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Abstract

The Vorticity Confinement method is used in conjuc-
tion with uniform Cartesian grids for computing flows
of blunt bodies. These bodies are defined on the uni-
form grid by a smooth function where the function is
designated zero on the body surfaces. A unique compu-
tation procedure is applied to all the grid points with
the confinement performed outside the body based on
the vorticity whereas inside the body based on the func-
tion. For flows around streamline-like bodies, such as
a wing, the computation is performed on body-fitted
grids where these grids can be encompassed by the uni-
form grid. Flow informations are transferred between
the body-fitted grids and the uniform grid, where one
or more blunt bodies are embedded, through an overset
grid technique. However, there is no hole-cutting needed
since the solid bodies are explicitly defined, by the smooth
function. A N AC AGO 12 wing download under a rotor is
computed by the combined approach with a generic na-
celle at the wing tip.
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The complexity of flowfields around rotorcraft and the
lack of efficient numerical procedures to analyze these
flows make the prediction of rotorcraft aerodynamics
very difficult and inadequate. This is mainly due to
the fact that the flow is highly unsteady and strong,
concentrated vortices are shed from rotor blades. The
proximity and the persistence of these vortices generate
effects that are not negligible on many aspects of the
rotorcraft aerodynamics. Problems involving the strong
vortices shed by the rotor blades are blade-vortex in-
teractions, wing download under a rotor, and helicopter
rotor-fuselage interactions.

Because of the importance of the vortex-dominated
flows, many researchers have attempted to find viable
numerical methods for these flow predictions over the
past decades. In spite of these efforts, accurate and
efficient methods that are suitable for rotorcraft aero-
dynamic analysis still do not exist. Limited success is
achieved in the past for the Eulerian 'approach using high
order discretization schemes and fine regular grids for the
study of a vortex impinging on an airfoil [1]. Adaptive
grid schemes are also used for a vortex impinging on an
airfoil [2], a steady vortex shed at the tip of a straight
wing [3], and a vortex sheet shed from the leading-edge
of a delta wing [4]. It can be shown that these Eulerian
approaches require a lot of computer resources, and de-
spite the fine grids used and the adaptive embedding of
extra grid points in the vortical region, these methods
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apparently still are not able to compute the shed vortex
without having it spread over a region much larger than
measured in experiments.

An other approach, The Lagrangian approach, uses
ad hoc structures for vortices without resorting to a
detailed, high-resolution Navier-Stokes solver. This is
made of the fact that the internal structure of vortical
regions, such as vortex sheets, are not important since
the dimensions of these structures are small compared
to other dimensions of the problem. As long as the
centroid surfaces of these vortex sheets are accurately
computed, together with the total vorticity surrounding
each point on the centroid surface, the overall flow solu-
tion is acceptable. Some of the most efficient methods
for treating the thin vortical flows currently involve La-
grangian marker-based schemes, where vorticity or cir-
culation is assigned to individual markers which convect
through the flowfield. These methods, in the form of
"Vortex Lattice" or "Vortex Blob" techniques for incom-
pressible flows [5] and "Vortex Embedding" techniques
for compressible flows [6], entail representation of vortex
sheets or vortex filaments by surfaces or lines defined by
markers. The disadvantage to these Lagrangian meth-
ods is that the topology of each vortical region should
be known beforehand so that suitable arrays of markers
can be computationally defined. In addition, the vor-
tical regions may interact with solid surfaces and their
topology may change. This requires new specifications
of the markers and re-connection.

The computational technique used here is fundamen-
tally different from the previously described methods
in that it involves adding a term to the continuum
flow equations before discretization, and therefore mod-
ifies the basic Euler/Navier-Stokes equations. With the
added term, the flow equations admit solutions with con-
centrated vortices that can convect without spreading,
even if the basic equations have diffusive terms. For this
reason, simple, low order diffusive numerical schemes can
be used to discretize and solve the modified flow equa-
tions without resulting in vortices that spread as they
convect. The present approach is similar to shock cap-
turing where the detailed internal dynamics of shocks are
not computed, but rather a modified set of equations is
solved which results in a shock spread over a few num-
ber of grid cells. The resulting internal structure satisfies
conservation laws in integral form.

The present Vorticity Confinement method was used
to compute rotorcraft aerodynamics involving single
component using moderate coarse grids of body-fitted
topology. These include a 2D airfoil dynamic stall and
a vortex ring over a circular cylinder [7], a 3D wing dy-

namic stall [8], and a download study of a 3D isolated
wing [9]. These results have been compared well with
2D experimental and other numerical results. Exten-
sive comparisons of the 3D wing dynamic stall results
were made with the available wind tunnel test results
[10]. It is shown that the numerical results compare
well with the test data considering the experimental er-
ror bounds. With the present approach, the results of
these streamline-like bodies using the body-fitted grids
demonstrate the method is robust and the numerical dif-
fusion is effectively eliminated using coarse grids.

For a blunt body with complex geometry, such as a
helicopter fuselage, it is usually difficult, if not impossi-
ble, to robustly generate a body-fitted grid around the
body. The effect of the presence of such a body in the
flowfield often cannot be ignored. With the Vorticity
Confinement, blunt bodies can be studied robustly using
a uniform Cartesian grid. This is achieved by defining
a smooth function on the uniform grid. On the body
surface, the function is assigned to be zero, where the
function is positive outside the body and negative inside
the body. With the definition of the function on the uni-
form grid, the body geometry is explicitly defined and no
other specific boundary conditions on the body surfaces
are required during the computation. One or more blunt
bodies can be intrinsically defined by a smooth function.

The uniform Cartesian grid, together with the Vortic-
ity Confinement method, offers a great advantage for the
computation of rotor-body interaction problems. The
uniform grid not only contains one or more blunt bodies
but also serves as a background grid where additional
body-fitted grids wrapped around streamline-like rotor
blades are encompassed by the uniform grid. Flow in-
formation between the uniform grid and the body-fitted
grids are transferred through an overset grid technique.
This allows the computation of a complex rotor-body
interation problem to become a much simpler task, com-
pared to a computation that uses also additional body-
fitted grid for blunt bodies. Moderate coarse grids are
allowed to be used by the present procedure without re-
sulting in excessive numerical diffusion. In adition, the
procedure can be used in the future for parametric study
and design purposes. In this study, -a wing download un-
der a rotor and with the appearance of a generic nacelle
is computed using the combined approach. The nacelle
is treated as a blunt body embedded within the uniform
grid.

Numerical Method

The Vortocity Confinement method is developed pri-
marily for eliminating the numerical diffusion. Any con-
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ventional method that uses finite discretization schemes
will inevitably inherent the numerical diffusion. For
complicated flows, the grid used can not be fine every-
where for the whole computational domain. To achieve
a highly efficient procedure that can be used for para-
metric study and design purposes, a method must be
robust and perform well on coarse grid. That is, coarse
grids can be used without generating appreciable numer-
ical diffusion. This feature is particularly important for
rotorcraft aerodynamics studies since concentrated vor-
tices are present for most of the flow domain and their
effects cannot be ignored even in the far wake from the
rotor.

The method developed and used here involves adding
a term to the momentum part of the continuum
Euler/Navier-Stokes equations. The extra "Confine-
ment" term is local and simple to discretize. It is non-
zero only within the vortical regions and does not change
the total vorticity or mass within those regions. The
technique is applicable to general compressible and in-
compressible flows. Here, the Vorticity Confinement
method is described for incompressible flow using the
velocity-pressure formulation. For a general unsteady
flow,

V - « = 0 (1)
9(g = -(g.V)9 + Vp//9+i/V29 + £s (2)

where q is the velocity vector; t is time; p, p, and v
represent pressure, density, and the diffusion coefficient,
respectively. The additional term, es, is the "Confine-
ment" term where the numerical coefficient f controls
the size of the convecting vortical regions. The confine-
ment term has the form:

= — n x u>

n =

where
u; = V x q

(3)

(4)

(5)
is the vorticity vector and T) is a scalar field that has a
local minimum on the centroid of the vortical region:

77 = -\u\ (6)

For the confinement term, expressed by Eq. (3), n in the
equation is a unit vector pointing toward the centroid of
the vortical region and the term serves to convect w back
toward the centroid as w diffuses away. This convection
increases the diffusion and a steady-state form results
when the two terms become balanced. It is noted that
steady-state solutions exist, for any positive value of e. It
appears to be better to discretize the set of Eqs. (1) and
(2) for problems which have thin, well-behaved vorticity

distribution, even in the presence of the numerical diffu-
sion, than to discretize the un-modified equations which
only admit vorticity regions that continue to spread, if
there is any numerical diffusion.

An important feature of the vorticity confinement
method is that the velocity correction is limited to the
vortical region only. The correction effectively convects
vorticity back towards the local extreme of the vortical
region. The total change induced by the confinement
term in mass, 6IP, and vorticity, SIW, can be expressed
by

6Ia = f I V • sdV (7)

JRW

V x sdV (8)

The integration is performed on the vortical domain, Rw.
It is simple to show that 8IP — 0 and 6IU = 0 by using
Eq. (3), i.e., the confinement term conserves the mass
and the total vorticity. Conservation properties involv-
ing fluid momentum are discussed in Refs. 11 and 12.

Numerical Implementation

The Vorticity Confinement method is easy to imple-
ment on any conventional Navier-Stokes/Euler solver, in-
compressible or compressible. For the present work, the
method is implemented to a basic procedure that uses a
velocity-split procedure [13] for solving general vortex-
dominant incompressible flows. The basic procedure is
for the solution of Navier-Stokes/Euler equations and it
is used for both body-fitted grids and uniform Cartesian
grids. For any new time level, the velocity solution is
sought by the following three steps knowing the velocity
at an old time level. The three steps are:

1. A finite-difference form of the following equation is
solved,

(9)

where q* denotes an intermediate velocity at the
new time level, by convection and diffusion after a
time step A<. The velocity field g" is the known,
existing velocity field at the old time level n. The
convection term is discretized by a second upwind
differencing [14] whereas the diffusion term is dis-
cretized by a central differencing. On a body-fitted
grid, the contravariant velocity is discretized and
the computation is performed on the transformed
space. On a uniform Cartesian grid, the discretiza-
tion is simple and the computation is performed di-
rectly on the physical space.
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2. A Poisson equation derived from the continuity
equation is solved,

(10)V2</> = -V • g*

where the potential (j> is solved by a multi-grid re-
laxation technique. The obtained velocity g* from
Step 1 is corrected if the right side of Eq. (10) is not
zero, indicating a violation of the mass conservation.
The multi-grid procedure is greatly simplified for a
Cartesian grid computation.

3. The corrected velocity field for the new time level is

where qn+1 denotes the velocity at the new time
level. The pressure can be obtained by the potential
field if the pressure is desired.

The above three steps constitute the basic computational
loop to advance the velocity field from an old time level
to a new time level. The vorticity field, obtained by
the differentiation of the velocity field, exhibits ever-
spreading characteristics as time progresses.

To achieve a solution that offsets the numerical dif-
fusion, the Confinement term, esin Eq. (2), is computed
after the Step 1 is performed. With the computed known
velocity <f", the vorticity field is first computed. The di-
rectional unit vector n and therefore the confinement
velocity s are determined by Eqs. (3)-(6). The velocity
field after the confinement modification is then

9° == g +es (12)

The added confinement velocity term has the effect to
transport the vorticity back toward its local maximum
against the direction of numerical diffusion, that always
exists for a discretized computation. The velocity q°
carries a vorticity field that is confined in thinner regions
compared with the vorticity carried by the velocity field
f-

With the modified velocity field f , the Steps 2 and 3
are performed where <f in Eqs. (10) and (11) is replaced
by q°. Notice that the two steps do not change the vor-
ticity distribution. Therefore, the vorticty carried by the
velocity for the new time level, q"+1, has the same dis-
tribution as that carried by the velocity field if. Adding
the confinement velocity results in a vorticity that con-
fines to thin regions. With this procedure, coarse grids
are allowed to be used.

The Vorticity Confinement method not only can be
used to get velocity that has the confined vorticity field,

but can also be used for general blunt bodies when a
body is defined in a simple uniform Cartesian grid. A
smooth function F or its value can be determined for
almost any blunt body geometry. On the body surface,
F is defined zero. Inside the body surface, F is nega-
tive and its value is decreasing away from the surface.
Outside the body surface, F is positive. This smooth
function defined at each grid point uniquely describes a
blunt body. The confinement procedure described ear-
lier can be applied to the whole uniform grid, inside and
outside the solid body, except two more steps are taken
for the region inside the body.

For regions inside solid bodies, first, the known veloc-
ity at any time level is multiplied by a factor 1/|1 — F\.
This is to ensure the velocity inside the body is ever-
diminishing, but gradually. The velocity field is then
added a velocity modification, cs shown in Eq. (2). Here,
the unit normal direction in Eq. (4), however, has a dif-
ferent form:

n = VF/|VF| (13)
The adding of the confinement velocity vector inside

the body has a different effect compared to the region
outside the body. While outside the body, the correc-
tion of the velocity is to transport the vorticity back
toward local maximum, the correction performed inside
the body virtually transport the vorticity toward the
body surface. With the two additional steps performed
at each time step for the grid points inside the body, the
velocity goes to zero as the time progresses and the vor-
ticity is correctly distributed to the body surface. Notice
the mass balance inside and outside the blunt bodies is
ensured by the Steps 2 and 3.

The ability to use the uniform grid offers a simple and
yet effective way to treat rotorcraft rotor-body interac-
tion problems. For a helicopter problem, the fuselage ge-
ometry can be described by a function F and the fuselage
is defined uniquely in the uniform grid. No additional
definition of the body geometry is needed. The uniform
grid also serves as a background grid where rotor solution
obtained by a rotor solver is transferred to the uniform
grid and transported by the grid. This transfer only
takes a simple interpolation. The whole domain of the
uniform grid is computed by the procedure described as
above, with velocity confinement term differently com-
puted inside and outside the body surface depending on
the sign of F.

For a wing download study with a rotor and a nacelle,
the nacelle can be treated as a blunt body and is defined
by a function F on the uniform grid. The body-fitted grid
around the wing can be treated as an additional domain
embedded in the uniform grid where the two grids are
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transferring information through an overset-grid tech-
nique. However, no hole-cut is needed as required by
a conventional overset-grid technique. This is because
the function F already defines the location of the solid
surface, and inside the surface, flow is computed simul-
taneously using the Vorticity Confinement method. De-
tailed flow near the wing is computed by the body-fitted
grid wrapped around the wing. In addition, a rotor wake
is transferred to the uniform grid from a rotor solution
as the wake vortices also are convected in the uniform
grid. In this case, the uniform grid not only serves as a
background grid, but also includes a nacelle as a blunt
body embedded. Flow solution near the wing therefore
contains the effect of the presence of the nacelle and the
rotor wake.

Results and Discussions

The numerical procedure is used to compute flows of
a helicopter with a rotor and a wing download with a
generic nacelle and a rotor. In this paper, only the wing
download study is presented. Helicopter results were in-
cluded in Ref. 15 where a combination of an Apache ro-
tor and fuselage was computed. For the wing download
study, an isolated wing without a nacelle and a rotor
was computed and documented in Ref. 9 using a body-
fitted grid. The wing computed was a NACA0012 wing
of rectangular planform and has a half-span aspect ratio
of 2.55, with a rounded tip. Without the influence of a
rotor wake, the wing is under a constant angle of attack
of —90°. A vortex ring, which simulates a rotor wake,
was added into the body-fitted grid used for the isolated
wing.

Figures 1 and 2 are drawn from Ref. 9 and show the
surface pressure for the isolated wing without the influ-
ence of the vortex ring. The base pressure as well as the
stagnation pressure on the upper surface demonstrate a
trend of decreasing from the root toward the tip. This is
because of the flow expansion across the wing tip. Figure
3, also drawn from Ref. 9, shows the surface pressure of
the same wing with the influence of a vortex ring pass-
ing from above the wing. The effect of the passage of
the ring is clearly seen by the localization of a maximun
pressure at the upper surface at T = 1.2 and T = 5.2.
At a much later time, T = 10.9, where the ring already
passes the wing, the surface pressure recovers to a dis-
tribution of the un-disturbed wing shown in Fig. 2.

A uniform Cartesian grid is then used to include an
ellipsoid as a generic nacelle located at the wing tip.
A body fitted grid is encompassed by the uniform grid,
where the body-fitted grid covers the wing span and the
wing tip is flat. Figure 4 demonstrates the geometry

and the relative locations of the wing, the wing and the
generic nacelle, and the wing and the nacelle and a three-
blade rotor that will be computed later.

A generic nacelle, represented by an ellipsoid here, is
embedded in a uniform Cartesian grid. The function F
which defines the ellipsoid can be expressed analytically:

= a(y b[(x - (z - (14)

where the main axis is parallel to the y-axis, a b c
and r are constants defining the ellipsoid geometry, and
(XQ, UQ,ZO) is the ellipsoid center. The ellipsoid surface
is defined by F = 0. On the uniform grid, F is known
at every point, positive outside the ellipsoid surface and
negative inside the ellipsoid. A grid of 65 x 65 x 65 with
a grid size of 0.08 ( the wing chord is of unit length)
is used here. A body-fitted O-grid wrapped around the
flat-tip wing, of a size 65 x 17 x 17, is used where the
three numbers denote grid numbers in circumferential,
normal, and spanwise directions.

Using the combined approach, the ellipsoid is first ab-
sent from the uniform grid, that is, F is set to 1 for
every grid point. Flow solution of the body-fitted grid
is mapped to the uniform grid where the region overlaps
with the body-fitted grid. With newly computed flow
for the uniform grid, the outer boundary of the body-
fitted grid is obtained by interpolation from the uniform
grid. Computed surface pressure for the wing is shown in
Fig. 5. The pressure distribution for the three spanwise
stations exhibit a similar pattern as that of the wing-
alone calculation using only the body-fitted grid, shown
in Fig. 1. The difference is attributable mainly to the
difference of the tip geometry for the two cases. Both
the cases are for a wing of the half span aspect ratio of
2.55.

With the nacelle present, the pressure distribution is
shown in Fig. 6. It is seen that the base pressure of the
three spanwise stations sits almost at the same level, ap-
proximately 0.5. The presence of the nacelle prevents
the flow expansion from the upper surface toward the
lower surface and therefore the base pressure is nearly
identical.

Finally, a three blade rotor is included and placed
above the generic nacelle. The rotor blade is of a cross
section of NACA 0020 at the root region and NACA 0015
at the tip region, without twist and taper. This blade
geometry has been tested by the Army Lab in Moffett
Field, CA for a two-blade rotor [16]. The complete as-
sembly of the grid including a body-fitted wing grid, the
uniform grid containing the nacelle, and the three-blade
rotor is shown in Fig. 7.
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The three blade rotor solution is obtained by the HE-
LIX code [17] for hover condition. The HELIX code is
based on a vorticity embedding method and is a com-
pressible, full potential flow solver. Since the flow is
periodic, solution for only one blade is required. The
rotor solution is obtained on a body-fitted H-grid with
periodic boundary condition imposed on both the up-
stream and the downstream boundaries. Figure 8 shows
the computed velocity field at a plane about one chord
downstream of the rotor blade. Figure 9 is the vorticity
contours for the same plane. The first passage tip vortex
is clearly defined by the vorticity contours just below the
rotor disk, whereas the other earlier shed tip vortices are
smeared due to the coarse grid away from the rotor disk.
The grid of the plane is shown in Fig. 10 together with
the grid in the disk plane. This grid is also contained by
the background uniform Cartesian grid.

The rotor solution obtained by the HELIX code is first
fed into the uniform grid, where the nacelle and the wing
are absent. Initially, the whole rotor solution is interpo-
lated to the uniform grid to start as an initial velocity
field. Later, at each time step, the HELIX solution ro-
tates an angle of fi x A<, where fi is the blade rotational
speed, and only a segment of the HELIX solution be-
hind each blade is interpolated onto the uniform grid.
A segment of the tip vortex is therefore transferred to
the uniform grid and, once there, is transported inside
the uniform grid. Vorticity iso-surfaces shown in Fig. 11
show the wake of the three-blade rotor after 2 revolu-
tions. The vortex structure is preserved by the Vorticity
Confinement method. A uniform downflow is added to
the computation to accelerate the downward movement
of the tip vortices.

Once the rotor wake is established in the uniform grid,
the nacelle is put into the uniform grid and the body-
fitted grid of the wing is included in the solution proce-
dure. Figure 12 shows the vortex wake of the complete
geometry, where the vortex is represented by an iso-
surface of the vorticity magnitude. A uniform downflow
is added and therefore the solution simulates a climbing
state. Vorticity shed by the rotor, the wing, and the na-
celle are seen in the figure. The shade of the wing surface
and the ellipsoid shown here represents the surface pres-
sure. Figure 13 shows the surface pressure of the wing
for three spanwise stations. The base pressure, which is
almost at the same level in the previous wing plus nacelle
calculation, exhibits a mild variation due to the presence
of the rotor wake. Figure 14 shows the pressure contours
on the wing upper and the lower surfaces. On the upper
surface, the compression due to the passing vortices is
clear, which is qualitatively similar to the surface pres-

sure of a passing vortex ring, shown in Fig. 3.

The wing-nacelle-rotor computation takes about 20
CPU seconds for each time step running on a CRAY
C90 computer. Each revolution of the rotor blade takes
60 steps to complete in this computation and therefore
for each revolution, it takes approximately 20 minutes of
the CRAY CPU time. In this computation, the uniform
Cartesian grid is of a size of 97 x 65 x 97, where the
second number is in the up-down direction.

Concluding Remarks

The present study demonstrates that the Vorticity
Confinement method and the use of a uniform Carte-
sian grid are ideal for computing complicated rotorcraft
aerodynamic interaction problems. This method allows
using coarse grids and low-order differencing schemes
where the numerical diffusion is effectively eliminated.
To the author's knowledge, the method is the most ef-
fective and, probably, the only one currently available
that is economic and also fairly accurate for solving the
rotorcraft aerodynamics. The present approach, further-
more, can be used as a tool in the future for parametric
study and design purposes.

The most important contributing factors for the
present method are the implementation of the Vorticity
Confinement and the ability to use the uniform Carte-
sian grid. The combined computation using the Carte-
sian grid and body-fitted grid allows the computation of
complex body rotor interactions becomes a much sim-
pler task. Major features, such as transport of concen-
trated vortices and vortex shedding from the blunt body,
are computed with success. The transfer of information
between the Cartesian grid and the body-fitted grid is
simple and straight. No hole-cutting is needed because
the function F carries all the body information.

In the present uniform Cartesian grid computation for
the blunt body, however, the details of the flow near the
surface are not computed. This is because the uniform
grid used in general is not conformed with the body sur-
face and boundary layers attached to the surface are rep-
resented by a vortex sheet within a few grid cells.

For the wing download studied here, the rotor solution
from HELIX code is treated as a fixed solution and the
solution itself does not feel the presence of the wing pre-
sented downstream of the rotor disk. It is therefore that
only one-direction interference is accomplished. The mu-
tual interaction of the rotor-wing problem can be studied
by solving the flow near the rotor blade every time step
or every several steps. A solver that performs well for
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the blade, such as TURNS code [18], is ideal to be inte-
grated into the solution procedure.
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Figure 1. Pressure Distribution, Half-Span Aspect Ratio 2.55
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Figure 2. Pressure Contours, Half-Span Aspect Ratio 2.55
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Figure 3. Time Variation of Surface Pressure Contours, with Vortex Ring
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Figure 4. Geometries Studied for Wing Download
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Figure 5. Pressure Distribution. Combined Computation, No Nacelle
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Figure 6. Pressure Distribution, Combined Computation, with Nacelle
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Figure 7. Uniform grid and a Body-Fitted Grid of the Wing
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Figure 8. Velocity Field on a Plane Behind a Rotor Blade

Figure 9. Vorticity Contours on a Plane Behind a Rotor Blade
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Figure 10. H-Grid used for HELDC Computation
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Figure 11. Wake Vortices of an Isolated Three-Blade Rotor
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Figure 12. Wake Vortices of Wing-Nacelle-Rotor
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Figure 13. Pressure Distribution, with Nacelle and Rotor
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Figure 14. Pressure Contours, with Nacelle and Rotor
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