

Fundamental Aeronautics Program

Subsonic Rotary Wing Project

Status of Blade Displacement Measurements & Analysis Anita Abrego Aerospace Engineer Aeromechanics/ Ames Research Center Danny Barrows, Alpheus Burner, Larry Olson, Harriett Dismond, Eduardo Solis, Larry Meyn, Ethan Romander 2012 Technical Conference March 13-15, 2012 www.nasa.gov

Outline

- Blade Displacement Measurements
- Data Reduction and Validation
- Future Considerations
- Closing Remarks

Blade Displacement Measurements

Setup/Hardware

- 8-cameras, 2 per rotor quadrant
- 4-Mega-pixel, 12-bit CCD progressive scan digital cameras, with a pixel resolution of 2048 × 2048 pixels
- Nikon 10.5 mm f/2.8 DX (fish-eye) lenses
- Xenon flash-lamp 50 mJ strobes

Camera 6 Camera 7 Camera 2 Camera 3 Camera 3

Blades

- Targets on the lower surface of each blade
- 48 retro-reflective targets, 2 inch dia.
- 3 per radial station at r/R from 0.2 to 0.97

Ceiling

- 84 retro-reflective targets, 6 inch dia.
- 84 coded targets

Blade Displacement Measurements

Primary data conditions

- 27 primary data conditions
- Includes cases with all Airloads data types
- Matched conditions with PIV and RBOS data
- Most images have been processed
- Centroid inspections continue

Secondary data conditions

- Most Airloads data points
- Image processing is underway

	Primary	Secondary
Blades per quadrant	4	1
Azimuth positions	40	11
Images per camera	60	12
Total acquisition time	10 min	1 min

Camera Intersection Example

Synchronously Captured Images for Cameras 1, 2, 7, 8 Blade 1, ψ = 0°

Long-exposure (~10ms) view of quadrant-1 from BD data camera 2

10 μ-sec data shot exposures

Camera Calibration Optimization

- Currently under investigation
- Static test data, 0° shaft angle, 40 azimuth positions and 3 images/azimuth
- Optimized the 3 camera position coordinates and 3 angles of each camera

Data Reduction and Validation – Uncertainty Considerations

Static Precision and Bias

- Static, wind-off measurements over 360°
- 0° shaft angle
- 40 azimuth positions,160 data points, 3 images each
- Mean of 160 determinations of the standard deviation at a single azimuth was used to compute precision
- Bias error was computed as the standard deviation of the 160 samples over 360° after removing the mean values of each blade

	r/R	Precision	Bias
Pitch		0.007°	0.267°
Flap		0.007°	0.372°
Lag		0.002°	0.366°
Z	0.20	0.002 in	0.432 in
Z	0.97	0.066 in	1.429 in
Elastic Z	0.20	0.002 in	0.098 in
Elastic Z	0.97	0.038 in	1.122 in
Elastic Twist	0.20	0.012°	0.200°
	0.97	0.025°	0.229°

Data Reduction and Validation – Uncertainty Considerations

Mean bias offset error

- Static, wind-off measurements over 360°
- 40 azimuth positions
- 160 data points, 3 images each
- 0° shaft angle
- Collective pitch set to 0°
- Lag angle and elastic twist are expected to be near 0°
- Mean offset from 0 can be viewed as a bias offset error.

	r/R	Bias
Pitch	0.97	0.102°
Lag	0.97	2.253°
Elastic Twist	0.97	-0.023°

Bias Error vs Reference Transformation End r/R

$$\mu$$
 = 0.30, C_T/σ = 0.10, M_{tip} = 0.65

Bias Error vs Reference Transformation End r/R

$$\mu$$
 = 0.30, C_T/σ = 0.10, M_{tip} = 0.65

Pitch, Flap and Lag with NFAC measured and CFD

 μ = 0.30, C_T/σ = 0.10, M_{tip} = 0.65

90

120

150

180

Azimuth, deg

210 240 270 300 330

Pitch vs Azimuth

$$\mu$$
 = 0.30, C_T/σ = 0.10, M_{tip} = 0.65

Pitch - Commanded vs Azimuth

$$\mu$$
 = 0.30, C_T/ σ = 0.10, M_{tip} = 0.65

Elastic Bending and Elastic Twist with CFD

 $\mu = 0.30$, $C_T/\sigma = 0.10$, $M_{tip} = 0.65$, r/R = 0.97

Elastic Bending with CFD

Elastic ΔZ Standard Deviation vs r/R

$$\mu$$
 = 0.30, C_T/σ = 0.10, M_{tip} = 0.65

Change in 1/4-chord Elastic Bending vs Revolution

$$\mu$$
 = 0.30, C_T/σ = 0.10, M_{tip} = 0.65

r/R = 0.97

r/R = 0.20

Elastic twist with CFD

$$\mu$$
 = 0.30, C_T/σ = 0.10, M_{tip} = 0.65

Radial position, r/R

Elastic twist standard deviation vs r/R

$$\mu$$
 = 0.30, C_T/σ = 0.10, M_{tip} = 0.65

Change in Elastic Twist vs Revolution

$$\mu$$
 = 0.30, C_T/σ = 0.10, M_{tip} = 0.65

Revolution

Future Work

Data Processing

- Primary data point inspections
- Secondary data point processing
- Continue efforts to automate image processing and validation
- Data processing and validation improvements continue,
 - (1) optimization of camera calibrations
 - (2) alternate fish-eye corrections based on equisolid angle projection
 - (3) weighting of multiple intersection *XYZ* results by the variance to strengthen the final intersection results

Collaboration

- Comparisons with computational results will continue and assist with data validation
- Comparisons with PIV and RBOS data

Closing Remarks

- The static precision of the photogrammetry technique for pitch, flap, lag, were found from a static azimuth sweep to be less than 0.01°.
- Bias errors over the full range of azimuth can approach 0.4°. (All values are presented in terms of one standard deviation.)
- An additional mean bias offset error of 2.25° was discovered for lag angle for the static sweep.
- The static precision for elastic bending and twist were found to be 0.002 inch and 0.012° respectively, with bias errors over the full range of azimuth of 1.2 inch and 0.30° respectively.
- Comparisons of experimental and computational results for a moderate advance ratio forward flight condition show good trend agreements, but show significant mean discrepancies for lag and elastic twist.
- The experimental values of pitch agree well with the NFAC DAS commanded pitch.

Closing Remarks

Preliminary results reported in the following publications,

- Blade Displacement Measurements of the Full-Scale UH-60A Airloads Rotor, American Institute of Aeronautics and Astronautics Applied Aerodynamics, June 2011.
- Blade Displacement Measurement Technique Applied to a Full-Scale
 Rotor Test, American Helicopter Society 68th Annual Forum, May 2012.

