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A computational framework to support the quantification of system uncertainties and
sensitivities for rotorcraft applications is presented using the NASA Design and Analysis
of Rotorcraft (NDARC) conceptual sizing tool. A 90 passenger conceptual tiltrotor con-
figuration was used for case demonstration in the modeling of uncertainties in NDARCs
emission module. A non-intrusive forward propagation uncertainty quantification approach
was applied to ensemble simulations using a Monte Carlo methodology with stratified Latin
hypercube sampling. An off-the-shelf software, DAKOTA, which supports trade studies
and design space exploration, including optimization, surrogate modeling and uncertainty
analysis, was used to address the research goals. Further, a toolsuite was developed incor-
porating DAKOTA with automated design processes and methods using function wrappers
to execute program routines including support for data post-processing. Uncertainties in
rotorcraft emissions modeling using the Average Temperature Response metric for a set
mission profile were studied. NDARC under-estimates the effects of emissions when us-
ing the baseline modeling parameters for the Average Temperature Response compared
with mean results from Monte Carlo simulations. A global sensitivity analysis was further
undertaken to quantify the contribution of the various emission species on output sensitiv-
ity. The work demonstrates that the developed toolsuite is robust and could support the
quantification of system uncertainties and sensitivities in future rotorcraft design efforts.

I. Introduction

Engineering design has uncertainties that manifest from data processing and interpretation to system
modeling and manufacturing and measuring of component characteristics. Uncertainties, whether random
or systematic, originate because of the underlying randomness in physical systems, modeling idealizations,
experimental variability, and measurement inaccuracy. The use of computer models to represent the physics
of a complex system is an applied process in engineering design. By definition this process does not capture
the finer details of the studied phenomena due to the underlying assumptions that are implied to simplify
the computing process. Turbulence modeling in computational fluid dynamics (CFD) is an example of this
process; Schaefer et al.1 quantified the uncertainty and sensitivity of commonly used turbulence models
using Reynolds-Averaged Navier-Stokes (RANS) codes on airfoil drag coefficient and relevant flow physics
at transonic Mach numbers. In computing simulations, uncertainty is introduced even for deterministic
systems and in stochastic phenomena where model simplification assumptions are removed. The underlying
uncertainties that exist in the system still cannot be neglected.

Eliminating uncertainty in a prediction is often impractical and the goal is to control and/or manage the
uncertainty to an acceptable level so that critical design decisions can be made from the simulated data.
If the uncertainty is too high, sensitivity analysis can be undertaken to identify the largest contributors to
uncertainty so research can be guided to reduce these parameter uncertainties. In CFD, solver uncertainties
can be addressed by reducing discretization error, improving physics modeling, or by setting appropriate
boundary conditions. Once the source and magnitude of the uncertainties in a complex system have been
identified, then future solver runs can be setup efficiently. The designer is not required to perform multiple
runs with different solver settings to establish solution trends. An example is the uncertainty in the setting of
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freestream turbulence intensity where uncertainty bands can be attached to the integrated forces to quantify
the expected data variances.

In aircraft conceptual design, simulation models are used to establish system physics to predict flight per-
formance for concept development.2 The accuracy of the computer models is enhanced using experimental
data for solver calibration and validation. Often the experimental data is limited to specific test conditions
and/or the testing equipment has uncertain properties that compromise the accuracy of the recorded data.
Semmelmayer3 confirmed the uncertainties in surface pressure measurements obtained with static pressure
taps used in wind tunnel experiments. Accordingly, caution must be exercised when calibrating high-fidelity
solvers with experimental data that has underlying uncertainties. As a result, the data generated by deter-
ministic models will not correlate with measurements from experimental test due to the randomness in the
respective data sources. To address this challenge, the use of probability and statistical analysis methods is
warranted to guide engineering design.

Historically assessment of system uncertainties was based on subjective experience-based evaluations of
the simulation results. Although the approach has merits, a rigorous mathematical framework using a struc-
tured uncertainty quantification (UQ) method is needed to establish the estimates of model uncertainties.
Hence, UQ is defined as the process that identifies, quantifies, and assesses the impact of uncertainty sources
that are involved in the development and application of simulation models.4 It is a technique that is applied
to quantitatively map the randomness of the input parameters on model outputs where the input uncertain-
ties are expressed using interval bounds or a probability density function (PDF). Accordingly the variability,
distributions, and statistics of code outputs, given the uncertainty in input parameters, are established.
Post-processing of UQ results permit the assessment of event occurrence by studying the mean or median
of the system performances, including the range of possible outcomes, by the evaluation of the probability
distributions that represent the likelihood of reaching a critical event.5 The identification and management
of system uncertainties is critical in aerospace design efforts to justify early model-based design decisions and
to further ensure the concepts developed will safely and efficiently operate to the set performance thresholds.

In this work, uncertainty analysis is undertaken for rotorcraft at conceptual design. The study is critical
at early design phase to ensure the final design will safely meet user requirements. At conceptual design,
there are system uncertainties which are typically neglected or are estimated based on the judgement of the
engineer running the simulation. The primary challenge in performing UQ at early design is the inadequate
representation of the underlying uncertainty. Use of low fidelity solvers integrated in a multidisciplinary
design analysis environment,6 where each discipline has uncertainties collectively impact the sizing effort.
NDARC is affected by these attributes and results with performance uncertainties need to be quantified.

There has been much work in UQ across multiple disciplines including flight operations,7 computational
aerodynamics8–10 and aeroacoustics,11 structural analysis due to uncertainties in blade geometry12 and ther-
mal loads,13 aeroelasticity14 and in experimental procedures.15–17 Probabilistic analysis in UQ has also been
applied to aircraft life-cycle costs.18 Sankararaman and Daigle7 applied a UQ approach for flight trajectory
prediction using aircraft operation and atmospheric information. A Monte Carlo (MC) approach coupled
with global sensitivity analysis was used to transform input PDF to output trajectory distributions to model
system uncertainties. In computational sciences, Salahudeen and Baeder8 propagated input uncertainties
to study CFD freestream turbulence intensity on airfoil force coefficients using a MC approach. Pečnik,
Witteveen and Iaccarino9 studied laminar-to-turbulent transition uncertainties for transonic gas turbine
compressors using a stochastic method and quantified the uncertainties in the applied transition model on
boundary-layer development. Ronch et al.10 modeled the uncertainties in RANS solvers in the design of an
unmanned combat aerial vehicle using a MC approach coupled with a surrogate model. West et al.11 further
conducted an uncertainty analysis using a surrogate based non-intrusive CFD approach to predict low-boom
characteristics of a supersonic aircraft with different wing configurations for flight certification prediction.

In rotorcraft aeromechanics, Siva, Murugan and Ganguli12 simulated helicopter structural and aerody-
namic performances at hover, axial climb, and forward flight to then model the uncertainty effects of the
aeroelastic input parameters on rotor thrust and power coefficients. A MC approach was applied for uncer-
tainty propagation. Dı́az and Hernández13 quantified the uncertainties in the thermal design of a skin panel
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and wing box section due to the randomness of the input variables using a MC approach. In aeroelastic
analysis, Murugan et al.14 investigated the spatially uncertain material properties on the aeroelastic response
estimations of a composite helicopter rotor. A MC approach was used to confirm that spatial uncertainty
has significant influence on vibratory hub load prediction.

The simplicity of the non-intrusive approach makes it a widely applied method for uncertainty propa-
gation using MC simulations. The primary objective of this work is to apply this technique with a robust
computational framework to support the quantification of system uncertainties and sensitivities. Capabil-
ity demonstration is presented using a 90 passenger tiltrotor that was conceptually sized by NASA19 for
reduced environmental impact in multiple iterations of varying technology and requirements. A tiltrotor
configuration is proposed as a future replacement for regional jets to alleviate airspace system delays, and
since aviation accounts for 3-5% of man-made radiative forcing, environmental performance metrics were
used to drive the design effort with the goal of following up with advanced concepts through detailed studies.

Uncertainties in aircraft emissions are considered, based on the work explored in the the literature.20,21

The environmental impact of aviation is important to the industry given that the demand in aircraft op-
erations is forecast to grow significantly. The result of aircraft operations on climate change has been
documented22–25 as future aircraft configurations are developed, their impact on the environment is of inter-
est. In 2005 alone, aircraft operations generated 4.9% of the worldwide anthropogenic forcing that resulted
in climate change,26 and this trend is expected to increase. Computational simulations are critical for the
modeling and coupling of atmospheric processes with aircraft gas emissions as a direct result of fuel combus-
tion. This sequence is inherently uncertain due to the variability in the processes that generate emissions,
and include variations in environmental conditions related to temperature and sunlight intensity changes.
Modeling assumptions based on limited supporting data and knowledge also give rise to uncertainties which
then produce a low-fidelity estimation of the emission metric for a highly complex process. The instruments,
tools and methods applied to measure emissions in experimental settings further contribute to system un-
certainties.

There is a need to integrate validated computational tools and methods early in aircraft conceptual design
for emission metric estimation. Allaire et al.20 suggests this would then allow for a meaningful approach to
compare the climate impacts of disparate platform configurations and technologies in future aircraft design
efforts under different operational, policy and market scenarios. In their work, the uncertainties in the U.S.
Federal Aviation Administration supported Aviation Environmental Design Tool (AEDT) were mapped by
simulating aircraft operations originating from three major hub airports as a driver to then support intel-
ligent decision and policy-making for aviation environmental impact. Lim et al.21 also used the AEDT to
perform parametric uncertainty and sensitivity analysis to identify the main contributors to system output
uncertainties for fuel burn, emissions, and noise for fixed-wing, single-aisle Boeing and Airbus category air-
craft. In the report by Radian Corporation,27 it is recommended that the initial step towards enhancing
emission estimates is to first understand and quantify the various sources of variability and inaccuracies in
the data.

In this work, a parametric uncertainty and sensitivity study will be undertaken that quantifies the im-
pact of the flown mission for the conceived platform on Average Temperature Response (ATR), measured in
units of temperature using NDARC. The output response quantifies the lifetime climate temperature change
due to flight operation by the considered design and mission. The climate model used was developed by
Dallara, Kroo and Waitz26 which computes the emission species including carbon dioxide (CO2), nitrogen
oxide (NOx), water vapor (H2O), sulfate (SO4), and soot from fuel combustion. The species affect both
atmospheric composition and cloud formation properties, hence the radiative balance of the Earth system.26

System uncertainties will be first quantified by probabilistic means to form the robustness (mean and vari-
ance) of the output metric. The methodology will propagate the randomness of the input coefficients that
are used to establish the emission species through the simulation driver to then compute the climate response
metric, ATR with uncertainty. A global sensitivity analysis (GSA) will then be undertaken to assess the
influence of parameter inputs on output variability using large-scale MC simulations. The results to the
parametric analysis will guide designers to the expected uncertainties in ATR due to the randomness in
climate modeling input parameters.
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The paper is organized as follows: Section II outlines the emission modeling framework; Section III
details the computational tools that are used and developed to address the research goals; Section IV
describes the applied UQ and sensitivity analysis methodologies; Section V presents the numerical results
with discussion; and Section VI summarizes work findings with outline of ongoing research efforts.

II. Aviation Emissions

The rotorcraft emissions modeling methodology for this work follows that of Russell and Johnson,28 which
is a slightly modified version of the method developed by Dallara, Kroo, and Waitz.26 A summary of the
emissions modeling is given here, while a more comprehensive description of the methods is contained in the
above two references. The metric that was used to quantify the environmental impact of a given rotorcraft
design is ATR.

ATR is a measure of the atmospheric temperature change caused by operation of a fleet of aircraft (fixed-
or rotary-wing) for a given amount of time, H, typically 30 years. The most basic form is given in Eq.
1:

ATR =
1
H

∫ ∞
0

∆Tsust,H(t)w(t)dt (1)

∆Tsust,H , is the time-dependent global mean temperature change resulting from the operation of a given
aircraft design, where emissions are assumed to be constant for the first H years and zero thereafter. This
temperature change is a function of the solar energy trapped in the atmosphere by a number of different
pollutant species. The weighting function w(t) allows discounting of temperature change effects in the years
following H. This discounting is included so that long-term effects such as CO2 warming do not necessarily
dominate ATR. When considering the impact of aviation on climate response, it may be desirable to focus
more on short-term effects (decades), rather than long-term effects (centuries).

In general, the most important pollutant species when considering climatic temperature change due to
hydrocarbon (e.g., jet fuel) combustion are CO2, oxides of nitrogen, including NO and NO2, collectively
called NOx, and aviation-induced cloudiness, or AIC. Other combustion emissions such as soot and sulfates
also contribute to ATR, but their impacts are about an order of magnitude less than those of CO2, NOx,
and AIC. The first step in calculating ATR is determining the quantity of emissions. For all emission species
except NOx, this calculation is trivial as it can be well approximated as a constant multiple of the quantity
of fuel burned.

In reference to NOx, the emissions quantification is much more involved and uncertain as it depends
significantly on internal engine properties including atmospheric conditions. In fact, many modern engines
derived from older models generate significantly more NOx emissions per unit of fuel burned than their
older counterparts. This issue is caused by the pursuit of higher engine fuel efficiency, which leads to higher
engine pressure ratios and combustion temperatures.29 For this study, the method of Russell and Johnson28

was used to estimate NOx emissions, whereby in-flight turboshaft engine NOx emissions are approximated
using published turbofan emissions data along with the DLR fuel flow method.30,31

There are multiple climate models that can be used to calculate the different components of ATR, but
simple linear climate models are appropriate for the conceptual design of rotorcraft. The models used for
this work are the same as those used by Dallara, Kroo, and Waitz.26 These models first calculate the radia-
tive forcing (RF), measured in watts per meters squared per kilogram, that represents the amount of heat
trapped by each particular emissions species. Radiative forcing is a function of time that decays exponen-
tially depending on how long that particular emission species persists in the atmosphere. CO2 emissions can
persist in the atmosphere for centuries, while many of the others may persist no more than a year.

Climate effects due to CO2 emissions are generally well understood by the scientific community; in short,
increased atmospheric CO2 concentration causes positive radiative forcing, leading to higher global tempera-
tures. NOx emissions are less well understood and cause changes in RF indirectly through multiple chemical
processes in the atmosphere. Increases in NOx lead to both increases in atmospheric ozone (a warming
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effect), and reductions in methane (a cooling effect).32 The methane reduction has a secondary effect of
reducing ozone, so there are actually three components of RF due to NOx emissions. All three are modeled
in the current study.

In the analysis of Aviation Induced Cloudiness, the RF contributions have a much higher level of un-
certainty than do the other emission species.33 At low altitudes or areas of the atmosphere with minimal
cirrus cloud potential, the RF due to AIC is negligible. AIC effects peak at altitudes near 35,000 ft, but
are still dependent on local atmospheric temperature and moisture content.34 Because of the high level
of uncertainty in the impacts of AIC, and the fact that future aircraft routing may seek to actively avoid
contrail generation,35 it is sometimes desirable to ignore AIC in the ATR calculations.

For each emission species, there are several parameters that are used to calculate the time-varying ra-
diative forcing caused by their deposition in the atmosphere. For the long-lived species (CO2, plus methane
and ozone changes caused by NOx), exponential functions give the time-dependent decay of RF, with the
RF extending well beyond the operation time of the aircraft. For the short-lived emission species and AIC,
RF is assumed to be a constant function of fuel burn during aircraft operations and zero thereafter. For the
products of atmospheric NOx deposition and AIC, an additional forcing factor is applied that is dependent
on altitude. This altitude-dependent forcing factor is assumed to be constant below 16,000 ft. Parameters
are then applied to normalize the effects of RF for the different emission species based on current global
distribution of aircraft traffic.

Finally, once the radiative forcing for each emission species is calculated, the total RF is determined and
the temperature change due to sustained aircraft operations, ∆Tsust,H is computed. ATR is calculated by
integrating ∆Tsust,H over time and normalizing by the time period of interest, H. Because ATR has values
on the order of nano degrees, when comparing aircraft designs it is useful to normalize the ATR values by
that of a baseline. The baseline aircraft then has a relative ATR value of 1, and the off-baseline designs have
relative ATR values that are easy to interpret.

The complete equations for the linear climate models are given by Dallara, Kroo, and Waitz,26 as are
the probability distribution functions for the modeling parameters and coefficients to the equations. The
parameters which are the inputs to the uncertainty analysis are briefly summarized in Table 1 for the
respective species:
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Table 1. Emission species considered in the uncertainty and sensitivity analysis

Emitted Species RF Parameters Description

CO2

ACO2 Parameters and time constants used by the exponential decay
model for RF caused by CO2 effectsαc1,2,3

τc1,2,3

CH4

ACH4 Parameters and time constant used by the exponential decay
model, including ratio f , that governs the effectiveness at

changing global temperatures by RF for CH4 effects
τn

fCH4

O3L

A03L Parameters and time constant used by the exponential decay
model, including ratio f , that governs the effectiveness at

changing global temperatures by RF for long-lived NOx effects
τn

fO3

O3S
(RFref/Eref )O3s ratios that govern the effectiveness at changing global temperatures

by radiative forcing caused by short-lived NOx effectsfO3

H2O
(RFref/Eref )H2O ratios that govern the effectiveness at changing global temperatures

by radiative forcing caused by short-lived water vapor effectsfH2O

soot
(RFref/Eref )soot ratios that govern the effectiveness at changing global

temperatures by radiative forcing caused by short-lived soot effectsfsoot

SO4
(RFref/Eref )SO4 ratios that govern the effectiveness at changing global

temperatures by radiative forcing caused by short-lived SO4 effectsfSO4

∆T

RF2xCO2

Parameters and time constants used by the exponential decay
model for temperature change caused by radiative forcing

S

αt

τt1,2

A stochastic model is setup that involves the random sampling of the above inputs from the respective
PDF defined by Dallara, Kroo and Waitz.26 The data points are propagated to the climate model to establish
output statistics. The distributions of potential outcomes due to random input variation is derived using a
large simulation sample size (stochastic projections) to ensure output statistical convergence is established,
hence leading to the quantification of ATR uncertainty for the flown mission.

III. Computational Toolsuite

The UQ processes are adaptable to automation and facilitate the assessment of uncertainties in engineer-
ing design. The sub-systems of the proposed toolsuite are described in this section.

A. Overview of Computational Toolsuite

In this paper, MC simulations with parameter distribution by the Latin hypercube sampling (LHS) approach
is performed using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) software
package.36 The DAKOTA executable is available pre-compiled via the Sandia National Laboratory website
and provides an interface to black-box programs, in this case coupling with NDARC. In the UQ realm, the
software supports the generation of probability distributions based on input parameters, followed by the
forward propagation of the select distributions through a mathematical model. Outputs from DAKOTA
are then processed to generate variable input and response output probability distributions leading to the
quantification of parameter uncertainties and sensitivities. The computational framework uses file-based in-
puts and outputs, and function wrappers are developed to automate simulation pre and data post-processing
routines. Figure 1 illustrates this computational process.
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Input: to Climate Model  
● DAKOTA variables
● NDARC outputs

Data
Pre-processing

DAKOTA Input File
● Environment
● Method (UQ / SA)
● Variables
● Interface
● Responses

DAKOTA Execution

NDARC: Mission Simulation
● Segment Altitudes 
● Fuel Flow 

(thrust & power settings)

DAKOTA Variables File
{x1 = 12.5}

{x2 = 135.5}, etc.

Emission Driver
● Radiative Forcing
● Temperature Response

Data
Post-processing

Output: Results Processing 
● Raw data (x- and f-values)

➢ Regression analysis
➢ Statistics on f-values (UQ)

● DAKOTA results files (.dat, .out)
➢ Sensitivity Analysis

>> Define Study Parameters

Figure 1. EmissionWrapper : A computational framework used to model system uncertainties and sensitivities in rotor-
craft emissions modeling with NDARC

As first step, the user enters study mode in the form of uncertainty or sensitivity analysis. Based on this
input, a template of the DAKOTA input file is formed that further requires the definition of the following
categories:

• environment: is an optional requirement that is used to define the precision of the results, including
the names of the output and error files.

• method: specifies the study algorithm that is to be initiated on the model for the chosen analysis. Some
examples include multidimensional parameter analysis; design space sampling; sensitivity analysis using
local or global methods; or optimization using gradient-based methods. The input files requires the
definition of at least one method block.

• variables: to characterize the number, descriptor (label), type, and ranges of parameters that will
be varied by DAKOTA. Variable types include state, continuous or discrete, real, integer, or string.
For uncertainty analysis, parameters of the probability density function need to be defined.

• interface: defines the workflow for the mapping of the input variables to a solver job file to then
obtain and store responses from the solver at those values to a results file. The solver path must be
specified and a script is further used to orchestrate the routines in this sub-task.

• responses: the quantities of interest (QoI) from the model are stored in an output file and shared
with DAKOTA to complete the computational cycle.

A Matlab-based function denoted as the EmissionWrapper is used to execute the computational routines
in Figure 1. The wrapper generates, executes and manages the DAKOTA and solver climate modeling job
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input files to completion. It further activates results post-processing scripts to support statistical analysis
and variable sensitivity studies. At function execution (Fig. 1), the following events follow in sequence and
are repeated for each cruise altitude run:

(1) User to enter study type including sensitivity or uncertainty analysis, variable descriptors, probability
distribution types with supporting parameters, sample size, and size for incremental LHS runs;

(2) A DAKOTA input file is generated using the entered input data;

(3) DAKOTA is executed in pre-processing mode to generate and store study input parameters, (emission
species coefficients) in text file format;

(4) The rotorcraft mission profile (shown in Figure 6) is simulated using NDARC. Performance metrics
that are needed to compute ATR are then extracted from the NDARC output file. A parametric cruise
altitude sweep is performed and at each run, mission data from NDARC is extracted to then facilitate
the quantification of system uncertainties and sensitivities for cruise altitudes in the range of 16,000 to
33,000 feet.

(5) The distribution of the input parameters from (3) and mission-system output metrics from NDARC
(4) are saved and parsed to;

(6) An emission driver which then computes the radiative forcing, RF, and decay in RF for the respective
emission species, hence leading to the measure of ATR; and

(7) Data post-processing routines follow to perform statistical (UQ) and sensitivity analysis.

The simulations and supporting data are processed in serial on a local machine configured with an Intel
Xeon CPU at 2.60GHz. The workflow guides the generation of individual case folders where the respective
DAKOTA input and climate model functions reside and are used to execute the runs. DAKOTA outputs are
directed to a results directory that resides one level up to the code execution level. Each simulation requires
approximately three seconds of computing time, and at each run end the response metric is appended to
a text file that is also transferred to the results directory. At simulation end, the workflow execution case
folder is removed for efficient data management and the simulation then cycles to the next design point. The
routine is adaptable for analysis with parallel computing and this capability will be introduced in follow-up
work.

B. NDARC and Climate Modeling Framework

NDARC is a conceptual/preliminary design and analysis code for rapidly sizing and conducting performance
analysis of new rotorcraft concepts.37–39 NDARC has a modular code base, facilitating its extension to new
concepts and the implementation of new computational procedures. By using simplified models to represent
major rotorcraft subsystems, such as engines and rotors, NDARC can produce multiple rotorcraft designs
quickly without requiring repeated runs of time-intensive engine cycle or rotor performance analysis.

A typical NDARC run consists of a sizing task, which can be followed by off-design performance analysis.
During the sizing process, mission performance is calculated and the aircraft is resized both geometrically
and mechanically until convergence criteria are met. The software uses reduced-order performance models
for various rotorcraft subsystems, such as rotors and engines, in order to facilitate short runtimes. These
models require curve-fits to higher-fidelity models or experimental data in order to capture rotorcraft per-
formance.

The outputs of the NDARC engine model are used extensively for this study. NDARC implements the
Referred Parameter Turboshaft Engine Model (RPTEM), described in the work by Chen et al.,40 to calculate
parameters such as fuel flow and power variation with altitude. This model is based on curve fits of engine
performance data for both existing and projected engines. These curve fits can be scaled to the required
engine size to represent a notional engine. NDARC further generates hundreds of output parameters for a
given sizing study, and several of these are required from NDARC output files to compute ATR and include:

• Mission segment length;
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• Total fuel burned per mission segment;

• Mission segment altitude;

• Mach number;

• φ, temperature correction factor – total temperature divided by sea-level-static temperature;

• δ, pressure correction factor – total pressure divided by sea-level-static pressure;

• Fuel flow per engine; and

• Engine maximum rated power (sea-level-static)

The work by Russell and Johnson28 involved the calculation of ATR using Matlab scripts to post-process
data from NDARC output files. Subsequent to that work, ATR calculations were included into the func-
tionality of NDARC and have been available as an output since version 1.10 of the software. The sizing
and design tasks for the current study were carried out using version 1.12 of NDARC. To facilitate the
computation of ATR, NDARC is pre-compiled with “best estimate” values of the RF coefficients needed to
establish the respective emission species from Table 1. Matlab functions were further developed that use
NDARC outputs to then facilitate the manipulation of the RF input coefficients for uncertainty propagation
and quantification of ATR.

The computational process outlined is further supported with design contingencies to handle failed and/or
non-converged solver runs in both NDARC and in the Matlab climate modeling framework. As first step,
NDARC runs for the varying cruise altitudes are executed and required outputs are stored. Input argu-
ments have been defined in EmissionWrapper that iteratively modify airframe sizing tolerances in NDARC
job file if solver non-convergence is detected. In the analysis to follow, all NDARC altitude sweep runs
achieved convergence. For ATR calculations, measures have also been imposed to ensure the combination
of climate modeling input parameters and data from processed NDARC runs achieve convergence. Routines
are integrated that scan and remove failed data points so that the integrity of the uncertainty calculations
is preserved. The simulations that follow represent a 100% convergence rate so that the MC population size
is maintained.

IV. Uncertainty Quantification for Rotorcraft Emissions Modeling

The forward propagation UQ approach is applied where the probabilistic information on parametric
inputs are mapped through the computational model to then assess output statistics. The methodology
consists of the following tasks:

A. Types and Sources of Uncertainties

Aleatory uncertainties are considered in this work due to the inherent random variations that can take place
in the emission input parameters in Table 1. Accordingly the stochastic uncertainties are characterized by
a PDF that quantifies the probability density at any value over the range of the random variable. With a
large sampling size of the design space in a MC setting, the topology of the PDF is established and this
approach is applied in the analysis to follow.

The climate model used provides an approximate representation of the numerical solution and the char-
acterization of the numerical approximation errors are not factored. The model form uncertainties that Roy
and Oberkampf41 define as the statistical quantification of the disagreement between simulation results and
experimental measurements were also not considered. These involve the assessment of model validation and
accuracy by the comparison of simulation results with experimental data, including the extrapolation of er-
rors from the modeled test domain to conditions where experimental data is not available. As experimental
readings of ATR for the considered rotorcraft (Fig. 5) and mission envelope (Fig. 6) are not available, a
direct comparison of computational ATR result with experimental readings is not possible, hence the relating
uncertainties cannot not be factored.
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In this work, the uncertainties considered are variations in model inputs and relate to the design coef-
ficients that are used to establish ATR due to the RF from the respective emission species (Tab. 1). The
initial model inputs or “best estimate” values with respective PDFs are based on data collected by environ-
mental and aviation agencies26 through a combination of computational and experimental simulations with
measurements, theory and expert opinions.

B. Uncertainty propagation using Monte Carlo Simulations

Uncertainty propagation is a process that is used to define the influence of uncertainties in model inputs
on response output. The methodology is used to calculate the uncertainty statistics of the output quantity
of interest using a numerical method. In a generalized form, an input parameter, X, is passed through a
function evaluator, f , which then establishes a measured output, Y , such that:

Y = f(X) (2)

Where f represents the system model (for example a sizing code in this case); X is a vector of uncertain
input variables; and Y represents a vector of estimated outputs.

The uncertainty propagation process is described in Figure 2. Here the uncertainties in the input variables
are represented probabilistically where each component of the input parameter X is a random variable.
Accordingly the system output will also be a random variable, and this randomness is described using PDFs.
A MC approach is used to propagate the input uncertainties with a stratified sampling approach that selects
data points from the input distributions for analysis by the model. Specifically the randomness of the input
data points is propagated to the solver using a PDF; then the numerical solver is executed at these points; and
the resulting PDF of the outputs subject to the defined input distributions is established. As post-processing,
the output distributions are compared with performance criteria to determine, for example the likelihood
that the system will operate within the specified thresholds. The output statistics including expected value
and variance are also established including the quantification of system sensitivities on response outputs.
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Figure 2. Uncertainty propagation approach using Monte Carlo simulations

The following subsections will further outline these steps.
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C. Analysis setup

The MC approach applied is in the following form:

(1) The inputs are identified by vector X with n parameters. Each variable in the parameter space X
requires the definition of a probability distribution and the respective properties of that distribution
(means and standard deviation for a Gaussian distribution). When the data is limited, the distributions
are often estimated based on engineering judgement. If empirical statistical data is available, then
parametric fitting of known distributions are taken, or non-parameter density estimation techniques
are used.

(2) A sample population from the input distribution for the n variables is generated in the form:

Xj = [xj1, xj2, ..., xjn] (3)

To ensure the sample points provide an acceptable coverage of the parameter space, the LHS approach
is used. The methodology provides a stratified sampling technique where the range of each uncertain
variable is divided into Ns segments of equal probability, where Ns is the number of user-requested
samples. The relative lengths of the segments is determined by the specified probability distribution.
A uniform distribution will have segments of equal width while samples from a normal distribution will
have small segments near the mean and larger segments at the tails. Given the probability distribution
of each variable is independently decomposed into Ns equally divided sub-domains, a sample value is
then selected from each sub-domain. Consider a sample of size Ns of xj1, xj2, ..., xjn, where the Ns
values for xj1 are paired at random without replacement with the Ns values for xj2. These are then
paired with Ns values for xj3 until all variables are paired. Accordingly the interval of each variable
is used only once and each one-dimensional projection of the j-dimensional sample is a representation
of the distribution of Xi. The LHS approach further allows for the definition of a arbitrary number of
samples where Ns will then match the partition size that will be used for each uncertain variable.

Figure 3 outlines this method where Ns = 5. Figure 3(a) shows the sampling intervals that have
large segments at the tails when the parameter is defined using a normal distribution; Figure 3(b)
shows the equal sample segments when drawn from a uniform distribution; and Figure 3(c) shows
the combined formation of the samples. It is noted that every row and column in the hypercube of
partitions has exactly one sample. In this process, LHS improves the statistical convergence properties
of a MC simulation and reduces the required number of forward calculations that are needed due to
the extended parameter space coverage.

11 of 24

American Institute of Aeronautics and Astronautics
Distribution Statement A. Approved for public release; distribution is unlimited.



(a) Normal distribution (b) Uniform distribution

(c) Two-dimensional LHS for parameters
with normal and uniform distributions

Figure 3. Representation of LHS probable intervals for parameter input space sampling

(3) The output ATR response is established by the climate model using the values distributed from the
input parameter set Xj .

(4) Steps (2) and (3) are repeated so that a distribution of the output metric is formed. The sample size,
Ns, needs to be adequate to ensure convergence of the output PDF and related statistics that is to
include expectation, µ, and variance, σ2 as:

µ =
1
N

N∑
j=1

g(Xj) (4)

σ2 =
1
N

N∑
j=1

(g(Xj)− µ)2 (5)

The dispersion of the output values are used to evaluate both the estimate (Eq. 4) and the uncertainty
(Eq. 5) of the output quantity. The latter is taken as being equal to the standard deviation of the
computed data set.

(5) Results post-processing follows to formalize data sensitivity and uncertainty analysis.

In the analysis to follow, the emissions modeling coefficients are designated as uncertain input parameters. As
the magnitude of the respective parameters is not known exactly, engineering estimates of their distributions
are used from the literature.26 A probabilistic approach to represent model parameters that impact the
computation of the average temperature change due to the operation of a particular aircraft is a valid
approach. This is due to the variation in NOx and AIC that can generally be bounded with reasonable
accuracy as a function of cruise altitude. This pattern is further valid for other attributing climate coefficients
where linear climate models exist that can be used to coarsely classify the change in endpoint temperatures
as a function of altitude.
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D. Uncertainty Management with Sensitivity Analysis

Management of uncertainties is critical on two fronts. First the process establishes whether the uncertainties
in system output can be reduced, and secondly it allows for the setting of rules and regulations that define
how the quantified uncertainties will aid decision-making. Accordingly the following questions evolve: “What
if the uncertainty in ATR is too high?” “Is it possible to minimize the uncertainty estimates?”. In this work,
the first phase in uncertainty management is addressed by a sensitivity analysis (SA) approach.

D.1. Global Sensitivity Analysis

SA allocates the variation in model output, qualitatively and/or quantitatively due to the changes in the
input parameter. Alternately UQ is applied to establish data on model output using statistical properties
that include confidence intervals (CI) to represent bounds on responses. Apportion of total uncertainty to
individual inputs is established with SA by ranking the parameters by their respective level-of-importance
on responses. Hence, SA is the next logical study following the quantification of output uncertainties.

Further in SA, if it is established that the change in response output is minimal then it can be concluded
that the output is robust to changes in parameter values in the model. It is then reasonable to direct that
the uncertainty about the value is relatively small. If the response output alters significantly due to variable
changes, this indicates that there is large uncertainty about the parameters value. Uusitalo et al.42 explain
that it would be unrealistic to assume that the values used in the model would match those that take place
in nature, and if small differences in these values result in large differences in the outcome, the outcome is
expected to be uncertain. A parameter can independently impact response output or through interactions
with other variables. Hence, best SA practices govern that the parameters must be varied not just indepen-
dently but also in combination with other variables so that non-linear interaction effects can be factored.
This then leads to the grouping of SA into local and global methods.

In local SA, the partial derivatives of the output are established with respect to parameters at a nominal
value in the factor space in Figure 4. Typically numerical finite-differences or retrieval of analytic gradients
are established and the local derivatives are then used to rank parameter influences. The main limitation of
this approach is that it evaluates factors one-at-a-time, and does not allow for the evaluation of simultaneous
changes in all model parameters. In the quantification of ATR with respect to RF caused by the considered
emission species, the interactions between the studied parameters will be important and needs to be factored.
Further the local SA approach is limited to the immediate region around the nominal parameter value unless
a prohibitively large number of different starting points are selected for perturbation in the hyperspace of
the input variables. In the case of emission modeling, input values are uncertain and encompass large ranges
which can not be efficiently investigated with local techniques.
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Figure 4. Graphical representation of local sensitivity analysis

To address these limitations, global sensitivity analysis (GSA) by the variance-based decomposition
(VBD) Sobol method43 is used. This approach quantifies the variance contribution of the input parameters
to the unconditional variance of model output. This is important in determining input parameters with the
greatest influence for parameter prioritization, and input parameters with the least influence for parameter
fixing.44 The Sobol decomposition further models the interactions of input variables through the second
and higher order terms, while local sensitivity methods provide only the derivatives with respect to single
variables. Consider a model, f , with output, (Y ), that is a function of input parameters (X1, X2, X3, ..., Xq)
as:

Y = f(X1, X2, X3, ..., Xq) (6)

The inputs (X1, X2, ..., Xq) in model (6) are ranked as a function of their respective influence on f based on
a set criteria. Here the VBD approach is applied that is based on the framework that the variance, V , of
model output, Y , is decomposed for any input, X, from the law of total variance as:

V (Y ) = E[V (Y |Xi)] + V (E[Y |Xi]) (7)

Where E[.] and V [.] represent the expected value and variance, respectively; E[Y |Xi] and V [Y |Xi] denote
the conditional expected value and conditional variance, respectively of output Y for inputs Xi. The partial
variances represent the uncertainty of each independent input or through interactions with other parameters.
Further this decomposition states that the total variance of Y , denoted as V [Y ], is the sum of two terms:
one that measures the variance “between” the conditional means, and the other that assesses the mean of
the conditional (“within”) variances.

As a measure of sensitivity, two indices are considered: (a) the main effect sensitivity index, Si; and
(b) the total sensitivity index, TSIi. The main effect sensitivity index relates to the fraction of the total
uncertainty in the output, Y , that is attributed to input Xi alone. The sensitivity index compares the
variance of the conditional expectation VXi

[E(Y |Xi)] against the total variance V (Y ). It further represents
the expected reduction in output variance that would result if a given input parameter was to be known
precisely.20 The total effect sensitivity index (TSI) corresponds to the fraction of the total uncertainty in
the output, Y , that is attributed to input Xi and the relating interactions with other variables45 (denoted
by X−i). This models the expected amount of output variance that is attached to a given input factor and
all interactions in which the factor is directly involved.20

Mathematically Si and TSIi sensitivity indices are presented in the following equations where the partial
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variance is divided by the model total variance, V ar(Y ), to establish a normalized index of importance.

Si =
V arXi

[E(Y |Xi)]
V ar(Y )

(8)

and

TSIi =
EX−i

[V ar(Y |X−i)]
V ar(Y )

=
V ar(Y )− V arX−i

[E(Y |X−i)]
V ar(Y )

(9)

The calculation of Si and TSIi from the approximation of model behavior requires the evaluation of q-
dimensional integrals using MC sampling. In this work, DAKOTA36 is used for this task and a detail overview
of this process is outlined in the work by Bielen.46 Post-processing of GSA results will facilitate a targeted
approach for the refinement of low-fidelity emission modeling methods to reduce output uncertainties in ATR
estimation due to input randomness. The variance-based method has been listed in the U.S. Environmental
Protection Agencys (EPA 2009) list of attributes as the preferred sensitivity analysis method, and it is
claimed to be robust and independent, irrespective of model assumptions.47

V. Numerical Results

The propagation of uncertainties and respective uncertainties of the emission modeling parameters from
Table 1 on climate model output, ATR are presented. The helicopter in consideration is a 90 passenger
configuration in Figure 5 that is conceptualized for a mission profile in Figure 6.

Figure 5. Conceptual design of a tiltrotor platform configured for 90 passengers payload

The segments of the mission are explained below and is typical of the mission that has been used for
multiple previous NASA design studies on tiltrotor aircraft.

3 min taxi, 2 min HOGE

Climb at minimum 

power  margin

Cruise at V br Cruise at V br  (reserve)

30 min loiter at V br  (reserve)

0 1000 1100

5,000

Altitude

(ft)

Range

(nm)

1 min HOGE

Cruise Altitude

(ISA +20°C)

Figure 6. Rotorcraft mission profile used for the quantification of emission uncertainties and parameter sensitivities
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• Segment 1: 3-minute taxi at 5,000 ft, standard atmosphere +20◦C

• Segment 2: 2-minute hover out of ground effect (HOGE) at 5,000 ft, standard atmosphere +20◦C

• Segment 3: Climb to cruise altitude at maximum continuous power, standard atmosphere at segment
midpoint

• Segment 4: Cruise at constant altitude at speed for best range (Vbr), standard atmosphere; distance
of Segments 3 and 4 add to 1,000 nm

• Segment 5: Reserve segment - 100 nm cruise at Vbr and cruise altitude, standard atmosphere

• Segment 6: Reserve segment - 30 minute loiter at Vbr and 5,000 ft, standard atmosphere +20◦C

• Segment 7: 1-minute hover out of ground effect at 5,000 ft, standard atmosphere +20◦C

In the ATR calculations, a sweep in cruise altitude for segments 4 and 5 is undertaken for low altitude flight
at 16,000 feet to a ceiling of 33,000 feet. It is also assumed that both of the reserve segments are flown in
their entirety. This is not realistic but with a goal of computing the ATR, the assumption is not problematic
as long as it is applied consistently across all of the designs in the trade study.

A. Uncertainty Propagation

A.1. Assessment of Statistical Convergence

Monte Carlo simulations from the framework in Figure 2 are executed for varying cruise altitudes. The input
parameters in Table 1 are sampled from the probability distributions defined by Dallara et al.26 As a set or
ensemble of calculations are performed to map the uncertain input space to the uncertain output space, large
variations in system outputs are expected due to the nonlinear interactions between the input parameters.
Accordingly the assessment of statistical convergence of output ATR is to be established from the mean and
standard deviation of the observations as a function of MC simulation sample size, n. A converged state is
required to ensure a valid interpretation of system uncertainties can be established from output statistics.

Incremental LHS is activated for sample space adaptation that involves the introduction of new points
at set intervals. This ensures that the stratification and correlation structure of the original LHS sample
is maintained and the computational load is limited to function evaluations at the newly formed samples
only. The convergence of ATR observation mean and standard deviation as a function of cruise altitude from
16,000 to 22,000 feet is presented in Figures 7(a) – 7(b) respectively.

16,000 ft

22,000 ft

(a) Mean

Alt.

16,000 ft

22,000 ft

(b) Standard Deviation

Figure 7. ATR statistical convergence from the Monte Carlo runs
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In the work by Porter, Avramova and Ivanov,48 statistical convergence is assumed when the difference
between the respective parameters at successive iterations is less than 1%. Figure 7 confirms the statistical
parameters, as a function of MC simulation sample size, n, are in steady-state for the presented cruise al-
titudes. Changes in mean ATR (Fig. 7(a)) are minimal with an increase in n and convergence at the 1%
threshold for successive iterations is rapidly achieved. Relatively there are active variances in ATR observa-
tion standard deviation (Fig. 7(b)) and 1% threshold convergence is achieved closer to the maximum tested
sample size of 102,400.

The impact of n on statistical convergence is further represented by the output PDF of ATR at 16,000
ft in Figure 8.

Average Temperature Response

n = 400; µ = 1.064× 10−07; σ = 7.442× 10−08

n = 6400; µ = 1.076× 10−07; σ = 7.756× 10−08

n = 102, 400; µ = 1.075× 10−07; σ = 7.682× 10−08

Average Temperature Response

Figure 8. Representation of ATR output distribution for Monte Carlo simulations with sample n at 16,000 ft

A Chi-square goodness-of-fit test rejected the null hypothesis at the 5% significance level that the output
ATR is from a normal distribution. Hence, a kernel density estimator was used to establish ATR output
probability distribution in Figure 8. Here an increase in sample size causes the mode of the data (most
frequent value in the sample set) to increase, yet changes to observation mean and standard deviation are
minimal between 6400 and 102,400 sample size. An increase in sample size further causes the tails of the
distributions, in figure inset, to become smooth. This is expected given that the Kernel density estimator
uses a data smoothing algorithm where inferences about the population are made based on a finite data
sample. As n rises, additional data points are introduced at the tails which then produce a smoother density
estimator. This is validated in output histograms in Figure 9 for cruise altitude at 16,000 feet and this
pattern is consistent for all cruise altitudes modeled in this analysis.
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(b) n = 102, 400

Figure 9. Tail distributions of the Kernel density estimator of output ATR for Monte Carlo simulations at 16,000 ft
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A valid representation of output PDF leads to the formation of standard deviation, hence uncertainty in
the observed data. Further when “best estimate” input parameters as defined by Dallara, Kroo and Waitz26

are used, ATR16,000 ft=1.070× 10−07 which closely matches the mean measurement from the MC runs. Yet,
a sample observed uncertainty of σ = 7.682 × 10−08 is attached to this reading. In the UQ analysis that
follows, statistical data will be representative of sample size n = 102, 400.

A.2. Quantifying Uncertainties

In the analysis of statistical convergence from the previous section, the data points collected were from one
sample study which were then used to measure system uncertainty using the standard deviation. The statisti-
cal analysis was based on a point estimate of the population mean which is limited because it only quantifies
sample uncertainty and not that of the population. Accordingly quantification of model uncertainty will
benefit from the technique of statistical inference where the statistical population will factor all possible ob-
servations. As it is impractical to study the patterns from the entire population, a smaller subsample is used
to then make inferences about the entire population using CI which can take any number of probabilities.
CI provide more information than point estimates where the interval represents a range of values that with
specified certainty contains the true mean of the population. In this case, if q random samples with size n are
taken from the population, the mean should fall between the calculated upper and lower ranges 95% or 99%
of the times. Hence, CI provide a valid measure of uncertainty where a higher probability associated with
the CI means that there is a greater degree of certainty that the parameter is within the bounds of the interval.

To establish the CI, a measure of the standard error of the subsample mean, σSEM
, is first calculated.

This is an estimate of the standard deviation of a large number of sample means drawn from the same
population pool as:

σSEM
=

σ√
n

(10)

Where σ is the sample standard deviation and is a descriptive statistic that represents the amount of variation
in the observations, while σSEM

is an inferential statistic that provides an estimate of how far the population
mean is likely to be from the subsample mean. Using σSEM

, the CI is established for any desired degree of
confidence, in this case at the 95% level by using the sample size, n, and variability, σ, of the sample. Hence,
CI of the true population mean, µ, is given by:

95% CI = µ± Z . σSEM

= µ± Z .
σ√
n︸ ︷︷ ︸

margin of error

(11)

Where Z is the standardized score which represents the number of standard deviations an element is from
the mean for a specific level-of-confidence. To establish Z, the Central Limit Theorem applies which states
that for any distribution, if the sample size used to generate the data points is sufficiently large such that
n > 30, then this will produce a normal distribution of the sample means. Larger sample sizes are also
characterized with less spread of the distribution means, hence properties of a normal distribution curve are
used to establish the Z – score. At 95% CI, Z in Equation 11 is 1.96 which implies that the population mean
will be within 1.96 standard errors of the mean.

Further the second term in Equation 11 represents the margin of error (MoE) which quantifies the un-
certainty associated with point estimate. As a representative sample from the population is used to estimate
system performance, the sample mean is inferred to establish real statistic of the population. In this process,
the estimated mean will be about the real mean with a “plus-or-minus” MoE. The quantification of the error
magnitude facilitates confidence in the analysis a certain percentage of the time that the true population
mean will be within the range above or below the sample estimate. From this point onwards, all reported
uncertainties following the ± notation refer to the MoE or standard error.

In the MC simulations, statistical properties at n = 102, 400 are recorded based on convergence analysis
from Figure 7, hence as per the Central Limit Theorem, the output ATR will be normally distributed.
As confirmation, the Chi-square goodness-of-fit test was undertaken which presented ATR to be normally
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distributed for the tested altitude ranges. Figure 10 shows the CI about the mean ATR performance as a
function of data points, n, for a sample study at 16,000 feet cruise altitude.

Figure 10. Mean of ATR (solid line) with 95% confidence intervals (shaded) at altitude = 16,000 ft

Equation 10 presented the standard error as inversely proportional to sample size. The larger the sample
size, the smaller the standard error where the statistic converges to the true mean value. Figure 10 reinforces
this pattern where the CI bands about the sample mean are large for small sizes of n. As n increases, the
mean converges to true system performance and degree-of-uncertainty marked by the CI bands reduces. As
the 95% CI defines a range of values that with 95% certainty contains the true population mean, an increase
in sample size provides an enhanced estimate of performance mean with greater precision than with small
samples, hence the CI bands become narrow. In this case, wide CI indicate reduce precision while narrow
bands represent greater precision.

Altitude sweep ATR uncertainties are quantified by inferential statistics in Figure 11 by transposing
sample statistics on population. The MoE from Equation 11 is used to quantify uncertainty at a 95%
confidence level around the mean estimate at n = 102, 400. The percent uncertainty is also established by:

% uncertainty =
margin of error

µ
× 100 (12)

% Uncertainty (Eq. 12)

Margin of error (Eq. 11)

× 1000

Figure 11. ATR uncertainty quantification
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The MoE in Figure 11 confirms that the metric is consistent between 16,000 and 29,000 feet cruise al-
titude range and this pattern is primarily related to the evolution of ATR at these flight conditions. At
altitudes beyond this point, the increase in MoE is due to the increase in ATR. This pattern does not reflect
an increase in uncertainty as the percent uncertainty, quantified as the ratio of the MoE to mean performance
(Eq. 12), is relatively flat at the matching region (> 29,000 feet). The analysis does confirm that there is a
significant uncertainty gradient between the 17,000 and 22,000 feet cruise altitude range.

The MoE is further applied to establish ATR uncertainties using the 95% CI range (Eq. 11) as a function
of cruise altitude in Figure 12. Coupled into the analysis is the mean ATR from the MC runs at n = 102, 400
and the baseline ATR reading using the best initial estimate of the emission species coefficients (Tab. 1)
from Dallara, Kroo and Waitz.26

Figure 12. ATR 95% confidence intervals (shaded) as a function of cruise altitude with predicted sample mean (solid
line) and initial best estimate (symbol ◦) performances

As the 95% CI range in Figure 12 is established using the ATR mean with MoE (Eq. 11), the pattern
that evolves as a function of cruise altitude matches the MoE trend in Figure 11. The shaded band between
the upper and lower CI limits signifies the range of values that with 95% certainty will contain the true ATR
mean of the population. The ATR performance calculated using Dallara’s26 “best estimate” values to the
emission parameters falls below the mean ATR performance from the MC runs and this pattern is consistent
for the modeled altitude range. Further the estimated ATR performance is also at the lower boundary of
the 95% CI which indicates that NDARC is underpredicting temperature change for this case at the default
emission parameter setting.

The chart in Figure 12 is critical as it presents not only the ATR performances but the data is also
accompanied with performance uncertainties. Statistical inference through MC simulations allows for an
improved estimation of ATR as the properties of the output probability distribution can be estimated from
a reduced sample set that is representative of a larger population. Hence, estimated ATR readings are
expected to hold true within the established intervals in 95% of the cases. The analysis does have limitations
as it does not quantify the factors that directly or indirectly through interactions with other parameters
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impact uncertainty. To address this requirement, parameter sensitivity analysis is undertaken to estimate
the sensitivity of ATR to the input sources identified in Table 1.

A.3. Sensitivity Analysis

The results to the global sensitivity analysis using the Sobol indices is presented in Figure 13.
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Figure 13. Total Sensitivity Index (TSI) for different modeling parameters as a function of design cruise altitude

The analysis shows that there is a large amount of variation between the sensitivities of ATR to the
different modeling parameters. The sensitivity of ATR to the coefficients of the temperature change coef-
ficients (∆T in Fig. 13) is significantly higher than the individual emission species modeling parameters.
The temperature change portion of the ATR modeling process takes into account the RF caused by all of
the different emission species and attempts to predict the total global temperature change that occurs as a
result. This temperature change component of the ATR calculations gets multiplied by the total RF (see
Eqns. 14 and 15 in Ref.26). This portion of the ATR calculation is therefore strongly affected by all of the
RF components, hence it has higher total sensitivity index (TSI) than that of any one RF component.

There are two factors that affect the sensitivity index of the different parameters as a function of altitude.
The first of these is the total fuel burn. As the fuel burn increases, the ATR calculations become more
sensitive to the modeling parameters for RF of the individual emission species, particularly the NOx products
(O3S , O3L, CH4). There is a large jump in fuel burn of the design aircraft for cruise altitudes above 31,000
feet in Figure 14. This large jump is the reason for the sharp change in TSI between 31,000 and 33,000 feet.
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Figure 14. Mission profile fuel burn (lb)

The second source of variation of TSI with the altitude is the “forcing factor” that is applied to the
different emission species as a function of altitude (see Fig. 3 of Ref.26). The forcing factor is a parameter
that captures the varying effect of NOx emissions and aviation induced cloudiness as a function of altitude.
In particular, the forcing factor for short lived ozone (O3S) increases as a function of altitude, meaning that
the RF of O3S will have a larger impact on ATR as the cruise altitude increases. Because the RF of O3S

increases with altitude, its TSI increases at lower altitudes, peaking around 22,000 ft. The effect of fuel
burn is apparently stronger than that of the forcing factor, and the O3S TSI begins to decrease for higher
altitudes until the break at 31,000 ft.

The results in Figure 13 are for a single value, r = 0.03, of the temporal weighting of climate impacts.
It is possible within the calculation of ATR to place a higher emphasis on shorter-or longer-term effects.
In that case, the relative values of the sensitivity index would be different than the above results, but the
trends with altitude would likely be similar.

VI. Conclusion

The development of computational processes and methods to quantify system uncertainties and sensitivi-
ties in rotorcraft design was presented. Function wrappers were developed to facilitate large-scale simulations
using DAKOTA which was then coupled to a solver interface to address uncertainty and sensitivity studies.
The proposed framework requires inputs to define variable types, labels and probability distributions, in-
cluding response outputs-of-interest and the MC sampling size. At task completion, results post-processing
scripts are activated that use DAKOTA and function solver output files to generate plots-of-interest. This
includes the assessment of statistical convergence and the generation of confidence intervals to evaluate mean
system performance with expected uncertainties. Post-processing scripts further support the quantification
of parameter sensitivities using Sobol indices. The capability permits the ranking of variables as a function
of relative influence on response output.

The NDARC emissions module was used for case demonstration. The uncertainties and sensitivities of
the emission species on Average Temperature Response were quantified for a 90 passenger tiltrotor config-
uration that was conceptually sized for a range of 1,000 nm. A stochastic approach using MC simulations
was applied to quantify uncertainties in ATR at a 95% confidence level. The results showed that, in general,
uncertainties in ATR increase as cruise altitude rises. A global sensitivity analysis then followed to relate
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parameter influences on system uncertainty. The analysis verified that there are large variances in parameter
sensitivities on ATR. The highest contributors to uncertainty were the coefficients of the temperature change
model (represented by ∆T ), which collectively factors the RF caused by all emission species into predicting
the total global temperature change. The analysis further showed that mission fuel burn has a significant
influence on parameter sensitivity where NOx products are most sensitive to increases in fuel consumption
at higher altitudes.

The toolsuite is part of an ongoing design development effort that is to support multidisciplinary design
optimization and uncertainty quantification studies. Next steps in the development cycle will focus on the
integration of surrogate modeling techniques to support high-fidelity rotorcraft structural and aerodynamic
simulations for complex configurations. Parallel processing capabilities will also be integrated into the
framework.
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