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ABSTRACT
Conceptual design of a high efficiency civil tiltrotor (HECTR) as part of NASAs Revolutionary Vertical Lift Technol-
ogy (RVLT) project is studied using the NASA Design and Analysis of Rotorcraft (NDARC) software with Rotorcraft
Optimization Tools (RCOTOOLS) and the particle swarm optimization (PSO) algorithm. A gradient-based method
is first applied for rotor disk and wing loading sizing optimization to collectively minimize platform empty, mission
fuel weight and engine power requirements. An optimum design from the study is then used to further minimize
emissions as a function of cruise altitude. The results confirmed that gradient-based methods are limited as a multi-
modal solution space exists with local minima’s, hence gradient-free methods are required. As pre-processing to an
evolutionary search process with PSO, a design variable sensitivity analysis was undertaken to identify the importance
of sizing parameters on emissions. The solution generated by the swarm method resulted in significant improvements
in emissions relative to baseline and gradient-based methods. The findings confirmed the merits of population-based
optimization algorithms for rotorcraft conceptual sizing.

INTRODUCTION

The environmental impact of commercial aviation is of significant importance to the aerospace community and with climate
change concerns, the design of aircraft with low emissions and noise becomes a critical design requirement. Accordingly
environmental considerations need to be factored at early stages of aircraft design so that a systematic investigationand quan-
tification into the trade-offs involved in meeting specific noise and emissions constraints can be evaluated. It has beenshown
that improving environmental performance of an aircraft inadvertently results in higher operating costs and/or reduced perfor-
mance (Ref. 1). In this framework, aircraft design for reduced environmental impact is well suited towards finding an optimal
set of solutions using a multi-objective optimization framework. This will allow system level trades between the objectives to
be analyzed before a final design is selected.

The development of computational tools and methods to support rotorcraft conceptual and preliminary design by automa-
tion using mixed fidelity-solvers in an optimization framework is critical to the study-of-domain. Johnson (Ref. 2) developed
NDARC which is a conceptual/preliminary design and analysis code for rapidly sizing and conducting performance analysis of
new rotorcraft concepts. Meyn (Ref. 3) introduced RCOTOOLSto couple NDARC with OpenMDAO (Ref. 4) using validated
software methods and approaches to facilitate a robust optimization framework. Johnson and Sinsay (Ref. 5) developed an
information manager that effectively organizes and sharesaircraft data between solvers to facilitate multi-fidelityanalysis in a
collaborative design environment. Lier et al. (Ref. 6), further developed a conceptual and preliminary design toolboxthat mod-
els platform geometry in a CAD environment to evaluate the aerodynamic, mass and structural properties of emerging rotorcraft
configurations. Enconniere, Ortiz-Carretero and Pachidis(Ref. 7), proposed a multidisciplinary methodology to evaluate the
environmental and operational benefits of a compound coaxial rotorcraft. The effects of cruise speed, altitude, climb rate and
mission length were evaluated for a mission ranging from 50 to 300 km. Optimization resulted in collective reduction in mission
duration, fuel burn, andNOx (Nitrogen Oxides) emissions. Ali, Goulos and Pachidis (Ref. 8), also presented an integrated mul-
tidisciplinary simulation framework that was deployed forthe comprehensive assessment of combined helicopter-powerplant
system at a mission level to enhance operational performance and to limit environmental impact. Their results suggest that
while a helicopter can offer significant improvement in the payload-range capability while simultaneously maintaining the
required airworthiness requirements, there is a detrimental impact on emissions, specifically withNOx. Accordingly this con-
flicting performance imposes a design trade-off between fuel economy and environmental performance. Similarly Russeland
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Basset (Ref. 9), also used computational tools to show that designing rotorcraft for reduced environmental impact significantly
influences aircraft configuration as the rotorcraft that would typically operate at high altitudes, is then required to cruise lower
and slower to reduce the effect ofNOx which inadvertently increases fuel burn andCO2 emissions.

The development of computational tools for rotorcraft conceptual design with low environmental impact is a goal. A
well-defined concept at conceptual phase will support ongoing performance gains as the design progresses to preliminary and
detail design stages. In this work, optimization methods are used to support rotorcraft sizing to minimize emissions for an
outlined mission . The software package RCOTOOLS (Ref. 3) with OpenMDAO (Ref. 4), is coupled to NDARC (Ref. 2) to
compute platform performances of the entered inputs. The computational framework is also used to explore the topology of
the design space as a function of sizing parameters to determine the feasibility of gradient-based optimization methods. In the
process, first order design and objective measure sensitivities are evaluated to model the relationship between input parameters
on performance output. The optimization framework is also extended with increased dimensionality by the integration of
additional sizing parameters in a gradient-free optimization environment to sustain further improvements in emissions.

BACKGROUND

The research undertaken contributes to the state-of-the-art in rotorcraft parametric sizing with focus on the:(a) utilization
of dedicated software packages developed at NASA to supportthe design of next generation rotary wing platforms for civil
applications; including(b) the definition of best-practices and approaches required tosupport a parametric sizing framework;
and(c) execution of a parametric sizing process using different configurations of a tiltrotor platform to demonstrate the first-
order design sensitivities of the sizing parameters on emissions. The research is to demonstrate the importance of conceptual
sizing to ensure the platform can efficiently sustain required mission goals and that the integrated technologies can meet current
aerospace demands and challenges. Proper sizing at early design stages will avoid the situation of optimizing a poor concept at
later phases.

Engineering optimization problems are represented by a complex solution space that may have many local minima to the
objective function with respect to the selected design variables and constraints. Hence, convergence to a single global best
solution is not always achievable. Accordingly if multiplesolutions (locally and/or globally optimal) are established, they can
be analyzed to evaluate the hidden properties (or relationships) between the modeled parameters, and to form problem domain
knowledge. Gradient-based optimization algorithms are well suited to transit to a solution from an initial starting point with
rapid computation turn-over time relative to population-based algorithms. The knowledge gained from this process, with the
formulation of solution landscape topology type (uni-modal or multi-modal) will address if stochastic optimization methods
are required to sustain global performance improvements.

In this work, a multi-disciplinary design, analysis and optimization (MDAO) framework is initially used for rotorcraft sizing.
This includes a Python-based framework that is applied for adesign trade study using the baseline HECTR configuration
developed by Silva et al. (Ref. 10). A design sweep is undertaken to qualitatively model the solution topology with input
parameters including rotor wing and disk loadings on mission fuel,Wf uel , platform empty weight,Wempty, and engine power
requirements,Preq, as a function of cruise altitude. From the database, a candidate solution with an acceptable compromise
between the conflicting objectives is selected for further sizing optimization to minimize the Emission Trading Scheme(ETS).
The analysis will outline the role of gradient-based methods in conceptual sizing and the limitations of this approach for sizing
efforts where problem dimensionality is high.

The analysis will also be extended with a greater degree-of-freedom as additional sizing parameters are introduced. Ac-
cordingly evolutionary algorithms will be applied in an effort to further lower emissions by an order of magnitude. The PSO
theory (Ref. 11) will be used that is capable of converging toa global minima for complex engineering problems (Refs. 12–19).
As population-based algorithms are computationally extensive, a design variable sensitivity analysis will support the study goals
to model the impact of sizing parameters on output objectiveso that unimportant parameters can be identified and excluded
from PSO simulations to limit computational overheads. As data post-processing, the success of the gradient-free method in
converging to a global minima is examined.

The mission profile that will be used for sizing optimizationis presented in Table 1. It represents a civil tiltrotor (CTR)
with a high wing configuration and engines in tilting nacelles that are sized to efficiently transport 4-6 passengers. Thedesign
mission’s first segment is taxi at maximum continuous power for five minutes to burn a representative amount of fuel. The
weight at the beginning of the first segment defines design gross weight. The second segment is a hover out of ground effect
for five minutes. All hovers are performed with the hover trimstate. The third segment is a climb maneuver at 300 ft / minute
from take-off to cruise altitude with intermediate rated power. The horizontal distance covered during climb contributes to the
total cruise range of 400 nm in segment 4. Segment 5 represents reserve with a flying time of 30 minutes.
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Table 1. HECTR Mission Profile Segment Details

Mission Segment Altitude
Day

Time Distance Airspeed Power Engine
Segment Type (ft) (mins) (nm) (Vkts)† Available (%) Rating

1 taxi/warm-up 5,000 ISA+20◦C 5 · · · · · · 100 MCPa

2 Hover OGE 5,000 ISA+20◦C 5 · · · · · · 95 MRPb

3 Climbd 5,000 ISA+20◦C · · · Credit to cruise 100 95 IRPc

4 Cruise 25,000e ISA · · · 400 - credit from climb 240 90 MCP
5 Reserve · · · ISA 30 · · · 150 100 MCP

a Maximum Continuous Power; b Maximum Rated Power; c Intermediate Rated Power
d Climb at a rate of climb (ROC) of 300 ft/min from present altitude to next segment altitude
† Horizontal velocity (TAS)
e Baseline platform cruising altitude at 25,000ft; subject to change with optimization for low emission.

APPROACH

Optimization is defined using the following notation:

min f (x, p)

subject to g(x, p) ≥ 0
h(x, p) = 0

(1)

xi,LB ≤ xi ≤ xi,UB(i = 1, . . . ,n)

where the objective function vector,fff , is a function to be minimized (or maximized) over design vector, xxx, and a fixed parameter
vector,ppp; ggg andhhh are inequality and equality constraints; andxi,LB andxi,UB are the lower and upper bounds for theith design
variable, respectively.

To minimize multiple objectives for the input design vector, a weighted sum approach is used. The objective is trans-
formed into an aggregated function by multiplying each objective by a weighting factor and summing up all weighted objective
functions:

fweighted sum= w1 f1+w2 f2+ . . .+wm fm (2)

wherewi(i = 1, . . . ,m) is a weighting factor for theith objective function and is selected in proportion to the relative importance
of the objective.

Equation 1 is defined in RCOTOOLS with input variables and constraints. The summation of the objectives with weights in
Equation 2 is then used by the optimizer for function minimization. Figure 1 outlines the five modules that define the scopeof
the sizing simulations.
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1. Starting Inputs: Baseline

Alt. = 25,000 ft

WL = {46,48, . . . ,54}

DL = {8.00,8.50, . . . ,12.00}

Objectives with Weights

min. Weight Empty(1.00)

min. Mission Fuel(5.00)

min. Engine Power(12.50)

Optimized Outputs

Wing Loading

Disk Loading

2. Baseline versus Optimized Minima

3. Starting Inputs: Optimized Minima

Alt. = 25,000 ft
Wing Loading

Disk Loading

Objectives with Weights

min. ETS (2.50) min. ATR (2×108)

Optimized Outputs

Wing Loading

Disk Loading

4. Starting Inputs: Optimized Minima

Cruise Altitude

Objectives with Weights

min. ETS (2.50) min. ATR (2×108)

Optimized Outputs

Cruise Altitude

5. Baseline versus Optimized Minima

Fig. 1. Overview of the optimization approach used to size HECTR

The gradient-based optimization framework is structured as follows:

1. A parametric sweep is executed that varies the wing and disk loading of the baseline (Ref. 10) over a defined interval range
at fixed cruise altitude. A weighted sum method is imposed to define the multi-objective fitness function that minimizes
platformWempty; Wf uel ; andPreq. The outputs will represent the optimized configuration of wing and disk loading.

2. A configuration with lowWf uel from the database in module one is identified and compared to baseline (Ref. 10).

3. The selected configuration from module one is used as the base point for further design iterations at fixed cruise altitude.
The design is now optimized for low emissions with metrics ETS and ATR independently minimized. Modified wing and
disk loadings are recorded as outputs for each measure.

4. The optimized wing and disk loading configuration from module three are used as base starting points to further minimize
ETS and ATR as a function of cruise altitude.

5. The design in module four represents the optimum configuration (low emissions) in the formed framework. The emission
performance of the optimum is evaluated against baseline bySilva et al. (Ref. 10) in module one.

The PSO algorithm is further used for objective function minimization when the problem scope is extended which limits the
use of gradient-based methods. A variant of the original PSOmethod by Kennedy (Ref. 11) was developed by Khurana (Ref. 20)
which incorporates adaptive mutation operators to induce search diversity, hence mitigate convergence to a local solution and
was used in the analysis to follow. The algorithm has been extensively validated on benchmark test functions with demonstrated
convergence to a global minima for complex solution topologies where input dimensionality size matches the scope of the
rotorcraft sizing problem to follow. The algorithm has alsobeen used with success for airfoil design problems (Ref. 14),
and has been coupled with artificial neural networks to enhance the design computational time needed to derive efficient
concepts in aerodynamic shape optimization applications (Ref. 21). Coupled with a parameter sensitivity study, the PSO runs
are formulated to study the relationship between problem dimensionality and objective fitness so that total iterationsneeded to
generate a solution remain low without compromising solution feasibility.
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RESULTS

In the results to follow, a gradient-based process is first implemented to guide the solution toward an acceptable designpoint.
The limitations with the applied approach are identified. Tofurther progress the design phase, the PSO method is introduced and
as pre-processing, design variable sensitivity methods are presented that quantitatively and qualitatively evaluate the degree-of-
influence of the design variables on objective function. Theresults are then used to execute gradient-free optimization runs to
establish a global optimum with minimal computational overhead.

Gradient-based analysis

Here, RCOTOOLS (Ref. 3) with OpenMDAO (Ref. 4) is used to generate data for the optimization cases outlined in Figure
1. The Sequential Least Squares Programming (SLSQP) methodis applied to derive the gradients of the objective function.
Optimization convergence is further assessed by the changein measurable output which needs to be within a user-defined
tolerance over successive user-defined iterations.

• Module One: Multi-Objective Optimization of Weights (fuel and empty) and Engine Power
The database of solutions generated by the sweep run are modeled in Figure 2.
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Fig. 2. Representation of the solution space as a function ofwing and disk loadings on mission fuel weight at 25,000ft

The analysis confirms that the solution space for mission fuel weight is uneven and many sizing configurations exist for
the defined objectives. This solution pattern is also consistent for empty weight and engine power. The solution topology
is further sensitive to the magnitude of the weighting parameters and convergence at disparate configurations occurs for
unique starting points. The multi-modality shown in this case is attributed to the interplay between aerodynamics, structures,
propulsion, and emissions models. Studies involving a multi-disciplinary design optimization framework with the coupling
of emission and acoustic models will refine the solution topology toward a global minima. Further stochastic methods will
derive a solution toward a global point.

• Module Two: Performance evaluation of baseline with Optimized Minima
The performances of the optimum platform from module one (symbol star in Fig. 2(a)) is evaluated against baseline (Ref. 10)
in Table 2.

Table 2. Optimization for Low Weights and Engine Power Requirements at 25,000 ft

WL DL Wf uel (lb) Wempty (lb) Preq (hp) ETS (kgCO2) ATR (nano deg C)

Baseline (Ref. 10). 50.00 9.00 621.83 5535.51 798.58 1057.71 36.70
Optimum (Fig. 2) 54.00 9.63 624.75 5481.77 798.40 1062.68 36.70

Shaded entries represent decreased entries relative to baseline.
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Relative to baseline, the optimum configuration from the parametric trade study resulted in a 0.50% increase in mission fuel
weight; a 1.00% decrease in empty weight; with a negligible change inPreq. Emission metrics were not incorporated as
objectives in this analysis, hence ETS increases by 0.50%, yet there is no change in ATR.

• Module Three: Emission Optimization as a function of WL and DL at 25,000 ft
The optimum configuration from module one is further used to size WL and DL to independently minimize ETS and ATR.
The converged configuration is evaluated against baseline in Table 3.

Table 3. Optimization for Low Emission at 25,000 ft

WL DL Wf uel (lb) Wempty (lb) Preq (hp) ETS (kgCO2) ATR (nano deg C)
Optimized Baseline

54.00 9.63 624.75 5481.77 798.40 1062.68 36.70
(database in Module 2, Table 2)

Optimum for ETS 48.70 6.34 602.33 6132.30 800.00 1024.54 36.50
Optimum for ATR 54.25 6.00 604.67 6454.41 800.51 1028.52 36.40

Optimization for emission lowers mission fuel weight requirements relative to baseline with a reduction that is in excess of 3%
for both ETS and ATR. As penalty, there is an increase in platform empty weight of the optimized designs at approximately
12% with the ETS-based design, and 18% with ATR. Engine powerrequirements only marginally increase with optimized
configurations. Specifically as was the target, a decrease inemission is noted. The ETS generated solution has the objective
reduced by almost 4% relative to baseline, and this further lowered ATR, which was not implemented in the objective function
by approximately 0.50%. In the case of the ATR generated solution, the emission metric only decreases by 0.80% relative
to initial configuration, and ETS reduction is limited to approximately 3% (recalling ETS was not included as objective in
the ATR optimization run). The results confirm that a design compromise will be required to balance acceptable emission
performances with empty weight.

• Module Four: Emission Optimization as a function of Cruise Altitude
The converged WL and DL configurations from module three for low ETS and ATR performances at 25,000 ft are fixed and
are now used to optimize cruise altitude in an effort to further lower emissions.

Table 4. Cruise altitude optimization for Low Emissions

WL DL Wf uel (lb) Wempty (lb) Preq (hp) ETS (kgCO2) ATR (nano deg C)

ETS @ 25,000 ft 48.70 6.34 602.33 6132.30 800.00 1024.54 36.50
ETS @ 26,250 ft 48.70 6.34 601.35 6131.29 800.00 1022.89 54.30

ATR @ 25,000 ft 54.25 6.00 604.67 6454.41 800.51 1028.52 36.40
ATR @ 20,000 ft 54.25 6.00 610.22 6432.42 772.24 1040.30 6.73

The optimized altitude for ETS minimization increases by 1,250 ft to 26,250 ft from baseline setting. This has the impact
of marginally loweringWf uel andWempty with no change toPreq. ETS is also marginally lowered, yet due to cruise at higher
altitude, ATR increases significantly by approximately 49%.

In the study of optimizing ATR, the best cruise altitude is lowered from 25,000 ft to 20,000 ft. Accordingly there is an
increase inWf uel by almost 1%;Wempty lowers slightly; andPreq decreases by approximately 3.50%. A cruise at lower
altitude adversely impacts ETS which has an increase in excess of 1%, yet ATR is lowered significantly by almost 82% as
was the objective.

• Module Five: Emissions Performance Evaluation against Baseline
As summary, the emissions at the optimized WL, DL and cruise altitudes are evaluated against baseline (Ref. 10) to quantify
the performance improvements by optimization.
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Table 5. Evaluation of emissions performance of optimized concepts with baseline

WL DL Wf uel (lb) Wempty (lb) Preq (hp) ETS (kgCO2) ATR (nano deg C)

Baseline @ 25,000 ft 50.00 9.00 621.83 5535.51 798.58 1057.71 36.70
ETS @ 26,250 ft 48.70 6.34 601.35 6131.29 800.00 1022.89 54.30
ATR @ 20,000 ft 54.25 6.00 610.22 6432.42 772.24 1040.30 6.73

Shaded entries represent decreased emission relative to baseline (in bold).

In comparison to baseline, optimized concepts are configured with low DL which significantly increasesWempty, yet the
magnitude ofWf uel decrease is marginal in comparison. There is a negligible change inPreq at higher altitudes as baseline
and ETS optimized configurations are operating within a 1,250 ft range of one another. The increase in cruise altitude with an
ETS focus design lowers ETS by approximately 3% relative to baseline, yet there is a significant increase in ATR by almost
50%.

The ATR generated concept which is cruising at a lower altitude relative to baseline is requiring a slight increase in fuel
demands, and the low DL is attributing to a higherWempty. Low altitude operation is further attributing to a decrease in Preq.
From an emissions perspective, ETS is decreased by 1.64% andthe most significant decrease is with ATR that is lowered by
almost 82%.

The gradient-based optimization module adopted in the works (Fig. 1) is not ideal as it consists of many steps (studies)
which need to be carefully defined to iteratively refine the search space, hence guide the solution toward low emission flight.
The analysis further confirmed that a multi-modal solution space exists, hence population-based optimization methodsare
considered. Evolutionary Algorithms (EA) which are inspired by biological evolution do not require a starting point tothe
design problem, and the search also does not rely on the computation of objective gradients, hence are ideal to address the
observed limitations with the gradient design approach.

Design Variable Sensitivity Analysis using qualitative means

To facilitate optimization using population based algorithms, the sensitivity of the input parameters on output is assessed so
that variables that have minimal influence on objectives areidentified. The qualitative representation of parameter sensitivity
on objective function is first assessed using a full factorial plan. A test matrix of rotorcraft configurations are formedby
combinations of pairwise permutations ofk sizing variables. The parameters are perturbed two-way over p levels with the
remaining variables held constant at their respective baseline setting. For each pairwise interaction, emission is established
using NDARC and the data is projected using contour plots. Anestimate of the interaction effects is then visually established
to extract the underlying patterns or features that exists in the data.

In this framework, additional design variables are introduced in Table 6 together with WL and DL parameters from earlier
gradient-based runs to progress the conceptual sizing effort using evolutionary methods. Parameter intervals are mapped to
represent the optimization search space envelope, and the input-to-output sensitivity is assessed in this range. The baseline
configuration by Silva et al. (Ref. 10) is also presented for reference.

Table 6. HECTR baseline design parameters with interval ranges used for sensitivity analysis on emissions

fcd V T IPREF(1) DL WL fspan thickT R tSpan Alt. Vtip

Baseline (Ref. 10) 0.00352 750 9 50 0.05 0.20 15 25k 383

Intervals [0.00332,0.00435] [730,763] [6,11] [45,56] [0.05,0.19] [0.18,0.23] [11,19] [12k,26.5k] [340,480]

Where: DL = Disk Loading; WL = Wing Loading;fcd = Fuselage drag coefficient;fspan = ratio of wing panel span to
wing span (one side);tSpan = Tail Span;thickT R = tiltrotor wing airfoil thickness-to-chord ratio;V T IPREF(1) = Main rotor
tip Velocity at hover = 70% of tip velocity of tail rotorV T IPREF(2); Altitude (ft) = Segment 4 (Table 1); andVtip = Mission
segment 4 tip velocity as a fraction of tip velocity at hover.

Each of thek = 9 design parameters in Table 6 are permutated withp = 6 levels across the defined interval range. The
objective function is sampled on ap× p full factorial plan which corresponds to the projection of input-to-output data on
k(k−1)

2 = 36 contour tiles. This results in a database of 1296 points (sample size in each tile× number of tiles = 36×36) which
are qualitatively presented in Figures 3 and 4 for ETS and ATRrespectively.
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The x and y axis on each tile represent the design variable limits from Table 6 and the normalized contours model the
output magnitude. Figure 3 confirms that the design variables collectively influence ETS and distinct patterns have emerged.
For instance, low DL readings correspond to low ETS and this activity persists across all design parameters. As was to be
expected, low altitude flight increases emissions, hence low altitude cruise is to be avoided. The highest ETS value recorded
in the database was with variation in altitude and fraction of cruise tip velocity to tip velocity at hover (top left corner of Alt.
vs.Vtip tile). These parameters will have a significant influence toward achieving low ETS flight in gradient-free optimization
runs to follow.

Relatively, the evolution of ATR with pair-wise variationsof the sizing parameters confirms a stagnant pattern in Figure
4. Here, altitude alone is shown to impact the output metric.Specifically low altitude flight favorably results in low ATR
performances and this pattern is directly opposite to the high ETS performances that were modeled in Figure 3 at low altitudes.
Theoretically, ATR quantifies the lifetime global mean temperature change caused by operation of an aircraft, as a measure of
climate change (Ref. 22). The metric is a function of radiative forcing (RF) which is an instantaneous measure that quantifies
the change in energy that produces changes in climate properties. The total RF that is generated by pollutantsCO2, NOx,
and Aviation Induced Cloudiness (AIC) is used to calculate the global temperature response that further factors the operating
lifetime of the aircraft to determine the total climate impact.

AIC further factors contrails and aviation-induced cirrusclouds, hence is a function of cruise altitude (Ref. 22). Design
for minimum ATR factors the time horizon, discount rate, operating altitude and speed, including engine technology. Iflong-
term effects are not considered, then radiative forcing dueto CO2 influences ATR with high cruise altitude. If only short-term
impacts are factored, thenNOx emissions have a greater impact, and a lower cruise altituderesults in decreased climate impact,
despite increased fuel burn andCO2 emissions. The inclusion of AIC in the analysis of ATR has a significant impact on the
design, and a low cruise altitude is preferred. This patternwas qualitatively captured in Figure 4.

In the optimization problems to follow, minimization of ETSwill be the focus as there are active interactions between
the nine variables on objective (Fig. 3). Relatively in the analysis for ATR, only altitude was an influencing factor (Fig. 4).
Accordingly ETS minimization is well suited for analysis bya stochastic method.

Design Variable Sensitivity Analysis using quantitative means

The qualitative plots in Figures 3 and 4 do not provide a statistical measure of the sensitivities between model inputs and outputs,
and a quantitative approach is needed to establish these measures. Morris screening algorithm (Ref. 23) is used and applies
a Design of Experiment (DoE) approach to perturb the design variables one-factor-at-a-time to form a relationship between
inputs and model output. A detailed mathematical derivation and execution of the Morris sensitivity method is documented in
the literature (Refs. 14,24–29). Here the procedure is briefly outlined:

1. The method is initiated by selecting a base trajectory of randomised values,XXX∗, of all respective input variables,XXX , such
that they are in the defined ranges of set values. The subsequent model output is established.

2. Change the value of one randomly selected variable in theith component of trajectoryXXX∗ by ±∆ such that the perturbed
vectorXXX (1) is still in the defined variable limits. The other inputs maintain their respective start values. Model output of
XXX (1) is established.

3. Value of another sampling pointXXX (2) is modified±∆ with previous modified variableXXX (1) held at its changed value, and
all other factors at their original start values. Hence, a constraint onXXX (2) requires that it differs fromXXX (1) in the randomly
selectedith component by±∆. The model output is again established followingXXX (2) perturbation.

4. Hence, from above the method requires that each point in trajectoryXXX∗ differs from the preceding one by only one
coordinate. Variable modification steps are repeated for all input factors, hence in a trajectory each input parameter only
changes once by a predefined step±∆, and at each perturbation, model output is established.

5. Repeat steps 1–4r− times and, at each run, a different vector of start values (trajectories)XXX∗ is set to ensure an acceptable
coverage of design points in the parameter space is factoredfor sensitivity evaluation.

The trajectories fromr−runs are then used to evaluate the coefficient of variation (sensitivity) by the measure of the elementary
effect (EE) of each input variable,i, on model output. The EE is computed between two points of thetrajectory using:

EEi(((XXX))) =
Y (XXX +∆ei)−Y (((XXX)))

∆
. (3)
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Where the divisor∆ is a user-defined fixed step size, andei is the ith unit vector. Hence, each EE was computed with
observations at the pair of pointsXXX andXXX +∆ei.

A set ofr different random trajectories (indexR) is defined in the hypercube of input variables, which providesr estimates
of EEiR for each input variablei. With this, there arer(k+1) evaluations of the model output,Y . The mean,µ , and standard
deviation,σ , of the EE is computed for each input variablei by:

µi =
1
r

r

∑
R=1

EEi(((XXXR) (4)

and

σi =

√

1
(r−1)

r

∑
R=1

[EEi(((XXXR)−µi]2. (5)

A modification of measureµ was proposed by Campolongo et al. (Ref. 30) withµ∗
i , which uses the distribution of the

absolute values of EE in Equation 6. If the distribution of the EE contains a negative element, which occurs when the modelis
non-monotonic, some effects may cancel each other out when computing the mean. This will not provide a reliable measure of
the ranking of the importance of design factors (variables)on model output. Instead, it is suggested that the mean should only
be computed on the absolute values of EE withµ∗

i so that the occurrence of the effects of opposite signs is avoided.

µ∗
i =

1
r

r

∑
R=1

|EEi(((XXXR)| . (6)

Even withµ∗
i , the standard deviation (Eqn. 5) of EE remains a critical indicator of the non-linearity in input parameters on

model output by interaction with other state variables. By plotting the two statistical measures, the Morris method classifies
input i to have the following effect on model output:

1. Negligible: Low mean and low standard deviation.

2. Linear and additive: High mean and low standard deviation.

3. Non-linear or involved in interactions with other input par ameters: High standard deviation.

In this analysis,r = 200, random trajectories of the input variables were modeled, hencer(k + 1) = 200(9+ 1) = 2000
rotorcraft configurations were formed for variable screening. In Figure 5, the sensitivity distribution of the inputs from Table 6
on ETS are ranked as the summation ofµ∗

i andσ .

DL Vtip fspan Alt. fcd tSpan WL thickT R V T IPREF(1)

0
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Fig. 5. Ranking of main first order and interaction effects ofrotorcraft sizing parameters on ETS
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In Figure 5, DL is ranked as the highest contributing factor to ETS by the summation of the main and collective interaction
effects with other parameters. VariableVtip follows with the level-of-importance that closely matchesthat of DL. At the other
end of the spectrum,V T IPREF(1) is established with the lowest impact, even though the main effect is not the lowest recorded,
yet it does have minimal interaction relative to other parameters in influencing the objective measure. The knowledge gained
from this analysis will guide the formation of optimizationruns using gradient-free methods.

Optimization using the Particle Swarm Theory

The limitations of the gradient-based optimization methodto establish a near optimum solution for a simplified two-dimensional
sizing case with DL and WL as input parameters has been established. This challenge is now addressed with the PSO method
(Ref. 20) that is capable of handling a greater degree-of-dimensionality as optimization inputs without compromisingglobal
optimality. The data from the design variable sensitivity analysis using the quantitative approach in Figure 5 provides critical
information that is used to define the dimensionality of the problem. Specifically optimization runs to be executed from the
perspective of input dimensionality include:(a) full set of nine input parameters; and(b) reduced set with the removal of
unimportant parameter(s) identified in Figure 5. The analysis will confirm the impact of input dimensionality on optimality and
on convergence rate.

An unconstrained optimization framework is formed with theobjective function defined to minimize ETS. The limits of the
design variables from Table 6 are used and the PSO algorithm is further setup as follows:

(a) A swarm size of 20 particles.

(b) The maximum velocity of the particles was capped as a function of variable dimensional search space. This setting controls
the scalar step length,α, or the maximum size of the variable rate-of-change at each iteration. Numerical experiments are
performed to establish the magnitude ofα.

(c) To mitigate convergence to a local minima, mutation operators were activated based on the principles developed by Khu-
rana and Massey (Ref. 20). Probability of mutation is governed by the search patterns of the particles that is dynamically
monitored during the iterative cycle. The adaptive processensures that mutation is most active when the swarm is con-
verging to a solution region so that a local minima is avoided.

(d) Optimization termination is set when the fitness of the global best particle; personal best fitness of the worst performing
particle in the swarm subtracted from the fitness of the global best; and the standard deviation of the personal best fitness
of each particle in the swarm collectively do not change overfive successive iterations. This approach was previously
validated by Khurana and Massey (Ref. 20)

In the PSO run with areduced set analysis,V T IPREF(1) was not factored in the optimization (was set at default baseline
value), hence the dimensionality of the optimization was limited from nine variables (full set) to eight. The converged fitness
with iterations needed to achieve an optimum configuration for low ETS performance is presented in Figure 6.

Fig. 6. PSO fitness and convergence iterations results with nine variables versus eight
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To establish an acceptable magnitude of particle scalar step length,α, several PSO runs were executed and the converged
ETS result was noted. The solutions were within a 1% varianceand the setting with the lowest ETS was with a step length of
75% of dimensional search space in Figure 6. The analysis reinforced that PSO results are not sensitive to starting points as in
gradient-free methods since the search volume is randomly populated and a negligible change in model output was established
across the independent optimization runs.

Figure 6 further validates a reduction in input dimensionality has a minimal impact on converged ETS and significant on
iterations needed to achieve a solution. As is shown, ETS is higher with reduced variable set relative to full populationof
parameters with a difference that is less than 1%. Yet, the reduced set significantly lowers the number of PSO iterations that
are needed for convergence. A 25% reduction results in several hours of computing time saving relative to the full set. This is
significant even when NDARC, as a low-fidelity solver is used in the analysis. This computational benefit will be transferable
when higher fidelity solvers are used in the optimization loop at detail design.

The result is further interpreted to establish whether there is an acceptable balance between solution feasibility andcompu-
tational efficiency. A 0.80% difference in solution optimality appears minimal, yet it is critical that platform configuration is not
compromised at conceptual design to ensure design improvements follow at detail design. A significant reduction in computing
overheads is noted with reduction in problem dimensionality, yet at conceptual sizing this benefit does not outweigh a compro-
mised solution. The knowledge gained from the sensitivity analysis and optimization runs will be applicable in detail design
iterations where higher fidelity solvers are used, and changes to platform configuration required to sustain further performance
improvements can be localized to critical sizing parameters that have been identified through this analysis. Hence, at conceptual
design where low fidelity solvers are used and computationaloverhead is minimal, it is justified that all parameters-of-interest
are included in the sizing to ensure optimality is not compromised.

As comparison, the performances of the configurations formed in the analysis are summarized in Table 7

Table 7. Comparative analysis of the established rotorcraft configurations using optimization methods relative to base-
line

fcd V T IPREF(1) DL WL fspan thickT R tSpan Alt. Vtip ETS (kgCO2)

Baseline (Ref. 10) 0.00352 750 9.00 50.00 0.050 0.20 15.00 25,000 383 1057.71

Gradient-Based (Module 4 - Tab. 4) 0.00352 750 6.34 48.70 0.050 0.20 15.00 26,250 383 1022.89

PSO (Full Set - Fig. 6) 0.00365 731 6.52 51.18 0.053 0.22 18.50 23,565 395 991.22

PSO (Reduced Set - Fig. 6) 0.00340 750† 6.07 51.18 0.056 0.23 18.37 23,016 409 998.81

Shaded entry represents minima ETS performance.
† Baseline value.

The optimization data using both gradient-based and gradient-free methods in Table 7 result in performance improvements
relative to baseline. The gradient optimization process lowers ETS by≈ 3% with the manipulation of DL, WL, and cruise al-
titude following the optimization modules outlined in Figure 1. Here, DL and WL are lowered, and cruise altitude is increased
relative to baseline to sustain the noted performance improvement. The PSO simulations model an extended design space enve-
lope in an effort to further improve ETS performance. Both full and reduced variable set simulations result in ETS performance
enhancements relative to the gradient-based optimizationanalysis. The full set PSO study lowers ETS by an additional≈ 3%
than the best solution generated by the gradient-optimization method, and the reduced variable set has a performance improve-
ment that is≈ 2% lower. The performance gains between the two PSO runs is limited to< 1.0%, but are significantly higher
than baseline.

The convergence of the full set PSO sizing parameters yieldssolutions that warrants further analysis to ensure global opti-
mality has been achieved. Consideringfcd , there is scope for additional enhancements to ETS especially if it is assumed that
airframe improvements with streamlined designs will lowerdrag, hence minimize fuel burn. The convergedfcd is higher than
baseline and gradient-optimization result even though theinterval for fcd (Tab. 6) facilitates search at lower drag performances.
The result suggests that the low drag region was not exploited by the PSO to sustain maximum available improvements.

Altitude is another parameter which is assumed to be at a non-converged state in the two PSO runs from a global optimality
perspective. Recalling in Figure 3, it was qualitatively shown that high altitude performances lower ETS, but in the PSOfull set
converged state the cruise altitude is low at 23,565 ft in comparison to 25,000 ft for baseline and 26,250 for the gradient-based
result. The upper limit of the altitude interval range in Table 6 that is available for the PSO to exploit is set at 26,500 ft. Yet the
converged result is at a lower setting and directly contradicts with the expected performance gains that are achievablebased on
the data from the sensitivity analysis in Figure 3.

Considering the convergence of other parameters that have contributed to the lowering of ETS relative to the gradient-
based and baseline include increases in platform WL;fspan; thickT R; tSpan; andVtip. This pattern is further consistent in
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the PSO run with reduced variables whereV T IPREF(1) was set at baseline. Further in the reduced variable set analysis, even
though the convergedfcd is at the minimum state, it is still not at the lowest setting that is available for exploration by the
PSO (cdmin = 0.000332 in Tab. 6). With this, further design improvements are likely. Similar to the full set PSO run, cruise
altitude is also converged at a low setting and higher altitudes will increase ETS performance. The coupling offcd and altitude
alone will drive improvements that will reduce the ETS performance gap between the two PSO runs in Figure 6 to a negligible
difference.

In future works, the integration of a gradient-based optimization algorithm as a post-processor to a converged PSO solution
is a viable path forward in an effort to address the above points. In this approach, the swarm algorithm is first used to navigate
the search toward a solution region bounded about the globalminima, and in the process will bypass the local valleys thatexist
in the search volume (as was confirmed in Figure 2). Once at theglobal region, local search patterns need to be activated. Here,
the input from the converged PSO solution can be used as the initialization point for a gradient-based analysis to guide the
solution, using a suitable scalar step length, to a global minima. Specifically the issues relating to the non-convergence of fcd

and altitude, and possibly other parameters will be addressed.

The inclusion of ATR, including platform weights (empty andfuel) as objectives in PSO also needs to be considered.
The data visualization charts in Figures 3 and 4 showed that altitude variations have an opposing impact on ETS and ATR.
Further, single objective optimization focused on ATR minimization was not justified as altitude alone was determined to be
an influencing parameter. Yet, ATR minimization needs to be considered in the sizing and a multi-objective optimization
formulation is required that further factors ETS with ATR and platform weights. A design compromise that yields acceptable
performances between emissions and weights can then be established.

CONCLUSION

A computational framework encompassing design optimization tools for rotorcraft conceptual sizing was presented. A gradient-
based optimization approach was first applied to improve emission performance of the baseline with the optimization of plat-
form WL and DL. The analysis confirmed that a multi-modal solution space exists, hence local optima solutions were estab-
lished. A population-based stochastic algorithm based on the particle swarm theory was then used to address this shortfall. A
design variable sensitivity analysis was undertaken to qualitatively and quantitatively model the influence of rotorcraft sizing
parameters on emissions. It was shown that DL had a significant impact on ETS, while the tip velocity at hover for the main
rotor had minimal influence. Two PSO runs were then formed that: (a) encompassed all sizing parameters; and(b) with reduced
dimensionality to evaluate the relative impact of problem definition on solution feasibility and computational efficiency. The
objective from the two PSO runs were within 1%, yet the reduced dimensionality case converged with 25% fewer iterations.
Examination into the state of the PSO established solutionssuggests that a global optima has still not been achieved andthe
utilization of gradient-based tools, as a post-processor to the swarm solution is a justifiable next step.

The concepts presented are developed to aid rotorcraft conceptual sizing where the knowledge gained from the analysis
can be applied in detail design. Population based optimization methods are not suited when input dimensionality is extreme
coupled with high fidelity solvers as the computational overheads, even with parallel computing will be extreme. The results to
the sensitivity analysis are transferable for use at detaildesigns where variable(s) that have a significant impact on the objective
measure can be targeted to exploit for further performance gains. Gradient-based tools are important at conceptual design to
identify the topology of the solution landscape. These methods will also be critical in detail designs to further fine-tune the
solution since a well-defined starting point will exist as output to an evolutionary search process from the conceptual design
phase.
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