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Neural network relationships between thefull-scale, experimental huh accelerations and thecorresponding pilot floor vertical 
vibration are studied. The present quantitative effort represents a n  initial, systematic study on the UH-60A Black Hawk huh 
accelerations. The NASAIArmy UH-60A Airloads Program flight test database is used. A physics-based "maneuver-effect- 
factor (MEF)," derived from the roll-angle and the pitch-rate, is used as well. Three neural network based representation- 
cases are considered. The pilot floor vertical vihration is considered in the first case and the huh accelerations are separately 
considered in the second case. The third case considers both the huh accelerations and the pilot floor vertical vihration. 
Neither the advance ratio nor the gross weight alone can he used to predict the pilot floor vertical vihration. However, 
the advance ratio and the gross weight together can he used to predict the pilot floor vertical vihration over the entire 
flight envelope. The huh accelerations data are modeled and found to he of acceptable quality. The huh accelerations alone 
cannot represent the pilot floor vertical vihration. The huh accelerations and the advance ratio can he used to represent the 
pilot floor vertical vihration. Also, the huh accelerations along with the advance ratio and the gross weight can he used to 
reprrsent the pilot floor vertical vihration. Thus, the huh accelerations a re  clearly a factor in determining the pilot floor 
vertical vihration. 

Notation 

MEF Maneuver effect factor, Equation (1) 
MIMO Multiple-input, multiple-output 
MIS0 Multiple-input, single-output 
PVV Peak, 4P pilot floor vertical vibration, g's 
R Linear regression correlation (an R close to 1 indicates 

that a regression-based relationship exists between the test 
data and the neural network predictions) 

RMS error Root mean square error between the test data and the 
neural network predictions, g's 

SISO Single-input, single-output 

Introduction 

For helicopters, the relationships between the rotor hub accelerations 
and the fuselage vibration may be linear or nonlinear and involve many 
variables. Here, fuselage vibration is defined as the Nlrev fuselage accele- 
ration at the pilot location, where N is the number of main rotor blades 
(presently, N =4). For the UH-60A flight test data that were considered 
in Ref. 1, one of the conclusions was that the fuselage vibration trends 
qualitatively matched those of the hub accelerations. Reference I did not 
present any quantitative representations for the hub accelerations. Also, 
inRef. 1, therelationships between thehubaccelerations and the fuselage 
vibrations were not quantified. 

The present study is the first systematic effort that considers hub ac- 
celerations in a quantitative manner, and attempts to identify numerical 
relationships between the hub accelerations and the fuselage vibrations. 
Also, this study has been undertaken to obtain a better understanding 
of the basic dynamics underlying the main rotor-dependent fuselage vi- 
bration and the associated hub accelerations. This study builds up on 
previous neural network studies that were conducted at NASA Ames in 
the areas of rotorcraft perromance, acoustics, and dynamics (Refs. 2- 
8). Flight test data from the NASAIAmy UH-6OA Airloads Program 
(Refs. 9, 10) are used. For purposes of modeling the UH-60A peak, 4P 
pilot floor vertical vibration (PVV) and the hub accelerations, two neural 
network related databases are created. The first database includes only 
level flight data. The second database includes data from the entire flight 
envelope, including unsteady (time varying) maneuver conditions. 

The neural network based modeling of the UH-60A PVV for real-time 
applications wasstudied in Ref. 4. Thepeakvalue ofthepilot floor vertical 
vibration was usedso as to betterrepresent time varying maneuvers, such 
as a pull-up maneuver. Compared to Ref. 4, the additional considerations 
present in this study are the effects due to the hub accelerations. 

The use of neural networks is justified because neural networks can 
perform multi-dimensional, nonlinear curve fitting. The above feature is 
useful in this representation study that seeks to identify smoothly varying 
relationshi~s. This work is considered to be a eeneric methodoloev and -. 
is not specific to the presently considered UH-~OA configuration. 

Objectives 

Presented at the American Helicopter Society Aeramcchanics Specialists' Meet- The present neural-network-based representation or modeling study 
ing,Atlanta, Georgia, November 13-14,ZWO.Manuscript receivedlanuaryzool; involving the helicopter Nlrev peak, pilot floor vertical vibration (PVV) 
accepted October 2001. and the hub accelerations has four objectives: 
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I) Create a neural network training database for the hub accelerations. 
The hub acceleration values are taken as those corresponding to the peak, 
pilot floor vertical vibration values, PVVs. If the peak, pilot floor vertical 
vibration occurs at a time t = r ,  then the subject hub acceleration is 
defined as that also occurring at time t =I.  

2) Using the advance ratio and the gross weight, conduct exploratory 
studies to determine whether reasonably accurate analytical representa- 
tions of the P W  can be obtained. 

3) Assess the data quality of the hub accelerations and obtain their 
neural network based representations. 

4) Using the hub accelerations and flight condition parameters such 
as the advance ratio and gross weight, determine whether reasonably 
accurate analytical representations of the PVV can be obtained. 

Hub  Acceleration and  Pilot Vertical Vibration Databases 

The source of the hub accelerometer data was the N A S N h y  UH- 
60.4 Airloads Program flight test database (Refs. 9, 10). The creation of 
the corresponding PVV database was describedin Ref. 4. For purposes of 
this dynamics related study, the following categories of flights from Refs. 
I) dnd I0 .ire prcic~~tly c,~ns~dcrrtl: ' Stenly and Mnncuvcring Airl<~dd<" 
i ~ ~ d  "Milneuvcr'i." 'I'llc t'nllouln~ f l i ~ h t  conditions arc includcJ: lcvcl - - 
flight, rolls, pushovers, pull-ups, autorotations, and landing flares. These 
conditions approximate the entire UH-60A flight envelope. 

The UH-60.4 hub accelerometers were mounted on a triaxial block 
glued to themainrotorshaft4.5inchesfrom thecenterofrotation(Ref. I) .  
Three accelerometers (radial, tangential, and vertical) were used. Follow- 
ing Ref. I ,  the tangential accelerometer measurements are used to present 
the in-plane response because it has a smaller centrifugal acceleration 
value than the radial sensor. 

In general, to obtain a time varying, step-by-step simulation of the 
pilot vibration during a maneuver, a neural network based time-series 
method can beused. However, such methods arecomplex. In the present, 
initial modeling study using neural networks, a static-mapping approach 
involving the peak vibration level is followed. This implies that each 
flight condition is characterized by its peak vibration. The possibility of 
utilizing the peak-vibration-based static mapping in a quasi-static man- 
ner to simulate time varying maneuvers was investigated in Ref. 4. A 
quasi-static approach will not capture all dynamic effects, and may miss 
the prediction of relevant maximums and their associated phases. Also, 
a time-series analysis using neural networks will caphlre the maximums 
and phases more accurately, compared to a quasi-static approach. The 
present study considers the 3P and 5P tangential hub accelerations and 
the 4P vertical hub acceleration. The appropriate hub acceleration values 
are taken as those corresponding to the peak, 4P pilot floor vertical vi- 
bration P W .  Let this peak vibration PVV occur at a time t = r .  The hub 
acceleration at time t = r is defined as the corresponding or appropriate 
hub acceleration. In eeneral. the oedk vibration time r is different for - . . 
different maneuvers, and has to be individually determined. 

Maneuver effect factor 

The MEF, a non-dimensional parameter, is used to characterize heli- 
copter maneuvers involving si,nultnneous non-zero roll-angle and pitch- 
rate, and the MEF is used as one of the neural network inputs. The MEF 
is derived by a consideration of the vertical forcechanges arising because 
of the roll-angle and the pitch-rate. The changes in the lift due to both 
the roll-angle and the acceleration due to the pitch-rate are accounted for. 
The MEF is subsequently defined by the following equation: 

Maneuver effect factor. MEF 

= [ I /  cos(roll-angle)] r [I + (pitch-rate * airspeedlg)] (1) 

where "g" is the acceleration due to gravity. The purpose of the MEF 
is to compactly represent complex maneuvers using a single, physics- 
based oarameter. Deoendine on the reference axes svstem used, other 
parameters can be derived, and this would rcsult in slightly different 
formulations. 

The number of the neural network training data points in the present 
study is over200. Thesepointsrepresent theentiredatabase. Each training 
data point represents a single flight condition. The maximum advance ra- 
tio is 0.48. The gross weight range encountered is from 14,749 lbs to 
17,720 lbs. Approximately 25% of the training database involve maneu- 
ver related points. Here, maneuver related refers to a flight condition for 
which the maneuver effect factor MEF is not equal to 1. The level flight 
cases are defined as those involving an approximately constant RPM 
(255 to 256) and an MEF= I.  Approximately 80 points are involved in 
the level flight cases. 

Basic Variations: Hub  Accelerations and Pilot Vertical Vibration 

Figures I 4  show the variations of the flight test hub accelerations 
and the PVV versus the advance ratio. The data shown in Figs. 1 4  
use the 200 point flight database. Thus, in addition to the variation in the 
advance ratio covered in the figures, overall, these data involve variations 
in the gross weight, the main rotor RPM, the density ratio, the MEF, and 
the ascentldescent rate (and variations in the cyclic and collective stick 
positions). 

Figure 1 shows the 3P tangential hub acceleration variation with the 
advance ratio. These data were obtained with the 3P bifilars installed 
on the UH-60A (Ref. 9). In Fig. 1, the low speed "hump" due to rotor 
wake effects can be seen around an advance ratio of 0.09 (approximately 
40 knots). Figure 2 shows the 5P tangential hub acceleration variation 
with the advance ratio. Compared to the 3P hub acceleration data in Fig. 1, 
the5P hub accelerationdata in Fig. 2 appear tocontain morescatter. This 
could be due to the fact that the 3P bifilars bring in a forced response 
behavior that tends to smooth out the 3P accelerations. In the UH-6OA 
Airloads Program, the UH-60A did not have 5P bifilars installed. Figure 3 
shows the 4P vertical hub acceleration variation with the advance ratio. 
Figure 4 shows the peak, 4P pilot floor vertical vibration, PVV, versus 
the advance ratio. 

Neural Network Approach 

To accurately capture therequired functional dependencies, theneural 
network inputs must be carefully selected and account for all important 

Plighl Test Data: 
NASAlArmy UH-60A Airloads Pmgram 

Advance ratio 

Fig. 1. UH-60A3P tangential hub accelerationvariation with advance 
ratio. 
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Fig. 2. UH-60A 5P tangential huh acceleration variation with advance 
ratio. 

Advance ralio 

Fig. 3. UH-66A 4P vertical h u b  acceleration variation with advance 
ratio. 

Advance ratio 

Fig. 4. UH-60A peak, 4Ppilot floor vertical vibration, PVV, variation 
with advance ratio. 

physical traits that arespecific to theapplication. Theimportant attributes 
of a neural network are its type (radial-basis function network, back- 
propagation network, recurrent network, etc.) and its complexity (i.e., the 
number of processing elements (PEs) and the number of hidden layers). 
The present overall neural network modeling approach is based on the 
approach followed in Refs. 2-8. The back-propagation type of network 
with a hyperbolic tangent as the basis function, and the extended-delta- 
bar-delta (EDBD) algorithm as the learning rule (Ref. 1 I) is used. 

The number of neural network PEs required depends on the specific 
application. The determination of the appropriate number of PEs is done 
by starting with a minimum number of PEs. Additional PEs are added to 
improve neural network performanceby reducing the RMS error between 
the test data and the neural network predictions. Typically, five PEs are 
added at each step in this process. The addition of two or three PEs at a 
timerefines the neural network. A moreautomatedmethod ofdetermining 
the optimum neural network architecture would be desirable, and this 
subject is an active area of research. 

If the correlation plot, comparing measured and predicted values, 
shows only small deviations from the 45-deg reference line, the neural 
network has produced an acceptable representation of the subject test 
data. If the plot shows points well off of the 45-deg line, poor quality 
test data may exist in the database. A detailed examination of the subject 
test database is then required to identify the source(s) of the errors 
associated with any poor quality test data. The analyst should not solely 
rely on the neural network based correlation procedure to eliminate poor 
quality test data. 

This procedure, however, contributes to data assessment, and two 
examples from previous studies are briefly discussed as follows. First, 
in Ref. 2 (Figs. l l and 12 in Ref. 2) the above procedure was applied 
to experimental tilt-rotor blade flatwise bending moments. In the Ref. 2 
example, the subject test data points were not repeatable, possibly due to 
instrumentation problems. Second, in Ref. 3 p ig .  I in Ref. 3) the above 
procedure was applied to experimental wind tunnel tilt-rotor noise data. 
In the Ref. 3 example, the conclusion was that the presence of gusty 
winds, affecting the wind tunnel flow quality (flow unsteadiness) and 
the thrust coefficient, may have adversely affected quality of the subject 
data. In the present initial study, the PVV correlation points well off o i a  
+/-0.05 g's error band are further examined for poor quality. 

For the notation used in this paper, aneural network architecturesuch 
as "4-25-5-1" refers to a neural network with four inputs, twenty five 
processingelements (PEs) in the first hidden layer, five PEs in the second 
hidden layer, and one output. The present application of neural networks 
to full-scale helicopter flight test vibration and hub accelerations data 
has been conducted using the neural networks package Neuralworks Pro 
IIIPLUS (version 5.2) by Neuralware (Ref. 11). 

In thepresent work, threebasicstudies (taken upinorderofincreasing 
complexity) have been conducted, and are described as follows: 

i) An initial exploratory study has been conducted to determine the 
relationships between thePVV andthe advanceratio andthegross weight. 
Two sets of results, one for level flight and the other for all flights (entire 
database including maneuvers) have been obtained. 

ii) A hub accelerations representation study has been conducted. 
iii) A study has been conducted on using the hub accelerations along 

with the advance ratio and the gross weight to model the PVV Here, the 
entire database is involved. The expectation is that the results from this 
third study may be of help in determining whether the hub accelerations 
can be used to obtain the PVV. 

Results 

Pilot vertical vibration exploratory study 

This exploratory study has two parts. The first part involves level flight 
conditions and the second part involves the entire database including 
maneuver conditions. In this exploratory study, the PVV is the single 
neural network output. 

Level flishl. The first pan of this exploratory study involves level 
flight conditions, with varying gross weight and a constant RPM. 
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Fig. 5. PVV correlation using advauce ratio, level flight. 

Flight test PW, g's 

Fig. 6. PVV correlation using gross weight, level fight. 

Approximately 80 points are involved. Figures 5-7 show the results for 
these level flight cases. 

Figure 5 shows the correlation plot from a SISO 1-10-5-1 hack- 
propagation neural network in which the advance ratio is thesingle input. 
The above back-propagation network has been trained for 5 million iter- 
ations with resulting R=0.65 and RMS error=0.03 g's. There does not 
appearto he auniquerelationship between the advance ratio and the P W .  

Figure 6 shows the correlation plot from a SISO 1-10-5-1 back- 
propagation neural network in which the gross weight is the single input. 
The above back-propagation network has been trained for 5 million it- 
erations with resulting R=0.74 and RMS error=0.03 g's. Again, not 
surprisingly, there does not appear to be a unique relationship between 
the gross weight and the PVV. 

Figure 7 shows the correlation plot from a MIS0 2-10-5-1 back- 
propagation neural network in which the advance ratio and the gross 
weight are the two inputs. The above back-propagation network has 
been trained for 1 million iterations with resulting R=0.89 and RMS 
error=0.02 g's. Figure 7 shows that the advance ratio and the gross 
weight can represent the PVV for level flightconditions. The trained neu- 
ral network, Fig. 7, can typically predict the PVV to within +/-0.05 g's, 
knowing only the advance ratio and the gross weight. 

All-flights (entire database). The second part of this exploratory study 
involves all flight conditions, i.e., the entire databaseis used (200 points, 

Flfght lest PW, g's 

Fig. 7. P W  correlation using advance ratio and gross weight, level 
flight. 
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Fig. 8. P W  correlation using advauce ratio. 
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Fig. 9. P W  correlation using gross weight. 

including maneuvers). Figures 8-10 show the corresponding results. 
Even though the above level flight results show that neither the advance 
ratio nor the gross weight alone can represent the PVV, these two cases 
are included in the All-Flights study also. This is done both for complete- 
ness and also to buildup to the thirdcase involving both the advance ratio 
and the gross weight. 
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FUght test PW, g's 

Fig. 10. P W  correlation using advance ratio and grass weight. 

F i ~ u r e  8 shows the correlation plot from a SISO 1-10-5-1 back- - 
propagation neural network in which theadvance ratiois thesingle input. 
The above back-propagation network has been trained for 5 million iter- 
ations with resulting R = 0.63 and RMS error=0.04 g's. There does not 
aooear to beauniauerelationshio between theadvance ratioand thePVV. . . 

Figure 9 shows the correlation d o t  from a SISO I-10-5-1 back- - 
propagation neural network in which the gross weight is thesingle input. 
The above back-propagation network has been trained for 5 million iter- 
ations with resulting R =  0.43 and RMS error = 0.05 g's. There does not 
appear to be a unique relationship between the gross weight and the PVV. 

Figure 10 shows the correlation plot from a MIS0 2-10-5-1 hack- 
propagation neural network in which the advance ratio and the gross 
weight are the two inputs. The above back-propagation network has 
been trained for 5 million iterations with resulting R=0.89 and RMS 
error=0.03 2 s .  Figure 10 shows that the advance ratio and the gross 
weight can reasonably predict the PVV for the entire flight database, 
maneuvers included. Compared to the entire database correlation shown 
in Fig. 10, the level flight correlation shown in Fig. 7 is "cleaner" The 
good correlation seen in Rg. 10 is encouraging, even though the neu- 
ral network inputs (advance ratio and gross weight) do not account for 
maneuver effects. This result has been included in order to show a way 
to obtain the UH-60A PVV in a simple manner. 

Acorrelationresult basedon amorecomplex physical model (with far 
more inputs) that accounts for maneuver effects (and other effects noted 
below) is shown in Fig. 11. Figure 11 shows the correlation plot from 
a MISO 6-10-5-1 back-orooaeation neural network. The six inouts are: . . -  
advance ratio, gross weight, main rotor RPM, density ratio, MEF, and as- 
centldescent rate. The above back-propagation network has been trained 
for5 million iterations with resulting R=0.96 andRMS error =0.02g's. 
Figure 12 shows the corresponding successful, quasi-static modeling of 
the time varying PVV for a pull-up maneuver at 120 knots (also, see 
discussion on quasi-static modeling in the section on "Hub Acceleration 
and Pilot Vertical Vibration Databases"). Such fidelity in predicting the 
pilot Roor vertical vibrations shows considerable promise in using neural 
networks to obtain the UH-60A fuselage vibrations. 

Huh accelerations representation 

In the present study, the quality of the hub accelerations flight test 
data has been assessed, and the numerical representations of the Right 
test data have been obtained. The entire database is used (200 points, 
including maneuvers). There are six inputs which are the same as those 
used for Fig. 1 I, and these inputs are: advance ratio, gross weight, main 

Flight test PW, g's 

Fig. 11. PVV correlation using maneuver effect factor, MEF. 

Fig. 12.Quasi-staticpredictionof PVV nsingMEF,unsteady pull-up. 

Fig. 13. 3P tangential hub acceleration correlation using maneuver 
effect factor. 

rotor RPM, density ratio, MEF, and ascentldescent rate. The three neu- 
ral network outputs are as follows: the 3P and 5P tangential hub ac- 
celerations and the 4P vertical hub acceleration. Figures 13-15 show the 
correlation plots obtained using a M M O  6-15-5-3 back-propagation neu- 
ral network. The above back-propagation network has been trained for 
5 million iterations and the resulting R's and RMS errors are as follows. 
For the 3P tangential hubacceleration correlation (Fig. 13), R =0.94 and 
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Fig. 14. 5P tangential hub acceleration correlation using maneuver 
effect factor. 

Fig. 15. 4P vertical hub acceleration correlation using maneuver 
effect factor. 

RMS error = 0.04 g's. For the 5P tangential huh acceleration correlation 
(Fig. 14), R=0.91 and RMS error=0.06 g's. For the 4P vertical hub 
acceleration correlation (Fig. IS), R=0.93 and RMS error=0.04 g's. 

Overall, the hub acceleration flight test "data quality" is assessed as 
being acceptable (Figs. 13-15). There are no identifiable poor quality 
data points such as those discussed earlier (Neural Network Approach). 
As notedin Ref. 2, theanalyst shouldnot solely rely on theneural network 
based correlation to eliminate poor quality test data. The present process 
does, however, contribute to data assessment. Finally, the results shown 
in Figs. 13-15 imply that for the UH-60A, numerical relationships (the 
identification model) relating the hub accelerations to the flight condition 
parameters have been obtained. 

Relationships between hub accelerations and pilot vertical vibration 

The objective is to represent the PVV using the 3P and 5P tan- 
gential hub accelerations and the 4P vertical hub acceleration as the 
three core inputs. The PVV is the single neural network output, and the 
entire database is used (200 points, including maneuvers). Three cases 
are created, with their inputs listed as follows: 

Fig. 16. PVV correlation using hub accelerations. 

Flight test PW, 8's 

Fig. 17. PVV correlation using hub accelerations and advance ratio. 

Flight test PW, g's 

Fig. 18. PVV correlation using hub accelerations along with advance 
ratio and gross weight. 

Figures 16-18 show the correlation plots obtained using the above three 
input lists. Figure 16 shows the correlation plot from a MIS0 3-10-5-1 
back-propagation neural network with the case 1 inputs (three hub accel- 
erations). Figure 16 shows the results with the above back-propagation 
network trained for 3 million iterations with resulting R =0.74 and RMS 
error=0.04 g's. For this case, increasing the number of iterations to 

Cnse I inputs: three hub accelerations (3 inputs). 5 million results in a slightly larger error (using the extended-delta-bar- 
Case 2 inputs: three hub accelerations and advance ratio (4 inputs). delta (EDBD) algorithm, Ref. I I). Only the 3-million iteration results 
Cnse 3 inprtts: three hub accelerations, advance ratio and gross weight are reported in this paper. Figure 16 shows that there does not appear to 
(5 inputs). exist a unique relationship between the hub accelerations and the PVV. 



JANUARY 2002 NEURAL NETWORK BASED REPRESENTATION OF UH-60A PILOT AND HUB ACCELERATIONS 39 

At the same time, it can be suggested that the huh accelerations inherently be applied to other operating conditions. However, additional data are not 
contain some basic information that depends on the flight condition. available. Consequently, the validation of the neural networks is done 

Figure 17 shows the correlation plot from a MIS0 4-10-5-1 back- by working with the entire 200 point database, and splitting it into a 
neural network with the case2 inputs (three hub accelerations training database and a testing (validation) database, and subsequently 

andadvanceratio).Theabove back-propagation network has been trained verifying that the testing results are acceptable. Approximately 80% of 
for5 million iterations with resulting R = 0.94 andRMS error=0.02 g's. the entire database's 200 points are used to create a training database and 
Figure 17showsthatthehubaccelerationsandadvanceratiocanre~resent the remainine a~oroximatelv 20% are used to create a senarate testing " 
the PVV. The Fig. 17 correlation is very encouraging because it appears 
that, for all airspeeds, the physics of the PVV variation with airspeed is 
being captured by the advance ratio (in combination with the hub acceler- 
ations). This result is encouraging alsohecause both the hub accelerations 
and advance ratio are parameters that can be easily measured (note that 
the measurement of the hub accelerations involves the use of slip rings). 

Figure 18 shows the correlation plot from a MIS0 5-10-6-1 back- 
propagation neural network with thecase3 inputs (three hubaccelerations 
along with advance ratio and gross weight). The above back-propagation 
network has been trained for 5 million iterations with resulting R=0.97 
and RMS error=0.01 g's. Figure 18 shows that the hub accelerations 
along with advance ratio and gross weight can represent the P W .  
Compared to the Fig. 17 correlation (involving hub accelerations and 
advance ratio), the Fig. 18 correlation is not unexpected. This is because 
the hub accelerations may contain substantial basic information and very 
little additional information (ex.. advance ratio) is reouired to oroduce . - .  
neural network based representations. Also, the correlation shown in 
Fig. I1 uses the maneuver effect factor MEF whereas the correlation 
shown in Fig. 18 uses the huh accelerations (along with advance ratio 
and gross weight). Both correlation results have been presently obtained 
such that they fall within a +/-0.05 g's error band and thus are compa- 
rable to each other. Hence, it can be suggested that the hub accelerations 
contain maneuver effects information reflecting load factor effects. 

Selected results are shown in Table 1 in numerical form to show 
typical neural network predictions. The flight test PVV's for four specific 
flight conditions and the corresponding four neural network based PVV's 
are shown in Table I. The present neural network models for which the 
predictions have been obtained are noted in Table 1. These models are 
as follows: the advance ratio and gross weight model (Fig. 10). the MEF 
model (Fig. 1 I), and the hub accelerations along with advance ratio and 
gmss weight model (Fig. 18).FromTable 1 itcan bedirectly ohservedthat 
the oresent neural network based models are accurate to within +I-0.05 , 
g's of the corresponding flight test values for high-speed level flight, 
descent, climb, and a constant turn flight condition. The model that used 
the MEF and present model that used the hub accelerations along with 
advance ratio and gross weight give the best PVV predictions. 

Neural Network Validation 

- A. 

database. The validation results are summarized as follows. 
For cases with the P W  as the single output, the PVV training RMS 

error is 50.02 g's (with R ranging from 0.89 to 0.98). The PVV testing 
RMS error is 50.04 g's (with R ranging from 0.73 to 0.81) for all of the 
above cases except for one case that is noted below. The case with the 
advance ratio and the gross weight as the inputs has a PVV testing RMS 
errorof0.05 g's (R=0.70). Additionally, twosamplevalidation (testing) 
plots, with the PVV as the single output, are presented in Figs. 19a-19b. 

Fllght test PW, g's 

Fig. 19a. Validation plot, six inputs including MEF, associated with 
Fig. 11. 

The full UHdOA Airloads Program database has been explored till 0 I I I I 
0 0.1 0.2 0.3 0.4 

now for modeling the PVV and the hub accelerations using the present, 
Flight test PW, g's 

neural network related entire database (200 point database). If additional 
data were available beyond the 200 point database, then these data could Fig. 19h. Validation plot, fiveinputs including huh accelerations, ad- 
be used to test (validate) the neural networks. The neural networks could vance ratio and gross weight, associated with Fig. 18. 

Table 1. Neural network based results for pilot floor vertical vibration, PVV, g's 

Advance Ratio + Gross Maneuver-Effect- Hub Accels. + Advance-Ratio + 
Flight Condition Flight Test Weight (Fig. 10) Factor (Fig. 11) Gross Weight (Fig. 18) 

Level flight, 135 knots 0.10 0.10 0.10 0.1 1 
Descent, 160 knots 0.25 0.27 0.24 0.26 
Climb. 62 knots 0.12 0.10 0.12 0.12 
Turn, 45 deg, 120 knots 0.13 0.08 0.18 0.14 
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Table 2. Parametric study, varying percentage ratio of training to 
testing data points (associated with Fig. 18) 

Training Testing 

Ratio R RMS error R RMS error 

50150 1 .OO 0.00 g's 0.50 0.06 g's 
67133 0.98 0.01 g's 0.61 0.05 g's 
80120 0.98 0.01 g's 0.74 0.04 g's 
9011 0 0.97 0.01 g's 0.80 0.04 g's 
10010 0.97 0.01 4's 

Table 3. Training ("80%") error and testing ("20%) error for hub 
accelerations, 6 inputs, 3 outputs (associated with Figs. I S I S )  

Training Testing 

Hub Accel. R RMS error R RMS error 
- 

3P Tang. 0.93 0.05 g's 0.85 0.07 g's 
5P Tang. 0.90 0.06 g's 0.76 0.10 g's 
4P Vert. 0.92 0.04 g's 0.75 0.07 g's 

These two validation cases are associated with two important cornla- 
tions that have been consideredearlier in the present study, namely, those 
shown in Figs. 1 1 and 18, respectively. In the first sample validation case 
there are six inputs, listed as follows: advance ratio, gross weight, main 
rotor RPM, density ratiu, MEF, and ascentldescent rate. The correspond- 
ingvalidationplot is shown inFig. 19a(R = 0.81, RMS error = 0.04g's). 
In the second sample validation case there are five inputs, listed as fol- 
lows: three hub accelerations along with advance ratio and gross weight. 
The corresponding validation plot is shown in Fig. 19b (R= 0.74, RMS 
error= 0.04 g's). 

In addition to the above validation study for the PVV using an 
80120 split ratio, a parametric study has also been conducted in which 
this split ratio was varied as follows: 50150, 67/33, 80120 as above, 
and 90110. The parametric study has been conducted for the valida- 
tion case associated with Fig. 18 in which there are five inputs (the 
three huh accelerations along with advance ratio and gross weight) 
and the PVV is the single output. The validation results are given in 
Table 2, which shows that a 80120 trainingltesting validation ratio is 
appropriate. 

Validation results for the hub accelerations using a 80120 train- 
ingltesting validation ratio are given in Table 3. These validation results 
are associated with Figs. 13-15. 

Finally, the above validation results for the PVV and the hub accel- 
erations prove that the neural networks used in the present study have 
predictive capability. 

Concluding Remarks 

Full-scale, flight test based peak, 4P pilot Roor veltical vibration 
(PVV) and the corresponding hub accelerations are considered in this 
initial study for modeling purposes. The present quantitative effort rep- 
resents the first systematic study involving huh accelerations. The Right 
conditions considered in the present study are as follows: level Right. 
rolls, pushovers, pull-ups, autorotations, and landing flares. Specific con- 
clusions from the present neural network representation study are as 
follows: 

1) Neither the advance ratio nor the gross weight alone can be used 
to represent the peak, 4P pilot floor vertical vibration (PVV). 

2) The advance ratio and the gross weight can beused to represent the 
PVV of virtually the entire database of the UH-60A Airloads Program. 

3) The quality of the hub accelerations data has been found to he 
acceptable. 

4) The hub accelerations data have been successfully modeled using 
the following six inputs: advance ratio, gross weight, RPM, density ratio. 
MEF, and ascentldescent rate. 

5) Therelationships between the hub accelerations and the PVV have 
been studied, and the resulting conclusions are as follows: 

a) The hub accelerations alone cannot represent the PVV. 
b) The hub accelerations along with advance ratio can be used to 

represent the PVV. 
c) The hub accelerations along with advance ratio and gross weight 

can be used to represent the PVV. Conclusion 5c) involving hub ac- 
celerations is complementary to conclusion 2) above. The additional 
inclusion of the hub accelerations (in addition to advance ratio and 
gross weight) brings in maneuver effects (e.g., load factor effects) into 
the neural network model that may help in predicting the maneuver 
P W s .  

The focus of the future work is discussed as follows. Practically, the 
present results involving hub accelerations potentially allow for the iden- 
tification of neural network relationships between the experimental hub 
accelerations obtained from wind tunnel testing and the exoerimental - 
pilot Roor vertical vibration data obtained from flight testing. A suc- 
cessful establishment of the above neural network based link between 
the wind tunnel hub accelerations and the flight test vibration data can 
increase the value of wind tunnel testing. 
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