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Results from a neural network study of the noise data from a full-scale XV-15 tilt-rotor are presented. Specifically, this
database was acquired during the 1998 NASA Ames 80- by 120-foot wind tunnel test to establish the blade-vortex-interaction
noise signature. The present study has three objectives: 1) To conduct a neural-network-based quality assessment of the noise
data; 2) To obtain neural network representations of the noise data and to demonstrate their sensitivity to test conditions;
3) To obtain neural-network-based noise predictions. Overall, neural networks are successfully used to assess the quality
of the noise data and to represent the complete database as well as to predict tilt-rotor noise using the minimal amount of
input data. As major findings, the data quality is found to be acceptable, and accurate neural network representations are

obtained for the test-condition-sensitivity cases.

Notation
A rotor disc area, 7R?, m?
BVI blade vortex interaction
BVISPL blade-vortex-interaction sound pressure level, 30th to 150th
rotor harmonics, dB
Cy rotor thrust coefficient, lhrustl’pAVznp
MIMO  multiple-input, multiple-output
MISO multiple-input, single-output
PE neural network processing element
R rotor radius, m
RBF radial-basis function
\% wind tunnel airspeed, m/s
Viip blade tip speed, 2R, m/s
s rotor shaft angle, positive nose up, deg
J rotor advance ratio, Vcos o /(S2R)
o rotor solidity ratio
Q rotor rotation speed, rad/sec

Introduction

Growing public sensitivity to rotorcraft noise has forced the rotor-
craft community (industry, government, and academia) to be innovative
in reducing rotorcraft external noise (Ref. 1). Tilt-rotors are in a class
by themselves, and their acceptance by the public is a very important
and a much-awaited milestone. To facilitate tilt-rotor noise reduction ef-
forts, it is important to develop an analytical capability that enables data
quality assessment and representation of experimental tilt-rotor noise
databases. Such representations could potentially be used to provide tilt-
rotor pilots with near-real-time noise predictions of their aircraft noise
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exposure. This information could then be used to modify flight condi-
tions and trajectories o minimize the exposure to noise sensilive arcas.
This would, in turn, help to insure the aircraft’s acceptance by the nearby
communities.

Rotoreraft noise measurement and prediction involve a high level of
complexity, and it is difficult at times to know even heuristically the
variation of the test data with changes in the operating conditions. Since
the test data trends may be new and without precedent, it becomes difficult
to isolate expeditiously bad data points from the good points. As such,
it is more difficult to interpret the quality of the measured data and the
trends projected by wind tunnel tests.

This paper presents results from a neural network study conducted
to asscss the quality of full-scale wind tunnel tilt-rotor noise data, and
also to represent such data. These wind tunnel data were acquired from a
test performed in support of NASA’s Short Haul Civil Tilt-rotor (SHCT)
program. Moreover, neural network studies on rotorcraft performance and
dynamics had also been initiated in the Army/NASA Rotorcraft Division
at the NASA Ames Research Center; for details see Refs. 2 to 7. The
present work on Lilt rotor noise is motivated by the experience gained
from these neural networks studies. The use of neural networks is justified
because of their multi-dimensional, nonlinear curve fitting characteristics
as well.

Significantly, the present work is a generic methodology, not restricted
to the presently considered tilt-rotor configuration. The focus here is to
demonstrate why this generic methodology offers considerable promise.
Accordingly, the specific objectives are:

1) To conduct data quality assessment of the noise data in two parts:
(a) coarse data quality checks, and (b) more involved fine data quality
checks.

2) To obtain neural-network-based representations of the test data in
two parts: (a) to demonstrate the sensitivity of the noise Lo test paramelers
such as advance ratio and thrust coefficient, and (b) to produce noise
footprint plots, i.e., contour plots, using neural-network-based results,
and separately, to study the implications of using 50% of the available data
for neural network training purposes.
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3) To predict tilt-rotor noise at a test condition not included in the
neural network training database. This includes the following: modeling
and prediction of multiple noise variations using a minimum amount of
input data. The input data consist of the defining test condition parameters
and the corresponding, unique reference noise curves.

Tilt-Rotor Test Database Description

Full-scale XV-15 tilt-rotor noise test data for forward flight conditions
(Ref. 8) are analyzed in this paper. As noted in Ref. 8, the overall objective
in acquiring the above data was to establish the blade vortex interaction
(BVI) noise signature of a full-scale tilt-rotor. The wind tunnel testing
approach was described in Refs. 8 and 9. The 25-f1 diameter right hand,
three-bladed tilt-rotor was installed on the NASA Ames Rotor Test Ap-
paratus and tested in the Ames 80- by 120-foot Wind Tunnel. The shaft
angle was varied from — 15 deg (nose down) to 415 deg, from a vertical
orientation. The present study considers noise test data with a rotor tip
Mach number of 0.69.

Neural Network Approach

To capture accurately the required functional dependencies, the nevral
network inputs must be carefully selected and account for all important
physical traits that are specific to the application. In the present wind
tunnel noise application, the important physical parameters are associ-
ated with the wind tunnel test conditions. Thus, there are five neural
network inputs: advance ratio, g, shaft angle, o, thrust coefficient ratio,
Cy /o, the microphone traverse location, and the microphone position
within the traverse. The important attributes of a neural network are its
type (radial-basis function network or back-propagation network, etc.)
and its complexity (i.e., the number of processing elements (PEs) and
the number of hidden layers). The present overall neural network mod-
eling approach (Refs. 2-7) consists of first determining the best type of
neural network to be used and then simplifying the network as much as
practical.

Determining the best type of neural network usually involves select-
ing either a radial-basis function (RBF) or a back-propagation network.
Reference 10 notes that the RBF network (Moody-Darken version) “can
be used in most situations in which one would consider using a back-
propagation network.” In the present study, both types of networks are
used. For the back-propagation network, the hyperbolic tangent is used
as the basis function and the extended-delta-bar-delta (EDBD) algorithm
is used as the learning rule (Ref. 10).

Simplifying the network involves reducing the number of PEs and in
a few cases, the number of hidden layers. The number of PEs required
depends on the specific application. The determination of the appropriate
number of PEs is done by starting with a minimum number of PEs,
Additional PEs are added to improve neural network performance by
reducing the RMS error between the test data and the neural network
predictions. The criteria used to determine that there are enough PEs is
that the RMS error stops changing (and is sufficiently small). Typically,
five PEs are initially added at each step in this process. Adding two or
three PEs at a time “fine-tunes” the neural network. The notation used
in this paper to characterize a neural network is described as follows,
An architecture such as “4-25-5-1” refers to a neural network with four
inputs, twenty five processing elements (PEs) in the first hidden layer,
five PEs in the second hidden layer, and one output.

If the correlation plot, comparing measured and predicted values,
shows only small deviations from the 45-deg reference line, the neural
network has produced an acceptable representation of the subject test
data. If the plot shows points well off of the 45-deg line, bad test data
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(or poor quality test data) may exist in the database (Ref. 2). A detailed
examination of the subject test database is then required to identify the
source(s) of the errors associated with these test data. The analyst should
not solely rely on the neural network based correlation procedure to elim-
inate test data. This procedure, however, contributes to data assessment,
and an example from a previous study is briefly discussed as follows.
In Ref. 2 (Figs. 11 and 12, therein) the above procedure was applied to
the experimental tilt-rotor blade flatwise bending moments. In the above
Ret. 2 example, the subject test data points were not repeatable, possibly
because of instrumentation problems.

Results

The application of neural networks to full-scale tilt-rotor noise data is
conducted using the neural networks package NeuralWorks Pro 1I/PLUS
(version 5.2) by NeuralWare (Ref. 10). The present neural network RMS
error is dimensionless and based on the squares of the errors for each
processing element {PE) in the output layer. Any large differences in the
magnitudes of the neural network variables are mitigated by appropriate
scaling. In the present application, the cost function used in minimizing
the RMS error has equally weighted individual contributions.

The results from the neural network study using full-scale XV-15 tilt-
rotor noise data are presented below. The noise is characterized using a
BVISPL measure (blade-vortex-interaction sound pressure level, 30th to
150th rotor harmonics, dB). For test conditions involving traverse sweeps,
the corresponding database consisted ol 96 points (measurements at 12
traverse locations using 8 microphones). The largest (complete) noise
database considered in this study has over 4000 data points (Ref. 8). The
neural network inputs and output(s) depend on the specific application
under consideration and are given later.

Neural network based data quality assessment

An overall assessment of the quality of the wind tunnel noise data
is obtained by considering the complete noise database. This complete
database includes over 4000 data points, which are used as training data
for the neural networks. The five wind tunnel test parameters used as the
neural network inputs are: advance ratio, jt, shaft angle, w,, thrust coelfi-
cient ratio, Cy- /o, the microphone traverse location, and the microphone
position within the traverse. Since the positions of the eight microphones
are fixed with respect to the traverse, an equivalent microphone number
can also be used.

Compared to the neural network tilt-rotor performance application
reported in Ref. 2, which involved approximately 300 training data points,
the present, complete, experimental noise database is relatively larger.
Thus, the present data gquality assessment procedure is split up into two
steps. The first step involves coarse correlation curve fits. The second step
involves fine correlation curve fits, and involves more complex networks
and a larger number of training iterations. In contrast to a representation
type of application, the coarse data quality assessment application does
not require the neural networks to produce accurate curve fits. In the data
quality assessment examples that follow, the coarse and fine error bands
are +/—4 dB and +/—2 dB, respectively.

Coarse data-guality-assessment. The results from the coarse correlation
step are shown in Figs. 1 to 3. Figure 1 shows the correlation plot from
a MISO 5-25-5-1 RBF neural network using the complete, experimental
noise database as the training database. The RBF network is trained for
4 million iterations with a final RMS error of 0.07. For the results shown
in Fig. 1, correlation points far away from the 45 deg correlation line are
judged as the bad test data points. These bad test data points are denoted in
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Fig. 1. Coarse correlation, complete noise database (over 4000
points).
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Fig. 2. Coarse correlation, eight points (e, = —15 deg, point 25, run
139) omitted.

the figure by the open circle symbols. A detailed examination of the noise
database shows that these bad points are from test point 25 of run 139,
The test parameters for this test condition are: jt =0.169, o, = —15 deg,
and Cy/o =0.06. The test Run Log for run 139 notes the presence of
“gusty south winds affecting ¢ and Cy/o,” which could adversely affect
data quality in an open circuit wind tunnel.

Figure 2 shows the coarse correlation plot obtained by using a training
database in which the eight microphone measurements from test point
25 of run 139 (s = —15 deg) are omitted from the complete training
database. In this figure the correlation plot from a MISO 5-25-5-1 RBF
neural network are shown. The RBF network is trained for 4 million
iterations with a final RMS error of 0.06. Figure 2 does not contain the
bad points seen in Fig. |.

Figure 3 shows the coarse correlation plot obtained by using a training
database in which all o, = —15 deg points (152 in number) are omitted
from the complete training database. The correlation plot is from a MISO
5-25-5-1 RBF neural network. The RBF network is trained for 4 million
iterations with a final RMS error of 0.08. Figures 2 and 3 are similar in
that no outstanding bad points can he seen. Thus, the bad data points
(open circles) seen in Fig. 1 are associated with only one test condition,
point 25 of run 139. Figures | to 3 demonstrated the ability of neural
networks to identify noise data of poor quality.
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Fig. 3. Coarse correlation, all cc, = —15 deg points omitted.
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Fig. 4. Fine correlation, database same as in Fig. 2, over 4000 points.

Fine data-quality-assessment. Figure 4 shows the fine correlation plot
obtained by using the same database as that was used in Fig. 2. The
eight microphone measurements arising from test point 25 of run 139
(o, = —15 deg) are omitted from the complete training database. The
correlation plot is from a MISO 5-75-25-1 back-propagation neural net-
work. This more complex back-propagation network is trained for 8 mil-
lion iterations (double the number used in the coarse correlation step)
with a final RMS error of 0.02. 1t is seen that the quality of the noise data
is acceptable to within a +/—2 dB band. The representation aspects of
this result are discussed below.

Neural network representations

Complete test database representation. The preceding result in Fig. 4
also demonstrates the ability of neural networks to represent the
experimental noise data within an acceptable level of accuracy
(+/—2dB), and involves over 4000 data points. The Contour Plots section
given later contains a comparison of the neural-network-based contour
based on the above “+/—2 dB” representation with the test data contour.

Sensitivity to test conditions. Variations in advance ratio and thrust coeffi-
cient are separately treated. A near maximum BVI condition (¢t =0.170,
;=3 deg, and Cy/o =0.091) is taken as the baseline test condition
about which the variations are considered.
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Fig. 5. Correlation, forward speed variation.

Forward speed variation. Three advance ratios are considered (=
0.125, 0.170, and 0.200), each with oy =3 deg and Cy/o =0.091. The
three neural network inputs are the advance ratio, the traverse location,
and the microphone position. Figure 5 shows the correlation plot from
a MISO 3-15-5-1 back-propagation neural network involving approxi-
mately 300 training data points. The back-propagation network is trained
for 1 million iterations with a final RMS error of 0.02. The neural network
representation is acceptable to within +/—1 dB.

Thrust variation. Four thrust coefficient ratios are considered (Cy /o =
0.060, 0.075, 0.091, and 0.100), each with ¢t =0.170 and o, =3 deg.
The three neural network inputs are the thrust coefficient ratio, traverse
location, and the microphone location. Figure 6 shows the correlation
plot from a MISO 3-15-5-1 back-propagation neural network involving
approximately 400 training data points. The back-propagation network
is trained for 1 million iterations with a final RMS error ol 0.04. Here as
well, the neural network representation is acceptable to within +/—1 dB.

Contour plots. Neural-network-based contour plots are obtained at a tilt-
rotor operating condition involving maximum blade vortex interaction
(1 =0.200, ¢y =4 deg, and Cy/o =0.075). The corresponding experi-
mental noise contour with 96 data points is shown in Fig. 7(a) (the approx-
imate rotor circle is also shown in the figure). A particular contour point
is identified by its microphone number (1 to 8) and its traverse location.
This case involves 96 neural network training points. The microphone
traverse location and the microphone position are the two neural network
inputs. The BVISPL noise measure is the single neural network output.

Figure 7(b) shows the representation for the 100% case using a radial-
basis function (RBF) neural network and training data from all 12 traverse
locations (involving 96 test points). Specifically, the contour plot from
a MISO 2-28-7-1 RBF neural network is shown. The RBF network is
trained for 4 million iterations with a final RMS error of 0.02. This RBF
neural network representation is accurate.

Figure 8(a) shows the representation for the 50% case using an RBF
neural network and training data from six traverse locations (involving
48 test points). This 50% case is important because halving the number
of traverse locations reduces the run time by approximately 50% per
traverse sweep. The six traverse locations are sclected by starting out
with the 275-inch traverse location and selecting every other location.
Here also, the contour plot from a MISO 2-28-7-1 RBF neural network
is shown. The RBF network is trained for 200,000 iterations with a final
RMS error of 0L02. This RBF neural network representation is accurate.
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Fig. 6. Correlation, thrust variation.

Figure 8(b) shows a representation for the 50% case using a back-
propagation neural network. In particular, the contour plot from a MISO
2-28-12-1 back-propagation neural network is presented. The back-
propagation network is trained for 800,000 iterations with a final RMS
error of 0.02. The secondary hot spotin Fig. 8(b) (12010 121 dB range) has
crroneously spread out near the O-inch traverse location. It erroneously
involves an additional microphone, Na. 4. Consequently, the RBF 50%
representation, Fig. 8(a), is closer to the test data. The back-propagation
neural network representation is thus not as accurate as the RBF neural
network representation.

It should be noted that Fig. 7(a) shows a +/—1 dB-resolution con-
tour plot based on test data acquired at the maximum BVI condition.
The corresponding contour plot extracted from the +/—2 dB neural net-
work representation of the complete database (discussed earlier, Fig. 4)
is shown in Fig. 9. The neural-network-based contour obtained using the
complete, experimental database is considered (o be reasonable and to
have captured the essential hot spot.

Prediction of noise

In this section, neural networks are used to predict noise at a test
condition not included in the neural network training database. This is
illustrated as follows.

The presently considered, complete, experimental noise database in-
cludes 21 sets of data obtained from traverse sweeps (corresponding to
21 test conditions). A single test condition is presently defined by the
three parameters: jt, o, and Cy/o. The noise curve based on an eight-
microphone measurement acquired at the 125-inch traverse location is
taken as the reference curve. These three test condition parameters and
the eight reference curve noise values formed the neural network inputs,
thus uniquely defining the complete noise map. Thus, the subject neu-
ral network has 11 inputs. Noise predictions (neural network outputs)
are required at 11 traverse locations (i.e., at traverse locations other than
the reference traverse location), and the subject neural network with the
eight-microphone setup has 88 outputs. The above definition of the sub-
ject problem is direct and involves the smallest amount of input data.
Also, the present neural network tilt-rotor noise-application with 11 in-
puts and 88 outputs, is a good test case. The test case results would
determine whether neural networks could efficiently model and predict
the full-scale tilt-rotor, multi-dimensional, nonlinear noise variations.

An examination ol the above 21 test conditions shows that the fol-
lowing near maximum BVI test condition with ¢t =0.170, ey =3 deg,
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Fig. 7. (a) Experimental tilt-rotor noise at maximum BVI condition. (b) Radial-basis function (RBF) neural network tilt-rotor noise at maximum
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Fig. 8. (a) Radial-basis function neural network tilt-rotor noise at maximum BVI condition, “50%?* case. (b} Back-propagation neural network

tilt-rotor noise at maximum BVI condition, “50%”’ case.

and Ct/o =0.091 is an appropriate choice for a neural-network-based
prediction of the noise. This selection is based on the availability of test
data at g =0.125, 0.170, and 0.200 at the above shaft angle and thrust
coelficient ratio. The test data used to evaluate the predictive capability
is not used in the training. The neural network training database con-
sists of noise data from 20 test conditions, excluding the above selected

condition. The neural network model is obtained from a MIMO 11-25-
10-88 back-propagation neural network. The back-propagation network
is trained for 50,000 iterations with a final RMS error of 0.02. Subse-
quently, it is found that the present neural network predictions and the
experimental noise data at the selected test condition are within +/—1 dB
of each other. The corresponding correlation plot is shown in Fig. 10(a).
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Fig. 9. Back-propagation neural network noise extracted from
“4/—2 dB” representation of complete, experimental database,
Fig. 4, maximum BVI condition, test data shown in Fig. 7(a).

Figure 10(b) shows the contour map of the error between the test data and
the neural network predictions. Figures 10(a) and 10(b) show the ability
of neural networks to predict tilt-rotor noise.

Conclusions

Specific conclusions from the present neural-network-based data-
quality-assessment and representation study on full-scale experimental
tilt-rotor noise data are as follows:

Neural networks were successfully used to assess the quality of noise

data as well as to represent the complete, experimental tilt-rotor

noise database. Neural networks were used to represent accurately the
noise data for the cases involving varying test conditions (test-condition-
sensitivity). Finally, neural networks were successfully used to predict
tilt-rotor noise within +/—1 dB using the minimal amount of input data.
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