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ABSTRACT

Recent research on applying neural networks to rotorcraft aeromechanics problems is discussed. The present neural
network aeromechanics applications cover the following technical areas: 1) identification and control and 2) test
data validation (including formulation and implementation of a wind correction procedure for outdoor hover
performance test data). The first aeromechanics application of neural networks is identification and control of
advancing-side, blade-vortex-interaction (BVI) noise and vibratory hub loads. The present closed loop neural
network controller successfully achieved simultaneous reductions of 5 dB in the advancing side noise and 54% in
the vibratory hub loads. Compared to a one-step deterministic controller, the present neural network controller was
more robust. The second application is experimental data validation including both hover and forward flight test
data. The networks accurately captured tilt-rotor performance at steady operating conditions and showed that the
wind tunnel forward flight performance test data were generally of high quality. The wind correction procedure used
full-scale XV-15 tilt-rotor outdoor hover performance data obtained from a NASA Ames Outdoor Aczrodynamic
Research Facility test. The present wind corrections procedure, based on a well-trained neural network, captured
physical trends present in the outdoor hover test data that had been missed by the existing, momentum-theory-
based method. Overall, the present study concluded that neural networks are very useful in solving aeromechanics
problems,
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INTRODUCTION

The application of neural networks to rotorcraft
acromechanics is still new. The aeromechanics
problems that were considered in the present study for
“solution” using neural networks are listed as
follows: 1) identification and control and 2) test data
validation (including a wind correction procedure for
outdoor hover performance test data). For each of
these problems, neural-network-based techniques are
attractive, nonlinear methods of solution. Neural
networks do not necessarily require large amounts of
computational resources. Additionally, they appear
easy 10 apply and understand,

IDENTIFICATION AND CONTROL
Introduction

The development and implementation of a robust
active control systemn for helicopter aeromechanics
must include a method for accurate identification of
aircraft parameters and a robust scheme to generate
optimal control inputs to best realize a set of
ohiective  functions. Specifically, for the
acromechanic problem investigated in this paper, the
controller's task would be to first, identify the
nonlinear relationship between the rotor induced
acoustic and vibration levels, and second, to generate
optimal HHC or IBC pitch control inputs that
simultaneously reduce noise and vibration.

As a background to the present neural control study
on rotor noise and hub loads, a few relevant studies
on the phenomenon of blade vortex interaction (BVD)
rotor noise are summarized here, Schmitz (Ref. 1)
presents an authoritative discussion on rotor noise
including BVI noise, and the research studies by
Kitaplioglu, et al. (Ref. 2 } and McCluer, et al. (Ref.
3) represent recent research.

With regard to active control inputs, rotorcraft
advancing side blade vortex interaction noise (Jacklin,
et al, Ref. 4 and Swanson et al., Refs. 5 and 6) and
vibratory hub loads (Kottapalli, et al, Ref. 7) almost
always behave nonlinearly with respect to the phase
of an HHC or IBC input.

In this study, the neural controller is required to be
relatively quick in its execution and not be
computationally intensive. Thus, the present control
procedure is bound by the following ground rules: the
controller must converge in six iferations or fewer
and gradient-based optimization techniques must not
be used. The present study is an extension of an

earlier investigation on neural network identification
and control of rotorcraft hub loads (Ref. 8). The
objective is to develop a robust, neural network based
controller to simultanecusly minimize advancing side
BVI noise and vibratory hub loads (Ref. 9). The
noise and hub loads data were obtained from a wind
tunnel test of a four-bladed rotor with individual blade
control during simulated descent (Ref. 5). These data
were obtained from the second U.S./German
Individual Blade Control wind tunnel test (Jacklin, et
al,, Ref. 4, and Swanson et al., Refs. 5 and 6). The
test article was a four-bladed BO-105 hingeless rotor
system fitted with IBC electro-hydraulic actuators and
the test was performed in the NASA Ames 40- by
80-Foot Wind Tunnel. The test condition considered
in the present study is an intense-BVI condition
(“high-BVI” condition): 65 knots (4 = 0.15), Mtip =
0.64, o5 = 2.9 deg, and CT/o = 0.075 (Ref. 5).

ant

Single-Input, Single-Output Plamt Model In the
SISO application, the network training input is the
2P control phase input ®) where the pitch control

amplitude A3 is maintained at 1.0 deg. The IBC
pitch input is defined as follows:

Oim = Am sin [m (y+90 deg) + O] (1)

The network output is the advancing side noise
metric {ASNM). Figure | (Ref. 5) shows a general
layout of the rotor and microphones in the wind
tunnel test section. The present ASNM  was
obtained with the traverse location fixed at the
advancing side position X = 16.41 ft. ‘The four sound
pressure levels (SPL's) from the four microphones
were individually summed over the 6th through 40th
blade passage frequency band and subsequently
averaged together to give the present band-limited,
sound pressure level based ASNM (BL-SPL ASNM).

Accurate plant modeling in the present SISO
application was obtained by using a two-hidden-layer
radial basis function (RBF) type of neural network
(Fig. 3). References 10 and 11 contain more
information on how appropriate two-hidden-layered
RBF networks are selected as plant models.

Single-Input, Multiple-Outpur Plant Model,  The
majority of the present neural network results involve
the use of the SIMO plant model. In the SIMO
application, the network training input is again the
2P control phase input &7 with An = 1.0 deg. The
two network outputs are the advancing side noise
metric ASNM and the vibratory hub loads metric
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VHLM (Fig. 4). Accurate plant modeling was
obtained by using a SIMO RBF network.

Obiective Functi

The present study characterizes the advancing side
rotor BYI noise and vibratory hub loads by an
objective function. The objective function consists
of a weighted sum of the squares of a four-
microphone-average of advancing side BVI noise and
the vibratory hub loads metric:

I = (WASNM) ASNMZ + vHLMZ @

where WASNM is a specified weight. For brevity,

the advancing side noise and vibratory hub loads
objective function is refemred to as the noise and hub
loads objective function (Ref. 9).

In the present application, WaSNM was selected as

100 (Ref. 9). The introduction of the noise and hub
loads objective function J makes the neural network
control procedure developed in Ref. 8 directly
applicable to the present noise and hub loads control
problem (Fig. 2).

Results

Results are presented to assess the neural controller’s
convergence behavior, robustness, and accuracy. The
performance of the neural controller is also compared
with a traditional, one-step deterministic controller
{Johnson, Ref. 12) as “re-applied” to the first three
cases.

Hub Loads Control

The basic variation of VHLM is shown in Fig. 4.
The baseline VHLM value is 578. Two clearly
defined minimums exist. The IBC test-based global
minimum VHLM is 211 (at 7 = 240 deg).

For the hub loads baseline (benchmark) case, Fig. 5
shows a representative output of the present inverted
neural network for control (INNC).  The present
INNC utilizes a simple back-propagation neural
network to  “locate” the appropriate (global)
minimum. Figures 6a and 6b show the convergence
of the closed loop hub loads neural network controller
to the global minimum.

Figures 7a and 7b show the results for a starting
point seasitivity study in which the controller
starting points were varied. Four different starting

values of the 2P control phase input (0, 180, 240,
and 270 deg) is studied. It can be seen from Figs. 7a
and 7b that the neural controller is robust in finding a
global optimum irrespective of the initial starting
point.

Figures 8, 9a and 9b show results related to a reduced
data base case in which the number of neural network
training points was six compared to the baseline
value of 13. Here, the basic noise and hub loads case
12-point data set is split into two smaller &-point
data sets based on odd- and even-numbered selections.
This case is important since the results can be used to
assess the impact of reducing the number of training
data points made available to that part of the neural
control procedure which provides an updated estimate
of the 2P control phase input. Again, convergence to
a global minimum is obtained.

Finally, Figs. 10, 11, 12a, and 12b show neural
network control results for the hub loads amplitude-
variation case in which a single minimum exists.
Figure 10 shows the vibratory hub loads metric
variation with 2P control amplitude input A» for a
constant 2P control phase input @7 = 210 deg. The
IBC test-based minimum metric is 328 (at A7 = 0.5
deg). Figure 11 shows the shows the output of the
inverted neural network for control for the amplitude-
variation case. The neural controlier converged to a
metric of 346 (Fig. 12a), The corresponding
predicted 2P control amplitude is 0.57 deg (Fig. 12b).
Comparing this result with Fig. 10, the neural
controller has acceptably converged to a minimum

VHLM.
ise and ontr

Plant Model. This case addresses simultaneous
conuol of advancing side BVI noise and vibratory
hub loads. This case considers the variation of the
noise and hub loads objective function with 2P
control phase input @7 with a constant control
amplitude Az = | deg.  The IBC data base for this
case has 12 data points (&7 = 0 to 330 deg at 30 deg
intervals). For this case, the variation of the
advancing side noise metric (ASNM) has an ill-
defined minimum {Fig. 3). At the same time, for
this relatively flat minimum, &9 values between 150
deg and 240 deg are acceptable control inputs that
will result in acceptably low advancing side noise
levels. The vibratory hub loads metric input data was
shown in Fig. 4. The neural control procedure is
initiated with a 2P control phase input @5, o= 0
deg. Figure 13 shows the advancing side noise
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metric and the vibratory hub loads metric on a plot
with two vertical axes. In the figure, the solid circles
represent the measured advancing side noise metric
values and the solid squares represent the measured
vibratory hub loads metric values. The baseline (no
IBC, Ay = 0 deg) ASNM value is 116 dB. The IBC
test-based minimum ASNM is 108 dB (at @) = 210
deg). Figure 13 also shows the plant modeling results
obtained from the SIMO RBF neural network. This
SIMO RBF neural network is also used as the plant
model in the basic noise and hub loads control case
and the starting point sensitivity case.

The IBC test-based baseline value {no IBC input, A
=0 deg) of the above combined noise and hub loads
objective function {(WASNM =100) was 1.68 x 106
(Fig. 14); with an IBC input of A2 = 1 deg, the
minimum value of this objective function occurred at
®) =240 deg and T was 1.23 x 106.

Figure 14 shows that the present noise and hub loads
objective function J does not appear to have a
minimum as well-defined as the minimum in the
VHLM variation (Fig. 13). The VHLM variation
{Figs. ¢ and 13) has two clearly defined minimums,
whereas Fig. 14 shows that a relatively flat
minimum exists for the present objective function.

Neural  Controfler  Convergence. The neural
controller produces a converged minimum noise and

hub loads objective function (J = 1.30 x 109) in three
iterations (Fig. 15a). The corresponding converged
optimal 2P control phase input (PN, 3) predicted
by the neural controller is 240 deg (Fig. 15b).
Figures 16a and 16b show the advancing side noise
metric and vibratory hub loads metric corresponding
to the 2P control phase input results shown in Fig.
15b.

The neural controller produces a converged minimum
advancing side noise metric (111 dB) and a converged
minimum vibratory hub loads metric (267). Thus,
the neural controller is able to achieve simultaneous
reductions of 5 dB in the advancing side noise metric
and 54% in the vibratory hub loads metric, with
respect to the baseline metrics (Ref, 93

Starting FPoint Sensitiviry. Four different starting
values of the 2P contral phase input (0, 180, 240,
and 270 deg) is studied. The objective function
converged to a value of 1.30 x 106 for all four
subcases. The corresponding predicted, converged 2P
control phase input is 240 deg for all four subcases.

The converged values are the same as in the basic
noise and hub loads case. For this problem, the
present noise and hub loads neural controller is
insensitive (robust) to starting point.

Reduced Data Base. The plant model for this case is
the same as that used in the basic noise and hub loads
case. In order to obtain simultaneous reductions in
the noise and hub loads in the reduced data base cases,
a nonlinear transformation (scaling) of the objective
function was introduced (Ref. 9). For the odd
rumbered, six-point case, the noise and hub loads
neural controller was able to achieve sirmultaneous
reductions of 3 dB (taking into account round-off
error} in the advancing side noise metric and 61% in
the vibratory hub loads metric. For the even
numbered, six-point case, the neural controller was
able to achieve simultaneous reductions of 6 dB in
the advancing side noise metric and 45% in the
vibratory hub loads metric.

These noise and hub loads application results indicate
that the inverted neural network for control modeling
step is sufficiently robust and accurate for the present
control purposes involving simultaneous control of
neise and hub loads.

One-Step Deterministic Controller. The one-step
deterministic  controller application  wuwsed one
advancing side noise metric (average) and ten
vibratory hub load components (4P sine and cosine
components of five hub load components). Separate
single harmonic sine and cosine least-square fits from
twelve measurements (2P conirol phase input varying
from 0 deg to 330 deg in 30 deg increments) are used
to determine the elements of the T-matrix.

The optimal control input is calculated based on a
quadratic performance function with the advancing
side noise metric weighted 100 times more than the
vibratory hub foads components, with all vibratory
hub  loads responses egually weighted, The
performance function is:

I={z)F (w2}

For the present one-step deterministic controller, the
optimal control input vector is calculated from the
procedure given in Ref. 9. The 2 x 1 vector of

optimal control inputs { 8% } consists of the sine and
cosine components from which the 2P control
optimal phase input is calculated. In the following,
the subscript “s” refers to the starting cendition for
the one-step deterministic controller.
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Baseline Results: The starting condition is

{8 }s=1{0}deg (noIBC, A = 0 deg), and with the
starting response vector { z }g taken as the baseline
experimental advancing side noise metric and hub
loads vector (ten vibratory hub load sine and cosine
components). Here, ASNM and VHIM are
calculated using the plant model of the basic noise
and hub loads case and requiring that the 2P control
amplitude input is 1 deg.

The present one-step, noise and hub loads
deterministic controller predicts an optimal 2P
control phase input of 207 deg. The corresponding
advancing side noise metric was calculated to be 107
dB and the vibratory hub loads metric was 507. The
present observation is that the two control methods
give different minimums. The one-step deterministic
controller gives an "acoustic” solution in which only
the noise is reduced with a small reduction in the
vibration. The neural controller simultaneously
controls both acoustic and vibration levels, with
substantial reductions in both.

Starting Point Sensitivity: Each of the four sets of

{ 8])s and { z }5 vectors is separately determined by
the following four 2P control phase input values: 0,
180, 240, and 270 deg , each with A2 = 1 deg. The
control input vector { 6 }g is directly obtained from

the 2P control phase input under consideration, ard
the starting response vector { z }s is taken as the

experimental advancing side noise metric and the hub
loads vector corresponding to the particular 2P
control phase input under consideration.

The one-step deterministic controller results are
shown in Table 1. Comparison shows that the two
control methods can give different solutions, with
neural control being more robust. The one-step
deterministic  controller yields relatively poor
simultaneous reductions for the 270 deg starting
condition as compared to the comesponding neural
network resuit.

TEST DATA VALIDATION
Introduction

Wind tunnel tests of models provide valuable data.
The advantage of rotorcraft wind tunnel testing is that
arotorcraft model can be evaluated for many design
variations and rigorously tested prior to its first flight
test. The wind tunnel is a facility that can be used

Table 1. Starting Point Sensitivity,
One-Step Deterministic Control, A2=1 deg

Slarting 2P Predicted Predicted
control phase  ASNM/ 2P control
deg deg
0 111 dB /253 242
180 112dB /243 244
240 111dB /270 240
270 108 dB /533 195

over and over again. Thus, wind tunnel testing is
less expensive and safer than flight testing,

Wind tunnel testing often uses a matrix testing
approach, In this type of testing, there are significant
variations in the test conditions, which can be well
outside flight conditions. A wind tunnel test can also
encompass a larger “test envelope™ compared to a
flight test because of safety considerations which
preclude testing in flight. As such, it is difficult at
times to even heuristically know the measured data
functionality as it varies with the test condition.
Therefore, it is difficult to gquickly isolate any bad
data points or, even more difficult, to interpret the
quality of the measured data (Kottapalli, Ref. 13).
Thus, validating rotary wing wind tunnel test data is
important to a successful test. It is anticipated that
for purposes of wind tunnel testing, a successful
neural network application may enable “near on line”
data quality checks and subsequent post-run
assessment of data goodness.

Also, for outdoor hover testing, the influence of
winds has to be properly accounted for when
correcting and analyzing the outdoor test data. Thus,
there is a second need for consistent, easy-to-
understand and easy-to-apply wind comections to
outdoor hover performance test data.  The present
study also includes the use of neural networks to
obtain physical insight related to cutdoor hover wind
corrections (Ref. 13),

In the present context, the use of neural networks is
justified because of their multi-dimensional,
nonlinear curve fitting characteristics. The present
work s considered to be a generic methodelogy. The
present neural network data validation representations
and quality assessments, and the neural-network-based
procedure for wind corrections, are not specific to the
presently-considered tilt-rotor configuration, i.e., they
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can be applied to rotor testing in general, with
extension to fixed wing testing as well.

Tili-Rotor Test Data Base

Wind Tunnel Hover and Forward Flight Test Data.

Fall-scale XV-15 tilt rotor test data covering both
hover and forward flight conditions were acquired by
Light (Ref. 14). The XV-15 tilt-rotor right hand rotor
only (25 ft diameter) was installed on the NASA
Ames Rotor Test Apparatus and tested in the NASA
Ames 80- by 120-Foot Wind Tunnel. In hover, the
shaft angle was varied from -15 deg to +15 deg. For
purposes of the present neural network study, the
XV-15 tilt-rotor hover 80- by 120-Foot Wind Tunnel
test data base consisted of approximately 90 data
points. The relevant rotor performance variables in
hover were the rotor torque coefficient (CQ) and the

figure of merit (FM).

In forward flight, the lateral and longitudinal cyclic
pitch, pitch link loads, and the Blade yoke chordwise
and flatwise bending moments are included. The
forward flight test data base consisted of
approximately 275 data points, These data were
acquired at wind tunnel speeds up to 80 knots.

Outdoor Hover Test Data.  The full-scale outdoor
XV-15 tilt-rotor hover test data base was acquired by
Felker, et al. (Refs. 15, 16). The same XV-15 tilt-
rotor right hand only was installed on the NASA
Ames Propeller Test Rig and tested at the outdoor
facility. Both axial and lateral wind measurements
were taken, thus bringing in two additional variables
into this problem. For purposes of the present neural
network study, the outdoor XV-15 tilt-rotor hover
test data base (Ref. 13) consisted of approximately
150 data points and included those data points taken
with winds up to speeds of 3.5 m/s (referred to as the
"all winds" data base). The relevant rotor hover
performance variables were C(y and FM. The present

neural network study considers hover test data with a
rotor hover tip Mach number (Mtip) of 0.69 only.

Results - Wind Tunnel
Wind Tunnpel, Hover

Measured and Derived Neural Network Inputs. Two
back-propagation networks were mrained with two
different sets of inputs and outputs. The two cases
were  identified by the following descriptors:
“measured” inputs and “derived” inputs. "Measured”
input variables refer to directly measured variables,
and are, for example, discrete sensors. “Derived”

input variables refer to variables that perhaps make
more sense physically and, for example, are obtained
from rotor balance measurements, resulting in a final,

reliable thrust or torque level. Table 2 below shows

the associated neural network inputs and outputs,

Table 2. Neural Network
Inputs and QOutputs

Case Inputs Qutputs
Measured og, s Crleo, CQ. FM
Derived Ctlo, oy Og, CQ. FM

Figures 17 and 18 show the results from two MIMO
back-propagation networks with inputs and outputs
as shown above. For the measured inputs case (Fig.
17), the correlation plot shows that the predicted
Cr/o versus test O/ variation falls off at the

highest thrust levels. For the derived inputs case
(Fig. 18), the comelation plot shows that the
predicted 8 versus test ©g variation is close 10 a

straight line at 45 deg. The back-propagation
network with the derived parameters as network
inputs was judged to represent the available test data
more accurately. Therefore, this study uses CT/G as
a neural network input parameter for all neural
networks developed in this study. This is in part due
to the high accuracy of the balance used in the Rotor
Test Apparatus to measure C/o.

.Figure of Merit versus CT/0 Variation. Figure 19

shows the results of three simple SISO back-
propagation neural network fits, where the network
input was C1/0 and the network output was the

figure of merit. Each neural network is for a fixed
shaft angle. Note the drop-off in the test figure of
merit at very high values of the thrust. This is
basically due to rotor blade stall, a limiting
condition. The neurab-network-based figure of merit
representations of Fig. 19 did not extrapolate rotor
stall for this wind tunnel data base.

Figure 20 shows the result of a single MIMO back-
propagation neural network fit, where the network
inputs were CT/6, g and the network outputs were
60, CQ, and FM.  Both global and "subtle” effects
are captured by this relatively complex MIMO back-
propagation neural network. The sensitivity of the
figure of merit to the shaft angle is captured for the
range of test thrust levels. However, similar to the
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above SISO application, the neural-network-based
figure of merit representations did not extrapolate
rotor stall for this wind tunnel data base. The
advantage of the MIMO representation is that all test
conditions can be included as inputs to a single neural
network without sacrificing accuracy, yet are valid
only within the range of the training data.  Also,
unlike the SISO neural network extrapolations which
are not level and actually show a continuing increase
in the figure of merit with further increases in CT/0,

the MIMO neural network representations provide
almost-level extrapolations.

Wi i d

The following wind tunnel test parameters were
selected as the forward flight neural network inputs:
s, W, and C7/.  The neural network outputs for
individual cases are noted in individual case-
descriptions as follows.

Wind Tunnel Controls. The measured collective
variation (Ref. 14) with the shaft angle for the test
data acquired is shown in Fig. 21. Reference 13
contains the results for the two cyclic pitch controls,
Figure 22 shows the present correlation plot from a
MIMO back-propagation neural network, where the
neutal network outputs were the collective, lateral and
longitudinal cyclics. The present neural-network-
based representations for the wind tunnel test controls
are considered to be very good. Thus, the quality of
the controls test data is acceptable. The use of the
collective pitch as a neural network output is valid
even though its use as a neural network input is not
valid. Thus, neural networks can be used for compact
representation of test data control inputs, along with
other variables of interest considered in the following
discussions.

Oscillatory Pitch Link Loads. The forward flight
oscillatory test pitch link load variation (Ref. 14)
with shaft angle is shown in Fig. 23. Figure 24
shows the correlation plot from a MISO back-
propagation neural network, where the neural network
output was the oscillatory pitch link load. The
present neural-network-based representation for the
oscillatory pitch link leads is within 10 1b of the
correlation line, Fig. 24. This oscillatory-pitch-link-
loads correlation was considered to be very good.
This is due to the fact that during a forward flight test
condition, the rotor blade pitch links are subjected to
high dynamic loading which is often due to nonlinear
acrodynamic blade loading. Thus, the pitch link
loads data base would have a wider ‘“uncertainty
band” due to the pitch links operating in an

environment that is dynamic. In any case, the quality
of the present pitch Iink load test data is acceptable,

Blade Flarwise Bending Moments. Figures 25 and 26
show the comelation plots from a MIMO back-
propagation neural network, where the neural network
outputs were the mean and oscillatory flatwise
bending moments. For the mean and oscillatory
flatwise bending moments, points far away from the
comrelation line are associated with bad test datg
points. It was found that some data points were not
repeatable, possibly due to instrumentation problems.
Indeed, the present neural network analysis raises
questions about the useability of approximately 5%
of the flatwise bending moment database. This is an
example of the ability of neural networks to capture
poor data quality.

Blade Chordwise Bending Moments. The forward
flight test blade yoke chordwise mean and oscillatory
bending moments were considered in the present
neural network study. Figures 27 and 28 show the
present correlation plots from a MIMO back-
propagation neural network, where the neural network
outputs were the mean and oscillatory chordwise
bending moments, The  neural-network-based
representations were very good for the blade yoke
mean and oscillatory chordwise bending moments,
The present neural network analysis shows that the
chordwise bending moment data are useable and are of
good quality as a whole.

Results - Outdoor, Hover Wind Corrections

Existing, Momentum-Theory-Based Wind Correction
Method. Felker, et al. (Refs. 15, 16) present a wind
comection procedure based on momentum theory.
The procedure was developed by W. Johnson of
NASA Ames and M. A, McVeigh of Boeing
Defense Systems (Helicopters). The existing,
momentum-theory-based wind corrected rotor torque
coefficient CQCORRM was obtained from the

equations given in Refs. 15 and 16. The corrected
figure of merit data from Ref. 15 were used in the
present neural network study only for comparison
purposes. The uncorrected outdoor test data points
{(Ref. 15) are shown in Fig. 29

Neural-Nerwork-Based Wind Correction Procedure.
The present neural network wind correction procedure
deals only with outdoor hover test data.  This
procedure makes use of a "zero wind” neural network
representation.  The zero wind neural network
representations are reference variations that represent
isolated rotor tilt-rotor hover performance, and which
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by definition do not require any wind corrections. In
the present study, the performance variables were as
follows: Cy and FM, and for the zero wind case
depend only on C/0. In the present study, test data
points with wind speeds < 0.5 m/s were defined to be
zero wind points. The zero wind figure of merit
representation, referred to as FMzw, is a function of
only Cr/c. A SIMO two-hidden-layer back-
propagation network with one input. CT/G and three
outputs &p, CQ, and FM was used in the present
study to obtain FMow.

A MISO two-hidden-layer back-propagation network
with three inputs CT/0, Ky, and Hy. and one output
AT was trained in order to predict the FM-deltas. The
neural-network-predicted FM-deltas are referred to as
ATNN(CT/6, Ux, Hy) and represent the necessary
wind corrections to yield the isolated rotor zero wind
hover performance. Details are given in Ref. 13.

Neural-Network-Based Wind Corrections The present
zero wind neural network representation was derived
using 25 test data points. Figure 30 shows these data
points and the resulting neural network representation
derived from the SIMO back-propagation neural
network, Figure 31 shows both the test-based and
the MISO neural-network-predicted FM-deltas.

Figure 32 shows the comected figure of merit
obtained from the present neural network approach
and also, as the reference curve, the zero wind neural
network representation, Fig. 30. Figure 32 shows
that the present neural-network-based wind correction
procedure gives very satisfactory corrections. Figure
33 shows Felker's corrected figure of merit (Ref. 15)
The present neural-network-based figure of merit
corrections are more accurate than  Felker's
corrections.  The RMS errors associated with the
present neural-network-corrected figure of merit (0.01)
and Felker's comected figure of merit (0.02)
quantitatively demonstrate that the present neural-
network-based wind corrections are more accurate
compared to the existing wind corrections.

Physical Interpretations from Neuwral Networks.
Compared to the existing, momenturn-theory-based
wind corrections model, the present neural-network-
based procedure for wind corrections can represent the
actual (e.g., physical) trends present in the test data,
and thus be able to provide insight into the required
wind corrections. These physical trends could be
linear or nonlinear, “subtle” or “gross.”  The
momentum-theory-based wind corrections would not

be able to capture those trends that fall outside of the
momentum theory’s domain of applicability.

The above mentioned physics-related advantage of
neural networks was studied using a simple example
as follows. As a typical operating condition,
consider CT/6 = 0.12. In this example, the figure of

merit deltas (FM-deltas or wind corrections) for zero
lateral wind condition with varying axial velocity and
separately, for zero axial wind condition with varying
lateral velocity, were considered. One set of FM-
deltas was obtained using the previously-trained
MISO back-propagation neural network (this neural
network was trained using the complete outdoor test
data base). The second set of FM-deltas was obtained
using  the existing, momentum-theory-based
equations (Ref. 16). Figures 34 and 35 show the
resulting FM-deltas for this example.

Figure 34 shows that both the nonlinear, neural-
network-based and almost-linear, momentum-theory-
based representations are basically the same for the
effect of the axial wind (with zero Jateral wind).

Figure 35 shows the effect of the lateral wind (with
zero axial wind} on the FM-deltas. The neural-
network-based and the momentum-theory-based
representations are different. The neural-network-based
FM-deltas have a value of -0.02 (for negative lateral
winds) and it was separately verified that this “trend”
does represent the test data The existing,
momentum-theory-based FM-deltas, also shown in
Fig. 35, have a magnitude much smaller than 0.02.
Thus, the existing, momentum-theory-wind-
correction formulation “misses” some physical trends
present in the test data. A possible explanation is as
foliows. The momentum-theory-based wind
correction (Ref. 16) for non-negligible lateral wind
(with zero axial wind) is dependent on the product of
the lateral wind and the very small in-plane force Cv,
resulting  in a  momentumn-theory-based  wind
correction that is negligible. This is contrary to the
trend present in the outdoor hover test data base under
consideration. Thus, the neural network is able to
capture the physical trends that are present in full-
scale test data and give a more realistic representation.

CONCLUDING REMARKS

ntification an
The application of neural networks to rotorcraft
dynamics and acoustics contro! is still relatively new.

The objective of the present noise and hub loads
study was to develop a robust neural-network-based
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controller to simultaneously minimize BVI noise and
vibratory hub loads. An objective function
consisting of the weighted sum of advancing-side-
BVI-noise and a vibratory-hub-loads-metric was used
to characterize the rotor BVI noise and vibratory hub
loads.

The noise and hub loads neural network controller
was successful in achieving convergence within a
limited number of iterations while being robust and
computationally efficient. Specific findings from the
present identification and contrel study were as
follows:

1. The present neural network controller
successfully  achieved the objective of
simultaneous,  substantial  reductions  in

advancing side blade vortex interactien noise (5
dB reduction) and in vibratory hub loads (54%
reduction) within six iterations without using
gradient-based optimization techniques.

2. The results showed that the present neural
control procedure is robust.

3. A comparison of the results from the present
noise and hub loads neural controller with those
from a one-step deterministic controller showed
that the two control methods can give different
solutions, with neural control being more
robust.

Test Data Validation

Specific findings from the present full-scale rotor test
data validation study were as follows:

l. Neural networks were successfully used to
represent and assess the quality of tilt-rotor hover
and forward flight performance test data. Neural
networks  accurately  captured  tilt-rotor
performance at steady operating conditions.

2. In forward flight, the wind tunnel test data were
generally of very high quality. Approximately
5% of the existing data base for the biade
flatwise bending moments at the yoke were
shown to be of poor quality using neural
networks.

3. Compared to existing, momentum-theory-
method based wind corrections to outdoor hover
performance, the  present  neural-network-
procedure-based corrections were better.

4. The present wind corrections procedure, based on
well-trained neural networks, captured physical
trends present in the outdoor hover test data that
had been missed by the existing, momentum-
theory-based method.
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Fig. 2. Overall neural network control procedure for reducing noise and hub
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Fig. 7a. Hub Loads Control: Starting Point Sensitivity, convergence of hub
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Fig. 9b. Hub Loads Control: Odd-Numbered, Six Point Data Base, convergence
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Fig. 33  Felker’s momentum-theory-based corrected figure of
merit
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Fig. 34 Outdoor, hover (example): axial velocity effect, lateral velocity zero
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Fig. 35 OQutdoor, hover (example): lateral velocity effect, axial velocity zero
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