UH-60A Airloads
Wind Tunnel Data Update

Tom Norman

Airloads Workshop – August 9, 2012
Outline

• Data Availability
• Publications
• Recent Test Findings
• Current Activities
• Wind Tunnel/Flight Test Comparisons
Data Availability

• Selected wind tunnel data made available to Workshop participants Nov 2011
 – Includes speed sweep (8 pts) and thrust sweep (12 pts)
 – Data accessible through NASA’s NSC Knowledge Now website

• 8 organizations currently have approved access (NASA, Army, Sikorsky, Bell, Boeing, Penn State, CDI, Georgia Tech)
Publications Since March 2012

• 6 conference papers at 2012 AHS Forum
 – Aero/Structural Loads
 • “Loads Correlation of a Full-Scale UH-60A Airloads Rotor in a Wind Tunnel”, Yeo et al
 • “Evaluation of Wind Tunnel and Scaling Effects with the UH-60A Airloads Rotor”, Norman et al
 – High Advance Ratio
 • “Investigation of Performance and Loads of a UH-60A Rotor at High Advance Ratios”, Yeo
 • “Computational Investigation and Fundamental Understanding of a Slowed UH-60A Rotor at High Advance Ratios”, Potsdam et al
 – Experimental Capabilities
 • “Wind Tunnel Measurements of Full-Scale UH-60A Rotor Tip Vortices”, Yamauchi et al
 • “Blade Displacement Measurement Technique Applied to a Full-Scale Rotor”, Abrego et al
Recent Test Findings

• From March 2012 Meeting
 – LRTA control system stiffness measured - similar to aircraft (somewhat stiffer under collective loading)
 – As-tested blade tab angles measured – similar to flight measurements
 – 7 deg azimuth difference identified between wind tunnel data and currently used CFD model
 • Must correct model or data for valid comparisons
 • Also identified azimuthal “errors” with flight test data due to anti-aliasing filter corrections

• New information
 – Post-test blade inspections identified error in locations of TE blade pressure transducer
 • All TE transducers actually at x/c=93.9% instead of 96.3%
 • Effect on flight test airloads (correct value used for WT) is minimal for normal flight condition
Current Activities

• Continuing data evaluation efforts for blade pressures and integrated parameters
• Making progress with PIV and Blade Displacement data reduction efforts
 – PIV processing procedures nearly finalized; significant data reduction to begin this CY
 – Initial comparisons of blade displacement measurements with CFD helping to identify necessary improvements in data reduction
• Continuing CFD validation efforts with both OVERFLOW and FUN3D
• Completed coupling of hi-res CAMRAD with OVERFLOW

• Currently modeling in-board blade shank for better performance calculations

• Using wind tunnel and LRTA models to investigate effects on rotor loads and performance
 – Also investigating differences between wind tunnel and flight test measurements
Troubleshooting coupling of hi-res CAMRAD with FUN3D (working with Romander)

Developed model for LRTA fuselage and preparing for computations

Preparing to perform detailed validation with thrust sweep data
Near-Term Plans

• Continue data evaluation/correction and database updates
 – Pressures/integrated loads – complete remaining runs
 – Blade motion measurements – correct for RPM effects and transducer drift (mean effects)
 – Slowed Rotor runs – account for blade gage coupling and rotor balance drift
• Continue analysis of PIV and Blade Displacement data
• Complete documentation of control stiffness testing and tab deflection measurements
• Investigate blade contour measurements
• Investigate measured dynamic hub loads; evaluate rotor balance calibration issues
Background

• Full-scale UH-60A Airloads wind tunnel test conducted in USAF National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-Foot Wind Tunnel (2010)
• Test provided unique opportunity to evaluate tunnel and scaling effects by comparing acquired data with
 – 1994 UH-60A Airloads flight test
 – 1989 UH-60A Airloads small-scale wind tunnel test in German-Dutch Wind Tunnel (DNW)
Flight Comparisons - Airloads

Flight (c8424)
Section Normal Force (M^2c_n)
$\mu=0.30$, $C_T/\sigma=0.088$

V_∞
Flight Comparisons - Airloads

- NFAC baseline matches well with flight, although noticeable differences outboard

Flight (c8424)
Section Normal Force (M^2c_n)
$\mu=0.30$, $C_T/\sigma=0.088$

NFAC
Section Normal Force (M^2c_n)
$\mu=0.30$, $C_T/\sigma=0.088$
Flight Comparisons - Airloads

Difference between Flight and NFAC
Section Normal Force (M^2c_n)

$\mu = 0.30, \ C_T/\sigma = 0.088$

- NFAC baseline matches well with flight, although noticeable differences outboard
Flight Comparisons - Airloads

Section Normal Force – $\mu=0.30$, $C_T/\sigma=0.088$ (c8424)

- Biggest differences near negative lift peak and on retreating side for outboard stations
Flight Comparisons – Structural Loads

Blade Bending Loads – $\mu=0.30$, $C_T/\sigma=0.088$

- NFAC flap bending and torsion match well with flight
Flight Comparisons – Structural Loads

Blade Bending Loads – $\mu=0.30$, $C_T/\sigma=0.088$

- NFAC flap bending and torsion match well with flight
- NFAC chord bending shows significant differences
Flight Comparisons – Structural Loads

Chord Bending Harmonics – $\mu=0.30$, $C_T/\sigma=0.088$

- Notable differences at 1, 2, 4, and 5/rev
 - 1 and 2/rev differences consistent with damper responses
 - 4 and 5/rev may be caused by differences in lag modal frequencies (drive train differences)?
Conclusions

- NFAC measured rotor power compares well with matched flight and DNW test conditions
 - Procedures and trim targets used to match conditions are valid
- Flight comparisons
 - Airloads match well although some waveform differences found at outboard stations
 - Rotor structural loads match well except for chord bending
 - Further investigation necessary to determine cause of differences
Blade Tab Angles

- Re-measured tab deflections on all 4 blades
- New measurements similar to flight test
- Tab angles dependent on location of tab bend radius and location of measurement
 - Approx location of bend radius 0.8 in from TE
 - Approx location of measurement .15 in from TE
- Tab angles vary from 0.3 to 3.6 deg up
Azimuthal Diff. Between Flight and Wind Tunnel

- Known 7 deg azimuth ref. difference between wind tunnel and flight PdB files

Wind Tunnel (and TRENDS) azimuth reference
Rotor (hub) shown at 0° azimuth, blade shown at 0° lag angle

Flight PDB azimuth reference
Rotor (hub) shown at 0° azimuth, blade shown at 0° lag angle
Azimuthal Diff. Between Flight and Wind Tunnel

• Looked at possible causes for additional azimuthal differences
 – Encoder issues, post-processing errors, etc
• Found that wind tunnel data were corrected for phase delays caused by anti-aliasing filters; flight data were not
 – High speed data, 550 Hz Butterworth filter; approximately 1.8 deg delay
 – Low speed data, 110 Hz Butterworth filter, approximately 8.6 deg delay
• Also need to account for flight sideslip angle for comparisons (up to 4 deg)