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ABSTRACT 

NASA’s 4th New Frontiers Mission is the Titan Dragonfly relocatable lander. This coaxial quadrotor vehicle will be 

launched on a rocket to Titan in 2028. Following a gravity assisted Earth flyby and an approximate 6-year transit, 

Dragonfly will enter the Titan atmosphere around 2034 with the goal of exploring Titan’s pre-biotic chemistry and 

habitability. The multirotor design for this unique application has continually evolved since 2016 with constraints 

such as Titan’s cryogenic atmosphere at 95 Kelvin (-288 F), gravity 14% that of Earth’s, atmospheric density 440% 

of standard sea-level air, and the inability to test the entire system together under all these conditions until the first 

flight on Titan. This paper focuses on rotor design aspects of the Dragonfly lander and introduces a novel framework 

for multirotor design optimization considering multiple flight conditions. The methodology leverages machine 

learning methods and is demonstrated in the context of Dragonfly. A new OVERFLOW Machine Learning Airfoil 

Performance (PALMO) database is first presented. PALMO is then wrapped inside a Bayesian optimization 

framework and applied to a 4-rotor system (one side of the Dragonfly lander). Training data is generated on each 

iteration of the optimization using the CAMRAD-II comprehensive analysis software to evaluate successive rotor 

designs in multiple relevant flight conditions. An optimal design for the 4-rotor system was found with approximately 

900 rotor designs analyzed in CAMRAD-II, which required 9 million queries of the PALMO surrogate models. This 

demonstration case evaluated 10,000,000 potential candidate rotor designs in 5.5 hours on 114 CPU cores using 

uniform inflow, and in 27.8 hours using the prescribed wake model. This work thus enables mid-fidelity rotor design 

optimization without requiring access to high-performance computing.  

 

NOTATION  

B*  Dragonfly Phase B ‘Star’ Rotor Design 

CP  Control Point (Rotor Design Parameter)  

ci  Chord at CPi [m] 

Nb  Number of Blades (per rotor)  

P  Rotor Power Requirement [W] 

R  Rotor Blade Radius [m]  

r  Radial Location [m] 

thi  Thickness to Chord Ratio at CPi [%] 

twi  Twist at CPi [deg]  

xi  Taper CPi Location [r/R] 

yi  Twist CPi Location [r/R] 

zi  Thickness CPi Location  [r/R] 

α  Angle-of-Attack [deg] 

𝑐𝑙  Airfoil Lift Coefficient 

𝑐𝑑  Airfoil Drag Coefficient 

𝑐𝑚  Airfoil Pitching Moment Coefficient 
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INTRODUCTION 1  

Saturn’s moon Titan was discovered by Dutch astronomer 

Christian Huygens in 1655. Many years later, the Voyager 

flybys of 1980-1981 identified it as one of the most interesting 
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planetary bodies in the solar system with a thick atmosphere, 

low gravity, and signs of pre-biotic organic chemistry on its 

surface, Ref. [1]. These early observations were confirmed 

and expanded upon by the Cassini-Huygens mission circa 

2005. The Huygen’s probe photographed the surface of Titan 

and Cassini data has been used to create composite maps of 

Titan as shown in Figure 1. To investigate Titan further 

scientifically, NASA awarded the 4th New Frontiers mission 

to the Johns Hopkins University Applied Physics Laboratory 

(APL) to send a multi-mission radioisotope thermoelectric 

generator (MMRTG) powered rotorcraft the size of a small 

car to explore Titan’s surface and lower atmosphere, Ref. [2]. 

Figure 2 shows this relocatable lander called ‘Dragonfly’ that 

will launch in 2028 with an Earth gravity assist and 

subsequent outbound departure for a Titan arrival around 

2034. As an ocean world with abundant carbon rich 

chemistry, Titan promises a treasure trove of planetary 

science data that may help us better understand the formation 

of life here on Earth, Ref. [3].  

 

Figure 1. Titan Surface (left), Huygen’s Probe (top-

right), Titan from Cassini (bottom-right), NASA.   

 

Figure 2. Titan Dragonfly Relocatable Lander,  

NASA’s 4th New Frontiers Mission, APL.  

As a multirotor vehicle, a coaxial quadrotor to be exact, 

Dragonfly’s rotor aerodynamic performance is a critical 

enabler for overall mission success. The mission requires an 

efficient rotor design tailored for the unique atmospheric and 

environmental conditions on Titan, which include low gravity 

(14% that of Earth), high atmospheric density (440% of sea-

level standard air), and a cryogenic atmosphere (95 Kelvin or 

-288 Fahrenheit). The rotor design is also constrained by 

stowage in the aeroshell for its transit through space, and by 

its deployment upon Titan arrival. This work will discuss the 

Dragonfly rotor development in the context of these unique 

design constraints specific to rotary-wing flight on Titan. 

MOTIVATION 

In the rotorcraft community, airfoil performance look-up 

tables commonly referred to as C81 tables are used in various 

tools across almost all aeromechanics disciplines to yield fast 

results for rotor simulations. The characterization of airfoil 

performance across a range of Mach numbers, Reynolds 

numbers, and angles-of-attack remains a key aspect for a vast 

array of these blade-modeled rotorcraft analysis methods. 

Whether it be lifting-line modeling (CAMRAD-II, CHARM, 

RCAS), actuator disk modeling (RotCFD, OVERFLOW, 

HPCMP CREATE-AV Helios), or viscous vortex-particle 

methods (FLIGHTLAB, RCAS), the generation of C81 airfoil 

performance tables for these tools is laboriously carried out 

by countless engineers throughout the community each year. 

Furthermore, achieving accurate results demand that each 

new rotor conceptual design should use C81 tables based on 

the appropriate airfoil, Reynolds number, and Mach number 

distributions along the blade. Although these mid-fidelity 

tools rely on these tables to reduce their computational cost, 

the process of creating accurate C81 tables is still a formidable 

and computationally intensive task. Due to the computational 

cost of high-order accurate computational fluid dynamics 

(CFD) solvers such as OVERFLOW and ARC2D, airfoil 

performance tables are often generated with lower-fidelity 

methods or using the high-order accurate methods at proximal 

but miss-matched conditions. The authors have developed 

best practices over the years for generating C81 table input 

decks supporting Dragonfly’s rotor design with XFOIL, 

MSES, ARC2D, and OVERFLOW. Still, the computational 

cost associated with supporting each successive rotor design 

iteration is high.   

This work leverages machine learning (ML) to enable 

1) massive speedups in both airfoil and rotor performance 

predictions and 2) optimization over high-dimensionality and 

non-convex rotor design parameter spaces. This has led to the 

development of the OVERFLOW Machine Learning Airfoil 

Performance (PALMO) database enabling real-time high-

order accurate airfoil performance estimation for airfoils 

within the database. This tool will enable rotorcraft designers 

and engineers to obtain OVERFLOW-quality C81 tables 

without the need for high performance computing. PALMO 

also vastly increases the efficacy of the rotorcraft conceptual 

designer by enabling the real-time updating of these 

OVERFLOW based C81 tables in each successive rotor 
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design iteration, capturing changes in airfoil, Mach number, 

and Reynolds number as a function of planform and RPM.  

The PALMO database will be made publicly available soon 

via a NASA Technical Memorandum by Dr. Jason Cornelius 

at NASA Ames Research Center (ARC). Additionally, the 

AIAA Surrogates Modeling Technical Committee plans to 

use PALMO as an international benchmark database for 

aerospace machine learning research and development. 

To demonstrate this novel capability, PALMO is coupled with 

CAMRAD-II in a new surrogate-model based rotor design 

optimization framework created in this work. This framework 

is demonstrated in the context of the Dragonfly lander rotor 

design optimization to yield candidate future rotor designs 

with improved aerodynamic performance on Titan. The 

methodology is general and can be extended to rotor design 

optimization for vehicles on Earth and other planetary bodies. 

The primary objective of this work is to show an approach for 

machine learning leveraged rotor design optimization and 

analysis. This work first presents results from the PALMO 

database made from high-order accurate OVERFLOW CFD 

simulations. The database consists of approximately 60,000 

National Advisory Committee for Aeronautics (NACA) 

4-Series airfoil simulations generated using NASA’s High-

End Compute Capability (HECC). The methodology will be 

shown to efficiently find global optimum designs in a high-

dimensionality and non-convex parameter space. The 

approach simultaneously supports uncertainty quantification 

and the use of mixed-fidelity simulation data.   

BACKGROUND 

Given the highly multi-disciplinary nature of this work, it is 

necessary to provide a thorough background section on a few 

of the disciplines that will be discussed. Those include 

methods in supervised machine learning, airfoil surrogate 

modeling, rotor optimization, and surrogate-model based 

optimization for rotorcraft applications.  

Methods in Supervised Machine Learning  

Even as a subset of artificial intelligence, ML has many 

different approaches and methods, see Figure 3. This includes 

many common approaches such as linear regression, support 

vector machines, regression trees, ensemble of trees, 

Gaussian process regression (GPR), and feed-forward neural 

networks (FNN). These all fall into the category of supervised 

ML approaches. Previous work has identified GPRs and 

FNNs as the most suitable approaches for interpolating the 

types of databases used in this work, Ref. [4]. At a high level, 

GPR is a probabilistic modeling approach. It is effective for 

small datasets with a low number (typically less than 20) of 

input parameters. GPR has the large advantage that it 

simultaneously predicts both an output value along with an 

associated uncertainty. The scalability of it, however, is poor 

with computational cost to train the model increasing with a 

cubic dependency on the number of datapoints. FNNs can be 

readily applied to very large and complex parameter spaces 

but are data hungry and can be more challenging to create 

reliable models than simpler ML methods. Both approaches 

are leveraged in this work.  

Figure 3. Summary of Machine Learning Approaches and Some Common Applications. 
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Airfoil Surrogate Modeling 

State-of-the-art approaches for C81 airfoil performance table 

generation involve two-dimensional airfoil CFD analyses 

such as OVERFLOW or ARC2D. These tables are sometimes 

created with existing experimental data, however, but are then 

limited by the Mach and Reynolds numbers tested. Other 

times they are generated using a lower-fidelity approach such 

as XFOIL or MSES. The engineer must balance the need for 

increasing the accuracy of the C81 tables used against the 

computational cost and time required to create improved 

tables. Past studies by Patt and Youngren, Ref. [5], and 

Cornelius and Schmitz, Ref. [6], document both the need for 

higher refinement implementations of C81 tables and the 

improvements obtained through their implementation. 

Creating these high-density C81 tables with CFD in each 

iteration of conceptual design studies would be cost 

prohibitive, however, which currently restricts their 

implementation to preliminary or even detailed design. 

Conceptual designers often make simplifying assumptions as 

a result, such as using a set of C81 tables at constant Reynolds 

number even as the chord-based Reynolds number changes in 

successive design iterations. The alternative approach is to 

use fast but lower-fidelity methods such as XFOIL, or the 

XFOIL generated University of Illinois at Urbana Champaign 

(UIUC) database, Ref. [7], to update the airfoil performance 

tables between iterations. Given the high cost of creating 

these C81 tables, there has been a growing interest in the 

aviation community to leverage various ML approaches to 

derive highly accurate, low-cost surrogate models for 

predicting airfoil performance.  

Some recent studies have used neural networks to create 

highly efficient airfoil performance surrogate models to 

update the C81 tables as the conceptual design progresses, but 

they have typically been based on lower-fidelity training data, 

Ref. [8]. Sridharan and Sinsay did apply neural networks to 

data from the thin-layer Navier stokes flow solver ARC2D 

using the wrapper C81Gen, Ref. [9], albeit with a coarse 

Mach discretization and at a single Reynolds number. The use 

of these surrogate models for airfoil performance prediction 

has recently received much attention, Refs. [10-13]. Li et al. 

recently provided a review on this topic, Ref. [14]. These 

studies, however, typically rely on Class Shape 

Transformations (CST) such as Bernstein and Chebyshev 

polynomials, Refs. [15-17]. Although this process has been 

adopted as the leading research approach for airfoil shape 

optimization, this parametrization of the airfoil shape 

introduces some discrepancies as compared to the original 

CFD calculations for airfoils in the training datasets. 

Rotor Optimization 

Aerospace optimization has been an active field of research 

for many years. Multi-disciplinary optimization methods 

including gradient-based and gradient-free descent have been 

proposed by a multitude of groups with current capabilities 

documented by NASA, Ref. [18], and benchmarks provided 

by Gray and Martins, Ref. [19]. The NASA Vision 2040 

report, however, documents the need for still improved 

capabilities in design optimization, stating that current 

methods are restricted by prohibitive computational cost 

when using mid- to high-fidelity computational data, 

Ref. [20]. The report cites the advent of machine learning and 

surrogate modeling as a potentially transformative tool to be 

used in aerospace design. Some groups, such as the Army’s 

High Performance Computing Modernization Program 

(HPCMP) are investing heavily to investigate applications of 

surrogate modeling, Ref. [21].   

A few researchers have been specifically studying design 

optimization as it pertains to rotary-wing aircraft. Collins, 

Sankar, and Mavris used a mixed-fidelity simulation 

approach bridging dynamic inflow in RCAS with 

computational fluid dynamics (CFD) from GT-HYBRID, 

Ref. [22]. Surrogate models were generated to correlate and 

scale the lower-fidelity data to the higher-fidelity, achieving 

fast yet accurate optimization. The work resulted in a rotor 

with optimal efficiency and constrained vibrations.  Another 

study used CAMRAD-II with parametric equations to 

represent blade planform changes from the baseline UH-60A 

rotor, Ref. [23]. This work achieved reductions in power of 

1% in hover and up to 17% in high advance ratio cruise, albeit 

with increases in steady chord bending moment and pitch link 

loads. The author cited that a larger parameter space and 

combination with CFD data would likely improve the results.  

Several groups have studied design optimization of 

compound rotorcraft. Lim et al. used a two-tier optimization 

to achieve an optimized rotor blade cross-sectional design and 

improved rotor aerodynamic performance with reduced 

vibrations, Ref. [24]. The study used a fixed aerodynamic 

outer mold line and cited the inclusion of airfoils in the 

optimization as a future area of improvement. Hersey et al. 

combined nonlinear finite element models with a free-vortex 

wake model for multi-objective optimization, Ref. [25]. They 

split the problem into a sequence of optimization tasks using 

radial basis functions to interpolate the results. This limited 

the study, however, to eight design variables or less, which 

was cited as likely too few for rotor optimization studies. 

Another more recent study by Sridharan and Govindarajan 

applied the Simultaneous Analysis aNd Design (SAND) 

approach to parallelize the optimization of a lift-augmented 

quadrotor biplane tailsitter, Ref. [26]. They successfully 

optimized the design with 39 variables, albeit using low-

fidelity models.  

Lim et al. and Allen et al. more recently presented results on 

an airfoil surrogate-model based framework for rotor design 

optimization, Refs. [27-28]. The framework uses the Dakota 

Multi Objective Genetic Algorithm (MOGA) with RCAS and 

ARC2D, via C81Gen wrapper, to optimize airfoils for three 

outboard stations of the UH-60A rotor blade. The framework 

first generates a large set of ARC2D airfoil simulation data at 

the beginning of the optimization, which required 70,000 

CPU hours, or 2.5 weeks on 1100 CPU cores. Four airfoil 

shape design parameters were used resulting in 12 design 
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parameters in the rotor optimization. The studies achieved a 

6-9% reduction in rotor power for hover and cruise, 

respectively, with 50,000 RCAS evaluations. This required 3-

4 days on 10 nodes of their supercomputer resulting in a full 

optimization cycle of about three weeks using up to 1100 

CPU cores. The authors cited the need for a larger design 

space, including rotor blade planform, acoustics, and 

structural constraints, to support future design applications. 

Koning has also recently published work on the Evolutionary 

aLgorithm for Iterative Studies of Aeromechanics (ELISA) 

tool, Ref. [29]. ELISA also applies a MOGA approach 

leveraging CAMRAD-II as the function evaluator, but to the 

aerodynamic optimization of Martian rotors in hover. Koning 

showed a 19% increase in figure of merit as compared to the 

Ingenuity Mars helicopter that flew 72 successful flights on 

Mars, Refs. [30-32], which has been extensively analyzed 

with CAMRAD-II. This work notes the heuristic MOGA 

approach is not ideally suited for quickly finding a global 

optimum but is well suited to explore a wide design space to 

increase understanding for future design.   

Other recent studies explored adjoint-based parameter 

sensitivity studies for use in gradient-based optimization, 

Refs. [33-34]. The studies leveraged these approaches to 

reduce the required parameter space enabling the use of 

higher-fidelity simulation data.  

Surrogate-Model Based Optimization in Rotorcraft 

Most of these works cite the curse of dimensionality of the 

rotor design optimization problem as the largest challenge to 

overcome. Advanced rotor optimization including airfoil 

shape, planform, and structural load considerations, for 

example, could easily require tens of design parameters, 

which poses challenges for many of the existing optimization 

methods. A few researchers have recently worked to combat 

these issues using surrogate-model based optimization.  

Sridharan recently used a 70,000 airfoil performance database 

generated using ARC2D CFD simulations, Ref. [35]. He 

created several hundred Gaussian Process Regression (GPR) 

models to predict airfoil performance using 8 design 

parameters for Chebyshev CST polynomials. Several hundred 

airfoils from the UIUC database were simulated at 126 flow 

conditions (-5 to 15 deg angle-of-attack, 6 Mach numbers 

from 0.3 to 0.9, and a constant Reynolds number to Mach 

scaling). These surrogate models were used in the Tool for 

Optimization of Rotorcraft Concepts (TORC) to carry out 

airfoil optimization. The implementation of the surrogate-

model based airfoil database enabled hundreds of thousands 

of ARC2D-based airfoil design evaluations. These airfoils 

were then used in a 6-parameter planform (bi-linear twist and 

bi-linear taper) optimization using low-fidelity blade element 

momentum theory (BEMT) rotor performance evaluations. 

Another similar study by Shalu, Govindarajan, Sridharan, and 

Singh used a nearly identical approach by wrapping airfoil 

performance surrogate models of XFOIL data with BEMT 

rotor performance evaluations, Ref. [36]. Airfoils were first 

optimized and then used in bi-linear twist and taper proprotor 

optimization with 6 design variables for hover and cruise.  

Peters recently showed large computational cost reductions in 

high-fidelity rotor performance calculations using proper 

orthogonal decomposition (POD), Ref. [37]. A several order-

of-magnitude computational cost reduction was achieved, and 

the resulting PODs were then successfully used for parametric 

rotor design optimization.  

Another recent work by Anusonti-Inthra used GPR modeling 

to achieve surrogate-model based multi-fidelity aerodynamic 

prediction of a tiltrotor pylon, Ref. [38]. Fifty low-fidelity 

simulations using the Reduced-Order Aerodynamic Model 

(ROAM) and five high-fidelity CFD simulations using Helios 

with FUN3D were combined to create a single surrogate 

model for predicting pylon lift, drag, and pitching moment as 

a function of flight condition with a predictive speed of 

milliseconds. A comprehensive survey of multi-fidelity 

methods for uncertainty quantification and optimization was 

recently published by Peherstorfer, Willcox, and Gunzburger, 

Ref. [39].   

Erhard and Alonso recently presented a novel approach using 

Bayesian optimization together with multi-fidelity modeling 

for coaxial rotor optimization in both hover and forward 

flight, Ref. [40]. The work parametrized the rotor blade 

design using Bezier curves, similar to the work by Koning, 

which effectively minimized the number of required design 

variables. The results found several candidate designs near the 

global optimum with very different rotor planforms, 

suggesting a highly non-convex and multi-modal solution 

space. This suggests that gradient-free approaches may be 

best suited for rotor optimization studies with many free 

design variables.  

Summary and Path Forward 

The works cited in this brief survey of airfoil surrogate 

modeling, rotor optimization, and surrogate-model based 

optimization represent the current state-of-the-art in these 

disciplines. Many of the authors cite the curse of 

dimensionality and cost-prohibitive high-fidelity training data 

as the major barriers to further progress. This work presents a 

methodology for machine learning leveraged rotor 

optimization by coupling high-order accurate based airfoil 

performance surrogate models directly into the rotor 

optimization. Previous studies that have done a similar 

approach then use a gradient-based or evolutionary algorithm 

to optimize the rotor. This study, however, further leverages 

machine learning by wrapping the rotor design framework 

with a Bayesian optimizer. This approach allows for the 

evaluation of several million candidate rotor designs on each 

iteration of the optimization and selects the most promising 

rotor designs for the next batch of analysis in CAMRAD-II.  

To provide additional context on the constraints of the rotor 

design optimization carried out in this work, a brief history of 

the Dragonfly rotor development will now be presented. The 
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surrogate-model based design optimization framework, 

including the PALMO database, will then be discussed in 

detail with sample results presented.  

DRAGONFLY ROTOR DESIGN 

Several generations of Dragonfly rotors have been developed 

to date including the Phase A, Phase B, Phase B* (B Star), 

and Phase C rotors. (NASA SMD programs are staged in 

spacecraft development ‘phases’; accordingly, these updated 

rotor designs reflect an increased maturity in the overall 

spacecraft development effort.) Each of these rotor design 

iterations was arrived at after the analysis of many possible 

rotor designs to support the program requirements and 

constraints of flight on Titan. As such, each major rotor 

design iteration could have several various rotor designs 

associated with it, but a final variant was used for various 

rotorcraft and entry and descent analyses across the program.   

Dragonfly Phase A Rotor Design  

From the very beginning of Dragonfly’s rotor design, 

constraints on the rotor radius were driven by the size of the 

aeroshell that will protect Dragonfly on its seven-year journey 

to Titan. Beyond this simple geometric constraint, the 

previously mentioned intricacies of the Titan atmospheric 

environment led to several key design decisions. For example, 

Titan’s cryogenic atmosphere at 95 Kelvin (-288 F) largely 

precluded the use of an articulated rotor system. One could 

theoretically use heated hinges, but thermal heat-leakage into 

the cryogenic atmosphere is one of the largest technical 

challenges for a Titan-bound lander. As such, all Dragonfly 

rotor design iterations use fixed-pitch variable-speed (RPM-

controlled) rotor systems. Also related to Titan’s cryogenic 

atmosphere is the choice of material. Although rotor mass is 

a small fraction of Dragonfly’s total weight, carbon fiber 

composites were still considered and investigated. A lack of 

available strength and fatigue data at cryogenic temperatures, 

however, has up to this point constrained the design iterations 

to aluminum alloys and titanium.  

The Phase A rotors were designed using the NACA 5- and 6-

Series airfoils due to the abundance of available experimental 

data and their widespread use as ‘rotorcraft’ airfoils. One key 

benefit of the NACA 5-Series is its low airfoil pitching 

moment, which is useful in rotorcraft applications to alleviate 

rotor blade torsion and high pitch-link loads. For Dragonfly’s 

stiff fixed-pitch rotors, however, the time-varying rotor blade 

pitching moment about the quarter chord is nearly negligible. 

Dragonfly Phase B (and B*) Rotor Designs 

The complications that Reynolds number scaling poses to the 

program engendered the Phase B rotor design iteration, which 

uses NACA 4-Series airfoils. These are considered 1st 

generation rotorcraft airfoils and have consistent performance 

across a very wide range of Reynolds number. The 4-Series is 

also largely insensitive to surface roughness, which is 

advantageous to mitigate performance degradation from dust 

impingement on the rotor blade leading edge. In addition, this 

airfoil exhibits low suction peaks reducing the chance of 

condensation, Ref. [41], a large trailing edge angle for 

manufacturing, and docile stall behavior relevant for descent 

conditions.   

The move to the Phase B rotor system also transitioned from 

a hyperbolic to a linear chord distribution. This was done for 

manufacturing and flight performance considerations. High 

rotor torque was also an issue with the Phase A rotor design, 

which led to the Phase B rotor having a slightly smaller radius 

to trade operating speed for torque. One of the unique design 

considerations of Dragonfly’s rotor system is the complex 

vibration environment encountered by using fixed-pitch 

rotors in edgewise flight. This requires careful tailoring of the 

Dragonfly rotor blade natural frequencies to mitigate large 

vibrations. The fact that Dragonfly employs variable-speed 

(RPM controlled) rotors adds further complication over 

conventional rotorcraft in that the rotor excitation frequencies 

constantly vary over a wide range throughout each flight. This 

ultimately led to a structural requirement for very stiff rotor 

blades to place the 1st flap frequency resonance crossover 

above the 1st and 2nd rotor blade passage excitation 

frequencies.  

The Phase B* rotor was created to meet this new requirement. 

It has higher solidity to increase rotor blade cross-sectional 

area. This resulted in a large increase in the blade’s 1st flap 

frequency and enabled the rotor to support a higher thrust 

level, which created additional thrust margin. The increase in 

cross-sectional area also, somewhat counterintuitively, 

permitted a reduction in total rotor weight and inertia. This 

was because the efficiency of a larger cross-sectional area 

allowed a smaller skin thickness to be used. A full-scale 

Dragonfly B* coaxial rotor system was tested in the NASA 

Langley Research Center’s (LaRC) Transonic Dynamics 

Tunnel (TDT), as shown in Fig. 4, under both r134-a heavy 

gas and air conditions, Ref. [4, 42]. 

 

Figure 4. NASA LaRC Transonic Dynamics Tunnel Test, 

Dragonfly Phase B* Coaxial Rotor System. 

For testing of the full-scale Dragonfly rotors, the United 

States only has a handful of facilities that can approximate the 
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aerodynamic conditions a rotor will experience on Titan. The 

TDT is one such facility and can replace the test section’s air 

with r134-a heavy-gas. TDT testing achieves a chord-based 

Reynolds number about 1/3rd that of Titan, which is much 

closer than the order of magnitude discrepancy with one 

would experience with testing in air. Other U.S. assets that 

can more closely approximate Titan conditions exist, such as 

the LaRC National Transonic Facility, albeit with minimum 

test section speeds far exceeding the planned flight envelope 

of Dragonfly or with too small a tunnel cross-sectional area.  

Dragonfly Phase C Rotor Design 

The Phase C rotor is very similar to the B* rotor, but with a 

slightly increased solidity, an improved structural design, and 

a further improved twist distribution complementing current 

(at the time) planned flight conditions on Titan. Both the B* 

and Phase C rotor designs have solidity in-between the 

Phase A and B rotors, which is a balance to accommodate the 

available motor torque and structural requirements. The 

Phase C rotor design implements linear thickness and taper 

distributions of NACA 4-Series airfoils, which is congruent 

with the Phase B* rotor tested in the NASA LaRC TDT. The 

current Phase C Dragonfly rotor design is used across the 

program for rotor performance analysis, mission planning, 

and requirements specification. Rotor performance analyses 

inform requirements for various systems such as the lander’s 

motors, power distribution, and guidance, navigation, and 

control systems. 

Dragonfly Interactional Aerodynamics Testing 

Another key aspect of designing a rotorcraft for flight on Titan 

is the ability to experimentally test the rotor design under 

representative conditions. The B* rotor tested under heavy-

gas conditions in the LaRC TDT has already been shown. On 

the other hand, the much easier air testing presents challenges 

with aerodynamic conditions miss-matched from the Titan 

atmosphere. For example, if a rotor on Titan has a chord-

based Reynolds number of three million, that number is closer 

to 300,000 in air. This large Reynolds number discrepancy 

between the testing environment and real conditions on Titan 

means that airfoil families sensitive to Reynolds number 

changes can behave very differently in the two different 

environments. As an example, an NACA 6-Series rotor may 

behave according to design on Titan, but then stall 

prematurely in an air test environment and at notably reduced 

lift-curve slope. This would make the CFD model validation 

process arduous and increase the risk carried by the program 

as no test is possible at true full-scale Titan conditions.  

Still, several Dragonfly wind tunnel tests in air have been 

conducted to build confidence in the CFD modeling 

approaches used on the program, especially in the realm of 

interactional rotor-rotor and rotor-fuselage aerodynamics. 

The program has made entries in the NASA LaRC 14-by 22-

ft. Wind Tunnel and the NASA ARC 80-by 120-ft. Wind 

Tunnel to test scaled models of the complete Dragonfly 

lander, Figs. 5-6, Refs. [4, 43-44].  

 

Figure 5. NASA LaRC 14- by 22-ft. Wind Tunnel Test, 

Dragonfly Earthbound Integrated Test Platform. 

 

Figure 6. NASA ARC NFAC 80-by 120-ft. Wind Tunnel 

Test, Dragonfly Scale Model with Entry Backshell. 

Dragonfly Rotor Design Summary 

As the Dragonfly program continues to evolve, another 

iteration of the rotor design could become necessary. Factors 

far outside the rotor performance alone influence this need, 

such as the motor, power system, and flight control system 

capabilities. The rotor design and subsequent performance on 

Titan, however, have a highly multi-disciplinary nature with 

a multi-objective design space. As such, this work presents a 

novel framework created by the authors for a multi-tiered ML 

leveraged multi-objective rotor design optimization. This 

framework is used to optimize potential future candidate rotor 

designs in the context of Dragonfly. The approach optimizes 

the rotor design by analyzing a 4-rotor CAMRAD-II model 

(one side of the Dragonfly lander) in several flight conditions 

relevant to the nominal planned mission on Titan. This is one 

of the first works using mid-fidelity models to optimize a 

system with rotor-rotor interferences across multiple flight 

conditions. OVERFLOW based C81 table generation is 

coupled directly into the optimization framework using ML.  

The framework and methodology described in the subsequent 

sections is general and can be extended to rotorcraft design 

problems on Earth and other planetary bodies.  
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The first step in achieving this multi-disciplinary and multi-

objective rotor optimization in a large parameter design space 

involves airfoil surrogate modeling. As such, the next section 

describes the application of machine learning to an 

OVERFLOW generated airfoil performance database.  

THE OVERFLOW MACHINE LEARNING 

AIRFOIL PERFORMANCE DATABASE 

Recent design and analysis efforts on the program have led to 

C81 table generation for the Phase B* and C rotor designs 

using 1) standard-air, 2) r134-a heavy-gas, and 3) Titan 

aerodynamic conditions. These C81 tables were created using 

the AFTGen software, Ref. [45], as a wrapper for 

OVERFLOW, Ref. [46]. Recent improvements in modeling 

approaches for hybrid BEMT-CFD solvers have led to highly 

dense C81 input decks for modeling Dragonfly’s fixed-pitch 

variable-speed rotors, Ref. [47]. An example rotor blade C81 

discretization is shown in Fig. 7 for the off-the-shelf rotors 

used on the Dragonfly sub-scale model tested at NASA LaRC 

and ARC. Although these rotors are not of a similar planform 

to the Titan Dragonfly rotors, they have successfully been 

used for model validation of rotor-rotor and rotor-fuselage 

interactional aerodynamics. Large radial changes in chord, 

multiple airfoils, and the variable-speed operation necessitate 

this high-density modeling. Each permutation of rotor design 

iteration and atmospheric conditions requires roughly 3,000 

OVERFLOW simulations parametrized over angle-of-attack, 

Mach number, and Reynolds number. Generating C81 tables 

for the B* and C rotor designs under the previously mentioned 

three atmospheres requires nearly 20,000 high-order accurate 

OVERFLOW airfoil simulations, which is an extremely time 

intensive and computationally demanding task.  

 

Figure 7. High-Density Airfoil C81 Table Discretization 

for Variable-Speed Rotors with Large Chord Changes. 

To alleviate these computational demands, the creation of an 

airfoil performance database is now presented using the high 

order accurate OVERFLOW CFD solver. Machine learning 

methods are then used to create surrogate models of the 

database for interpolation across the non-linear and high 

dimensionality training dataset. This enables real-time airfoil 

performance prediction (towards C81 table generation) at 

intermediate Mach and Reynolds numbers based on the high-

order accurate OVERFLOW data. The surrogate models also 

enable C81 table generation for intermediate airfoils not 

explicitly included in the training dataset.  

PALMO Database Generation 

The airfoil performance database was generated using the 

NASA High-End Compute Capability (HECC). The first set 

of airfoils included in the database are the NACA 4-Series, 

Ref. [48], which have been used in the Dragonfly Phase B* 

and C rotor designs with an operational Reynolds number 

range of 1-3 million and a blade-tip Mach number of 0.2-0.4. 

This is a well understood flow regime for NACA 4-digit 

airfoils, but experience on the Dragonfly development effort 

has established the necessity of employing high-fidelity CFD 

to generate C81 airfoil characteristics for the project. 

OVERFLOW simulations second-order accurate in time and 

fourth-order accurate in space are run with Spalart-Allmaras 

turbulence closure to develop the airfoil performance training 

datasets, Ref. [49]. The airfoil simulations are run using the 

previously mentioned OVERFLOW wrapper AFTGen. Grid 

studies have been carried out to ensure grid convergence to 

less than 1% in the linear region of the lift-curve slope 

following approaches documented by Cornelius et al., 

Ref. [43]. A typical simulation has 501 wrap-around points, 

601 grid points normal to the airfoil, and 41 points on the 

blunt trailing edge yielding approximately 325,000 cells. 

An example grid for the NACA 4418, a mid-blade Dragonfly 

airfoil, is included in Figure 8. For each airfoil, 3,280 

OVERFLOW simulations are run at all possible combinations 

of the Mach number, Reynolds number, and angles-of-attack 

reported in Table 1.  

 
 

 

Figure 8. OVERFLOW O-Grid for NACA 4418. 

Table 1. Parametrization of 3,280 OVERFLOW 

Simulations per Airfoil in the PALMO Database. 

Characteristic Discretization 

Mach Number 
0.25, 0.35, 0.45, 0.55, 0.65, 

0.70, 0.75, 0.80, 0.85, 0.90 

Reynolds Number 
75k, 125k, 250k, 500k,  

1M, 2M, 4M, 8M 

Angle-of-Attack 

-20, -19, -18, -17, -16, -15, -14,  

-13, -12, -11, -10, -9, -8, -7, -6, 

-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,  

6, 7, 8, 9, 10, 11, 12, 13, 14,  

15, 16, 17, 18, 19, 20 
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The foundation of the in-development PALMO methodology 

is the airfoil base cube shown in Figure 9, which is a high-

density parametrization of OVERFLOW simulation data 

using the conditions from Table 1. A log scale is used to 

display the Reynolds number since it varies exponentially. 

Each base cube is generated using 16 Broadwell compute 

nodes on the NASA-HECC supercomputer, which is 448 

CPU cores. A typical cube runs for approximately 5 days of 

wall-clock time, resulting in a total computational cost of 54k 

CPU hours.  

 

Figure 9. PALMO Base Cube, Parametrization of Mach 

Number, Reynolds Number, and Angle-of-Attack. 

This base cube is the first level of the database. PALMO is 

then increased in complexity by adding additional dimensions 

with the inclusion of airfoil parametrization. Figure 10 shows 

a parametrization of the NACA 4-Series with variations in 

percent camber and thickness being added to the database.  

 

Figure 10. NACA 4-Series PALMO Database, 62k 

OVERFLOW Simulations, (*Red stars are test data).  

This allows C81 tables to be generated for any arbitrary 

combination of camber and thickness within the bounds of the 

training data, i.e., from an NACA 0006 to an NACA 4430. 

The red stars on Fig. 10 are examples of where the database 

could be queried and represent additional test data that was 

generated off-axis from the original 4-Series parametrization. 

The PALMO 4-Series database has the 15 base-cubes shown 

in Fig. 10 along with additional off-axis test cubes for the 

NACA 3415, 3418, 4415, and 4421. These 19 base-cubes 

represent approximately 62,000 high-order accurate 

OVERFLOW simulations and required approximately 

1,000,000 CPU hours. Surrogate models developed with this 

database would have five input parameters, the original base 

cube plus the 4-Series sectional camber and thickness. 

PALMO Surrogate Modeling  

The current literature in airfoil surrogate modeling focuses on 

airfoil shape optimization and inverse design routines towards 

creating new airfoils. PALMO, on the other hand, is targeting 

real-time airfoil performance estimation with high accuracy 

for existing and commonly used airfoils. This database will 

enable more accurate conceptual design and analysis. For the 

current study, PALMO is restricted to the 4-Series database. 

PALMO will be expanded in the future through the addition 

of various airfoil families relevant to the rotorcraft 

community, starting with the NACA 5-Series and 6-Series.  

Following the OVERFLOW database generation, surrogate 

models were developed to enable the real-time querying of 

any arbitrary combination of input parameters within the 

bounds of the training data. The bounds were shown in 

Table 1 along with the NACA 4-Series thickness from 6% 

through 30% and camber from 0% through 4%. Surrogate 

models were developed using both GPR and FNNs. Due to 

the size of the database with 62,000 simulations, 5 input 

parameters, and three output parameters (life, drag, and 

pitching moment coefficients), FNNs were selected due to 

their lower computational cost when using large datasets.  

As an early example, a single set of FNNs, one for each airfoil 

performance coefficient, were generated for the NACA 4418 

base cube. These surrogate models have Reynolds number, 

Mach number, and angle-of-attack as inputs. To assess the 

predictive accuracy at the various operating conditions, 

Table 2 reports test metrics for low, nominal, and high angles-

of-attack (𝛼). These test statistics cover the full range of 

conditions reported in Table 1. These data were generated by 

segmenting the base-cube simulation output into training and 

testing portions and then using the testing holdout for these 

calculations. The predictive accuracy is within 1% for much 

of the dataset, with high negative angles-of-attack still within 

approximately 3%.  

Table 2. Prediction Accuracy of Example PALMO 

Surrogate Model (Neural Network) across AOA Range. 

MAE 𝑐𝑙  𝑐𝑑   𝑐𝑚 

𝛼 <  −5 2.5% 2.1% 3.2% 

−5 < 𝛼 <  15 1.0% 0.76% 0.6% 

𝛼 > 15 0.32% 0.63% 0.65% 

Taking this a step further, FNNs were trained using a large 

subset of the PALMO 4-Series database. The NACA 0006 

through the NACA 4424 (12 base-cubes) were used to train 

an FNN with five inputs. Results for the MAE are reported in 

Table 3 using two different test sets. The first used a 5% hold-

out from the database, which is about 2,000 OVERFLOW 
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simulations. The second test, which was much more rigorous, 

was to predict all 3,280 conditions of a base cube that was not 

included in the training data. Airfoil performance for the 

NACA 3415 was predicted, and subsequently compared to an 

OVERFLOW base cube run after the fact. The same MAE 

test statistics for the NACA 3415 base cube are also reported 

for MATLAB’s multi-dimensional linear interpolation. To 

display the PALMO surrogate-model accuracy visually, 

comparisons of the ML neural network predictions are plotted 

against the true OVERFLOW airfoil simulation data in 

Fig. 11 for the full angle-of-attack range. 

Table 3. PALMO 4-Series Surrogate Model MAE. 

Mean Absolute 

Error (MAE) 
𝑐𝑙  𝑐𝑑   𝑐𝑚 

5% Hold-out 0.0088 0.0022 0.0026 

NACA 3415 (3,280)  0.0157 0.0053 0.0055 

NACA 3415- Linear 

Interpolation 
0.0193 0.0040 0.0042 

 

Figure 11. PALMO Predictive Accuracy, NACA 3415 

Base-Cube, Reynolds Number: 500k, Mach: 0.25. 

In general, all test statistics fall well within typical 

requirements for conceptual design. If separated into low, 

mid, and high angles-of-attack as reported in Table 2, the 

predictive accuracy would likely be even higher for the 

middle angles-of-attack where a rotor design would most 

likely be operating under nominal conditions. As for the 

comparison of the surrogate model to linear interpolation, the 

two are similar for all three metrics, with the lift coefficient 

better predicted by the FNN and the drag and pitching 

moment better predicted by linear interpolation. The linear 

interpolation performs this well only because of the very high 

point density of the underlying OVERFLOW training data. 

This can be thought of as a ‘tangent to the curve’ being a good 

local approximation. Further investigations in adaptive 

sampling methods will be used to reduce the number of 

simulations required for future PALMO base cubes. This will 

likely result in the FNN surrogate-model prediction accuracy 

far surpassing linear interpolation. Further such analyses will 

be presented in a more thorough future documentation of the 

PALMO database.  

The comparisons in Fig. 11 are for a Reynolds number of 

500,000 and a Mach number of 0.25. The linear interpolation 

results are also plotted. As a reminder, this OVERFLOW data 

for the NACA 3415 was generated after the surrogate model 

had been trained, i.e., it was not included in the surrogate-

model training data. All metrics including lift, drag, and 

pitching moment coefficient are predicted well by the 

surrogate model. The drag and pitching moment coefficient 

comparisons highlight some discrepancy with linear 

interpolation at the lower-left corner of the drag-bucket. The 

surrogate model, however, captures these features well.  

Figure 12 reports comparisons for a Reynolds number of two 

million and a Mach number of 0.25 to highlight the range of 

the PALMO database. Similar observations can be made with 

the surrogate model predicting the OVERFLOW data well.   

ROTOR OPTIMIZATION FRAMEWORK 

To show the utility of machine learning (ML) for rotor 

optimization, this work created a new framework to tie 

together several different components of the rotor design 

optimization process. The entire framework including the 

PALMO database module was custom scripted by the authors 

using Python, and this is the first publication of the work.   

ML is leveraged throughout several different portions of the 

framework to achieve massive searches of the design space 

with little computational cost. This framework is depicted in 

Figure 13, which uses Python to couple the PALMO database 

with CAMRAD-II, Ref. [50], for rotor optimization studies. 

The various portions of the framework will be briefly 

described. This paper is the first published use of 

CAMRAD-II as applied to the Dragonfly rotor aerodynamic 

design and analysis effort; previous work has been performed 

using various mid- to high-fidelity CFD solvers. 

CAMRAD-II was selected for this rotor optimization work 

because of its relative computational efficiency as compared 
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to mid-fidelity CFD, while still being able to capture rotor-to-

rotor interactional aerodynamics.  

 

Figure 12. PALMO Predictive Accuracy, NACA 3415 

Base-Cube, Reynolds Number: 2M, Mach: 0.25. 

CAMRAD AUTO 

This Python script is the main module that organizes the 

framework. It calls various other Python modules and 

manages the running of all these scripts on the NASA High-

End Compute Capability (HECC).  

Rotor Optimization: Initial Seeding 

The rotor optimization script is the first module called by 

CAMRAD AUTO. The user sets the rotor design parameters, 

their bounds, and any desired constraints. This work has used 

15 free parameters and 10 fixed parameters to fully define the 

outer mold line of each rotor design. The fixed parameters are 

documented in Table 4 and the free parameters are reported 

in Table 5. The framework handles these 15 free design 

parameters well and will be expanded in the future to include 

rotor radius, airfoil camber, and the number of blades per 

rotor. Adding in a bi-linear camber distribution, rotor radius, 

and the number of blades per rotor would increase the number 

of free-parameters to 21.  

 
Figure 13. Python Framework for Rotor Optimization. 

Table 4. Fixed Design Parameters.  

Parameter Description 

x1, y1, z1 
Taper, Twist, and Thickness Control 

Point 1, fixed at r/R = 10% 

x3 Taper Control Point 3, fixed at r/R = 0.94 

x4, y4, z4 
Taper, Twist, and Thickness Control 

Point 4, fixed at r/R = 1 

R Rotor Radius 

Nb Number of Blades per Rotor 

Airfoil % 

Camber 

NACA 44## Series Airfoils currently 

used. (4 % camber)  

Table 5. Free Rotor Design Parameter Ranges. 

Parameter Description (*CP = Control Point*) 

1) x2 Taper CP 2, [0.2 - 0.8] % r/R 

2) y2 Twist CP 2, [0.2 - 0.7] % r/R 

3) y3 Twist CP 3, [0.25 - 0.85] % r/R 

4) z2 Thickness CP 2, [0.2 - 0.8] % r/R 

5) c1  Chord at x1, [0.03 – 0.1414] m 

6) c2 Chord at x2, [0.03 – c1] m 

7) c3 Chord at x3, [0.03 – c2] m 

8) c4 Chord at x4, [0.03 – c3] m 

9) tw1 Twist at y1, [5 – 30] deg 

10) tw2 Twist at y2, [5 – tw1] deg 

11) tw3 Twist at y3, [4 – tw2] deg 

12) tw4 Twist at y4, [2 – 12] deg 

13) th1 Thickness at z1, [15 – 24] % 

14) th2 Thickness at z1, [12 – tw1] % 

15) th4 Thickness at z, [6 – tw2] % 
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The first iteration of the optimization process requires an 

initial seeding, or sampling, of rotor designs to be evaluated 

in CAMRAD-II. The author’s ideal parametrization of this 

design space, which has anywhere from six to twelve discrete 

values spanning the range of each design parameter, results in 

several billion possible rotor combinations. Even after 

restricting each parameter to 5 values and incorporating 

constraints, there are still 55 million possible solutions. 

Various sampling methods have been applied in the rotorcraft 

literature such as uniform random sampling, grid sampling, 

Latin hypercube sampling (LHS), and Centroidal Voronoi 

tessellation (CVT). These methods have various advantages 

and disadvantages, but the main drawbacks in the context of 

this work are their inability to achieve one of the following 

objectives: 1) fill the solution space evenly, 2) sample non-

rectangular regions, 3) use an arbitrary number of samples, or 

4) apply progressive incremental sampling. Some of these 

methods, such as LHS and CVT, become increasingly 

computationally expensive with increases in dimensionality 

of the problem and the number of desired samples.  

This work employs the Greedy Farthest Point (GreedyFP) 

algorithm to combat these issues and generate an initial 

seeding of this large parameter design space, Ref. [51]. This 

approach is well suited to achieve the sampling objectives 

with a low computational cost compared to other methods. It 

generates a user-defined number of samples filling the 

solution space with Euclidean distance between samples 

maximized. This process is used to generate the first batch of 

rotor design candidates to be analyzed in CAMRAD-II.  

PALMO Generator  

This module was developed to automate the process of C81 

table generation using surrogate models from the PALMO 

database. The initial rotor design samples from the GreedyFP 

algorithm are fed into this module, which then calculates the 

Mach number and Reynolds number as a function of the chord 

distribution, blade radius, and rotor speed. The rotor blade 

C81 table discretization approach shown in Fig. 7 is used in 

this work to create thirteen unique C81 tables radially along 

the blade. This high-density parametrization of the airfoil 

performance look-up tables has been found to improve 

accuracy for variable-speed rotors with large radial variations 

in chord.  

The surrogate models of the NACA 4-Series database are then 

queried. This work used feed-forward neural networks 

(FNNs) with three hidden layers each having one hundred 

neurons. Separate FNNs were used for each of the airfoil lift, 

drag, and pitching moment coefficients. The surrogate model 

evaluation is carried out using TensorFlow. Each rotor design 

requires approximately 10,000 queries of the FNNs since each 

of the thirteen C81 tables uses predictions for thirty-five 

angles-of-attack at seven discrete RPMs. These OVERFLOW 

based predictions span an angle-of-attack range from -20 to 

+20 degrees and are combined with experimental 

NACA 0012 data beyond that. As such, rotor design 

candidates operating at high lift coefficient should be 

reviewed. The initial batch of 100 rotor designs, and each 

subsequent set, use roughly one million airfoil performance 

predictions queried from the PALMO surrogate models.  

CAMRAD-II  

The function evaluator implemented in this work is 

CAMRAD-II, Ref. [50], which analyzes the performance for 

each design. For this work, a 4-rotor CAMRAD-II model was 

created, representing one side for symmetric ‘semispan’ 

modeling of the overall Dragonfly lander. Figure 14 depicts a 

CFD flowfield of this 4-rotor configuration in a forward flight 

‘cruise’ condition from prior work by the authors, Ref. [47]. 

The upper-to-lower and front-aft rotor-rotor interactions are 

exhibited by streamlines, which highlights the need to 

optimize the rotor design while directly accounting for effects 

of multirotor interference. Conducting the optimization using 

an isolated rotor or even a single coaxial rotor system would 

miss large contributions to the induced inflow of the various 

rotors, which also change as a function of flight condition.  

To this end, several relevant flight conditions are analyzed in 

each CAMRAD-II job to optimize rotor performance over 

Dragonfly’s anticipated Titan mission. The upper and lower 

RPMs within a single coaxial rotor system are constrained to 

match each other, but the front coaxial RPM and aft coaxial 

RPM are trimmed to achieve pre-specified thrust targets for 

each flight condition. For wake modeling, the user can select 

uniform inflow, prescribed (rigid) wake, or free wake. This 

work has up to this point implemented both uniform inflow 

and prescribed wake. Studies were carried out to identify the 

most robust relaxation factors, convergence tolerance criteria, 

and iteration count for the various parts of the solution.  

This work has used up to four NAS-HECC Pleiades 

Broadwell nodes, each having 28 physical cores. A timeout is 

set on each case to kill any evaluations that have not 

converged in a reasonable amount of time. A fifteen-minute 

limit was implemented for uniform inflow and a 2.5-hour 

limit for prescribed-wake calculations. Any non-converged 

cases are discarded. For converged cases, several rotor 

performance metrics of interest are collected to be used later 

as objective function values in the optimization.  

 

Figure 14. Dragonfly Semispan 4-rotor Configuration 

(for illustration only) in Forward Flight Cruise. 
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ML Leveraged Bayesian Rotor Optimization  

The background section of this work summarized rotor 

optimization studies from several groups. The most common 

issues cited were the curse of dimensionality preventing high-

parameter design spaces, challenges in convergence for large 

problems with conventional optimization techniques such as 

gradient-based and evolutionary algorithms, and the still 

prohibitive cost of high-fidelity simulation data as inputs to 

these optimization frameworks.  

This work applies a machine learning method called Bayesian 

optimization to combat these issues. This method, as its name 

implies, uses Bayesian statistics based on probability theory, 

Ref. [52]. Bayesian optimization is well suited for problems 

where each evaluation of the objective function is very 

expensive, e.g., mid- to high-fidelity simulation data. This 

type of optimization is especially suitable for finding a global 

optimum in a large parameter design space with a small 

number of function evaluations and is also robust against 

stochastic (noisy) training data. Bayesian optimization is a 

gradient-free method, which allows it to avoid converging to 

local optima. Although Bayesian optimization is typically 

used for hyperparameter tuning of neural networks, these 

characteristics make it extremely well suited for an applied 

engineering problem such as rotor design optimization using 

a numerical function evaluator such as CAMRAD-II. 

Although many advanced implementations exist, a high-level 

simple implementation of Bayesian optimization will be 

described here in the context of rotor optimization. The 

process starts by training a probabilistic surrogate model such 

as GPR using an initial set of function evaluations, i.e., 

training data. This GPR model predicts the value of an 

objective function given a set of inputs. The objective 

function could be the rotor power requirement, and the inputs 

to the GPR model are the rotor design parameters. Step two 

evaluates this surrogate model over the full range of possible 

rotor design solutions, with each evaluation likely being 

orders of magnitude less computationally expensive than 

directly carrying out the function evaluation. This largely 

depends on the tool used for function evaluations and is well 

suited for mid- to high-fidelity methods such as prescribed-

wake, free-wake, viscous vortex-particle methods, and CFD. 

The GPR model predicts the power requirement for each 

possible rotor design along with an estimate of the uncertainty 

of that prediction, i.e., the variance. An acquisition function 

is then used to determine the most likely rotor design in the 

solution space to yield an improvement on the objective 

function. One of the most suitable acquisition functions for 

this work is Expected Improvement (EI), which is shown in 

Equations 1-2 for the case of minimizing the objective 

function.   

(1)     𝐸𝐼(𝑥) = (𝑦𝑏𝑒𝑠𝑡 − 𝜇(𝑥)) ∗  Φ(𝑧) +  𝜎(𝑥) ∗ 𝜙(𝑧) 

(2)     𝑧 =
(𝑦𝑏𝑒𝑠𝑡 − 𝜇(𝑥) −  𝜁 )

𝜎(𝑥)
 

𝑊ℎ𝑒𝑟𝑒:  
     𝜇(𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝐺𝑃𝑅 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, 
     𝑦𝑏𝑒𝑠𝑡  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟, 
     Φ(𝑧) 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 
     𝜎(𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝐺𝑃𝑅 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 
     𝜙(𝑧) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
     𝜁 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 − 𝑒𝑥𝑝𝑙𝑜𝑖𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

The EI calculation in Equation 1 considers the combination of 

the predicted value and the variance associated with that 

value. Including the variance accounts for the inherent 

uncertainty in the GPR surrogate model and is used to strike 

a balance between exploitation and exploration of the 

optimization search space. The explore-exploit parameter, 𝜁, 

which is in the numerator of the z-score calculation in 

Equation 2, can be used to tune the optimizer to focus its 

search more heavily in one direction or the other. An 

exploitation focused search will select the next candidate 

based on where the GPR model has predicted a better solution 

to exist. An exploration focused search selects the next 

candidate where the GPR predictions have large uncertainty, 

which is typically where little data exists and is therefore 

further exploring the design space. Including a non-zero value 

for the explore-exploit parameter may slow convergence but 

increases the probability of finding the global optimum.  

The optimization process in this study has implemented an 

initial sampling of 100 rotor designs. These rotor designs are 

analyzed in CAMRAD-II and then used to train the GPR 

model. A new set of 1,000,000 randomly generated rotor 

designs, adhering to any user-defined constraints, are then 

evaluated using the GPR model. The optimization then uses 

the EI acquisition function to identify the next batch of rotor 

designs to analyze in CAMRAD-II. This process continues 

until a user-defined number of iterations, a total number of 

CAMRAD-II function evaluations, or a convergence criterion 

on the objective function is met.  

DRAGONFLY SURROGATE MODEL 

BASED ROTOR OPTIMIZATION 

Optimization of the New Frontiers Dragonfly rotor system 

has been selected as a demonstration case to highlight the 

efficacy of this novel Bayesian optimization framework. A 

CAMRAD-II model with front and aft coaxial rotor pairs is 

used, which captures rotor-to-rotor interference via the 

calculation of mean induced velocity at each rotor. This 

4-rotor setup represents one side of the Dragonfly lander, 

which is considered adequate for the optimization due to 

symmetry about the fuselage. Fuselage-on-rotor interactional 

aerodynamic effects are not captured in this effort but are 

deemed to be of a secondary importance for the objective of 

this work.   

A set of flight conditions generated by the Dragonfly flight 

dynamics team representing a nominal ‘Leapfrog’ flight on 

Titan are used to evaluate rotor performance over the 

anticipated mission, Ref. [53]. The Leapfrog profile 
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represents taking off from an initial location, flying over a 

Titan dune to scout future landing locations, and then 

returning to a pre-determined new target landing area, 

Ref. [54]. The flight conditions used in CAMRAD-II 

performance evaluations are documented in Table 6.  

Table 6. Dragonfly Nominal ‘Leapfrog’ Mission Flight 

Profile Analyzed in CAMRAD-II. 

Condition Description 

Hover Combination of initial takeoff and landing 

Climb Cruise-climb to gain altitude 

Cruise For traversing long distances   

Scout ‘Scouting’ potential future sites of interest 

Descent Cruise-descent to come in for landing  

Including this diverse set of flight conditions directly in the 

objective function evaluation in each CAMRAD-II job is a 

large increase in complexity over most rotor design 

optimization studies, which tend to optimize to either hover 

or a forward flight cruise condition. Although this work does 

capture several planned flight conditions on Titan, some of 

the unique aspects of Dragonfly’s operational envelope are 

not included in the optimization. Examples are the transition 

to powered flight and preparation for powered flight, which 

only occur during the initial Titan entry, descent, and landing 

process, Refs. [53, 55-56].   

The Bayesian optimization starts with an initial sampling of 

the potential rotor design space. Ten fixed and fifteen free 

design parameters were reported in Tables 4-5, respectively. 

The GreedyFP algorithm is used to intelligently sample this 

massive solution space, which is well into the hundreds of 

millions of possible rotor design permutations. Even five 

values for each parameter yields 55 million designs. An initial 

batch of 100 samples are selected to evaluate in CAMRAD-II. 

The results from this first initialization are then used to train 

a GPR model to correlate the rotor design inputs with the 

objective function, which in this case is the mission-weighted 

rotor power requirement over the Leapfrog flight profile. A 

new sampling of 1,000,000 rotor designs is then randomly 

generated and evaluated with the trained GPR model. The EI 

acquisition function is then used to select the next batch of 

rotors to evaluate in CAMRAD-II. This process iterates with 

each batch of CAMRAD-II function evaluations being 

continuously added to the training dataset used to make the 

GPR model and evaluate the next batch of one million rotor 

designs.  

This framework leverages the new OVERFLOW Machine 

Learning Airfoil Performance (PALMO) database to increase 

the accuracy of the optimization process. Surrogate models 

created from PALMO, which in this work are feed forward 

neural networks (FNNs), are used to create robust high-

density C81 tables using the appropriate Reynolds number, 

Mach number, and airfoil thickness distributions for each new 

rotor design. The 100 rotor designs to be evaluated in 

CAMRAD-II on each iteration of the optimization require 

approximately 1,000,000 queries of the PALMO surrogate 

models. This process requires a few minutes on a single CPU 

thread, which is driven by current constraints in coding 

implementation. Future effort will be made to parallelize this 

process and eliminate coding bottlenecks, which will reduce 

this step to a few seconds.  

Results are presented for nine iterations of the optimization, 

which produces approximately 900 function evaluations. A 

few of the CAMRAD-II cases diverge or fail to reach the 

convergence criteria. These cases are discarded. Figure 15 

shows the GPR training time versus the number of 

CAMRAD-II function evaluations being used in the training 

dataset. Each iteration of the optimization has a larger training 

set as the previous batch of CAMRAD-II rotor performance 

calculations are added.  

 

Figure 15. Bayesian Optimization GPR Training Time 

versus Evaluation Time. 

The GPR is optimized with a random search over the 

hyperparameters and 250 iterations. The largest drawback of 

GPRs is their poor scalability, with a cubic relationship 

between computational cost and the number of trainable 

parameters. Figure 15 shows this rapid increase with the final 

GPR model training requiring approximately fifteen minutes. 

This process could be sped up by implementing GPU 

acceleration in TensorFlow, or by reducing the number of 

iterations in the GPR hyperparameter optimization. Advanced 

implementations of Bayesian optimization have even been 

carried out using neural networks, which is another way to 

reduce this time requirement, Ref. [57]. The evaluation time 

in Fig. 15 tracks the amount of time required for the GPR to 

evaluate the 1,000,000 new rotor designs. This number 

appears to increase slowly with the size of the training dataset.  

Bayesian optimization was carried out for three values of the 

explore-exploit tunable parameter that was introduced in 

Equation 2. Figure 16 shows the optimization with an 

explore-exploit value of 0.01. The x-axis tracks the number of 

function evaluations, or actual rotor designs analyzed in 

CAMRAD-II. The y-axis is reporting a few metrics: 1) 
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current best is the rotor with the lowest power requirement up 

to that point in the optimization, 2) predicted best is the 

minimum predicted power in each set of 1,000,000 new rotor 

designs evaluated using the GPR model, and 3) maximum 

Expected Improvement (Max. EI) is the maximum value of 

the EI acquisition function from each set of 1,000,000 rotor 

designs. The maximum EI after the first initialization step is 

observed to be large, with the predicted best sitting very far 

beneath the current best. The optimization targets the regions 

of highest EI for the next set of CAMRAD-II evaluations, and 

the results of the first iteration show the current best and 

predicted best moving closer together.  

 

Figure 16. Bayesian Rotor Optimization to Minimize 

Mission Power, Explore-Exploit=0.01. 

The minimum mission-weighted rotor power has already 

improved even after the initial seeding of the high-

dimensionality parameter space. The left-most ‘Current Best’ 

value corresponds to the current Dragonfly rotor design. It 

should be noted, however, that this optimization does not yet 

fully account for all relevant Dragonfly rotor design 

constraints. Additionally, the current Dragonfly rotor was 

created using a different set of flight conditions relevant at the 

time. The minimum mission power continues to decrease as 

the optimization continues, with the first iteration of the 

Bayesian optimizer achieving a still further reduced mission 

power compared to the best value from the GreedyFP initial 

seeding. The Max. EI on each iteration continues to decrease 

as the solution space is further explored and the GPR model 

is improved.  

Figures 17 and 18 have the same information plotted, but for 

explore-exploit values of 0.05 and 0.1, respectively. Similar 

observations can be made, with the one very noticeable 

difference being the faster reduction in the EI calculation. 

This happens because the optimizer is prioritizing rotor 

designs where the GPR model has higher uncertainty. By 

adding training data from those regions of high uncertainty, 

the subsequent GPR model uncertainty is reduced.  

 

Figure 17. Bayesian Optimization, Explore-Exploit=0.05. 

 

Figure 18. Bayesian Optimization, Explore-Exploit=0.10. 

These three optimizations converged to approximately the 

same objective function value for the rotor power requirement 

weighted over Dragonfly’s planned Leapfrog flight mission. 

Each optimization used approximately 900 CAMRAD-II 

function evaluations, which then trained the GPR surrogate 

models that collectively analyzed about 30,000,000 possible 

rotor designs spanning the design space.  

Although the three different optimizations resulted in a 

minimum power within one percent of each other, the three 

best rotor designs have slightly different chord distributions. 

The twist and thickness distributions, and the control points, 

converged to similar values. This indicates that the high-

dimensionality design space in non-convex and may yield 

multiple varied solutions with near-optimal power. These 

various optimal designs could then be selected from to meet 

further design constraints such as rotor blade 1st flap 

frequency, mass, inertia, torque requirement, etc.  
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These designs do explore large deviations as compared to the 

existing Dragonfly rotor designs. Bi-linear chord and 

thickness distributions along with tip taper, for example, are 

increases in complexity over the baseline. As previously 

mentioned, however, this rotor aerodynamic optimization 

does not yet fully capture all relevant constraints that have 

been used to arrive at the current Dragonfly rotor design. As 

such, some of the ‘optimal’ solutions generated in this work 

would likely not be suitable rotor design candidates for 

Dragonfly. Still, there likely exists some margin of 

improvement that satisfies all design constraints.  

Table 7 tracks how the fifteen free design parameters varied 

over one of the design optimizations. These data are from the 

optimization that used an explore-exploit parameter value of 

0.05. Five incrementally better rotor designs, i.e., minimum 

power requirement, were generated throughout the 

optimization process. Some of the parameters converged 

quickly to a final value while others did not. This suggests 

that the application of methodologies such as principal 

component analysis (PCA) could be used to further target 

regions of the large design space that would most likely yield 

improved solutions. Even though this optimization evaluated 

nearly 30,000,000 rotor designs, that is still only a fraction of 

the possible permutations of the 15-parameter design space.  

Table 7. Best Rotor Designs Generated through 

Successive Iterations of the Optimization. 

 Bayesian Optimization Iteration Number 

Param. #1 #2 #3 #4 #5 

x2 (r/R) 0.225 0.200 0.200 0.250 0.400 

y2   (r/R) 0.500 0.600 0.350 0.425 0.350 

y3   (r/R) 0.650 0.800 0.450 0.500 0.425 

z2   (r/R) 0.500 0.250 0.275 0.300 0.275 

c1   (m) 0.086 0.036 0.131 0.126 0.080 

c2   (m) 0.079 0.032 0.101 0.080 0.056 

c3   (m) 0.047 0.031 0.041 0.034 0.030 

c4   (m) 0.041 0.030 0.031 0.030 0.030 

tw1 (deg) 27.76 29.55 29.82 29.78 27.93 

tw2 (deg) 25.48 15.42 29.45 23.98 26.96 

tw3 (deg) 22.98 14.60 18.28 18.76 20.90 

tw4 (deg) 10.39 6.69 11.49 9.48 9.63 

th1  (%) 22.0 16.0 19.0 22.0 22.0 

th2  (%) 14.0 13.0 12.0 13.0 12.0 

th4  (%) 12.0 6.0 6.0 6.0 6.0 

P     (W) 4,810 4,573 4,569 4,559 4,531 

This work used the 28-core Broadwell nodes on the NASA-

HECC Pleiades supercomputer. Optimization studies were 

carried out using four compute nodes, or 114 CPUs, and 

required approximately 5.5 hours for CAMRAD-II 

evaluations with uniform inflow and 27.8 hours using the 

CAMRAD-II prescribed wake model. The prescribed wake 

model implementation is roughly 3,200 CPU-hours, which 

could be completed in roughly 2-4 days using a powerful 

desktop workstation, i.e., with a 32-64 core CPU.  

Rotor design numbers 2, 3, and 4 from Table 7 are shown in 

Figs. 19-21 to highlight the differences between various 

solutions found in the optimization. All three of these rotor 

designs have approximately the same power requirement over 

the Dragonfly Leapfrog mission, yet with large deviations in 

chord, twist, and thickness distributions. Figure 19, which 

shows Rotor Design #2, exhibits a chord distribution that is 

likely too low to meet the structural constraints necessary for 

rotor blade frequency de-tuning. Rotor Design #3 is displayed 

in Fig. 20 with a large and near-constant inboard root twist. 

Such a design would likely be susceptible to rotor stall in 

descent type conditions. Additional constraints on the value 

of lift coefficient over the disk may rule out this design.  

 

Figure 19. Rotor Design #2 with Low Solidity. 

 

Figure 20. Rotor Design #3 with High Inboard Twist. 

Rotor Design #4 is displayed in Fig. 21 with what seems to be 

a sensible chord, twist, and thickness distribution. Such a 

rotor design could be a strong candidate meeting Dragonfly 

design constraints while also achieving large power 

reductions. Still, further verification checks on the rotor 
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design structural requirements and other constraints are 

warranted before deeming a design as satisfactory. 

Adding additional constraints inside the acquisition function 

of the EI calculation is another way to further constrain the 

problem and more fully evaluate the full solution space. 

Creating additional GPR models, for example, to evaluate 

torque, mean lift coefficient, and trim RPMs for each of the 

one million new candidate rotor designs could be a means to 

eliminate designs that do not adhere to the system-level 

design requirements. These additional constraints could either 

be used to discard rotor designs falling under some threshold 

or penalize the EI calculation in the acquisition function.  

 

Figure 21. Rotor Design #4, a Potentially Strong 

Candidate for Optimum Rotor Design. 

 

CONCLUSIONS 

This work presented a novel framework for multi-tiered 

surrogate-model based rotor optimization. The methodology 

developed was applied in the context of rotor aerodynamic 

optimization for the New Frontiers Mission Dragonfly lander, 

but the approach is general and can be applied to both 

terrestrial and extraterrestrial applications on other planetary 

bodies of interest.  

The OVERFLOW Machine Learning Airfoil Performance 

(PALMO) database was introduced, which is an airfoil 

database being developed at NASA Ames Research Center 

(ARC). The AIAA Surrogates Modeling Technical 

Committee is planning to use PALMO as a benchmark dataset 

to share with the international aerospace community. 

PALMO currently consists of about 62,000 high-order 

accurate OVERFLOW airfoil simulations. These simulations 

are a full parametrization of the NACA 4-Series airfoil family 

spanning the full range of Reynolds number, Mach number, 

and angle-of-attack relevant to the rotorcraft conceptual 

designer. Example surrogate models, feed forward neural 

networks (FNNs), derived from the database were shown to 

have predictive accuracy on the order of 0.01 for lift 

coefficient, 0.002 for drag coefficient, and 0.003 for pitching 

moment coefficient for a five-percent test holdout. These 

surrogate model uncertainties are much less than the 

downstream 15-20% reductions in mission-weighted rotor 

power requirement. Still, a final rotor design would benefit 

from the actual creation of OVERFLOW airfoil tables at the 

specified conditions for a confirmation of the results.  

These PALMO surrogate models were built into a new 

Bayesian rotor optimization framework under development at 

NASA ARC. PALMO surrogate models were successfully 

used to generate high-order accurate based C81 airfoil 

performance tables with the appropriate Reynolds number, 

Mach number, and airfoil thickness distributions. Each rotor 

design analyzed in CAMRAD-II queried the PALMO 

surrogate models about 10,000 times.  

The optimization framework leverages methods from the 

fields of machine learning and image processing to enable 

massive computational cost reductions in the optimization 

process. Rotor design optimization was carried out with 15 

free parameters defining tri-linear rotor twist, bi-linear rotor 

taper (with an additional tip-taper), and a bi-linear airfoil 

thickness distribution. Constraints such as monotonically 

decreasing airfoil thickness and chord were directly 

implemented into the rotor design generation process, which 

limited this solution space to about 55 million possible rotor 

designs. Since this is still an intractable number to evaluate 

directly, the Greedy Farthest Point (GreedyFP) algorithm was 

implemented for intelligent initialization of the design space.  

Rotor optimization was carried out using a 4-rotor 

CAMRAD-II model to calculate the mission-weighted rotor 

power requirement over Dragonfly’s anticipated Leapfrog 

flight profile. Three studies were conducted with each 

optimization analyzing about 900 rotor designs in 

CAMRAD-II across the various flight conditions and 

evaluating approximately 10,000,000 rotor designs using the 

GPR surrogate models trained from the CAMRAD-II output. 

The three optimizations converged to approximately the same 

value of minimum mission-weighted power requirement, 

which was about 15% lower than the baseline, but with slight 

variations in the resulting rotor designs. This indicates that the 

high-parameter design space is non-convex and multi-modal, 

meaning there are likely multiple different designs resulting 

in a near-optimal power requirement. This is advantageous for 

when additional constraints or objectives are incorporated in 

the future. Although this work identified solutions with as 

much as 15% lower power than the baseline, constraints on 

the rotor blade flap frequency and mean lift coefficient were 

not considered in the analysis. These constraints have very 

much steered the Dragonfly rotor design to date and must still 

be applied to the optimization to yield suitable candidate 

rotors relevant for flight on Titan. Furthermore, this 

optimization used a different set of flight conditions than what 

the baseline rotor was designed to.  
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This work demonstrated surrogate-model based rotor design 

optimization using the newly developed PALMO database. 

Bayesian rotor aerodynamic optimization was carried out for 

the Dragonfly lander evaluating roughly 30 million rotor 

designs. CAMRAD-II was used as the function evaluator, 

analyzing roughly 2,700 rotor designs in a 4-rotor simulation 

accounting for rotor-rotor interference in multiple anticipated 

Dragonfly flight conditions. This process used 26 million 

evaluations of the PALMO surrogate models. Each rotor 

optimization study was conducted on 112 CPUs in 5.5 hours 

using uniform inflow, and 27.8 hours using prescribed wake, 

which is a massive reduction in computational cost compared 

to past efforts.  

This work posits that Bayesian optimization is well-suited for 

efficiently finding global optimum design solutions in non-

convex and high-dimensionality parameter spaces. The 

prescribed wake optimization could be completed on a 

powerful desktop workstation in roughly three days.   

Author contact: Dr. Jason K. Cornelius 

jason.k.cornelius@nasa.gov 

FUTURE WORK 

Future work will apply additional constraints directly into the 

expected improvement calculation, such as rotor torque, mean 

lift coefficient, and rotor blade structural properties, e.g., 

mass, inertia, and structural modes. This will be achieved with 

implementation of the multi-objective parallel expected 

improvement acquisition function. Principal component 

analysis will also be explored to traverse the high-

dimensionality solution space more efficiently. Future efforts 

may investigate other types of ML such as reinforcement 

learning, but these methods have found much less application 

to date in the rotorcraft field. Lastly, the parametrization of 

the rotor design using Bezier curves will be explored.  
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