
NASA/TM—2016–216632 
  

 

Use of the NLPQLP Sequential Quadratic 
Programming Algorithm to Solve Rotorcraft 
Aeromechanical Constrained Optimisation 
Problems 
 
Jane Anne Leyland 
Ames Research Center 
Moffett Field, California 
 
 
 
 
 
 
 
 
 

April 2016 



NASA STI Program ... in Profile 
 
 

Since its founding, NASA has been dedicated  
to the advancement of aeronautics and 
space science. The NASA scientific and 
technical information (STI) program plays a 
key part in helping NASA maintain this 
important role. 
 
The NASA STI program operates under the 
auspices of the Agency Chief Information 
Officer. It collects, organizes, provides for 
archiving, and disseminates NASA’s STI. The 
NASA STI program provides access to the 
NTRS Registered and its public interface,  
the NASA Technical Reports Server, thus 
providing one of the largest collections of 
aeronautical and space science STI in the 
world. Results are published in both non-
NASA channels and by NASA in the NASA 
STI Report Series, which includes the 
following report types: 
 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major significant 
phase of research that present the results 
of NASA Programs and include extensive 
data or theoretical analysis. Includes 
compilations of significant scientific and 
technical data and information deemed to 
be of continuing reference value. NASA 
counterpart of peer-reviewed formal 
professional papers but has less stringent 
limitations on manuscript length and 
extent of graphic presentations. 

 
• TECHNICAL MEMORANDUM.  

Scientific and technical findings that are 
preliminary or of specialized interest,  
e.g., quick release reports, working  
papers, and bibliographies that contain 
minimal annotation. Does not contain 
extensive analysis. 

 
• CONTRACTOR REPORT. Scientific and 

technical findings by NASA-sponsored 
contractors and grantees. 

• CONFERENCE PUBLICATION.  
Collected papers from scientific and 
technical conferences, symposia, 
seminars, or other meetings sponsored 
or co-sponsored by NASA. 

 
• SPECIAL PUBLICATION. Scientific, 

technical, or historical information from 
NASA programs, projects, and 
missions, often concerned with subjects 
having substantial public interest. 

 
• TECHNICAL TRANSLATION.  

English-language translations of foreign 
scientific and technical material 
pertinent to NASA’s mission. 

 
Specialized services also include 
organizing and publishing research  
results, distributing specialized research 
announcements and feeds, providing 
information desk and personal search 
support, and enabling data exchange 
services. 
 
For more information about the NASA STI 
program, see the following: 
 
• Access the NASA STI program home 

page at http://www.sti.nasa.gov 
 
• E-mail your question to 

help@sti.nasa.gov 
 
• Phone the NASA STI Information Desk 

at 757-864-9658 
 
• Write to: 

NASA STI Information Desk 
Mail Stop 148 
NASA Langley Research Center 
Hampton, VA 23681-2199 

  

This page is required and contains approved text that cannot be changed.  



NASA/TM—2016–216632 
  

 

Use of the NLPQLP Sequential Quadratic 
Programming Algorithm to Solve Rotorcraft 
Aeromechanical Constrained Optimisation 
Problems 
 
Jane Anne Leyland 
Ames Research Center 
Moffett Field, California 
 
 
 
 
 
 
 
 
 
 

 
 

National Aeronautics and 
Space Administration 
 
Ames Research Center 
Moffett Field, CA 94035-1000 

April 2016 



 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Available from: 
 

NASA STI Support Services National Technical Information Service 
Mail Stop 148 5301 Shawnee Road 
NASA Langley Research Center Alexandria, VA 22312 
Hampton, VA 23681-2199 webmail@ntis.gov 
757-864-9658 703-605-6000 

 
 
 
 
 

This report is also available in electronic form at 

http://ntrs.nasa.gov



iii 

Table of Contents 
 

 
Nomenclature ................................................................................................................................ v 

Summary ....................................................................................................................................... 1 

1.0 Introduction .......................................................................................................................... 2 

2.0 Technical .............................................................................................................................. 3 

2.1 General Non-Linear Programming Problem ......................................................................... 5 

2.2 Specific Problems Solved as Part of This Research ............................................................ 6 

 2.2.1 (6 x 4) T-Matrix NLP Control Problems .................................................................... 7 

 2.2.2 (6 x 6) T-Matrix NLP Control Problems .................................................................. 10 

 2.2.3 (24 x 8) T-Matrix NLP Control Problems ................................................................ 12 

 2.2.4 (90 x 30) T-Matrix NLP Control Problems .............................................................. 14 

 2.2.5 (90 x 60) T-Matrix NLP Control Problems .............................................................. 17 

2.3 Synthetic Data .................................................................................................................... 20 

 2.3.1 Definition of the Random Number Generator Function RAN(SEED) ..................... 22 

2.3.2 Determination of the Synthetic T-Matrix, the “Actual” Control 0θ – Vector,  

and the “Actual” Measurement – Vector ........................................................... 23 

2.4 The Regulator Problem ...................................................................................................... 25 

3.0 Results and Conclusions .................................................................................................... 27 

4.0 References ......................................................................................................................... 29 

 
 



iv 

Table of Contents (cont.) 
 

 

Appendix A: NLPQLP: A Fortran Implementation of a Sequential Quadratic Programming 

Algorithm with Distributed and Non-Monotone Line Search – User’s Guide, 

Version 3.1 

 

Abstract  ................................................................................................................................ A-1 

1 Introduction ......................................................................................................................... A-2 

2 Sequential Quadratic Programming Methods ..................................................................... A-7 

Algorithm 2.1 ..................................................................................................................... A-10 

Algorithm 2.2 ..................................................................................................................... A-11 

3 Performance Evaluation .................................................................................................... A-14 

3.1 The Test Environment .............................................................................................. A-14 

3.2 Testing Distributed Function Calls ............................................................................ A-17 

3.3 Function Evaluations and Gradient Approximations by a Difference  

Formulae Under Random Noise ............................................................................... A-18 

3.4 Testing Scaled Restarts ........................................................................................... A-19 

4 Program Documentation ................................................................................................... A-22 

5 Examples  ........................................................................................................................ A-29 

6 Conclusions....................................................................................................................... A-35 

References  ........................................................................................................................... A-36 

 

 

 

Separate Volumes:  

 

Appendix B: Cases Run on the Hewlett-Packard Alpha Mainframe Computer 

Appendix C: Cases Run on the Mac Pro Desktop Computer 

 



v 

Nomenclature 

 
 Input coefficient for the first term in the equation that defines . 

 Input coefficient for the second term in the equation that defines . 

 Input coefficient for the first term in the equation that defines p
Initial

θ . 

 Input coefficient for the second term in the equation that defines p
Initial

θ . 

 Input coefficient for the first term in the equation that defines . 

 Input coefficient for the second term in the equation that defines . 

g Z θ( )[ ] Scalar performance index function that defines the performance index J . 

g Z θ( )[ ] is a function of the plant output measurement Ζ – vector, which is a 

function of the control θ – vector. In general, these functions can be non-linear. 

 Set of all . 

Iθ  Set of all . 

IMSL International Mathematics and Statistics Library, Inc.—a commercial collection of 
software libraries of numerical analysis functionality that are implemented in C, 
Java, C#.NET, and Fortran computer programming languages. 

 Input seed argument for the k − th call to the random number generator function 

RAN(•) in the first term in the equation that defines , and updated 

automatically on completion of the generation of the random number. This 
argument should initially be set to a large odd-integer value. 

 Input seed argument for the k − th call to the random number generator function 

RAN(•) in the first term in the equation that defines p
Initial

θ , and updated 

automatically on completion of the generation of the random number. This 
argument should initially be set to a large odd-integer value. 
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Nomenclature (cont.) 

 
 Input seed argument for the k − th call to the random number generator function 

RAN(•) in the first term in the equation that defines , and updated 

automatically on completion of the generation of the random number. This 
argument should initially be set to a large odd-integer value. 

J  Scalar performance index that is defined by g Z θ( )[ ]. In general, this function can 

be non-linear. For the problems considered in this research, J  is a scalar 
performance index that is a quadratic function of the plant output measurement 
vector (i.e., the Ζ – vector). In this case, Ζ is a linear function of the control  
θ – vector, and J  is a quadratic function of the control θ – vector. 

 Input seed argument for the l − th call to the random number generator function 

RAN(•) in the second term in the equation that defines , and updated 

automatically on completion of the generation of the random number. This 
argument should initially be set to a large odd-integer value. 

 Input seed argument for the l − th call to the random number generator function 

RAN(•) in the second term in the equation that defines p
Initial

θ , and updated 

automatically on completion of the generation of the random number. This 
argument should initially be set to a large odd-integer value. 

 Input seed argument for the l − th call to the random number generator function 

RAN(•) in the second term in the equation that defines , and updated 

automatically on completion of the generation of the random number. This 
argument should initially be set to a large odd-integer value. 

k Index number for the input seed argument for calls to the random number 

generator function RAN(•) in the first term in the equations that defines , 

p
Initial

θ , and ,  where: .
 

l Index number for the input seed argument for calls to the random number 

generator function RAN(•) in the second term in the equations that defines , 

p
Initial

θ , and ,  where: . 

 Number of elements (dimension) in the Equality Constraint φ θ( ) _vector. 
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Nomenclature (cont.) 

 
 Number of elements (dimension) in the Inequality Constraint ψ θ( ) _vector. 

. 

 Number of elements in the First Inequality Constraint 1ψ θ( ) _sub-vector. 

 Number of elements in the Second Inequality Constraint 2ψ θ( ) _sub-vector. 

 Number of elements (dimension) in the predicted measurement Ζ – vector. 

 Number of elements (dimension) in the control θ – vector. 

NLP Non-Linear Programming algorithm. 

NLPQLP Non-Linear Programming (NLP) algorithm that employs the Sequential Quadratic 
Programming (SQP) algorithm as its core algorithm. 

p Index number for the control θ – vector elements. 

q Index number for the predicted measurement Ζ – vector elements. 

r Index number for the Equality Constraint φ θ( ) _vector elements. 

 Uniform Random Number Distribution Function that yields a uniformly random 

real number ∈ 0, 1[ ).  

s Index number for the Inequality Constraint ψ θ( ) _vector elements. 

SQP Sequential Quadratic Programming (SQP) algorithm. 

 System or transfer  matrix either defined by direct input or synthetically 

determined. 

 The q, p( ) − th element of the system or transfer  matrix. 

WZ Diagonal  weighting matrix in the performance index. The default 

setting that is the identity matrix; can be redefined by input. 
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Nomenclature (cont.) 

 

Wθ  Diagonal  weighting matrix in the θ  term of the regulator performance 

index J . The default setting that is the null matrix; can be redefined by input. 

Wθ•  Diagonal  weighting matrix in the θ•
 term of the regulator performance 

index J . The default setting that is the null matrix; can be redefined by input. 

Z  Equals Z θ( ) and is used when the omission of the explicit dependence on the 

control θ – vector does not present any confusion, ambiguity, or vagueness. 

Z θ( )  Predicted measurement  Ζ – vector  evaluated during the optimisation or 

regulator process and is a function of the control θ – vector. In general, this 
function can be non-linear. For the problems analysed in this research, Z θ( ) is a 
linear function of the control θ – vector. 

 Actual measurement Ζ – vector  that would normally be evaluated during 

the previous duty cycle or at a reference epoch time.  is either directly input or 

synthetically determined. 

Zq The q − th element of the predicted measurement Ζ – vector. 

 Random component of the synthetically determined actual measurement 

. 

 Random component of the q − th element of the synthetically determined actual 

measurement . 

ε Input small value constant selected to prevent 0Initial
θ from being identical on a 

bound (i.e., the least upper bound [l.u.b.] or the greatest lower bound [g.l.b.]). 

θ  Control θ – vector . 

θ•
 Time rate of change of the control θ – vector . 

0θ  Solution θSol – vector  that would normally be evaluated during the 

previous duty cycle or at a reference epoch time. 0θ  is either directly input or 

synthetically determined. 
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Nomenclature (cont.) 

 

 Least upper bound (l.u.b.) for the p − th element of the control θ – vector 

. 

 Greatest lower bound (g.l.b.) for the p − th element of the control θ – vector 

. 

θp  The p − th element of the control θ – vector . 

θ•

p The p − th element of the time rate of change of the control θ – vector . 

p
Initial

θ  The p − th element of the solution θSol  – vector  that would normally be 

evaluated during the previous duty cycle or at a reference epoch time. 0θ  is 

synthetically determined. 

Solθ   Solution θSol  – vector  evaluated during the optimisation or regulator 

process. 

θSol p  The p − th element of the solution control θSol  – vector   evaluated 

during the optimisation or regulator process. 

φ θ( )  Equality Constraint φ θ( ) _vector  function; in general, can be 

dependent on the θ – vector and be non-linear. 

φ
r θ( ) The r − th element of the Equality Constraint φ θ( ) _vector  function. 

ψ θ( ) Complete Inequality Constraint ψ θ( ) _vector  

function; in general, can be dependent on the θ – vector and be non-linear. ψ θ( ) 

is comprised of the two sub-vector functions 
1ψ θ( ) and 

2ψ θ( ). Specifically: 

    ψ θ( ) =
1ψ θ( )
2ψ θ( )



 
 
 







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Nomenclature (concluded) 

 
1ψ θ( ) First Inequality Constraint 1ψ θ( ) _sub-vector  function with elements 

of the First Inequality Constraint Form. 

2ψ θ( ) Second Inequality Constraint 2ψ θ( ) _sub-vector  function with 

elements of the Second Inequality Constraint Form. 

ψ
s θ( ) The s − th element of the complete Inequality Constraint vector   

ψ θ( ) _function. 



1 

Summary 
 
Optimisation of a control vector, an aerodynamic surface design, or an aircraft configuration 
potentially offers significant performance enhancement to rotorcraft systems. These problems 
typically include various types of constraints. Previous research and analysis indicated that non-
linear programming methods that solve a sequence of related quadratic-programming sub-
problems could be used successfully to solve these problems. Accordingly, a licence for one of 
the latest versions of Professor Klaus Schittkowski’s very successful Sequential Quadratic 
Programming NLPQLP software was obtained and used to experiment with and analyse typical 
optimisation problems encountered in various rotorcraft wind tunnel and flight tests. Emphasis 
was directed toward obtaining efficiency, robustness, and speed in computation. 
 
The NLPQLP software was installed on both a mainframe computer and a desktop computer. 
Stand-alone main driver codes were developed to task the NLPQLP software to solve non-linear 
programming (NLP) problems. The required input data was synthesised to facilitate this 
analysis. Solution to the classic regulator problem was included to provide verification of the 
NLP solutions to the unconstrained optimisation problems. The mainframe computer was used 
to develop the driver codes and to experiment with the various models and tune the associated 
input. The desktop computer was used to refine the process and to develop software for laptop 
computers that can be used in austere test environments including wind tunnels. 
 
The problems solved with this analysis were of the type encountered in rotorcraft applications 
where there is a linear dependence (i.e., a T-Matrix plant model) of the measurement vector on 
the control vector. These problems ranged from a relatively simple, unconstrained 4-vector 
control to a relatively large, constrained 60-vector control problem. Five different control vector 
dimensions ranging from 4 to 60 were analysed, and solutions were obtained for each of these 
with no imposition of constraints, imposition of only equality constraints, imposition of only 
inequality constraints, and imposition of both equality and inequality constraints. The smaller  
4-, 6-, and 8-dimension control vector problems are representative of actual rotorcraft control 
problems. The solutions to these problems were sufficiently fast to be included in real-time duty 
cycles. The larger 30- and 60-dimension control vector problems are representative of 
aerodynamic surface design or aircraft configuration problems and, although they were solved 
rapidly, they are more suitable to non-real-time design applications. Solutions were obtained for 
all problems considered, and verification of the solutions to all of the unconstrained problems 
was obtained by solving the regulator problem. Although tuning and some input adjustments 
were required to successfully solve the large constrained 60-vector control problems, the 
NLPQLP System proved to be an efficient and reliable method to solve these problems. 
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1.0 Introduction 
 
Previous research on the feasibility and desirability of using a constrained optimisation 
technique to define the optimal control vector and plant model for rotorcraft was accomplished 
on a mainframe computer not part of actual wind tunnel and/or flight-test experiments. This 
research indicated that constrained optimisation methodology provides better controller 
performance in many cases compared to results obtained with the widely used solution to the 
regulator problem for this application (ref. 1), and would be useful in defining the optimal 
configuration and required constants for a non-linear neural-network plant model (refs. 2–5). 
The initial research (ref. 1) on the development, design, and use of optimal controllers, both 
open- and closed-loop, to optimise rotorcraft aeromechanical behaviour indicated that the 
general non-linear programming method coded as the NCONF/DNCONF subroutine system, 
which is available in the IMSL MATH/LIBRARY (ref. 6), worked very well for solving the required 
constrained optimisation problems and was significantly superior to methods previously used for 
solving problems of this type. This IMSL NCONF/DNCONF subroutine system, which dates 
back to 1989, was used successfully on subsequent research studies (refs. 2–5) and likewise 
worked very well for solving the required constrained optimisation problems. 
 
This IMSL NCONF/DNCONF subroutine system is based on the work by Schittkowski, Gill et 
al., Powell, and Stoer (refs. 7–13). This method solves the general non-linear programming 
problem by solving a sequence of related quadratic programming sub-problems. One advantage 
of this method is that quadratic programming problems can be solved efficiently. A very 
important property of quadratic programming problems is that if the quadratic coefficient matrix 
in the performance index is positive definite, the problem has a unique solution, which is, of 
course, the global solution. This means that the sequence of solutions to the quadratic 
programming sub-problems will converge to the global solution of the general problem in the 
limit providing that the quadratic coefficient matrix in the performance index remains positive 
definite in the process. 
 
To conduct a wind tunnel experiment, the optimisation code is installed on a computer within the 
wind tunnel or on a portable computer such as a laptop that could be brought into the wind 
tunnel. Research on available suitable optimisation codes revealed that Professor Klaus 
Schittkowski had revised and updated his sequential quadratic programming method, which is 
part of the IMSL MATH/LIBRARY, via several versions of the code that improved performance 
and eliminated errors, and that it was available by licence as a stand-alone code (i.e., not part of 
a library). NASA obtained a licence, and Version 3.1, dated February 2010, was installed on 
both the Mac Pro desktop computer and the Hewlett-Packard Alpha mainframe computer. The 
code that was installed on the Mac Pro desktop computer was transportable to a Mac laptop 
computer for use in the wind tunnel. Version 3.1 of the NLPQLP System (ref. 14 and Appendix 
A) was used for the study described herein. 
 
The linear global plant model, which linearly relates the measurement vector to the control 
vector and is widely used for rotorcraft aeromechanical behaviour studies, was assumed for the 
problems that were solved as part of this research. For this research, two options could be used 
to define the T-Matrix: (1) use actual test data to define these elements, or (2) synthetically 
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define these elements using a uniformly distributed random function. The second option was 
used for the results presented herein. 
 
This method was computationally implemented by writing stand-alone main driver codes 
assuming the linear global plant model. These drivers included the widely used solution to the 
regulator problem, used for comparison purposes. These codes were written to solve several 
typical problems of rotorcraft aeromechanical behaviour and are specific to the dimension of the 
T-Matrix (i.e., the dimensions of the measurement vector and the control vector) and the 
computer (i.e., the Hewlett-Packard Alpha mainframe or the Mac Pro desktop) that the problem 
was run on. 
 
The very general non-linear programming problem that is solved by the NLPQLP System  
(ref. 14) is defined in section 2.1. The specific problems that were solved using the NLPQLP 
System for this study are defined in section 2.2. A description of the synthetic data generation 
process is presented in section 2.3, and the definition of, and solution to, the regulator problem 
are described in section 2.4. 
 
The (6 x 4), (6 x 6), and (24 x 8) T-Matrix non-linear programming (NLP) control problems are 
representative of actual rotorcraft control problems. The solutions to these problems were 
sufficiently fast to be included in real-time duty cycles. The (90 x 30) and (90 x 60) T-Matrix NLP 
problems are representative of aerodynamic surface design and/or aircraft configuration 
problems and, although they were solved rapidly, they are more suitable to non-real-time design 
applications. 
 
The results are shown in Appendix B and Appendix C, separate volumes of this report. 
 
Listings of the command (DCL) file code and the Fortran main driver code for the Hewlett-
Packard Alpha mainframe computer, and the input and output for the four sub-problems that 
were part of the (6 x 4), (6 x 6), (24 x 8), (90 x 30), and (90 x 60) T-Matrix NLP control problems 
solved using the Hewlett-Packard Alpha mainframe computer, are presented in Appendix B.  
A listing of the Fortran main driver code for the Mac Pro desktop computer, and the input and 
output for the four sub-problems that were part of the (6 x 4), (6 x 6), (24 x 8), (90 x 30), and  
(90 x 60) T-Matrix NLP control problems solved using the Mac Pro desktop computer, are 
presented in Appendix C. 
 
 
2.0 Technical 
 
This study documents the testing, experimentation, and evaluation of Version 3.1 of the 
NLPQLP System (ref. 14 and Appendix A) to ascertain its suitability to solve rotorcraft 
optimisation problems. This NLPQLP System is designed to solve a very general NLP problem 
by solving a sequence of related quadratic programming sub-problems. One advantage of this 
method is that quadratic programming problems can be solved efficiently. A very important 
property of quadratic programming problems is that if the quadratic coefficient matrix in the 
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performance index is positive definite, then the problem has a unique solution, which is, of 
course, the global solution. This means that the sequence of solutions to the quadratic 
programming sub-problems will converge to the global solution of the general problem in the 
limit providing that the quadratic coefficient matrix in the performance index remains positive 
definite in the process. 
 
This very general NLP problem is described in section 2.1. The problems solved in this analysis 
are encountered in various rotorcraft applications where there is a linear dependence (i.e., a  
T-Matrix plant model) of the measurement vector (the measurement Ζ – vector) on the control 
vector (i.e., the control θ – vector). The general form of the T-Matrix NLP problems considered in 
this study is referred to herein as the General T-Matrix NLP control problem, and is defined in 
section 2.2. Specific (6 x 4) T-Matrix NLP control problems (see section 2.2.1), (6 x 6)  
T-Matrix NLP control problems (see section 2.2.2), (24 x 8) T-Matrix NLP control problems (see 
section 2.2.3), (90 x 30) T-Matrix NLP control problems (see section 2.2.4), and (90 x 60)  
T-Matrix NLP control problems (see section 2.2.5) were analysed and solved. Each of these 
problems had four sub-problems: (1) unconstrained optimisation, (2) optimisation with only 
equality constraints, (3) optimisation with only inequality constraints, and (4) optimisation with 
both equality constraints and inequality constraints. 
 
In an actual wind tunnel or flight test experiment or optimisation application, the required input 
would be the actual test data, which perhaps might be reformatted for computer compatibly. To 
expedite the testing, experimentation, and evaluation of the NLPQLP System, the input data 
was synthetically determined. This synthesis process is described in section 2.3 and its sub-
sections. 
 
Finally, the classic regulator problem is solved as an appendix to the unconstrained optimisation 
NLP problems to provide a means to verify their solutions. The classic regulator problem is 
defined in section 2.4. 
 
In this study the NLPQLP System was coded in Fortran 77 and installed on both a Hewlett-
Packard Alpha Server GS1280 mainframe computer with the Open VMS Version 8.2 Operating 
System and a Mac Pro desktop computer with the Mac OS X, Version 10.5.8 Operating System. 
The VMS FORTRAN Compiler was used to compile the code on the mainframe computer, and 
the G95 FORTRAN Compiler was used to compile the code on the Mac Pro desktop computer. 
It is noted that these codes will, in general, produce different numerical results for these 
computer systems when synthetic input data is generated because the random number 
generator function algorithms used for data synthesis are different for these computer systems. 
The codes for both the Hewlett-Packard Alpha mainframe computer and the Mac Pro desktop 
computer are stand-alone codes and do not require any special software libraries. Accordingly, 
the associated software and codes installed on the Mac Pro desktop computer should be 
transportable to a Mac laptop computer for use in the wind tunnel. 
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2.1 General Non-Linear Programming Problem 
 
The general optimisation problem that can be solved with the NLPQLP System is: 
 
Determine the θSol  – vector that solves the problem:  
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2.2 Specific Problems Solved as Part of This Research 
 
The specific problems that were solved during this study have a general form (i.e., the General 
T-Matrix NLP control problem) that is a specific application of the general non-linear 

programming problem defined in section 2.1. In this case, the general g Z θ( )[ ] scalar 

performance index function is replaced with a quadratic function of a T-Matrix plant model. The 
T-Matrix itself is a linear plant model that relates the measurement Ζ – vector to the control 

. The performance index, J , is a quadratic function of the measurement Ζ – vector. 
Limits as per the general non-linear programming problem are imposed on the elements of the 
control θ – vector. Both the equality φ θ( )  and inequality ψ θ( ) constraint functions are non-

linear functions of the elements of the control θ – vector. The elements of the equality  
φ θ( ) −vector constraint function are pseudo-generalisations of the elements of a vector cross 

product. The Inequality Constraint ψ θ( ) −vector function includes two forms of inequality 

constraints: (1) the First Inequality Constraint 1ψ θ( ) −vector sub-vector function is comprised of 

elements that are pseudo-generalisations of an amplitude constraint on a matched harmonic 
pair (i.e., the sine and cosine elements of a specific harmonic control signal) of control 

elements, and (2) the Second Inequality Constraint 2ψ θ( ) −vector sub-vector function is 

comprised of elements that are pseudo-generalisations of a rate-of-change constraint on an 
element of the control vector. Each of these problems has four sub-problems that were 
analysed and solved. These sub-problems are: (1) unconstrained optimisation, (2) optimisation 
with only equality constraints, (3) optimisation with only inequality constraints, and  
(4) optimisation with both equality constraints and inequality constraints. This General T-Matrix 
NLP control problem with both equality and inequality constraints is defined as: 
 
Determine the θSol  – vector that solves the problem:  
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2.2.1 (6 x 4) T-Matrix NLP Control Problems 
 

For the (6 x 4) T-Matrix NLP control problem, the number of elements (dimension) in the control 
θ – vector is four (i.e., Nθ  

= 4), and the number of elements (dimension) in the predicted 

measurement  Ζ – vector is six (i.e., NZ  
= 6). Correspondingly, the system or transfer T-Matrix is 

(6 x 4). The number of elements (dimension) in the Equality Constraint φ θ( ) _vector is one  

(i.e., NEQ 
= 1), the number of elements in the First Inequality Constraint 1ψ θ( ) _sub-vector 

function is two (i.e., NIEQ1 
= 2), the number of elements in the Second Inequality Constraint 

2ψ θ( ) −sub-vector function is four (i.e., NIEQ2 
= 4), and the dimension of the Inequality 

Constraint ψ θ( ) _vector is six (i.e., NIEQ = NIEQ1 
+

  
NIEQ2 = 6). The (6 x 4) T-Matrix NLP control 

problem with all constraints is defined as: 
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Determine the θ – vector, θSol , that solves the problem:  
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The (6 x 4) T-Matrix NLP control problem has four sub-problems: (1) unconstrained 
optimisation, (2) optimisation with only equality constraints, (3) optimisation with only inequality 
constraints, and (4) optimisation with both equality constraints and inequality constraints. It was 
assumed that the tasking of these T-Matrix NLP control problems occurred within the framework 
of real-time controller duty cycles. To expedite the testing, experimentation, and evaluation of 
the NLPQLP System, the required input data was synthetically determined using a process 
designed expressly for this analysis. Specifically, a previously identified T-Matrix and an actual 
control 0θ – vector/actual measurement  – vector pair from a previous duty cycle were 

synthesised for use as input to these problems. Additionally, these already synthesised values 
were directly input to the (6 x 4) T-Matrix NLP control problems for comparison purposes. The 
classic regulator problem was solved to verify the NLP solutions to the unconstrained 
optimisation NLP problems. Agreement was obtained in all cases. 
 
Listings of the command (DCL) file code and the Fortran main driver code for the Hewlett-
Packard Alpha mainframe computer, and the input and output for the four sub-problems that 
were part of the (6 x 4) T-Matrix NLP control problems solved using the Hewlett-Packard Alpha 
mainframe computer, are presented in Appendix B, section B.1. A listing of the Fortran main 
driver code for the Mac Pro desktop computer, and the input and output for the four sub-
problems that were part of the (6 x 4) T-Matrix NLP control problems solved using the Mac Pro 
desktop computer, are presented in Appendix C, section C.1. 
 
These (6 x 4) T-Matrix NLP control problems are representative of actual rotorcraft control 
problems. The solutions to these problems were sufficiently fast to be included in real-time duty 
cycles. 
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2.2.2 (6 x 6) T-Matrix NLP Control Problems 
 
For the (6 x 6) T-Matrix NLP control problem, the number of elements (dimension) in the control 
θ – vector is six (i.e., Nθ  

= 6), and the number of elements (dimension) in the predicted 
measurement Ζ – vector is also six (i.e., NZ  

= 6). Correspondingly, the system or transfer  

T-Matrix is (6 x 6). The number of elements (dimension) in the Equality Constraint φ θ( ) _vector 

is one (i.e., NEQ 
= 1), the number of elements in the First Inequality Constraint 1ψ θ( ) _sub-

vector is three (i.e., NIEQ1 
= 3), the number of elements in the Second Inequality Constraint 

2ψ θ( ) −sub-vector function is six (i.e., NIEQ2 
= 6), and the dimension of the Inequality Constraint 

ψ θ( ) _vector is nine (i.e., NIEQ = NIEQ1 
+

  
NIEQ2 = 9). The (6 x 6) T-Matrix NLP control problem 

with all constraints is defined as: 
 
 
Determine the θ – vector, θSol , that solves the problem:  
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The (6 x 6) T-Matrix NLP control problem has four sub-problems: (1) unconstrained 
optimisation, (2) optimisation with only equality constraints, (3) optimisation with only inequality 
constraints, and (4) optimisation with both equality constraints and inequality constraints. It was 
assumed that the tasking of these T-Matrix NLP control problems occurred within the framework 
of real-time controller duty cycles. To expedite the testing, experimentation, and evaluation of 
the NLPQLP System, the required input data was synthetically determined using a process 
designed expressly for this analysis. Specifically, a previously identified T-Matrix and an actual 
control 0θ – vector/actual measurement – vector pair from a previous duty cycle were 

synthesised for use as input to these problems. Additionally, these already synthesised values 
were directly input to the (6 x 6) T-Matrix NLP control problems for comparison purposes. The 
classic regulator problem was solved to verify the NLP solutions to the unconstrained 
optimisation NLP problems. Agreement was obtained in all cases. 
 



12 

Listings of the command (DCL) file code and the Fortran main driver code for the Hewlett-
Packard Alpha mainframe computer, and the input and output for the four sub-problems that 
were part of the (6 x 6) T-Matrix NLP control problems solved using the Hewlett-Packard Alpha 
mainframe computer, are presented in Appendix B.2. A listing of the Fortran main driver code 
for the Mac Pro desktop computer, and the input and output for the four sub-problems that were 
part of the (6 x 6) T-Matrix NLP control problems solved using the Mac Pro desktop computer, 
are presented in Appendix C.2. 
 
These (6 x 6) T-Matrix NLP control problems are representative of actual rotorcraft control 
problems. The solutions to these problems were sufficiently fast to be included in real-time duty 
cycles. 
 
 
2.2.3 (24 x 8) T-Matrix NLP Control Problems 
 
For the (24 x 8) T-Matrix NLP control problem, the number of elements (dimension) in the 
control θ – vector is 8 (i.e., Nθ  

= 8), and the number of elements (dimension) in the predicted 
measurement Ζ – vector is 24 (i.e., NZ  

= 24). Correspondingly, the system or transfer T-Matrix is 

(24 x 8). The number of elements (dimension) in the Equality Constraint φ θ( ) _vector is 2  

(i.e., NEQ 
= 2), the number of elements in the First Inequality Constraint 1ψ θ( ) _sub-vector is 4 

(i.e., NIEQ1 
= 4), the number of elements in the Second Inequality Constraint 2ψ θ( ) −sub-vector 

function is 8 (i.e., NIEQ2 
= 8), and the dimension of the Inequality Constraint ψ θ( ) _vector is 12 

(i.e., NIEQ = NIEQ1 
+

  
NIEQ2 = 12). The (24 x 8) T-Matrix NLP control problem with all constraints is 

defined as: 

 
Determine the θ – vector, θSol , that solves the problem:  
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Subject to : 
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The (24 x 8) T-Matrix NLP control problem has four sub-problems: (1) unconstrained 
optimisation, (2) optimisation with only equality constraints, (3) optimisation with only inequality 
constraints, and (4) optimisation with both equality constraints and inequality constraints. It was 
assumed that the tasking of these T-Matrix NLP control problems occurred within the framework 
of real-time controller duty cycles. To expedite the testing, experimentation, and evaluation of 
the NLPQLP System, the required input data was synthetically determined using a process 
designed expressly for this analysis. Specifically, a previously identified T-Matrix and an actual 
control 0θ – vector/actual measurement – vector pair from a previous duty cycle were 

synthesised for use as input to these problems. Additionally, these already synthesised values 
were directly input to the (24 x 8) T-Matrix NLP control problems for comparison purposes. The 
classic regulator problem was solved to verify the NLP solutions to the unconstrained 
optimisation NLP problems. Agreement was obtained in all cases. 
 
Listings of the command (DCL) file code and the Fortran main driver code for the Hewlett-
Packard Alpha mainframe computer, and the input and output for the four sub-problems that 
were part of the (24 x 8) T-Matrix NLP control problems solved using the Hewlett-Packard Alpha 
mainframe computer, are presented in Appendix B, section B.3. A listing of the Fortran main 
driver code for the Mac Pro desktop computer, and the input and output for the four sub-
problems that were part of the (24 x 8) T-Matrix NLP control problems solved using the Mac Pro 
desktop computer, are presented in Appendix C, section C.3. 
 
These (24 x 8) T-Matrix NLP control problems are representative of actual rotorcraft control 
problems. The solutions to these problems were sufficiently fast to be included in real-time duty 
cycles. 
 
 
2.2.4 (90 x 30) T-Matrix NLP Control Problems 
 
For these problems, the number of elements (dimension) in the control θ – vector is 30  
(i.e., Nθ  

= 30), and the number of elements (dimension) in the predicted measurement  
Ζ – vector is 90 (i.e., NZ  

= 90). Correspondingly, the system or transfer T-Matrix is (90 x 30). The 

number of elements (dimension) in the Equality Constraint φ θ( ) _vector is 7 (i.e., NEQ 
= 7), the 

number of elements in the First Inequality Constraint 1ψ θ( ) _sub-vector is 15 (i.e., NIEQ1 
= 15), 

the number of elements in the Second Inequality Constraint 2ψ θ( ) −sub-vector function is 30 
(i.e., NIEQ2 

= 30), and the dimension of the Inequality Constraint ψ θ( ) _vector is 45  

(i.e., NIEQ = NIEQ1 
+

  
NIEQ2 = 45). The (90 x 30) T-Matrix NLP control problem with all constraints is 

defined as: 
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Determine the θ – vector, θSol , that solves the problem:  
 

 

 
then 

 

 
Subject to : 
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The (90 x 30) T-Matrix NLP control problem has four sub-problems: (1) unconstrained 
optimisation, (2) optimisation with only equality constraints, (3) optimisation with only inequality 
constraints, and (4) optimisation with both equality constraints and inequality constraints. It was 
assumed that the tasking of these T-Matrix NLP control problems occurred within the framework 
of real-time controller duty cycles. To expedite the testing, experimentation, and evaluation of 
the NLPQLP System, the required input data was synthetically determined using a process 
designed expressly for this analysis. Specifically, a previously identified T-Matrix and an actual 
control 0θ – vector/actual measurement – vector pair from a previous duty cycle were 

synthesised for use as input to these problems. Additionally, these already synthesised values 
were directly input to the (90 x 30) T-Matrix NLP control problems for comparison purposes. The 
classic regulator problem was solved to verify the NLP solutions to the unconstrained 
optimisation NLP problems. Agreement was obtained in all cases. 
 
Listings of the command (DCL) file code and the Fortran main driver code for the Hewlett-
Packard Alpha mainframe computer, and the input and output for the four sub-problems that 
were part of the (90 x 30) T-Matrix NLP control problems solved using the Hewlett-Packard 
Alpha mainframe computer, are presented in Appendix B, section B.4. A listing of the Fortran 
main driver code for the Mac Pro desktop computer, and the input and output for the four sub-
problems that were part of the (90 x 30) T-Matrix NLP control problems solved using the Mac 
Pro desktop computer, are presented in Appendix C, section C.4. 
 
These (90 x 30) T-Matrix NLP control problems are representative of aerodynamic surface 
design and/or aircraft configuration problems and, although they were solved rapidly, they are 
more suitable to non-real-time design applications. 
 
 
2.2.5 (90 x 60) T-Matrix NLP Control Problems 
 
For these problems, the number of elements (dimension) in the control θ – vector is 60  
(i.e., Nθ  

= 60), and the number of elements (dimension) in the predicted measurement  
Ζ – vector is 90 (i.e., NZ  

= 90). Correspondingly, the system or transfer T-Matrix is (90 x 60). The 

number of elements (dimension) in the Equality Constraint φ θ( ) _vector is 15 (i.e., NEQ 
= 15), 

the number of elements in the First Inequality Constraint 1ψ θ( ) _sub-vector is 30  

(i.e., NIEQ1 
= 30), the number of elements in the Second Inequality Constraint 2ψ θ( ) −sub-vector 

function is 60 (i.e., NIEQ2 
= 60), and the dimension of the Inequality Constraint ψ θ( ) _vector is 

90 (i.e., NIEQ = NIEQ1 
+

  
NIEQ2 = 90). The (90 x 60) T-Matrix NLP control problem with all 

constraints is defined as: 

 
Determine the θ – vector, θSol , that solves the problem:  
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then 

 

 
Subject to : 
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The (90 x 60) T-Matrix NLP control problem has four sub-problems: (1) unconstrained 
optimisation, (2) optimisation with only equality constraints, (3) optimisation with only inequality 
constraints, and (4) optimisation with both equality constraints and inequality constraints. It was 
assumed that the tasking of these T-Matrix NLP control problems occurred within the framework 
of real-time controller duty cycles. To expedite the testing, experimentation, and evaluation of 
the NLPQLP System, the required input data was synthetically determined using a process 
designed expressly for this analysis. Specifically, a previously identified T-Matrix and an actual 
control 0θ – vector/actual measurement – vector pair from a previous duty cycle were 

synthesised for use as input to these problems. Additionally, these already synthesised values 
were directly input to the (90 x 60) T-Matrix NLP control problems for comparison purposes. The 
classic regulator problem was solved to verify the NLP solutions to the unconstrained 
optimisation NLP problems. Agreement was obtained in all cases. 
 
Listings of the command (DCL) file code and the Fortran main driver code for the Hewlett-
Packard Alpha mainframe computer, and the input and output for the four sub-problems that 
were part of the (90 x 60) T-Matrix NLP control problems solved using the Hewlett-Packard 
Alpha mainframe computer, are presented in Appendix B, section B.5. A listing of the Fortran 
main driver code for the Mac Pro desktop computer, and the input and output for the four sub-
problems that were part of the (90 x 60) T-Matrix NLP control problems solved using the Mac 
Pro desktop computer, are presented in Appendix C, section C.5. 
 
These (90 x 60) T-Matrix NLP control problems are representative of aerodynamic surface 
design and/or aircraft configuration problems and, although they were solved rapidly, they are 
more suitable to non-real-time design applications. 
 
 
2.3 Synthetic Data 
 
The specific problems that were solved during this study were representative of actual problems 
to be solved during experimentation and/or testing of various rotorcraft configurations. It is 
assumed that the tasking of these T-Matrix NLP control problems occurs within the framework 
of real-time controller duty cycles. Tasking of one of these T-Matrix NLP control problems during 
the current duty cycle requires: (1) a previously identified T-Matrix, and (2) the actual control  

0θ – vector and the actual measurement – vector pair determined during a previous duty 

cycle or at a reference epoch time. Preparations for such experimentation and/or testing 
requires the definition of the specific NLP problem (i.e., the performance index, the dimension 
and elements of the control vector and the measurement vector, and all constraints) to be 
solved. The main driver program, which defines the problem to be solved and tasks the 
NLPQLP System to solve it, must be coded, verified for proper functioning, and tuned-up so that 
it reliably and efficiently solves the required problems during actual tests. This, of course, must 
precede the test and the generation of actual associated test data. 
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In an actual wind tunnel or flight test, the identification and/or acquisition of the required data 
would normally be tasked during a previous duty cycle or at a reference epoch time and would 
be transmitted to the NLP program host computer for the solution of the NLP problem. The 
solution control Solθ – vector would then be transmitted back to the controller during the current 

duty cycle. It is necessary to have input/output (I/O) interface/compatibility between the 
controller and the NLP host computer in order to successfully transmit usable data between the 
controller and the NLP host computer. This issue is not addressed in this document. 
 
Although it might be possible to use similar test data from another test for verification and tuning 
purposes, in general this is cumbersome and can be unnecessarily time consuming. In addition, 
there could be I/O interface/compatibility issues associated with use of test data from another 
test. Synthetic determination of the T-Matrix, the actual control 0θ – vector, and the actual 

measurement – vector data avoids problems associated with use of test data from another 

test and provides a simple, rapid method to obtain the required data during verification and 
tuning. 
 
A synthesis procedure was designed to provide the T-Matrix and a previous duty cycle “actual” 
control 0θ – vector/“actual” measurement – vector pair required for the verification of the 

NLP main driver codes and subsequent tuning of the operation of these codes to solve the type 
of problems expected during the test. In order to develop a realistic test of the main driver codes 
and the NLPQLP System, a small degree of randomness was included in the synthetic 
modelling. Uniformly distributed pseudo-random numbers were selected for this synthesis 
process (see section 2.3.1). 
 
First, the T-Matrix is determined by defining its elements to be pseudo-random numbers 
between –1.0 inclusive and +1.0 exclusive (see section 2.3.2). Scaling coefficients are provided 
to ensure that the norm to the T-Matrix is within acceptable limits. Next, the “actual” control  

0θ – vector is likewise determined by defining its elements to be pseudo-random numbers 

between –1.0 inclusive and +1.0 exclusive (see section 2.3.2). In this case, the elements are 
constrained to be within specified limits à la “external limiting.” Although the definition of the  
T-Matrix and the “actual” control 0θ – vector was accomplished using pseudo-random numbers, 

these elements did not have to be defined randomly and could have been directly input or 
generated otherwise. These elements were generated randomly for convenience. The essential 
requirements for these elements are that the scaling and limits be reasonable and the resulting 
values are realistic. The degree of randomness to the model is introduced in the definition of the 
“actual” measurement – vector. The “actual” measurement – vector is defined by adding 

uniformly distributed pseudo-random numbers to the T 0θ  product used in the definition of the 

– vector (see section 2.3.2). 
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2.3.1 Definition of the Random Number Generator Function RAN(SEED) 
 

The random number generator function, RAN(•), employed for data synthesis from both  
the Hewlett-Packard Alpha mainframe computer and Mac Pro desktop computer, produces a 
real uniformly pseudo-random number between 0.0 inclusive and 1.0 exclusive 

. Because the algorithm employed by RAN(•) on the Hewlett-Packard 

Alpha mainframe computer is a VMS System subroutine, it is not necessary to provide this 
subroutine for the main driver code on that computer. In order to provide nearly identical main 
driver codes, and because the corresponding G95 intrinsic uniform pseudo-random number 

generator function is named RAND(•), a Fortran code for a RAN(•) subroutine that calls 

RAND(•) is provided in addition to the main driver code for the Mac Pro desktop computer. It is, 

however, necessary to define this RAN(•) with EXTERNAL and REAL statements in the Mac 
Pro main driver codes. The provision of the EXTERNAL and REAL statements in the Mac Pro 
main driver codes is the only difference from the corresponding main driver codes for the 

Hewlett-Packard Alpha mainframe computer. These RAN(•) codes employ different algorithms 
to generate the pseudo-random numbers, and correspondingly will, in general, produce different 
numerical values. 
 

Both of these RAN(•) random number generators require provision of a seed in the calling 
argument. This argument (i.e., the seed) should initially be set to a large odd-integer value for 

the first call to RAN(•). Its value will be updated during this call to RAN(•) to be used in the 

next call to RAN(•). 
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2.3.2 Determination of the Synthetic T-Matrix, the “Actual” Control 0θ – Vector, and the 

“Actual” Measurement –Vector  

 
The methodology employed to synthetically determine the T-Matrix, the actual control  

0θ – vector, and the actual measurement – vector data is: 

 
First, synthesise the T-Matrix according to: 
 

 

 
 

 

 

 

otherwise there is no change to the value of p
Initial

θ as determined by the random equation above. 
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where 
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2.4 The Regulator Problem 
 
Unlike the non-linear programming problems that are constrained/unconstrained optimisation 
problems, the regulator problem is a steady-state problem; its solution process seeks 
maintenance of a steady-state condition with minimal control and, in some cases, minimal 
control rate of change. Because the regulator problem solution is analytically explicit and known, 
its solution process is fast and has a relatively small computational load compared to the 
constrained/unconstrained optimisation solution processes. In some cases, “External Limiting” 
constraints (i.e., direct maximum limits on control vector elements imposed after the analytic 
explicit solution is obtained) are imposed on control vector elements. Correspondingly, early 
attempts (i.e., circa the 1950s) to solve constrained/unconstrained optimisation control problems 
formulated these problems as regulator problems because the algorithms for constrained/ 
unconstrained optimisation solution processes and computer technology were in their early 
stages of development and not sufficiently reliable or efficient for this purpose. As computer 
technology advances occurred and efficient, reliable optimisation techniques were developed, 
use of numerical optimisation techniques became feasible for actual test applications. 
 
A control vector metric, and a rate of change of the control vector metric if required, are adjoined 
to a steady-state excursion metric to form the performance index for the regulator problem. By 
appropriately defining the steady-state excursion metric, which is the first term in the 
performance index, and carefully tuning the weighting coefficients for all the terms in the 
performance index, a pseudo-optimal solution can be obtained that satisfies, or nearly satisfies, 
any required constraints. This tuning must, of course, be accomplished before actual test 
applications. 
 
As in the case of the General T-Matrix NLP control problem described in section 2.2, a T-Matrix 
linear plant model that relates the measurement Ζ – vector to the control θ – vector is assumed 
for the regulator problem described below. The first-term performance index is the steady-state 
excursion metric and a quadratic function of a T-Matrix plant model, and correspondingly a 
quadratic function of the control θ – vector. The second term in the performance index is simply 
a weighted control θ – vector quadratic. If required, the third term in the performance index is a 
weighted time rate of change of the control θ – vector quadratic. The regulator problem is: 
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Determine the θ – vector, θSol , that solves the problem:  

 

 

Subject to NO constraints per se during the regulator problem solution
process to determine Solθ .  

 

 



27 

In some cases, "External Limiting" constraints are imposed on Solθ after the
explicit analytic solution for Solθ is determined. Specifically :  

 

 

 

 
otherwise there is no change to the value of θSol p

as determined by the equation for the explicit
solution for θSol p

.  

 

 

 
 
 
3.0 Results and Conclusions 
 
The newly acquired Version 3.1 of the NLPQLP System was used to solve several typical 
constrained and unconstrained optimisation problems of the type encountered in various 
rotorcraft wind tunnel and flight tests on both the Hewlett-Packard Alpha mainframe computer 
and the Mac Pro desktop computer. The associated software and codes installed on the Mac 
Pro desktop computer should be transportable to a Mac laptop computer for use in a wind 
tunnel. A linear dependence (i.e., a T-Matrix plant model) of the measurement vector (the 
measurement Ζ – vector) on the control vector (i.e., the control θ – vector) was assumed. These 
problems ranged from a relatively simple, unconstrained 4-vector control problem, to a relatively 
large, constrained 60-vector control problem. Solutions were obtained for all problems 
considered. Although tuning and some input adjustments were required to successfully solve 
the large, constrained 60-vector control problem, the NLPQLP System proved to be an efficient 
and reliable method to solve these problems. 
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The problems solved in this analysis included: (6 x 4) T-Matrix NLP control problems, (6 x 6)  
T-Matrix NLP control problems, (24 x 8) T-Matrix NLP control problems, (90 x 30) T-Matrix NLP 
control problems, and (90 x 60) T-Matrix NLP control problems. Each of these problems had 
four sub-problems: (1) unconstrained optimisation, (2) optimisation with only equality 
constraints, (3) optimisation with only inequality constraints, and (4) optimisation with both 
equality constraints and inequality constraints. It was assumed that the tasking of these T-Matrix 
NLP control problems occurred within the framework of real-time controller duty cycles. To 
expedite the testing, experimentation, and evaluation of the NLPQLP System, the required input 
data was synthetically determined using a process designed expressly for this analysis. 
Specifically, a previously identified T-Matrix and an actual control 0θ – vector/actual 

measurement – vector pair from a previous duty cycle, or at a reference epoch time, were 

synthesised for use as input to these problems. Additionally, these already synthesised values 
were directly input to the (6 x 4), (6 x 6), and (24 x 8) T-Matrix NLP control problems for 
comparison purposes. The classic regulator problem was solved to verify the NLP solutions to 
the unconstrained optimisation NLP problems. Agreement was obtained in all cases. 
 
The (6 x 4), (6 x 6), and (24 x 8) T-Matrix NLP control problems are representative of actual 
rotorcraft control problems. The solutions to these problems were sufficiently fast to be included 
in real-time duty cycles. The (90 x 30) and (90 x 60) T-Matrix NLP problems are representative 
of aerodynamic surface design and/or aircraft configuration problems and, although they were 
solved rapidly, they are more suitable to non-real-time design applications. 
 
The results are shown in Appendix B and Appendix C, separate volumes of this report. 
 
Listings of the command (DCL) file code and the Fortran main driver code for the Hewlett-
Packard Alpha mainframe computer, and the input and output for the four sub-problems that 
were part of the (6 x 4), (6 x 6), (24 x 8), (90 x 30), and (90 x 60) T-Matrix NLP control problems 
solved using the Hewlett-Packard Alpha mainframe computer, are presented in Appendix B.  
A listing of the Fortran main driver code for the Mac Pro desktop computer, and the input and 
output for the four sub-problems that were part of the (6 x 4), (6 x 6), (24 x 8), (90 x 30), and  
(90 x 60) T-Matrix NLP control problems solved using the Mac Pro desktop computer, are 
presented in Appendix C. 
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 Abstract 

The Fortran subroutine NLPQLP solves smooth nonlinear programming 

problems by a sequential quadratic programming (SQP) algorithm. This version 

is specifically tuned to run under distributed systems controlled by an input 

parameter 



l . In case of computational errors as for example caused by 

inaccurate function or gradient evaluations, a non-monotone line search is 

activated. Numerical results are included which show that in case of noisy 

function values, a significant improvement of the performance is achieved 

compared to the version with monotone line search. Further stabilization is 

obtained by performing internal restarts in case of errors when computing the 

search direction due to inaccurate derivatives. The new version of NLPQLP 

successfully solves more than 90% of our 306 test examples subject to a 

stopping tolerance of 10–7, although at most two digits in function values are 

correct in the worst case and although numerical differentiation leads to 

additional truncation errors. In addition, automated initial and periodic scaling 

with restarts is implemented. The usage of the code is documented and 

illustrated by an example. 

Keywords: SQP, sequential quadratic programming, nonlinear programming, non-monotone line 

search, numerical algorithm, distributed computing, Fortran code. 

http://www.klaus-schittkowski.de/
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1 Introduction 

We consider the general optimization problem to minimize an objective function 



l  under 

nonlinear equality and inequality constraints, 

 



min f (x)

x  IR
n

: gj x   0 , j  1,    , me 1 
g
j x   0 , j  me  1,    , m

x
l
 x  xu

 

where 



x  is an n-dimensional parameter vector. It is assumed that all problem functions  



f (x)  and 



g
j x , j  1,    , m   are continuously differentiable on the whole 



IR
n

. 

 

Sequential quadratic programming (SQP) is the standard general purpose method to solve 

smooth nonlinear optimization problems, at least under the following assumptions: 



 The problem is not too large. 



 Functions and gradients can be evaluated with sufficiently high precision. 



 The problem is smooth and well scaled. 

The original code NLPQL of Schittkowski [47] is a Fortran implementation of a sequential 

quadratic programming (SQP) algorithm. The numerical algorithm is based on extensive 

comparative numerical tests, see Schittkowski [40, 44, 42], Schittkowski et al. [56], Hock and 

Schittkowski [25], and on further theoretical investigations published in [41, 43, 45, 46]. The 

algorithm is extended to solve also nonlinear least squares problems efficiently, see [49] or [51], 

and to handle problems with very many constraints, see [54]. To conduct the numerical tests, a 

random test problem generator is developed for a major comparative study, see [40], Two 

collections with together 306 test problems are published in Hock and Schittkowski [25] and in 

Schittkowski [48]. Fortran source codes and a test frame can be downloaded from the home 

page of the author, 

http://www.klaus-schittkowski.de 

Many of them became part of the Cute test problem collection of Bongartz et al. [7]. About 80 

test problems based on a Finite Element formulation are collected for a comparative evaluation 

in Schittkowski et al. [56]. A set of 1,300 least squares test problems solved by an extension of 

the code NLPQL to retain typical features of a Gauss-Newton algorithm, is described in [51]. 

http://www.klaus-schittkowski.de/
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Also these problems can be downloaded from the home page of the author together with an 

interactive software system called EASY-FIT, see [52]. 

Moreover, there exist hundreds of commercial and academic applications of NLPQL, for 

example 

1. mechanical structural optimization, see Schittkowski, Zillober, Zotemantel [56] and 

Kneppe, Krammer, Winkler [28], 
 

2. data fitting and optimal control of transdermal pharmaceutical systems, see Boderke, 
Schittkowski, Wolf [3] or Blatt, Schittkowski [6], 

3. computation of optimal feed rates for tubular reactors, see Birk, Liepelt, Schittkowski, 
and Vogel [5], 

4. food drying in a convection oven, see Frias, Oliveira, and Schittkowski [ 15 ] ,  

5. optimal design of horn radiators for satellite communication, see Hartwanger, 
Schittkowski, and Wolf [23], 

6. receptor-ligand binding studies, see Schittkowski [50], 

7. optimal design of surface acoustic wave filters for signal processing, see Bfinner, 
Schittkowski, and van de Braak [8]. 

Previous and present versions of NLPQLP are part of commercial libraries, modeling systems, 

or optimization systems like 

- IMSL Library (Visual Numerics Inc., Houston) for general nonlinear programming 

(Version 1.0, 1981), 

- ANSYS/POPT (CAD-FEM, Grafing) for structural optimization, 

- DesignXplorer (ANSYS, Canonsburg) for structural design optimization, 

- STRUREL (RCP, Munich) for reliability analysis, 

- TEMPO (OECD Reactor Project, Halden) for control of power plants, 

- Microwave Office Suit (Applied Wave Research, El Segundo) for electronic design, 

- MOOROPT (Marintek, Trondheim) for the design of mooring systems, 

- iSIGHT (Enginious Software/Dassault) for multi-disciplinary CAE, 

- POINTER (Synaps, Atlanta) for design automation, 

- EXCITE (AVL, Graz) for non-linear dynamics of power units, 

- ModeFRONTIER (ESTECO, Trieste) for integrated multi-objective and multidisciplinary 

design optimization, 
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- TOMLAB/MathLab (Tomlab Optimization, Vasteras, Sweden) for general nonlinear 

programming, least squares optimization, data fitting in dynamical systems, 

- EASY-FIT (Schittkowski, Bayreuth) for data fitting in dynamical systems, 

- OptiSLang (DYNARDO, Weimar), for structural design optimization, 

- AMESim (IMAGINE, Roanne), for multidisciplinary system design, 

- LMS OPTIMUS (NOESIS, Leuven, Belgium) for multi-disciplinary CAE, 

- RADIOSS/M-OPT (MECALOG/Altair, Antony, France) for multi-disciplinary CAE, 

- CHEMASIM (BASF, Ludwigshafen) for the design of chemical reactors. 

 

Customers include, among many others, AMD, Astrium, BASF, Bayer, Bell Labs, BMW, 

Chevron Research, DLR, Dow Chemical, DuPont, EADS, EMCOSS, ENSIGC, EPCOS, ESA-

ESOC, Eurocopter, Fantoft Prosess, General Electric, Hoechst, Hidro-electrica Espanola, IABG, 

IBM, Institute for Energy Technology Halden, KFZ Karlsruhe, Kongsberg Maritime, Lockheed 

Martin, Loral Space Systems, Markov Processes, Marintek, MTU, NASA Langley, NASA Ames, 

Nevesbu, National Airspace Laboratory, Norsk Hydro Research, Norwegian Computing Center, 

Norwegian Defense Agency, OECDHalden, Philips, Polysar, ProSim, Rolls-Royce, Shell, 

Siemens, Sintef, Solar Turbines, Statoil, TNO, Transpower, USAF Research Lab, Wright R & D 

Center and in addition dozens of academic research institutions all over the world. 

The general availability of parallel computers and in particular of distributed computing in 

networks motivates a careful redesign of the original implementation NLPQL to allow 

simultaneous function evaluations. The resulting extensions are implemented and the code is 

called NLPQLP. An additional input parameter 



l  is introduced for the number of parallel 

machines, that is the number of function calls to be executed simultaneously. In case of 



l 1 , 

NLPQLP is more or less identical to NLPQL besides of additional changes of the code. 

Otherwise, the line search procedure is modified to allow parallel function calls, which can also 

be applied for approximating gradients by difference formulae. The mathematical background is 

outlined, in particular the modification of the line search algorithm to retain convergence under 

parallel systems. It must be emphasized that dis tributed computation of function values is only 

simulated throughout the paper. It is up to the user to adopt the code to a particular parallel 

environment. 
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However, SQP methods are quite sensitive subject to round-off or any other errors in function 

and especially gradient values. If objective or constraint functions cannot be computed within 

machine accuracy or if the accuracy by which gradients are approximated is above the 

termination tolerance, the code could break down typically with the error message IFAIL = 4. In 

this situation, the line search cannot be terminated within a given number of iterations and the 

algorithm is stopped. 

All new versions since 2.0 makes use of non-monotone fine search in the error situation 

described above. The idea is to replace the reference value of the fine search termination 

check, 




rk
x
k

, v
k , by 



max rj jx , jv  : j  k p,    , k








 

 

where 



r x, v  is a merit function and 



p a given parameter. The general idea is not new and 

for example described in Dai [11], where a general convergence proof for the unconstrained 

case is presented. The general idea goes back to Grippo, Lampariello, and Lucidi [18], and was 

extended to constrained optimization and trust region methods in a series of subsequent 

papers, see Bonnans et al. [4], Deng et al. [13], Grippo et al. [19, 20], Ke and Han [26], Ke et al. 

[27], Lucidi et al. [30], Panier and Tits [34], Raydan [39], and Toint [59, 60]. However, there is a 

basic difference in the methodology: Our goal is to allow monotone line searches as long as 

they terminate successfully, and to apply a non-monotone one only in a special error situation. 

Despite of strong analytical results, SQP methods do not always terminate successfully. 

Besides of the difficulties leading to the usage of non-monotone line search, it might happen 

that the search direction as computed from a certain quadratic programming sub-problem, is not 

a downhill direction of the merit function needed to perform a fine search. Possible reasons are 

again severe errors in function and especially gradient evaluations, or a violated regularity 

condition concerning linear independency of gradients of active constraints (LICQ). In the latter 

case, the optimization problem is not modelled in a suitable way to solve it directly by an SQP 

method. Our new version performs an automated restart as soon as a corresponding error 

message appears. The BFGS quasi-Newton matrix is reset to a multiple of the identity matrix 

and the matrix update procedure starts from there. 
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Scaling is an extremely important issue and an efficient procedure is difficult to derive in the 

general case without knowing too much about the numerical structure of the optimisation 

problem. If requested by the user, the first BFGS update is started from a multiple of the identity 

matrix, which takes into account information from the solution of the initial quadratic 

programming sub-problem. This restart can be repeated periodically with successively adapted 

scaling parameters. 

In Section 2 we outline the general mathematical structure of an SQP algorithm, the  

non-monotone line search, and the modifications to run the code under distributed systems. 

Section 3 contains some numerical results obtained for a set of 306 standard test problems of 

the collections published in Hock and Schittkowski [25] and in Schittkowski [48]. They show the 

sensitivity of the new version with respect to the number of parallel machines and the influence 

of gradient approximations under uncertainty. Moreover, we test the non-monotone line search 

versus the monotone one, and generate noisy test problems by adding random errors to 

function values and by inaccurate gradient approximations. This situation appears frequently in 

practical environments, where complex simulation codes prevent accurate responses and 

where gradients can only be computed by a difference formula. The usage of the Fortran 

subroutine is documented in Section 4 and Section 5 contains an illustrative examples. 
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2 Sequential Quadratic Programming Methods 

Sequential quadratic programming or SQP methods belong to the most powerful nonlinear 

programming algorithms we know today for solving differentiable nonlinear programming 

problems of the form (1). The theoretical background is described e.g. in Stoer [58] in form of a 

review, or in Spellucci [57] in form of an extensive text book. From the more practical point of 

view, SQP methods are also introduced in the books of Papalambros, Wilde [35] and Edgar, 

Himmelblau [14]. Their excellent numerical performance is tested and compared with other 

methods in Schittkowski [40], and since many years they belong to the most frequently used 

algorithms to solve practical optimization problems. 

To facilitate the notation of this section, we assume that upper and lower bounds xuand xi are 

not handled separately, i.e., we consider the somewhat simpler formulation 

 



min f (x)

x  IR
n

: gj x   0 , j  1,    , me 2 
g
j x   0 , j  me  1,    , m

 

It is assumed that all problem functions 



f (x)  and 



g
j x , j  1,    , m

  

are continuously 

differentiable on 



IR
n

. 

The basic idea is to formulate and solve a quadratic programming sub-problem in each iteration 

which is obtained by linearising the constraints and approximating the Lagrangian function 

 



L x, u  :  f (x)  ju
j 1

m

 jg x  3  

quadratically, where 



x  IR
n

 is the primal variable and 



u  1u ,    , mu 
T

 IR
m

 the 

multiplier vector. 

To formulate the quadratic programming sub-problem, we proceed from given iterates 



x  IR
n

 

an approximation of the solution, 



v  IR
m

 an approximation of the multipliers, and 



Bk  IR
n xn

, 

an approximation of the Hessian of the Lagrangian function. Then one has to solve the 

quadratic programming problem 
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

min 1
2
d
T
Bkd  f (xk )

T
d

d  IR
n

: gj xk 
T

d  gj xk   0 , j  1,    , me 4 

gj xk 
T

d  gj xk   0 , j  me  1,    , m

 

Let 



dk  be the optimal solution and 



u
k  the corresponding multiplier of this sub-problem. A new 

iterate is obtained by 

 



x
k  1

v
k  1















: 
x
k

v
k














 k

d
k

u
k
 v

k













 5  

where 



k  0, 1  is a suitable step length parameter. 

Although we are able to guarantee that the matrix 



Bk  is positive definite, it is possible that (4) is 

not solvable due to inconsistent constraints. One possible remedy is to introduce an additional 

variable 



  IR leading to a modified quadratic programming problem, see Schittkowski [47] for 

details. 

The steplength parameter 



k  is required in (5) to enforce global convergence of the SQP 

method, i.e., the approximation of a point satisfying the necessary Karush-Kuhn-Tucker 

optimality conditions when starting from arbitrary initial values, typically a user-provided 



x0  IR
n
and 



v
0  0, 



B
0
 I .  



k  should satisfy at least a sufficient decrease condition of a merit 

function 



r() given by 

 



r () :  r
x

v









  

d

u  v

























6  

with a suitable penalty function by 




r
x, u  .  Implemented is the augmented Lagrangian 

function 

 



r x, u  :  f (x)  vj gj x   1
2
rj gj x 

2





j  J

  1
2

vj
2

rj
j  K

 7  

with  



J :  1,    , me  j : me  j  m , gj x   j / rj  
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and  



K :  1,    , m  \ J ,      cf. Schittkowski [45]. 

The objective function is penalized as soon as an iterate leaves the feasible domain. The 

corresponding penalty parameters 



rj , j  1,    , m   that control the degree of constraint 

violation, must carefully be chosen to guarantee a descent direction of the merit function, see 

Schittkowski [45] or Wolfe [61] in a more general setting,  i.e., to get 

 



rk
0   rk

x
k

, v
k 
T dk

uk  vk














 0 8  

Finally one has to approximate the Hessian matrix of the Lagrangian function in a suitable way. 

To avoid calculation of second derivatives and to obtain a final super linear convergence rate, 

the standard approach is to update 



Bk , by the BFGS quasi-Newton formula, cf. Powell [37] or 

Stoer [58]. 

The implementation of a line search algorithm is a critical issue when implementing a nonlinear 

programming algorithm, and has significant effect on the overall efficiency of the resulting code. 

On the one hand we need a line search to stabilize the algorithm, on the other hand it is not 

desirable to waste too many function calls. Moreover, the behaviour of the merit function 

becomes irregular in case of constrained optimization because of very steep slopes at the 

border caused by large penalty terms. Even the implementation is more complex than shown 

above, if linear constraints and bounds of the variables are to be satisfied during the line search. 

Usually, the step-length parameter 



k  is chosen to satisfy the Armijo [1] condition 

 



r 
i   r(0)  

i rk
(0) 9  

see for example Ortega and Rheinboldt [33], The constants are from the ranges 0 < μ < 0.5,  

0 <  < 1, and 0 <   1. We start with 



i  0 and increase 



i  until (9) is satisfied for the first 

time, say at 



ik .  Then the desired steplength is 



k  
ik . 

Fortunately, SQP methods are quite robust and accept the steplength one in the neighbourhood 

of a solution. Typically the test parameter μ for the Armijo-type sufficient descent property (9) is 
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very small. Nevertheless the choice of the reduction parameter β must be adopted to the actual 

slope of the merit function. If β is too small, the line search terminates very fast, but on the other 

hand the resulting stepsizes are usually too small leading to a higher number of outer iterations. 

On the other hand, a larger value close to one requires too many function calls during the fine 

search. Thus, we need some kind of compromise, which is obtained by first applying a 

polynomial interpolation, typically a quadratic one, and use (9) only as a stopping criterion. 

Since φr(0) , ′ φ r(0) , and φr(αi ) are given, α i  the actual iterate of the line search procedure, 

we easily get the minimiser of the quadratic interpolation. We accept then the maximum of this 

value and the Armijo parameter as a new iterate, as shown by the subsequent code fragment 

implemented in NLPQLP. 

Algorithm 2.1 

Let β, μ with 0 < β < 1, 0 < μ < 0.5 be given.  

Start : α0 : = 1

For i = 0, 1, 2, • • • , do :

1) If φr(α i ) < φr(0) + μαi ′ φ rk(0) , then stop.

2) Compute αi : =
0. 5 αi

2 ′ φ r(0)
αi ′ φ rk(0) − φr (αi ) + φr(0)

3) Let α i+ 1 : = max( β α i α i ) .

 

Corresponding convergence results are found in Schittkowski [45]. α i  is the minimiser of the 

quadratic interpolation, and we use the Armijo descent property for checking termination. Step 3 

is required to avoid irregular values, since the minimiser of the quadratic interpolation could be 

outside of the feasible domain 0,1( ]. The search algorithm is implemented in NLPQLP together 

with additional safeguards, for example to prevent violation of bounds. Algorithm 4.1 assumes 

that φr(1)  is known before calling the procedure, i.e., that the corresponding function values are 

given. We have to stop the algorithm, if sufficient descent is not observed after a certain number 

of iterations, say 10. If the tested stepsize falls below machine precision or the accuracy by 

which model function values are computed, the merit function cannot decrease further. 
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To outline the new approach, let us assume that functions can be computed simultaneously on 



l 

different machines. Then 



l test values 



i  
i1

 with 



  1/(l1)
 are selected, 



i  1,    , l . 

where 



 is a guess for the machine precision. Next we require 



l parallel function calls to get the 

corresponding model function values. The first 



 i  satisfying a sufficient descent property (9), 

say for 



i  ik is accepted as the new steplength to set the subsequent iterate by 



k :  ik . 

One has to be sure that existing convergence results of the SQP algorithm are not violated. 

The proposed parallel line search will work efficiently, if the number of parallel machines 



l is 

sufficiently large, and works as follows, where we omit the iteration index 



k . 

Algorithm 2.2 



Let ,  with 0    1, 0    0. 5 be given.
 



Start : For i  
i1

compute r( i ) for i  0, 1, 2,    , l1

For i  0, 1, 2,    do :

If 
r(i )  

r(0)  i r(0) , then stop.

 

To precalculate 



l candidates in parallel at log-distributed points between a small tolerance 



    and 



  1, 0    1, we propose 



   1/(l1)
. 

The paradigm of parallelism is SPMD, i.e., Single Program Multiple Data. In a typical situation 

we suppose that there is a complex application code providing simulation data, for example by 

an expensive Finite Element calculation in mechanical structural optimisation. It is supposed 

that various instances of the simulation code providing function values, are executable on a 

series of different machines, so-called slaves, controlled by a master program that executes 

NLPQLP. By a message passing system, for example PVM, see Geist et al. [16], only very few 

data need to be transferred from the master to the slaves. Typically only a set of design 

parameters of length 



n must to be passed. On return, the master accepts new model responses 

for objective function and constraints, at most 



m 1 double precision numbers. All massive 

numerical calculations and model data, for example the stiffness matrix of a Finite Element 

model in a mechanical engineering application, remain on the slave processors of the 

distributed system. 
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In both situations, i.e., the serial or parallel version, it is still possible that Algorithm 2.1 or 

Algorithm 2.2 breaks down because to too many iterations. In this case, we proceed from a 

descent direction of the merit function, but 



r(0)  is extremely small. To avoid interruption of the 

whole iteration process, the idea is to repeat the line search with another stopping criterion. 

Instead of testing (9 ) ,  we accept a stepsize 



k  as soon as the inequality 

 



r
k
(k ) 

k  p(k)  j  k
max 

rj
(0)   ik

 rk(0)








 10  

is satisfied, where 



p k  is a predetermined parameter with 



p k   min k, p , p a given 

tolerance. Thus, we allow an increase of the reference value 



rj
k

(0) in a certain error situation, 

i.e., an increase of the merit function value. To implement the non-monotone line search, we 

need a queue consisting of merit function values at previous iterates. In case of 



k  0, the 

reference value is adapted by a factor greater than 



1 , i.e., 



rj
k

(0) is replaced by 



trj
k

(0) , t  1. 

The basic idea to store reference function values and to replace the sufficient descent property 

by a sufficient ’ascent’ property in max-form, is for example described in Dai [11], where a 

general convergence proof for the unconstrained case is presented. The general idea goes 

back to Grippo, Lampariello, and Lucidi [18], and was extended to constrained optimization and 

trust region methods in a series of subsequent papers, see Bonnans et al. [4], Deng et al. [13], 

Grippo et al. [19, 20], Ke and Han [26], Ke et al. [27], Lucidi et al. [30], Panier and Tits [34], 

Raydan [39], and Toint [59, 60]. However, there is a difference in the methodology: Our goal is 

to allow monotone line searches as long as they terminate successfully, and to apply a non-

monotone one only in an error situation. 
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The final step of an SQP method consists of updating the quasi-Nerwton Matrix 



Bk , e.g., by the 

BFGS formula 

 



Bk :  Bk 
q
k
q
k
T

p
k
Tq
k


Bk
p
k
p
k
T
Bk

p
k
T
Bk
p
k

, 11  

where 



q
k :  xL xk 1

, u
k   xL xk , uk  and 



p
k

: xk1
 x

k . Special safeguards 

guarantee that 



p
k
Tq
k  0 and that thus all matrices 



Bk  r remain positive definite provided that 



B
0 is positive definite. A possible scaling factor and restart procedure is to replace an actual 



Bk  

by 




k I  before performing the update (11), where 




k 

p
k
Tq
k

p
k
T p
k

 and where 



I  denotes the 

identity matrix, see for example Liu and Nocedal [29]. Scaled restarts are recommended if, e.g., 

the convergence turns out to become extremely slow. 
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3 Performance Evaluation 

3.1 The Test Environment 

Our numerical tests use the 306 academic and real-life test problems published in Hock and 

Schittkowski [25] and in Schittkowski [48]. Part of them are also available in the Cute library, see 

Bongartz et. al [7], and their usage is described in Schittkowski [55]. 

Since analytical derivatives are not available for all problems, we approximate them numerically. 

The test examples are provided with exact solutions, either known from analytical 

precalculations by hand or from the best numerical data found so far. 

First we need a criterion to decide whether the result of a test run is considered as a  successful 

return or not. Let 



  0 be a tolerance for defining the relative accuracy, 



x
k  the final iterate of 

a test run, and 



x the supposed exact solution known from the test problem collection. Then 

we call the output a successful return, if the relative error in the objective function is less than e 

and if the maximum constraint violation is less than 



 2
 i.e., if 

 



f xk   f x    f x  , if f x   0
 

or 

 



f xk    , if f x   0
 

and 

 



r xk   g xk 


 2
,

 

where 



     denotes the maximum norm and 



g xk   min 0, g xk  , j  me and 



g xk   g xk  otherwise. 

We take into account that a code returns a solution with a better function value than the known 

one, subject to the error tolerance of the allowed constraint violation. However, there is still the 

possibility that an algorithm terminates at a local solution different from the known one. Thus, 

we call a test run a successful one, if in addition to the above decision the internal termination 

conditions are satisfied subject to a reasonably small tolerance (IFAIL = 0), and if 
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

f xk   f x    f x  , if f x   0
 

or 

 



f xk    , if f x   0
 

and 

 



r xk   2
,

 

For our numerical tests, we use 



  0. 01 to determine a successful return, i.e., we require a 

final accuracy of one percent. Note that in all cases, NLPQLP is called with a termination 

tolerance of 



10
7

. 

If gradients are not available in analytical form, they must be approximated in a suitable way. 

The three most popular difference formulae are the following ones: 

1. Forward differences: 

 




xi
f x   1


i

f x 
i
e
i   f x   12  

2. Two-sided differences: 

 




xi
f x   1

2i
f x 

i
e
i   f x iei   13  

3. Forth-order formula: 

 




xi
f x   1

4!i
2 f x  2

i
e
i   16 f x 

i
e
i  

16 f x  
i
e
i   2 f x  2

i
e
i  14 

 

Here 




i
  max 10

5
, xi









 and 



ei  is the 



i th  unit vector, 



i  1,    , n . The tolerance 



 depends on the difference formula and is set to 



  
m

1 / 2
 for forward differences, 



  
m

1 / 3
 

for two-sided differences, and 



  
m /72











1 / 4

 for fourth-order formulae. 




m

 is a guess for 

the accuracy by which function values are computed, i.e., either machine accuracy in case of 
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analytical formulae or an estimate of the noise level in function computations. In a similar way, 

derivatives of constraints are computed. 

The Fortran implementation of the SQP method introduced in the previous section, is called 

NLPQLP. The code represents the most recent version of NLPQL which is frequently used in 

academic and commercial institutions. NLPQLP is prepared to run also under distributed 

systems, but behaves in exactly the same way as the serial version, if the number of simulated 

processors is set to one. Functions and gradients must be provided by reverse communication 

and the quadratic programming sub-problems are solve by the primal-dual method of Goldfarb 

and Idnani [17] based on numerically stable orthogonal decompositions. NLPQLP is executed 

with termination accuracy ACC = 10–7 as mentioned already above, and a maximum number of 

iterations MAXIT = 500. 

In the subsequent tables, we use the notation 



nsucc  - number of successful test runs (according to above definition) 



nfunc  - average number of function evaluations 



ngrad  - average number of gradient evaluations or iterations, respectively 



f x  - final objective function value 



r x  - final constraint violation 



ifail  - failure code 

 

To get 



nfunc  or 



ngrad , we count each evaluation of a whole set of function or gradient values, 

respectively, for a given iterate 



x
k  also in the case of several simulated processors, 



l  0. 

However, additional function evaluations needed for gradient approximations, are not counted 

for 



nfunc . Their average number is 



nfunc  for forward differences, 



2 x nfunc  for two-sided 

differences, and 



4 x nfunc  for fourth-order formulae. One gradient computation corresponds to 

one iteration of the SQP method. 

The Fortran codes are compiled by the Intel Visual Fortran Compiler, Version 10.1, EM64T, 

under Windows XP64 and Dual Core AMD Opteron Processor 265, 1.81 GHz, with 8 GB of 

RAM. 



 

A-17 
 

3.2 Testing Distributed Function Calls 

First we investigate the question, how parallel line searches influence the overall performance. 

Table 1 shows the number of successful test runs and the average number of iterations or 

gradient evaluations, 



nit  for an increasing number of simulated parallel calls of model functions 

denoted by 



l . The forward difference formula (12) is used for gradient approximations and non-

monotone line search is applied with a queue size of 



p  30. Calculation time is about one 

second for solving all 306 test problems without random perturbations. 



l  1 corresponds to the sequential case, when Algorithm 2.1 is applied to the line search 

consisting of a quadratic interpolation combined with an Armijo-type bisection strategy and a 

non-monotone stopping criterion. 

 



l nsucc ngrad



l nsucc ngrad  

 1 306 23 8 299 39 
 3 224 177 9 301 32 
 4 242 170 10 302 31 
 5 268 114 15 303 23 
 6 289 75 20 303 22 
 7 297 45 50 303 22 

 Table 1:  Performance Results for Parallel Line Search 

In all other cases, 



l  1 simultaneous function evaluations are made according to Algorithm 

2.2. To get a reliable and robust line search, one should use at least seven parallel processors. 

No significant improvements are observed, if we evaluate more than ten functions in parallel. 

The most promising possibility to exploit a parallel system architecture occurs, when gradients 

cannot be calculated analytically, but have to be approximated numerically, for example by 

forward differences, two-sided differences, or even higher order methods. Then we need at 

least 



n additional function calls, where 



n is the number of optimisation variables, or a suitable 

multiple of 



n. 
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3.3 Function Evaluations and Gradient Approximations by a 
Difference Formulae Under Random Noise 

For our numerical tests, we apply the forth-order difference formula (14). To test the stability of 

the formula and the underlying SQP code, we add randomly generated noise to each function 

value. Non-monotone line search is applied with a queue length of p = 30 in error situations, 

and the serial line search calculation by Algorithm 2.1 is used. Moreover, the BFGS quasi-

Newton updates are restarted with 



 I  if a descent direction cannot be computed. 

To compare the different stabilisation approaches, we apply three different scenarios:  

Table 2 - monotone line search, no restarts 

Table 3 - non-monotone line search, no restarts 

Table 4 - non-monotone line search and restarts 

 



err nsucc nfunc ngrad  



0 304 35 22 



10
 12

 303 36 22 



10
 10

 297 40 23 



10
8

 293 43 23 



10
 6

 280 57 24 



10
 4

 243 74 26 



10
2

 133 133 32 

 Table 2:  Test Results for Monotone Line Search without Restarts 



err nsucc nfunc ngrad  



0 306 38 22 



10
 12

 303 37 23 



10
 10

 300 43 25 



10
8

 300 53 24 



10
 6

 295 71 25 



10
 4

 268 116 30 



10
2

 294 185 33 

 Table 3:  Test Results for Non-Monotone Line Search without Restarts 
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

err nsucc nfunc ngrad  



0 306 38 22 



10
 12

 305 39 23 



10
 10

 300 47 24 



10
8

 303 83 27 



10
 6

 302 105 30 



10
 4

 297 318 43 



10
2

 279 647 64 

 Table 4:  Test Results for Non-Monotone Line Search and Restarts 

The corresponding results are evaluated for increasing random perturbations 



err . More 

precisely, if 



  denotes a uniformly distributed random number between 



0 and 



1, we replace 



f xk  by 



f xk  1  err 2 1   at each iterate 



x
k

. In the same way, restriction functions are 

perturbed. The tolerance for approximating gradients, 




m

is set to the machine accuracy in 

case of 



err 0 , and to the random noise level otherwise. 

The numerical results are surprising and depend heavily on the new non-monotone line search 

strategy and the additional stabilisation procedures. We are able to solve about 90% of the test 

examples in case of extremely noisy function values with at most one correct digit in partial 

derivative values. However, the stabilization process is costly. The more test problems are 

successfully solved, the more iterations, especially function evaluations, are needed. 

3.4 Testing Scaled Restarts 

In some situations, the convergence of an SQP method becomes quite slow for many reasons, 

e.g., badly scaled variables or functions, inaccurate derivatives, or inaccurate solutions of the 

quadratic program (4). In these situations, errors in the search direction or the partial derivatives 

influence the update procedure (11) and the quasi-Newton matrices 



Bk  are getting more and 

more inaccurate. 

A frequently proposed remedy is to restart the update algorithm by replacing the actual matrix 



Bk  by the initial matrix 



B0 or any similar one, if more information is available. One possibility is 

to multiply a special scaling factor with the identity matrix, i.e., to let 



Bk : 
k I  for selected 
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iterates 



k , where 




k :

p
k
Tq
k

p
k
T p
k

 and where 



I  denotes the identity matrix, see for example Liu 

and Nocedal [29]. 



q
k :  xL xk 1

, u
k   xL xk , uk  and 



p
k

: xk1
 x

k . 

Scaled restarts are recommended if convergence turns out to become extremely slow. To 

illustrate the situation, we consider a few test runs where the examples are generated by 

discretising a two-dimensional elliptic partial differential equation, see Maurer and Mittelmann 

[31, 32]. The original formulation is that of an optimal control problem where the state and 

control variables are both discretised. 

From a total of 13 original test cases, we select five problems that could not be solved by 

NLPQLP as efficiently as expected with standard solution tolerances. Depending on the grid 

size in our case 20 in each direction, we get problems with 



n  722  or 



n  798 variables, 

respectively, and 



me  361 or 



me  437 nonlinear equality constraints. They are obtained by 

applying the five-star formula to approximate second partial derivatives. 

Tables 5 to 8 contain numerical results first for standard tolerances and MODE = 0, where 



ACC  is set to 



10
7

 in all cases. For the results of the remaining tables, We used MODE = 2, 

MODE = 7, and MODE = 20. MODE = 2 means that the scaled restart is applied at the very first 

step. Note that also for all other test cases with MODE > 0, the initial BFGS matrix is 



B
0
 

0 I . 

 



problem nme nfunc ngrad f x  r x  ifail
 

 EX 1 722 361 64 64 0.45903100E-1 0.33E-10 0 
 EX 2 722 361 109 109 0.40390974E-1 0.22E-8 0 
 EX 3 722 361 88 88 0.11009561E+0 0.49E-9 0 
 EX 4 798 437 113 113 0.75833416E-1 0.12E-9 0 
 EX 5 798 437 200 200 0.51376012E-1 0.60E-5 1 

 Table 5: Test Results for Scaled Restarts: MODE = 0 
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

problem nme nfunc ngrad f x  r x  ifail
 

 EX 1 722 361 64 64 0.45903100E-1 0.64E-11 0 
 EX 2 722 361 108 108 0.40390974E-1 0.21E-8 0 
 EX 3 722 361 75 75 0.11009568E+0 0.46E-9 0 
 EX 4 798 437 108 108 0.75833417E-1 0.63E-9 0 
 EX 5 798 437 200 200 0.51369466E-1 0.14E-6 1 

 Table 6: Test Results for Scaled Restarts: MODE = 2 



problem nme nfunc ngrad f x  r x  ifail
 

 EX 1 722 361 20 20 0.45903160E-1 0.19E-7 0 
 EX 2 722 361 21 21 0.40390974E-1 0.79E-7 0 
 EX 3 722 361 41 41 0.11009561E+0 0.23E-9 0 
 EX 4 798 437 58 58 0.75833423E-1 0.44E-8 0 
 EX 5 798 437 112 112 0.51365403E-1 0.15E-12 0 

 Table 7: Test Results for Scaled Restarts: MODE = 7 



problem nme nfunc ngrad f x  r x  ifail
 

 EX 1 722 361 50 50 0.45903100E-1 0.68E-8 0 
 EX 2 722 361 33 33 0.40390974E-1 0.22E-8 0 
 EX 3 722 361 36 36 0.11009561E+0 0.23E-7 0 
 EX 4 798 437 61 61 0.75833414E-1 0.17E-8 0 
 EX 5 798 437 75 75 0.51365398E-1 0.14E-7 0 

 Table 8: Test Results for Scaled Restarts: MODE = 20 

 

The error codes are the same as produced by NLPQLP through the parameter IFAIL, i.e.,  

IFAIL = 0 for successful termination and IFAIL = 1 for reaching the upper limit of 200 iterations. 

We observe a significant speedup for scaled restarts every seven iterations. Initial scaling and 

more then 7 restarts do not yield any better results.  
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4 Program Documentation 

NLPQLP is implemented in form of a Fortran subroutine. The quadratic programming problem is 

solved by the code QL, an implementation of the primal-dual method of Goldfarb and Idnani [17] 

going back to Powell [38], see also Schittkowski [53] for more details about implementation and 

usage. Model functions and gradients must be provided by reverse communication. The user 

has to evaluate function and gradient values in the same program that executes NLPQLP, 

according to the following rules: 

1. Choose starting values for the variables to be optimised, and store them in the first 

column of an array called X. 

2. Compute objective and all constraint function values, store them in XF(1) and the first 

column of G, respectively. 

3. Compute gradients of objective function and all constraints, and store them in DF and 

DG, respectively. The J-th row of DG contains the gradient of the J-th constraint, 



J = 1,   , M. 

4. Set IFAIL = 0 and execute NLPQLP. 

5. If NLPQLP returns with IFAIL = -1, compute objective and constraint function  values for 

all variables found in the first L columns of X, store them in F (first L positions) and G 

(first L columns), and call NLPQLP again. 

6. If NLPQLP terminates with IFAIL = -2, compute gradient values with respect to the 

variables stored in the first column of X, and store them in DF and DG. Only derivatives 

for active constraints, ACT(J) = .TRUE., need to be computed. Then call NLPQLP again. 

7. If NLPQLP terminates with IFAIL = 0, the internal optimality criteria are satisfied. In the 

case of IFAIL > 0, an error has occurred.    

If analytical derivatives are not available, simultaneous function calls can be used for gradient 

approximations, for example by forward differences 2N > L two-sided differences 4N > L  2N, 

or even higher order formulae L  4N.      
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Usage: 

      CALL NLPQLP( L, M, ME, MMAX, N, 
/  NMAX, MNN2, X, F, G, 
/  DF, DG, U, XL, XU, 
/  C, D, ACC, ACCQP, STPMIN, 
/  MAXFUN, MAXIT, MAXNM, RHOB, IPRINT, 
/  MODE, IOUT, IFAIL, WA, LWA, 
/  KWA, LKWA, ACT, LACT, LQL, 
/  QPSLVE,    ) 

 

Definition of the parameters: 

L : Number of parallel systems, i.e., function calls during line search 

at predetermined iterates. 

M : Total number of constraints. 

ME : Number of equality constraints. 

MMAX : Row dimension of array DG containing Jacobian of constraints. 

MMAX must be at least one and greater or equal to M. 

N : Number of optimisation variables. 

NMAX : Row dimension of C. NMAX must be at least two and greater 

than N. 

MNN2 : Must be equal to M + N +N +2 when calling NLPQLP. 

X(NMAX, L): Initially, the first column of X has to contain starting values for the 

optimal solution. On return, X is replaced by the current iterate. In 

the driving program the row dimension of X has to be equal to 

NMAX. X is used internally to store L different arguments for 

which function values should be computed simultaneously. 

F(L): On return, F(1) contains the final objective function value. F is 

used also to store L different objective function values to be 

computed from L sets of arguments stored in X. 

G(MMAX, L): On return, the first column of G contains the constraint function 

values at the final iterate X. In the driving program, the row 

dimension of G has to be equal to MMAX. G is used internally to 

store L different sets of constraint function values to be computed 

from L sets of argumentsstored in X.  

DF(NMAX): DF contains the current gradient of the objective function. In case 

of numerical differentiation and a distributed system (L > 1) , it is 

recommended to apply parallel evaluations of F to compute DF. 
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U(MNN2): U contains the multipliers with respect to the actual iterate stored 

in the first column of X. The first M locations contain the 

multipliers of the M nonlinear constraints, the subsequent N 

locations the multipliers of the lower bounds, and the final N 

locations the multipliers of the upper bounds. At an optimal 
solution, all multipliers with respect to inequality constraints should 
be nonnegative 

XL (N), XU (N): On input, the one-dimensional arrays XL and XU must contain the 

lower and upper bounds of the variables, respectively. 

C(NMAX, NMAX): On return, C contains the last computed approximation of the 

Hessian matrix of the Lagrangian function. C is stored in form of 

an Cholesky decomposition, is LQL is set to false, see below. In 

this case, C contains the lower triangular factor of an LDL 

factorization of the final quasi-Newton matrix (without diagonal 
elements, which are always one). In the driving program, the row 

dimension of C has to be equal to NMAX. 

D (NMAX): The elements of the diagonal matrix of the LDL decomposition of 

the quasi-Newton matrix are stored in the one-dimensional array 

D, if LQL is false. 

ACC :  The user has to specify the desired final accuracy (e.g. 1.0D-7). 

The termination accuracy should not be much smaller than the 
accuracy by which gradients are computed. 

ACCQP :  The tolerance is needed for the QP solver to perform several 

tests, for example whether optimality conditions are satisfied or 

whether a number is considered as zero or not. If ACCQP is less 

or equal to zero, then the machine precision is computed by 

NLPQLP and subsequently multiplied by 1.0D+4. 

STPMIN :  Minimum steplength in case of L > 1. Recommended is any value 

in the order of the accuracy by which functions are computed. The 
value is needed to compute a steplength reduction factor by 



STPMIN  1/ L 1 








.  

If STPMIN  0, then STPMIN = ACC is used. 

MAXFUN : The integer variable defines an upper bound for the number of 

function calls during the line search (e.g., 20). MAXFUN is only 

needed in case of L = 1,  and must not be greater than 50. 

MAXIT : Maximum number of outer iterations, where one itera\tion 

corresponds to one formulation and solution of the quadratic 
programming subproblem, or, alternatively, one evaluation of 
gradients (e.g., 



100). 

MAXNM : Stack size for storing merit function values at previous iterations 

for non-monotone line search (e.g., 10). If MAXNM = 0, a 

monotone line search is performed. MAXNM should not be 
greater than 50. 
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RHOB : Parameter for performing a restart in case of IFAIL = 2 by setting 

the BFGS-update matrix to 



RHOB I, where I denotes the 

identity matrix. The number of restarts is bounded by MAXFUN.  

A value greater than one is recommended. (e.g., 



100). 

IPRINT : Specification of the desired output level. 

0 - No output of the program. 

1 - Only final convergence analysis. 

2 - One line of intermediate results for each iteration. 

3 - More detailed information for each iteration. 

4 - More line search data is displayed. 

Note that constraint and multiplier values are not displayed for  

N, M > 1000.  

MODE : The parameter specifies the desired version of NLPQLP. 

0 - Normal execution (reverse communication!). 

1 - Initial guess for multipliers in U and Hessian of the 

Lagrangian function in C and D provided. In case of  

LQL = .TRUE., D is ignored. Otherwise, the lower part  of C 

has to contain the lower triangular factor of an LDL 

decomposition and D the diagonal part. 

2 - Initial scaling (Oren-Luenberger) after first step, BFGS 

updates started from multiple of identity matrix. 

3 - Scaled restart, if scaling parameter is less than square root of 

ACC. 

 >3 - Initial and repeated scaling every MODE steps, reset of 
BFGS matrix to multiple of identity matrix. 

IOUT : Integer indicating the desired output unit number, i.e., all write 

statements start with 



' WRITE IOUT,    ' . 

IFAIL : The parameter shows the reason for terminating a solution 

process. Initially, IFAIL must be set to zero. On return, IFAIL 

could contain the following values: 

-2 - Compute new gradient values. 

-1 - Compute new function values. 

0 - Optimality conditions satisfied. 

1 - Stop after MAXIT iterations 

2 - Uphill search direction. 

3 - Underflow when computing new BFGS-update matrix. 

4 - Line search exceeded MAXFUN iterations. 

5 - Length of a working array too short. 

6 - False dimensions, if M > MMAX, N  NMAX, or MNN2  M + 

N + N + 2. 
7 - Search direction close to zero at infeasible iterate. 
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8 - Starting point violates lower or upper bound. 

9 - Wrong input parameter, e.g., MODE, IPRINT, IOUT. 

10 - Inconsistency in QP, division by zero. 



 100 - Error message of QP solver. 

WA(LWA): WA is a double precision working array of length LWA. On return, 

the first N positions contain the best feasible iterate obtained, 
WA(N+1) the corresponding objective function value, and the 

subsequent M positions the constraint values. If no intermediate 

feasible solution exists, WA(N+1) contains a large value, e.g., 
1.0D+72. 

LWA : Length of WA, has to be at least at least 
23*N+4*M+3*MMAX+150.   

NOTE: The standard QP-solver coming together with NLPQLP 
(QL). needs additional memory for 
3*NMAX*NMAX/2+10*NMAX+MMAX+N+1 double precision 

numbers. 

KWA (LKWA): KWA is an integer working array of length LKWA. On return, the 

first 5 positions contain the following information. 

KWA(1) - Number of function evaluations. 

KWA(2) - Number of gradient evaluations. 

KWA(3) - Iteration count. 

KWA(4) -  Number of QP’s solved. 

KWA(5) - Flag for better feasible, but non-stationary iterate (=1) 

or not (=0), see below. 

LKWA : Length of KWA, has to be at least at least 20. 

 NOTE: The standard QP-solver coming together with NLPQLP 
(QL) needs additional memory for N double  precision  numbers. 

ACT(LACT K): The logical array indicates constraints, which NLPQLP considers 

to be active at the last computed iterate, i.e., G (J, 1) is active, if 

and only if ACT (J) is true for 



J = 1,   , M. 

LACT : Length of ACT, has to be at least 2*M + 10. 

LQL : If LQL is set to true in the calling program, the quadratic 

programming problem is solved proceeding from a full      positive 
definite quasi-Newton matrix. Otherwise, a Cholesky 
decomposition (LDL) is performed and updated internally, so that 

matrix C always consists of the lower triangular factor and D of 

the diagonal 
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QPSLVE : External subroutine to solve the quadratic programming 

subproblem. The calling sequence is 

 CALL QPSLVE( M, ME, MMAX, N, NMAX, 
/  MNN,  C D, A, B, 
/  XL,  XU, X, U, EPS, 
/  MODE, IOUT, IFAIL, IPRINT, WAR, 
/  LWAR, IWAR, LIWAR  ) 

 For more details about the choice and dimensions of arguments, 

see [53]. 

Some of the termination reasons depend on the accuracy used for approximating gradients. If 

we assume that all functions and gradients are computed within machine precision and that the 

implementation is correct, there remain only the following possibilities that could cause an error 

message: 

1. The termination parameter ACC is too small, so that the numerical algorithm plays 

around with round-off errors without being able to improve the solution. Especially the 

Hessian approximation of the Lagrangian function becomes unstable in this case.  A 

straightforward remedy is to restart the optimization cycle again with a larger stopping 

tolerance. 

2. The constraints are contradicting, i.e., the set of feasible solutions is empty. There is 

no way to find out, whether nonlinear and nonconvex constraints are feasible or not. 

Thus, the nonlinear programming algorithms will proceed until running in any of the 

mentioned error situations. In this case, the correctness of the model must be carefully 

checked. 

3. Constraints are feasible, but active constraints are degenerate, e.g., redundant. One 

should know that SQP algorithms assume the satisfaction of the so-called linear 

independency constraint qualification, i.e., that gradients of active constraints are 

linearly independent at each iterate and in a neighborhood of an optimal solution. In 

this situation, it is recommended to check the formulation of the model constraints. 

However, some of the error situations also occur if, because of wrong or non-accurate 

gradients, the quadratic programming subproblem does not yield a descent direction for the 

underlying merit function. In this case, one should try to improve the accuracy of function 

evaluations, scale the model functions in a proper way, or start the algorithm from other initial 

values. 
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Since Version 2.1, NLPQLP returns the best iterate obtained. In case of successful termination 

(IFAIL = 0), this is always the last one. But it might be possible that in an exceptional situation, 

an intermediate iterate is feasible with a better objective function value than that one of the final 

iterate, but the KKT optimality conditions axe not satisfied. In this case, the better feasible 

solution is stored at the first 



n positions of the double precision working array and the 

corresponding objective function value at position 



n  1. Moreover, positions 



n  2  t o  



n 1 m  contain the constraint values. Note that feasibility is tested by sum of constrained 

violations tested against ACC. 

On successful return with IFAIL = 0, KWA(5) is set to zero. If, however, a better feasible 

objective function value has been found du r ing  the first five iterations, then KWA(5) is set to 



1 , 

the BFGS-update matrix C is set to 



 I  with 



  1 , where 



I  denotes the identity matrix. The 

corresponding formal argument of NLPQLP is called RHOB. Moreover, the multiplier 

approximation vector U is set to 



0 . Thus, an immediate restart under control of the user is 

possible with MODE = 1. Some information is printed on the standard IO channel in case of 

IPRINT > 0. For compatibility reasons with previous versions, RHOB replaces TOLNM and is 

set to zero for all input values less than one. 

The QP solver is defined in form of an external subroutine to allow a replacement in case of 

exploiting special sparsity patterns. A typical example is the usage of NLPQLP for solving least 

squares problems, where artificially introduced equality constraints lead to a Jacobian which 

consist partially of the identity matrix, see Schittkowski [50, 51]. 

The internal scaling and restart option is borrowed from limited-memory quasi-Newton methods, 

see for example Liu and Nocedal [29]. If requested by the user, the quasi-Newton matrix is 

replaced by a scalar multiple of the identity matrix just before updating. Either an initial scaling 

or a reset of the whole matrix and computation of a new scaling parameter is performed 

depending on the input parameter MODE. A scaled restart is recommended, if, e.g., the 

convergence turns out to become extremely slow. 
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5 Examples 

To give an example how to organize the code, we consider Rosenbrock’s post office problem, 

i.e., test problem TP37 of Hock and Schittkowski [25]. 

 



x1, x2  IR :

min  x
1
x

2
x

3

x
1
 2 x

2
 2 x

3
 0

72  x1
 2 x

2
 2 x

3
 0

0  x
1
 42

0  x
2
 42

0  x
3
 42

















15  

NLPQLP comes with a couple of demo programs by which the following situations are to be 

illustrated: 

 File name Comments 

 nlp_demoA.for numerical differentiation and distributed function calls 

 nlp_demoB.for numerical differentiation 

 nlp_demoC.for numerical derivatives 

 nlp_demoD.for warm and cold restarts 

 nlp_demoE.for simultaneous function and gradient evaluation 

 nlp_demoF.for active set strategy 

 nlp_demoG.for active set strategy 

A Fortran source code for a typical situation is listed below. Gradients are approximated by 

forward differences. The function block inserted in the main program can be replaced by a 

subroutine call. Also the gradient evaluation is easily exchanged by an analytical one or higher 

order derivatives 

   IMPLICIT NONE 
   INTEGER NMAX, MMAX, LMAX, MNN2X, LWA, LKWA, LACTIV 
   PARAMETER ( NMAX = 4, 
  /  MMAX = 2, 
  /  LMAX = 10, 
  /  MNN2X = MMAX + NMAX + NMAX + 2, 
  /  LWA = 1.5*NMAX*NMAX + 33*NMAX + 9*MMAX + 200, 
  /  LKWA = NMAX + 10, 
  /  LACTIV = 2+MMAX + 10) 
   INTEGER KWA(LKWA), N, ME, M, L, MNN2, MAXIT, MAXFUN, 
  /  IPRINT, MAXNM, IOUT, MODE, IFAIL, I, J, K, NFUNC 
   DOUBLE PRECISION X(NMAX,LMAX), F(LMAX), G(MMAX,LMAX), DF(NMAX), 
  /  DG(MMAX,NMAX), U(MNN2X), XL(NMAX), XU(NMAX), 
  /  C(NMAX,NMAX), D(NMAX), WA(LWA), ACC, ACCQP, 



 

A-30 
 

  /  STPMIN, EPS, EPSREL, FBCK, GBCK(MMAX), XBCK, 
  /  RHOB 
   LOGICAL ACTIVE(LACTIV), LQL 
   EXTERNAL QL 
C 
C Set some constants and initial values 
C 
   IOUT = 6 
   ACC = 1.0D-8 
   ACCQP = 1.0D-12 
   STPMIN = 1.0D-10 
   EPS = 1.0D-7 
   MAXIT = 100 
   MAXFUN = 10 
   MAXNM = 10 
   RHOB = O.ODO 
   LQL = .TRUE. 
   IPRINT = 2 
   N = 3 
   L = N 
   M = 2 
   ME = 0 
   MNN2 = M + N + N + 2 
   MODE = 0 
   IFAIL = 0 
   NFUNC = 0 
   DO I=1,N 
      DO K=1,L 
         K(I,K) = 10.0D0 
      ENDDO 
         XL(I) = 0.0D0 
         XU(I) = 42.0D0 
   ENDDO 
  1 CONTINUE 
C====================================================================== 
C This is the main block to compute all function value 

C simultaneously, assuming that there are L nodes. 

C The block is executed either for computing a steplength 

C or for approximating gradients by forward differences. 

C 

   DO K=1,L 

      F(K)   = -X(1,K)*X(2,K)*X(3,K) 

      G(1,K) = X(1,K) + 2.0D0*X(2,K) + 2.0D0*X(3,K) 

      G(2,K) = 72.0D0 - X(1,K) - 2.0D0*X(2,K) - 2.0D0*X(3,K) 

   ENDDO 

C 

C====================================================================== 
   NFUNC = NFUNC + 1 

   IF (IFAIL.EQ.-1) GOTO 4 

   IF (NFUNC.GT.l) GOTO 3 

    2 CONTINUE 

   FBCK = F(l) 

   DO J=1,M 

      GBCK(J) = G(J,1) 

   ENDDO 

   XBCK = X(l,l) 

   DO I=1,N 

      EPSREL = EPS



DMAX1(1.0D0,DABS(X(I,1))) 
      DO K=2,L 

         X(I,K) = X(I,1) 

      ENDDO 

      X(I,I) = X(I,1) + EPSREL 

   ENDDO 
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   GOTO 1 

  3 CONTINUE 

 

   X(l,l) = XBCK 

   DO 1=1,N 

      EPSREL = EPS



DMAX1(1.ODO,DABS(X(I,1))) 
      DF(I) = (F(I) - FBCK)/EPSREL 

      DO J=1,M 

         DG(J,I) = (G(J,I) - GBCK(J))/EPSREL 

      ENDDO 

   ENDDO 

   F(l) = FBCK 

   DO J=1,M 

      G(J,1) = GBCK(J) 

   ENDDO 

C 

  4 CONTINUE 

         CALL NLPQLP (  L, M, ME, MMAX, N, 

  /    NMAX, MNN2, X, F, G, 

  /    DF, DG, U, XL, XU, 

  /    C, D, ACC, ACCQP, STPMIN, 

  /    MAXFUN, MAXIT, MAXNM, RHOB, IPRINT, 

  /    MODE, IOUT, IFAIL, WA, LWA, 

  /    KWA, LKWA, ACTIVE, LACTIV, LQL, 

  /    QL) 

   IF (IFAIL.EQ.-1) GOTO 1 

   IF (IFAIL.EQ.-2) GOTO 2 

C 

   WRITE(IOUT,1000) NFUNC 

 1000 FORMAT(’ *** Number of function calls: ’,13) 

C 

   STOP 

   END 

       The following output should appear on screen: 

      ---------------------------------------------------------------- 
    START OF THE SWQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 

      ---------------------------------------------------------------- 

Parameters: 

N = 3 

M = 2 

ME = 0 

MODE = 0 

ACC = 0.1000D-07 

ACCQP = 0.1000D-11 

STPMIN = 0.1000D-09 

MAXFUN = 3 

MAXNM = 10 

MAXIT = 100 

IPRINT = 2 

Output in the following order: 

IT - iteration number 

F - objectivefunction value 

SCV - sum of constraint violations 

NA - number ofactive constraints 

I  - number of line search iterations 

ALPHA - steplength parameter 

DELTA - additional variable to prevent inconsistency 

KKT - Karush-Kuhn-Tucker optimality criterion 
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 IT F SCV NA I ALPHA DELTA KKT 
                        ---------------------------------------------------------------------------------------------------------------------------------------------- 
 1 -0.10000000D+04 0.00D+00 2 0 0.00D+00 0.00D+00 0.44D+04 
 2 -0.23625000D+04 0.64D-07 1 1 0.10D+01 0.00D+00 0.11D+04 
 3 -0.32507304D+04 0.11D-13 1 1 0.10D+01 0.00D+00 0.69D+03 
 4 -0.33041403D+04 0.11D-13 1 1 0.10D+01 0.00D+00 0.36D+03 
 5 -0.34527380D+04 0.11D-13 1 1 0.10D+01 0.00D+00 0.58D+01 
 6 -0.34559625D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.10D+00 
 7 -0.34559625D+04 0.00D+00 1 2 0.10D-04 0.00D+00 0.23D+00 
 8 -0.34559625D+04 0.00D+00 1 2 0.10D-04 0.00D+00 0.76D-01 
 9 -0.34560000D+04 0.17D-10 1 1 0.10D+01 0.00D+00 0.24D-04 
 10 -0.34560000D+04 0.48D-12 1 1 0.10D+01 0.00D+00 0.20D-07 
 11 -0.34560000D+04 0.11D-13 1 1 0.10D+01 0.00D+00 0.25D-11 
 

--- Final Convergence Analysis at Last Iterate ---  

Best result at iteration: ITER = 11 
Objective function value: F(X) =  -0.34560000D+04 
Solution values:  X   = 
 0.24000000D+02 0.12000000D+02 0.12000000D+02 
Distances from lower bounds: X-XL = 
 0.24000000D+02 0.12000000D+02 0.12000000D+02 
Distances from upper bounds: XU-X = 
 0.18000000D+02 0.30000000D+02 0.30000000D+02 
Multipliers for lower bounds: U  = 
 0.00000000D+00 0.00000000D+00 0.00000000D+00 
Multipliers for upper bounds: U  = 
 0.00000000D+00 0.00000000D+00 0.00000000D+00 
Constraint values: G(X) = 
 0.72000000D+02 -0.10658141D-13 
Multipliers for constraints: U  = 
 0.00000000D+00 0.14400000D+03 
Number of function calls: NFUNC = 11 
Number of gradient calls: NFUNC = 11 
Number of calls of QP solver: NFUNC = 11 
 

*** Number of function calls: 22 
 

In case of L = 1 and analytical derivative computations, the corresponding serial 
implementation of the main program is as follows: 

 
   IMPLICIT NONE 
   INTEGER NMAX, MMAX, MNN2X, LWA, LKWA, LACTIV 
   PARAMETER ( NMAX = 4, 
  /  MMAX = 2, 
  /  MNN2X = MMAX + NMAX + NMAX + 2, 
  /  LWA = 1.5*NMAX*NMAX + 33*NMAX + 9*MMAX + 200, 
  /  LKWA = NMAX + 10, 
  /  LACTIV = 2+MMAX + 10) 
   INTEGER KWA(LKWA), N, ME, M, L, MNN2, MAXIT, MAXFUN, 
  /  IPRINT, MAXNM, IOUT, MODE, IFAIL, I, J, NFUNC 
   DOUBLE PRECISION X(NMAX), F, G(MMAX), DF(NMAX), DG(MMAX,NMAX), 
  /  U(MNN2X), XL(NMAX), XU(NMAX), C(NMAX,NMAX), 
  /  D(NMAX), WA(LWA), ACC, ACCQP, STPMIN, RHOB 
   LOGICAL ACTIVE(LACTIV), LQL 
   EXTERNAL QL 
C 
C Set some constants and initial values 
C 
   IOUT = 6 
   ACC = 1.0D-10 
   ACCQP = 1.0D-12 
   STPMIN = 0.0 
   EPS = 1.0D-7 
   MAXIT = 100 
   MAXFUN = 10 
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   MAXNM = 0 
   RHOB = O.ODO 
   LQL = .TRUE. 
   IPRINT = 2 
   N = 3 
   M = 2 
   ME = 0 
   MNN2 = M + N + N + 2 
   MODE = 0 
   IFAIL = 0 
   NFUNC = 0 
   DO I=1,N 
     X(I)  = 10.0D0 
     XL(I) = 0.0D0 
     XU(I) = 42.0D0 
   ENDDO 
  1 CONTINUE 
C====================================================================== 
C This block computes all function values. 

C 

   F    = -X(1)*X(2)*X(3) 

   G(1) =  X(1) + 2.0D0*X(2) + 2.0D0*X(3) 

   G(2) = 72.0D0 - X(1) - 2.0D0*X(2) - 2.0D0*X(3) 

C 

C====================================================================== 
   NFUNC = NFUNC + 1 

   IF (IFAIL.EQ.-1) GOTO 4 

   2 CONTINUE 

C====================================================================== 
C This block computes all derivative values. 

C 

   DF(1)   = -X(2)*X(3) 

   DF(2)   = -X(1)*X(3) 

   DF(3)   = -X(1)*X(2) 

   DG(1,1) =  1.0D0 

   DG(1,2) =  2.0D0 

   DG(1,3) =  2.0D0 

   DG(2,1) = -1.0D0 

   DG(2,2) = -2.0D0 

   DG(2,3) = -2.0D0 

C 

C====================================================================== 
  4 CONTINUE 

         CALL NLPQLP (  L, M, ME, MMAX, N, 

  /    NMAX, MNN2, X, F, G, 

  /    DF, DG, U, XL, XU, 

  /    C, D, ACC, ACCQP, STPMIN, 

  /    MAXFUN, MAXIT, MAXNM, RHOB, IPRINT, 

  /    MODE, IOUT, IFAIL, WA, LWA, 

  /    KWA, LKWA, ACTIVE, LACTIV, LQL, 

  /    QL) 

   IF (IFAIL.EQ.-1) GOTO 1 

   IF (IFAIL.EQ.-2) GOTO 2 

C 

   WRITE(IOUT,1000) NFUNC 

 1000 FORMAT(’ *** Number of function calls: ’,13) 

C 

   STOP 

   END 
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       NLPQLP displays the following output: 

      ---------------------------------------------------------------- 
    START OF THE SWQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 

      ---------------------------------------------------------------- 

Parameters: 

N = 3 

M = 2 

ME = 0 

MODE = 0 

ACC = 0.1000D-09 

ACCQP = 0.1000D-11 

STPMIN = 0.1000D-09 

MAXFUN = 10 

MAXNM = 0 

MAXIT = 100 

IPRINT = 2 

Output in the following order: 

IT - iteration number 

F - objectivefunction value 

SCV - sum of constraint violations 

NA - number ofactive constraints 

I  - number of line search iterations 

ALPHA - steplength parameter 

DELTA - additional variable to prevent inconsistency 

KKT - Karush-Kuhn-Tucker optimality criterion 

 
 IT F SCV NA I ALPHA DELTA KKT 
                        ---------------------------------------------------------------------------------------------------------------------------------------------- 
 1 -0.10000000D+04 0.00D+00 2 0 0.00D+00 0.00D+00 0.44D+04 
 2 -0.23625000D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.11D+04 
 3 -0.32507304D+04 0.36D-14 1 1 0.10D+01 0.00D+00 0.69D+03 
 4 -0.33041403D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.36D+03 
 5 -0.34527380D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.58D+01 
 6 -0.34559629D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.76D-01 
 7 -0.34560000D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.25D-04 
 8 -0.34560000D+04 0.36D-14 1 1 0.10D+01 0.00D+00 0.90D-10 
 

--- Final Convergence Analysis at Last Iterate ---  

Objective function value: F(X) =  -0.34560000D+04 
Solution values:  X   = 
 0.24000003D+02 0.11999999D+02 0.11999999D+02 
Distances from lower bounds: X-XL = 
 0.24000003D+02 0.11999999D+02 0.11999999D+02 
Distances from upper bounds: XU-X = 
 0.17999997D+02 0.30000001D+02 0.30000001D+02 
Multipliers for lower bounds: U  = 
 0.00000000D+00 0.00000000D+00 0.00000000D+00 
Multipliers for upper bounds: U  = 
 0.00000000D+00 0.00000000D+00 0.00000000D+00 
Constraint values: G(X) = 
 0.72000000D+02 -0.35527137D-14 
Multipliers for constraints: U  = 
 0.00000000D+00 0.14400000D+03 
Number of function calls: NFUNC = 8 
Number of gradient calls: NFUNC = 8 
Number of calls of QP solver: NFUNC = 8 
 

*** Number of function calls: 8 
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6 Conclusions 

We present a modification of an SQP algorithm designed for execution under a parallel 

computing environment (SPMD) and where a non-monotone line search is applied in error 

situations. Numerical results indicate stability and robustness for a set of 306 standard test 

problems. It is shown that not more than 7 parallel function evaluations per iterations are 

required for performing a sufficiently accurate line search. Significant performance improvement 

is achieved by the non-monotone line search especially in case of noisy function values and 

numerical differentiation, and by restarts in a severe error situation. With the new version of 

NLPQLP, we are able to solve about 90% of a standard set of 306 test examples subject to an 

termination accuracy of 10–7 in case of extremely noisy function values with relative accuracy of 

1% and numerical differentiation. In the worst case, at most one digit of a partial derivative value 

is correct. 
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