IDENTIFICATION AND CONTROL OF ROTORCRAFT
HUB LOADS USING NEURAL NETWORKS

Sesi Kottapalli
Rotorcraft Aeromechanics Branch
NASA Ames Research Center
Moffett Field, California

Abstract

The objective of the study was to develop a robust neural
network based controller to minimize vibratory hub
loads. A metric consisting of five vibratory hub load
components (with their sine and cosine components)
obtained from a wind tunnel test of a four-bladed rotor

with individual blade control was used to characterize the

hub loads. The neural network control procedure was
bound by the following ground rules: the controller must
converge quickly in six iterations or less and gradient
based optimization techniques must not be used. A
simple and straightforward iterative procedure for neural
control was applied. Two neural networks were used in
the procedure requiring a plant model (using a radial-
basis function neural network) and an “inverted neural
network for control” model (using a back-propagation
neural network). A simple half-interval calculation
which halves the metric was used in order to speed up
convergence. The neural network control procedure
successfully achieved the objective within the given
constraints. Finally, a limited-scope comparison of the
results from the present neural control procedure with
those from a one-step deterministic controller showed
that the two control methods were roughly comparable,
with neural control being slightly more robust.

A
Ay

AN, i

AN

Notation
Rotor disk area, nR2
Experimental 2P control amplitude input, deg

Neural network controller 2P control amplitude
input for the i'th iteration, deg

2P control amplitude input predicted by
inverted neural network for control, deg

Presented at the American Helicopter Society 53rd Annual
Forum, Virginia Beach, Virginia, April 29 - May 1, 1997.
Copyright © 1997 by the American Helicopter Society, Inc. All
rights reserved.

Am

Cr

-t s

HHC

IBC

[T]

VHLM

{e*})

Oim

Amplitude of mP IBC input, deg
Representative chord of the blade

Rotor thrust coefficient, thrust
nondimensionalized by pA(QR)?

Blade number; i=1 implies y=0 for blade at
helicopter tail

Higher Harmonic Control
Individual Blade Control

Harmonic number for IBC input

Number of blades

Rotor blade radius

Radial-basis function
transfer-function matrix, of size 10 x 2
Wind tunnel airspeed, knots

Vibratory hub loads metric,

made up of five hub load components

with their sine and cosine components

vector of measured vibratory hub loads, sine and -
cosine components, of size 10 x 1

Rotor shaft angle, positive nose up, deg

vector of 2P blade pitch control inputs,
of size 2 x 1

vector of optimal 2P blade pitch control inputs,
of size2x 1

IBC contribution to blade pitch, m’th harmonic
pitch for i’th blade



1 advance ratio, V/(QR)
o Rotor solidity, Nyc/nR

10)] Experimental 2P control phase input, deg

®)N, i Neural network controller 2P control phase
input for the i'th iteration, deg

®oN 2P control phase input predicted by
inverted neural network for control, deg

v Rotor azimuth angle, deg
Q Rotor rotational speed
Introduction

The development and implementation of a robust active
control system for helicopter aeromechanics must include
a method for accurate identification of aircraft parameters
and a robust scheme to generate optimal control inputs.
For example, rotorcraft hub loads and vibration almost
always behave nonlinearly with respect to the phase of a
higher harmonic control (HHC) pitch input. This
behavior is evident in: wind tunnel test results
(Kottapalli, et al., Ref. 1); flight test results (Miao, et al.,
Ref. 2); and analytical results (O’Leary, et al., Ref. 3). In
the preceding HHC cases and other similar cases, the
controller's task would be to identify the nonlinear,
vibration-related helicopter parameters and subsequently
generate optimal HHC pitch control inputs that result in
the lowest vibration level.

Neural network based techniques are attractive nonlinear
methods for control of nonlinear systems. Neural
networks do not necessarily require large amounts of
computational resources or central processor time.
Additionally, they appear easy to apply and understand.
A successful neural network application enables the
accurate nonlinear identification of important rotorcraft
parameters and subsequent calculation of the optimal
control inputs. An efficient neural network application
can enable the hardware implementation of feedback-
driven control systems. In the present context, hardware
implementation refers to the complete control system and
its functions (which include modeling, predicting,
optimizing, and controlling).

The application of neural networks to rotorcraft dynamics
control is still relatively new; therefore, available
literature is limited (for example, Kottapalli, et al., Refs.
4 and 5). However, the following references have been
useful for the present investigation. The handbook on
intelligent control by White and Sofge (Ref. 6) covers
neural and other approaches. Miller, et al. (Ref. 7),

Wasserman (Ref. 8), Werbos (Ref. 9), Omatu (Ref. 10),
and Pham and Liu (Ref. 11) discuss various neural
control approaches. Werbos (Ref. 9 ) classifies existing
neural control approaches into five types: supervised
control systems, direct inverse control, neural adaptive
control, back-propagation-through-time, and adaptive
critic methods. Other classifications exist (for example,
Omatu, et al., Ref. 10). Psaltis, et al. (Ref. 12) discuss
architectures associated with training neural networks for
neural control. The survey paper by Hunt, et al. (Ref. 13)
covers neural networks for control systems. Faller, et al.,
(Ref. 14) consider a fixed-wing aerodynamics application
of neural control, namely, real time identification and
control of 3-D unsteady separated flow.

The objective of the present study is to develop a robust
neural network based control to minimize vibratory hub
loads. A metric consisting of five vibratory hub load
components (with their sine and cosine components)
obtained from a wind tunnel test of a four-bladed rotor
with individual blade control is used to characterize the
hub loads. The neural controller is required to be
relatively quick in its execution and not be
computationally intensive. Thus, the present neural
network control procedure is bound by the following
ground rules: the controller must converge in six
iterations or less and gradient based optimization
techniques must not be used.

This study begins with a description of two types of plant
models: single-input, single-output and multi-input,
multi-output. Next, the neural network control procedure
(based on an existing, neural control technique called the
“direct inverse” method) is described. The experimental
data are then described. Next, five cases are examined.
The first four cases pertain to neural control and for
these cases, results are presented in the following
sequence: plant model results, inverted neural network
for control results, and finally, the neural controller’s
convergence sequence. The fifth case looks into the
performance of a traditional, one-step deterministic
controller and, in a limited manner, compares its results
with those from the neural controller. Finally,
observations derived from this study are presented.

Plant Model

Kottapalli, et al. (Refs. 4 and 5) have developed
procedures for deriving neural network plant models that
can be used in the present rotorcraft dynamics (controls)
application. Single-input, single-output (SISO) and
multiple-input, single-output (MISO) applications were
considered in Ref. 4, and the multiple-input, multiple-
output (MIMO) application was considered in Ref, 5.
Background material on these applications is given in
Ref. 4. The SISO applications are briefly described
below.



Single-Input, Single-Output Plant Model

In the first of two SISO applications, the network training
input is the 2P control phase input ®2. In the second
SISO application, the network training input is the 2P
control amplitude input A. In both applications, the
network output is the vibratory hub loads metric, VHLM.
Accurate plant modeling was obtained for the 2P control
phase application by using a two-hidden-layer radial
basis function (RBF) type of neural network depicted by
"1-12-4-1 RBF network." In this depiction, the leading
and trailing 1's refer to the single input and the single
output, and the 12 and 4 refer to the number of
processing elements in the first and second hidden layers,
respectively.

Neural Network Control Procedure

The present control procedure was finalized after
conducting a survey of neural network control techniques
and trying several control procedures. In the present
SISO case it is possible to obtain accurate modeling and
prediction for simulating the plant model being
controlled. Therefore, the present control procedure does
not include the plant itself. This simplification results in
a control procedure that may be classified as "direct
control" (Narendra and Parthasarathy, Ref. 15).

A modified version of the "direct inverse control" method
in neural control (Wasserman, Ref. 8) is used in this
study. This approach is attractive in the present context
because of its simplicity and straightforward
implementation. This approach does not involve gradient
based optimization techniques. This method assumes
that the plant model is invertible, i.e., a unique dependent
(y-axis) value exists for a given independent (x-axis)
value. Mathematically, Ref. 8 describes the application
of the method in the following manner. Let F be the

plant model and Flits inverse. The combined system
includes the inverse model followed by the plant model.

A desired system response that is input to F~! would
ideally give the desired system response as the output of

Fsince [ (F1)F]=[1]. Therefore, to achieve a
desired system output, it is only necessary to provide the
specific desired system output as an input (Ref. 8).
Without feedback, serious questions can arise regarding
the robustness of this method (Ref. 13).

The non-feedback direct inverse method is too simple for
general purpose applications. In order to apply the direct
inverse control method to the present application,
modifications and enhancements to the method are
necessary. Therefore, the present implementation of this
method additionally includes an iterative, feedback loop
and a simple halving technique in order to speed up the
neural controller's convergence.

Also, the present plant models of interest are nonlinear
and hence noninvertible. Consider the following
example. For the linear system y = x, the resulting
variation is a straight line; this system is invertible. For
the nonlinear system y = x2, the resulting variation is a
parabola. This system is noninvertible because when the
axes are inverted, a given "new" x-value does not result
in a unique y-value. Recall that the direct inverse control

-method assumes that the plant model is invertible. The

following subsections describe how the presently
modified direct inverse control method is applied to
rotorcraft dynamics controls applications of interest that
involve nonlinear (noninvertible) plant models.

Neural Control Implementation

A block diagram of the present overall neural network
control procedure is shown in Fig. 1. For illustrative
purposes, this diagram is drawn using the control phase
as the relevant feedback parameter. In reference to the
plant model, the 2P control phase input is the x-axis
value and the vibratory hub loads metric is the nonlinear
y-axis value. If the axes were to be simply inverted, the
vibratory hub loads metric becomes the x-axis value and
the 2P control phase input becomes the y-axis value. In
this inverted system, a given metric value does not result
in a unique 2P control phase input value. The present
control procedure calls only for inverting the axes of the
plant model data. This inverted-axes control modeling
step "inverts the axes" by using the vibratory hub loads
metric as the independent, or input, parameter on the x-
axis and the neural network predicted 2P control phase
output parameter on the y-axis. Subsequently, an
appropriate type of neural network is trained using this
inverted-axes data set, thus completing the inverted-axes
control modeling step. This step yields a unique x-y’
relationship corresponding to the input-output
relationship of the appropriate neural network. For,
clarity and brevity, the neural network associated with
the inverted-axes control modeling step is referred to as
the inverted neural network for control.

The present scheme works for the cases considered
because the back-propagation network representing the
inverted neural network for control is always able to
capture the appropriate functional form of a unique y-
axis value for any x-axis value. This is achieved in part
since the scheme exploits an artifact of the back-
propagation neural network: for extrapolative
calculations where training data do not exist, the network
output is an approximate average of the existing
neighboring data points.

Neural Control Procedure Initiation. Since it is
possible to perform accurate identification in the present
application, the plant is not included in the neural control
procedure (“direct” procedure). The present neural



control procedure as outlined in Fig. 1 can be initiated in
two ways: 1) inputting a desired metric into the inverted
neural network for control or 2) inputting a starting value
of the control phase input into the plant model. In this
study, the neural control procedure was initiated by
inputting a control input (2P control phase input or
amplitude input) into the plant model.

Neural Control Implementation Details. A simple
half-interval calculation which halves the current VHLM
metric is used at each iterative step (Fig. 1). The iterative
control procedure is terminated when the metric has
converged, that is, has reached a global minimum. This
approach can also accommodate the application where a
desired metric is specified in advance. This paper does
not include results for such an application.

Present Application

Data used in this study were obtained from the second
U.S./German Individual Blade Control wind tunnel test
(Jacklin, et al., Ref. 16). The test article was a four-
bladed BO-105 hingeless rotor system fitted with IBC
electro-hydraulic actuators. The rotor system was tested
in the NASA Ames 40- by 80-Foot Wind Tunnel. Five
vibratory hub loads (axial, side, and normal forces, and
pitching and rolling moments) obtained from the Rotor
Test Apparatus steady/dynamic rotor balance in the fixed
system. In this study, all loads were referenced to the
rotor hub. These loads were combined into a single
metric (by taking the square root of the sum of the
squares of each load with equal weighting for each load
component). The test condition used in this study is one
of simulated descent at an airspeed of approximately 65
knots (it = 0.15) and C1/0 = 0.075. Other test
parameters are; Og = 2.9 deg, Q = 425 RPM, with the hub
pitching and rolling moments trimmed to 1600 ft-1b and
-350 ft-1b, respectively. This descent condition is
equivalent to an approximate 5.6 deg glide slope angle.

The m'th harmonic IBC pitch input for the i'th blade is
defined as:

Bim = Am sin [m (y;+90 deg) + Py

The present application includes five cases and the
results from the first four cases help in directly assessing
the neural controller’s convergence behavior, robustness,
and accuracy. The fifth case considers the performance
of a traditional, one-step deterministic controller as “re-
applied” to the first two cases. The five cases are
outlined below.

Case 1. Basic (Benchmark): This case considers the
variation of the metric with 2P control phase input ®7
with a constant control amplitude Ap =1 deg. The IBC2
data base for this case has 12 data points (®7 = 0 to 330
deg at 30 deg intervals). During the neural network

plant modeling step, periodicity of the metric is ensured
by including an additional 13th point at 360 deg. For this
case, the variation of the metric has two minimums (Fig.
2). The neural control procedure is initiated with a 2P
control phase input ®2N, ¢ = 0 deg.

Case 2. Starting Point Sensitivity: Using the neural
controller from Case 1, a parametric study that assesses
the neural controller’s robustness is conducted in Case 2.
The effect on neural controller convergence of initiating
the iterative control procedure using four different
starting values of the 2P control phase input (0, 180, 240,
and 270 deg) is studied.

Case 3. Reduced Data Base: Here, the benchmark 12-
point data set is split into two smaller 6-point data sets
based on odd- and even-numbered selections. These two
“reduced data base” cases are called Cases 3a and 3b,
respectively. Case 3 is important since the results can be
used to assess the impact of reducing the number of
training data points made available to that part of the
neural control procedure which provides an updated
estimate of the 2P control phase input.

Case 4. Amplitude Variation: For a constant 2P control
phase input (@7 = 210 deg), this case considers the effect
of varying 2P control amplitude input A9 from 0 to 2
deg. Five IBC2 test data points are available, all of
which are used for neural network training purposes. In
this case, the variation of the metric has one minimum.
Case 4 is important because it considers a control
amplitude input variation which, in general, along with a
control phase input variation represents a complete
“control space” (within which the controller must
operate). Variations which include both control phase
and amplitude inputs are not considered in this study;
thus, this case and Case 1 represent a first step towards
the consideration of the case with multi-dimensional
inputs.

Case 5. One-Step Deterministic Controller: In addition
to the results from the present neural controller, results
from a traditional, one-step deterministic controller
(Johnson, Ref. 17) were calculated for two cases
corresponding to Cases 1 and 2. The one-step
deterministic controller cases are called Cases 5a and 5b,
respectively.

Results

The application of neural network control was conducted
using the neural networks package NeuralWorks Pro
II/PLUS (version 5.2) by NeuralWare (Ref. 18). The Pro
II/PLUS package was installed on an ACER Acros
personal computer with an Intel 486DX2/66 central
processor. All network applications required
approximately two minutes of clock time in order to
complete the training step.



Inverted Neural Network for Control

Substantial time and effort were expended in this study to
gain insight into the best type of neural network (RBF,

back-propagation, etc.) and network architecture (number
of hidden layers and number of processing elements) that

are needed for an appropriate inverted neural network for -

control (Fig. 1). This study was also conducted to ensure
that the final, selected neural network is the simplest
network that can be used as the inverted neural network
for control. The network input is the metric VHLM and
the network output is either the predicted 2P control
phase input @71 (Cases 1 to 3) or the 2P control
amplitude input ApN (Case 4). The inverted neural
network for control is trained with 12 input data points in
Case 1 and Case 2, six points in Case 3, and five points in
Case 4. Overall, the best inverted neural network for
control can be determined only after the neural control
results for Cases 1 to 4 are computed. At present, the
overall conclusion is that a 1-2-3-1 back-propagation
neural network can be successfully used as the inverted
neural network for control for all the neural control cases
considered in this study.

Results for the neural control cases are presented in the
following sequence: plant model results, inverted neural
network for control results, and finally, the neural
controller’s convergence sequence.

Case 1. Basic (Benchmark)

Plant Model. Figure 2 shows the vibratory hub loads
metric's variation with the 2P control phase input &7 for
a constant 2P control amplitude A3 = 1 deg. In the
figure, the solid squares represent metric values derived
from the IBC2 test data. The baseline metric (no IBC,
A =0deg) is 578 and the IBC2 test-based minimum
metric is 211 (at ®) = 240 deg), Fig. 2. Figure 2 also
shows the plant modeling results obtained from the 1-12-
4-1 RBF neural network that was trained using 13 input
data points. The 1-12-4-1 RBF network was trained for
10,000 iterations; the final RMS error was 0.0389. This
1-12-4-1 RBF neural network is also used as the plant
model in Cases 2 and 3.

Inverted Neural Network for Control. The outputs
from the 1-2-3-1 back-propagation neural network used
as the inverted neural network for control are shown in
Figs. 3a and 3b. This neural network was trained with 12
IBC2 test data points. In training this network, the data
set axes are inverted compared to the plant model (see
subsection on “Neural Control Implementation™). The 1-
2-3-1 back-propagation network was trained for 20,000
iterations; the final RMS error was 0.2339. Figure 3a
shows the network output for a metric range of O to
10,000. As can be seen from Fig. 3a, the network output

is almost constant for large values of the metric (“large-
metric behavior”). This type of large-metric behavior is
desirable and appears to depend on the type of network.
Figure 3b is the same as Fig. 3a except that the x-axis
plotting scale is 0 to 2000; the neural computations are
exactly the same for the two plots. For future reference,
the network output behavior for metric values within this
scale is called “small-metric behavior.”

Figure 3b shows that the shape of the predicted network
output appears to be close to that of a sigmoid function.
This could be an attribute of the present inverted neural
network for control that is due to an inherent property of
the specific type of neural network that is being used,
namely, the back-propagation neural network. As noted
carlier, several types of neural networks (RBF, back-
propagation, etc.) were tried out in an attempt to make
the present neural control scheme work. As described in
the following section, in general, the above mentioned
behavior of the 1-2-3-1 back-propagation neural network
is sufficient to make the neural control scheme
successful.

Neural Controller Convergence. In the present case,
the controller cycle is initiated with a 1 deg 2P control
amplitude with phase 7N, ( = 0 deg where the first
subscript refers to 2P control phase input, the second
subscript refers to the neural (analytical) controller, and
the third subscript refers to the iteration index. Figures
4a and 4b show results from the present neural network
controller. The neural controller produces a converged
global minimum metric (VHLM = 195) in four iterations
(Fig. 4a). The corresponding converged optimal 2P
control phase input (PN, 4) predicted by the neural
controller is 261 deg (Fig. 4b).

For other applications, if the as-presently-formulated
inverted-axes control modeling step is not valid, one may
have to resort to a radically different approach. This
approach may involve deriving special, new neural
networks customized for individual applications and
possessing the extrapolative and interpolative
characteristics required for a good inverted neural
network for control. Nevertheless, the results from this
one example are very promising.

Case 2. Starting Point Sensitivity

In Case 2, the starting values of the 2P control phase
input PN, ( are varied and specified as 0 deg (same as
in Case 1), 180, 240, and 270 deg. These values were
selected to give the neural controller freedom in
determining the best solution. The Case 1 2P control
phase input starting value (0 deg) may be the worst
starting point for the neural controller since the optimal
2P control phase input from the IBC2 test is 240 deg, and
the controller has a “long way to go” before reaching the
optimal solution. The plant model and the inverted



neural network for control are the same as those used in
Case 1.

Neural Controller Convergence. Figures 5a and 5b
show the neural controller convergence sequences for the
metric and the 2P control phase input for the four starting
values. The table below shows the corresponding
numerical values in which the halving step is also noted.
The identified halved metric is the input to the inverted
neural network for control at the next iterative cycle. The
0 deg starting point subcase (P2N, ¢ = 0 deg) required
four iterations to converge whereas the other three
subcases required three iterations to converge. The
metric converged to a value of 195 for all four subcases
(Fig. 5a). The corresponding predicted, converged 2P
control phase input is 261 deg for all four subcases (Fig.
5b). These results appear to indicate that the present
neural controller is insensitive to a starting point for the
current study.

Table 1. Starting Point Sensitivity,
Neural Control

(PM: plant model, INNC: inverted neural network for
control)

Iterat- 2P control Identified/ 2P control
ion phase Halved phase input
No.  inputintoPM  Metric from INNC
deg

Starting Point = 0 deg

0 0 11307565 217

1 217 443/222 256

2 256 198/99 261

3 261 195/98 261

4 261 195
Starting Point = 180 deg

0 180 507/254 254

1 254 200/100 261

2 261 195/98 261

3 261 195
Starting Point = 240 deg

0 240 261/130 260

1 260 195/98 261

2 261 195/98 261

3 261 195
Starting Point = 270 deg

0 270 209/105 260

1 260 195/98 261

2 261 195/98 261

3 261 195

Case 3. Reduced Data Base

This case has two subcases, Cases 3a and 3b. During the
inverted neural network for control modeling step, these
two subcases use two different “reduced data base” 6-
point training data sets. In Case 3a, the six odd-
numbered training points from the original 12-point
training data set (IBC2 test data) are used; similarly, in
Case 3b the six even-numbered points are used. The
plant models for Cases 3a and 3b are the same as those
used in Case 1 (13-point training data set).

Case 3a. Odd-Numbered, Six Point Data Base

Inverted Neural Network for Control: Figures 6a and 6b
show the outputs of the 1-2-3-1 back-propagation neural
network used as the inverted neural network for control.
This network was trained using the odd-numbered six
point data base. The 1-2-3-1 back-propagation network
was trained for 20,000 iterations; the final RMS error
was 0.1802. The large-metric behavior of this 1-2-3-1
back-propagation network (Fig. 6a) has the desirable
constant trend noted earlier in Case 1. The Case 3a
large-metric behavior exhibits a small negative value and
hence the y-axis in Fig. 6a does not start from zero. This
type of large-metric behavior of the 1-2-3-1 back-
propagation network does not affect the neural control
procedure. Figure 6b (small-metric behavior) shows that
the appropriate functional form for the output of the
inverted neural network for control can be generated
from six, odd-numbered training points instead of the
baseline twelve points (Fig. 3b).

Neural Controller Convergence: The controller
iterations were initiated with a 1 deg 2P control
amplitude with a starting 2P control phase ®N, 0 =0

- deg. Figure 7a shows that the present neural controller

globally converges in five iterations to a value of 224.
Figure 7b shows that the corresponding converged
optimal 2P control phase input ®)N, 5 predicted by the
neural controller is 275 deg. This compares favorably to
a converged VHLM of 195 at a 2P control phase input of
261 deg from Case 2.

Case 3b. Even-Numbered, Six Peint Data Base

Inverted Neural Network for Control: Figures 8a and 8b
show the outputs of the 1-2-3-1 back-propagation neural
network used as the inverted neural network for control.
This network is trained using the even-numbered six
point data base. The 1-2-3-1 back-propagation network
was trained for 20,000 iterations; the final RMS error
was 0.2617. The large-metric behavior of this 1-2-3-1
back-propagation network has the desirable constant
trend (Fig. 8a). Figure 8b (small-metric behavior) shows
that the appropriate functional form can be generated
from six, even-numbered training points instead of the
baseline twelve points (Fig 3b).



Neural Controller Convergence: The controller
iterations were initiated with a 1 deg 2P control
amplitude with a starting 2P control phase 2N, 0 =0
deg. Figure 9a shows that the present neural controller
globally converges in five iterations to a metric of 207.
(even-numbered six point case). Figure 9b shows that
the corresponding converged optimal 2P control phase
input @)N, 5 predicted by the neural controller is 269
deg .

The preceding results from Cases 1 to 3 indicate that the
inverted neural network for control modeling step is
sufficiently robust and accurate for the present neural
control purposes.

Case 4. Amplitude Variation

Plant Model. Figure 10 shows the vibratory hub loads
metric variation with 2P control amplitude input A for
a constant 2P control phase input @9 = 210 deg. In the
figure, the solid squares represent metric values derived
from the 5-point IBC2 test data base. The IBC2 test-
based minimum metric is 328 (at Ap = 0.5 deg). Figure
10 also shows the plant modeling results obtained from a
1-5-1 RBF neural network that was trained using the five
points. The 1-5-1 RBF network was trained for 22,000
iterations; the final RMS error was 0.0137.

Inverted Neural Network for Control. Figure 11
shows the small-metric output of the 1-2-3-1 back-
propagation neural network (used as the inverted neural
network for control). The 1-2-3-1 back-propagation
network was trained for 35,000 iterations; the final RMS
error was 0.2589. In Case 4, a larger number of
iterations was required to train the 1-2-3-1 back-
propagation neural network compared to training the 1-2-
3-1 back-propagation networks in Cases 1 and 3 (35,000
compared to 20,000). During the training process for the
1-2-3-1 back-propagation neural network in Case 4, the
network’s RMS error variation with the number of
iterations took longer to reach a steady state. The final
output in Case 4 has the appropriate functional form (Fig.
11), i.e., the shape of the predicted network output
appears to be close to that of a sigmoid function. Though
not included in this paper, the large-metric trend from
this 1-2-3-1 back-propagation neural network was found
to be around AN = 2 deg.

Neural Controller Convergence. For this one-
minimum case, the neural controller converged in three
iterations (iterations initiated with AN g =0deg)to a
metric of 346 (Fig. 12a). The corresponding predicted 2P
control amplitude AN, 3 is 0.57 deg (Fig. 12b).
Comparing this result with Fig. 10, the neural controller
has acceptably converged to a minimum VHLM.

Case 5. One-Step Deterministic Controller

Using linear transfer-function identification theory and
the quadratic performance function formulation
(Johnson, Ref. 17), the performance of a one-step
deterministic controller is assessed in Case 5.

Linear Transfer-Function Matrix Identification. The
vector of responses (vibratory hub loads) is assumed to
vary linearly with the control input as given below:

{z}=[T]{0}

Here, { z } is the response vector, [ T ] is the linear
transfer-function matrix, and {6 } is the control input
vector. In the present case, the vectors { z } and { 6 } are
made up of experimental vibratory hub load components
and 2P control sine and cosine phase inputs, respectively.

The present one-step deterministic controller applications
include ten vibratory hub load components (sine and
cosine components of five hub load components) and
twelve measurements (2P control phase input varying
from 0 to 330 deg in 30 deg increments). Separate single
harmonic sine and cosine least-square fits are used to
determine the elements of the T-matrix.

Optimal One-Step Deterministic Control Input. The
optimal control input is calculated based on a quadratic
performance function with all responses equally
weighted. For the present one-step deterministic
controller, the optimal control input vector is calculated
using Equation Al (Appendix). In Equation A1, the 2 x
1 vector of optimal control inputs { 6% } consists of the
sine and cosine components from which the 2P control
optimal phase input is calculated. In the following, the
subscript “s” refers to the starting condition for the one-
step deterministic controller.

Case 5a. Baseline Results: In Case Sa, the starting
condition is the baseline condition: { 0 }g={ 0}
(corresponding to Ap = 0 deg), and with the starting
response vector { z }g taken as the baseline experimental
hub loads vector (ten vibratory hub load sine and cosine
components). Here, the metric is calculated using the
plant model of Case 1 and requiring that the 2P control
amplitude input is 1 deg. The one-step deterministic
controller predicts a metric of 281 and an optimal 2P
control phase input of 237 deg. Comparing this one-
step deterministic controller result to the neural control
result of Cases 1 and 2 (converged metric is 195,
corresponding 2P control phase input is 261 deg), the
conclusion is that the two control methods are
comparable. Note that the starting conditions are
different for these two methods: the one-step
deterministic controller starts out with the baseline
condition whereas the neural controller starts out with a
2P control phase input (Cases 1 and 2).



Case 5b. Starting Point Sensitivity: In Case 5b, each of
the four sets of { 0 }g and { z}g vectors is separately
determined by the following four 2P control phase input
values: 0, 180, 240, and 270 deg, each with A2 = 1 deg.
The control input vector { 8 }g is directly obtained from
the 2P control phase input under consideration, and the
starting response vector { z }g 1s taken as the
experimental hub loads vector corresponding to the
particular 2P control phase input under consideration.
The table below shows the results of the sensitivity study
which evaluates the performance of the one-step
deterministic controller performance for the four starting
points.

Table 2. Starting Point Sensitivity,
One-Step Deterministic Control, A2 = 1 deg

Starting 2P Predicted Predicted
control phase Metric 2P control phase
input. deg input, deg
0 196 262
180 207 269
240 205 268
270 337 230

The above “starting point sensitivity” one-step
deterministic controller results can be compared to those
from the neural controller (Case 2). This limited-scope
comparison shows that the two control methods are
roughly comparable, with neural control being slightly
more robust. In particular, the one-step deterministic
controller yields relatively poor results for the 270 deg
starting condition (VHLM = 337) as compared to the
corresponding neural network result (Table 1, VHLM =
195).

Concluding Remarks

The application of neural networks to rotorcraft dynamics
control is still relatively new. The objective of the
present study was to develop a robust neural network
based controller to minimize vibratory hub loads. A
metric consisting of five vibratory hub load components
(with their sine and cosine components) obtained from a
wind tunnel test of a four-bladed rotor with individual
blade control was used to characterize the hub loads. The
present single-input, single-output neural network control
procedure was bound by the following ground rules: the
controller must converge in six iterations or less and
gradient based optimization techniques must not be used.

A simple and straightforward iterative procedure for
neural control was applied. Two neural networks were
used in the procedure requiring a plant model (using a
radial-basis function neural network) and an inverted
neural network for control model (using a back-
propagation neural network). The training of each
network required approximately two minutes of clock
time. A simple half-interval calculation which halves the
metric is used in order to speed up convergence.

The neural network controller was successful in
achieving convergence within a limited number of
iterations while being robust and computationally
efficient. Specific findings are given below.

1. Radial-basis function neural networks were
successfully used for the plant modeling step in the
present neural control procedure.

2. A simple back-propagation neural network can be
used as the inverted neural network for control. This
back-propagation neural network has two hidden
layers with the first and second hidden layers having
two and three processing elements, respectively.

3. Four neural control application cases were
considered in this study. The first three cases
involved variation in the individual blade control 2P
control phase input (2P control amplitude fixed) and
the fourth case involved a variation in the 2P control
amplitude input (2P control phase fixed). The
present findings are:

a. The present neural network control
procedure successfully achieved the
objective of converging to the global
minimum in all four cases within six
iterations without using gradient based
optimization techniques.

b. Results from the first three application
cases showed that the present neural control
procedure is robust.

A limited-scope comparison of the results from the
present neural control procedure with those from a
one-step deterministic controller showed that the two
control methods were roughly comparable, with
neural control being slightly more robust.
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Appendix
One-Step Deterministic Controller Equations
Optimal Control Input

The optimal one-step deterministic controller control input vector used in the present study is derived as follows. From
Johnson (Ref. 17), the optimal control input is:

{6 In=[Cl({z}n-1- [TI{O}n1)
where the subscript “n” refers to a time step and the controller gain [ C ] is given by:
[ci=-crritrrptrr®

Substituting for [ C ], the optimal control input is expressed as:

(0" bn=- (LTI LT TIT ({201~ [T1(8)n1)

The present, one-step deterministic control study is an off-line type of application, and the preceding equation is
presently used in the following manner in order to calculate the optimal control input vector:

(0" y=-([TIT(TIYyHTIT({2}s- [TI{O)s) (A1)

where the subscript “s” refers to the one-step starting condition.
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Fig. 5a. Case 2 (Starting Point Sensitivity), convergence of hub loads metric (neural control).
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Fig. 7a. Case 3a (Odd-Numbered, Six Point Data Base), neural control of hub loads metric.
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{neural control, Fig. 7a shows corresponding metric).
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Fig. 9a. Case 3b (Even-Numbered, Six Point Data Base), neural control of hub loads metric.
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Fig. 9b. Case 3b (Even-Numbered, Six Point Data Base), convergence of 2P control phase input
(neural control, Fig. 9a shows corresponding metric).
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