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Introduction

The accurate prediction of rotor vibratory loads
remains a challenge for rotorcraft researchers. A
- prerequisite to accurate hub loads prediction is
the ability to accurately predict the blade
bending moments. For a bearingless rotor, which
has multiple load paths and structural and
kinematic couplings, the accurate prediction of
bending moments in the flexbeam, torque tube
- and blade becomes a further challenge. The
objective of this paper is to present results from
a recent correlation study of flatwise and
chordwise bending moments for a full-scale
bearingless main rotor.

The data used were obtained from an extensive
wind tunnel test (Ref. 1) of the Sikorsky proof-
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was carried out to compare the measured and analytically predicted flexbeam and
blade bending moments for a modern Sikorsky bearingless main rotor.
from a full-scale wind tunnel test and predicted results are presented
from 40 to 150 knots. Three analytical methods are used: a transfer matrix technique, a
modal method, and a force summation method. Their strong points and weak points are
the parameters necessary for obtaining accurate predictions are

The measured data
for speeds ranging

of-concept 5-bladed full-scale bearingless main
rotor (BMR). The test was conducted in 1992 at
the NASA Ames 40- by 80-Foot Wind Tunnel of
the National Full-Scale Aerodynamic Complex
(NFAC). This BMR is a 44-ft diameter main rotor
sized for the Sikorsky S$-76 helicopter. The wind
tunnel test included flight conditions from 0 to
200 knots, and thrust levels from -4,000 to
18,000 1b. Parametric sweeps were conducted to
systematically examine the effects of rotor
speed, forward speed, thrust level, cyclic pitch,
and shaft tilt on BMR response and loads. Two of
the five blades were extensively instrumented
with flatwise and chordwise strain gages. This

provided a rare opportunity to validate the
state-of-the-art in  BMR load prediction
capability.

The Sikorsky KTRAN analysis and the Sikorsky
version of the University of Maryland Advanced
Rotorcraft Code (UMARC/S) were used for the
bending moment correlations. These two codes
have been used very successfully at Sikorsky for



predicting the rotor frequency, response and
stability of this BMR (Refs. 1-3).
Description of the Experiment

The full-scale rotor experiment was performed at
the NASA Ames 40- by 80-Foot Wind Tunnel. A
schematic of the rotor is shown in Fig. 1. The
rotor was mounted on NASA's Rotor Test
Apparatus (RTA). The RTA fuselage was mounted
on three struts, which placed the rotor plane 21.5
feet above the tunnel floor. Inside the RTA
fuselage were two 1500 hp electric drive motors,
a hydraulic actuator system, and a five-
component balance that measured three forces
and pitching and rolling moments. The entire RTA
fuselage could be tilted forward or aft to change
the rotor shaft angle.

The rotor system was instrumented with strain
gages on the blades (including the flexbeams and
torque tubes), the rotating and non-rotating
scissors, the rotating and non-rotating pushrods,
and the rotor shaft. Each of the five blades was
instrumented at the flexbeam root to measure
flatwise and chordwise responses. Two of the five
blades were extensively instrumented, with
strain gages at twelve spanwise locations. Each of
these twelve stations included a full-bridged
flatwise and chordwise gage to measure the
bending moments perpendicular and parallel to
the local airfoil axis system. Unfortunately, the
number of rotating system measurements was
limited by slip ring size. This resulted in having
only 5-7 bending moment gages active in each
direction at any one time. The radial locations of
the bending moment measurements used in this
study are listed in Table 1.

Experimental data were obtained over a wide
range of test conditions and included the
following parametric sweeps:
« Hover collective pitch sweep, 875 from 0.7
deg to 11.7deg, in 1deg increments.
» Hover rotor speed sweep from 283 to 346
rpm.
« Forward flight speed sweep at 10,500 1b from
0 to 200 knots.
+ Forward flight speed sweep at 14,000 1b from
0 to 160 knots.
» Forward flight speed sweep at 16,000 1b from
0 to 140 knots.
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« Thrust sweep at 80 knots from -4,000 to
15,500 Ib.

e Thrust sweep at 120 knots from -1,835 to
15,700 1b.

« Shaft angle sweep at 80 knots from +5 deg
nose up to -10 deg nose down.

» Rotor speed sweep at 40, 60, 120 and 160
knots, from 255 to 330 rpm.

* Rotor head moment sweep from -15,000 to
+15,000 ft- 1b in pitch and roll.

Blade bending moment data from the forward
flight speed sweep at 14,000 1b thrust were used
for the correlation study in this paper. For this
sweep, the rotor speed was set to 315 RPM and
the rotor was trimmed to representative aircraft
steady operating conditions, including shaft
angle and rotor hub moments. Data were acquired
at a rate of 64 samples/revolution.

Analytical Methodologies

Bearingless rotors have become popular among
designers because of a lower parts count, reduced

weight, reduced maintenance, suitability to
aeroelastic  tailoring, improved handling
qualities, and extended fatigue life.
Concurrently, the analysts are still improving

their BMR modeling tools. There have been many
studies of the bending loads for articulated
rotors, for example Ref. 4. Due to a lack of
available data and analytical tools, however, only
limited analytical work has been done to
correlate the response of bearingless rotors. :

The analysis of a bearingless rotor system is
more difficult than that of a hingeless or
articulated rotor system because of nonlinear
structural couplings, snubber/damper
assemblies, and redundant load paths. In a
bearingless rotor the flap and lag hinges, as well
as the pitch bearings, have all been replaced by a
torsionally soft flexbeam between the blade and
the hub (Fig. 1). Pitch control is applied to the
blade by rotating the torsionally stiff torque tube
with a pushrod. The torque tube in turn twis

the flexbeam. This design results in significant
bending-torsion coupling, and requires careful
modeling for accurate predictions.

Most modern bearingless rotors, including this
Sikorsky S5-bladed BMR, employ

snubber/damper at the inboard end of the torque




tube (Fig. 1). The snubber/damper serves many
purposes: the snubber portion provides a pivoting
point for the inboard end of the torque tube and
prevents excessive static droop, the damper
portion functions as a lead-lag damper and
introduces positive pitch-lag coupling (lag-back
nose-up) to increase lag mode aerodynamic
damping. Accurate predictions of blade response
and rotor stability require this snubber/damper
to be properly modeled.

~For bearingless rotors, the blade loads are
~transferred to the helicopter through the
_flexbeam, as well as through the torque tube and
~pushrod.  For BMRs that incorporate
snubber/dampers, shear loads «can transfer
‘between the torque tube and the flexbeam at the
~snubber junction. These redundant load paths
omplicate the assembly of blade equations and
modeling of the boundary conditions.

In addition to modeling the BMR-specific items
_mentioned above, a good analysis must account for
the coupling between the aeroelastic problem and
‘the trim state of the helicopter. This requires
that the nonlinear blade response and nonlinear
| trim equations be solved together.

Two computer programs were employed for the
~correlation described in this paper. They are the
Sikorsky KTRAN analysis and the Sikorsky
version of UMARC. A brief description of each
program follows.

KTRAN was developed at Sikorsky Aircraft for
~ the prediction of rotor loads and response. The
_analysis includes coupled elastic flap, lag and
. torsion degrees of freedom. Fuselage dynamics
are not included. The blade equations of motion
are solved using the finite segment transfer
matrix method. The bearingless rotor is modeled
as a multiple load path system with up to fifty
discrete elements for the blade and flexbeam,
and up to twenty elements for the torque tube.
For the analysis of this $S-76 BMR, thirty
elements are used for the blade, twenty for the
ﬂexbeam and twenty for the torque tube.

_ Control system stiffness is modeled with a
torsion spring connected between the ground and
_the torque tube. The snubber/damper is modeled
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as a spring and damper system linked between
the torque tube and the flexbeam. The
spring/damper model rotates with the torque
tube.

Blade element theory and airfoil table lookup are
used for aerodynamic calculations. Free wake
modeling is used for enhancing the prediction of
higher harmonic aerodynamic forces. The UTRC
Freewake analysis has two options: a distorted
wake and a classical wake. The blade response is
assumed to be a sum of many harmonics. The
responses to each harmonic airload are
calculated and then added together. The blade
response is iterated until it reaches a steady
state. The analysis can be trimmed to converge
on prescribed rotor thrust and rotor moments, or
to prescribed control settings.

Unlike most finite element analyses, the transfer
matrix method requires a compatibility of the
displacement and slope, as well as the forces and
moments between elements. The benefit of the
transfer matrix method is that the shear forces
and bending moments are known immediately
when the response is solved. In KTRAN, the
forces and moments are calculated at the middle
of each element.

A second advantage of the transfer matrix
method is its speed. The matrix size for the
blade equation is always the same as the number
of state variables used for each element; it is
independent of the number of elements used. The
KTRAN modeling of the BMR is shown in Fig. 2.
There are 10 states at each end of the element.
The displacements and slopes are x = [v, v', w, w'
6], and the forces and moments are F = [Fy, Mz,
Fz, My, Mx]. For example, the displacements and
forces at the left and right ends of element
number one are related by a 10x10 transfer
matrix Tp1.

R )

If n number of elements are used, then the blade
equation simply becomes:



& =[Taan]- - [Tali,
- [T iy,

The drawback of the transfer matrix method is
that if a new load path is added to the rotor, the
above equation must be rewritten to satisfy the
compatibility at the junction.

UMARC/S

The University of Maryland's UMARC analysis
(Refs. 5-6) has been modified at Sikorsky to
analyze the S-76 BMR with a snubber/damper. A
modal and a force summation method have also
been added to calculate the BMR bending
moments. UMARC is based on a finite element
method in space and time. The hub motions are
not included in the response calculations. The
blade is assumed to be an elastic beam
undergoing flatwise bending, chordwise bending,
elastic twist and axial extension. This Bernoulli-
Euler beam is allowed small strains and moderate
deflections. Due to the moderate deflection
assumption, the equations contain nonlinear
structural, inertial and aerodynamic terms. The
blade can be discretized into a number of beam
elements. For this BMR, five elements are used for
modeling the blade, six for the flexbeam, and five
for the torque tube. Each element has fifteen
degrees of freedom (Fig. 3). Between elements
there is a continuity of displacement and slope.
The snubber/damper is modeled as a spring and
damper system linked between the flexbeam and
the torque tube. The spring/damper system
rotates with the torque tube when blade pitch is
changed. The aerodynamic modeling includes
quasi-steady strip theory, the Leishman and
Beddoes 2-D unsteady aerodynamic model for
capturing the unsteady shed wake, trailing edge
separation and dynamic stall, and a Scully free
wake to capture the 3-D trailed wake and higher
harmonic forcing.

Results from UMARC include blade displacement
and slope. Additional work must be done to
obtain the bending moments. Two methods have
been added to UMARC/S to calculate the bending
moments. The modal method uses the flatwise and

chordwise stiffness (Ely and El;) and the second
derivatives (w" and v") calculated at the finite
element Gaussian integration points to get the
bending moments. The force summation method
sums up the aerodynamic and inertial loads from
the necessary elements to obtain the bending
moment at the inboard end of each element.

Using Elyw" and Elzv" to obtain the bending
moment is straightforward. The advantage is once
the response has been solved, the slopes w" and
v" are known everywhere on the blade, flexbeam
and torque tube. This method is independent of
rotor type (articulated, hingeless or bearingless).
The primary drawback is that accurate results
require the use of either 1) many elements, or 2)
elements with non-uniform stiffness.

Sixteen elements are sufficient for predicting
the rotor response and stability of this BMR (Ref.
2). However, the stiffness inside each element is
assumed constant, and the value represents an
average stiffness in that region. Some inaccuracy
arises when extracting "local" information, suc
as the local bending moment at the flexbeam
root. :

The force summation method is straight forward
to implement for an articulated or hingeless
rotor, but becomes quite involved for a BMR. To
obtain the bending moment in the blade, the
procedure simply requires summing up the loads
from the "outboard" elements. This is identical to
solving for the moments for articulated and
hingeless blades. However, to find the moments
for the flexbeam or the torque tube, the loads
from the '"redundant" path must be subtract
from the loads from the blade portion.

For example, to find the moment on the flexbeam,
the shear forces and bending moments at
flexbeam/blade/torque tube junction that are
back from the torque tube must be accounted for.
These extra forces and moments are due to th
aerodynamic and inertial forces acting on the
torque tube, the internal bending moment of the
torque tube itself, the reaction force from the
pushrod and the reaction force at the
snubber/damper. The most demanding part is
calculating a precise displacement for the torque
tube at the pushrod location,

relative displacement between the
and the flexbeam at the snubber.



ending moment in the flexbeam is very sensitive
these two reaction forces. Fig. 4 illustrates the
orces and moments involved in using a force
ummation method to obtain the flatwise bending
oment at a location "x" in the flexbeam.

\nalytical Approach
br the results presented in this paper, both the
‘TRAN and UMARC/S prediction methods were
et to converge on the rotor thrust and pitching
ments measured by the RTA balance.
ictions were made both with and without a
¢ wake model. All UMARC/S calculations
luded the Leishman and Beddoes 2-D
teady aerodynamic model.

'he radial stations at which the bending
ioments were calculated were chosen to match
actual measurement locations whenever
ctical. Because of modeling differences in the
iction methods, however, exact matches were
~always obtained. The increment in azimuthal
sition was different for each method; the
'RAN results were calculated every 12 deg in
muth, while the UMARC/S results were
culated every 18 deg. This compares with the
data increment of 5.625 deg.

Results and Discussion

is. section presents the correlation results for
h of the prediction methods, along with some
ited discussion. Included in these results are
D contour plots, which allow qualitative
essments of bending moment waveforms, and
plots, which allow quantitative
; In addition to these results, a
mber of items are presented which may prove
in future correlation efforts. These
the effect of various parameters on
, and a discussion of the limitations
e force summation method.

ding Moment Waveforms

res 5-9 present measured and predicted
ing moment time histories using a 3-D
ur plot format. This format allows a

itative assessment of how well the bending
ent waveform is predicted. The results in
$¢ figures are for forward speeds from 40 to
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150 knots, at a constant 14,000 1b thrust. The
predictions include harmonic response from the
0 to 8th harmonic. The test data are “smoothed"
time histories, averaged over 8 revolutions with
all non-harmonics, removed. The bending
moments are plotted against blade span and
azimuth for one rotor revolution and include
both steady and vibratory components. Note that
the bending moments in these and all other
figures in this paper have been non-
dimensionalized. For purposes of comparing the
relative waveforms, the predicted data have been

shifted in azimuth to best match the measured
data.
Figures 5 and 6 present the measured and

KTRAN-predicted flatwise and chordwise
bending moments for forward speeds from 40 to
150 knots. The KTRAN predictions utilized a

distorted free wake model. In general, the
predicted waveforms match the test data
reasonably well for all speeds and all gage

locations. In addition, the moment amplitudes
are fairly well predicted, with slightly worse
correlation near the flexbeam/blade junction
(x/R 0.26). These results are especially
encouraging for the chordwise bending moments
since they have traditionally been much more
difficult to predict than flatwise moments.

The effect of not including the free wake in the
KTRAN predictions is shown in Fig. 7. This
figure shows both the measured and predicted
flatwise and chordwise moments at 80 knots. As
expected, the predictions show much less higher
harmonic content, especially near the
flexbeam/blade junction, than either the test
data or predictions with the free wake (see Fig.
5d and 6d).

Figures 8 and 9 compare the measured data at
one forward speed (100 knots) with predictions
from all three analytical methods: the KTRAN
matrix approach (with free wake), the UMARC/S
modal approach (with and without the Scully free
wake), and the UMARC/S force summation
approach (without free wake). For the flatwise
bending case (Fig. 8), the magnitude and
waveform are predicted well by all except the
force' summation method. For the chordwise case
(Fig. 9), all methods predict the waveform well,
but the UMARC/S methods tend to overpredict
the magnitude near the flexbeam root. For both
cases, the inclusion of a free wake model in the



UMARC/S predictions increases the
harmonic content on the blade and near
flexbeam/blade junction.

higher
the

The results of Figs. 8 and 9 are typical of those
at other speeds. In particular, the moment
waveforms are predicted reasonably well by both
KTRAN and the UMARC/S modal method, but not
by the force summation method. The reasons for
the poor correlation with this latter method will
be discussed later in the paper.

As mentioned earlier, the predicted data in Figs.
5-9 were shifted in azimuth to match the
measured data and allow easier comparisons of
the bending moment waveforms. The flatwise
predictions required about a 15 deg azimuth
shift. One possible explanation for this phase
shift is that incorrect values of rotor hub
pitching and rolling moment were input to the
analyses. This is possible since the inputs came
from RTA Dbalance measurements. These
measurements included not only the true rotor
hub moments, but also the loads through the
redundant load path (torque tube/pushrod).

The chordwise correlation shows a larger
azimuth shift, on the order of 60 deg. The reason
for - this shift is unknown. One of the
possibilities is that the true lead-lag motions
are highly coupled with the transmission/drive
system. For example, Ref. 2 showed the collective
lag frequency for this rotor is reduced from 3.7
to 2.5 Hz due to a coupling with the
transmission. This coupling effect 1is not
modeled in the analyses.

Bending Moment Harmonics

Figures 10 and 11 present both measured and
predicted harmonic bending moment information
(including magnitude and phase) for one forward
speed (100 knots). These figures allow a more
quantitative assessment of the bending moment
predictions than the previous 3-D contour
figures. The predictions were done using KTRAN
(with free wake) and the UMARC/S modal
approach (with and without free wake). The force
summation results are not included, since their
qualitative chordwise results were poor.
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Flatwise Harmonics-Magnitude (Fig. 10a)

The magnitudes of the flatwise bending moments
for the 0-6P harmonics are shown in Fig. 10a.
All three prediction methods match the test data
fairly well, with the largest discrepancies near
x/R=0.3.

The effect of a free wake model can be seen at the
higher harmonics, especially at 3, 4, and 5P. The
KTRAN and UMARC/S predictions that include a
free wake model show greater amplitude (and
better correlation) for the higher harmonics than
those predicted by UMARC/S without a free
wake. As expected, UMARC/S shows the free
wake makes little difference on the O-th and 1P
harmonics.

Flatwise Harmonics-Phase (Fig. 10

The phases of the flatwise bending moments for
the 0-6P harmonics are shown in Fig. 10b. AN
three prediction methods correlate the first
harmonic phase to within 15 deg. This is the
same amount of azimuth shift necessary to
improve the 3-D contour correlation in Fig. 5
Significant phase differences show up at the
higher harmonics, although the curve shapes of
the predictions match the test data fairly well.

It is expected that inclusion of a 2-D unstead:

aerodynamic model (as in UMARC/S) wil

improve the prediction of bending moment phase

In particular, the model can account for th

delay in the lift build-up due to a change in
blade response. Unfortunately, the results 0

this study are inconclusive, since 1) n

UMARC/S predictions were performed withou

the aerodynamic model and 2) the UMARC/S
predictions show no significant improvement
over the KTRAN results.

Chordwise Harmonics-Magnitude (Fig. 11a)

The magnitudes of the chordwise bendin
moment harmonics are shown in Fig. 1la. Ii
general, the curve shapes of the prediction
match the test data fairly well (also seen in Fig
6). The magnitudes, however, are not as wel
predicted, especially near the flexbeam root. Fo
example, all the analyses overpredict th
moments on the blade for 1P-3P and at th
flexbeam root for 2P. i




~The inclusion of a free wake model in UMARC/S
hows little effect on the O-th and [P harmonic
sredictions. At higher frequencies, UMARC/S
ith the free wake model generally predicts
igher moments than UMARC/S without,
specially on the flexbeam. Correlation with test
‘ however, is not necessarily improved by

armonics are shown in Fig. 11b. None of the
nalyses match the phase amplitude accurately,
ilthough the curve shapes of the predictions
natch the test data fairly well at some of the

Understanding of

is section attempts to provide a physical
derstanding of the harmonic plots in the
ious section. In particular, the relationship
en the phase plots and the blade modes are
ssed.

es 12 and 13 present the Southwell
grams for this S-76 BMR as predicted by
RAN and UMARC/S, respectively. Excellent
squency correlation with the data is obtained
- both analyses. This yields confidence in the
ctural properties used as input to the
‘m"cs calculations, and provides a basis for
lowing discussion.

the nominal operating rotor speed of 315
, Figs. 12 and 13 show that only the first
and first lag modes are in the region near
herefore, the 1P flatwise and 1P chordwise
ing moments are due primarily to the IF
1L motion of the blade. Thus, the 1P phase
in Figs. 10b and 11b are related to first
- bending modes.

_second flap mode frequency is between the
ind 3P excitation frequencies. Hence, in Fig.
, the phase plot for the 2P and 3P flatwise
ing moment is related to a second elastic
mode. Since there are no lag modes near
nd 3P, the phase plots for 2P and 3P
lwise moments in Fig. 11b are relatively
~When there isn't a structural mode near the

Harmonic
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harmonic excitation, the structural response is
weak and it becomes difficult for the analyses to
predict either the phase or the magnitude.
Figure 11b shows the 2P and 3P phase
predictions are very poor for both analyses.
Figure 1la also shows that the 2P and 3P
chordwise magnitudes are over-predicted.

The third flap frequency is between 4P and SP.
Hence, in Fig. 10b, the phase plots for the 4P and
SP flatwise bending moments are related to a
third elastic bending mode. The second lag mode
is also between 4P and 5P. Thus, the 4P and 5P
chordwise phase plots (Fig. 11b) should be
related to the second lag mode. The relationship
with the 5P phase is not clear, however, since the
2L and 3F modes are highly coupled near 5P.

Miscellaneous Results

the course of this correlation effort,
things were learned which may be of
benefit in future studies. Some of these are
presented in this section. In particular, the
effect of analysis approach on blade tip
response, the effect of various parameters on
steady chordwise moment predictions, and a
discussion of the limitations of the force
summation method are presented.

During
many

Blade Tip Response

Figures 14 and 15 compare the predicted blade
tip response from KTRAN and UMARC/S for the
100 knot case. The flap responses match well.
The lead-lag responses show a phase difference
and a magnitude difference. The phase difference
can probably be attributed to the different
aerodynamic models used, with the 2-D unsteady
aerodynamics in UMARC/S accounting for a delay
in lift buildup. One possibility for the
magnitude difference is the different structural
modeling of the blade torque offset and neutral -
axis. ‘

Parameter ts_on_ Steady Chordwise Moments
Figures 16 and 17 demonstrate the importance of
neutral axis and torque offset modeling on
steady chordwise bending moment predictions.
Torque offset is used in BMR designs to minimize
the steady lag angle (similar to the way precone
minimizes the steady flap angle). For this rotor,
it is a l-inch forward offset, from the axis of



rotation, of the elastic axis at the flexbeam-to-
rotor-hub junction.

Figure 16 shows the effect of neutral axis
placement on steady bending moment predictions

for a 14,000 1b thrust, 80 knot condition. The
results, calculated using KTRAN, clearly
indicate the importance of this parameter for

predicting the loads accurately.

Figure 17 shows the effect of torque offset
modeling on the predicted chordwise bending
moment in hover. For illustration purposes,

calculations were done with zero precone at Cy/o
= .001. The results were calculated using the
modal method and the force summation method in
UMARC/S. The modal method already includes
the torque offset effect in the calculated lead-lag
displacement and second derivative (v and v"). In
the force summation method, the tangential
component of the centrifugal load has to be
added in addition to the aerodynamic and
inertial load. Otherwise, the blade lags
excessively as shown in Fig. 17.

Figure 18 demonstrates the importance of
properly treating the loads feeding back from
the redundant load path when using the force
summation method. For illustration purposes,
calculations were done with zero precone and
zero torque offset at Ct/o = .001. Neglecting the
redundant load path gives incorrect results for
the steady flexbeam chordwise-bending moment.
Note that the difference in the bending moments
for the blade is not related to the redundant load
path but rather is due to differences between the
modal and force summation methods.

Limitations of Force Summation ho

Figures 19a and 19b illustrate the difficulty of
using a force summation method to predict the
flatwise bending moment in the flexbeam. Figure
19a is for a hover condition at Cy/c .001.
Figure 19b is for a hover condition at Cy/o = .093
(14,000 pounds thrust). The flatwise bending
moments predicted by the UMARC/S force
sumnmation method are compared to the UMARC/S
modal method. The bending moment distribution
in the blade section matches well between the
two methods. However, the comparison in the
flexbeam section is poor. The reason is that the
moments inside the flexbeam are very sensitive
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to the vertical shear load feeding back from the
pushrod and the snubber.

Figure 4 shows that the reaction force from the
pushrod is Kp-wp, and the reaction force from

the snubber is Kg-wg. Since the vertical
displacements wp and wg are very small, on the
order of 0.001 to 0.03 in (depending on thrust),
any small inaccuracy in the predicted w
displacements may cause significant error when
multiplied by a large value for the spring
stiffness. Figure 19 shows that if the vertical
displacements are arbitrarily reduced by a
factor, then the prediction for the flexbeam
improves. Figures 19a and 19b show that
different correction factors are needed for the
zero thrust and 14,000 pounds thrust condition.
In Fig. 8e, the flatwise bending moments
obtained from the force summation method are
uncorrected, hence, significantly different from
the others.

The same problem does not exist for thyé
prediction of chordwise bending moments (Fig.
9e) because the snubber has a very weak spring

force in the chordwise direction, and the’
pushrod has no spring restraint for inplane -
motion.

Conclusions

A study was undertaken to compare measured'
and predicted flatwise and chordwise bending
moments for a full-scale bearingless main rotor.
The overall agreement between the measured dat
and the predictions helps validate the structural
inputs and two of the BMR analyses used at
Sikorsky: the KTRAN transfer matrix method
and the UMARC/S modal method. The following
specific conclusions can be drawn from this
study: '

1) Correlation of KTRAN and UMARC/S
predicted blade frequencies with test data is
excellent. This validates the structural inputs to
the analyses.

2) Both the KTRAN transfer matrix method
and the UMARC/S modal method provide good
qualitative predictions of blade bending mome
waveforms. The primary advantage of the




transfer matrix method is its calculation speed
while the primary advantage of the modal method
is its ease of implementation.

3) The UMARC/S force summation method is
awkward for a BMR with multiple load paths. It
does yield good results for chordwise bending

moment predictions but not for flatwise
predictions.
4) The transfer matrix and modal methods

both predict the 0-6P flatwise-bending harmonic
magnitudes fairly well. The harmonic phase
predictions are not as accurate, although the
curve shapes of the predictions match the test
data.

5) The transfer matrix and modal methods
~ both predict the curve shape of the chordwise-
bending harmonic magnitudes very well. The
magnitudes, however, are not as well predicted,
especially near the flexbeam root. Neither of the
analyses match the phase amplitude accurately,
~although the curve shapes of the predictions
match the test data at some of the harmonics.

6) Using a free wake model improves the
prediction of the higher harmonic magnitudes of
the flatwise bending moments.

7) A precise knowledge of the blade neutral
- axis location and torque offset is important for
predicting the steady portion of the chordwise
- bending moment.
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Figure 1. Sikorsky proof-of-concept S-bladed bearingless main rotor.
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Figure 2. BMR model used in the Sikorsky KTRAN analysis.
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Figure 5. Measured and KTRAN-predicted (with free wake) flatwise bending moments, 14000 1b '
thrust, 315 RPM, a) 40 knots, b) 60 knots, ¢) 80 knots.
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Figure 5. Measured and KTRAN-predicted (with free wake) flatwise bending moments, 14000 Ib
thrust, 315 RPM, d) 100 knots, e) 120 knots, f) 150 knots.
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Figure 6. Measured and KTRAN-predicted (with free wake) chordwise bending moments, 14000 Ib
thrust, 315 RPM, a) 40 knots, b) 60 knots, c) 80 knots.
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Figure 6. Measured and KTRAN-predicted (with free wake) chordwise bending moments, 14000 Ib
thrust, 315 RPM, d) 100 knots, e) 120 knots, f) 150 knots.
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Figure 7. Measured and KTRAN-predicted (without free wake) bending moments, 80 knots, 14000 lb
thrust, 315 RPM, a) flatwise, b) chordwise
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Figure 10a. Harmonic magnitude of flatwise bending moment,

measured and dicted, ,
14,000 Ib thrust, 315 RPM. predicted, 100 knots
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igure 10b. Harmonic phase angle of flatwise bending moment, measured and predicted,100 knots,
14,000 Ib thrust, 315 RPM.
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Figure 1la. Harmonic magnitude of chordwise bending moment, measured and predicted, 100 knots,
14,000 1b thrust, 315 RPM.
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Figure 11b. Harmonic phase angle of chordwise bending moment, measured and predicted,100 knots,
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Figure 12. Measured and KTRAN-predicted Squthwell frequency diagram.
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Figure 13. Measured and UMARC/S-predicted Southwell frequency diagram.
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