaker 
nonlinearities.  The BO 105 does not have a damper, 
but there is probably some friction damping in the 
blade root attachment.  But the differences in 
predictive accuracy for chord bending for these five 
rotors bear no obvious relationship to the damper 
type. 
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Figure 32.  Nondimensional torsion moment as a 

function of azimuth for the UH-60A compared with 
CAMRAD II (Ref. 5); r/R = 0.30 and µ = 0.368. 
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Figure 33.  Accuracy of CAMRAD II for combined 
analysis of midspan torsion moment for 5 rotors at 2 

airspeeds (Ref. 5); m = 0.665, Se = ±12%. 
 

 An example of CAMRAD II calculation of 
torsion moment for the UH-60A is shown in Fig. 32.  
The combined analysis of the 18 cases for torsion 
moment is shown in Fig. 33.  There is an 
underprediction of about 33% for these cases, which 
is comparable to the underprediction that was seen 
for the outboard pitching moments (see Fig. 27).  If 
the combined analysis is done for the two airspeed 
regimes separately, there is little difference in the 
slopes: m = 0.678 at low speed and m = 0.663 at high 
speed.  But as before, there is considerable variation 
between individual cases, ranging from m = 0.526 for 
the Puma at high speed to m = 0.879 for the BO 105 
at low speed. 
 The approach to evaluating predictive 
accuracy for the blade moments employed here uses 
the blade azimuth angle (time history) to provide a 
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range of values for assessment.  For the design 
engineer who is interested in fatigue damage, small 
differences in time histories are not of concern.  
Rather, it is the peak-to-peak loading that occurs over 
a wide range of conditions that is most meaningful.  
Using the Yeo and Johnson (Ref. 5) calculations and 
data it is possible to compute the peak-to-peak loads 
for these same cases and assess the predictive 
accuracy based only on these peak-to-peak loads, as 
shown for the flap bending moments in Fig. 34.  A 
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Figure 34.  Accuracy of CAMRAD II for half peak-

to-peak flap bending moments for 5 rotors and 2 
airspeeds (Ref. 5); m = 0.756, Se = ±11%. 

 
comparison of the slopes and the standard errors for 
the flap and chord bending, and torsion moments 
using the time histories (referred to here as the 
azimuth approach) is compared with that obtained 
using the peak-to-peak data in Table 7.  The slopes 
for flap bending and torsion moment accuracy are 
much the same for both approaches, although the 
scatter as indicated by Se is less for the peak-to-peak 
assessment.  The accuracy of the chord bending 
moment peak-to-peak prediction is improved as 
compared to the azimuth approach, but remains 
inaccurate. 
 
Table 7.  Comparison of slope and standard error of 
estimate for azimuth and peak-to-peak approaches. 

 
 Flap Chord Torsion 
 m Se m Se m Se 

azim. 0.733 14% 0.271 11 % 0.665 12% 
p-to-p 0.756 11% 0.409 9% 0.674 7% 

 

Maneuver Loads 
 Maneuver loads size many of the blade 
components, both in the rotating and fixed systems.  
Compared to a maximum airspeed level flight 
condition, blade loads are often doubled during 
severe maneuvers and the control loads may increase 
by a factor of 2.5 or 3.0 (Ref. 13).  Analytical 
methods are not considered reliable for these 
calculations so currently these design loads are 
determined from flight test databases.  Recent 
developments, however, offer optimism that some 
improvement can be achieved, even with 
comprehensive analyses. 
 Recently, Bhagwat et al. (Ref. 14) have 
studied the maneuver loads problem using a coupled 
approach employing RCAS (Ref. 15) for the 
Computational Structural Dynamics (CSD) side and 
OVERFLOW-2 (Ref. 16) for the Computational 
Fluid Dynamics (CFD) side.  They focused on the 
UTTAS maneuver for the UH-60A where the aircraft 
enters the maneuver at its maximum level flight 
speed, pulls up to achieve a 1.75-g load factor, and 
attempts to maintain that load factor for 3 seconds.  
This maneuver, in terms of loading, is one of the 
most severe encountered in the U.S. Army/NASA 
Airloads Program (Ref. 13).  
 Figure 35 shows the half peak-to-peak pitch-
link loads during the UTTAS maneuver and 
compares these with RCAS alone and the coupled 
RCAS/OVERFLOW-2.  The half peak-to-peak loads 
predicted by RCAS are shown in Fig. 36, which 
shows a 40% underprediction.  The maneuver loads 
in this case are dominated by dynamic stall (Ref. 17) 
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Figure 35.  Half peak-to-peak pitch-link loads during 

UTTAS maneuver on UH-60A compared to 
RCAS/OVERFLOW-2 coupled solution and RCAS 

alone (Ref. 14). 
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Figure 36.  Accuracy of RCAS prediction for pitch-

link loads during UTTAS maneuver (Ref. 14); 
m = 0.398, Se = ±10%. 

 
and the poor prediction of pitch-link loads under 
these conditions is typical of comprehensive  
analyses.  But the prediction of the loads using the 
CSD/CFD analysis is quite good.  Table 8 shows the 
slopes and standard error of estimate for three load 
components during the UTTAS maneuver and 
compares the RCAS and the CSD/CFD predictions.  
Both approaches show good results for the flap 
bending moments, being within 5 to 8% of the 
measurements.  RCAS compares very well with the 
chord bending moments, but the CSD/CFD 
underpredicts these moments.  The coupled 
CSD/CFD calculation for the pitch-link loads is very 
good, showing this coupled approach is able to 
capture most of the features of the dynamic stall 
loading. 

Fixed-System Loads 
 The measurement of the vibratory loads in 
the fixed system is extraordinarily difficult (as is the 
calculation).  Gabel et al. (Ref. 18) used multiple 
approaches to measure vibratory loads in both the 
rotating- and fixed-systems, and their study illustrates 
many of the experimental difficulties.  Sikorsky 
Aircraft tested a five-bladed bearingless rotor, the. 

SBMR, in the 40- by 80-Foot Wind Tunnel in 1992.  
The 5/rev loads were measured in the fixed system, 
and three different comprehensive analyses were 
used to predict these fixed-system loads (Ref. 19).  
The fixed-system measurements were obtained with a 
dynamically calibrated balance and dynamic 
corrections were applied to the measured pitch-link 
loads as well.  There were five components of the 
balance loads (all the forces and moments except 
torque) and the published results have unfortunately 
been normalized by an arbitrary factor.  Three 
Sikorsky Aircraft analyses were compared with the 
measurement: two analyses developed by the 
company, KTRAN and RDYNE; and UMARC/S, a 
proprietary version of the University of Maryland’s 
comprehensive analysis code.  Figure 37 provides an 
example of the measurements of the 5/rev vertical 
force for the SBMR as a function of airspeed and 
includes the predictions of the three codes, which 
show widely differing predictions.  A combined 
analysis of all load components and calculations is 
shown in Fig. 38.  Such a combined analysis as 
shown here has serious limitations.  For example, it is 
difficult to equate the 5/rev drag force with the 5/rev 
rolling moment, so the five load components are 
apples and oranges and different kinds of fruit.  
Moreover, because the loads have been normalized, 
the grouping for combined analysis is even less 
satisfactory.  A more appropriate comparison is to 
look at each individual case as is shown in Table 9.  
There are only a few situations where a component of 
the balance load is predicted within ±25%; in most 
cases, the errors are much larger.  But the scatter as 
measured by the standard error of estimate is good in 
most cases.  Even for the most accurate code, 
UMARC/S, the predictions are poor. 

Wake and Fuselage Interactions 
 The rotor wake will cause loading on the 
fuselage and the fuselage will change the inflow at 
the rotor.  These interaction effects can be quite 
pronounced when they affect empennage loading or 
cause boundary layer separation.  The CHARM code 
can represent a helicopter body using a panel method. 

 
Table 8.  Comparison of RCAS and coupled RCAS/OVERFLOW-2 predictive capabilities for UTTAS maneuver 

loads. 
 

 Flap (0.50R) Chord (0.50R) Pitch Link 
 m Se m Se m Se 

RCAS 1.078 9% 1.012 18% 0.398 10% 
RCAS/OVERFLOW-2 0.949 10% 0.586 13% 0.963 4% 
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Table 9.  Comparison of slope and standard error of estimate for five components of balance loads using three 

Sikorsky Aircraft analyses. 
 

BALANCE KTRAN UMARC/S RDYNE 
LOAD m Se m Se m Se 

drag force   0.331 2% 0.678 20%   0.614 7% 
side force   0.197 3% 1.557 8%   0.306 8% 
pitch moment   0.548 14% 1.243 9%   1.549 28% 
roll moment   0.073 10% 0.474 13% –0.210 10% 
vertical force –0.042 11% 0.872 6%   1.049 5% 
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Figure 37.  Normalized 5/rev balance vertical force as 

a function of airspeed compared with three 
calculations (Ref. 19). 
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Figure 38.  Accuracy of Sikorsky analyses for the 

prediction of 5/rev balance loads (Ref. 19); 
m = 0.465, Se = ±16%. 

Wachspress et al. (Ref. 20) have compared the 
CHARM code with experimental data from a test of a 
model Dauphin rotor and fuselage.  Figure 39 
provides an example of the calculated and measured 
unsteady pressure at a centerline location on the
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Figure 39.  Unsteady pressures on Dauphin fuselage 
from combined rotor and fuselage test, comparing 
CHARM calculations and measurements (Ref. 20). 

 
forward part of the fuselage.  To assess the 
calculation, 15 pressure taps were used for the 
comparison: 5 were on the fuselage centerline and 10 
were on the fuselage sides at two longitudinal 
locations.  Variation in the analysis variables was 
provided by sampling at various azimuths (as seen in 
Fig. 39) and using multiple pressure tap locations.  
Figure 40 shows the predictive accuracy of the 
CHARM analysis for the unsteady pressure 
prediction.  The combined accuracy is quite good, 
with a 7% underprediction.  The accuracy at 
individual stations ranged from m = 0.677 at a 
centerline location immediately behind the rotor hub 
to m = 1.080 at a centerline location on the 
empennage.  Most of the individual slopes were close 
to m = 0.9. 

Active Controls 
 Tests of model- and full-scale rotors in 
recent decades have demonstrated a number of active 
control approaches that can reduce vibration and 
noise, including higher-harmonic control (HHC) and 
individual blade control (IBC).  In each of these 
demonstrations, some form of controller was used 
that measured vibratory loads and calculated the 
active control input that would provide a reduction.
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Figure 40.  Accuracy of CHARM predicted unsteady 

pressures for 15 locations on Dauphin fuselage 
(Ref. 20); m = 0.929, Se = ±15%. 

 
But few attempts have been made to correlate with 
these control inputs. 
 A full-scale BO 105 rotor with an IBC 
control system was tested in the 40- by 80-Foot Wind 
Tunnel in two phases in 1993 and 1994 (Ref. 21).  
The active control in this test was a hydraulically 
actuated pitch link between the rotating swashplate 
and the blade root.  Torok (Ref. 22) used a Sikorsky 
version of the UMARC code to predict the effects on 
4/rev hub loads with changes in the pitch link 2/rev 
and 3/rev input phase angles.  Because there was no 
calibrated dynamic balance, Torok computed the 
percent change in the loads rather than the actual 
loads themselves.  Figure 41 shows the measured 
change in 4/rev hub shear with the variation in phase 
of the 2/rev input and compares this to the 
UMARC/S predictions.  A combined analysis of the 
predicted changes in 4/rev hub shears, moments, and 
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Figure 41.  Change in 4/rev hub shear as a function of 
IBC 2/rev input phase for BO 105 in the wind tunnel; 
comparison of measurements and UMARC (Ref. 22). 
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Figure 42.  Accuracy of UMARC/S prediction of 

4/rev hub load change with variable 2/rev and 3/rev 
IBC inputs (Ref. 22); m = 0.939, Se = ±18%. 

 
lift is shown in Fig. 42.  Variation in the correlation 
variables is provided by the 2/rev and 3/rev input 
phase angles of the active pitch link, and the three 
components of hub loads.  The predictive accuracy in 
this case, judged by the slope 0.939 for the combined 
analysis, is very good.  But when the individual 
components are examined, as shown in Table 10, it is 
observed that most of the calculations are quite poor, 
only the 4/rev hub moment change to 3/rev phase 
inputs is within ±20% of the measurements.  This 
example shows that caution needs to be used in 
combining data sets for the quantitative approach 
presented here.  Combining cases may be effective in 
some situations but misleading in others. 
 

Table 10.  UMARC/S predictive accuracy for 
changes in 4/rev hub loads with 2/rev and 3/rev input 

phase variation for full-scale BO 105 with IBC 
(Ref. 22) 

 
Hub Component Input m 

Shear 2/rev 0.310 
Moment 2/rev 0.797 
Lift 2/rev 0.318 
Shear 3/rev 1.251 
Moment 3/rev 1.126 
Lift 3/rev 0.240 

 
 
 Kottapalli (Ref. 23) has examined data for a 
UH-60A rotor tested in the 80- by 120-Foot Wind 
Tunnel in 2001 with an IBC system installed.  He 
used CAMRAD II to compare with the test data.  As 
the balance was uncalibrated, Kottapalli compared 
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calculations and measurements for the blade loads 
that cause the 4/rev fixed frame vibrations, that is, 
3/rev and 5/rev chord bending moments, and 4/rev 
flap bending moments.  An example of the measured 
and calculated 3/rev chord bending moment 
responses to a 3/rev IBC input over a range of phase 
angles is shown in Fig. 43.  In this particular example 
the agreement appears fairly good.  A combined 
analysis of the 3/rev chord bending moment response 
at three radial stations is shown in Fig. 44.  The 
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Figure 43.  Change in measured 3/rev chord bending 

moment of UH-60A with IBC, compared with 
CAMRAD II (Ref. 23). 
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Figure 44.  Accuracy of CAMRAD II prediction of 
3/rev chord bending moments with variable 3/rev 

IBC inputs (Ref. 23); m = 0.937, Se = ±14%. 
 
accuracy of the combined analysis is quite good, 
m = 0.937.  But as in the previous case of the BO 105 
with IBC inputs, the combining of these three radial 
stations obscures the poor correlation that was 
obtained for the individual cases, as shown in the first 
row of Table 11.  Again, as was the case for the 
BO 105 correlation, the use of a combined analysis 
can be misleading.  In the present case, the

Table 11.  CAMRAD II predictive accuracy for blade 
bending moment response at 3 radial stations for 
UH-60A with IBC (Ref. 23). 
 

Bending 
Moment 

Resp. m 

  0.20R 0.50R 0.70R 
Chord 3/rev   1.219   2.349   1.365 
Chord 5/rev –0.624 –0.773 –0.424 
Flap 4/rev   0.480   1.729   0.279 

 
 
combining of the chord bending moment response at 
three radial stations seems entirely appropriate since 
these independent measurements should be related 
through the actual blade modes.  But despite this 
argument, which seems reasonable, the combined 
analysis does not appear successful in this case.  
Table 11 also shows the slope of the regression fit for 
the 5/rev chord bending and 4/rev flap bending 
moments.  There is wide variation in these values and 
the ability to predict the response of blade bending 
moments to active controls is deficient. 

Aeromechanical/Aeroelastic Stability 
 There exists an extensive literature on 
aeroelastic and aeromechanical stability dating back 
to the earliest rotorcraft flight tests.  For current 
rotorcraft designs, the major stability problems are 
those dealing with tiltrotor whirl stability and 
rotorcraft air and ground resonance. 
 Bell Helicopter Textron has used their 
stability code, ASAP, to predict whirl stability 
boundaries for two wing designs tested at model 
scale in NASA Langley’s Transonic Dynamics 
Tunnel (Ref. 24).  Figure 45 shows the stability 
boundaries for the two wing designs.  For each rotor 
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Figure 45.  Whirl flutter stability boundaries for two 
wing designs as tested in the Transonic Dynamics 
Tunnel compared with Bell Helicopter Textron’s 

ASAP analysis (Ref. 24). 
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Figure 46.  Accuracy of ASAP prediction of whirl 
flutter stability boundaries for two wing designs 

(Ref. 24); m = 0.880, Se = ±3%. 
 
speed, the boundary (in knots equivalent airspeed) 
where the damping becomes neutral is shown.  The 
linear regression for these boundary points, where 
rotor speed is the source of the variation in the 
correlation variables, is shown in Fig. 46.  The 
stability boundary is underpredicted by 12%.  The 
scatter as indicated by the standard error of estimate 
is low. 
 Peterson and Johnson (Ref. 25) have 
compared the stability predictions of the 
comprehensive code CAMRAD/JA (a predecessor to 
CAMRAD II) with measurements obtained in hover 
(in the 40- by 80-Foot Wind Tunnel) for a full-scale 
BO 105 rotor.  Rotor thrust provided the variation in 
the correlation variables.  The damping as a function 
of thrust is shown in Fig. 47.  The linear regression 
analysis of these data is shown in Fig. 48.  The 
damping is underpredicted, although the scatter in the 
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Figure 47.  Lead-lag damping of BO 105 in hover in 

40- by 80-Foot Wind Tunnel, compared with 
CAMRAD II (Ref. 25). 
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Figure 48.  Accuracy of CAMRAD II prediction of 

BO 105 lead-lag damping (Ref. 25); m = 0.368, 
Se = ±3% 

 
results is low.  To some extent, this is a typical result 
for aeromechanical stability testing since the 
accuracy of damping measurements is degraded at 
higher damping values.  But even if half of the points 
in Fig. 47 were removed, those with the largest 
damping, the prediction would still be poor. 

Ice Accretion 
 Britton (Ref. 26) has examined the torque 
rise in icing conditions on a model rotor in the NASA 
Glenn Icing Research Tunnel (IRT).  As shown in 
Fig. 49, there is initially a fairly rapid increase in the 
torque as ice is deposited, but the rise levels out after 
ice starts to shed from the outer portions of the 
blades.  Empirical methods for performance 
degradation and ice shedding generally show good 
agreement with experimental data taken on model 
rotors.  The correlation method in Fig. 49 (Ref. 27) is 
able to accurately match this torque rise; m = 0.995, 
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Figure 49.  Torque rise on model rotor in NASA 

Glenn Icing Research Tunnel (Ref. 26). 
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Figure 50.  Accuracy of IBL model for prediction of 

torque rise on model rotor in NASA Glenn Icing 
Research Tunnel (Ref. 26); m = 0.656, Se = ±4%. 

 
Se =±3%.  But because of the nature of empirical 
methods it is unclear whether these methods can be 
accurately and consistently applied to full-scale 
configurations.  An analytical approach by Britton 
(Ref. 26), combines the Boeing B65 performance 
code, a modified version of the LEWICE ice 
accretion code, an empirical routine to predict natural 
shedding, and an interactive boundary layer (IBL) 
routine to determine the lift and drag characteristics.  
The predictive accuracy of this combined codes is 
evaluated in Fig. 50.  This method, although closer to 
a first-principles analysis than the correlation method, 
underpredicts the torque rise. 

Concluding Remarks 
 A technique to quantitatively assess the 
predictive capability of aeromechanics methods has 
been described in this paper.  The method considers 
some appropriate measurement to be the primary 
independent variable and the calculated result as the 
dependent variable.  The linear regression of these 
variables is computed and the slope of the regression 
line is considered a measure of accuracy.  Perfect 
agreement would provide a slope of 1; values greater 
than 1 represent overprediction whereas values less 
than 1 are underprediction.  The standard error of 
estimate of the linear regression is a measure of 
scatter or dispersion, and in some cases may provide 
a better assessment of accuracy than the regression 
line slope.  In a few cases, the offset of the linear 
regression provides a better indicator of error.  For 
the technique to be useful in comparing computation 
and measurement, however, there must be significant 
variation in the dependent variables.  The method is 

based on simple statistical methods that are readily 
available in any spreadsheet program or with any 
statistical software package. 
 Because the method is based on linear 
regression of data representing measurement and 
calculation, it is simple to apply over a wide range of 
problems as has been shown here.  The correlation 
variables may not be strictly stochastic in all cases, 
and the use of simple statistical tools, such as linear 
regression, in this sense are a convenience. 
 But the problem of statistical independence 
looms large in combining data sets, as has been done 
here in multiple examples.  It is considered a strength 
of the approach that it is possible to combine multiple 
cases, for example, two or three independent flight 
tests for performance or four or five separate tests for 
blade airloads.  But each of these separate tests may 
have their own problems with differing error sources, 
and by combining the analysis of these independent 
tests, these differing error sources may be obscured. 
 The major emphasis in this paper has been 
on the accuracy of computation based on the slope of 
the resulting regression line.  The slope is an absolute 
measurement and is particularly useful.  But when 
expressing the standard error of the estimate or the 
offset, it is necessary to select a reference condition.  
In this paper the reference has been the figure’s 
ordinate scale, but this is arbitrary. 
 A useful feature of the present approach 
when applied over a broad range of problems is that 
it describes a hierarchy of predictive accuracy.  At 
the upper end of the hierarchy, such as for hover or 
forward flight performance, accuracies of the order of 
±1 or ±2% appear essential and scatter of Se > 3 or 
4% seems excessive.  Lower down on the hierarchy, 
errors of ±10% in the prediction of fuselage unsteady 
pressures may be acceptable, and the best that can be 
presently done with blade airloads is of the order of 
±20% or ±30%.  Similarly, stability predictions 
within ±10% or ±20% may be acceptable.  Blade 
structural loads are more difficult to predict, 
vibratory loads are worse, and the prediction of fixed-
system vibration is so difficult that it seems pointless 
to even call out a particular number. 
 The hierarchy of these problems may be 
useful in the sense that it can identify where further 
research is most needed.  Performance predictions for 
conventional rotors are sufficiently accurate that 
additional progress can only be obtained with more 
accurate measurements than are currently obtained.  
On the other end of the hierarchy, it appears clear that 
increases in both analysis and measurement accuracy 
are required. 
 It has been shown here that phase errors in 
time histories tend to have significant effects upon 
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both the slope and the standard error.  When the 
phase errors are significant, then the use of the 
statistical measures used here become unreliable.  
This is possibly a benefit rather than a detriment of 
the approach, since phase errors are a clear indicator 
that the physics of the problem have not been 
captured. 
 The simplicity of the method shown here 
may have some utility in applications where 
extensive calculations are being made against many 
data sets, as sometimes occurs for CFD calculations.  
Rather than using extensive data visualization to 
compare calculation and data, the use of the present 
method may provide a guide as to where major 
problems in correlation are occurring and the analyst 
can then focus on these areas. 
 In addition, as experience is gained in 
applying this quantitative approach to additional data 
sets, it may be possible to develop benchmarks 
concerning the state of the art.  If multiple cases in 
one topic area achieve a similar result, then it will be 
possible to establish a benchmark for the accuracy of 
the methods used.  This benchmark can then guide 
further work, whether it be on the analytical or on the 
measurement side. 
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