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ABSTRACT 

Simulation data consisting of multiple fidelity levels were generated using Graphical Processing Unit (GPU) resources 

on the NASA supercomputers. First, two large aerodynamic simulation databases were generated for geometric 

perturbations over a range of flight conditions for a hex-rotor bi-plane tailsitter aircraft. Results were visualized using 

the NASA Advanced Supercomputing Division’s Hyperwall to improve the geometric design constraints. More than 

3,000 full aircraft aerodynamic simulations were run using GPU enabled OVERFLOW with an actuator disk model 

to generate the airframe aerodynamic database. These simulations were completed in roughly 1.5 weeks on  32 GPU 

nodes using 128 NVIDIA V100 GPUs. Surrogate modeling techniques including Gaussian Process Regression (GPR), 

sparse GPRs, and a variety of Neural Networks (NNs) were used to create surrogate models to predict airfoil 

aerodynamic performance as well as airframe aerodynamics as a function of flight condition, airframe geometry, and 

rotor control input. These surrogate models were combined with additional Python modules predicting aircraft mass 

and inertia to generate another 3,000 aircraft simulations in CAMRAD-II in less than six hours using 240 Central 

Processing Unit (CPU) cores. Stability and control derivative matrices were obtained from the output to evaluate the 

open-loop characteristics. Lastly, the optimization framework was setup to allow simultaneous optimization of the 

aircraft and flight condition. The framework can now be used to optimize the aircraft for various objectives such as 

maximum range, endurance, or payload while satisfying constraints on controllability. This work brings higher-fidelity 

simulation data into the earlier stages of conceptual design, improving accuracy of the results and reducing the risk of 

missing critical design issues.  

 

 

NOTATION  

P Rotor Power Requirement [W] 

R Rotor Blade Radius [m]  

r Radial Location [m] 

α Angle-of-Attack [deg] 

𝐶𝑇/𝜎  Blade Loading   

𝑐𝑙 Airfoil Lift Coefficient 

𝑐𝑑 Airfoil Drag Coefficient 

𝑐𝑚 Airfoil Pitching Moment Coefficient1 

ACRONYMS 

ARC    NASA Ames Research Center 

BEMT     Blade Element Momentum Theory 

CFD    Computational Fluid Dynamics 

CPU    Central Processing Unit  

EI    Expected Improvement  

ELISA    E Evolutionary aLgorithm for Iterative  

      Studies of Aeromechanics 

GPR    Gaussian Process Regression  

GPU    Graphical Processing Unit  

HECC    (NASA) High-End Compute Capability  
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LRMR    Long-Range Mars Rotorcraft  

MSL    Mars Science Laboratory 

MAE    Mean Absolute Error 

MFM    Multi-fidelity Model  

ML    Machine Learning  

NN    Neural Network  

ROAMX  Rotor Optimization for the Advancement  

      of Mars eXploration 

SMD    Science Mission Directorate  

VTOL    Vertical Takeoff and Landing  

 

INTRODUCTIONi 

Recent NASA missions as part of the Science Mission 

Directorate (SMD) have developed vertical take-off and 

landing (VTOL) aircraft for exploration of other planetary 

bodies in our solar system. The Ingenuity Mars Helicopter 

was the first aircraft to fly on another world with a total of 72 

flights over its 1.5 year mission, Ref. [1]. The New Frontiers 

Dragonfly lander is now under development as the next 

rotorcraft to be launched from Earth and will explore Saturn’s 

largest moon Titan, Ref. [2]. Such rotorcraft explorers enable 

This is a work of the U.S. Government and is not subject to 

copyright protection in the U.S. 
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science campaigns to be conducted across geographically 

diverse regions and in locations that rovers cannot easily 

access. Renderings of Ingenuity and Dragonfly are included 

in Figure 1.  

 

 
 

 

Figure 1. The Ingenuity Mars Helicopter (top) and the  

Titan Dragonfly Lander (bottom).  

  Although these aerial explorers provide unique mission 

capabilities, their design and pre-flight qualification is a 

formidable task. The Titan atmosphere consists of cryogenic 

Nitrogen and Methane, and the atmospheric density is 440% 

that of Earth. On Mars, the thin atmosphere at 1-3% that of 

Earth leads to a low Reynolds number, high-Mach number 

operating regime. Although these conditions can be partially 

simulated in facilities at NASA Ames Research Center, the 

Jet Propulsion Laboratory, and the Johns Hopkins University 

Applied Physics Laboratory, Refs. [3-5], getting accurate 

experimental flight data remains a challenge. The 25-foot 

Space Simulator at JPL was used to conduct hover testing for 

Ingenuity and select forward flight testing, while the NASA 

Langley Transonic Dynamics Tunnel (TDT) has been used to 

test Dragonfly’s full-scale coaxial rotor system at roughly 

75% of Titan’s atmospheric density. These facilities do not, 

however, simultaneously recreate the true environment 

including atmospheric properties, temperature, and gravity. 

Due to these constraints, there is little opportunity for ‘free-

flight’ testing of these aircraft until they are deployed on their 

target planetary bodies.  

These challenges in experimental validation and 

verification result in a heavy reliance on modeling and 

simulation. Despite advancements in modern day 

supercomputing, the highest fidelity simulations are still far 

too computationally expensive to support the extensive 

analysis required for designing and understanding these 

aircraft. Engineers must thus use lower-fidelity models that 

could miss critical aspects of the associated physics and/or 

complex multi-disciplinary interactions.  

The objective of this work is to leverage machine learning 

(ML) to bring multi-disciplinary, higher-fidelity simulation 

data forward in the conceptual design process. This has two 

main goals: 1) mitigate the chance of selecting aircraft design 

features with critical issues, and 2) increase confidence in the 

modeling and simulation results of the aircraft’s predicted 

performance in its intended environment. This work develops 

a methodology for machine learning leveraged design 

optimization. The methodology is demonstrated here for the 

design of a Long-Range Mars Rotorcraft (LRMR) given the 

previously stated challenges of planetary aerial vehicle 

design. The ML methodology, however, is general and can be 

applied to a variety of aerospace design problems such as 

atmospheric entry vehicles, rockets, airplanes, and hypersonic 

vehicles, as well as other data-driven problems relevant to 

NASA.   

OVERVIEW 

This paper details a methodology for multidisciplinary 

multi-fidelity full aircraft design optimization. The 

methodology is a continuation from previous work by 

Cornelius and Schmitz, Ref. [6], that used a Bayesian 

optimization approach to find optimal rotor aerodynamic 

designs in a high dimensional non-convex design space. The 

methodology found optimal solutions with substantially 

reduced computational cost compared to the previous state-

of-the-art methodology. These computational efficiency 

increases were attained using surrogate modeling to create 

Figure 2. Machine Learning Leveraged Design Optimization Approach. 
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lower-order representations of OVERFLOW generated airfoil 

data and CAMRAD-II generated rotor performance data.  

This work advances that methodology to include full 

aircraft optimization using varying fidelity simulation data 

from multiple disciplines in rotorcraft engineering (see 

Figure 2). Higher-fidelity aerodynamic forces and moments 

for the airframe, including rotor interactional aerodynamics, 

are first calculated using OVERFLOW with an actuator disk 

implementation. A database spanning the entire geometric 

design space and flight envelope is generated using an 

intelligent sampling technique referred to as the Greedy 

Farthest Point algorithm, Ref. [7]. A surrogate model of this 

OVERFLOW generated airframe aerodynamic data is then 

used in CAMRAD-II to calculate aircraft performance, 

vehicle trim, and stability and control derivative matrices as a 

function of geometric design parameters and the flight 

condition. This output is then built into a Bayesian 

optimization framework to enable optimization for any user-

defined objective functions.  

CONCEPTUAL DESIGN 

The Long-Range Mars Rotorcraft  

The successful flight campaign of the Ingenuity 

technology demonstrator paved the way for future aerial 

explorers to be used on Mars. As a technology demonstrator 

and add-on payload to the Perseverance Rover mission, 

Ingenuity was only 1.8 kg and had no payload capacity. The 

aircraft’s maximum range was 705 meters (Flight 69), the 

maximum flight time was 170 seconds (Flight 12), and the 

maximum ground speed was 10 m/s (multiple flights), 

Ref. [8].  

Past studies have analyzed an array of potential aircraft 

configurations for Mars exploration, and a few works have 

even been proposed as follow-on explorers to Ingenuity. A 

few of these configurations include a conventional single 

main rotor helicopter, tiltrotor, tailsitter, and multirotor. Each 

of these aircraft configurations come with unique challenges 

requiring extensive simulation and experimental testing. This 

work aims to enable advanced concept aircraft through the 

inclusion of higher-fidelity simulation data in the early stages 

of conceptual design. As such, an advanced vehicle 

configuration was selected to demonstrate the ML-based 

methodology being developed.  

Given the desire for VTOL capability while 

simultaneously achieving good cruise efficiency for a long 

range, the quadrotor biplane tailsitter (QBiT) configuration 

was explored. QBiT aircraft have been extensively 

investigated by several groups for Earth applications in both 

the commercial drone industry and as a defense technology, 

Refs. [9-13], Figure 3.  

An aircraft that could traverse a large range over multiple 

sorties would enable exploration of geographically diverse 

regions of Mars. Traversing a large range in a single flight 

creates opportunity for unique missions such as aerial 

exploration of otherwise inaccessible regions.  

 

Figure 3. Quadrotor Biplane Tailsitter (QBiT). 

Aircraft Sizing for Mars Entry Vehicles 

The aircraft was constrained to fit within existing Mars 

atmospheric entry vehicles. The Mars Science Laboratory 

(MSL) entry vehicle’s 4.5-meter diameter aeroshell was used 

in this work; a similar aeroshell carried Perseverance and 

Ingenuity, Ref. [14]. Figure 4 depicts the MSL aeroshell. A 

rotor sizing study was conducted to determine the maximum 

rotor radius for a given number of rotors, as shown in 

Figure 5. More rotors yield higher total rotor swept area 

decreasing power requirement, but also add mechanical 

complexity. To strike this balance and increase fault 

tolerance, a Hexrotor Biplane Tailsitter (HBiT) was chosen 

since it can still be controlled with one to two rotor or motor 

failures.  

 

 

Figure 4. Mars Science Laboratory Entry Vehicle (top),  

HBiT Rotor Layout in Aeroshell (bottom).  
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Figure 5. Rotor Disk Area Study. 

Based on six rotors, preliminary rotor sizing calculations 

were conducted using rotor design information from the 

Ingenuity Mars Helicopter and continued Mars rotor 

development efforts by the NASA Rotor Optimization for the 

Advancement of Mars eXploration (ROAMX) team. Rotor 

solidity from 0.2 to 0.3 with blade-tip Mach numbers from 0.8 

to 0.9 were explored. Mars airfoils and rotors optimized by 

the ROAMX team cover the region of interest for these rotors. 

OVERFLOW aerodynamic data were also obtained from the 

ROAMX team to inform the study. A rotor radius of 0.75 m 

was fixed given the entry vehicle constraints.  

Table 1 reports the aircraft mass supported in hover (from 

momentum theory) for various combinations of blade-tip 

Mach number, solidity, and normalized rotor thrust 

coefficient (𝐶𝑇/𝜎). An aircraft mass of 50-70 kg appears 

viable, and designs on the lighter end of that spectrum have 

substantial thrust margin remaining for control. The 

corresponding chord-based Reynolds numbers are reported at 

the 75% blade radial location in Table 2. The rotor design 

space has a Reynolds number range from 20,000 to 40,000, 

which has been extensively analyzed for the ROAMX project. 

This work leverages airfoil performance data for the ROAMX 

rotor generated using the Evolutionary aLgorithm for Iterative 

Studies of Aeromechanics (ELISA) optimization toolset, 

Refs. [15-17]. Table 3 reports the estimated hovering power 

for the entire aircraft using momentum theory. The power 

requirement in cruise is highly dependent on the vehicle trim 

and will be reported with higher fidelity analyses in a 

subsequent section.  

Table 1. HBiT Hover Target Mass, Radius = 0.75m.  

 

Table 2. Rotor Blade Reynolds Number at r/R=0.75. 

 

Table 3. Estimated HBiT Hover Power Requirement for 

Various Blade-tip Mach Numbers. 

0.80 0.85 0.90

0.0020 2.25              2.70          3.21          

0.0040 4.50              5.40          6.41          

0.0060 6.75              8.10          9.62          

0.0080 9.01              10.80       12.82       

0.0085 11.26            13.50       16.03       

Aircraft Power [kW]

Cp

Tip Mach Number

 

Bounds for the airframe were also set based on the 

aeroshell geometry. An ellipsoid was placed in the center of 

the six rotors, between the wings, to house the electronics, 

flight battery, and scientific payload. Maximum values for the 

wingspan, wing chord, wing vertical spacing, fuselage semi-

major and semi-minor axes were set by the aeroshell 

geometry. Minimum values were determined to keep the 

Reynolds number in a range suitable for analysis in 

OVERFLOW and a total aircraft lift relevant to the target 

mass of 50-75 kg. Additional constraints on fuselage 

minimum volume, wing aspect ratio, and fuselage aspect ratio 

were also applied.  

Mass and Moment Estimation 

Mass and moment of inertia estimates for the various 

aircraft designs are needed for higher fidelity analyses, 

including trim and vehicle stability and control. To this end, a 

custom routine was developed for analyzing the mass and 

moment of inertia properties of the individual components 

comprising the HBiT. This was done to facilitate design 

changes such as vehicle dimensions, rotor locations, and 

density of materials. The largest geometries consisted of 

extruded airfoil profiles for the wings and support structures 

as well as a prolate spheroid for the fuselage. Most of the 

internal components were assumed to have simple geometries 

such as hollow cylinders for spars, solid cylinders for the 

motors, thin disks for the rotors, a rectangular prism for the 

avionics, etc.  

Material properties of structural components, wing skin, 

supporting spars, and fuselage components were assumed to 

be made of carbon fiber or aluminum materials. The thickness 

of structural elements was determined through classical 

statics estimates given the component’s intended loading. For 

example, a wing spar was estimated as two cantilever beams 

with loading estimated from the vertical spar attachment 

joints.  

0.80 0.85 0.90 σ=0.3

0.025 39.5 44.6 50.0 0.083

0.030 47.4 53.5 60.0 0.100

0.035 55.3 62.4 70.0 0.117

0.040 63.2 71.4 80.0 0.133

0.045 71.1 80.3 90.0 0.150

Tip Mach NumberAircraft Weight 

Supported [kg]

𝐶𝑇

𝐶𝑇/𝜎

0.20 0.25 0.30

0.600 18,176          22,720     27,265     

0.700 21,206          26,507     31,809     

0.800 24,235          30,294     36,353     

0.850 25,750          32,187     38,625     

0.900 27,265          34,081     40,897     

Rotor Re@r/R = 0.75
Rotor Solidity

Tip Mach 

Number
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Staying with common geometries benefits from having 

readily available mass and inertia equations available in many 

textbooks and online. For example, estimates for the prolate 

spheroid were adopted from an ellipsoid with minor 

modifications (see Equations 1-3).  

 

𝑀 = 𝜌
4

3
𝑎2𝑏𝜋                    (1) 

I𝑥 =
2

5
M𝑏2                    (2) 

I𝑦,𝑧 =
1

5
M(𝑎2 + 𝑏2)                   (3) 

 

Where a and b are the major and minor axes lengths, 

respectively, for the prolate spheroid. 𝜌 represents the 

material density. 

Unlike the simpler geometries, the properties for the 

extruded airfoils were calculated using a generalized 

subroutine that accepted the chord-length-normalized 

coordinate files being used for the aerodynamic analyses. This 

routine scales the airfoil to the appropriate size, divides the 

profile into cells based on a resolution set by the user, and 

extrudes the cells to the appropriate span length before 

summing the weights and using the relative distances to 

determine mass and inertia properties.  

Additionally, the subroutine has a parameter to specify a 

thickness to be used for shell profiles. This allows for more 

accurate calculations of the hollowed wings. Examples of the 

solid and shell distribution profiles for an Eppler E387 airfoil 

can be seen in Figures 6-7.   

 

Figure 6. Mass Distribution Estimate for a Solid Airfoil. 

 

Figure 7. Mass Distribution Estimate for an Airfoil Shell. 

The algorithm for mass and inertia estimation also 

included motor and battery sizing calculations that were 

constrained to a maximum vehicle mass of 75 kg. Using this 

target mass, motors were sized such that 80% power setting 

would provide sufficient thrust to maintain hovering flight in 

the event of two inoperative motors. This provided a 20% 

power margin for maneuvering the vehicle in the event of this 

worst-case-scenario failure situation. Based on this sizing 

constraint, the mass of the motor begins with an estimated 

motor power per kilogram (W/kg) of 175 being selected. This 

value provides an estimate for power needed to lift a specified 

vehicle mass. Using the 75 kg target mass, spread across four 

propellers (assuming the two-rotor failure case), this would 

require each rotor to support 18.75 kg to maintain hover. 

Using the 175 W/kg conversion, this yields an estimated 

3,281 W/motor to sustain hover. Adjusting for the desired 

80% throttle setting, this comes out to an adjusted 4,102 

W/motor to sustain hover. The motor mass can then be 

determined using Equation 4 as follows: 

Motor Mass [kg] = k*sqrt(T[N]*P[W])      (4) 

Where k is a lightweight parameter, set to k = 0.004, 

responsible for estimating the mass of a motor given a known 

thrust T in Newtons (where g = 3.71 m/s^2 on Mars) and 

power, P, is in Watts. Based on these values, this would yield 

an estimated motor mass of 2.14 kg/motor. 

The final item to be sized was the battery. Weights and 

dimensions of Panasonic NCR2170-M cells were used while 

assuming a future improved power density of 400 Watt-hr/kg. 

Minimum voltage requirements for the motors were also used 

to determine whether a sufficient number of cells could be 

combined in series and parallel to meet the motor demands 

and targeted nine-minute operation time. If enough power 

could be supplied to meet the target operational time, the 



 
6 

remaining mass of the vehicle was left untouched to maximize 

payload capacity. 

With each component individually calculated, the 

parallel axis theorem was used to find the overall moments of 

inertia for the aircraft. Due to the symmetric nature of the 

vehicle, and to save computational processing time, the 

contributions from misalignments of the components’ 

principal axes were neglected. 

AERODYNAMIC DATABASE MODELING 

The OVERFLOW CFD Tool 

All Computational Fluid Dynamics (CFD) simulations 

completed in this work used the NASA OVERFLOW solver. 

The OVERFLOW code is an overset, high-order structured 

grid-based compressible CFD code often leveraged in the 

rotorcraft community to obtain high-fidelity predictions for 

rotorcraft-based applications. In this study, two aerodynamic 

databases were generated. For the first database, only the 

fuselage, wing, and pylons were modeled within the CFD 

code, Figure 8. The generation of this geometry requires 21 

overset near-body grids and approximately 30 million grid 

points. A total of 500 CFD simulations were completed for 

this preliminary database.  

 

Figure 8. V1 Aerodynamic Database OVERFLOW Grid. 

For the second database, the fuselage, both wings, the 

pylons, and all 6 rotors were modeled in the CFD simulation, 

Figure 9. The generation of this geometry required 33 overset 

near-body grids and approximately 57 million grid points. A 

total of 3,000 CFD simulations were completed. To model the 

rotors in the CFD solver, the recently implemented Blade 

Element Theory (BET) source term-based rotor disk model 

was leveraged to simulate all presented OVERFLOW-based 

CFD results. To compute rotor loads using the BET rotor disk 

model, the high-fidelity ROAMX airfoil performance lookup 

tables were used. The baseline ROAMX rotor was used in the 

simulations. Each rotor disk was modeled using 50 spanwise 

nodes and 36 azimuth nodes for the rotor’s CFD mesh. A 

Cartesian, multiblock off-body mesh was then generated with 

a mesh refinement of 10% wing mean chord length and a 

refinement box that extended four rotor diameters 

downstream of the rotor’s hub. Both the near-body rotor and 

off-body background Cartesian grids used second-order 

temporal and fourth-order spatial discretization with a 

constant global Courant–Friedrichs–Lewy (CFL) prescribed. 

Simulations used third-order central differencing for the Euler 

terms and Beam-Warming for the viscous terms.   

 

Figure 9. V2 Aerodynamic Database OVERFLOW Grid. 

One notable contribution of this study is its investigation 

into deriving meaningful and highly generalized machine 

learning-based surrogate models from high-fidelity CFD 

simulation data. In developing such a surrogate model from 

high-fidelity overset curvilinear CFD simulation data, two 

key challenges arise. 

First: Efficient automatic generation of parametrically 

defined, high-quality overset curvilinear grids. NASA's 

Chimera Grid Tools (CGT) code, a curvilinear grid generation 

tool, was used to create all the necessary grids for CFD 

simulations in this study. The CGT code is commonly 

employed for generating the grids of pylons, fuselages, and 

rotors for simulations in OVERFLOW. However, generating 

high-quality overset grids for the wings of the vehicle proved 

to be challenging, leading this study to utilize the recently 

implemented Bladegen program. Bladegen is an internal 

NASA grid generation tool designed to automatically create 

high-quality grids for wings and rotor blades. Although 

Bladegen is not currently available for public release, it will 

be included in the upcoming CGT 2.3 release. 

Second: Developing surrogate models from high-fidelity 

CFD simulations requires a sufficient number of simulations. 

This study required several thousand CFD simulations to 

create a meaningful surrogate model. Traditionally, 

completing such a large number of three-dimensional high-

fidelity simulations would be infeasible within a single study. 

However, recent developments in OVERFLOW that enable it 

to run on GPUs, combined with NASA's investment in GPU 

hardware, made it possible to complete all required 

simulations efficiently. Despite each simulation requiring tens 

of millions of cells and thousands of iterations, the use of 

GPUs allowed each simulation to be completed in roughly 

one hour. By leveraging 80 NVIDIA V100 GPUs at NASA, 

this study was able to complete approximately 400 full 

aircraft CFD simulations per day, thereby generating 

extensive, high-fidelity CFD databases for machine learning 

applications. 
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Model Validation 

Prior to executing all 3,500 simulations, a preliminary 

validation effort was conducted. This involved performing a 

series of CFD simulations to confirm that the study accurately 

modeled the lifting surfaces. One of the challenges in this 

validation process is the scarcity of experimental data 

available for the low Reynolds number conditions examined 

in this study. Additionally, limited experimental data exists 

for the specific vehicle configuration considered. Fortunately, 

there were experimental measurements available for the lift 

coefficients of an Eppler E387 airfoil, Ref. [18]. While the 

focus of this validation effort was for a three-dimensional 

wing, given a sufficiently high wing aspect ratio, the mid-span 

lift coefficient should match the experimental measurements 

for the airfoil. Thus, this effort allowed the validation of the 

chosen mesh and solver settings employed in the research. 

A series of isolated wing simulations were conducted at 

progressively higher wing aspect ratios. Each wing was 

simulated at an angle of attack of 5 degrees and a Reynolds 

number of approximately 100,000. The initial wing aspect 

ratio started at 3.5 and was increased until a converged 

solution for the loading at the wing's center was achieved. 

This converged solution was obtained at an aspect ratio of 

14.2, as demonstrated in Figure 10. The final computed lift 

coefficient at the wing's center was 0.89, which lies well 

within the uncertainty bounds reported by the experimental 

data. 

 
Figure 10. Effect of Increasing Wing Aspect Ratio on 

Spanwise Loading. 

Aerodynamic Database V1 

To create the OVERFLOW aerodynamic database, the 

airframe was parametrized using: 1) wingspan, 2) wing chord, 

3) wing vertical separation, 4) fuselage semi-major axis, and 

5) fuselage semi-minor axis.  

  The flight condition was parametrized by cruise 

velocity and vehicle pitch attitude. The Greedy Farthest Point 

(GreedyFP) space filling algorithm was used to generate 500 

intelligently sampled OVERFLOW simulations of the 

airframe geometric design space and flight envelope. This 

database was generated using the NASA High-End Compute 

Capability’s (HECC) GPU clusters and a sample flowfield 

visualization is shown in Figure 11 with lift to drag results in 

Figure 12. Each OVERFLOW simulation used approximately 

30 million grid points and required 40 minutes on a GPU 

compute node with four NVIDIA V100s. The database was 

generated in one weekend. 

Aerodynamic Database V2 

To create the second OVERFLOW aerodynamic database, 

the airframe and rotors were parametrized using: 1) wingspan, 

2) wing chord, 3) wing vertical separation, 4) fuselage semi-

major axis, 5) fuselage semi-minor axis, 6) rotor common 

collective input, and 7) rotor longitudinal pitch input. The two 

rotor control inputs fully defined the collective values for each 

of the six rotors. The flight condition was again parametrized 

by cruise velocity and vehicle pitch attitude, yielding a total 

of nine free parameters. The GreedyFP algorithm was again 

used to generate 3,000 OVERFLOW simulations spanning 

the airframe geometric design space, control input space, and 

flight envelope. This V2 aircraft database was generated using 

the NASA HECC GPU clusters and a sample flowfield 

visualization is shown in Figure 11. Each OVERFLOW 

simulation had about 57 million grid points and required 1 

hour and 15 minutes on a GPU compute node with four 

NVIDIA V100s. The database was generated in roughly 1.5 

weeks using 20 GPU nodes.  

     

Figure 11. Aerodynamic Database Flowfield 

Visualizations, Left: V1, Right: V2. 

 
Figure 12. Aerodynamic Database V1 Lift-to-Drag, 

Chord-based Reynolds Number Varies from 50k – 250k. 

Two major outliers are observed in the lift to drag plot, 

and data pruning is discussed as a pre-processing step before 

training the surrogate models in the next section. Airframe 

geometry perturbations and flow visualizations were viewed 

using the NASA-HECC Hyperwall as seen in Figure 13.  
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MACHINE LEARNING 

This section accounts for the process of deriving surrogate 

models of the airframe aerodynamics and ROAMX airfoil 

performance databases, respectively. 

Airframe Aerodynamics Models  

Given the aerodynamic databases, referred to as V1 and 

V2 and described in the previous section, the surrogate 

modeling task at hand was to predict the lift, drag and pitching 

moments imparted on the airframe, as a function of the 

geometrical vehicle design parameters and the flight 

condition. This amounts to seven total input features for the 

V1 database; the V2 database has nine input features 

including the two additional rotor control inputs. The lateral 

force as well as yaw and roll moments were excluded from 

the regression task, due to their small magnitude relative to 

the on-axis forces mostly due to vehicle symmetry for the 

considered flight conditions.  

Gaussian Process Regression (GPR) is a popular choice 

for small to mid-sized data set surrogate modeling, owing to 

the ability to capture non-linear features, ease of 

implementation, and probabilistic representation allowing for 

intrinsic uncertainty quantification of the model predictions. 

Exact GPR models were initially explored for the airframe 

surrogate task. In the earlier stages of generating the V1 

aerodynamic database, a preliminary study of the dependency 

of model prediction accuracy on the size of training data set 

was conducted.  

Ultimately, these results guided the generation of the 

subsequent databases, providing insight into the trade-off 

between potential increase in accuracy and the cost of 

generating new samples. An exact GPR model, 

simultaneously predicting the three aerodynamic loads, was 

trained on an iteratively larger portion of the first 400 cases of 

the V1 database and evaluated on a test set of 50 held out 

datapoints. The Mean Absolute Error (MAE) on the test set as 

function of number of samples in the training dataset is 

depicted in Figure 14. The accuracy improvement is shown to 

level off after 350 samples, implying existence of a 

convergence limit where there is less benefit to generating 

more data for this model. Given some accuracy criterion, this 

could be used to halt the data generation once sufficient 

accuracy has been reached. 

In many practical scenarios, access to high-fidelity data is 

limited, be it due to computationally expensive simulations or 

experimental testing, which prohibits robust surrogate model 

fitting. In contrast, low-fidelity data may introduce bias 

and/or noise in the surrogate predictions on unseen 

conditions. Multi-Fidelity Modeling (MFM) addresses this 

issue through leveraging the computational efficiency of low-

fidelity data generation to learn trends, allowing for a large 

enough dataset to provide meaningful inference, while 

increasing accuracy of the predictions through select, high-

fidelity data anchoring points.  

 

 

Figure 14. Prediction Accuracy as a function of Training 

Dataset Size. 

The co-kriging technique, originally developed for 

geostatistical inference, has shown great success in MFM for 

small to mid-sized data sets in a vast range of engineering 

applications, owing to its robustness and straight-forward 

implementation. The application of MFM to rotorcraft 

analysis has gained increasing attention in the pursuit of 

integrating higher-fidelity CFD data with predictions from 

reduced-order, computationally less expensive aerodynamic 

models, Refs. [19-20]. In the context of the LRMR 

Figure 13. NASA Advanced Supercomputing Division Hyperwall, 128 LRMR Geometric Perturbations. 
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optimization, the airframe aerodynamic V1 database did not 

include effects of the rotors, which were later included in the 

V2 database. Yet, general trends such as those with cruise 

speed and angle of attack are shared across the two data sets, 

as shown in Figure 15.  

 
Figure 15. Airframe Multi-fidelity Aero Database. 

Here, the cruise-speed-dependent lift force is co-plotted 

for the V1 and V2 databases, showing it as an appropriate 

MFM application. The linear, autoregressive model 

formulated by Kennedy and O’Hagan in Ref. [21], and non-

linear generalization by Perdikaris, Ref.[22], as embodied in 

the open-source Python package Emukit, Ref. [23] was used 

for a demonstration of MFM here for the airframe 

aerodynamics databases. 

The data was normalized with dynamic pressure prior to 

training to reduce the dominant dependence on forward flight 

speed. A linear as well as non-linear model formulation for 

the cross-correlation between the two “fidelities” were 

investigated. For reference, the two multi-fidelity models 

were contrasted against an exact GPR trained exclusively on 

V2 data, considered as the “high-fidelity” data. All models 

featured Radial Basis Function kernels, without a noise 

parameter. The evaluation was performed on a 10% hold-out 

from the V2 database. The MAE on the predicted lift, drag 

and pitching moment coefficients are presented in Table 4. 

Notably, the exact GPR predictions are improved 25 to 35% 

with the MFM approach, where the non-linear model is 

shown to slightly outperform the linear model. 

Table 4. Mean Absolute Error for MFM and Single-

Fidelity Models for Airframe Aerodynamic Databases. 

MAE Non-linear MFM Linear MFM GPR HF 

𝐶𝐿 0.33 0.35 0.51 

𝐶𝐷 0.0530 0.0556 0.0736 

𝐶𝑀 0.040 0.042 0.054 

Figure 16 displays the correlation of MFM predictions on 

the hold-out data for the airframe’s aerodynamic 

performance. Lift normalized by dynamic pressure is plotted 

on the y-axis versus cruise speed. In almost all cases, the 

MFM model is shown to predict the unseen data very closely. 

These results confirmed the statistical analyses observed in 

Table 4, and indicate that the MFM model can be used in 

downstream applications to accurately predict the airframe 

aerodynamic performance as a function of the geometry and 

flight condition inputs.  

 
Figure 16. Airframe Surrogate Model Predictions. 

ROAMX AIRFOIL PERFORMANCE MODELS 

This work leveraged previous efforts on rotor design 

optimization in Mars conditions as performed under the 

ROAMX project, Ref. [15-17]. Data from the ROAMX 

project has been used to create a baseline rotor, and surrogate 

models of ROAMX Mars airfoil performance data have been 

created to simultaneously pursue full-aircraft optimization.  

The ELISA optimization toolset, developed under the 

ROAMX project and detailed in Ref. [16], is a multi-objective 

genetic algorithm approach to airfoil and rotor optimization 

using OVERFLOW, tailored to low-Reynolds, high Mach 

number applications typical for Mars operating conditions.  

ELISA features a dedicated airfoil parametrization, 

readily allowing for efficient exploration of unconventional 

airfoil shapes. Thickness and camber distributions are 

uniquely defined through Bezier curves; the notation for the 

parametrization of the ROAMX airfoil classes is roamx-

𝑛𝑐𝑝𝑐𝑛𝑡𝑝𝑡, were 𝑛 denotes the number of nodes and 𝑝 the 

order of the curve segments, where subscripts 𝑐 and 𝑡 refer to 

camber and thickness, respectively.  

The computed aerodynamic coefficients 𝑐𝑙, 𝑐𝑑, and 𝑐𝑚 

from the iterations of ELISA optimization runs for the roamx-

0202 and roamx-0201 served as the airfoil performance 

database used in this work. Including Mach and Reynolds 

number, the total number of independent variables for the 

roamx-0201 and roamx-0202 models is 5 and 7, respectively. 

The roamx-0201 were considered for the outboard section of 

the blade, with data covering solutions at Mach conditions 

0.3, 0.4, 0.6, 0.8, and 0.9. The variable thickness airfoil 

parametrization, roamx-0202, were considered for the 

inboard segments, ran at Mach number 0.07 and 0.2, to better 

accommodate structural requirements, in a similar vein as for 

the ROAMX rotor design as described in Ref. [16]. The 

ROAMX airfoil data 𝑐𝑙/𝑐𝑑 distribution is shown in Figure 17. 
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The data set contains more than 60,000 OVERFLOW airfoil 

simulations. The airfoil data used in this approach is from 

Reference [17] and will be called the ROAMX data from 

hereon out. The data for Mach = 0.90 has been generated 

using ELISA to expand the data set for this project.  

 
Figure 17. ROAMX Data 𝒄𝒍 /𝒄𝒅 Distributions. 

Deriving models from a data set that is noisy or one 

containing outliers, which are common occurrences for CFD 

data, can skew the model predictions unfavorably. To 

mitigate bias in the fit models, a simplistic data pruning 

approach was employed for the data sets, leveraging 

Mahalanobis distance to sift out statistical outliers. This 

distance measure is a multi-variate extension of Z-score to 

account for correlation structure between variables in multi-

dimensional datasets. In Figure 18, a cross-section of the 

roamx-0202 data is shown, highlighting data points that are 

significantly separated from the data distributions and 

removed automatically through the data pruning. A cut-off 

percentile of 95% was employed in the data pre-processing 

throughout this work, unless stated otherwise.  

 
Figure 18. Removing Outliers from Training Dataset,  

ROAMX-0202, Mach = 0.2. 

Due to the large size of the ROAMX training dataset and 

the poor scalability of exact GPRs, a scalable approach 

through sparse approximations using inducing variables was 

explored, Ref. [24]. While exact GPRs experience a cubic 

training time with the number of data points, 𝑛, a sparse 

approximation with 𝑚 inducing variables allows for a more 

tractable time complexity 𝑂(𝑛𝑚2). Using 2,500 inducing 

points for the ~35,000-point roamx-0201 data set, three 

separate model for the lift, drag and pitching moment 

coefficient polars were fit using a Matern kernel. The training 

time on a single CPU was on the order of one hour. A parity 

plot for the drag coefficient 𝑐𝑑 on a 10% hold-out test data set 

is presented in Figure 19, showing decent correlation between 

the predicted and ground truth values. The data has a reported 

R-squared metric of 0.97, MAE of 0.009, and an 11% mean 

absolute percentage error (MAPE). The predictive capability 

of the model tends to decrease with increasing drag. 

  
Figure 19. Sparse GPR Surrogate Model Predictions of 

ROAMX-0201 Airfoil Drag Coefficient. 

While the sparse approximator greatly improves the 

tractability of the surrogate, the prediction accuracy on the 

high-dimensional dataset is not entirely satisfactory. Thus, 

moving away from Kriging approaches, alternative scalable 

methods to improve the accuracy and computational 

efficiency, specifically feed-forward neural network 

approaches, were explored further under this effort.  

Dense, feed-forward networks were trained and evaluated 

on the ROAMX data. Models used for benchmarking featured 

7 hidden layers, each with 100 densely connected neurons. As 

a general observation, relatively narrow and shallow feed-

forward networks with a smaller number of trainable 

parameters were shown to perform better than wider, deep 

models. Unless stated otherwise, 10% of the training data was 

held out and used for evaluating the models on unseen test 

data points. In general, all neural networks were shown to out-

perform the sparse GPRs, both in terms of prediction accuracy 

and speed. Initially, six separate neural networks were trained 

to predict the airfoil performance of the two different airfoil 

classes. To improve compactness and potentially reduce 

training time, two multi-output models that predict all three 

aerodynamic coefficients simultaneously of the two airfoil 
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classes were also considered. The MAPE as predicted on the 

outboard section (roamx-0201) by the multi-output model is 

reported in Table 5, showing that the lift and drag coefficients 

are predicted to within about a percent.  

Table 5. Multi-Output Model Prediction Accuracy on 

roamx-0201 Test Data. 

 

The larger error in the pitching moment coefficient is 

likely due to the characteristics of the underlying data set. The 

ELISA tool objective functions include maximizing lift and 

minimizing drag, which ensure a certain amount of diversity 

and structure in the data for the lift and drag coefficients, due 

to intrinsic properties of the Pareto front. However, less 

structure and more noise in the data set is observed as it 

pertains to the pitching moment coefficient, which inevitably 

propagates to the quality of the predictions. Finally, a 

“unified” model that predicts across the two airfoil classes 

was also considered, augmenting the constant thickness 

airfoil data with two “dummy” variables to have a constant 

zero thickness distribution (in addition to the baseline, 

prescribed minimum thickness). With this augmentation, the 

models were trained on the entire ROAMX data set. A parity 

plot of the predicted drag coefficient using the unified model 

is presented in Figure 20, together with the MAPE.  

 

Figure 20. Unified Airfoil Model Prediction  

Accuracy on Test Data. 

Besides a small number of outliers, the model is seen to 

follow the truth data closely; the discrepancy falls within 2% 

of the unseen OVERFLOW CFD data. This is a decrease in 

error of a factor of five from the sparse GPR.  

Moving beyond benchmarking models, a framework to 

optimize the hyperparameters of the neural networks was 

implemented through a Bayesian Optimization routine, as 

embodied in the optimization framework Optuna, Ref. [25]. 

Training and evaluating neural networks are highly 

parallelizable tasks, and as such, enjoy great computational 

benefits from employment on GPU high performance 

compute clusters. Thus, utilizing the NASA HECC GPU’s 

enables an otherwise infeasible number of training cycles to 

find an optimal set of hyperparameters, and was used for this 

study. In the initial development trials, parallelized model 

training was employed on NVIDIA V100 and A100 GPUs 

using the NASA HECC resources. For reference, a wall time 

of two hours on two GPU’s allowed for approximately 45 

trained models. The framework can readily be expanded to 

any arbitrary number of GPU nodes to increase the number of 

networks tested in a given amount of time.  

 

FLIGHT CONTROLS 

Flight Control Allocation  

Control allocation for the LRMR vehicle is depicted in 

Figure 21 with the rotor locations, spin directions (blue and 

gray opposite), and orientations. The outboard rotors have 

five degrees of inward cant aligned with the wingspan 

direction. The rotor cant angle is subject to change based on 

preliminary analysis of the control authority of the current 

design. For this configuration, the cant angle is more effective 

at controlling yaw (in hover conditions) and roll (in cruise 

conditions) than differential torque alone.  

 

Figure 21. Fault-tolerant Control Allocation for a Long-

Range Mars Rotorcraft. 

The aircraft is nominally collective control only, but by 

having cyclic available on rotors 2 and 5, the aircraft can lose 

any single or diagonal pair of rotors and still be controllable 

in all axes. The control allocation matrix for differential blade 

pitch control is depicted in Figure 22. The matrix was selected 

to contain values of unity for this study, but these values could 

be further optimized to achieve different design goals (e.g., 

minimize control power, maximize control authority). In 

vertical flight mode, roll control is achieved through 

differential blade pitch of the left (1, 6) and right (3, 4) rotors, 
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pitch control is achieved through differential blade pitch of 

the fore (1, 3) and aft (4, 6) rotors, and yaw control is achieved 

through a combination of increasing thrust on the positive-

cant rotors (1, 4) along with differential cyclic of the 2 and 5 

rotors while decreasing thrust on the negative-cant rotors (3, 

6). In forward flight mode, the roll and yaw axes are swapped 

in an inertial sense, but the control action remains the same. 

This control allocation was used in both OVERFLOW and 

CAMRAD-II to generate the aerodynamic performance 

databases and subsequent stability and control derivative 

matrices.  

 

 

Figure 22. Control Allocation Matrix. 

Control Authority Analysis  

Preliminary assessment of the LRMR designs was based 

on their bare-airframe eigenvalues. From classical control 

theory, the inherent stability of a system can be analyzed 

using a complex plane where eigenvalues with negative real 

parts indicate stability while those with positive real parts 

represent unstable modes. Analogously, the higher the 

magnitude of the real part of the eigenvalue, the quicker that 

mode either stabilizes or destabilizes (depending on if its 

positive or negative). Using this analysis to drive the vehicle 

optimization towards more inherently stable dynamics is 

hypothesized to benefit control design and flying qualities; 

however, it should be noted that systems with eigenvalues far 

inside the stable, left-half plane typically require more energy 

to actuate. To find out, a cost function was developed to 

quantify stability in a normalized fashion such that it could be 

easily weighted or manipulated within the global aircraft 

optimization framework. This was achieved by using the 

following sigmoid function: 

𝝈(𝒙) =  
𝟏

𝟏+𝒆−𝟎.𝟎𝟔𝒙   (5) 

Here the exponential component was chosen such that the 

tapering of the cost function would occur at approximately 

±50 along the real axis. This was done to ensure a sufficient 

region for differentiating between costs of the various systems 

and was chosen to be approximately 2.5 times the highest, 

real-part eigenvalue magnitude for an earlier baseline LRMR 

vehicle which was around 20. 

Oscillatory modes (eigenvalues with imaginary parts) 

were also included with the cost function. Specifically, the 

damping ratio, 𝜁, was chosen as it reflects how vibrations are 

attenuated. The range of underdamped damping ratios (0 <
𝜁 < 1) are of particular interest because values closer to 1 

exhibit very little oscillation while values closer to 0 

experience oscillations that decay relatively slowly. Figure 23 

shows how damping ratio maps onto the complex plane. 

 

Figure 23. Damping Ratio in the Complex Plane. 

To avoid sustained oscillations, the cost function was 

updated to incorporate additional cost for the left-half plane 

eigenvalues with low damping ratios. Thus, the mapping seen 

in Figure 24 is reflected in the contours of the final cost 

function surface shown in Figure 25.  

Lastly, an arbitrary amount of integrator states can 

potentially be augmented into the system without affecting 

the dynamics, so poles located at the origin were assigned a 

cost of zero. This can be seen as a spike beneath the cost 

function surface in Figure 25. The final cost function is 

defined by Equation 6.  

 

Figure 24. Stability Cost Function. 

 

Figure 25. Perspective View of the Stability Cost 

Function Surface. 
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𝐽 = ∑ {

  0                             if: λi = 0

  
1−𝜁𝑖

4
+

0.5

1+𝑒−0.06𝜎𝑖
   if: σi ≤ 0

  
1

1+𝑒−0.06𝜎𝑖
                if: σi > 0

𝑁
𝑖=1         (6) 

Where i represents the N number of eigenvalues, 𝜆, 

in each system; 𝜎 represents the real part of the 

eigenvalues; and 𝜁 represents the damping ratio for 

complex eigenvalues. 

Although outside the current scope, without a control law 

and higher fidelity modeling, it is unclear whether this method 

may be pushing the system towards an area sensitive to 

resonant frequencies. This is a topic that will be considered 

for further analysis in future work. The result from the cost 

function for stability of each aircraft will be used as a metric 

to drive the overall optimization. 

 

DESIGN OPTIMIZATION METHODOLOGY  

The optimization framework used in this work builds on 

previous work by the first author, Ref. [26]. Figure 26 shows 

a high-level layout of the various modules in the optimization 

pipeline. The entire framework is coded in Python and run 

using a single shell script which requests resources on the 

NASA supercomputer and queues the main “Optimization 

Framework” script.  

 

Figure 26. ML-based Optimization Framework. 

 The framework starts with an initial seeding, which can 

either be read in from a text file or generated using the 

GreedyFP space filling algorithm. Implementation 

improvements of the GreedyFP algorithm enabled a more 

than 100x speedup over previous work, enabling 10,000 

intelligent samples to be generated from a random initial pool 

of 200,000 in a matter of minutes on a single CPU.  

The current approach uses Bayesian optimization, which 

is a two-step method whereby training data is first generated 

using a more computationally expensive function evaluator. 

In this case, CAMRAD-II is the function evaluator. The initial 

training data is then used to build a surrogate model of the 

objective function and any constraints, which are then used to 

evaluate a much larger number of design solutions efficiently, 

but with lower accuracy than the function evaluator.  

An acquisition function is then used to down-select the 

most promising solutions from this larger set, which are then 

run in CAMRAD-II. The new output is added to the training 

data, the surrogate models are improved, and the process 

continues until a convergence criterion or pre-determined 

number of iterations completes. This work uses the expected 

improvement acquisition function detailed in Equations 7-8.   

𝐸𝐼(𝑥) = (𝑦𝑏𝑒𝑠𝑡 − 𝜇(𝑥)) ∗  Φ(𝑧) +  𝜎(𝑥) ∗ 𝜙(𝑧)       (7) 

𝑧 = ((𝑦_𝑏𝑒𝑠𝑡 − 𝜇(𝑥) −  𝜁 ))/𝜎(𝑥)        (8) 

𝑊ℎ𝑒𝑟𝑒:  
     𝜇(𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝐺𝑃𝑅 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, 
     𝑦𝑏𝑒𝑠𝑡  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟, 
     Φ(𝑧) 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 
     𝜎(𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝐺𝑃𝑅 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 
     𝜙(𝑧) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
     𝜁 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 − 𝑒𝑥𝑝𝑙𝑜𝑖𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

The framework has successfully run on five NAS GPU 

nodes, which equates to 240 CPU cores and 20 V100 GPUs. 

The master script does some minimal pre-processing, 

including generating the mass and moment of inertia values 

needed by CAMRAD-II. It then distributes individual cases 

among the available CPU cores and further continues the pre-

processing step by querying the airframe aerodynamic 

surrogate models generated from the OVERFLOW databases. 

This step creates an airframe aerodynamic look-up table 

specific to the individual case’s geometry.   

CAMRAD-II Modeling  

The CAMRAD-II model consists of six rotors in an 

equally spaced hex-rotor configuration. The rotor locations 

and rotation directions match the schematic in Figure 21. 

Rotors 1, 3, 4, and 6 have 10 degrees of inward cant for 

enhanced yaw stability in forward flight. Although this hex-

rotor configuration with rotors 2 and 5 having cyclic control 

was chosen to increase system redundancy in the event of a 

motor failure, the current CAMRAD-II model analyzes the 

nominal case and uses collective control only for each rotor.  

The six rotors are currently fixed as the ROAMX baseline 

rotor, which has been found to yield improved performance 

compared to the Ingenuity Mars Helicopter for operation in 

Mars atmospheric conditions, Ref. [16]. Airfoil performance 

C81 look-up tables from the ROAMX team are used. The 

tables were generated using the ELISA tool as a wrapper for 

two-dimensional OVERFLOW airfoil calculations.  

The OVERFLOW Airframe Surrogate Model Script is 

used to generate an airframe aerodynamics look-up table for 
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each individual CAMRAD-II case, which is queried as a 

function of airframe geometry from the high-dimensionality 

database. The resulting table has airframe performance as a 

function of flight speed and vehicle pitch attitude.  

Each CAMRAD-II job analyzes the given vehicle 

configuration in two conditions: hover and cruise. The hover 

condition has a simple one degree of freedom trim with rotor 

common collective control input used to trim the thrust to be 

equal and opposite to the weight of the aircraft calculated 

using the mass and moment estimation script.  

The cruise case flips the aircraft 90 degrees and solves the 

two-degree-of-freedom trim equations in forward flight. 

Thrust is trimmed equal to drag, lift equal to weight, and 

pitching moment trimmed to zero. The two control inputs are 

rotor common collective control and rotor longitudinal cyclic, 

which fully defines the collective pitch for each of the six 

rotors following the control allocation described in Figure 22. 

The same rotor input decks and airframe aerodynamic tables 

are used. Rotor tip speed is modulated as a function of forward 

flight speed to reduce the resultant blade-tip Mach number, as 

was done in the OVERFLOW BET simulations.   

The CAMRAD-II flutter task is then performed to 

calculate the stability and control derivative matrices about 

that trim condition. This output provides information about 

the static stability and control of each aircraft geometry under 

the given flight condition.  

Various metrics for aircraft performance (e.g., total power 

requirement) and the cost metric from the section describing 

the control authority analysis are then used as inputs to the 

Bayesian optimization module. The entire framework has 

been created and the LRMR aircraft can currently be 

optimized for a single objective at a time, with other metrics 

applied as constraints in the optimization.  

 

SUMMARY 

This work set out to explore several technical challenges 

required for multi-fidelity surrogate modeling towards 

aerospace vehicle optimization. An optimization framework 

was created for a Long-Range Mars Rotorcraft to demonstrate 

the feasibility of the approach, but the methodology is general 

and applicable to a wide range of aerospace design problems 

and other data-driven fields. The list below summarizes a few 

of this work’s major successes and findings:  

1. Large-scale aerodynamic simulation databases were 

created using the NASA OVERFLOW Computational 

Fluid Dynamics (CFD) flow solver. This was enabled by 

three major advancements that were tested extensively 

throughout this work: a.) automated structured grid 

generation, b.) GPU computing implementation of the 

tool, and c.) a blade-element theory description of the 

rotor disk. In total, more than 3,000 high-fidelity CFD 

simulations were run of the full LRMR aircraft with two 

wings, a fuselage, pylons, and six rotors. This used 

approximately 80 GPUs with a completion rate of 

roughly 400 cases per day. The simulation database 

spanned airframe geometric perturbations, flight 

condition perturbations, and control input perturbations. 

Simulations were selected using the Greedy Farthest 

Point sampling algorithm, which saw speed increased by 

100x in this work over the prior implementation by the 

authors.  

 

2. Surrogate models were tested and developed using 

approaches such as Gaussian Process Regression (GPR) 

and Neural Network (NN) approaches. Various 

implementations were tested such as sparse GPRs as well 

as shallow and deep NNs. Co-kriging multi-fidelity 

models (MFM) were also created using the combined V1 

and V2 OVERFLOW LRMR aerodynamic database. The 

NN was found to outperform the GPR by a factor of 5 

(MAE), and the multi-fidelity database was found to 

further increase accuracy of the resulting surrogate 

model. Surrogates were also created for the ROAMX 

airfoil performance data, and various methods were 

tested to combine the thin outer radial station airfoils with 

the thicker inboard radial station airfoils. These surrogate 

models were used as inputs into the CAMRAD-II 

comprehensive analysis model.   

 

3. Python scripts were created to estimate the mass and 

moment of inertia of the LRMR given a set of geometric 

parameters. A target mass value was selected at 75 kg, 

and any remaining mass after estimating the aircraft 

weight was filled with additional battery capacity. This 

mass and inertia information was used as an input to the 

CAMRAD-II model.  

 

4. A CAMRAD-II simulation model of the LRMR was 

created to calculate both aircraft performance and the 

stability and control derivative matrices for a given 

aircraft geometry, flight condition, and control input. 

This model used airframe aerodynamic look-up tables 

from the OVERFLOW-based surrogate models. It also 

incorporated the mass and moment of inertia data for 

each aircraft geometry. The simulation used one degree 

of freedom trim in hover and two degree of freedom trim 

in forward flight to calculate the performance metrics for 

the aircraft. The same 3,000 flight conditions that were 

run in OVERFLOW to create the V2 aerodynamic 

database were run through CAMRAD-II, creating 

another mid-fidelity source of performance data for those 

conditions to be used in future MFM efforts.  

 

5. A cost function was created to assess the controllability 

of the aircraft. In the case of the LRMR, this was derived 

from an open-loop eigenvalue analysis of the stability 

and control derivative matrix output. The result of this 

cost function, along with other performance metrics from 

CAMRAD-II, can then be used to drive and constrain the 

optimization.  

Through the above steps, an optimization framework has 

been created to allow for iterative Bayesian optimization of 

the Long-Range Mars Rotorcraft. The methodology makes 
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use of high-performance GPU computing, machine learning 

based surrogate modeling, and multi-fidelity simulation data 

to accomplish the objectives of this work.  

The framework can now be used to optimize the LRMR 

for a user-defined objective function, with additional metrics 

applied as constraints in the optimization. This work has 

demonstrated the ability of ML-based surrogate modeling to 

bring high-fidelity simulation data forward in the conceptual 

design process.   

FUTURE WORK 

Follow-on work exists to conduct constrained design 

optimization and generate optimal LRMR aircraft. Several 

objectives can be defined to assess how each choice 

influences the resulting aircraft size, geometry, and optimal 

flight conditions. Potential multi-objective optimization, and 

hybrid Bayesian optimization approaches could be explored 

to assess optimization convergence rates.  

Additional studies in multi-fidelity surrogate modeling 

combining the OVERFLOW and CAMRAD-II datasets 

would also be highly informative to see how surrogate models 

built with completely different tools would perform.  
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