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Results from a neural network study to validate full-scale XV-15 tilt-rotor experimental hover and forward flight data are 
presented. In the context of the present study, neural-network-based test data validation includes the folloning: test data 
representation, test data quality assessment (e.g., isolating "bad" test points), and finally, for outdoor hover measurements, 
wind correction procedure development. Two test databases, acquired during separate tests conducted a t  NASA Ames, 
were used. These two isolated XV-15 rotor test databases were obtained from tests in the SO- by 120-Font Wind Tunnel 
and an  outdoor hover test facility. Neural networks were successfully used to represent and assess the quality of full-scale 
tilt-rotor hover and forward flight performance test data. The neural networks accurately captured tilt-rotor performance 
a t  steady operating conditions and it  was shown that the wind tunnel forward flight performance test data were generally 
of very high quality. Compared to evisting momentum-theory based wind corrections to outdoor hover performance, the 
present neural-net~vork-procedure-based corrections were better. The present wind corrections procedure, based on a well- 
trained neural network, captured physical trends present in the outdoor hover test data that had been missed by the existing 
momentum-theory method. 

Neural Network Research on Validating Experimental 
Tilt-Rotor Performance 
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Nomenclature 

rotor disc area, nR2, m2 
rotor torque coefficient, t ~ r q u e / p A R V ~ ~  
rotor torque coeficient, corrected using momentum 
theory, Eq. 1 
rotor thrust coefficient, thrust/pAV:, 
rotor s ~ d e  force coefficient, Side force/pAV& 
figure of merit, FM =0.707C$"/~~ 
figure of merit, corrected using neural-network-based 
procedure, Eq. 4 
figure of merit, test 
neural network representation of figure of merit data where 
the wind is less than 0.5 d s  
blade tip Mach number 
multiple-input, multiple-output 
multiple-input, single-output 
rotor radius, m 
single-input, multiple-output 
single-input, single-output 
wind tunnel airspeed 
ideal induced hover velocity, V,i, (CT/2)li2, m/s 
ideal induced velocity, m/s 
blade tip speed, a R ,  m/s 
wind speed, m/s 
rotor shaft angle, positive nose up, deg 

figure of merit delta, difference between test and zero 
wind figures of merit, Eq. 3 
figure of merit delta predicted by neural network 
collective angle, deg 
ideal induced hover velocity ratio, Vh/V,;, 
ideal induced velocity ratio, Vj/V,i, 
rotor advance ratio, V cos c,/(aR) 
axial component of outdoor wind velocity ratio, 
(V, cos ilr,)/V,b, positive into rotor disk when viewed 
from above (direction opposite to thrust direction) 
lateral component of outdoor wind velocity ratio, 
(-V, sin J/,,)/V,~~, positive towards right when viewed 
from above (direction same as side force direction) 
rotor solidity ratio 
wind direction relative to rotor axis 
rotor rotation speed, radlsec 

Introduction 

The advantages of rotorcraft wind tunnel testing include cost and 
safety benefits, as the rotorcraft model is rigorously evaluated prior to 
its first flight test. By allowing significant operational variations to be 
systematically introduced into the test conditions, wind tunnel tests of 
experimental models provide valuable data. Further, these wind tunnel 
test conditions can be well outside the flight envelope. Thus, a wind 
tunnel test can encompass a larger test envelope compared to a flight test, - 
making wind tunnel testing indispensable. 

Based on a paper presented at the 16th AlAA Applied Aerodynamics Conference, Rotorcraft aerodynamic performance measurement and prediction in- 

Albuquerque, New Mexico, Junc 1998. m~nuscript received Novenlber 1998; volve a high a level of complexity, and it is difficult at times to even 
accepted February 2000. heuristically know the variation of the test data with changes in operating 
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conditions. Since the test data trends may be new and without precedent, 
it becomes difficult to expeditiously isolate "bad" data points from the 
"good" points. As such, it is more difficult to interpret the quality of the 
measured data and the trends projected by wind tunnel tests. For outdoor 
hover testing, the influence of outdoor winds has to be properly corrected 
when analyzing the test data. Thus, there is a need for a consistent, easy- 
to-understand and easy-to-apply process for evaluating and correcting 
data obtained from wind tunnel and hover facility tests. 

This paper presents results from a neural network study conducted 
to validate full-scale experimental tilt-rotor pelformance data. These ex- 
oerimental oerformance data include data obtained from a wind tunnel 
test facility and from an outdoor hover test facility. The outdoor perfor- 
mance data need to be "wind-corrected" to obtain the correct tilt-rotor 
hover performance characteristics. In the present study, the use of neural 
networks is justified because of their multi-dimensional, nonlinear curve 
fitting characteristics. The present work is considered to be a generic 
methodology and is not specific to the presently considered tilt-rotor 
configuration. Neural network studies on rotorcraft dynamics were ini- 
tiated in the ArmyNASA Rotorcraft Division at NASA Ames Research 
Center, as discussed in Refs. 1-4. The experience gained from these 
neural network studies was very useful in the present study on tilt-rotor 
aerodynamic performance. 

The present neural-network-based, full-scale XV-15 tilt-rotor perfor- 
mance study had the following objectives: 

1) Representation of Test Data Using Neural Networks. 
a. Obtain neural network representations of important variables (e.g., 

the hover figure of merit). 
b. Demonstrate sensitivity of selected measurements (e.g.. fonvard 

flight blade bending moments) to the test parameters, such as the rotor 
shaft angle and advance ratio. 

2) Assessment of Test Data Quality Using Neural Networks. 
a. Conduct data quality checks. 
b. Conduct quantitative error comparisons to provide an assessment 

of ove:all test data quality. 
3) Determination of Hover Wind Corrections Using Neural-Network- 

BasedProcedure. Formulate andimplement aneural-network-based wind 
correction procedure for outdoor, hover performance data. 

Neural Network Approach 

To accurately capture the required functional dependencies, the neu- 
ral network inputs must be carefully selected and account for all im- 
portant physical traits that are specific to the application. The important 
attributes of a neural network are its type (radial-basis function network 
or back-propagation network, etc.) and its complexity (i.e., the number 
of processing elements (PEs) and the number of hidden layers). The 
present overall neural network modeling approach (Refs. 1-5) consists 
of first determining the best type of neural network to be used and then 
simplifying the network as much as is practical. The latter step involves 
reducing the number of PEs and in a few cases, the number of hidden 
layers. The number of PEs required depends on the specific application. 
The determination of the appropriate number of PEs is done by starting 
with a minimum number of PEs. Additional PEs are added to improve 
neural network oerformance bvreducine theRMS error between the test " 
data and the neural network predictions. Typically, five PEs are initially 
added at each step in this process. Adding two or three PEs at a time 
"fine-tunes" the neural network. 

If the correlation plot, comparing measured and predicted values, 
shows only small deviat~ons from the 45 deg reference line, the neural 
network has produced an acceptable representation of the subject test 
data. If the plot shows points well of[ of the 45 deg line, the presence 
of "bad" test data is assumed. A detailed examination of the subject test 

database is then required to identify the source(s) of the errors associ- 
ated with these test data. As discussed under wind tunnel fonvard flight 
results, neural networks were successfully used to identify data subject 
to instrumentation errors. Also, the neural-network-based outdoor hover 
wind correction procedure illustrated herein is applied to test data with 
scatter. This scatter is partly due to stochastic errors, thus showing that 
neural networks can be applied to such real world situations. 

The notation used in this paper to characterize a neural network is 
describedasfollows. Aneural networkarchitecturesuchas "2-5-3"refers 
to a neural network with two inputs, five processing elements (PEs) in 
the single hidden layer, and three outputs. 

Tilt-Rotor Test Database Descriptions 

Wind tunnel hover and  forward flight test database 

Full-scale XV-15 tilt rotor test data for both hover and forward flight 
conditions (Ref. 6) were analyzed in this paper. The 25-ft diameter right 
hand rotor was installed on the NASA Ames Rotor Test Apparatus and 
tested in the NASA Ames 80- by 120-Foot Wind Tunnel. In hover, the 
shaft angle was varied from -15 deg to +15 deg from a vertical orien- 
tation. The relevant rotor performance variables in hover were the rotor 
torque coefficient, CQ, and the figure of merit, FM. In fonvard flight, 
the lateral and longitudinal cyclic pitch, advance ratio, pitch link loads, 
and the blade yoke chordwise- and flatwise-bending moments are also 
included. These data were acquired at wind tunnel airspeeds up to 80 
knots. 

Outdoor hover test database 

The full-scale outdoor XV-15 tilt-rotor hover test database was ac- 
quired as describedin Refs. 7 and 8. Thesame rotor system was installed 
on the NASA Ames Propeller Test Rig and tested in propeller mode at the 
outdoor facility. Both axial and lateral outdoor wind measurements were 
taken, adding two additional variables for this problem. The outdoor XV- 
15 tilt-rotor hover test database included points taken with wind speeds 
up to 3.5 d s .  The relevant rotor hover performance variables were CQ 
and FM. The present study considers hover test data with arotor tip Mach 
number of 0.69 only. 

Descriptions of Outdoor Wind-Correction Hover Analyses 

Momentum-theory-hased wind correction procedure 

References 7 and 8 give a wind correction procedure based on mo- 
mentum theory. The momentum-theory wind corrected rotor torque co- 
efficient CQconn~ is given as follows. 

Note that @y (lateral wind velocity ratio) is positive in the same direction 
as Cy (side forcecoefficient), andb, (axial windvelocity ratio) is positive 
in the opposite direction to CT. The parameter K is the ratio of actual 
induced power to ideal induced power and is assumed to be 1.16. The 
momentum theory corrected figures of merit data from Ref. 7 are used in I 
this paper for comparison purposes. I 
Neural-network-based wind correction procedure I 

A neural network wind correction procedure was formulated and suc- 
cessfully implemented during the course of this study, using the outdoor I 
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hover test data from Ref. 7. This procedure makes use of a "zero wind" 
neural network representation described below. This representation is 
based on reference variations that represent isolated rotor tilt-rotor hover 
performance, and which do not require any wind corrections. In the 
present study, the performance variables were CQ and FM, which for 
the zero wind case depend only on CT/a. 

In the present study, test data points with wind speeds <0.5 mls were 
defined to be zero wind points. The zero wind figure of merit represen- 
tation, referred to as FMm, is a function of only CT/u. and is indepen- 
dent of p, and wy. A two-hidden-layer back-propagation network with 
one input (CT/u) and three outputs (OO, CQ, and FM) was used in the 
present study to obtain FMzw. The present study considers wind cor- 
rections only to the figure of merit. Details on the training of the above 
back-propagation network are given in the Results section. 

Using the test figure of merit, FMm, (CT/U. p., wy), and the zero 
wind figure of merit neural network representation, FMnv (CT/u), the 
variations between these two, AT(C~/u .  fir, py). were formulated as 
follows: 

A two-hidden-layer back-propagation network with three inputs (CT/u. 
px, and fiy), and one output (A,) was trained in order to predict this 
variation. Details on the training of this neural network are also given in 
theResults section. The,leural-rzenvork-predictedvariations arereferred 
to as ATNN(CT/~,  wx. /ly) and represent the necessary windcorrections to 
yield the isolated rotor zero wind hover performance, FMconm(CT/u. 
fix, wy). obtained from the following equation: 

Results 

The application of neural networks to full-scale tilt-rotor hover and 
forward flight performance data was conducted using the neural net- 
works package Neuralworks Pro IVPLUS (version 5.2) by Neuralware 
(Ref. 9). The present neural network RMS error was dimensionless and 
based on the squares of the errors for each processing element (PE) in 
the output layer. Generally, the RMS error was characterized by a mono- 
tonic decrease with the number of training iterations (Ref. 3). Also, any 
large differences in the magnitudes of the neural network variables were 
mitigated by appropriate scaling. In the present application, the "cost 
function" used in minimizing the RMS error had equally weighted in- 
dividual contributions. The results from the neural network smdy using 
full-scale XV-I5 tilt-rotor performance data are presented below. 

I Neural-network-analysis of wind tunnel hover test data 

Measureda,~dderived~~e~~raIr~ehvo~'kinp~rts. 'boback-propagationnet- 
works were trained with twodifferent setsofinputs andoutputs, shown in 
Table 1 as cases 1 and 2. Figures 1 and 2 show the results from two MIMO 
2-5-3 back-propagation networks with inputs and outputs based on case 

Table 1. Neural network inputs and outputs 

Case Inputs Outputs 

1. no.  a. CT/V, Ca, FM 
2. C T / ~ ,  a s  eo, Ca, FM 

- 
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 

Test Cfo 

Fig. 1. Measured inputs: CTIO correlation (MIMO 2-5-3 back- 
propagation neural network). 

Test  Q,, deg 

Fig. 2. Derived inputs: collective correlation (MIMO 2-5-3 back- 
propagation neural network). 

I and case 2, respectively. The neural network notation "2-5-3" refers to 
a nehvork architecture with two inputs, five processing elements (PEs) 
in the single hidden layer, and three outputs. The MIMO 2-5-3 neural 
networks were both trained for 30,000 iterations with a final RMS error 
of 0.07 for both networks. For the case 1 data in Fig. 1, the scatter plot 
shows that the predicted CT/u variation clearly falls off from measured 
values at the highest thrust levels. For thecase 2 dataof Fig. 2, the scatter 
plot shows better agreement between predicted and test Oo values. The 
respective error bands are shown in Figs. I and 2. The back-propagation 
network with the case2 parameters as networkinputs wasjudged to more 
accurately represent the available test data. Therefore, CT/u is used as 
an input parameter for all neural networks discussed below. The fidelity 
achieved by using CT/u as an input may be due to the high accuracy of 
the balance used in the Rotor Test Apparatus. 

Figure of merit vemas CT/U vnriatiorr. The available test data (Ref. 6) 
consisted of figure of merit values for a range of CT/u3s from ap- 
proximately 0.02 to 0.12 for three shaft angle values: -15 deg, 0 deg, 
and +I5  deg. Figure 3 shows the results of three SlSO 1-2-3-1 back- 
propagation neural network fits, where the network input was CT/u and 
the network output was the figure of merit. Each neural network is for 
a single shaft angle. Each of the three back-propagation networks was 
trained for 20,000 iterations with a final RMS error of 0.02 for all three 
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Fig. 3. Figure of merit variation with C ~ l u :  3 SISO 1-2-3-1 hack- 
propagation neural network fits. 
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Fig. 4. Figure of merit variation with CTIu: MIMO 2-25-10-3 back. 
propagation neural network fit. 

networks. The decrease in the test figure of merit with thrust at very high 
values of thrust is basically due to rotor blade stall. The neural-network- 
based figure of merit representations of Fig. 3 did not capture such rotor 
stall effects for this wind tunnel database. Reasons for this discrepancy 
are not known. In general, neural network theory does not guarantee an 
adequate means for extrapolation. Thus, each application should be con- 
sidered individually. Successful extrapolation can only be obtained when 
the extrapolated region is reasonably close to the last data points. Also, 
whether an extrapolation is valid can be determined by additional testing 
involving expanded data domains. 

Figure 4 shows the result of a single MIMO 2-25-10-3 back-pro- 
pagationneural network fit, wherethe network inputs wereboth CT/U and 
a, and the network oulputs were On, CQ, and FM. The hack-pmpagation 
network was trained for 34,000 iterations with a final RMS error of 
0.02. Both global and more subtle effects are captured by this relatively 
complex 2-25-10-3 back-propagation neural network. The sensitivity of 
the figure of merit to the shaft angle is captured for the range of test 
thrust levels. However, similar to the above SISO applicatioi~, the neural- 
network-based figure of merit representations did not fully capture rotor 
stall effects. The advantage of the MlMO representation is that all test 
conditions can be included as inputs to a single neural network, leading 
to improved accuracy. In fact, the MIMO neural network representations 
from Fig. 4 provide almost level extrapolations in t h e C ~ / u  rangebetween 

0.12 and 0.14. This is an improvement over the SISO trends shown in 
Fig. 3. 

Neural-network-analysis of wind tunnel forward flight test data 

The following wind tunnel test parameters were selected as the for- 
ward flight neural network inputs: a,, @, and CT/U. Depending on the 
forward flight application under consideration, thc neural network out- 
p u t ( ~ )  were one of the following sets: i) the three control blade pitch 
angles, ii) the rotor torque coefficient, iii) the oscillatory pitch link loads, 
iv) the chordwise blade yoke bending moments (mean and oscillatory), 
or v) the flatwise blade yoke bending moments (mean and oscillatory). 
The test data used in this study is from Ref. 6. 

Roforco,~fmlseffi~tgs. The measuredcollective variation with shaft angle 
is plotted in Fig. 5. Figure 6 shows the scatter plot from a MIMO 3-10-3 
back-propagation neural network, where the neural network outputs were 
the collective, lateral and longitudinal cyclics. The back-propagation net- 
work was trained for 200,000 iterations with a final RMS error of 0.02. 
Similar results were achieved for the two cyclic angles (see Ref. 10). 
The neural-network-based representations for the three wind tunnel test 
controls were considered to be very good with no obvious "bad" points, 
indicating that thecontrols test data areacceptable. Thus, neural networks 
can be used for compact representation of test data control inputs. 

1 1 , 1 1 / 1 1 1  

Test data: Light. 1997 

-20 -16 -12 -8 -4  0 4 8 12 16 20 
S h a f t  angle ,  d e g  

Fig. 5. Wind tunnel test data: collective versus a, (varying p and 
CT~U),  fonvard flight. 

T e s t  collective, d e g  

Fig. 6. Forward Right collective correlation: MIMO 3-10-3 hack- 
propagation neural network. 
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, , , ,  , , , , 
Testdala: Light. 1997 

Shaft  angle ,  d e g  

Fig. 7. Wind tunnel test data: torque coefficient versus a, (varying 
p and CTIU), forward flight. 
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Test data: Light. 1997 
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1 Fig. 8. Forward flight torque coefficient correlation: MIMO 3-10-1 
back-propagation neural network. 

I Roror to,qiie coefficie,rt. The measured rotor torque coefficient variation 
with shaft angle is shown in Fig. 7. Figure 8 shows the scatter plot fmm 
a MISO 3-10-1 back-propagation neural network, where the neural net- 
work output was the rotor torque coefficient CQ. The back-propagation 
network was trained for 100,000 iterations with a final RMS error of 0.02. 
The neural-network-based representation for the wind tunnel test mtor 
torque coefficient, Fig. 8, was considered to be very good, indicating 
acceptable data quality. 

I 
Oscillutor~~pitclr link lauds. The forward flight oscillatory test pitch link 
load variation with shaft angle is shown in Fig. 9. Figure 10 shows the 
scatter plot from a MIS0 3-1 0-1 back-propagation neural network, where 
the output was the oscillatory pitch link load. The back-propagation net- 
work was trained for 200,000 iterations with a final RMS error of 0.07. 
The present neural-network-based representation for the oscillatory pitch 
link loads is within 10 lb of the correlation line, Fig. 10, which is consid- 
ered to be very good. This is important in that goodquality pitchlinkload 
measurements are very difficult to obtain during forward flight tests. The 
pitch link load database would be expected to have an inherently lower 
level of repeatability. 

Rlr,dejnhvise-be,idi~ix nmaenlr. The yoke flatwise mean and oscilla- 
tory bending moments for forward flight were analyzed. Figures 1 I and 
12 show the scatter plots from a MIMO 3-25-2 back-propagation neural 
network, where the neural network outputs were the mean and oscillatory 

180 1 Test data: Light, 1997 1 4 

Shaf t  angle ,  d e g  

Fig. 9. Wind tunnel test data: oscillatory pitch link load versus a, 
(varying p and C.I/U), forward flight. 

200 

Y 
C 140 

.- 
a 100 
v 

Test data: Light. 1997 

40 60 80 100120140160180200 
Tes t  pitch link load, lb 

Fig. 10. Forward flight oscillatory-pitch-link-load correlation: 
MIMO 3-10-1 hack-propagation nenral network. 

.- Tesldata: Light, 199 

.- 
v 

-1 10' -5 lo4 0 5 10' I lo5 
Tes t  flatwise-moment, in-lb 

Fig. 11. Forward flight mean flatwise moment correlation: MIMO 
3-25-2 hack-propagation neural network. 

flatwise-bending moments. The back-propagation network was trained 
for 200,000 iterations with an RMS error of 0.14. Fordata shown in Figs. 
I I and 12, correlation points far away from the correlation line were 
judged as "bad" test data points. An examination of the flatwise-bending 
moment database led to the observation that some data points were not 
repeatable, possibly due to instrumentation problems. Indeed, the present 
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Fig. 12. Forward flight oscillatory flatwise moment correlation: 
MIMO 3-25-2 back-propagation neural network. 

neural network analysis suggests that approximately 5% of the flatwise- 
bending moment database is questionable, based on the number of points 
outside of a &10,000 in-lb band. This demonstrates the ability of neural 
networks to indicate data of poor quality. However, the analyst should 
not solely rely on the neural-network-based correlation performance to 
eliminate test data. This process does, however, contribute to data assess- 
ment. 

Blade chordwise-bending momenrs. The yoke chordwise mean and os- 
cillatory bending moments in forward flight wereconsidered in the neural 
network study. A MIMO 3-7-2 back-propagation neural network, where 
the neural network outputs were the mean and oscillatory chordwise- 
bending moments, was trained for 200,000 iterations, yielding a final 
RMS error of 0.02. The resulting scatter plots, which are not shown, 
did not indicate any "bad  points. Thus, the neural-network-based rep- 
resentations were considered very good for the blade yoke mean and 
oscillatory chordwise-bending moments and the data quality was found 
to be acceptable. 

Neural-network-based, outdoor hover wind-correction procedure 

Ourdoor hover testdnta. The XV-15 tilt-rotor was installed with its axis 
oriented horizontally on the NASA Ames Propeller Test Rig and tested 
at this outdoor facility. Both axial and lateral wind measurements were 
taken, thus adding two more variables. The relevant rotor hover perfor- 
mance variables were Cr /o ,  OO, Cp, and FM. The hover test data is with 
a rotor tip mach number of 0.69. For this study, the outdoor tilt-rotor 
hover test database consisted of 150 data points and included data with 
winds up to speeds of 3.5 mls. 

Zeta ivind neural rrerwork r.epresenrah'o,!. These data include points 
where the wind speed was less than 0.5 mls, and included 25 test points. 
Figure 13 shows data for these 25 points and the resulting neural network 
representation derived from a SIMO 1-7-5-3 back-propagation neural 
network. The network input was Cr/o and its three outputs were Oo, 
Cp, and FM. The back-propagation network was trained for 55,000 it- 
erations with a final RMS error of 0.02. This zero wind neural network 
representation for the figure of merit is referred to as FMnv (CT/U). The 
non-linear stall induced characteristics are captured by the analysis. 

Figrrre of nzerit delta (FM-delra) calculafion. Figure 14 shows both the 
full database and the zero wind neural network representation (Fig. 13). 
The differences between thetest data and zero windneural networkrepre- 

Fig. 13. Outdoor "zero wind" representation (SIMO 1-7-5-3 back- 
propagation neural network), winds ~0.5 d s .  

~ & t  data: Felker, et al., 1965 

0 8  F 

Fig. 14. Outdoor test data and zero wind curve. 

, , , , , , , r , l , , , , / , , , ,  
M5 = 0.69 
Basic test data: Felker, el al.. I985 

Fig. 15. Test and M I S 0  3-7-5-1 back-propagation neural-network- 
predicted figure of merit deltas (AT'S and A ~ N ' s ,  respectively). 

sentation figures of merit were calculated from Eq. 3. These differences 
are shown in Fig. 15 as open symbols. Neural-network-predicted dif- 
ferences obtained from a MISO 3-7-5-1 back-propagation network with 
three inputs CT/u. px,  and wy, and one output AT are shown in Fig. 15 
as solid circles. The back-propagation network was trained for 55,000 
iterations with a final RMS error of 0.16. 



1 JULY 2000 NEURAL NETWORK RESEARCH ON VALIDATING EXPERIMENTAL TILT-ROTOR PERFORMANCE 205 

1 B ~ I C I ~ S I  data: Felker. et al.. 198s 1 

1 f I Conected, present neural rnelhod 
- Zem wind, back-prapa~atlon 

c f o  

I Fig. 16. Neural-network-corrected figure of merit. 

MI*= 0.69 
Basic tesl data: Felker. el al.. 1985 

Corrected. Felker, et al. 

Fig. 17. Momentum-theory-corrected figure of merit (Ref. 7). 

1 Neaml-,rehvork-cn~'recfedjgrire of merit. The wind-corrected figure of 
merit (FMconnNN) obtained from the present neural network approach is 
given by Eq. 4. Figure I6 shows the corrected figure of merit obtained 
from the present neural network approach and the zero wind neural net- 
work representation, illustrating that the neural-network-based wind cor- 
rection procedure gives much improved results. Figure 16 also shows the 
worst errorforacorrecteddatapoint atCT/o % 0.12. Subsequently, it was 
found that the orieinal test data ooint was not valid. This was concluded - 
by comparing the FM-deltas for data at CT/a 0 0 . 1 2  with similar wind 
conditions. The above noted point had an FM-delta much different from 
the others. Thus, in Fig. 16 the data point at CT/a %0.12 that stands out 
can be ignored and its final error does not reflect on the neural network 
correction procedure. 

Comparison to  other figure of merit correction results 

Figure 17 shows corrected figure of merit results from Ref. 7. The 
prcsent results in Fig. 16 appear more accurate with respect to scatter. 
The RMS errors associated with the present analysis and those of Ref. 7 
were 0.01 and 0.02, respectively. This shows that corrections from the 
present analysis are more accurate compared to previously published 
results for wind corrections. 

A fuflher comparison can be made to the results from the three wind 
tunnel cases considered previously. The rotor shaft orientation for the 
outdoor case was fixed, and for this case, the above-defined error was 
0.01. For the three wind tunnel cases, the rotor shait angle was: -15 deg 

x Test, Felker. el a1.,1985 
o Correctad, Felker. el a1..1985 . Corrected, present neural method 

Zero wind. back-~m~aaation 

Fig. 18. Hover torque coefficient comparison, neural-network-based 
and momentum-theory-based. 

(nose down position), 0 deg, and 15 deg. The above-defined errors for 
these three wind tunnel cases were: 0.05, 0.03, and 0.03, respectively. 
These results show that, compared to data from the wind tunnel, corrected 
outdoor facility data produced more accurate performance projections. 

The hover rotor torque coefficients were obtained by using the fol- 
lowing equation from Ref. I I :  

The corrected FM's have been calculated earlier in the study using a 
neural-networks-based windcorrectionprocedureandalsoobtainedfrom 
the existing, momentum-theory-based method. Figure 18 compares re- 
sultsfrom thcse two methods. Asexpectedfrom the present figureofmerit 
results, Fig. 18 shows that the neural-network-corrected torque coeffi- 
cients were more accurate than the momentum-theoly-corrected torque 
coefficients. The zero-wind-based RMS errors for the neural-network- 
basedandthemomentum-theoly-basederrorsare: 1 x 10-5and2 x lo-', 
respectively. This again confirms that the present neural-network-based 
windcorrectionsaremore accuratecompared to theexisting, momentum- 
theory-based wind corrections. 

Conclusions 

Specific conclusions from the present neural-network-based valida- 
tion study on full-scale experimental tilt-rotor performance data were as 
follows: 

I )  Neural networks were successfully used torepresent and assess the 
quality of tilt-rotor hover and forward flight performance and dynamic 
response test data. 

2) In forward flight, measured rotor pitch settings, rotor torque, pitch 
link loads, and chordwise-bending moments were shown to have very 
acceptable dataquality using neural networks. This conclusion was based 
on the very good correlation between the test data and the neural network 
predictions. 

3) Approximately 5% of the neural network predictions of the 
yoke flatwise-bending moment correlated poorly with the test data. 
Examination of this test database showed that these test data lacked re- 
peatability. This demonstrates that a well-trained neural network can 
identiry data that are problematic. 

4) Compared to existing, momentum-theory-method based wind cor- 
rections to outdoor hover performance, the neural-network-procedure 
corrections were better. Basically, the well-trained neural network suc- 
cessfully represented or mapped the test data. 
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