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Abstract 

    The finite-state inflow model is widely used in real-time simulations.  Coupling such a model with rotor blade 

flapping requires that the induced velocity be computed at the rotor disk, but the model also allows the flow to be 

computed at any location in the flow field above the rotor plane.   However, to compute the flow field below the 

rotor disk (such as is required for co-axial rotors) requires computation of the adjoint variables (along with the 

normal state variables) including a time delay.   Since the adjoint variables must be marched backwards in time, this 

can pose a problem in real time analysis.   In this paper, computation of the adjoint variables (and flow below the 

disk) is addressed in the time domain.  For illustrative purposes, the parameters for the two-blade Harrington co-

axial rotor are used.  A step input is given to collective pitch in hover.  The blade sectional lift is then calculated 

based on combined blade-element theory and on dynamic wake modeling (including blade flapping).  These 

equations are first time-marched forward to give the conventional state variables in the time domain.  The co-state 

theorem is then introduced to calculate the co-states and the induced velocity below the rotor.   Two alternatives 

methods are explored in order to compute the adjoint variables with time-delay.  The first is the convolution method 

(in which at every time steps the adjoint variables are computed by a closed-form convolution).  The second method 

is to march backwards in time for the co-states (i.e., adjoint variables).  Two methods are considered for this second 

method: 1.) time marching bacwards at every three time steps, and 2.) time-marching backwards once at the end of 

the domain of interest. The various methods are compared for computational efficiency and numerical accuracy. 

1. Background 

Pitt and Peters [1] offered a finite-state induced 

flow theory based on the potential-flow equations.  

The model could have from three to five inflow states.  

Peters and He [2] generalized the method to an 

arbitrary number of states by the use of superposition 

of pressures, giving the normal component of flow on 

the disk.  Peters and Cao [3] tried to extend the model 

to flow off the disk, but were unsuccessful.  However, 

they did demonstrate that a second set of inflow 

states would be necessary for flow off the disk.  

Morillo and Peters [4] found the extra states for flow 

above the disk, but were unable to find the singular 

members of the set––thus yielding poor convergence. 

Yu and Peters [5] were able to improve convergence 

but still could not find the singular states.  Hsieh, 

Duffy, and Peters [6] finally found the singular states 

and were able to find flow off the disk but not in the 

wake.  Fei and Peters [7] showed that flow within the 

wake also required the solution of adjoint variables.  

Huang [8] successfully applied the adjoint theorem to 

find all components of induced flow everywhere in 

the disk in the frequency domain.  However, to 

compute the velocity below the disk, it requires the 

adjoint velocity on the disk with time-delay.  To get 

such a velocity, it requires to time-marching the 

equations backward which could be time-consuming 

when the states increase.   For real time simulation, 

the speed of the computation is of great importance.  

Hence, it is necessary to seek a more effective way to 

achieve a fast and accurate computation of the adjoint 

variable with time delay. 

In this paper, the dimensional finite state inflow 

model will be solved numerically in the time domain 

coupling with dynamics of blade flapping through 

simpletic method.  The co-states theory will be 

applied to give the solution of the induced velocity 

below the disk.  The convolution method to calculate 

the adjoint variables will be introduced as well as the 

other two methods which are to march backwards in 

time for the co-states with different approaches.  The 

simulation results will be discussed to show that the 

convolution approach is practical for real-time 

simulations. 

2. Method descriptions 
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For a lifting rotor in hover, the rotation speed 

and the free-stream are assumed to be  and V∞, 

respectively.  Then the finite-state inflow model for 

such a rotor in hover condition can be given in Eq. 

(1), and the state variables can be obtained 

numerically with specific initial conditions. 
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where R is the radius of the rotor;  M  is apparent 

mass matrix;  D  is the damping matrix;  L  is the 

influent coefficient matrix.  The matrix  V  is 

defined as 
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avev  is the average induced velocity within the rotor 

disk region and  is the climb rate.  The input  m

n  

can be calculated using Eq. (3). 
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where  is air density, Q is number of blades, r is 

normalized length from the root of the blade to the 

point to compute and r = x/R, q is azimuth angle of 

the qth blade and q = t + 2/Q (q – 1), b  is the 

non-dimensional semi-chord and / 2b c R .  0 ( )n r  

can be expressed in terms of the Legendre function of 

the first kind in the ellipsoidal coordinate system. 

1
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The ellipsoidal coordinate system (, , ) can be 

transformed from the rectangular coordinates as 
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The sectional lift per unit length for the qth blade for 

lifting rotor in hover can be obtained through the 

combined blade element theory as 

 2 21
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       (6) 

where a is the slope of the lift coefficient CL, q is the 

angle of flapping for the qth blade.  The induced 

velocity for the center point of the blade element at 

time t can be written in Eq. (7). 
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For the induced velocity on the rotor disk,  = 0 and 

( ) 1m

nQ i  .   is the pitch angle which is given as 

0 cos sinc q s q                           (8) 

where 0 is the collective pitch, c and s are the 

cyclic pitch. 

The equation of motion of the qth blade is 
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where Iy and K are the moment of inertia and elastic 

coefficient of the root spring for the qth blade, 

respectively.  March Eqs. (1) and (9) in time with 

initial conditions using the method of simpletic, the 

state variables can be computed. 

For induced velocity below the rotor disk, the 

Adjoint velocity should be computed.  The adjoint 

equations can be given as 
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[A] has the following relationship 
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The closed-form solution of adjoint variables with 

time delay  is given as 



 3 

        
1

( ) ( )
t

m m

n n
t

t W B d


     



       (14) 

where 

 

1 ( )

( )i

t

t

e

W

e

  

  

  

  

 
 

  
 
 

 

Based on Eq. (14), the adjoint variables can be 

calculated numerically which is called as method 1. 

In [8], the induced velocity below the disk can be 

obtained as 
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where /z V   and the adjoint velocity is 

calculated as 
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The convolution method, in Eq. (14), can be used to 

find the adjoint variables.  The third term in Eq. (15) 

is 0 because, by definition the adjoint variables are 0 

when t = .  As an alternative to the application of the 

convolution method, the adjoint variables can also be 

obtained through marching Eq. (12) backward in time 

with algorithm of sempletic.  There are two 

approaches to this.  One is to march Eq. (12) 

backward in time with zero initial conditions from 

the end time of the computational period (method 2).  

For method 3, the adjoint variables are updated every 

three time steps by marching Eq. (12) backward 

while the induced velocity is computed in time. 

3. Results 

For the Harrington rotor, the system parameters are 

given in Eq. (17).  In the hover conditions of such a 

rotor, the climb rate is assumed to be 0.12. 

2
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Based on the momentum theory, the coefficient of the 

thrust in hover can be obtained as  
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For the ratio of the rotor thrust coefficient to the 

solidity is assume to be 0.08, the average induced 

velocity on the rotor disk can be obtained.  Then the 

control schemes can be further determined as 
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For the step input, only 
0

1  will be considered in such 

a finite-state inflow model and Eq. (7) can be 

simplified as 

0 0 0

1 1 1( ) ( )v a P Q i                            (20) 

With the parameters of Eq. (17), the induced velocity 

due to a step input is computed, Fig.1.  The step 

response peaks at about 234 ft2/s2, and oscillates for 

several seconds reaching 181 ft2/s2.  Results at x = -

0.8R, y = 0, z = 1.2R in the hover are presented in 

Figs. 2-4 for methods 1-3, respectively.  For the 

climb rate of 0.12 in hover, the free-stream velocity is 

31.44 ft/s.  For the induced velocity 1.2 radii below 

the disk, the time delay for the adjoint variable will 

be 0.477 s.  Therefore, to compute the velocity in the 

range of [0,10]t , adjoint variable are required for 

0.477 9.523s t s    according to Eq. (15).  It can be 

found that the adjoint variable and induced velocity 

reach steady state faster than the step input.  For the 

induced velocity, method 1 and method 3 give almost 

the same result at the steady states.  The steady state 

velocity for method 2 has approximate 8% difference 

compared with value for the other two methods.  

Additionally, method 2 gives a small artificial dip in 

velocity in the interval 9.5 10s t s  , which is 

illustrated in Fig. 3(b).  Although in theory the final 

result of the last two terms in the adjoint theorem 

which is given in Eq. (15) is independent of initial 

conditions on 
0

1 ( )t , in practice there will be a slight 

difference in this value due to initial conditions if an 

infinite number of modes are not included.  Because 
0

1 ( )t  varies so rapidly in the interval 9.5 10s t s   

which is shown in Fig. 3(a), the error for such a value 

is as large as it would ever get, which is about 2.2%.  

Although such an error is not large, it does show that 

there is some residual due to truncation of states.  For 

the method 3 which is shown in Fig. 4, though it can 

get similar result as method 1, the computation effort 

will be greatly increased compared to method 2. 

This comparison shows that the convolution 

method is numerically more robust than time 

marching backwards all the way from t = 10, and the 

computation time for such a method can be obviously 

reduced compared with method 3.  The added 

robustness is due to the fact that the convolution 

method continually re-initializes on zero initial 

conditions 
* ( ) 0v t   at every time step, and thus 

error can be minimized. 
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Fig. 1 Step input 
0

1  in the hover condition. 
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Fig. 2 Computation results for x = 0.8R, y = 0.0, z = 

1.2R with step input in the hover condition through 

method 1: (a) Adjoint variable 
0

1  and (b) induced 

velocity. 
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Fig. 3 Computation results for x = 0.8R, y = 0.0, z = 

1.2R with step input in the hover condition through 

method 2: (a) Adjoint variable 
0

1  and (b) induced 

velocity. 
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Fig. 4 Induced velocity for x = 0.8R, y = 0.0, z = 1.2R 

with step input in the hover condition through 

method 3. 

To achieve higher accuracy of computation, 

sufficient states should be included [9].  Herein, 6 
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harmonics for odd terms and 5 harmonics for even 

terms will be adopted for the solution and totally 15 

states will be involved.  In Fig.5, the induced velocity 

at x = 0.8R and y = 0.0 on the rotor disk is illustrated.  

The velocity is approaching steady-state after 0.4 

seconds.  Within one period of rotation which is 

about 0.3 seconds, the induced velocity reaches the 

peak value twice since the blade number is two.  The 

average value of the induced velocity at such location 

after steady-state is about 9.55 ft/s.   The induced 

velocities at 0.2R, 0.8R, 1.2R below the disk are 

demonstrated in Figs. 6-8, respectively.  The average 

induced velocity increases quickly from 15.15 ft/s to 

18.67 ft/s, which is about twice as the average 

induced velocity at the rotor disk.  It can also be 

observed that the induced velocity start to oscillate 

later as it moves more away from the rotor disk plane. 
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Fig. 5 Induced velocity for x = 0.8R, y = 0.0, z = 0.0 

with 15 states in the hover condition. 
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Fig. 6 Induced velocity for x = 0.8R, y = 0.0, z = 0.2 

with 15 states in the hover condition through method 

1. 
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Fig. 7 Induced velocity for x = 0.8R, y = 0.0, z = 0.8 

with 15 states in the hover condition through method 
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Fig. 8 Induced velocity for x = 0.8R, y = 0.0, z = 1.2 

with 15 states in the hover condition through method 

1. 

With such a convolution approach, the induced 

velocity contours 0.4 radii and 0.8 radii below the 

disk in hover condition computed using the 15 states 

finite state inflow model are presented in Figs.9 and 

10, respectively.  The computational time is 1 second, 

and x is in the range of [-2.0R, 2.0R].  From both of 

the plots, it can be seen that the induced velocity is 

very low at the centerline of the rotor, and the 

velocity gradient is very high around x = ±R. 
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Fig. 9 Induced velocity contour for y = 0, z = 0.4R 

with 15 states in the hover condition through method 

1. 

 

Fig. 10 Induced velocity contour for y = 0, z = 0.8R 

with 15 states in the hover condition through method 

1. 

4. Conclusions 

It is demonstrated that three different methods can be 

used for computation of the adjoint variables in the 

time domain, leading to identical responses for flow 

below the disk.  The method that employs the 

convolution integral is the most efficient and holds 

promise in solutions of adjoint variables in real time.  

The induced velocities in hover at different locations 

below the disk based on the 15-state model have been 

discussed, and the magnitude increases when it goes 

deeper into the wake.  The induced velocity contours 

have also been obtained to show how the velocity 

distributes on and outside of the rotor disk region. 
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