This material may be protected by copyright law (Title 17,
U.S. Code)

Warning concerning copyright restrictions

The copyright law of the United States (Title 17, United States Code)
governs the making of photocopies or other reproductions of
copyrighted material.

Under certain conditions specified in the law, libraries and archives are
authorized to furnish a photocopy or other reproduction. One of these
specified conditions is that the photocopy or reproduction Is not to be
"used for any purpose other than private study, scholarship, or
research.” If a user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of "fair use," that user may be

llable for copyright infringement.

This institution reserves the right to refusé to accept a copying order
if, in its judgment, fulfillment of the order would involve violation of

Copyright Law.

LINDA HALL LIBRARY
5109 CHERRY STREET
KANSAS CITY, MISSOURI

64110-2498

PHONE (816) 363-4600
FAX: (816) 926-8785
SHIP TO:

D10477

Attn: Kathy Ponce

NASA Ames Research Center
Library, bldg 202, room Bl
Mail stop 202-3

Moffett Field CA 94035-1000
uUS

Fax: 1-650-604-4988

Phone: 1-650-604-0116

Ariel:

Email: arc-dl-library@mail.nasa.gov

Regular

ElecDel

LHL

CCL/CCG (Libraries Only)

Max Cost: 65.00

Reference Number: Requester: O, Susan

Account Number:
FEDEX Account Number:

Notes: Please bill to NASA deposit

account D10477

(TR, =

7/27/10 DocServ #: 607679
16:50
O /S g

Shelved as:
QRTh. 43
Location: , L5 [T
—/
Title: Parallel algorithms for irregularly

structured problems : third international

workshop, IRREGULAR '96, Santa Barbara,
CA, USA, August 19-21, 1996 : proceedings /

A. Ferreira ... [et al.] (eds.).

Volume: Lecture notes in computer scie
Issue:
Date: 1996

Author: Leonid Oliker, Rupak Biswas, and
Roger C. Strawn

Article Title: Paralﬁl{plementation of an
adaptive scheme for 3D unstructured grids on
the SP2

Pages: 35—?1_/ ,®

Accept Non English? Yes

oV’

DOCSERV/WEB /PULL SLIP

be

A. Ferreira J. Rolim
Y. Saad T. Yang (Eds.)

Parallel Algorithms for
Irregularly Structured
Problems

Third International Workshop

IRREGULAR ’96

? Santa Barbara, CA, USA, August 19-21, 1996
Proceedings

!
PRI=A

) Springer

QA6 442
I57
199¢

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA

Series Editors

4-30-27 GRL

Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors R

Afonso Ferreira
CNRS - Ecole Normale Supérieure de Lyon
46 Allée d'Italie, F-69364 Lyon Cedex 07, France

José Rolim ‘
Centre Universitaire d'Informatique, Université de Geneve
24, Rue General Dufour, CH-1211 Geneve 4, Switzerland

Yousef Saad
Department of Computer Science, University of Minnesota
200 Union Street, Minneapolis, MN 55455-0159, USA

Tao Yang
Department of Computer Science, University of California
Santa Barbara, CA 93106, USA .

Cataloging-in-Publication data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Parallel algorithms for irregularly structured problems : third

international workshop, IRREGULAR ’96, Santa Barbara, CA,

USA, August 19 - 21, 1996 ; proceedings / A. Ferreira ... (ed.). -

Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong .

Kong ; London ; Milan ; Paris ; Santa Clara ; Singapore ;

Tokyo : Springer, 1996 ’
(Lecture notes in computer science ; Vol. 1117)
ISBN 3-540-61549-0

NE: Ferreira, Alfonso [Hrsg.]; GT

CR Subject Classification (1991): E1.2, D.1.3, C.1.2, B.2.6, D.4, G.1-2

ISSN 0302-9743
ISBN 3-540-61549-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer - Verlag. Violations are
liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1996
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10513411 06/3142-543210 Printed on acid-free paper

The International Worksho
Problems Irregular 96 is an
ing efficient parallel solution
emphasis on the inter-coope
field. Irregular’96 takes plac
is the third in this series of
in Lyon (1995) and in Gene
The scientific program
Sparse Matrix Problems,]
Applications (I and II), Co:
Mapping and Load Balanci
28 were selected. This volu
vited speakers. All papers |
by the program committee
viewed by at least three ref
and consistency with the th
We would like to thank a
all of the referees, our invite
Smith, K. Yelick, and the n
A. Ferreira, general co~
J. Rolim, general co-che
Y. Saad, program comn
T. Yang, local chair, Ut
P. Banerjee, U. of Illinc
V. Barbosa, U. of Rio d
R. Cypher, Johns Hopk
J. Fitch, U. of Bath
T. Leighton, MIT
J. van Leeuwen, U. of U
E. Mayr, U. of Munich
R. Meyer, U. of Wiscon
Y. Notay, U. of Brussel:
V. Prasanna, USC, Los
Y. Robert, ENS Lyon
S. Sahni, U. of Florida
P. Widmayer, ETH Zur

We also gratefully acko
Theoretical Computer Scie
lar” of the International F
we would like to thank the
Daniel Andresen and Cong

June 1996 Afons

Parallel Implementation of an Adaptive Scheme
for 3D Unstructured Grids on the SP2

Leonid Oliker!, Rupak Biswas!, and Roger C. Strawn?

1 RIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA
2 US Army AFDD, NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract. Dynamic mesh adaption on unstructured grids is a powerful
tool for computing unsteady flows that require local grid modifications
to efficiently resolve solution features. For this work, we consider an
edge-based adaption scheme that has shown good single-processor per-
formance on the C90. We report on our experience parallelizing this code
for the SP2. Results show a 47.0X speedup on 64 processors when 10%
of the mesh is randomly refined. Performance deteriorates to 7.7X when
the same number of edges are refined in a highly-localized region. This
is because almost all the mesh adaption is confined to a single proces-
sor. However, this problem can be remedied by repartitioning the mesh
immediately after targeting edges for refinement but before the actual
adaption takes place. With this change, the speedup improves dramati-
cally to 43.6X.

1 Introduction

Unstructured grids for solving computational problems have two major advan-
tages over structured grids. First, unstructured meshes enable efficient grid gen-
eration around highly complex geometries. Second, appropriate unstructured-
grid data structures facilitate the rapid insertion and deletion of points to allow
the mesh to locally adapt to the solution. ‘

Two solution-adaptive strategies are commonly used with unstructured-grid
methods. Regeneration schemes generate a new grid with a higher or lower con-
centration of points in different regions depending on an error indicator. A major
disadvantage of such schemes is that they are computationally expensive. This
is a serious drawback for unsteady problems where the mesh must be frequently
adapted. However, resulting grids are usually well-formed with smooth transi-
tions between regions of coarse and fine mesh spacing.

Local mesh adaption, on the other hand, involves adding points to the exist-
ing grid in regions where the error indicator is high, and removing points from
regions where the indicator is low. The advantage of such strategies is that rela-
tively few mesh points need to be added or deleted at each refinement/coarsening
step for unsteady problems. However, complicated logic and data structures are
required to keep track of the points that are added and removed.

For problems that evolve with time, local mesh adaption procedures have
proved to be robust, reliable, and efficient. By redistributing the available mesh

36

points to capture flowfield phenomena of interest, such procedures make stan-
dard computational methods more cost effective. Highly localized regions of mesh
refinement are required in order to accurately capture shock waves, contact dis-
continuities, vortices, and shear layers. This provides scientists the opportunity
to obtain solutions on adapted meshes that are comparable to those obtained
on globally-refined grids but at a much lower cost.

Advances in adaptive software and methodology notwithstanding, parallel
computational strategies will be an essential ingredient in solving complex real-
life problems. However, parallel computers are easily programmed with regular
data structures; so the development of efficient parallel adaptive algorithms for
unstructured grids poses a serious challenge.

Figure 1 depicts our framework for parallel adaptive flow computation. The
mesh is first partitioned and mapped among the available processors. The ini-
tialization phase distributes the global data among the processors and generates
a database for all shared objects. The flow solver then runs for several iterations,
updating solution variables that are typically stored at the vertices of the mesh.
If desired, local mesh adaption is then performed, generating a new computa-
tional mesh. A quick evaluation step determines if the new mesh is sufficiently
unbalanced to warrant a repartitioning. If the current partitioning indicates that
it is adequately load balanced, control is passed back to the flow solver. Oth-
erwise, a mesh repartitioning procedure is invoked to divide the new grid into
subgrids. If the cost of remapping the data is less than the computational gain
that would be achieved with balanced partitions, all necessary data is appropri-
ately redistributed. Otherwise, the new partitioning is discarded and the flow
calculation continues on the old partitions. The finalization step combines the
local grids on each processor into a single global mesh. This is usually required
for some post-processing tasks, such as visualization, or to save a snapshot of
the grid on secondary storage for future restart runs.

N
hg

Fig. 1. Overview of our framework for parallel adaptive flow computation

Notice from the framework in Fig. 1 that the computational load is balanced
and the runtime communication reduced only for the flow solver but not for the

mesh adaptor. This is acce;
more expensive. However, p:
can be significantly improv
load-balanced fashion after .
before performing the actua

It is obvious from Fig. 1
part of the framework. This
of a dynamic mesh adaption
The parallel version consists
Passing Interface (MPI), al
languages. This code is a w
written in C, and requires al
were added to link it with t
allowed this to be performe:

2 Mesh Adaption [

We give a brief description
is used in this work to bet
the distributed-memory imp
structures based on edges t}
means that the elements an
than by their vertices. These
procedure capable of perfor

At each mesh adaption
refinement, or no change. (
tetrahedral element and the:
is implemented by adding a
The 1:4 and 1:2 subdivisiol
tetrahedron are targeted ar
a valid connectivity for the
quantities are linearly intery

Mesh refinement is perfo
that is targeted for subdivi
combined to form a 6-bit pa
patterns corresponding to t]

Fig.2. Three types of su

prest, such procedures make stan-
e. Highly localized regions of mesh
capture shock waves, contact dis-
rovides scientists the opportunity
pre comparable to those obtained
jcost.

pdology notwithstanding, parallel
hgredient in solving complex real-
p easily programmed with regular
t parallel adaptive algorithms for

il adaptive flow computation. The
fthe available processors. The ini-
hong the processors and generates
%er then runs for several iterations,
tored at the vertices of the mesh.
Jned, generating a new computa-
Eles if the new mesh is sufficiently
gurrent partitioning indicates that
bed back to the flow solver. Oth-
oked to divide the new grid into
Jless than the computational gain
hs, all necessary data is appropri-
ioning is discarded and the flow
he finalization step combines the
al mesh. This is usually required
ization, or to save a snapshot of
b runs.

N

el adaptive flow computation

e computational load is balanced
por the flow solver but not for the

37

mesh adaptor. This is acceptable since the flow solver is usually several times
more expensive. However, parallel performance for the mesh adaption procedure
can be significantly improved if the mesh is repartitioned and remapped in a
load-balanced fashion after edges are targeted for refinement and coarsening but
before performing the actual adaption.

It is obvious from Fig. 1 that a quick mesh adaption procedure is a critical
part of the framework. This paper presents an efficient parallel implementation
of a dynamic mesh adaption code which has shown good sequential performance.
The parallel version consists of an additional 3,000 lines of C++ with Message-
Passing Interface (MPI), allowing portability to any system supporting these
languages. This code is a wrapper around the original mesh adaption program
written in C, and requires almost no changes to the serial code. Only a few lines
were added to link it with the parallel constructs. An object-oriented approach
allowed this to be performed in a clean and efficient manner.

2 Mesh Adaption Procedure

We give a brief description of the tetrahedral mesh adaption scheme [1] that
is used in this work to better explain the modifications that were made for
the distributed-memory implementation. The code, called 3D_TAG, has its data
structures based on edges that connect the vertices of a tetrahedral mesh. This
means that the elements and boundary faces are defined by their edges rather
than by their vertices. These edge-based data structures make the mesh adaption
procedure capable of performing anisotropic refinement and coarsening.

At each mesh adaption step, individual edges are marked for coarsening,
refinement, or no change. Only three subdivision types are allowed for each
tetrahedral element and these are shown in Fig. 2. The 1:8 isotropic subdivision
is implemented by adding a new vertex at the mid-point of each of the six edges.
The 1:4 and 1:2 subdivisions can result either because the edges of a parent
tetrahedron are targeted anisotropically or because they are required to form
a valid connectivity for the new mesh. When an edge is bisected, the solution
quantities are linearly interpolated at the mid-point from its two end-points.

Mesh refinement is performed by first setting a bit flag to one for each edge
that is targeted for subdivision. The edge markings for each element are then
combined to form a 6-bit pattern. Elements are continuously upgraded to valid
patterns corresponding to the three allowed subdivision types until none of the

A

1:8 1:4 1:2

Fig. 2. Three types of subdivision are permitted for a tetrahedral element

38

patterns show any change. Once this edge-marking is completed, each element
is independently subdivided based on its binary pattern.

Mesh coarsening also uses the edge-marking patterns. If a child element has
any edge marked for coarsening, this element and its siblings are removed and
their parent is reinstated. Parent edges and elements are retained at each refine-
ment step so they do not have to be reconstructed. Reinstated parent elements
have their edge-marking patterns adjusted to reflect that some edges have been
coarsened. The refinement procedure is then invoked to generate a valid mesh.

Details of the data structures are given in [1]; however, a brief description
of the salient features is necessary to understand the distributed-memory im-
plementation of the mesh adaption code. For each vertex, a pointer to the first
entry in the edge sublist is stored in edges. The edge sublist for a vertex contains
pointers to all the edges that are incident upon it. Such sublists eliminate ex-
tensive searches and are crucial to the efficiency of the overall adaption scheme.
For each edge, we store its two end-points in vertex[2], the two boundary faces
it defines in bfac[2], and a pointer to the first entry in the element sublist in
elems. The element sublist for an edge contains pointers to all the elements that
share it. The tetrahedral elements have their six edges stored in tedge[6], while
for each boundary face, we store the three edges in bedge[3].

3 Distributed-Memory Implementation

The parallel implementation of the 3D_TAG mesh adaption code consists of three
phases: initialization, execution, and finalization. The initialization step consists
of scattering the global data across the processors, defining a local numbering
scheme for each object, and creating the mapping for objects that are shared
by multiple processors. The execution step runs a copy of 3D_TAG on each
processor that refines or coarsens its local region, while maintaining a globally-
consistent grid along partition boundaries. Parallel performance is extremely
critical during this phase since it will be executed several times during a flow
computation. Finally, a gather operation is performed in the finalization step
to combine the local grids into one global mesh. Locally-numbered objects and
corresponding pointers are reordered to represent one single consistent mesh.

In order to perform parallel mesh adaption, the initial grid must first be par-
titioned among the available processors. A good partitioner should divide the
grid into equal pieces for optimal load balancing, while minimizing the number
of edges along partition boundaries for low interprocessor communication. It is
also important that within our framework, the partitioning phase be performed
rapidly. There are several excellent heuristic algorithms for solving the NP-hard
graph partitioning problem [6]. Since mesh partitioning is beyond the scope of
this paper, we will assume that a reasonable partition for our test meshes is
available, and address this issue in future work. For the record, we used the
multilevel spectral Lanczos partitioning algorithm with local Kernighan-Lin re-
finement from the Chaco software package [2].

3.1 Initialization

The initialization phase tak
ing partitioning that maps
The element data and parti
which, in parallel, assign a
elements have been process

In three dimensions, an
elements. Since each elemer
possible for an edge to be st
zero-based number is assign
Each processor then redefir
edge numbers. Edges that
by searching for elements t
distinguish between shared
is also generated for each sl
each edge is updated to cor

The vertices are initializ
Every local vertex is assign
local edge sublist for each
global edges array. Like sh
SPL. A naive approach wo
elements and their partitio
is based on the following tv
point for at least one share:
SPLs. However, some coml
example is shown in Fig. 3
vertex that is shared by t!
would incorrectly conclude
each vertex containing a sl
communicated to the proc
the union of all the SPLs :
required no more than three
a function of the number of

O ® G

Before communicatio;
PO shares center vertex with

@) €

Fig.3. Example showing the

hrking is completed, each element
ky pattern.

jg patterns. If a child element has
and its siblings are removed and
pments are retained at each refine-
cted. Reinstated parent elements
peflect that some edges have been
hvoked to generate a valid mesh.

1 [1); however, a brief description
land the distributed-memory im-
?Each vertex, a pointer to the first
k edge sublist for a vertex contains
bn it. Such sublists eliminate ex-
ty of the overall adaption scheme.
prtex[2], the two boundary faces

‘EEt entry in the element sublist in

B pointers to all the elements that
K edges stored in tedge[6], while
ks in bedge[3].

ytation

sh adaption code consists of three
. The initialization step consists
jsors, defining a local numbering
ping for objects that are shared
ins a copy of 3D_TAG on each
pn, while maintaining a globally-
hrallel performance is extremely
nted several times during a flow
prformed in the finalization step
h. Locally-numbered objects and
int one single consistent mesh.
the initial grid must first be par-
pd partitioner should divide the
g, while minimizing the number
ferprocessor communication. It is
partitioning phase be performed
borithms for solving the NP-hard
Hitioning is beyond the scope of
Ipartition for our test meshes is
rk. For the record, we used the
hm with local Kernighan-Lin re-

39

3.1 Initialization

The initialization phase takes as input the global initial grid and the correspond-
ing partitioning that maps each tetrahedral element to exactly one partition.
The element data and partition information are then broadcast to all processors
which, in parallel, assign a local, zero-based number to each element. Once the
elements have been processed, local edge information can be computed.

In three dimensions, an individual edge may belong to an arbitrary number of
elements. Since each element is assigned to only one partition, it is theoretically
possible for an edge to be shared by all the processors. For each partition, a local
zero-based number is assigned to every edge that belongs to at least one element.
Each processor then redefines its elements in tedge[6] in terms of these local
edge numbers. Edges that are shared by more than one processor are identified
by searching for elements that lie on partition boundaries. A bit flag is set to
distinguish between shared and internal edges. A list of shared processors (SPL)
is also generated for each shared edge. Finally, the element sublist in elems for
each edge is updated to contain only the local elements.

The vertices are initialized using the vertex[2] data structure for each edge.
Every local vertex is assigned a zero-based number on each partition. Next the
local edge sublist for each vertex is created from the appropriate subset of the
global edges array. Like shared edges, each shared vertex must be assigned its
SPL. A naive approach would be to thread through the data structures to the
elements and their partitions to determine shared vertices. A faster approach
is based on the following two properties of a shared vertex: it must be an end-
point for at least one shared edge, and its SPL is the union of its shared edges’
SPLs. However, some communication is required when using this method. An
example is shown in Fig. 3 where the SPL is being formed in PO for the center
vertex that is shared by three other processors. Without communication, P
would incorrectly conclude that the vertex is shared only with P1 and P3. For
each vertex containing a shared edge in its edges sublist, that edge’s SPL is
communicated to the processors in the SPLs of all other shared edges until
the union of all the SPLs is formed. For the cases in this paper, this process
required no more than three iterations, and all shared vertices were processed as
a function of the number of shared edges plus a small communication overhead.

Before communication
PO shares center vertex with P1, P3

After communication
PO shares center vertex with P1, P2, P3

Fig. 3. Example showing the communication need to form the SPL for a shared vertex

p— py—

e — S b e AR

40

The final step in the initialization phase is the local renumbering of the
external boundary faces. Since a boundary face belongs to only one element, it
1s never shared among processors. Each boundary face is defined by its three
edges in bedge[3], while each edge maintains a pair of pointers in bfac[2] to
the boundary faces it defines. Since the global mesh is closed, an edge on the
external boundary is shared by exactly two boundary faces. However, when the
mesh is partitioned, this is no longer true. An affected edge creates an empty
ghost boundary face in each of the two processors for the execution phase which
is later eliminated during the finalization stage.

A new data structure has been added to the serial code to represent all this
shared information. Each shared edge and vertex contains a two-way mapping
between its local and its global numbers, and a SPL of processors where its
shared copies reside. The maximum additional storage depends on the number
of processors used and the fraction of shared objects. For the cases in this paper,
this was less than 10% of the memory requirements of the serial version.

3.2 Execution

The first step in the actual mesh adaption phase is to target edges for refinement
or coarsening. This is usually based on an error indicator for each edge that is
computed from the flow solution. This strategy results in a symmetrical mark-
ing of all shared edges across partitions since shared edges have the same flow
and geometry information regardless of their processor number. However, ele-
ments have to be continuously upgraded to one of the three allowed subdivision
patterns shown in Fig. 2. This causes some propagation of edges being targeted
that could mark local copies of shared edges inconsistently. This is because the
local geometry and marking patterns affect the nature of the propagation. Com-
munication is therefore required after each iteration of the propagation process.
Every processor sends a list of all the newly-marked local copies of shared edges
to all the other processors in their SPLs. This process may continue for several
iterations, and edge markings could propagate back and forth across partitions.

Figure 4 shows a two-dimensional example of two iterations of the propaga-
tion process across a partition boundary. The process is similar in three dimen-
sions. Processor PO marks its local copy of shared edge GE1 and communicates
that to P1. P1 then marks its own copy of GEl, which causes some internal
propagation because element marking patterns must be upgraded to those that
are valid. Note that P1 marks its third internal edge and its local copy of shared
edge GE2 during this phase. Information about the shared edge is then commu-
nicated to P0, and the propagation phase terminates. The four original triangles
can now be correctly subdivided into a total of 12 smaller triangles.

Once all edge markings are complete, each processor executes the mesh adap-
tion code without the need for further communication, since all edges are consis-
tently marked. The only task remaining is to update the shared edge and vertex
information as the mesh is adapted. This is handled as a post-processing phase.

New edges and vertices that are created on partition boundaries during re-
finement are assigned shared processor information. If a shared edge is bisected,

e

® Shared mar
0 Internal mai

Fig. 4. Two-dimensional examp!

its two children and the cente
created that lies across an ele
to determine whether it is sh.
formed. If the intersection of
null, the edge is internal. Othe
processors to determine whetl
munication is necessary becau
tetrahedral elements. An alter
additional object into the date
tion. However, this does not cc
to a single communication at
Figure 5 depicts the top v
two faces with P1. In PO, the
two end-points of each of the
However, when P0 communice
copies corresponding to LE1 .
shared edges but LE3 as an it

Fig. 5. Example showing how a1

The coarsening phase pur
moved, as well as their associ
new shared processor informat

f is the local renumbering of the
hce belongs to only one element, it
ndary face is defined by its three
bs a pair of pointers in bfac[2] to
bal mesh is closed, an edge on the
oundary faces. However, when the
hn affected edge creates an empty
sors for the execution phase which
Be.

the serial code to represent all this
;;zrtex contains a two-way mapping
hd a SPL of processors where its
Eal storage depends on the number
Ibjects. For the cases in this paper,
ments of the serial version.

e

i!se is to target edges for refinement
wor indicator for each edge that is
Ey results in a symmetrical mark-
% shared edges have the same flow
processor number. However, ele-
f1e of the three allowed subdivision
opagation of edges being targeted
nconsistently. This is because the
e nature of the propagation. Com-
Iration of the propagation process.
parked local copies of shared edges
§ process may continue for several
b back and forth across partitions.
b of two iterations of the propaga-
process is similar in three dimen-
hred edge GE1 and communicates
IGE1, which causes some internal
s must be upgraded to those that
H edge and its local copy of shared
t the shared edge is then commu-
inates. The four original triangles
f 12 smaller triangles.
rocessor executes the mesh adap-
ication, since all edges are consis-
pdate the shared edge and vertex
ndled as a post-processing phase.
fn partition boundaries during re-
ption. If a shared edge is bisected,

41

1

--- Shared edge
o Shared mark — Internal edge
o Internal mark -~ New edge

Fig. 4. Two-dimensional example showing communication during propagation of edge

its two children and the center vertex inherit its SPL. However, if a new edge is
created that lies across an element face, communication is sometimes required
to determine whether it is shared or internal. If it is shared, the SPL must be
formed. If the intersection of the SPLs of the two end-points of the new edge is
null, the edge is internal. Otherwise, communication is required with the shared
processors to determine whether they have a local copy of the edge. This com-
munication is necessary because no information is stored about the faces of the
tetrahedral elements. An alternate solution would be to incorporate faces as an
additional object into the data structures, and maintaining it through the adap-
tion. However, this does not compare favorably in terms of memory or CPU time
to a single communication at the end of the refinement procedure.

Figure 5 depicts the top view of a tetrahedron in processor PO that shares
two faces with P1. In PO, the intersection of the shared processor lists for the
two end-points of each of the three new edges LE1, LE2, and LE3 yields P1.
However, when PO communicates this information to P1, P1 will only have local
copies corresponding to LE1 and LE2. Thus, PO will classify LE1 and LE2 as
shared edges but LE3 as an internal edge.

Shared face with P1
LE1 h LE2 (O Intemnal face of PO
— Shared edge with P1
--- Internal edge of PO

Fig. 5. Example showing how a new edge across a face is classified as shared or internal

The coarsening phase purges the data structures of all edges that are re-
moved, as well as their associated vertices, elements, and boundary faces. No
new shared processor information is generated since no mesh objects are created

42

during this step. However, objects are renumbered as a result of compaction and
all internal and shared data are updated accordingly. The refinement routine is
then invoked to generate a valid mesh from the vertices left after the coarsening.

3.3 Finalization

Under certain conditions, it is necessary to create a single global mesh after
one or more adaption steps. Some post processing tasks, such as visualization,
need to processes the whole grid simultaneously. Storing a snapshot of a grid
for future restarts could also require a global view. Our finalization phase ac-
complishes this goal by connecting the subgrids into one global data structure.
Individual processors are responsible for correctly arranging the data so that a
host processor only collects and concatenates without further processing.

Each local object is first assigned a unique global number. Because elements
are not shared, each processor can assign the final global element number by per-
forming a scan-reduce add on the total number of elements. The global bound-
ary face numbering is also done similarly since they too are not shared among
processors. Assigning global numbers to edges and vertices is somewhat more
complicated since they may be shared by several processors. Each shared edge
(or vertex) is assigned an owner from its processor list which is then respon-
sible for generating the global number. Owners are randomly selected to keep
the computation and communication loads balanced. Once all processors com-
plete numbering their edges (or vertices), a communication phase propagates the
global values from owners to other processors that have local copies.

After global numbers have been assigned to every object, all data struc-
tures are updated to contain consistent global information. Since elements and
boundary faces are unique in each processor, no duplicates exist. All unowned
edge copies are removed from the data structures, which are then compacted.
However, the element sublists in elems cannot be discarded for the unowned
edges. Some communication is required to adjust the pointers in the local sub-
lists so that global sublists can be formed without any serial computation. The
pair of pointers in bfac[2] that were split during the initialization phase for
shared edges are glued back by communicating the boundary face information
to the owner. Vertex data structures are updated much like edges except for the
manner in which their edge sublists in edges are handled. Since shared vertices
may contain local copies of the same global edge in their sublists on different
processors, the unowned edge copies are first deleted. Pointers are next adjusted
as in the elems case with some communication among processors. A final gather
operation by the host processor generates the global mesh.

4 Results

'The parallel 3D_TAG procedure has been implemented on the SP2 distributed-
memory multiprocessor located at NASA Ames Research Center. The code is
written in C and C++, with the parallel activities in MPI for portability. 7

Kl

The computational mesl
of Purcell [3] where a 1/7th
tested over a range of subsor
results and a detailed report
only on the performance of

Timings for the parallel
ening step using various m
strategies are used for the r
of randomly marking 5% an
marking the same numbers
general, we expect real marl
significantly different scenar;
are similar to the refinemen
the edges of the largest mesk

Table 1 presents the prog
for each marking strategy. N
the randomly-marked cases
cases even though exactly tk
the difference in the propaga
nificantly more propagation
The local cases, on the other
tween the refined and the un
region are already marked.

Table 1. Progression

Refinement Initial mesh
5% random marl
5% local marking
10% random ma;
10% local markir

Coarsening Initial mesh
35% random mar

4.1 Refinement Phase

Table 2 presents the timings

the random marking of edges
almost 90% on 32 processors
communication time is less tl
On 32 and 64 processors, th
becomes comparable to the ¢
the parallel speedup. This ind
for this example in terms of t

ered as a result of compaction and
rdingly. The refinement routine is
e vertices left after the coarsening.

lcreate a single global mesh after
fsing tasks, such as visualization,
Esly‘ Storing a snapshot of a grid
view. Our finalization phase ac-
ds into one global data structure.
ctly arranging the data so that a
without further processing.
global number. Because elements
hal global element number by per-
er of elements. The global bound-
Je they too are not shared among
Js and vertices is somewhat more
bral processors. Each shared edge
dcessor list which is then respon-
rs are randomly selected to keep
jlanced. Once all processors com-
munication phase propagates the
hat have local copies.
] to every object, all data struc-
| information. Since elements and
no duplicates exist. All unowned
fﬁures, which are then compacted.
bt be discarded for the unowned

ragst the pointers in the local sub-

e bl e At S - AN A et S S S i S

out any serial computation. The
ring the initialization phase for
ig the boundary face information
led much like edges except for the
ire handled. Since shared vertices
ddge in their sublists on different
lEleted. Pointers are next adjusted
among processors. A final gather
QFlobal mesh.

:lemented on the SP2 distributed-
les Research Center. The code is
ities in MPI for portability.

43

The computational mesh is the one used to simulate the acoustics experiment
of Purcell (3] where a 1/7th scale model of a UH-1H helicopter rotor blade was
tested over a range of subsonic and transonic hover-tip Mach numbers. Numerical
results and a detailed report of the simulation are given in [5]. This paper reports
only on the performance of the parallel version of the mesh adaption code.

Timings for the parallel code are presented for one refinement and one coars-
ening step using various marking and load-balancing strategies. Two marking
strategies are used for the refinement step. The first set of experiments consists
of randomly marking 5% and 10% of the edges, while the second set consists of
marking the same numbers of edges in a single compact region of the mesh. In
general, we expect real marking patterns to lie somewhere in between these two
significantly different scenarios. Since the coarsening procedure and performance
are similar to the refinement method, only one case is presented where 35% of
the edges of the largest mesh obtained after refinement are randomly coarsened.

Table 1 presents the progression of grid sizes through the two adaption steps
for each marking strategy. Notice that the meshes obtained after refinement for
the randomly-marked cases are much larger than those for the locally-marked
cases even though exactly the same number of edges are marked. This is due to
the difference in the propagation of edge markings. The random cases cause sig-
nificantly more propagation since refinement is scattered throughout the mesh.
The local cases, on the other hand, cause propagation only at the boundary be-
tween the refined and the unrefined regions since all edges internal to the refined
region are already marked.

Table 1. Progressian of grid sizes through refinement and coarsening

Vertices Elements Edges Bdy Faces

Refinement Initial mesh 13,967 60,968 74,343 16,818
5% random marking 24,293 114,415 143,011 8,550
5% local marking 17,920 82,259 104,178 7,999
10% random marking 54,389 284,086 345,425 13,606
10% local marking 21,851 103,582 129,976 8,962
Coarsening Initial mesh 54,389 284,086 345,425 13,606

35% random marking 25,689 122,850 152,853 8,630

4.1 Refinement Phase

Table 2 presents the timings and parallel speedup for the refinement step with
the random marking of edges. The performance is excellent with efficiencies of
almost 90% on 32 processors and 60% to 73% on 64 processors. Notice that the
communication time is less than 10% of the total time for up to 16 processors.
On 32 and 64 processors, the communication time although still quite small,
becomes comparable to the computation time and begins to adversely affect
the parallel speedup. This indicates that the saturation point has been reached
for this example in terms of the number of processors that should be used. For

44

example, on 64 processors, each partition contains less than 1,000 elements with
31% of the edges on partition boundaries. Since additional work and storage are
necessary for shared edges, the speedup deteriorates as the percentage of such
edges increases. Parallel mesh refinement when 10% of the edges are marked
shows better performance than the 5%-marked case due to a bigger computation-
to-communication ratio. In general, performance will improve as the problem
size increases. This is because the computational time will increase while the
percentage of elements along processor boundaries will decrease.

Table 2. Performance for the refinement step when edges are marked randomly

5% Marked 10% Marked
% Shared Comp Comm Total Comp Comm Total
Procs Edges Time Time Speedup Time Time Speedup

1 0.0 12.941 0.000 1.00 39.237 0.000 1.00
2 3.2 6.652 0.090 1.92 19.698 0.045 1.99
4 121 3.659 0.094 3.45 10.091 0.105 3.85
8 23.2 1.927 0.107 6.36 5.245 0.281 7.10
16 23.9 0.952 0.100 12.30 - 2.638 0.233 13.67
32 29.2 0.323 0.129 28.63 1.098 0.287 28.33
64 31.0 0.246 0.091 38.40 0.646 0.189 46.99

Table 3 shows the timings and speedup when edges are marked in a sin-
gle compact region of the global mesh. The performance is extremely poor, with
speedups of only 5.1X and 7.7X on 64 processors. This is because we are simulat-
ing an almost worst case load balance behavior. This strategy primarily targets
elements on one processor only. Most of the other processors remain idle, since
none of their elements need to be refined. Noticeable speedup is achieved only
when using at least 16 processors. This is because the refinement region remains
confined to only one partition until enough processors are used. Once the re-
finement region straddles multiple partitions, parallelization becomes effective.
However, the computation time does decrease somewhat for up to 8 processors,
even though all the work is performed by a single processor. This is due to the
reduction in the local mesh size for each individual partition. As a result, even
though one partition is performing all the work, it has a smaller number of
elements to process.

Due to the poor parallel performance when edges are marked in a single
compact region of the global mesh, it is worthwhile to load balance the mesh
adaption code based on the distribution of targeted edges before these edges are
actually refined. The mesh is repartitioned if the markings are skewed beyond
a specified tolerance. This significantly improves the performance of the mesh
refinement phase. As a bonus, a more balanced mesh is generated after the
refinement since the final grid is generally determined by the marking patterns.

Using this methodology, the localized-marking experiment was run again
after performing a repartitioning step based on edge markings. A simple heuris-

Table 3. Performance for the
compact region of the global me

% Shared Comp (
Procs Edges Time

1 0.0 5.581
2 3.2 4.351
4 12.1 3.828
8 23.2 3.362
16 23.9 3.230
32 29.2 0.982
64 31.0 1.083

tic of assigning an additiona
been marked for refinement v
performance results of this re
nication times are not report
speedup. Note that the parall
random-marking case. This de
lent speedups if the marked ec

Table 4. Performance for the re
a single compact region of the gl

5% Marl
Elements in Co
Procs Min Set Max Set Tj

1 60,968 60,968 5.
2 9,069 51,899 2.
4 5575 28,983 1.
8 2,120 14,498 0.
16 389 7,249 0.
32 190 3,629 0.
64 95 1,812 0.

4.2 Coarsening Phase

The coarsening phase consists
cleaning up all the data structu
vertices and tetrahedral elemen
generate a valid mesh from the

Timings and parallel speed
obtained by refinement are ran

kains less than 1,000 elements with
ce additional work and storage are
riorates as the percentage of such
hen 10% of the edges are marked
H case due to a bigger computation-
fance will improve as the problem
ional time will increase while the
faries will decrease.

I when edges are marked randomly

10% Marked
Comp Comm Total
Time Time Speedup

f 39.237 0.000 1.00
¥ 19.698 0.045 1.99
1 10.091 0.105 3.85
| 5.245 0.281 7.10
’ 2.638 0.233 13.67
1.098 0.287 28.33
0.646 0.189 46.99

hen edges are marked in a sin-
trformance is extremely poor, with
rs. This is because we are simulat-
pr. This strategy primarily targets
ther processors remain idle, since
ticeable speedup is achieved only
Yuse the refinement region remains
processors are used. Once the re-
parallelization becomes effective.
somewhat for up to 8 processors,
Ingle processor. This is due to the
yidual partition. As a result, even
rork, it has a smaller number of

en edges are marked in a single
hwhile to load balance the mesh
geted edges before these edges are
the markings are skewed beyond
ves the performance of the mesh
ticed mesh is generated after the
brmined by the marking patterns.
yrking experiment was run again
i edge markings. A simple heuris-

45

Table 3. Performance for the refinement step when edges are marked in a single
compact region of the global mesh

5% Marked 10% Marked
% Shared Comp Comm Total Comp Comm Total
Procs Edges Time Time Speedup Time Time Speedup

1 0.0 5.581 0.000 1.00 8.806 0.000 1.00
2 3.2 4.351 0.000 1.28 7.517 0.000 1.17
4 12.1 3.828 0.006 1.46 7.036 0.008 1.25
8 23.2 3.362 0.008 1.66 6.462 0.008 1.36
16 23.9 3.230 0.012 1.72 4.232 0.012 2.07
32 29.2 0.982 0.710 3.30 1.188 0.955 4.11
64 31.0 1.083 0.021 5.06 1.104 0.044 7.67

tic of assigning an additional weight to elements containing edges that have
been marked for refinement was given to the partitioner. Table 4 presents the
performance results of this repartitioned local refinement phase. The commu-
nication times are not reported but are considered when calculating the total
speedup. Note that the parallel speedups are now comparable to those for the
random-marking case. This demonstrates that mesh adaption can deliver excel-
lent speedups if the marked edges are equidistributed among the processors.

Table 4. Performance for the repartitioned refinement step when edges are marked in
a single compact region of the global mesh

5% Marked 10% Marked
Flements in Comp Total # Elements in Comp Total
Procs Min Set Max Set Time Speedup Min Set Max Set Time Speedup

1 60,968 60,968 5.581 1.00 60,968 60,968 8.806 1.00
2 9,069 51,899 2.486 1.72 6,867 54,101 3.977 1.80
4 5,575 28,983 1.446 3.44 3,074 42,701 2.376 3.47
8 2,120 14,498 0.824 6.62 1,272 21,358 1.244 6.89
16 389 7,249 0.287 12.19 595 10,670 0.622 12.91
32 190 3,629 0.251 21.22 281 5,340 0.352 24.26
64 95 1,812 0.132 36.24 141 2,670 0.147 43.59

4.2 Coarsening Phase

The coarsening phase consists of three major steps: marking edges to coarsen,
cleaning up all the data structures by removing those edges and their associated
vertices and tetrahedral elements, and finally invoking the refinement routine to
generate a valid mesh from the vertices left after the coarsening.

Timings and parallel speedup when 35% of the edges of the largest mesh
obtained by refinement are randomly coarsened are presented in Table 5. Note

46

that the computation time does not include the follow-up mesh refinement time.
It is, instead, only the time required to mark edges to coarsen. This was done
so as to demonstrate the parallel performance of the modules that are only
required during the coarsening phase. Notice that the communication time is
negligible while the cleanup time is dominant. Since the cleanup time depends
on the fraction of shared objects, performance deteriorates as the problem size
is over-saturated by processors.

Table 5. Performance for the coarsening step when edges are marked randomly

Comp Cleanup Comm Total
Procs Time Time Time Speedup

1 3.184 6.949 0.000 1.00
2 1.648 3.564 0.005 1.94
4 0.850 1.822 0.006 3.78
8 0.439 0.962 0.011 7.18
16 0.270 0.499 0.024 12.78
32 0.144 0.271 0.020 23.29
64 0.085 0.132 0.038 39.74 .

4.3 Initialization and Finalization Phases

Recall from Fig. 1 that unlike the execution phase where the actual adaption
is performed, it is not critical for the initialization and finalization procedures
to be very efficient since they are used rarely (or only once) during a flow com-
putation. Table 6 presents the results for these two phases. The initialization
step is performed on the starting mesh consisting of 60,968 elements, while the
finalization phase is for the adapted mesh consisting of 114,415 elements. It is
apparent from the timings that the performance bottleneck for the two steps
are the global broadcast (one-to-all) and gather (all-to-one) communication pat-
terns, respectively. These times generally increase with the number of processors

Table 6. Performance for the initialization and finalization steps when 5% of edges
are marked randomly

Initialization Finalization
Comp Bcast Total Comp Gather Total
Procs Time Time Speedup Time Time Speedup

1 4.500 0.328 1.00 4.035 0.682 1.00
2 2.479 0.645 1.55 2.312 0.665 1.58
4 1.523 1.175 1.79 1.494 0.676 2.17
8 0.962 0.918 2.57 1.019 0.714 2.72
16 0.568 1.008 3.06 0.647 0.785 3.29
32 0.409 1.214 297 0.393 0.890 3.68

64 0.242 1503 2.77 0.286 0.977 3.73

so a speedup cannot be expe
procedures do show favorabl
any case, the overall run tim
Note that the broadcast and
sor because the current imp
The number of processors s
performing the mesh adaptic

5 Summary

Fast and efficient dynamic me
grids that make them especial
coarsening/refinement step n
be comparable to that of the
Biswas and Strawn [1] is par:

The code consists of apr
wrap around the original ver
completely unchanged except
parallel wrapper. This allowe
code as a building block. The ¢
interface between the two la
Only a slight increase in space
and shared processor lists for

Parallel performance is e
64 processors compared to sec
compact region of the mesh i
repartitioning the mesh using
in the process of combining 1
partitioner and load balancer

References

1. Biswas, R., Strawn, R.: A newv
unstructured grids. Appl. Nu

2. Hendrickson, B., Leland, R.:]
Laboratories Technical Repor

3. Purcell, T.: CFD and transon
(1988) Paper 2

4. Sohn, A, Biswas, R., Simon,
tured adaptive computations
Symposium on Parallel Algor

5. Strawn, R., Biswas, R., Garce
rotorcraft high-speed impulsi

6. Van Driessche, R., Roose, D.:
culations on Unstructured Gr

khe follow-up mesh refinement time.
k edges to coarsen. This was done
nce of the modules that are only
ke that the communication time is
Int. Since the cleanup time depends
pce deteriorates as the problem size

:p when edges are marked randomly

R - - ot e, B =Rl

Ases

phase where the actual adaption
gization and finalization procedures
(or only once) during a flow com-
ese two phases. The initialization
$ting of 60,968 elements, while the
bnsisting of 114,415 elements. It is
;ance bottleneck for the two steps
ger (all-to-one) communication pat-
ase with the number of processors

| finalization steps when 5% of edges

: inalization
Gather Total
| Time Speedup

| 0.682 1.00
. 0.665 1.58
L 0.676 2.17
{0114 2.72
1 0.785 3.29
I 0.890 3.68
I 0.977 3.73

—

47

so a speedup cannot be expected. However, the computational sections of these
procedures do show favorable speedups of 18.6X and 14.1X on 64 processors. In
any case, the overall run times of these routines are acceptable for our purposes.
Note that the broadcast and gather times are non-zero even for a single proces-
sor because the current implementation uses a host to perform the data I/0.
The number of processors shown in Table 6 indicates those that are actually
performing the mesh adaption.

5 Summary

Fast and efficient dynamic mesh adaption is an important feature of unstructured
grids that make them especially attractive for unsteady flows. For such flows, the
coarsening/refinement step must be performed frequently, so its efficiency must
be comparable to that of the flow solver. For this work, the adaption scheme of
Biswas and Strawn [1] is parallelized for distributed-memory architectures.

The code consists of approximately 3,000 lines of C++ with MPI which
wrap around the original version written in C. The serial code was left almost
completely unchanged except for the addition of 10 lines which interface to the
parallel wrapper. This allowed us to design the parallel version using the serial
code as a building block. The object-oriented approach allowed us to build a clean
interface between the two layers of the program while maintaining efficiency.
Only a slight increase in space was necessary to keep track of the global mappings
and shared processor lists for objects on partition boundaries.

Parallel performance is extremely promising showing a 47-fold speedup on
64 processors compared to sequential execution. In the worst case when a single
compact region of the mesh is refined, speedup increased from 8- to 44-fold by
repartitioning the mesh using the edge-marking information. We are currently
in the process of combining this parallel mesh adaption code with a dynamic
partitioner and load balancer [4].

References

1. Biswas, R., Strawn, R.: A new procedure for dynamic adaption of three-dimensional
unstructured grids. Appl. Numer. Math. 13 (1994) 437-452

2. Hendrickson, B., Leland, R.: The Chaco user’s guide — Version 2.0. Sandia National
Laboratories Technical Report SAND94-2692 (1994)

3. Purcell, T.: CFD and transonic helicopter sound. 14th European Rotorcraft Forum
(1988) Paper 2

4. Sohn, A., Biswas, R., Simon, H.: A dynamic load balancing framework for unstruc-
tured adaptive computations on distributed-memory multiprocessors. 8th ACM
Symposium on Parallel Algorithms and Architectures (1996) to appear

5. Strawn, R., Biswas, R., Garceaun, M.: Unstructured adaptive mesh computations of
rotorcraft high-speed impulsive noise. J. Aircraft 32 (1995) 754-760

6. Van Driessche, R., Roose, D.: Load Balancing Computational Fluid Dynamics Cal-
culations on Unstructured Grids. AGARD Report R-807 (1995)

