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ABSTRACT1 

The present research provides a performance comparison between several low Reynolds number airfoil 
profiles for the Mars Helicopter. The low density of the Martian atmosphere and the relatively small Mars 
Helicopter rotor result in very low chord-based Reynolds number flows, 𝑅𝑒# = 𝑂(103 − 104). At low 
Reynolds numbers, flat and cambered plates can outperform conventional airfoils, making them of interest 
for the Mars Helicopter rotor. Performance models are generated for the Mars Helicopter rotor based on a 
free wake analysis, and the results are compared with Mars Helicopter isolated rotor performance from 
previous work. A Reynolds-Averaged Navier-Stokes based approach is used to generate the airfoil deck using 
OVERFLOW. The model is constructed using airfoil data tables (C81 files) that are used by the 
comprehensive rotor analysis code CAMRADII. Performance results for the Martian atmosphere show 
improved performance for the cambered plate rotor over conventional airfoils, in terms of thrust for equal 
power and Figure of Merit for equal blade loading. The cambered flat plate airfoil produces 7% larger 
maximum rotor thrust versus the Mars Helicopter airfoils, and 5% larger Figure of Merit over the design 
thrust coefficient range. Larger maximum thrust allows an increase of design blade loading for the same 
thrust range for control authority, whereas the larger Figure of Merit reduces power requirements. 
 

NOTATION 

𝑐 airfoil chord 
𝑐) section drag coefficient 
𝑐* section lift coefficient 
𝑐+ section moment coefficient 
𝐶-  thrust coefficient 
𝑓 airfoil camber 
𝑔 gravitational acceleration 
𝑀 Mach number 
𝑛 amplification factor 
𝑝 pressure 
𝑅 gas constant; rotor radius 
𝑟 rotor radial coordinate  
𝑅𝑒 Reynolds number 
𝑅𝑒# chord-based Reynolds number 
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𝑅𝑒4∗ displacement thickness Reynolds number  
𝑅𝑒67 displacement thickness Reynolds number 

at transition 
𝑡 airfoil thickness 
𝑇  absolute temperature 
𝑥 airfoil x-coordinate 
𝑥*; x-coordinate of laminar separation 

𝛼 angle of attack 
𝛾 specific heat ratio; intermittency 
𝜇 dynamic viscosity; mean 
𝜌 density 
𝜎 standard deviation; rotor solidity 

𝐴𝐹𝑇  Amplification Factor Transport 
𝐴𝑃𝐿 Johns Hopkins University Applied 

Physics Laboratory 



 2 

𝐴𝑅 Aspect Ratio 
𝐵𝐷𝐹2 Backward Difference Formula (2nd order) 
𝐵𝐿 Boundary Layer 
𝐶𝐹𝐷 Computational Fluid Dynamics  
𝐶𝑂2 Carbon Dioxide 
𝐷𝑁𝑆 Direct Numerical Simulation 
𝐹𝑀 Figure of Merit 
𝐽𝑃𝐿 Jet Propulsion Laboratory 
𝐾𝐻 Kelvin-Helmholtz  
𝐿𝐸𝑆 Large Eddy Simulation 
𝐿𝐸𝑉  Leading Edge Vortex 
𝐿𝑆𝐵 Laminar Separation Bubble 
𝑀𝐴𝑉  Micro Aerial Vehicles 
𝑀𝐶 Mars Condition 
𝑀𝐻 Mars Helicopter 
𝑃𝐼𝑉  Particle Image Velocimetry 
𝑅𝐴𝑁𝑆 Reynolds-Averaged  Navier-Stokes 
𝑆𝐴 Spalart-Allmaras  
𝑆𝐿𝑆 Sea Level Standard 
𝑇𝐼 Turbulence Intensity 
𝑇𝑆 Tollmien-Schlichting 
𝑈𝐴𝑉  Unmanned Aerial Vehicle 
𝑉𝑇𝑂𝐿 Vertical Take-Off and Landing 

INTRODUCTION 

Advances in the fields of electronics, batteries, 
and electric motors have enabled broad adoption 
of small-scale aircraft for various terrestrial 
applications. Numerous Micro Aerial Vehicles 
(MAVs) and small Unmanned Aerial Vehicles 
(UAVs), both civil and military, are in use today. 
Operation at their design flight condition often 
requires rotors, propellers, or wings to perform at 
Reynolds numbers significantly below 500,000. 
The chord-based Reynolds number for these 
small-scale rotors usually requires knowledge of 
airfoil performance at even lower Reynolds 
numbers. 

The use of rotary wing UAVs for aerial 
mobility for planetary exploration has been 
studied lately [1], [2], notably the designs for the 
exploration of Mars and Titan by the Jet 
Propulsion Laboratory (JPL) Mars Helicopter 
(MH) [3] and the Dragonfly by Johns Hopkins 
University Applied Physics Laboratory (APL) [4], 
respectively. Both these vehicles have the unique 
ability, amongst others, to cover the resolution 
gap between orbiters and ground based rovers. 
The present work will compare several airfoils for 
the very low Reynolds number regime of the JPL 
MH. The chord-based Reynolds number 

distribution for the MH rotor covers from roughly 
𝑅𝑒# ≈ 103 to 104. The span wise Reynolds 
number distribution over the rotor is presented in 
Figure 1. 

 
Figure 1. Approximate span wise Reynolds number 
distribution for the MH rotor in the Martian atmosphere 
(reproduced from Koning, Johnson, and Allan [7]) 

The NASA Jet Propulsion Laboratory designed 
the Mars Helicopter in collaboration with 
AeroVironment Inc., NASA Ames Research 
Center, and NASA Langley Research Center to 
explore the possibility of a Vertical Take-Off and 
Landing (VTOL) UAV for flight on Mars. The 
MH serves as a technology demonstrator, 
eventually intended to perform low-altitude flight 
in the Martian atmosphere. 

The Martian environment provides major 
challenges for the design of the UAV. In 2014, 
Balaram and Tokumaru published an initial 
paper describing the conceptual design of the 
current Mars Helicopter [5]. More recently, Grip 
et al. published a paper describing the flight 
dynamics of the MH and experimental testing in 
the 25-ft. diameter Space Simulator at JPL [6]. 
Balaram et al. describe the key design features 
and results from a full-scale prototype [3]. 

The design of the MH is a solar powered co-
axial helicopter with a mass of roughly 1.8 kg and 
a 1.21 m rotor diameter. The helicopter is battery 
powered allowing up to 90 s flight endurance that, 
because of the communication delay between 
Earth and Mars, will be conducted fully 
autonomously. 

A prerequisite for satisfactory rotor 
performance is the proper design of the airfoil 
sections over the span. The very low Reynolds 
number regime is not well understood and little 
experimental and simulation work exists to date. 
The low lift-to-drag ratios of airfoils at very low 
Reynolds numbers only show that it is critical to 
understand the flow physics in order to maximize 
performance metrics [8]. The present work limits 
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itself to the investigation of two-dimensional 
airfoil flow physics and the subsequent 
characteristics for rotor performance prediction 
using comprehensive analyses. An identical twist 
and chord distribution to that of the MH rotor is 
used, and the original design is compared to flat 
plate and cambered plate airfoils to investigate 
low Reynolds number rotor performance. The 
rotor performance is compared to the performance 
estimation for the proposed MH rotor design, as 
analyzed by Koning, Johnson, and Allan [7]. 

LOW REYNOLDS NUMBER 
 AIRFOIL AERODYNAMICS 

At low Reynolds numbers the aerodynamic 
performance of airfoil sections drops. At a critical 
Reynolds number, flat and cambered plates can 
outperform smooth airfoils [9]–[15]. Figure 2 
shows a summary of airfoil performance versus 
Reynolds number from McMasters and Henderson 
[10]. Performance of smooth airfoils drops rapidly 
as the Reynolds number is reduced below 
approximately 𝑅𝑒# ≈ 105. The performance of a 
locust is included for reference in the figure as 
insects and birds tend to operate at very low 
Reynolds numbers. 

McMasters and Henderson also present the 
minimum section drag versus Reynolds number, 
shown in Figure 3, which shows a rise in drag for 
smooth airfoils at the same critical Reynolds 
number. These figures demonstrate the need to 
evaluate flat or cambered plate airfoils for rotors 
in the chord-based Reynolds number range of the 
MH rotor. 

 
Figure 2. Maximum section lift to drag ratio versus Reynolds 
number (reproduced from McMasters and Henderson [10]) 

The substantial change in airfoil performance is 
related to boundary layer transition on the airfoil 
as a function of Reynolds number. At low 
Reynolds numbers the boundary layer can be fully 
laminar up to the point of separation without 

subsequent (turbulent) flow reattachment or on-
body transition. The flow state is then called 
subcritical. The Reynolds number at which 
laminar flow over an airfoil just begins to exhibit 
turbulent features (either due to transition or 
turbulent reattachment) is called the critical 
Reynolds number; roughly the region at 𝑅𝑒# ≈
105 in Figure 2 and Figure 3. Reynolds numbers 
where turbulent transition always occurs before 
laminar separation or during/after reattachment 
are referred to as supercritical. 

 
Figure 3. Minimum section drag coefficient versus Reynolds 
number (reproduced from McMasters and Henderson [10]) 

The critical Reynolds number is affected by the 
state of the boundary layer, which is primarily a 
function of the Reynolds number, section shape, 
lift coefficient, free stream turbulence, external 
disturbances, and surface roughness [9], [16]. 

LOW RE AIRFOIL PERFORMANCE 

In the very low Reynolds number regime, the 
boundary layer can still be laminar after the point 
of pressure recovery. The laminar boundary layer 
is prone to separation as the adverse pressure 
gradient rises with increasing lift coefficient. Early 
separation causes large drag coefficients in 
subcritical flow (an order of magnitude higher 
than their supercritical counterparts, as shown in 
Figure 2).  

The relatively thick boundary layer at low 
Reynolds numbers reduces the effective camber of 
the airfoil which in turn reduces the attainable lift 
coefficient, especially if a separated shear layer 
fails to reattach. Lift coefficients are not decreased 
to the same extent as the increase in section drag 
coefficient, resulting in low lift to drag ratios for 
airfoils in the subcritical flow state. 

SEPARATION BUBBLES 

The laminar separated shear layer is susceptible 
to transition, and can undergo rapid (in time or 
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space) transition to turbulent flow. The increased 
entrainment by the separated shear layer can lead 
to reattachment of the flow, creating a Laminar 
Separation Bubble (LSB) [16], [17]. The low 
velocities inside the bubble are linked to the 
characteristic flat pressure distribution of an LSB. 

Periodic unsteadiness can be observed due to 
the unstable reattachment region caused by 
fluctuating entrainment of the fluid in the shear 
layer, periodic stabilization of the reverse-flow 
boundary layer, and possible developing eddy 
structures [18]. Movement of the bubble over the 
airfoil can therefore occur, as also observed by 
Gaster [19]. Pauley, Moin, and Reynolds [20] 
found the magnitude of the adverse pressure 
gradient to be the criterion for the onset of vortex 
shedding after laminar separation. 

In addition to Tollmien-Schlichting (TS) 
instabilities, the shear layer flow is also observed 
to oscillate due to Kelvin-Helmholtz (KH) 
instabilities [18], which, if the flow does not 
reattach, could develop into KH vortices  having 
an impact on fluctuating forces on the airfoil [17]. 
At high Mach numbers, possible shock-induced 
separation and transition cause additional 
complexities in the flow.  

If an LSB occurs at the low Reynolds number, 
the level of freestream turbulence intensity can 
alter when (or if) reattachment occurs, and as 
such can strongly affect expected airfoil 
performance [13]. Angle of attack changes and 
boundary layer receptivity (the process by which 
free-stream disturbances influence or generate 
instabilities in the boundary layer) can greatly 
influence bubble formation [21] and thus airfoil 
performance [22] which is linked to the often 
significant hysteresis encountered in experimental 
low Reynolds number research around 𝑅𝑒# ≈ 105 
[9], [21].  

On the other hand, continued reduction of the 
Reynolds number will cause the flow to fail to 
reattach, therefore not creating a closed LSB [16]. 
For helicopter rotors the boundary layer 
receptivity, angle of attack changes, and 
vibrations can change with flight condition and 
azimuthal location, thus making evaluation of 
LSBs very important at lower Reynolds numbers 
for rotor performance (and vibration) estimates. 

Mueller and DeLaurier [23] state, after 
Carmichael [12], that for airfoils below 𝑅𝑒# ≈
5.0 ∙ 104 the free shear layer after laminar 
separation does not normally transition to 
turbulent flow in time to reattach to the airfoil 
surface. Lissaman [24] also observes complete 
laminar flow can occur for small angles of attack 
below 𝑅𝑒# ≈ 3 ∙ 104, with boundary layer 
reattachment unlikely below 𝑅𝑒# ≈ 7 ∙ 104. 

Wang et al. [22] and Huang and Lin [25] 
investigated flow structures and characteristics of 
vortex shedding for an NACA 0012 airfoil. Eight 
distinct flow patterns were identified based on 
angle of attack and Reynolds number. Figure 4 
shows the different flow structures and stall 
modes for the NACA 0012 airfoil, showing more 
modes than the classic leading edge stall, trailing 
edge stall, and thin-airfoil stall known for higher 
Reynolds number regimes [26], [27]. 

 

 
Figure 4. Schematic of flow structures around NACA 0012 
airfoil for each Reynolds number regime (reproduced from 
Wang et al. [22]) 

A thorough investigation on vortex shedding at 
low Reynolds numbers was performed by 
Yarusevych, Sullivan, and Kawall [28]. 

LEADING EDGE VORTEX 

The LSB can form a Leading Edge Vortex (LEV) 
when located at the leading edge and subjected to 
a sufficiently large axial flow component (high 
wing sweep and wing dynamics  are the prime 
causes [29]). This cannot be captured using two-
dimensional Computational Fluid Dynamics 
(CFD).  

Helicopter rotors do not usually exhibit a 
large component of axial flow, although highly 
twisted blades can have span wise flows that 
substantially influence stall characteristics and 
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can cause stall delay. This makes a stable LEV 
unlikely for a conventional rotor and therefore no 
LEV-induced lift coefficient increases are 
expected to occur. With sufficient axial flow over 
the wing, the spiral LEV can occur, but only in 
the low Reynolds number regime at laminar 
Reynolds numbers; transition to turbulence has 
been observed to break the flow structure down 
to the usual two-dimensional instability [30]. At 
very low flight Reynolds numbers associated with 
the flapping wings of insects and birds, the LEV 
allows for relatively high lift coefficients. 

CAMBERED AND FLAT PLATE PERFORMANCE 

Flat plates, especially with sharp leading edges, 
behave differently at low Reynolds numbers than 
conventional airfoils. Hoerner [9] presents insight 
into differences in performance between a flat 
plate and airfoil crossing the critical Reynolds 
number transition region. The section lift and 
drag coefficient behaviors are shown in Figure 5 
and Figure 6, respectively. 

 
Figure 5. Variation of section lift coefficient with Reynolds 
number at constant angle of attack (reproduced from 
Hoerner [9]) 

The flat plates in the comparison have a thickness 
ratio of 𝑡 𝑐⁄ = 3.0%. A low thickness ratio has a 
beneficial effect on the drag coefficient [31], [32].  

The sharper the leading edge, the earlier 
transition starts [11]. For all positive angles of 
attack, the stagnation point moves downstream 
on the lower surface, creating a turbulent edge, 
essentially forcing supercritical behavior up to 
very low Reynolds numbers. A sharp leading edge 
flat plate will therefore not exhibit a critical 
Reynolds number because the point of breakaway 
is fixed. The turbulent edge has both an 
immediate and a fixed transition location at all 
non-zero angles of attack [11]. Crompton indicates 

the high shear turbulent fluid feedback and 
natural KH instability as main reasons for rapid 
transition [18]. He found the transition to 
turbulence to be at 𝑥 𝑐⁄ ≈ 2.5% for flat plates at 
𝑅𝑒# ≈ 104 − 105 [18]. Schmitz [11] notes that 
beneficial turbulent reattachment occurs for flat 
plates up to angles of attack around 𝛼 ≈ 7° − 10°, 
whereas Crompton indicates reattachment up to 
𝛼 ≈ 5°. Laitone [13] reports a similar range and 
observes for 𝑅𝑒# < 4.0 ∙ 104 and 𝛼 < 8° that the 
large leading edge bubble (compared to blunt 
leading edges) is replaced by continuous shedding 
of small vortices over the upper surface, thereby 
mitigating the effects of total flow separation. 

 
Figure 6. Variation of section drag coefficient with Reynolds 
number at constant angle of attack (reproduced from 
Hoerner [9]) 

Neither the trailing edge shape [13], [33], nor 
freestream turbulence levels [33], seem to impact 
cambered flat plate performance to any 
significance. No hysteresis  occurs for thin flat 
plates, compared to that observed for thicker 
airfoils, because the nose turbulence increases 
faster than the pressure increase [11]. Okamoto et 
al., Laitone, and Pelletier and Mueller show the 
comparatively low influence of freestream 
turbulence [13], [32], [33]. 

However, there must be a Reynolds number 
at which the flow does not transition to 
turbulence, despite the sharp leading edge. 
Indeed, flat plates at low Reynolds numbers 
around 𝑅𝑒# ≈ 104 have been shown to have 
laminar flows without transition to turbulence 
[34], [35]. 

Camber usually has a positive effect on plate 
performance because of the low incidence angle 
between the freestream and the camber line at the 
leading edge. The turbulence generated by the 
sharp leading edge and the concave underside 
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both aid in lift generation, while sufficiently small 
upper surface camber allows largely attached flow 
[11]. 

The flow modes for the NACA 0012 as shown 
in Figure 4 are likely to have slightly different 
equivalents for flat plates. Mode B is unlikely to 
exist as separation is immediate from the leading 
edge. Mode A must exist, but it is not known over 
what Reynolds number range and what the 
dependency and influence of the sharp leading 
edge is. Flow modes C and D are combined as the 
flat plate will initially separate but can reattach 
(and possibly separate again). The cambered flat 
plate allows, on the contrary, most likely a 
separate flow mode B and D due to the camber of 
the upper surface. 

Experimental results seem to contradict each 
other on whether turbulent reattachment of the 
separated shear layer from the leading edge of a 
flat plate indeed occurs. Laitone [13] does not 
mention an LSB, and Pelletier and Mueller [33] 
do not observe an LSB for (cambered) flat plates 
and airfoils around 𝑅𝑒# ≈ 104. In the 
experimental work by Suwa et al. [36] and Anyoji 
et al. [37], [38], however, the existence of an LSB 
is deduced from the pressure distribution obtained 
via pressure sensitive paint observations for 
similar geometry and Reynolds numbers. Anyoji 
et al. found the flat plate reattachment state  to 
disappear between 𝑅𝑒# ≈ 4.3 ∙ 103 − 1.1 ∙ 104 [37]. 
It is unclear to what extent the evaluation of the 
flow field using time-accurate and time-averaged 
methods might skew observations as to the 
existence of an LSB. 

Schmitz says 𝑅𝑒# ≈ 1.0 ∙ 104 − 2.0 ∙ 104 is 
enough for sharp leading edge boundary layer 
transition [11]. Werle shows a flat plate at 𝛼 ≈
2.5° and 𝑅𝑒# ≈ 1.0 ∙ 104 with laminar 
reattachment, whereas at 𝑅𝑒# ≈ 5.0 ∙ 104 the 
shear layer turns turbulent prior to reattachment 
[34], [35]. 

Using Direct Numerical Simulation (DNS) 
Sampaio, Rezende, and Nieckele [39] show the 
possibility of a secondary separation bubble. This 
bubble was also observed by Crompton [18] 
experimentally. A sketch of the separation bubble 
on a flat plate is provided in Figure 7. 

 

 
Figure 7. Sketch of laminar leading edge separation bubble 
(not to scale, created referring to Sampaio et al. [39]) 

When the reattachment point reaches the trailing 
edge, the bubble effectively ‘bursts’, which is 
likely to be periodic vortex shedding [11], [20]. 

MARS ATMOSPHERIC CONDITIONS 

The low density Martian atmosphere and the 
relatively small MH rotor result in very low 
chord-based Reynolds number flows of around 
𝑅𝑒# ≈  1.5 ∙  104. Furthermore, the low density 
and low Reynolds number reduce the lifting force 
and lifting efficiency, respectively, which are only 
marginally compensated for at the vehicle level by 
a lower gravitational acceleration of 
approximately 𝑔 = 3.71 𝑚/𝑠2.  

The low density requires a high tip speed to 
generate thrust. However, the low temperature 
and largely CO2-based atmosphere result in a low 
speed of sound, further constraining rotor 
operation in the Martian atmosphere by 
increasing compressibility effects [7]. 

Operation of the MH rotor in the Martian 
atmosphere occurs at a rare combination of high 
Mach and low Reynolds number. It is estimated 
that the Mach-Reynolds number combination 
results in a Knudsen number low enough for the 
flow to be considered a no-slip continuum [9]. 

JPL MARS HELICOPTER ROTOR 
PERFORMANCE 

Koning et al. [7] generated an aerodynamic rotor 
model for comprehensive analyses for the JPL MH 
in hover. For very low Reynolds number flows 
turbulent transition is often pre-assumed. An 
approximate stability analysis using the 𝑒U 
method of Smith and Gamberoni [40] and van 
Ingen [41] was performed using two-dimensional 
boundary layer analysis [42], [43] over the airfoils 
to estimate the transition likelihood in 
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combination with the stability charts by 
Wazzan et al. [44].  

Even though the standard two-dimensional 
boundary layer approximation assumes a 
relatively thin boundary layer, comparisons 
between the boundary layer approximations, the 
thin-layer Reynolds-Averaged Navier-Stokes 
(RANS) approach, and a full RANS solution 
using OVERFLOW showed only small differences 
in laminar separation location and aerodynamic 
coefficients for the airfoils under consideration. In 
absence of test data, the minor differences were 
considered to be beyond the confidence in any of 
the results. 

Tollmien-Schlichting (TS) waves were 
assumed to be the dominant transition-initiating 
mechanism. Beyond the instability limit (where 
amplification of disturbances first becomes 
possible), the amplification of TS waves in the BL 
was not sufficient to cause transition, with the 
cumulative amplification ratio, or transition 
parameter, 𝑛 being extremely low at the point of 
laminar separation (the largest positive 
amplification rate calculated is 𝑛 ≤  1 for the 
majority of airfoils). With normally used total 
amplification ratio values 4 < 𝑛 < 14 to account 
for various levels of freesteam turbulence, 
transition is still unlikely, unless bypass transition 
is the dominant transition mechanism. Dust, 
vibrations, and freestream turbulence all reduce 
the computed necessary amplification. Usually 𝑛 
is reduced to reflect those conditions. The 
conditions have to be very severe if 𝑛 reduces from 
𝑛 ≈ 9 down to 𝑛 ≈ 1. 

The subsequent possibility of transition in the 
separated shear layer was ruled out through a 
combined interpretation of the Owen-Klanfer 
criterion [45] and Schubauer and Klebanoff’s 
condition [46]. Schubauer and Klebanoff found 
that turbulent spots grow only very slowly for 
displacement thickness Reynolds numbers less 
than 𝑅𝑒4∗ ≈ 450. The Owen-Klanfer criterion 
predicts bubble type (long or short) based on the 
magnitude of 𝑅𝑒4∗. Rapid transition becomes 
possible for a Reynolds number exceeding 𝑅𝑒4∗ ≈
450 − 500. Crabtree [47], and later, Moore [48], 
interpreted the criterion as a condition for the 
growth of turbulent spots, thereby  coinciding 
with the work by Schubauer and Klebanoff. This 

was summarized by Carmichael [12] stating that 
a Laminar Separation Bubble (LSB) for a 
Reynolds number with laminar separation below 
𝑅𝑒4∗ ≈ 500, is unlikely.  

The analysis of the Mars Helicopter airfoils 
[7], [49] showed average displacement thickness 
Reynolds numbers at the point of laminar 
separation of 𝑅𝑒4∗ ≈ 300, thereby concluding no 
transition takes place in time for reattachment of 
the boundary layer. This is in line with general 
observations of Mueller and DeLaurier [23], 
Lissaman [24], and Carmichael [12] at those 
Reynolds numbers. Furthermore, the airfoils of 
the MH showed a laminar separation point 
relatively far downstream (𝑥*;/𝑐 ≈ 0.80 for the 
majority of the upper rotor), reducing the possible 
time (and space) for turbulent transition and 
subsequent reattachment.  

The above determination of the BL state 
allowed for the proper setup of the CFD 
simulations to develop the MH rotor model. 
Figure 8 presents a comparison between the 
calculated Figure of Merit (FM) and free flight 
data from JPL’s 25-ft. diameter Space Simulator. 

 
Figure 8. MH rotor Figure of Merit versus blade loading for 
all Martian Conditions [7] 

The measured shaft power was obtained from 
motor power using a nearly constant motor/drive 
efficiency of 78%. Evaluation of the effect of the 
upper rotor wake on transition of the lower rotor 
boundary layer was not attempted. 

COMPUTATIONAL APPROACH 

Two-dimensional airfoil sections are analyzed 
using two-dimensional structured overset grids 
and solved using the implicit compressible RANS 
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solver OVERFLOW 2.2n [50]. All solutions 
presented are run time-accurate in an effort to 
quantify possible unsteady behavior, and use 6th 
order central differencing of Euler terms [51] with 
2nd order BDF2 time marching. 

Airfoil performance is evaluated for average 
Martian atmospheric conditions, Mars Condition 
(MC) 2, as previous work showed marginal 
performance differences with the other variations 
[7]. Operating conditions for MC 2 are presented 
in Table 1 and compared to Earth Sea Level 
Standard (SLS) conditions. 

Table 1. Operating conditions for Mars Condition 2 [7] 
Variable Earth SLS MC 2 
Density, 𝜌 [kg/m3] 1.225 0.017 

Temperature, T [K] 288.20 223.20 

Gas constant, R [m2/s2/K] 287.10 188.90 

Specific heat ratio, 𝛾 1.400 1.289 

Dynamic viscosity, 𝜇 [Ns/m2] 1.750·10-5 1.130·10-5 

Static pressure, p [kPa] 101.30 0.72 

The (turbulent) Prandtl number is assumed to 
stay the same as for air. Free stream turbulence 
and boundary layer receptivity are expected to 
have a small influence on flat plate performance 
with sharp leading edges [13], [32], [33], in stark 
contrast to regular airfoil shapes at low Reynolds 
numbers. Therefore the free stream turbulence 
intensity is kept at the standard value 𝑇𝐼 ≈
 0.082%. The influence of compressibility effects 
is estimated to be small [36], [37] although 
compressibility is seen to affect the stability of the 
separated shear layer to some extent. 

The angle of attack and Mach number range 
for each radial station is presented in Table 2. The 
angle of attack range used 1-degree increments 
and the Mach range uses increments equal to 
𝑀 = 0.1. Each radial station’s (𝑀, 𝛼) pair 
provides the lift, drag, and moment coefficients 
for the C81 airfoil deck files required for the 
comprehensive analyses. In total, over 3,000 cases 
are executed on the Pleiades Supercomputer at 
NASA Ames Research Center. 
Table 2. C81 alpha-Mach pair input parameters 
CFD station r/R [~] α [deg] M [~] Re/M [10-4] 
Station 1 0.091 -15 to 20 0.10 to 0.30 1.074 
Station 2 0.200 -15 to 20 0.10 to 0.40 2.984 
Station 3 0.295 -15 to 20 0.10 to 0.50 4.176 
Station 4 0.390 -15 to 20 0.10 to 0.50 4.176 
Station 5 0.527 -15 to 20 0.20 to 0.50 3.451 
Station 6 0.762 -15 to 20 0.20 to 0.70 2.564 
Station 7 0.924 -15 to 20 0.20 to 0.85 1.825 
Station 8 0.991 -15 to 20 0.20 to 0.90 0.724 

TURBULENCE MODELING 

Turbulence modeling at very low Reynolds 
numbers sees some inconsistent conclusions. Kunz 
and Kroo [52] assumed fully laminar flow at 
Reynolds numbers up to 𝑅𝑒 = 1.2 ∙ 104 for MAV 
airfoil performance calculations. Winslow et al. 
[15] used the 𝛾𝑅𝑒67 − 𝑆𝐴 transition/turbulence 
model for various airfoils at a similar Reynolds 
number range. Schmitz indicates that 𝑅𝑒# ≈ 1.0 ∙
104  is sufficient to trip the shear layer to 
turbulent flow for a flat plate [11]. Werle showed 
experimental results for a flat plate at 𝛼 = 3° and 
𝑅𝑒# ≈ 1.0 ∙ 104 with laminar separation and 
laminar reattachment. A Reynolds number 
increase to 𝑅𝑒# ≈ 5.0 ∙ 104 showed the transition 
in the shear layer leading to turbulent 
reattachment [34], [35]. 

Even though the intricacies of an LSB may 
only be truly captured using DNS, several 
turbulence and transition models using RANS or 
Large Eddy Simulation (LES) approaches have 
shown promising results [15], [53]. Some research 
presents the (expected) advantages of LES over 
RANS methods in resolving more intricate details 
of the flow over a flat plate [39], [54], [55], 
including the possible secondary bubble as found 
by Crompton [18], albeit all at higher Reynolds 
numbers than currently under investigation. LES 
simulations at low Reynolds number and high 
Mach number are found to be very promising for 
airfoils tested in work by Anyoji et al. [38], but 
for flat plate-like geometry, some coefficient 
variations are still observed in work using a DNS 
approach by Munday et al. [56]. 

The present work uses the Spalart-Allmaras 
(SA) 1-equation turbulence model [57] (SA-neg-
1a) with the Coder 2-equation Amplification 
Factor Transport (AFT) transition model [58] 
(SA-AFT2017b). The transition model functions 
by computing the growth of maximum instability 
amplitude based on linear stability theory. The 
SA turbulence model (SA-neg-noft2) with 
Medida-Baeder 2-equation transition model [59], 
[60] (𝛾𝑅𝑒67 − 𝑆𝐴) showed similar performance 
results but is based on a critical Reynolds number 
and transition length function. Under the current 
simulation settings, the 𝛾𝑅𝑒67 − 𝑆𝐴 model is 
found to require more time to converge. Because 
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of the substantial number of cases to be 
simulated, the SA-AFT2017b model is ultimately 
preferred.  

TIME-ACCURATE SOLVER 

All solutions presented are run time-accurate to 
observe possible unsteady loading. Laitone 
concludes the superiority of the sharp leading 
edge in this Reynolds number regime to be 
through continuous vortex shedding [13]. Pauley 
et al. [20] indicate that ‘bubble bursting’ is in fact 
periodic shedding. Time-averaged simulations can 
therefore manifest a false bubble-like structure in 
the flowfield. Arena and Mueller [16] also indicate 
the need for time-accurate results if the flowfield 
is to be investigated. Differences between 
averaged and instantaneous flow fields are also 
presented in experiments using Particle Image 
Velocimetry (PIV) by Hu and Tamai [61] and 
LES work by Anyoji et al. [38]. 

Quantification of unsteady behavior of forces 
for rotor purposes needs to be evaluated, although 
the monitoring of frequencies and magnitudes of 
force fluctuations is beyond the scope of the 
present work. All coefficients are obtained as the 
mean integrated loads over time for the converged 
unsteady flowfield. The standard deviations are 
also obtained. 

GEOMETRY DEFINITION 

The present work investigates a flat plate and a 
cambered plate. Some general observations are 
found in various experiments. The near body grid 
of the flat plate is shown in Figure 9. The overset 
grid used to construct the beveled sharp leading 
edge can be seen in the lower left. The height of 
the first cell boundary is approximately 10−4𝑐. 
The far field limit is set at 50𝑐. Experimental 
results indicate decreasing thickness improves 
performance [31], [62], therefore a low thickness of 
𝑡/𝑐 = 1% is chosen. It is assumed an MH-sized 
composite rotor can be sufficiently stiff and 
strong, in particular the cambered flat plate, as 
that is expected to have superior performance. 

The trailing edge shape is kept blunt as 
experimental results indicated no influence on 
performance [13], [33]. The top of the plate is 
straight, and the bottom is beveled over the front 
0.2𝑐, similar as used in the work by Pelletier and 

Mueller [33]. The leading edge wedge angle is 
therefore roughly 3 degrees. 

 
Figure 9. Section of flat plate near-body grid 

For the cambered flat plate, 4 − 6% camber is 
most beneficial according to experimental work. 
A camber ratio around 𝑓 𝑐⁄ = 5.0% is reported to 
have the best performance [11], [13], [31], [33]. 
Forward camber, at 𝑥 𝑐⁄ ≈ 0.25 − 0.38 seems to 
indicate a performance increase, although only 
limited and inconclusive data exists [11], [31]. 
Therefore, maximum camber location is kept at 
𝑥 𝑐⁄ ≈ 0.50 for this study. Figure 10 shows a 
section of the near body grid for the 5% cambered 
plate.  

 
Figure 10. Section of cambered plate near-body grid 

Figure 11 shows a comparison of the flat plate, 
cambered plate, and Mars Helicopter airfoil 
outboard of 𝑟/𝑅 = 0.53.  

 
Figure 11. Comparison of plate geometry to Mars Helicopter 
airfoil 

Mars Helicopter airfoil (outboard of r/R = 0.53)

Cambered plate, 5% f/c, 1% t/c

Flat plate, 1% t/c 

0.2c beveled leading edge

0.2c beveled leading edge
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Corrugated airfoils are not considered because 
they seem to become superior in performance only 
at still lower Reynolds numbers [24], [31], [32], 
[61]–[63]. The geometric discontinuities 
characteristic of those airfoils are likely desirable 
to delay total flow separation [24]. All validation 
cases are performed for SLS conditions. 

THREE DIMENSIONAL EFFECTS 

All simulations performed are two-dimensional. 
The vast separation at moderate to high angles of 
attack could yield three-dimensional breakdown 
of the flow (around 𝛼 ≈ 8° [13], [37], [56]). 
Modeling vastly separated flow using RANS 
methods is difficult. Since the majority of the 
rotor is expected to operate in the ‘linear’ regime, 
this is not investigated further at this time. 

VALIDATION 

The cases present a combination of exotic flow 
conditions, so validation of the simulation 
approach is necessary. Low Reynolds number 
experimental efforts for flat and cambered plates 
are rare. Several useful sources are referenced [11], 
[13], [31]–[33], [36], [37], [62]. The very low forces 
require very accurate equipment, which makes 
recent work likely to be of higher accuracy. 

The low Reynolds number range is prone to 
strong tunnel interference [64], and there are few 
references that present two-dimensional 
coefficients and tunnel interference corrections 
[33] (this reference is not used because of the 
substantially higher Reynolds number range). 
Among the greatest difficulties is the aspect ratio 
of ‘infinite’ wings, which can greatly alter airfoil 
performance. Laitone reports testing a cambered 
flat plate with 𝐴𝑅 = 4 and 𝐴𝑅 = 6 [13], showing 
up to 70% change in lift coefficient at higher 
angles of attack for the higher AR. 

FLAT PLATE PERFORMANCE 

The flat plate performance of Okamoto et al. at 
𝑅𝑒# ≈ 1.1 ∙ 104 − 1.5 ∙ 104 [32], and Laitone at 
𝑅𝑒# ≈ 2.1 ∙ 104 [13] are used to compare two 
dimensional OVERFLOW computations with 
three-dimensional experimental results. Laitone 
used a thin wedge with 1% 𝑡/𝑐 leading edge and 
blunt 4% 𝑡/𝑐 trailing edge. Okamoto et al. utilized 

a 1% 𝑡/𝑐 flat plate. Both experiments were 
performed without beveled/sharp leading edges, 
contrary to OVERFLOW simulations. Figure 12 
shows the lift and drag curves versus experiments. 
The error bars represent the standard deviation 
(1𝜎) of the integrated forces for the converged 
results. 

 
Figure 12. Flat plate lift and drag versus angle of attack for 
low Reynolds number 

The lift and drag curves from Okamoto et al. are 
close to Laitone and are not shown for clarity in 
Figure 12. Laitone presents only results for 
positive angles of attack. The negative values are 
deduced from the inherent symmetry. Figure 13 
shows the drag polars from both experimental 
references. Figure 14 compares the lift to drag 
ratio versus angle of attack from OVERFLOW 
with Laitone’s results.  

 
Figure 13. Flat plate drag polar at low Reynolds number 

Both the sharp leading edge and the two 
dimensional nature of the simulations are 
expected to give rise to higher aerodynamic 
performance when compared to the experimental 
data, as can be seen in Figure 13 and Figure 14.  
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Both Figure 13 and Figure 14 show increased 
performance of the OVERFLOW results at 𝛼 ≈
 −3.5° compared to 𝛼 ≈  +3.5°, where the beveled 
edge is orientated favorably to the incoming flow 
and results in a local increase in aerodynamic 
performance. 

 
Figure 14. Flat plate lift to drag ratio versus angle of attack 
at low Reynolds number 

CAMBERED PLATE PERFORMANCE 

The 5% cambered flat plate performance is also 
compared to experimental measurements. Laitone 
used a 5% cambered plate with 1.3% 𝑡/𝑐, whereas 
Okamoto et al. used a 6% cambered plate, both 
1% thick. Figure 15 shows the lift and drag curves 
of the cambered plate. 

 
Figure 15. Cambered plate lift and drag versus angle of 
attack for low Reynolds number 

The drag measurements from Okamoto et al. in 
Figure 15 are close to those from Laitone (not 
displayed for clarity). Both Figure 12 and 
Figure 15 show the breakdown of the flow for 
OVERFLOW results around 𝛼 = 5° where the 
coefficient fluctuations start to become visible. 
The ‘kink’ in the lift curve of Laitone is a local 

stall effect that only occurs for 𝐴𝑅 = 6 (not for 
𝐴𝑅 = 4). Laitone therefore concludes this is a 
two-dimensional effect that does not occur for low 
aspect ratios. 

Okamoto et al., however, also use 𝐴𝑅 = 6 for 
their experiments. The lift is seen to vary 
substantially compared to Laitone, strengthening 
the argument that measurements and/or tunnel 
corrections in this Reynolds number range are 
difficult. Figure 16 shows the drag polar for the 
cambered plate. 

 
Figure 16. Cambered plate lift and drag versus angle of 
attack for low Reynolds number 

Figure 17 shows the lift to drag ratio comparison. 
The two dimensional airfoil performance is much 
higher than three dimensional but coincides at 
lower and higher angles of attack. 

 
Figure 17. Cambered plate lift to drag ratio versus angle of 
attack at low Reynolds number 

Both the flat plate and cambered plate 
OVERFLOW simulations show higher 
performance to three dimensional results; this 
coincides with the expectations for differences 
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between two dimensional and three dimensional 
models. 

Compressibility effects are expected to be 
marginal as shown by experimental work by Suwa 
et al. [36] and Anyoji et al. [37] for similar Mach-
Reynolds number ranges. 

RESULTS 

For all (𝑀 ,𝛼) pairs the lift, drag, and moment 
coefficient are assembled in C81 format for each 
radial station to obtain an airfoil performance 
map. Performance over moderate angles of attack 
(−5° ≲ 𝛼 ≲  5°)  showed little to no time-based 
fluctuation in integrated loads. Higher angles of 
attack showed greater fluctuation in the 
aerodynamic coefficients. Figure 18 shows 
convergence of the lift and drag coefficients for 
the flat plate at high angle of attack. Angles of 
attack exceeding 𝛼 ≈ 12° are difficult to get to 
converge. 

 
Figure 18. Unsteady force convergence for flat plate at high 
angle of attack (𝛼 = 8.0°, 𝑀 = 0.20,𝑅𝑒# ≈ 2.0 ∙ 103) 

The source of the fluctuations in the integrated 
loads can be deduced by plotting streamlines near 
the plate. Figure 19 shows the ‘steady’ behavior 
of the flat plate at 𝛼 = 5°. 

 
Figure 19. Streamlines for the flat plate showing a steady 
bubble (𝛼 = 5.0°, 𝑀 = 0.20,𝑅𝑒# ≈ 2.0 ∙ 103) 

Upon increasing the angle of attack to 𝛼 = 8° the 
leading edge starts to shed vortices, as shown in 
Figure 20 (and Figure 18). 

 
Figure 20. Streamlines for the flat plate showing strong 
vortex shedding (𝛼 = 8.0°, 𝑀 = 0.20,𝑅𝑒# ≈ 2.0 ∙ 103) 

The vortices convect downstream, shed, and 
eventually dissipate in the wake.  

When the streamlines over the cambered 
plate are plotted for the same angle of attack and 
Mach number, the leading edge separation is 
replaced by trailing edge separation, as shown in 
Figure 21. This partly explains the steadier loads 
for the cambered plate, and higher performance 
compared to the flat plate. This flowfield 
resembles that of the MH airfoil study by 
Koning et al. [7]. 

 
Figure 21. Streamlines for the cambered plate showing 
trailing edge separation (𝛼 = 8.0°, 𝑀 = 0.20, 𝑅𝑒 ≈ 2.0 ∙ 103) 

At sufficiently high angles of attack, vortex 
shedding occurs naturally on both the flat and 
cambered plate. It seems that the onset of vortex 
shedding, during which the vortices are still small 
and don’t grow over the airfoil to the extent as 
seen in Figure 20, can occur in the ‘linear’ regime 
prior to causing severe consequences for the lift 
and drag coefficient. Figure 22 shows small 
vortices being shed at 𝛼 = 5.0°, but the airfoil is 
still operating at a high 𝑐*/𝑐)  ≈  17.9, with only 
minor fluctuations in the converged results. 

 
Figure 22. Streamlines for the cambered plate showing 
discrete shed vortices (𝛼 = 5.0°, 𝑀 = 0.40,𝑅𝑒 ≈ 1.0 ∙ 104) 

Table 3 shows the integrated loads and standard 
deviation in lift of the airfoil in Figure 22. Two 
neighboring angles of attack are presented as well 
to show the airfoil’s ‘steady’ and ‘stalled’ 
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operating mode at 𝛼 = 4.0° and 𝛼 = 8.0°, 
respectively. 

Table 3. Station 6 performance at 𝑀 = 0.40 
α [deg] μ (cl) 1σ (cl) μ (cd) cl /cd 
4.0 0.86 0.0041 (~0.5%) 0.050 17.4 
5.0 0.99 0.0253 (~2.5%) 0.056 17.9 
8.0 1.35 0.1582 (~12.0%) 0.163 8.3 

 
The complexity of these flows is very high, and 
the influence of turbulence and transition 
modeling, differences between two and three 
dimensional simulations, and inherent limitations 
in methods used are important to evaluate. 
Laitone experimentally observed the continuous 
shedding of vortices and concludes on the 
superiority of the sharp leading edge for 𝑅𝑒 <
 4.0 ∙ 104 and 𝛼 <  8.0°: “(…) The leading edge 
vortex and the large flow separation region on the 
upper surface were replaced by a continuous 
shedding of small vortices that rolled along the 
upper surface so as to greatly decrease the 
separated flow” [13]. This is in line with 
observations from Figure 22, although at smaller 
angles of attack the flow seems to reach a steady-
like state by means of a separation bubble similar 
to that shown in Figure 19, as reported by Suwa 
et al. [36] and Anyoji et al. [37], [38], and others. 
Figure 23 shows the computed maximum lift to 
drag ratio, maximum section lift coefficient, and 
minimum section drag for all simulated polars on 
top of the experimental values as presented by 
McMasters and Henderson [10], shown earlier in 
Figure 2 and Figure 3. For each radial station and 
each Mach number, the maximum lift to drag 
ratio, maximum section lift coefficient, and 
minimum section drag are obtained from the 
alpha sweep. 

The Reynolds number sensitivity of the flat 
plate minimum drag coefficients and maximum 
lift to drag ratio is in agreement with the results 
of Schmitz [11] and two dimensional laminar flat 
plate theory. 

The cambered plate is seen to obtain a higher 
lift to drag ratio than the flat plate, despite the 
unavoidable increase in (minimum) section drag. 
The scatter in the maximum section lift 
coefficient data is linked to the inherent 
difficulties modeling an airfoil near stall. 

 

 
Figure 23. Effects of Reynolds number on computed 
cambered and flat plate performance (created referring to 
McMasters and Henderson [10]) 

CAMRADII ROTOR  
PERFORMANCE RESULTS 

Performance predictions for the flat plate and 
cambered plate rotor are made using a free-wake 
analysis in CAMRADII [65]. The coaxial rotor is 
modeled at the flight conditions for Mars 
Condition 2 as shown in Table 1. The Mars 
Helicopter performance is predicted using the 
rotor model by Koning et al. [7]. Figure 24 shows 
the thrust versus power at 2,800 RPM.  

For equal power, the cambered plate is seen 
to produce around 7% higher maximum thrust 
compared to the Mars Helicopter rotor. 
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Figure 24. Thrust versus power for 𝜌 = 0.017 𝑘𝑔/𝑚3, 
including Mars Helicopter performance from Koning et al. [7] 

Figure 25 shows the Figure of Merit versus thrust 
coefficient for the same models. 

 
Figure 25. Figure of Merit versus thrust for 𝜌 = 0.017 𝑘𝑔/𝑚3, 
including Mars Helicopter performance from Koning et al. [7] 

The predicted cambered plate Figure of Merit 
shows an improvement over the Mars Helicopter 
Figure of Merit prediction of around 5% in the 
design thrust range (𝐶-  =  0.015 –  0.020). 

CONCLUSIONS 

The cambered plate rotor model is shown to be 
competitive with the rotor of the Mars Helicopter 
for identical twist and chord distribution.  

Performance results for the Martian 
atmosphere show the potential of the cambered 
plate rotor in both thrust for equal power and 
Figure of Merit for equal blade loading. The 
cambered plate airfoil produces 7% greater 
maximum rotor thrust versus the Mars 
Helicopter, and 5% higher Figure of Merit over 
the design thrust coefficient range. Larger 
maximum thrust allows an increase of design 

blade loading for the same thrust range for control 
authority, whereas the larger Figure of Merit 
reduces power requirements. 

The maximum rotor thrust depends on the 
stall of the airfoil sections. The MH airfoil 
performance was calculated with the thin-layer 
Navier-Stokes code C81Gen (ARC2D), the flat 
and cambered plate results are simulated with the 
full RANS method OVERFLOW.  

Future work will include the analysis of the 
MH rotor using identical CFD methods, 
evaluation of the unsteady integrated loads, and 
a further investigation into the airfoil boundary 
layer state due to upper-lower rotor interaction 
and forward flight operation.  
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