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Abstract

The finite-state inflow model is widely used in real-time simulations. Coupling such a model with rotor blade
flapping requires that the induced velocity be computed at the rotor disk, but the model also allows the flow to be
computed at any location in the flow field above the rotor plane. However, to compute the flow field below the
rotor disk (such as is required for co-axial rotors) requires computation of the adjoint variables (along with the
normal state variables) including a time delay. Since the adjoint variables must be marched backwards in time, this
can pose a problem in real time analysis. In this paper, computation of the adjoint variables (and flow below the
disk) is addressed in the time domain. For illustrative purposes, the parameters for the two-blade Harrington co-
axial rotor are used. A step input is given to collective pitch in hover. The blade sectional lift is then calculated
based on combined blade-element theory and on dynamic wake modeling (including blade flapping). These
equations are first time-marched forward to give the conventional state variables in the time domain. The co-state
theorem is then introduced to calculate the co-states and the induced velocity below the rotor. Two alternatives
methods are explored in order to compute the adjoint variables with time-delay. The first is the convolution method
(in which at every time steps the adjoint variables are computed by a closed-form convolution). The second method
is to march backwards in time for the co-states (i.e., adjoint variables). Two methods are considered for this second
method: 1.) time marching bacwards at every three time steps, and 2.) time-marching backwards once at the end of
the domain of interest. The various methods are compared for computational efficiency and numerical accuracy.

1. Background

Pitt and Peters [1] offered a finite-state induced
flow theory based on the potential-flow equations.
The model could have from three to five inflow states.
Peters and He [2] generalized the method to an
arbitrary number of states by the use of superposition
of pressures, giving the normal component of flow on
the disk. Peters and Cao [3] tried to extend the model
to flow off the disk, but were unsuccessful. However,
they did demonstrate that a second set of inflow
states would be necessary for flow off the disk.
Morillo and Peters [4] found the extra states for flow
above the disk, but were unable to find the singular
members of the set—thus yielding poor convergence.
Yu and Peters [5] were able to improve convergence
but still could not find the singular states. Hsieh,
Duffy, and Peters [6] finally found the singular states
and were able to find flow off the disk but not in the
wake. Fei and Peters [7] showed that flow within the
wake also required the solution of adjoint variables.
Huang [8] successfully applied the adjoint theorem to
find all components of induced flow everywhere in
the disk in the frequency domain. However, to
compute the velocity below the disk, it requires the

adjoint velocity on the disk with time-delay. To get
such a velocity, it requires to time-marching the
equations backward which could be time-consuming
when the states increase. For real time simulation,
the speed of the computation is of great importance.
Hence, it is necessary to seek a more effective way to
achieve a fast and accurate computation of the adjoint
variable with time delay.

In this paper, the dimensional finite state inflow
model will be solved numerically in the time domain
coupling with dynamics of blade flapping through
simpletic method. The co-states theory will be
applied to give the solution of the induced velocity
below the disk. The convolution method to calculate
the adjoint variables will be introduced as well as the
other two methods which are to march backwards in
time for the co-states with different approaches. The
simulation results will be discussed to show that the
convolution approach is practical for real-time
simulations.

2. Method descriptions



For a lifting rotor in hover, the rotation speed
and the free-stream are assumed to be Q and V.,
respectively. Then the finite-state inflow model for
such a rotor in hover condition can be given in Eq.
(1), and the state variables can be obtained
numerically with specific initial conditions.
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where R is the radius of the rotor; [M] is apparent
mass matrix; [D] is the damping matrix; [L] is the
influent coefficient matrix.  The matrix [V] is
defined as
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can be calculated using Eq. (3).
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where p is air density, Q is number of blades, 7 is
normalized length from the root of the blade to the
point to compute and r = x/R, y, is azimuth angle of

the ¢™ blade and w, = Qt +21/0 (g - 1), b is the
non-dimensional semi-chord and b =c/2R. ¢°(r)

can be expressed in terms of the Legendre function of
the first kind in the ellipsoidal coordinate system.
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The ellipsoidal coordinate system (v, 7, y) can be
transformed from the rectangular coordinates as
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The sectional lift per unit length for the qth blade for
lifting rotor in hover can be obtained through the
combined blade element theory as
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where a is the slope of the lift coefficient C;, f is the
angle of flapping for the ¢™ blade. The induced
velocity for the center point of the blade element at
time t can be written in Eq. (7).
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For the induced velocity on the rotor disk, 7 = 0 and
Q' (in) =1. @is the pitch angle which is given as
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where € is the collective pitch, 8, and &; are the
cyclic pitch.

The equation of motion of the ¢™ blade is
. R
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where /, and K are the moment of inertia and elastic
coefficient of the root spring for the ¢™ blade,
respectively. March Egs. (1) and (9) in time with
initial conditions using the method of simpletic, the
state variables can be computed.

For induced velocity below the rotor disk, the
Adjoint velocity should be computed. The adjoint
equations can be given as
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The eigenvalues {7;} and eigenvector [¢] of matrix
[A] has the following relationship
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The closed-form solution of adjoint variables with
time delay {’is given as
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Based on Eq. (14), the adjoint variables can be
calculated numerically which is called as method 1.

In [8], the induced velocity below the disk can be
obtained as

v(X,y,z,t) =v(z,1,p,t)
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where &=1z/V, and the adjoint velocity is
calculated as
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The convolution method, in Eq. (14), can be used to
find the adjoint variables. The third term in Eq. (15)
is 0 because, by definition the adjoint variables are 0
when ¢ = 7. As an alternative to the application of the
convolution method, the adjoint variables can also be
obtained through marching Eq. (12) backward in time
with algorithm of sempletic. =~ There are two
approaches to this. One is to march Eq. (12)
backward in time with zero initial conditions from
the end time of the computational period (method 2).
For method 3, the adjoint variables are updated every
three time steps by marching Eq. (12) backward
while the induced velocity is computed in time.

3. Results

For the Harrington rotor, the system parameters are
given in Eqg. (17). In the hover conditions of such a
rotor, the climb rate is assumed to be 0.12.

R =125 ft,c =15 ft, OR = 262 ft/s,a = 4.3,
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Based on the momentum theory, the coefficient of the
thrust in hover can be obtained as
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For the ratio of the rotor thrust coefficient to the
solidity is assume to be 0.08, the average induced
velocity on the rotor disk can be obtained. Then the
control schemes can be further determined as
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For the step input, only 7 will be considered in such

a finite-state inflow model and Eq. (7) can be
simplified as

v=aR’(v)Q’(in) (20)

With the parameters of Eq. (17), the induced velocity
due to a step input is computed, Fig.1. The step
response peaks at about 234 ft¥/s?, and oscillates for
several seconds reaching 181 ft?/s?. Results at x = -
0.8R, y = 0, z = 1.2R in the hover are presented in
Figs. 2-4 for methods 1-3, respectively. For the
climb rate of 0.12 in hover, the free-stream velocity is
31.44 ft/s. For the induced velocity 1.2 radii below
the disk, the time delay for the adjoint variable will
be 0.477 s. Therefore, to compute the velocity in the
range of t €[0,10], adjoint variable are required for

—0.477s <t £9.523s according to Eq. (15). It can be
found that the adjoint variable and induced velocity
reach steady state faster than the step input. For the
induced velocity, method 1 and method 3 give almost
the same result at the steady states. The steady state
velocity for method 2 has approximate 8% difference
compared with value for the other two methods.
Additionally, method 2 gives a small artificial dip in
velocity in the interval 9.5s<t<10s , which is
illustrated in Fig. 3(b). Although in theory the final
result of the last two terms in the adjoint theorem
which is given in Eq. (15) is independent of initial
conditions on AJ(t) , in practice there will be a slight

difference in this value due to initial conditions if an
infinite number of modes are not included. Because

AY(t) varies so rapidly in the interval 9.5s <t <10s

which is shown in Fig. 3(a), the error for such a value
is as large as it would ever get, which is about 2.2%.
Although such an error is not large, it does show that
there is some residual due to truncation of states. For
the method 3 which is shown in Fig. 4, though it can
get similar result as method 1, the computation effort
will be greatly increased compared to method 2.

This comparison shows that the convolution
method is numerically more robust than time
marching backwards all the way from t = 10, and the
computation time for such a method can be obviously
reduced compared with method 3. The added
robustness is due to the fact that the convolution
method continually re-initializes on zero initial

conditions V' (t)=0 at every time step, and thus
error can be minimized.
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Fig. 1 Step input 7, in the hover condition.
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Fig. 2 Computation results for x = 0.8R, y = 0.0, z =
1.2R with step input in the hover condition through

method 1: (a) Adjoint variable A and (b) induced
velocity.
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Fig. 3 Computation results for x = 0.8R, y = 0.0, z =
1.2R with step input in the hover condition through

method 2: (a) Adjoint variable A? and (b) induced
velocity.
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Fig. 4 Induced velocity for x = 0.8R,y=0.0,z=1.2R
with step input in the hover condition through
method 3.

To achieve higher accuracy of computation,
sufficient states should be included [9]. Herein, 6



harmonics for odd terms and 5 harmonics for even
terms will be adopted for the solution and totally 15
states will be involved. In Fig.5, the induced velocity
at x = 0.8R and y = 0.0 on the rotor disk is illustrated.
The velocity is approaching steady-state after 0.4
seconds. Within one period of rotation which is
about 0.3 seconds, the induced velocity reaches the
peak value twice since the blade number is two. The
average value of the induced velocity at such location
after steady-state is about 9.55 ft/s.  The induced
velocities at 0.2R, 0.8R, 1.2R below the disk are
demonstrated in Figs. 6-8, respectively. The average
induced velocity increases quickly from 15.15 ft/s to
18.67 ft/s, which is about twice as the average
induced velocity at the rotor disk. It can also be
observed that the induced velocity start to oscillate

later as it moves more away from the rotor disk plane.
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Fig. 5 Induced velocity for x = 0.8R, y = 0.0, z = 0.0
with 15 states in the hover condition.
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Fig. 6 Induced velocity for x = 0.8R,y = 0.0, z=0.2
with 15 states in the hover condition through method
1.

32

24 |

velocity, ft/s
=
(2]

[ee]
T T

time,s

Fig. 7 Induced velocity for x = 0.8R, y = 0.0, z = 0.8
with 15 states in the hover condition through method
1.

321

24 |

velocity, ft/s
=
(2]

©
T T

time,s

Fig. 8 Induced velocity for x = 0.8R,y = 0.0, z=1.2
with 15 states in the hover condition through method
1.

With such a convolution approach, the induced
velocity contours 0.4 radii and 0.8 radii below the
disk in hover condition computed using the 15 states
finite state inflow model are presented in Figs.9 and
10, respectively. The computational time is 1 second,
and x is in the range of [-2.0R, 2.0R]. From both of
the plots, it can be seen that the induced velocity is
very low at the centerline of the rotor, and the
velocity gradient is very high around x = 3R.
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Fig. 9 Induced velocity contour for y = 0, z = 0.4R
with 15 states in the hover condition through method
1.

0.0 0.2 04 0.6 0.8 1.0

time, sec

Fig. 10 Induced velocity contour for y = 0, z = 0.8R
with 15 states in the hover condition through method
1.

4. Conclusions

It is demonstrated that three different methods can be
used for computation of the adjoint variables in the
time domain, leading to identical responses for flow
below the disk. The method that employs the
convolution integral is the most efficient and holds
promise in solutions of adjoint variables in real time.
The induced velocities in hover at different locations
below the disk based on the 15-state model have been
discussed, and the magnitude increases when it goes
deeper into the wake. The induced velocity contours

have also been obtained to show how the velocity
distributes on and outside of the rotor disk region.
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