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Abstract 

Existing tiltrotors are based on technology dating back 25 years or more. Present-day analytical and design 
methods promise useful improvements in performance compared to what was then possible. This paper applies 
CAMRAD II to proprotor performance optimization with different levels of analytical sophistication, ranging 
from simple momentum theory and combined blade-element/momentum theory to prescribed- and free-wake 
models; rigid and elastic blade models are also examined. Variations in blade twist distribution, solidity, taper, 
sweep and droop are explored. The purpose of the research is to determine the minimum requirements for 
analytical methodologies for successful optimization. Although the design of an improved rotor is not the 
immediate objective, design improvements naturally result and so are also discussed. The results of the study 
will be used to guide research directions in such areas as coupled CFD/CSD and improved sizing codes. 

Notation1 

JVX Joint Vertical Experimental 
LCTR Large Civil Tiltrotor 
NFAC National Full-Scale Aerodynamics Complex 
OARF Outdoor Aerodynamic Research Facility 
PTR Propeller Test Rig 
 
A rotor disk area 
KL stall-delay factor (Corrigan model) 
KsdD stall-delay factor for drag (Selig model) 
KsdL  stall-delay factor for lift (Selig model) 
c blade chord 
cd airfoil section drag coefficient 
cdL linear approximation of drag coefficient 
cdtable drag coefficient from airfoil table 
cdz drag coefficient at zero lift 
cl airfoil section lift coefficient 
cl
α
 lift curve slope (linear) 

clL linear extension of lift coefficient 
cltable lift coefficient from airfoil table 

CT rotor thrust coefficient, 
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FM rotor hover figure of merit, 
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Mtip rotor tip Mach number 
N number of blades 
                                                
1Presented at the AHS 64th Annual Forum, Montréal, 
Canada, April 29-May 1, 2008. This material is declared 
a work of the U. S. Government and is not subject to 
copyright protection. 

P rotor power 
r local blade radius 
rds transition radius for droop or sweep 
R rotor radius 
R′ projected radius 
T rotor thrust 
v0 induced velocity in axial flow 
vh induced velocity in hover 
vi local induced velocity 
V flight speed (rotor axial velocity) 
Vtip rotor tip speed 
Vtun wind-tunnel airspeed 
x in-plane offset due to sweep 
z out-of-plane offset due to droop 
α angle of attack 
αz zero-lift angle of attack 
η propulsive efficiency, TV/P 
κλ factor on induced velocity 

µ advance ratio, V/Vtip 

Ω rotor rotational speed 
ρ air density 
σ  rotor solidity, Nc/πR 
τ local blade twist 

Scope of Research 

The research reported here evolved from the NASA 
Heavy Lift Rotorcraft Systems Investigation (Ref. 1). 
That study selected the Large Civil Tiltrotor (LCTR) as 
having the best potential of several configurations to meet 



   

NASA technology goals, which were chosen to stimulate 
advanced VTOL technology development. With a tiltrotor 
selected as the preferred concept, research turned towards 
advanced proprotor designs. 

Reference 2 examined the effects of tip speed, blade 
number, and other top-level design parameters on LCTR 
rotor size, vehicle gross weight, and cost (see also Ref. 1). 
Reference 3 optimized twist, taper and precone for the 
resulting rotor design, examined the benefits of new 
airfoils to rotor performance, and explored the aeroelastic 
stability (whirl flutter) of the complete aircraft. In 
contrast, the present effort focuses on the details of rotor 
performance optimization by extending the methods of 
Ref. 3 to a wider variety of design parameters, with the 
JVX test rotor as the baseline. 

Because proprotors have higher twist and lower aspect 
ratio than conventional helicopter rotors, it is worthwhile 
to re-examine the analytical tools used to predict rotor 
performance and the test data used to validate the 
methodology. The critical criterion for design 
optimization is that the procedure must indicate the 
correct values of the parameters being optimized, not that 
the maximum values of performance be perfectly 
predicted. The present study applies the analyses 
validated in Ref. 4 to coupled hover/cruise performance 
optimization, with the goal of determining minimum 
requirements for the aeromechanics analyses that underlie 
the optimization process. There is also an implied tradeoff 
between accuracy and computational time. The focus of 
the research is, therefore, different than that of (e.g.) Refs. 
5 and 6, although those two papers make for interesting 
contrasts in their approaches to proprotor optimization.  

Aerodynamic analysis is here emphasized over structural 
analysis because of the former’s relatively lower level of 
maturity and greater impact on computational resources. 
The focus here is on the predictive methodology, not the 
optimization process or final design. The larger purpose is 
to guide future research, including experimental tests, by 
providing a rational basis for setting priorities.  

CAMRAD II was the analytical system used for the study. 
It provides numerous options for aerodynamic and 
structural modeling, which were exploited to determine 
the appropriate level of sophistication necessary for 
reliable rotor design optimization. There was a strong 
desire to tie the aeromechanics analyses to test data. The 
JVX rotor (Fig. 1) was chosen for the baseline because it 
is representative of the technology used in current 
tiltrotors (V-22 and BA-609). Moreover, its design and 
performance are well-documented in Refs. 7-8, which 
provide the basis for validation of the analytical methods 
used here (see also Ref. 4). 

 
Fig. 1. The JVX rotor mounted on the PTR for hover tests 

at the OARF. 

The CAMRAD II rotor model is described in the section 
Aeromechanics Analyses. The JVX rotor and its hover 
and high-speed (cruise) tests are described in the section 
JVX Test Rotor. The results of Ref. 4 are then 
summarized, along with discussions of the predictive 
methods employed. Having been validated, or at least 
calibrated, against test data, the aeromechanics analyses 
are then applied to variations of basic design parameters, 
notably solidity, taper, and twist, in the section Examples 
of Optimization. The section Additional Optimizations 
extends the analyses to sweep and droop. Although not 
emphasized, implications for the proprotor design itself 
are a natural fallout of the research and are summarized in 
the section Maximum Performance. 

Aeromechanics Analyses 

CAMRAD II is a comprehensive rotorcraft analysis code 
(Ref. 9), with a free wake model, a multi-element 
structural beam model, and a choice of stall delay models. 
It is much more computationally efficient than any 
equivalent CFD/CSD code. CAMRAD II is, therefore, 
ideally suited for determining the relative importance of 
different design parameters for performance. The latest 
CAMRAD II wake and stall-delay models were validated 
against the test data of Refs. 4 and 7. Every step of the 
procedure is thereby traceable to large-scale test data, 
albeit more directly for hover than for cruise. 

Correlation with test data is presented in the section JVX 
Test Rotor. Five different levels of aerodynamic modeling 



   

were evaluated: uniform inflow, differential momentum 
inflow (the CAMRAD II implementation of combined 
blade-element/momentum theory), prescribed wake 
(based on the Kocurek and Tangler model), free wake, 
and a multiple-trailer free wake (Ref. 10). In addition, two 
different, three-dimensional stall-delay models (Refs. 11 
and 12) were evaluated, as were rigid and elastic blade 
models. 

The rotor model had five elastic beam elements per blade 
(including the shank) with full hub and control-system 
kinematics. An axisymmetric solution (e.g., no gimbal 
motion) was used here, as appropriate for tiltrotor hover 
and cruise. The aerodynamic model also assumed 
axisymmetric flow. It had 31 aerodynamic panels per 
blade, more than would normally be needed, but useful 
for good definition of sweep and droop. Blade section 
properties were read from 2-D aerodynamic tables (Refs. 
13 and 14). Rotating, 3-D stall delay was implemented as 
modifications to the 2-D aerodynamic table data, as 
discussed immediately below. Blade aerodynamics were 
modeled as a lifting line, optionally coupled to a wake 
model. 

Stall-delay models 

The following summary of the CAMRAD II stall-delay 
modeling options is adapted from Ref. 4. Proprotors are 
known to generate much more lift inboard than would be 
predicted from two-dimensional airfoil section data alone. 
The rotating blade experiences centrifugal pumping of the 
airflow, which accelerates the boundary layer and greatly 
delays stall, with the strongest effect at the root. 
CAMRAD II does not directly calculate this effect, but 
provides two different models for correcting 2-D airfoil 
data to account for 3-D stall delay. The dependence upon 
radius is specified separately and must be matched to the 
stall-delay model. Although this complicates the input, it 
provides for maximum flexibility in accommodating 
different rotor designs and stall-delay models.  

The two stall-delay models are derived from Refs. 11 and 
12. Examples of adjustments to 2-D properties for the 
familiar NACA 0012 airfoil are given in Fig. 2. Both 
models require empirical adjustments, but give equally 
good results for the JVX test data. In the absence of more 
computationally efficient CFD methods, this is the most 
practical method of incorporating stall-delay effects into 
design optimization. 

The Corrigan model (Ref. 11) shifts the peak lift and stall 
recovery region upwards along a line defined by the lift-
curve slope at zero cl, extrapolated well beyond the 
normal stall angle. The extrapolated, linear lift curve is 
labeled “extended cl” in the figure. In contrast, the Selig 

model (Ref. 12) is a weighted interpolation between the 
extended cl and the airfoil table cl, with a similar correc-
tion for cd. In CAMRAD II, both stall-delay corrections 
are washed out angles of attack greater than 30 deg. The 
Selig model adjusts both lift and drag, but the Corrigan 
model adjusts only lift. The default stall-delay model for 
the JVX rotor is the Selig model, but both models were 
examined during the optimization studies. 
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Fig. 2. 3-D stall delay models for the NACA 0012 airfoil. 
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JVX Test Rotor 

The following summary description of the JVX rotor and 
test history is adapted from Ref. 4; see also Refs. 7 and 8. 
The JVX rotor was an experimental precursor to the V-22 
rotor. Sometimes referred to as a “2/3 scale V-22”, it in 
fact differed from the V-22 in several respects. Moreover, 
it was tested in two different aerodynamic configurations, 
so care must be taken when making comparisons with the 
production V-22 rotor and with other scaled V-22 rotors.  



   

The JVX rotor was 25 feet in diameter, which is 0.658 
scale referred to the original V-22 design. However, the 
production V-22 rotor was slightly enlarged for 
manufacturing reasons, so the JVX test rotor is more 
accurately 0.656-scale referred to the present V-22. The 
JVX rotor used an XV-15 hub with fixed, 2.5-deg 
precone, whereas the V-22 hub has a coning flexure with 
slightly different at-rest precone. An XV-15 spinner was 
used for JVX, instead of the much shorter V-22 spinner. 
JVX hover testing was done with the original taper and 
airfoil distribution, with linear taper and an XN-28 airfoil 
at the root. JVX high-speed testing was done with a 
thicker root section to better model the V-22 production 
blade. The JVX rotor was tested on the Propeller Test Rig 
(PTR), which has a fairing over the rotor balance just 
behind the hub (Fig. 1). The trailing edges at the JVX 
blade roots were slightly clipped to clear the balance 
fairing. All analyses reported here model the blade in the 
hover configuration, without the thicker root section. 
Nominal solidity (thrust-weighted) and taper are 0.1138 
and 0.7, respectively, with a tip chord of 15.79 in. 

The JVX rotor has spawned several progeny, all similar 
but none identical. JVX hover performance was better 
than expected due to stall-delay effects. The full-scale 
V-22 was subsequently built with slightly lower solidity 
than JVX and with a blade-fold hinge and fairing. The 
BA609 rotor is similar to JVX, but slightly larger in 
diameter and with a different root airfoil section (Ref. 15). 
There are also multiple small-scale aircraft, including 
TR911X and Eagle Eye, all using derivative rotors. None 
of these is an exact scaled version of JVX, and their 
differences must be kept in mind when comparing 
performance data. 

JVX rotor tests 

JVX hover tests were performed on the NASA Ames 
Research Center Outdoor Aerodynamic Rotor Facility 
(OARF) in 1984 (Ref. 7). High-speed (airplane-mode 
cruise) and wing download and interference tests were 
conducted in the 40- by 80-ft test section of the National 
Full-Scale Aerodynamics Complex (NFAC) at NASA 
Ames, divided into three test phases. Phase I tests were 
conducted in 1988. Only very limited cruise data from the 
Phase I test were collected and published (Ref. 8). The 
Phase II entry was in 1991 and generated a more 
comprehensive data set. The Phase II data were only 
recently published (Ref. 4). Phase III was intended to 
complete the high-speed data set, but the rotor was 
destroyed in an accident very early in the test. 

The cruise data used for model validation and presented 
here are all from the surviving Phase II data set. Although 
the maximum speed attained was below the desired goal 

of 300 knots, the data are adequate for the analytical 
comparisons included here. 

Hover data 

Hover test data are shown in Figs. 3 and 4 for average Vtip 
= 754 ft/sec, giving Mtip = 0.676. Data points were 
selected from those test conditions with a free-air wind 
speed of less than 1 knot. Figure 3 shows predictions 
made with a free-wake model, in which the shed vorticity 
is eventually rolled up into a single tip vortex (the rolled-
up model). This is the default CAMRAD II free-wake 
model, with a strong vortex at the tip, a weak vortex at the 
root, and a vortex sheet in between. It gives good 
correlation with the OARF test data at high CT, but 
underpredicts figure of merit at low CT. 

Predictions are also shown for a multiple-trailer model, 
which has an additional vortex trailer inboard of the 
radius at which blade-vortex interaction is experienced in 
hover (about 0.80 R). The multiple-trailer model fits the 
data better at low thrust than the rolled-up model (see Ref. 
4 for further discussion). This is because the multiple-
trailer model better accounts for blade-vortex interaction 
at low thrust, where the tip can be negatively loaded. The 
multiple-trailer model, however, requires much more 
computer run time than the rolled-up model, so the latter, 
simpler wake model is the default inflow model for all 
predictions presented here. The severe computational 
demands of the multiple-trailer model was an important 
motivation for the present research. 

It should be noted that the multiple-trailer model used 
here is distinct from the CAMRAD II “dual-peak” wake 
model. The latter is intended for use with negative tip 
loading, whereas the former applies to both positive and 
negative tip loading. 

Figure 3 also shows predictions made without any 3-D 
stall-delay corrections. Figure of merit is clearly 
underpredicted everywhere but very low thrust. The Selig 
and Corrigan stall delay models are difficult to distinguish 
at the scale of Fig. 3, the difference being barely one line 
thickness at most, so results for only the Selig model are 
shown. 

Three additional, simpler aerodynamic models were also 
investigated. In increasing order of sophistication, they 
were uniform inflow, differential momentum theory (the 
CAMRAD II implementation of combined blade-
element/momentum theory), and a prescribed wake 
model, here the Kocurek and Tangler model (Ref. 16). 
Figure 4 suggests that they all match the test data better 
than the rolled-up free wake model, but this is misleading. 
All three models rely upon empirical adjustments for 
good predications of figure of merit. 
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Fig. 3. JVX test data vs. CAMRAD II free-wake 

predictions of hover performance. 

0.0

0.2

0.4

0.6

0.8

1.0

0 0.05 0.1 0.15 0.2

JVX CAMRAD II free wake

OARF data

Uniform inflow

Differential momentum

Prescribed wakeH
o
v
e
r 

fi
g
u
re

 o
f 
m

e
ri
t

C
T  

/!

CAMRAD II model:

 
Fig. 4. JVX test data vs. CAMRAD II predictions of 

hover performance with simpler inflow models. 

The uniform inflow and differential momentum models 
rely on an empirical factor on induced velocity, κλ, for a 
good fit to the data. To match the JVX hover data, κλ = 
1.10 for uniform inflow, and κλ = 1.04 for differential 
momentum. Although these two models may give good 
fits to the hover data with appropriate values of κλ, they 
cannot be relied upon to give good performance estimates 
as blade design parameters are varied, because there is no 
way to determine in advance the correct values of κλ. 
Worse, these two models cannot possibly account for the 

effects of wake distortion and vortex interactions. 
Nevertheless, the savings of computer resources 
motivated an examination of these models for rotor design 
optimization, where rapid narrowing of the design space 
may be more advantageous than exact predictions of 
performance. 

Figure 4 also shows predictions made with the Kocurek 
and Tangler prescribed-wake model. Because of its 
simplicity compared to a free-wake model, the Kocurek 
and Tangler model would seem to be a candidate for 
performance analysis, but it too depends upon empirical 
adjustments, notably a factor on vertical convection. As 
with the uniform inflow and differential momentum 
models, the Kocurek and Tangler model was applied to 
rotor optimization in hopes of finding a more efficient 
solution than a free wake model. 

Cruise data 

The JVX airplane-mode data are plotted as power versus 
thrust in Fig. 5. Clustering into five groups of constant µ 
is obvious, as is the good fit of CAMRAD II predictions 
to the data. All data at µ = 0.523 and below were taken at 
487 rpm, but the data at µ = 0.562 were taken at 531 rpm. 
(Propulsive efficiency η is the preferred parameter for 
optimization, but for this rotor, measurements of η at 
different advance ratios collapse on top of each other, 
making power the more useful parameter for validation.) 
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Fig. 5. CAMRAD II predictions of JVX cruise (airplane-

mode) performance vs. test data. 

The CAMRAD II predictions shown were made with the 
rolled-up free wake model. 3-D stall delay is not relevant 
at the low blade-lift coefficients typical of high speed, so 



   

no stall delay model was used. The free wake, uniform 
inflow, differential momentum, and Kocurek and Tangler 
predictions are extremely difficult to distinguish from 
each other. The worst discrepancies are barely one line 
width at the scale of Fig. 5, so only predictions for the 
rolled-up model are shown. The multiple-trailer model 
was not used here, because blade-vortex interaction does 
not exist at high-speed axial flow, even at low thrust. 

The predictions fit the data best at the highest speed, 
worst at the lowest, which is adequate for the 
optimizations presented herein. The reader is reminded 
that the excellent fit to the data by the less sophisticated 
models depends upon empirical adjustments to inflow 
velocity. To match the JVX cruise data, κλ = 4.6 for 
uniform inflow, and κλ = 1.65 for differential momentum. 

Blade Design Parameters 

The logic behind the choice and sequence of parameters 
analyzed deserves discussion. Rotor blade twist (and 
sweep, if utilized) has negligible effect on section 
structural properties. Minor changes to airfoils will also 
have minor effects on local structural properties, provided 
that thickness-to-chord ratio (t/c) is held constant. 
Conversely, substitution of new materials can have major 
effects on section mass and stiffness with no effect on 
aerodynamics. Hence, to first order, twist, sweep, airfoils, 
and materials can be adjusted independently of each 
other. 

For sufficiently large changes in these parameters, there 
will be global changes in load distribution or blade 
deflection that couple aerodynamic and structural 
properties. For example, large tip sweep will introduce a 
torsion moment that will change the twist under load, with 
the amount determined by torsional stiffness. The 
significance of these effects can be determined by a 
comprehensive analysis such as CAMRAD II. 

Another consideration for the present research is that 
modest variations in a few parameters, such as twist, 
sweep, taper and solidity, can be made without assuming 
any additional technology insertions. Optimization of 
these parameters best reveals the impact of new analytical 
methodologies, including free-wake and stall-delay 
models. 

Other parameters, notably structural and airfoil properties, 
are more directly dependent upon new technology, and 
are also more open-ended. The design of blade structures 
and airfoils are major research areas in themselves, so the 
present effort includes only top-level estimates of 
structures and airfoil technology. 

The JVX airfoils (Ref. 17) were designed for specified 
Mach numbers, so a rigorously fair examination of the 
effects of tip speed would require several new sets of 
airfoils, or at least different spanwise distributions of the 
existing airfoils. This would be a worthwhile research 
endeavor in its own right, but is outside the scope of the 
present effort. 

To provide a consistent basis for comparison, key design 
parameters were held constant or limited to small 
variations, except in special cases. Rotor diameter and 
blade number are fundamental design choices. Diameter 
was always that of the JVX rotor (25 ft.). Blade number 
was kept at three, the same as the JVX rotor. Tip speed 
was held constant at 755 ft/sec (0.567 Mach) for hover 
(sea level standard conditions) and 643 ft/sec (0.676 
Mach) for cruise (300 knots at 20,000 ft), both matched to 
the JVX airfoil nominal design conditions (Ref. 17). The 
actual JVX rotor design had to accommodate several 
additional operational criteria not addressed here; see Ref. 
18 for details. 

All calculations were performed at fixed values of hover 
and cruise thrust, derived from the design values of the 
JVX rotor: nominal hover CT/σ = 0.15, and nominal 
cruise CT/σ = 0.056. However, CAMRAD II was trimmed 
to thrust, not CT/σ, because solidity was varied for some 
calculations. The results of these analyses will be used to 
support design studies, where aircraft gross weight, 
airframe drag, cruise speed and altitude, and other global 
design parameters will be derived from mission 
requirements by a sizing code. Thrust at a given airspeed 
and altitude is the appropriate trim condition, as 
appropriate for hover or cruise. 

Examples of Optimizations 

Examples of several different parameter optimizations are 
given here, for several different aeromechanics models. 
Solidity, taper, twist, sweep, and droop are all considered. 
Five different inflow models are applied: uniform inflow, 
differential momentum, prescribed wake (the Kocurek 
and Tangler model), free wake, and a multiple-trailer 
wake. Two different, three-dimensional stall-delay 
models were evaluated, as were rigid and elastic blade 
models. 

Full optimization maps are usually presented, not just the 
envelopes. It is important that the results not be biased by 
a particular mission model, which may, for example, 
emphasize cruise performance more strongly than hover. 
It is also important to present sub-optimum design points 
and performance trends in order to reveal any deficiencies 
in the methodology. Full maps directly reveal the 
tradeoffs between cruise and hover performance, thereby 



   

avoiding misleading conclusions that may arise from 
designing to a single mission specification. 

Most optimization maps shown here include a design 
point representing the actual JVX rotor (in its original 
hover configuration), which establishes traceability back 
to test data. These criteria are relaxed in some of the plots, 
either to accommodate changes in scale or to summarize 
results of multiple optimizations. 

The hover and cruise tests used different root airfoil 
sections, which makes it impossible to match all test 
configurations while keeping the aerodynamics consistent 
during hover and cruise optimizations. Using different 
airfoils for hover and cruise would be more problematic 
than a slight mismatch to the cruise test rotor, especially 
in view of the fact that the high-speed test data never fully 
matched the actual JVX cruise design conditions. 
Therefore, all analyses shown here are based upon the 
JVX hover configuration. 

A major consideration in the choice of examples is the 
desire to clearly discriminate between different analytical 
methods. Accordingly, examples of poor predictions of 
performance trends or tradeoffs are presented along with 
the good, in order to identify and eliminate inadequate 
predictive models.  

Rotor solidity is often determined early in the design 
process, because it determines maximum lift. For a fixed 
diameter, solidity and taper together determine blade 
chord, which is intimately connected to stall-delay effects. 
It is therefore appropriate to optimize solidity and taper 
together. Here, linear taper is used to allow direct 
comparison to the JVX test rotor. 

Bilinear twist was developed for the XV-15 and is used 
on the V-22 and JVX rotors. It is a close approximation to 
the “ideal” twist derived from momentum theory (Ref. 19; 
see the Appendix for details). Note that this ideal twist is 
only an approximation, not only because of the limitations 
of momentum theory, but because a production rotor must 
compromise between different ideal distributions at 
different flight conditions. In any event, bilinear twist 
optimization proved a good method of distinguishing the 
effects of different aeromechanics models. 

Droop and sweep have become increasingly common 
features of modern helicopter rotors, and have potential 
applications for proprotors. A few examples of droop and 
sweep are presented to illustrate where there is a clear 
failing of one of the aeromechanics models to properly 
capture the effect on performance. 

Solidity and taper optimization 

Figure 6 shows the effects of taper and solidity on 
performance as computed with the rolled-up free-wake 
model, plotted as figure of merit (FM) and propulsive 
efficiency (η); the baseline JVX test rotor is indicated by 
a black symbol. A 7×7 matrix of combinations of solidity 
and taper define the design space. Decreasing taper 
always improves η, but FM reaches a maximum at 0.8 
taper (tip/root chord) and 0.11 solidity. Overall, hover 
performance is more sensitive to changes in taper and 
solidity than is cruise. 

The optimum values of taper and solidity lie along the 
outer envelope of the optimization map; the exact 
optimum depends upon the mission specifications. This 
model—Selig stall delay, rolled-up wake, and elastic 
blades—is the reference model to which other variations 
will be compared. 
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Fig. 6. Taper and solidity optimization for the JVX rotor 

with the rolled-up free wake model and the Selig stall 
delay model. 

Figure 7 shows the taper/solidity map with the Corrigan 
model; the analysis is otherwise identical to that of Fig. 6. 
Comparing Figs. 6 and 7, the greatly expanded scales, 
relative to Figs. 3 and 4, reveal the difference in predicted 
figure of merit at the trim thrust. Figure 8 shows the 
results with no stall delay. These stall delay models affect 
hover only, so the values of propulsive efficiency are 
identical. The Selig and Corrigan models result in slightly 
different patterns and small changes in the optima. 
However, the results of using no stall delay are severely 
different from either model, both in the pattern and in the 
range of values of figure of merit. 
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Fig. 7. Taper and solidity optimization with the Corrigan 

stall delay model (affects hover only). 
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Fig. 8. Taper and solidity optimization with no stall delay 

model (affects hover only). 

Figure 9 shows the results of using a rigid blade model 
combined with Selig stall delay. The pattern is nearly the 
same as that of the elastic-blade model (Fig. 6), but 
shifted to slightly higher values of figure of merit. This is 
reasonable because elastic coning should cause a slight 
reduction in thrust for a given torque. 

Figure 10 shows the results of applying the multiple-
trailer wake model, with Selig stall delay and elastic 
blades. The pattern is similar to that of the rolled-up 
model (Fig. 6), again with a slight shift in predicted 
performance for the baseline rot 
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Fig. 9. Taper and solidity optimization with rigid blades 

and controls. 
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Fig. 10. Taper and solidity optimization with multiple-

trailer wake model. 

Tentative conclusions are that a 3-D stall delay model is 
essential, but that either the Selig or Corrigan model is 
adequate. Neither an elastic blade model nor the multiple-
trailer wake model is necessary. These results will be re-
examined in the section Twist Optimization. 

Turning now to simpler models, Figs. 11 and 12 show 
results for the uniform inflow and differential momentum 
models. Both models were empirically adjusted to match 
the hover data at CT/σ = 0.15 (Fig. 4), to which the 
calculations in Figs. 6-12 were trimmed. For both models, 
the optimization maps are very poor, despite the excellent 



   

match to the hover data for the calibrated baseline 
condition. There is no hope of an optimizer selecting the 
proper combination of solidity and taper. 
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Fig. 11. Taper and solidity optimization with the uniform 

inflow model. 
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Fig. 12. Taper and solidity optimization with the 

differential momentum model. 

The final model examined was the Kocurek and Tangler 
prescribed-wake model (Fig. 13). Again the map is 
extremely poor, and inadequate for a successful 
optimization. Although more sophisticated prescribed-
wake models have been developed, all are potentially 
susceptible to the same problem: the wake geometry is 
indirectly dependent upon rotor characteristics that 
change as design parameters are varied. Unless the effects 

of solidity and taper upon the wake geometry are known 
in advance and can be incorporated into the wake model, 
the effects upon rotor performance cannot be reliably 
captured. 
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Fig. 13. Taper and solidity optimization with the Kocurek 

and Tangler prescribed-wake model. 
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Fig. 14. Taper and solidity optimization with a mixed 

inflow model. 

Although the differential momentum model gave poor 
results (Fig. 12), its predictions of propulsive efficiency 
are in fact nearly the same as the free-wake model of Fig. 
6. Therefore, one could legitimately use the differential-
momentum model in cruise and a free-wake model in 
hover. Fig. 14 shows the results of such a combination. 
The mixed inflow model generates the same pattern as 
Fig. 6, with a slight overall reduction in propulsive 



   

efficiency, but the optimum combinations of solidity and 
taper along the outer envelope are the same. 

Twist optimization 

The same CAMRAD II rotor and inflow models used for 
solidity and taper optimization were applied to twist 
optimization. Bilinear twist applies a constant twist rate 
from the blade root to a given transition radius, then a 
different rate to the tip. For the examples shown here, the 
transition radius was 0.45 R, which is a close match to the 
JVX test rotor (the twist distribution of the actual rotor is 
blended in the vicinity of 0.45 R, whereas the distribu-
tions studied here are exactly bilinear). Twist is here 
always indexed with zero twist at 0.75 R. 

Figure 15 shows a conventional twist optimization map 
for combinations of inboard and outboard linear twist, all 
using the rolled-up wake model with Selig stall delay. A 
large matrix (7×7) of combinations of inboard and 
outboard twist rates was analyzed to map out the design 
space. Cruise conditions favor lower inboard twist and 
higher outboard twist than does hover. FM tends to be 
more sensitive to outboard twist rate, while η is more 
sensitive to inboard twist. For the twist variations 
examined here, the ranges of variation of FM and η were 
somewhat greater than those for solidity and taper 
variations (compare Figs. 6 and 15). There are fewer 
practical design constraints upon blade twist than upon 
planform, so twist was varied more freely than solidity or 
taper. 
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Fig. 15. Bilinear twist optimization for the JVX rotor with 

the rolled-up free-wake model and the Selig stall-delay 
model. 

The twist map with the Corrigan stall delay model (Fig. 
16) is closely similar to that for Selig stall delay, although 
figure of merit is reduced at off-optimum values of twist. 
With no stall delay model (Fig. 17), the outer envelope of 
the twist map is superficially similar to those for the two 
stall delay models, but the optimum values of twist are 
incorrect for hover. The effect of inboard twist rate is not 
properly captured, which is not surprising because stall 
delay applies much more strongly inboard than outboard. 
The results near peak cruise performance are similar for 
all of Figs. 15-17, simply because 3-D stall delay does not 
apply in cruise.  
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Fig. 16. Bilinear twist optimization for the JVX rotor with 

the Corrigan stall-delay model (affects hover only). 
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Fig. 17. Bilinear twist optimization for the JVX rotor with 

no stall-delay model (affects hover only). 



   

Results for the rigid blade model are shown in Fig. 18, 
and for the multiple-trailer wake model in Fig. 19. The 
structural model makes little difference (compare Figs. 15 
and 18), except at certain extreme values of twist. The 
multiple-trailer model yields a smaller range of variation 
in figure of merit than the rolled-up model (compared Fig. 
15 and 19), but the parameter values along the outer 
envelopes of the optimization maps are almost the same. 

These results for twist are consistent with those for 
solidity and taper: a 3-D stall delay model is necessary, 
but either model (Selig or Corrigan) is adequate, and an 

elastic blade model is unnecessary, as is the multiple-
trailer wake model. 

Results for the uniform inflow model and the differential 
momentum model are shown in Figs. 20 and 21. The 
patterns are similar. Neither model properly captures the 
effect of inboard twist anywhere, nor of outboard twist 
near peak propulsive efficiency. The effect of outboard 
twist near peak figure of merit is approximately 
calculated, but this is not enough to guarantee than an 
optimizer will find the correct combination of inboard and 
outboard twist. 
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Fig. 18. Bilinear twist optimization for the JVX rotor with 

rigid blades. 
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Fig. 19. Bilinear twist optimization for the JVX rotor with 

the multiple-trailer wake model (affects hover only). 
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Fig. 20. Bilinear twist optimization for the JVX rotor with 

the uniform inflow model. 
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Fig. 21. Bilinear twist optimization for the JVX rotor with 

the differential-momentum inflow model. 



   

Figure 22 shows results for the Kocurek and Tangler 
prescribed wake model. Although the outer envelope 
appears similar to that for either free wake model, the 
effect of outboard twist on the peak value of figure of 
merit is poorly represented. This is despite adjustment of 
the prescribed wake geometry to match the variations in 
outer blade twist. As with the uniform inflow and 
differential momentum models, the prescribed wake 
model would not lead an optimizer to the correct design 
values of twist, except perhaps for a rotor designed 
strictly for maximum cruise performance. 
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Fig. 22. Bilinear twist optimization for the JVX rotor with 

the prescribed-wake model. 
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Fig. 23. Bilinear twist optimization for the JVX rotor with 

a mixed inflow model. 

A mixed inflow model, using differential-momentum 
inflow in cruise and a rolled-up free wake in hover, is 
used to generated the twist map in Fig. 23. Compared to 
the full free-wake model (Fig. 15), it is less sensitive to 
inboard twist near peak propulsive efficiency, but more 
sensitive near peak figure of merit. However, the greatest 
differences are for non-optimum values of twist. The 
optimum values of twist along the boundaries of the twist 
maps are nearly the same. 

Preliminary conclusions Based upon the results for 
solidity, taper, and twist optimization, a few conclusions 
may now be drawn concerning the analytical models. The 
criterion for proper optimization is that the model must 
indicate the correct values of the design parameters, not 
that figure of merit and propulsive efficiency be perfectly 
predicted. 

The two stall delay models were equally good for 
optimization. The Selig model was chosen for all further 
studies, largely for convenience. (The pattern for 
solidity/taper optimization was a little more consistent 
that that for the Corrigan model, but this may be an 
artifact of the CAMRAD II trim strategy.) Optimizations 
without any stall delay model were clearly poor and were 
not further considered. 

The structural model also made little difference. The rigid 
model is here preferred for further studies of the JVX 
rotor because of its simplicity. However, this choice may 
not be appropriate for other rotors: the JVX rotor is much 
stiffer than many helicopter rotors, and new proprotor 
concepts (e.g., those of Ref. 1) with different dynamic 
characteristics may require an elastic structural model. 

The Kocurek and Tangler prescribed wake model is 
inadequate for determining the optimum values of 
solidity, taper or twist. While it is conceivable that a more 
refined prescribed-wake model might provide reasonable 
estimates, there is very little savings in computational 
time compared to the rolled-up wake model. There is, 
therefore, no practical advantage in using the Kocurek 
and Tangler model. 

Although the multiple-trailer wake model is theoretically 
more accurate than the rolled-up model, there are 
negligible differences in the optimal values of solidity, 
taper, or twist. More critically, the multiple-trailer model 
requires vastly more computational time than the rolled-
up model, and is for that reason alone not recommended 
for routine optimization. 

The mixed-inflow model—differential momentum in 
cruise and rolled-up wake in hover—yields very nearly 
the same results as using the rolled-up wake model 



   

exclusively. Where saving computational time is critical, 
this model may be an acceptable compromise. 

Alternative twist distributions Before leaving the subject 
of twist, it is worthwhile examining the effect of transition 
radius. Although not a formal part of the present research, 
a few interesting results could be immediately derived 
from the optimization studies.  

Fig. 24 shows the envelope of several twist maps, each for 
bilinear twist but with different transition radii. Note that 
Figs. 15-23 collapse four variables—inboard and 
outboard twist rate, figure of merit, and propulsive 
efficiency—into two dimensions. By suppressing the 
details of the underlying optimization maps, Fig. 24 adds 
a fifth parameter, namely transition radius. The exact 
transition radius makes negligible difference near peak 
propulsive efficiency, where there is less difference 
between the inboard and outboard twist rates than at 
maximum figure of merit. There is little to choose 
between the 0.45-R and 0.50-R transition radii; the first is 
perhaps slightly better and more closely matches the 
actual JVX twist distribution, so it was the preferred value 
for all other results presented here. 
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Fig. 24. Bilinear twist envelopes with different transition 

radii. 

Figure 25 replots the envelope for the 0.45-R transition 
radius against ideal twist. Applying the method of Ref. 
19, ideal twist was determined separately for hover and 
cruise (see also the Appendix). Weighted averages of the 
hover and cruise distributions were calculated, then the 
twist of each weighted distribution was scaled up or down 
by varying percentages of total twist. The hover/cruise 
weighting factor and the total-twist scaling factor com-

prised the optimization parameters for ideal twist. The 
boundary of the resulting twist map is plotted in Fig. 25. 
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Fig. 25. Optimization envelopes for bilinear twist and 

ideal twist (weighted). 

The ideal twist distribution, even when weighted and 
scaled, does not provide quite as good performance as the 
best bilinear distributions. Given that ideal twist is 
derived without full consideration of wake effects, it is 
not surprising that it falls slightly short. Indeed, the results 
are perhaps better than might be expected. 

Additional Optimizations 

Several additional design parameters were analyzed, but 
not all of them proved to be significantly affected by the 
choice of analytical model. In particular, variations in 
airfoils were not good discriminators between the models. 
Changes in maximum section lift capability affected 
mostly hover performance, while changes in sensitivity to 
Mach number affected mostly cruise. Drag reductions 
were beneficial everywhere. However, the results varied 
little between inflow models, with negligible effect upon 
the optimum values. The results for airfoils were thus 
unremarkable and are accordingly not shown here. 

In contrast, variations in droop and sweep yield 
drastically different results for different inflow models, 
and so merit discussion. Some subtleties in the definitions 
of droop and sweep used here should be mentioned. In the 
basic definition, both droop and sweep are initiated at a 
transition radius rds, respectively perpendicular or parallel 
to the rotor plane (Fig. 26). For droop, the total blade area 
increases by an inverse cosine factor. However, neither 
the projected blade area nor the radius changes for pure 



   

droop, but projected radius increases for sweep. It is not 
geometrically possible to simultaneously maintain all 
applicable parameters—total radius, droop/sweep 
transition radius, blade chord, disk area, and solidity—at 
identical, constant values for both droop and sweep while 
varying these two parameters. The approach used here 
fixed R at the nominal value for the unmodified blade, 
and allowed the blade area and projected radius R′ to 
change as dictated by the specified values of rds and the 
droop/sweep angle.  

An additional complication is that the combination of 
high blade twist and the large change in collective pitch 
between hover and cruise makes it impossible to have 
pure droop or sweep at all blade radii and at all trimmed 
flight conditions. Because droop is mostly beneficial to 
hover, droop is here applied perpendicular to the rotor 
plane when the unmodified blade is trimmed in hover. At 
high collective pitch angles in cruise, effective droop is 
reduced and there is an unavoidable component of 
forward sweep at the tip. 

Sweep is beneficial to both hover and cruise, and so is 
applied in the rotor plane with the rotor trimmed to zero 
collective. Sweep is, therefore, nearly in-plane to the local 
chord from 0.75 R to the tip. In hover, there is a slight 
component of droop, and a larger amount of droop in 
cruise. This avoids negative droop (dihedral) at any 
trimmed flight condition. 

An additional refinement over simple sweep, as in defined 
Fig. 26, is to implement sweep with a parabolic radial 
distribution. This has several advantages. A parabolic 

distribution, with the sweep angle varying as (r–rds)
2, is a 

close approximation to aerodynamically ideal sweep, 
wherein the effective local chordwise Mach number is 
constrained to some fixed value along the swept section. 
Parabolic sweep is here defined by the maximum sweep 
angle, at the tip. Parabolic sweep more smoothly blends 
the swept section with the inboard blade than either ideal 
sweep or simple sweep. This avoids a kink and resulting 
concentrated loads at rds. For CAMRAD II analyses, 
parabolic sweep replaces a single large angle in the lifting 
line with a series of more shallow angles along the swept 
section. This reduces numerical problems in the 
aerodynamic solution. 

The effects of droop and sweep are shown here only for 
the rigid blade model. Droop moves the blade center of 
gravity perpendicular to the rotor plane, which changes 
elastic coning. Because an actual test rotor would 
probably use a different precone angle to compensate, an 
elastic blade model would make it impossible to separate 
the inertial and aerodynamic effects. Blade sweep moves 
the tip center of pressure aft of both the inboard elastic 
axis and the pitch axis, which twists the blade under load, 
usually unfavorably. A test rotor could compensate for 
this with a different twist distribution. For the present 
research, a rigorous twist reoptimization at each sweep 
configuration would require a four-parameter 
optimization, which again makes it difficult to separate 
the effects of different parameters (sweep angle, rds, and 
twist). Although not perfectly rigorous, a rigid blade 
model makes it possible to analytically decouple these 
effects, which is appropriate for the present research. 
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Fig. 26. CAMRAD II droop and sweep geometry (angles and offsets exaggerated). 

 



   

Droop 

Figure 27 shows results for several combinations of droop 
angle and transition radius (rds), here for the rolled-up 
free-wake model and Selig stall delay (the default 
aerodynamic model) and rigid blades. Increasing the 
length of the drooped section (decreasing rds) at a given 
droop angle improves propulsive efficiency up to about 
0.85 R, but has little effect thereafter. Increasing the droop 
angle always benefits figure of merit, more so at the 
largest transition radius than the lowest. For the most 
effective combinations of droop angle and transition 
radius, figure of merit is improved roughly twice as much 
as is propulsive efficiency. This is reasonable, given that 
droop is defined for the trimmed hover condition.  
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Fig. 27. JVX tip droop optimization with the rolled-up 

free wake model. 

The same combinations of droop angle and transition 
radius shown in Fig. 27 were analyzed with the 
differential-momentum inflow model (Fig. 28). The effect 
on figure of merit is seriously incorrect, which is to be 
expected because droop improves hover performance by 
displacing the tip vortex. Without a tip vortex model—
that is, a wake model—this effect cannot possibly be 
calculated correctly. However, a mixed-inflow model, 
with the rolled-up free wake model in hover and the 
differential-momentum model in cruise, gave results 
nearly identical to Fig. 27 (hence are not shown). 
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Fig. 28. JVX tip droop optimization with the differential-

momentum inflow model. 

Sweep 

Results for several combinations of tip sweep angle and 
transition radius are shown in Fig. 29. Parabolic sweep is 
used; the sweep angles given in the figure are those at the 
tip. Sweep is here limited to 15 deg, for two reasons: large 
amounts of sweep reduce wing/rotor clearance in cruise, 
and are therefore impractical; and too much sweep and 
accompanying in-plane offset of the lifting line gives 
numerically invalid results. Nevertheless, it is clear that 
sweep improves figure of merit much more so than 
propulsive efficiency. Propulsive efficiency is sensitive to 
the effective Mach number at the tip, which is reduced by 
sweep, while figure of merit benefits both from the 
reduced Mach number and the displacement of the tip 
vortex. With an elastic blade model, the results show 
slightly less effect of transition radius, but are otherwise 
nearly the same as Fig. 28 (hence are not shown). 

Two important qualifications apply to the results for 
sweep. Sweep reduces the local lift-curve slope, so that 
the twist over the swept section may no longer be 
optimum. It was not the purpose of the present research to 
define the best possible rotor, so a complete twist 
reoptimization was not performed for each sweep/radius 
combination. Further improvements in performance are 
therefore possible; simple examples are given in the 
section Maximum Performance. The second qualification 
is that the swept lifting line encountered numerical 
problems at large values of sweep. There could easily be 
numerical errors at the values shown in Fig. 29, so the 
results are overly optimistic for figure of merit. 
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Fig. 29. JVX tip sweep optimization with the rolled-up 

free wake model. 

The same combinations of sweep and transition radius 
shown in Fig. 29 were analyzed with the differential-
momentum inflow model; the results are shown in Fig. 
30. It is immediately evident that the simpler model 
cannot correctly predict the effects of sweep on hover 
performance. 
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Fig. 30. JVX tip sweep optimization with the differential-

momentum inflow model. 

Because of the reduction in wing/rotor clearance, the 
swept blades of Figs. 29 and 30 are impractical, or at least 
would require a longer rotor shaft or other design 
changes. Results for an alternative implementation of 
sweep are shown in Figs. 31 and 32. Here, parabolic 

sweep is applied to the leading edge only, so as to 
maintain a straight trailing edge. This requires the blade to 
be parabolically tapered; the resulting planform looks 
much like a modern, high-speed propeller. The blade 
chord was uniformly scaled to maintain constant solidity 
for all combinations of sweep and transition radius. 
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Fig. 31. JVX tip sweep optimization with no trailing-edge 

sweep and the rolled-up free wake model. 

With the rolled-up wake model, parabolic sweep with a 
straight trailing edge provides large benefits to both cruise 
and hover performance (Fig. 31). Increasing sweep and 
transition radius always benefit propulsive efficiency, 
which should be expected to benefit from both the 
reduced chord and the reduced effective Mach number 
over the swept section. Figure of merit also benefits, but if 
the swept section is too large (the transition radius is too 
far inboard), hover performance is adversely affected. 
This effect is at least partly due to non-optimum twist. 
The same caveats discussed for Fig. 29 also apply here: 
the improvements to figure of merit are overly optimistic. 

As a check on the numerical issues associated with a 
swept lifting line, the optimization of Fig. 31 was run with 
a straight lifting line (Fig. 32). This model is equivalent to 
a parabolically tapered tip with Mach relief applied to the 
airfoil coefficients, but with no geometric sweep. The 
benefits to η of Mach relief and taper are still be seen, but 
not the effects of displacement of the tip vortex on FM.  

Also shown in Fig. 32 is the optimization for pure 
parabolic taper: the same variations in planform as the 
other curves in the figure, but with no sweep. The curves 
for different transition radii collapse on each other, so 
only the outer envelope is shown. Tip taper is responsible 
for slightly less than half of the gain in η. If the sweep 



   

optimization is run with only Mach relief, but no taper or 
lifting-line sweep, the results collapse into a vertical line 
almost identical to that for 0.90 transition radius. Hence, 
taper and Mach relief each contribute about half of the 
performance gain in cruise. 
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Fig. 32. JVX tip sweep optimization with no trailing-edge 

or lifting-line sweep and the rolled-up free wake mode 
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Fig. 33. JVX tip sweep optimization (straight trailing 
edge) with the differential-momentum inflow model. 

The differential-momentum model was applied to the 
same combinations of sweep and transition radius shown 
in Fig. 29 for a straight trailing edge; the results are 
shown in Fig. 33. The pattern is similar to that for a 
straight lifting line (Fig. 32), but expanded vertically in 

scale. Again, the simpler model cannot correctly predict 
the effects of sweep on hover performance. 

Taken together, the results of Figs. 31 and 32 suggest that, 
even if CAMRAD II overestimates the improvement to 
FM, a swept and tapered tip can yield important 
performance benefits for a proprotor. At worst, a small 
amount of sweep and accompanying taper (rds ≤ 0.85 R in 
Fig. 32) can improve η by roughly 0.1 with negligible 
reduction in FM. At best, there is a very large potential 
improve also to be had in FM, but determination of the 
exact amount will require a more sophisticated analysis 
than CAMRAD II. 

Maximum Performance 

The best rotor design cannot be defined without a proper 
mission model. It was not the purpose of this research to 
derive such a model, but some simple criteria can yield 
estimates for the potential performance gains achievable 
with the methods developed above. The criteria were 
simply to maximize FM and η for hover or cruise 
respectively, with the constraint that neither could fall 
below 0.80 while maximizing the other (this constraint 
was based on the JVX rotor performance goals given in 
Ref. 18). 

Taper and solidity were chosen first from Fig. 6, then 
twist (bilinear) was reoptimized. This yielded two rotor 
designs, optimized exclusively for hover or cruise. The 
improvements to FM and η, relative to the baseline JVX 
rotor, are tabulated in Table 1. For example, the 
improvement to figure of merit for the hover-optimized 
rotor is +0.004, under “Max Hover.” The process was 
repeated for the swept-tip rotor (parabolic sweep, straight 
trailing edge). Those results are summarized in Table 1 on 
the row labeled “Best sweep.” 

Table 1. Maximum optimized performance improvements 
for hover or cruise. 

Optimization Max Hover Max Cruise 
Best taper and σ ∆FM = +.004 ∆η = +.034 
Best sweep ∆FM = +.097 ∆η = +.033 

 
 
Very little improvement should be expected for maximum 
hover performance when optimizing taper, solidity, and 
sweep, simply because the JVX test rotor was already 
optimized to similar criteria (Ref. 18), although with 
different methods than used here. When optimizing for tip 
sweep, however, hover performance improves dramati-
cally. Even if the CAMRAD II predictions are highly 
exaggerated, there is still a potentially significant gain. 
Maximum cruise performance is about the same for either 



   

optimization, although other performance criteria (e.g. 
low-speed maneuvering) would limit the gain for a 
practical rotor. 

Conclusions and Recommendations 

The purpose of this study was to determine the level of 
aeromechanics analysis necessary for successful proprotor 
design optimization, with emphasis on aerodynamics. All 
analyses were performed with CAMRAD II and were 
constructed so as to be traceable to experimental data for 
the JVX rotor. Propulsive efficiency and figure of merit 
were simultaneously optimized. The best tradeoff 
between predictive accuracy and computational efficiency 
was found to be a conventional free wake model, although 
a mixed-inflow model using a free wake in hover and 
differential momentum inflow in cruise (here, 300 knots 
at 20,000 ft) may often be appropriate. 

Although a multiple-trailer wake model gave a more 
accurate fit to the test data compared to the conventional 
rolled-up vortex model, its use made little difference in 
the optimum values of solidity, taper or twist. Critically, 
the severe computational demands of the multiple-trailer 
model made it impractical for routine use. 

Careful attention must be paid to the robustness of the 
aerodynamic analyses underlying any design optimiza-
tion. Two analytical methods—differential momentum 
inflow and multiple-trailer free wake—both gave 
excellent fits to the best available test data, and their 
performance predictions were nearly indistinguishable 
from each other for the baseline rotor. Yet the 
optimization results were greatly different. A prescribed 
wake model (the Kocurek and Tangler model) also gave a 
good fit to the test data near the design thrust, yet it 
completely failed to capture the performance trends 
during the optimization of solidity and taper, nor of twist 
in hover. Physical considerations imply that computation 
of the self-distortion in a free-wake model is necessary to 
properly analyze even minor design changes, at least in 
hover. 

While it was hoped that one or more of the simpler 
methods might be useful for design optimization, perhaps 
by scaling or otherwise adjusting the resulting optimiza-
tion maps, there was no evidence that such can be 
achieved. The one exception was that a differential 
momentum solution (the CAMRAD II implementation of 
combined blade-element/momentum theory) gave good 
results in cruise, where free-wake effects do not dominate 
the flow as they do in hover. 

The use of a 3-D stall delay model proved essential. 
Either of two stall delay models, the Corrigan and Selig 
models, gave nearly equivalent results. On the other hand, 
an elastic blade model was unnecessary, but this may 
apply only to proprotors similar to the JVX, which is 
much stiffer than conventional helicopter rotors. 

In the absence of experimental test data for any of the 
designs generated during this study, these conclusions are, 
strictly speaking, based upon considerations of consis-
tency, not absolute accuracy. Failure to exactly match test 
data, or to track performance as the design is varied, 
would be acceptable as long as the correct values of the 
design parameters are chosen by the optimizer. Even a 
failure to settle on the exact optimum would be acceptable 
if there were a major savings in computer time; a more 
accurate analysis could then be applied to a reduced 
design space. However, this would require trends in 
performance to be reasonably approximated, which was 
not the case in hover for any method less sophisticated 
than a rolled-up free wake with 3-D stall delay. 

The study was extended to examinations of tip droop and 
sweep. The most significant results were perhaps those 
for parabolic leading-edge sweep at the tip, wherein 
enough taper was applied to keep the trailing edge 
straight. This was to maintain wing-rotor clearance at the 
nominal value in cruise. Large improvements in both 
cruise and hover performance were achieved. However, 
CAMRAD II relies upon a lifting-line analysis for blade 
aerodynamics, which is susceptible to numerical problems 
with a swept blade. Also, CAMRAD II does not have a 
fine-scale model for the formation of the tip vortex: its 
location and core size are fixed. Any blade modification 
that affects the formation of the tip vortex, or the 
circulation distribution near the tip, can potentially lead to 
an inaccurate tip-vortex model; this specifically includes 
droop and sweep. Nevertheless, the benefits of drooped 
and swept tips are well established for helicopter rotors, 
as are parabolically swept and tapered tips for propellers. 
More sophisticated studies of such tips are, therefore, 
highly recommended. CFD analyses are an obvious 
approach, but they would require experimental validation. 
A more refined tip-vortex model could then be developed 
for CAMRAD II (or any other wake model). 
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Appendix: Ideal Twist Distributions 

 
Following Ref. 19, the ideal twist distribution can be 
defined as 
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From Ref. 20, local induced velocity vi can be estimated 
as 
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Applied to JVX hover and cruise design conditions, these 
relations yield the curves in Fig. 34. Twist is here indexed 
to zero at 0.75 R. In principle, vi could be corrected by the 
κλ factors for hover and cruise, but the differences for the 
JVX rotor are negligible at the scale of Fig. 34.  

The actual JVX twist is also plotted in Fig. 34. Its inboard 
twist rate approximates that for ideal hover twist, but its 
outboard rate is a compromise between cruise and hover. 
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Fig. 34. Ideal and bilinear twist distributions. 

 


