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Abstract
This paper explores the use of Krylov sub-

space iterative methods for implicit solution of
rotary-wing flowfields on parallel computers. A
Newton-Krylov scheme is proposed which couples
conjugate gradient-like iterative methods within the
baseline structured-grid Euler/Navier-Stokes flow
solver TURNS (Transonic Unsteady Rotor Navier
Stokes). Two Krylov methods are studied, Gener-
alized Minimum Residual (GMRES) and Orthog-
onal s-Step Orthomin (OSOmin). Preconditioning
is performed with a parallelized form of the Lower
Upper-Symmetric Gauss Seidel (LU-SGS) operator.
The scheme is implemented on the IBM SP2 multi-
processor and applied to three-dimensional compu-
tations of a rotor in forward flight. The main ben-
efit of the Newton-Krylov scheme is found to be
a higher level of time-accuracy in implicit time-
stepping. This increases the allowable timestep for
time-accurate unsteady calculations, yielding a re-
duction in the overall solution time.

Introduction
Accurate numerical simulation of the aerody-

namics and aeroacoustics of rotary-wing aircraft
is a complex and challenging problem. Three-
dimensional unsteady Euler/Navier-Stokes compu-
tational fluid dynamics (CFD) methods are widely
used1"4, but their application to large problems
is limited by the amount of computer time they
require. Efficient utilization of parallel process-
ing is one effective means of speeding up these
calculations5. Another is the use of more efficient
numerical solution methods.

In recent years, a number of researchers6"13

have reported benefits in the use of conjugate
gradient-like Krylov subspace iterative solvers for
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nonlinear CFD problems. Krylov methods are used
in conjunction with more-traditional implicit solu-
tion methods, which act as a preconditioner, to ac-
celerate the nonlinear convergence in the implicit
solution. They are particularly useful for problems
where traditional methods exhibit slow convergence,
such as with very fine viscous grids, certain turbu-
lence models, and in certain cases with multiple over-
set or multi-blocked grids. Large memory require-
ments are the main drawback associated with Krylov
methods. This has limited their application mainly
to two-dimensional problems in the past, although
some three-dimensional calculations have been suc-
cessfully performed recently11'13.

Recent advances in parallel processing technol-
ogy may encourage more widespread use of conju-
gate gradient-like schemes within the CFD commu-
nity. The methods are very amenable to parallel
processing because most operations are performed
on large vectors that can be easily distributed. Fur-
ther, the large memory capacity available on modern
distributed-memory parallel machines can effectively
lift many of the storage restrictions typically associ-
ated with these methods in the past. It is reasonable
to postulate that Krylov methods will be applicable
to relatively large three-dimensional problems in the
not-too-distant future.

In this paper, we investigate the performance of
Krylov subspace iterative solvers applied to three-
dimensional calculations of a rotor in forward flight.
Our goal is to provide insight into the performance
of these methods for typical largerscale rotary-wing
aerodynamics computations. Two iterative methods
are tested; the popular Generalized Minimum Resid-
ual (GMRES) method14 and a relatively new scheme
called Orthogonal s-Step Orthomin (OSOmin)15.
They are applied in a matrix-free inexact Newton
formulation within the baseline Transonic Unsteady
Rotor Navier Stokes (TURNS) code2'3. In earlier
work5, an efficient parallel implementation of the
implicit Lower Upper-Symmetric Gauss Seidel op-
erator of Yoon and Jameson16 in TURNS was in-
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troduced. This operator is used here for precondi-
tioning the Krylov methods. The Newton-Krylov
scheme is coded with Message Passing Interface
(MPI) message passing and implemented on the
IBM SP2 multi-processor. All calculations are re-
stricted to the Euler equations using a non-lifting
rotor but the approach is readily extendible to vis-
cous flows.

Baseline Numerical Method

The baseline numerical
method is the structured-grid Euler/Navier-Stokes
solver TURNS (Transonic Unsteady Rotor Navier
Stokes)2'3. TURNS was developed by Srinivasan in
conjunction with the U.S. Army Aeroflightdynamics
Directorate at NASA Ames Research Center. It is
used for calculating the flowfield of a helicopter rotor
(without fuselage) in hover and forward flight condi-
tions. In addition to NASA and the Army, the code
is used by various universities and the four major
U.S. helicopter companies. The excellent predictive
capabilities of TURNS for lifting rotors in hover and
forward flight conditions, in both subsonic and tran-
sonic flow regimes, have been validated against wind
tunnel data in other studies2"4.

The governing equations solved by the TURNS
code are the three-dimensional unsteady compress-
ible thin-layer Navier-Stokes equations, applied in
conservative form in a generalized body-fitted curvi-
linear coordinate system

6Tq + d(E
€

Re (1)

where q is the vector of conserved quantities, E,
F, and G, are the inviscid flux vectors, and 5 is
the viscous flux vector. The generalized coordinates
are r = t, (, = £(x,y,z,t), 77 = r j ( x , y , z , t ) , and
£ = £(x, y, z, t) where the coordinate system x,y,z,t
is attached to the blade. TURNS is run- in Euler
mode (i.e. e = 0) for all calculations presented in
this paper.

The inviscid fluxes are evaluated using Roe's
upwind differencing17 in all three directions. The
use of upwinding obviates the need for user-specified
artificial dissipation and improves the shock captur-
ing in transonic flowfields. The spatial differenc-
ing scheme is third-order-accurate with the higher-
order accuracy obtained using van Leer's MUSCL
approach18. Flux limiters are applied so the scheme
is Total Variation Diminishing (TVD).

The implicit operator used in TURNS for time-
stepping in both steady and unsteady calculations is
the Lower-Upper symmetric Gauss-Seidel (LU-SGS)
operator of Yoon and Jameson16. This operator
takes the form

(2)

where Agn = qn+l - qn, and f(qn) is the spatially
differenced right hand side vector

The factors D, L, and U are diagonal, lower, and
upper tridiagonal matrices, respectively, determined
using a spectral approximation for the flux Jaco-
bians. The use of a spectral approximation places
the largest terms on the diagonal matrix which en-
sures diagonal dominance and allows the method
to converge for any timestep. A two-step symmet-
ric Gauss Seidel scheme is employed for solution of
Eq. (2).

For unsteady time-accurate calculations with
LU-SGS, the factorization error is reduced by apply-
ing inner relaxation iterations. Using the solution at
time level n, the initial condition is set qn+l>° = qn

and LU-SGS is applied to solve the following equa-
tion in each inner iteration

-A* + f(q n+1>m
)) (4)

where A«n+1-m = 5"+1'm+1 - 9»+i.»». In Eq. (4), n
refers to the time level and m to the iteration level.
Three inner iterations were used for the cases in this
work. Upon completion of the inner iterations, the
solution at the next time level is qn+l = qr"+1,"»mo«

Additional algorithm details of the TURNS
code are given in Ref. [3].

Hybrid LU-SGS
An efficient approach for parallelizing the LU-

SGS implicit algorithm in TURNS has been intro-
duced by the authors in earlier work5. The ap-
proach couples a standard domain decomposition
implementation of LU-SGS for on-processor com-
putations with the multiple sweep point-relaxation
approach of the Data-Parallel Lower Upper Relax-
ation (DP-LUR) algorithm of Candler and Wright
et. al. for efficient inter-processor communications.
Because the new approach combines ideas from both
of these algorithms, it is referred to as the hybrid
LU-SGS operator. The algorithm is as follows:

Algorithm: Hybrid LU-SGS

'sweepForz= Do

Communicate Ag^'"1) data at processor
borders to neighboring processors.

Set A«W = A«<*~1> at borders

Perform LU-SGS sweeps locally on each
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processor, computing over each subdo-
main

End Do

The hybrid LU-SGS implicit algorithm can be
implemented in parallel in the same way as one
would implement an explicit scheme. That is, the
global domain is divided into subdomains and each
processor operates on its own data. Only nearest-
neighbor communication is required between the
subdomains. Previously reported results5 indicate
the method achieves good parallel performance and
maintains nearly identical convergence to the origi-
nal LU-SGS operator with i.sweep = 2.

Inexact Newton's Method

Fully-implicit Newton's method is the most ro-
bust technique for solving systems of nonlinear equa-
tions. To implement Newton's method, the fully-
coupled set of governing equations are linearized
about time level n, which produces a large linear
system at each timestep

(5)

where Ag" = qn+l — qn and f(qn) denotes the spa-
tially differenced convective terms, given in Eq. (3).
If the linear system in Eq. (5) is solved exactly
at each time level, the method becomes Newton's
method exactly and is capable of achieving quadratic
convergence and is completely time-accurate with no
restriction on the implicit timestep. However, New-
ton's method in its exact form is not applicable to
most CFD problems of interest because the CPU
time and storage required to exactly solve the sparse

.linear system with a direct method is too costly.
An efficient alternative to the exact method is

an inexact Newton method. An inexact Newton
method refers to use of an approximate technique for
solution of the linear system arising in Eq. (5). In
CFD applications, this linear system becomes very
large and sparse and iterative methods based on the
Conjugate Gradient (CG) method of Hestenes and
Stiefel21 have been found to be very successful in
determining an approximate solution to this type of
system. These CG-type methods work on the prin-
ciple that the residual of the linear system is min-
imized over a Krylov subspace, and are therefore
commonly referred to as Krylov methods. Further
discussion of the Krylov methods employed in this
work is deferred to the next section.

Formation and storage of the Jacobian term,
f£, in Eq. (5) can be difficult and costly. Krylov
solvers have the nice property that the Jacobian

matrix is only used in matrix-vector multiplies, for
which the following finite-difference numerical ap-
proximation can be used to compute the product of
the Jacobian times arbitrary vector w:

-W ; (6)

The existence of the numerical matrix-vector ap-
proximation is important because it allows the use
of nearly consistent left and right-hand sides in the
solution with a 'matrix-free' approach. That is, the
large cost of computing and storing the Jacobian at
each nonlinear iteration is avoided.

This advantage does not come without other
costs, however. The numerical derivative requires a
function evaluation (i.e. f(q+sw)) at every approx-
imate matrix-vector multiply, which may be less ef-
ficient than an actual sparse-matrix multiplication.
Also, the finite difference approximation of the Ja-
cobian is less accurate than an exact determination.
Nevertheless, the amount of storage saved by utiliz-
ing the numerical approximation is significant. The
matrix-free approach has been successfully applied
in a number of other works7'11""13.

The choice of e in Eq, (6) can affect the non-
linear convergence of the method if not chosen care-
fully. It is desirable to use as small a value as pos-
sible to increase the accuracy of the finite difference
approximation but too small a choice will lead to
numerical roundoff errors. When q and w are com-
parably scaled, e should ideally be near the square
root of the machine roundoff, ^£mach, which is 10~7

to 10~8 in double precision accuracy. The entries in
the q vector are non-dimensionalized such that each
entry has a value of approximately unity. The w
vector is scaled within the iterative methods such
that its root-mean-square is approximately unity, so
each entry has a value of about 1/A//V (N is the di-
mension of the vector). Thus, a simple yet accurate
determination of e is

-mac/i (7)

This choice was also proposed by Cai et al.12.
An important consideration in the use of ap-

proximate iterative methods is what level of linear
accuracy is required within each nonlinear iteration
in order to maintain convergence in the nonlinear
solution. Dembo et al.21 have proven that the non-
linear iterations will converge as long as the linear
solution accuracy is at least

(8)

where 0 < 77 < 1. That is, the L2-norm of the linear
residual is less than or equal to that of the nonlin-
ear residual. In enforcing this nonlinear convergence
criteria, a certain fixed value of 77 is specified and, at
each timestep, sub-iterations of the iterative solver
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are performed until Eq. (8) is satisfied. A maxi-
mum of 20 sub-iterations is specified, but this limit
is rarely reached.

Iterative Methods

Over the past two decades, a number of effi-
cient Krylov subspace iterative methods have been
developed for solving large sparse linear systems.
These methods are formulated as generalizations of
the well-known conjugate gradient (CG) method21.
The convergence of CG is only assured for symmet-
ric positive definite linear systems but most CFD
applications of interest (e.g. transonic flow) generate
nonsymmetric linear systems. A number of general-
izations of CG have been proposed for nonsymmetric
systems. These nonsymmetric generalizations can
be divided into two main categories, Lanczos-based
methods and Arnoldi-based methods.

Lanczos-based methods include the Conju-
gate Gradient Squared (CGS)22 method, stabilized
variants of the Biconjugate-gradient method (Bi-
CGSTAB)23, and methods based on the Quasi-
Minimum Residual idea (QMR)24. The approach
used in deriving these methods from CG is to re-
lax the minimization property while keeping the ef-
ficient three-term recurrence relations. This allows
the size of the Krylov subspace to grow (making the
implicit solution more robust) without an increase in
memory. However, relaxing the minimization prop-
erty can cause the linear convergence to become er-
ratic which can negatively affect the nonlinear con-
vergence. Also, Lanczos-based methods require the
transpose of the Jacobian (i.e. ATA) for matrix-
vector multiplies. Computation of AT requires an
an explicit determination of the Jacobian matrix A,
rendering them inapplicable with a matrix-free im-
plementation approach.

Arnoldi-based schemes are formulated with
the approach of relaxing the three-term-recurrence
relations while keeping the residual minimiza-
tion property. Some examples of Arnoldi-based
schemes include the Generalized Minimum Resid-
ual (GMRES)14 method, Generalized Conjugate
Residual25, and Orthomin26. As a result of keeping
the residual minimization property, the convergence
of these schemes tends to be more stable. However,
relaxing the three-term-recurrences requires all di-
rection vectors in the Krylov subspace to be stored
so storage costs increase linearly with the dimension
of the Krylov subspace.

The two iterative methods chosen for this work
are Arnoldi-based schemes, for three reasons. First,
the erratic convergence typically associated with
Lanczos-based schemes is viewed as a deterrent to
the acceptance of Krylov methods for a wide range
of CFD problems. Second, Lanczos-based schemes
cannot be implemented within the matrix-free ap-
proach. Third, separate studies by Ajmani9 and
McHugh and Knoll7 have determined that the GM-

RES Arnoldi-based method was more efficient than
several Lanczos-based schemes for solution of the
Navier-Stokes equations.

The first iterative method applied in this work
is the GMRES method of Saad and Shultz14. The
application of GMRES in the context of nonlin-
ear CFD problems is described in detail in a num-
ber of references6'10'11'13 and the interested reader
is deferred to these for a more thorough descrip-
tion. A restarted version of the algorithm is used,
GMRES(m), where m is the dimension of the Krylov
subspace. With the restarted version, the Krylov
subspace size is fixed and if the linear solution does
not satisfy the nonlinear convergence requirements
in Eq. (8) after reaching the fixed Krylov dimension,
the method is restarted using the current solution as
the initial guess.

The second iterative method used is the Or-
thogonal s-Step Orthomin (OSOmin) method of
Chronopoulos and Swanson . The so called "s-
step" class of iterative methods are formulated to
be more-parallelizable implementations of standard
iterative methods. Some of the advantages associ-
ated with s-step methods include a higher degree
of robustness, better parallelization potential, and
reduced memory contention for shared-memory par-
allel machines (see [27] for a more general discussion
of s-step methods). In 1991, Chronopoulos27 intro-
duced an s-step version of the classical nonsymmet-
ric Orthomin(^) method. This version was modified
to maintain orthogonality between the different s di-
rections using a Modified Gram-Schmidt algorithm,
which allows larger numbers of s steps (up to 16).
The resulting OSOmin(s, k) method is theoretically
proven to maintain the same level of robustness as
GMRES(m) when s - m (see [27]).

Both GMRES and OSOmin are capable of solv-
ing nonsymmetric linear systems with symmetric

. .*p

part (i.e. ^^—) positive definite (all positive eigen-
values). In earlier work28, the authors showed
OSOmin(s, k) outperformed GMRES(m) for solu-
tion of the steady two-dimensional Transonic Small
Disturbance equation on the vectorized shared-
memory Cray C90.

Storage is a major consideration for the solution
of three-dimensional problems and the predominant
total storage costs for the baseline TURNS code with
and without the Krylov methods are shown in Table
1. Note that when k = 1 and s = m, the storage
requirements of GMRES and OSOmin are about the
same.
Preconditioning

The convergence rate of Krylov solvers is very
sensitive to the condition number (i.e. eigenvalue
spectrum) of the coefficient-matrix of the linear sys-
tem. A preconditioner can be used to cluster the
eigenvalues and thereby accelerate the solution of
the iterative method. The proper choice of a pre-

1063



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

Table 1: Storage requirements - N = no. gridpoints
x 5 (no. dependent variables in 3D). N

_____________________Storage____
Baseline TURNS 3N
TURNS+GMRES(m) 3N + (ra+4)-N
TURNS+OSOmin(s, k) 3N + (s • k + 3)-N

conditioner is essential for efficiency.
A preconditioner is applied in the following way;

a preconditioning matrix P~l is added to the left
of the original unpreconditioned linear system in
Eq. (5) and results in the following new linear system
to be solved at each timestep n.

(9)

For a preconditioner to be effective, it must perform
a reasonable approximation to the inverse of the lin-
ear system and it must be able to perform this ap-
proximation at low cost (CPU time).

One of the more popular types of precondi-
tioners are those based on incomplete factorizations
(e.g. Incomplete Lower Upper factorization - ILU).
Ajmani8 found the LU-SSOR method of Yoon and
Jameson16 (to which LU-SGS is a subset) to be
more efficient than ILU for inexact Newton solution
of transonic and subsonic two-dimensional Navier-
Stokes flows. Considering these results, and the fact
that an effective parallelization strategy exists for
LU-SGS (i.e. hybrid LU-SGS), it is an attractive pre-
conditioning choice for our application.

Parallel Implementation

The flowfield domain is layed out on an ar-
ray of processors using a Single Program Multi-
ple Data (SPMD) parallel implementation strategy,
which preserves the original structure of the code.
The three-dimensional flowfield domain is divided
in the wraparound and spanwise directions to form
a two-dimensional array of processor subdomains,
as shown in Fig. 1. Each processor executes a ver-
sion of the code simultaneously for the portion of
the flowfield that it holds. Coordinates are assigned
to the processors to determine global values of the
data each holds. Border data is communicated be-
tween processors, and a single layer of ghost-cells
stores this communicated data. The Message Pass-
ing Interface (MPI) software routes communication
between the processor subdomains.

There are essentially four main steps of the in-
exact Newton algorithm; 1) explicit flux evaluation
using Roe-upwinded third-order accurate spatial dis-
cretization to form the right-hand-side vector, 2)
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Figure 1: Partitioning the three-dimensional domain
on a two-dimensional array of processors.

preconditioning using hybrid LU-SGS, 3) implicit so-
lution by the Krylov subspace solver, and 4) explicit
application of boundary conditions. The communi-
cation required in step 1) is straightforward. After
the flux vectors are determined using the MUSCL
routine, they are communicated and stored in the
ghost layer. Then, Roe-differencing is applied (this
additional communication step could be avoided by
using a ghost layer of two cells, but the present ap-
proach was easier to implement into the existing
code). Preconditioning with hybrid LU-SGS in step
2) was explained earlier. The communication pat-
tern for this step is nearest-neighbor and and com-
munications are performed only after the interior
domain updates (i.e. after each sweep). The two
Krylov subspace solvers utilized in step 3) perform,
in addition to matrix-times-vector operations, two
main numerical operations; SAXPY's and dot prod-
ucts. SAXPY's, or vector updates, are performed
locally and require no communication. Global dot
products are straightforward to parallelize; local dot
products are formed at each processor and a global
sum operation (MPLREDUCE) is used to compute
the global product. This operation requires 21og2p
messages, where p is the number of processors (the
exact number of messages for the reduce operation
may depend on how the MPI collective communica-
tion operations are implemented for the particular
parallel architecture). Overall, both GMRES and
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OSOmin are quite scalable and easy to parallelize.
Application of the boundary conditions in step

4) can be done locally on each processor, with ex-
ception of the averaging of data across the C-plane
overlap behind the trailing edge of the rotor blades.
Processors that contain data on the blade surface do
not participate in the averaging but spend time in-
voking the flow tangency boundary condition. Thus,
a good degree of load balance between processors
is maintained during application of the boundary
conditions. It should be noted here that load bal-
ance concerns caused us to split the flowfield sub do-
mains in only two directions rather than three. By
breaking the domain in the normal direction, inte-
rior processors would be required to sit idle during
the communication step required for application of
the boundary conditions at the C-plane. This intro-
duces a load imbalance which can significantly re-
duce parallel performance on large numbers of pro-
cessors. While breaking the domain in all three
directions yields square subdomains, thereby min-
imizing the amount of data communicated, the in-
efficiency caused by the idle processors during the
boundary condition application is expected to out-
weigh the efficiency gained by use of square subdo-
mains.

Figure 2: 135 x 50 x 35 C-H grid

Computed Results

The parallelized inexact Newton implementa-
tion of TURNS is tested on the 160 node IBM SP2
at NASA Ames Research Center. The scheme is
used to compute the quasi-steady (i.e. blade-fixed)
and unsteady flowfield of a rotating helicopter rotor
(without fuselage) in forward flight. Viscous effects
have not yet been included in the parallel imple-
mentation so all calculations are performed in Euler
mode for a non-lifting test case.

The flow is computed about a two-bladed sym-
metric untwisted Operational Load Survey (OLS)
helicopter blade rotating with tip Mach number

Mtip = 0.665 and moving forward with a forward-
flight advance ratio of fj, = 0.258. The OLS blade has
a sectional airfoil thickness to chord ratio of 9.71%
and is a 1/7-scale model of the main rotor for the
Army's AH-1 helicopter. A 135 x 50 x 35 C-H type
grid is used (shown in Fig. 2). The grid extends out
to 2 rotor radii from the hub in the plane of the ro-
tor, and 1.5 rotor radii above and below the plane.
The computed results with TURNS for this partic-
ular test case have been evaluated in other studies
by Strawn et al.29 so this investigation will focus
only on the numerical and parallel performance of
the method.

Results from this case only are reported here
but the scheme was also tested under a variety of
conditions (i.e. subsonic and transonic flow) includ-
ing two-dimensional test problems. These results are
reported in [30].

Quasi-Steady

The nonlinear convergence with the inexact
Newton scheme for a quasi-steady calculation with
blade azimuth angle at tf> = 0° is shown in Figs. 3
and 4. Both figures show the convergence of the
L2-norm of the residual (||/(</)||2) vs. timesteps and
vs. wallclock time on 19 processors of the SP2. Fig-
ure 3 shows results using the nonlinear convergence
criterion in Eq. (8) with r/ = 0.95 (i.e. multiple itera-
tions of the Krylov method applied at each timestep
until the criteria is met) whereas Fig. 4 shows the
results using only a single iteration of the Krylov
method at each timestep. The inexact Newton cases
are compared against the baseline case using hybrid
LU-SGS method only. Other processor partitions
were also tested and aside from the differences in
wallclock solution time, the curves are essentially
identical to the 19 processor case shown. The max-
imum residual (||/(g)||oo) was also determined and
showed similar results.

The hybrid LU-SGS method uses i,weep = 2 be-
cause this was found in [5] to give nearly identical
convergence to the original LU-SGS method for any
number of processors. The iterative methods use
Krylov subspace dimensions of three and five (that
is, m = 3,5 in GMRES and s = 3,5 in OSOmin) be-
cause previous results30 with a two-dimensional test
case showed these values gave slightly better wall-
clock times than others. It should be noted, how-
ever, that the overall effect of the Krylov subspace
dimension on the wallclock performance was found
to be small. In OSOmin, k is set to one so the total
storage costs for the Newton-GMRES and Newton-
OSOmin comparison is essentially the same.

Comparison of Figs. 3 and 4 indicates that the
Newton method is slightly more efficient when only a
single iteration of the Krylov solver is applied at each
timestep than when multiple iterations of the Krylov
method coupled with the nonlinear convergence cri-
teria in Eq. (8) is used. This is most-likely due to
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500 1000 1500 2000 500 1000 1500 2000
Timesteps Wallclock Time (19 nodes SP2)

Figure 3: Convergence of Newton-Krylov method (compared to baseline hybrid LU-SGS method) on 19
processors of the IBM SP2, with nonlinear convergence Eq. (8) with r] = 0.95 enforced at each timestep.

500 1000
Timesteps

1500 2000 500 1000 1500
Wallclock Time (19 nodes SP2)

2000

Figure 4: Convergence of Newton-Krylov method with only a single iteration of Krylov solver at each
timestep.

the fact that determination of the linear residual re-
quires an extra matrix-vector multiply at the end of
every linear iteration, which is used only to deter-
mine the residual vector in order to whether or not
the nonlinear convergence criteria has been satisfied.
It is not required if the number of linear iterations is
fixed. Considering that the matrix-vector multiplies
constitute the most expensive operation, this addi-
tional operation at each timestep can yield a notice-
able reduction in efficiency. A more detailed study30

showed no performance gains for various values of TJ
and evaluation strategies for the residual. Thus the
one iteration algorithm is used in subsequent com-
putations.

The Newton-Krylov approach shows improve-
ment in the nonlinear convergence rate with increas-
ing Krylov subspace dimension but the effect on
wallclock solution time is small because the time
per iteration increases by about the same factor

as the reduction in number of iterations. For the
forced nonlinear convergence case in Fig. 3, the
Newton-Krylov methods show slightly worse effi-
ciency than hybrid LU-SGS. However, with the sin-
gle sub-iteration case in Fig. 4, the efficiency is
slightly worse in the initial timesteps but becomes
about the same as hybrid LU-SGS as the solution
converges. Both GMRES and OSOmin show nearly
identical results with the same Krylov dimension.

The parallel performance of methods is reported
in Table 2. Shown are the average time per timestep,
percentage communication, and parallel speedup for
the baseline and Newton-Krylov methods on 4, 8,
19, 57, and 114 processors of the IBM SP2. The
percentage communication is determined by timing
all routines that invoke communication (any MPI
routines) and comparing with the total average time
per timestep. Parallel speedups are determined by
comparing the average time per timestep to the 4
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Execution Rate on IBM SP2

Table 2: Parallel performance statistics for the base-
line (hybrid LU-SGS) method, Newton-GMRES,
and Newton-OSOmin on different processors of the
SP2.

4 Processors
Hybrid LUSGS
Nwtn-GMRES(3)
Nwtn-GMRES(5)
Nwtn-OSOmin(3,l)
Nwtn-OSOmin(5,l)
8 Processors
Hybrid LUSGS
Nwtn-GMRES(3)
Nwtn-GMRES(S)
Nwtn-OSOmin(3,l)
Nwtn-OSOmin(5,l)
19 Processors
Hybrid LUSGS
Nwtn-GMRES(3)
Nwtn-GMRES(S)
Nwtn-OSOmin(3,l)
Nwtn-OSOmin(5,l)
57 Processors
Hybrid LUSGS
Nwtn-GMRES(S)
Nwtn-GMRES(5)
Nwtn-OSOmin(3,l)
Nwtn-OSOmin(5,l)
114 Processors
Hybrid LUSGS
Nwtn-GMRES(3)
Nwtn-GMRES(5)
Nwtn-OSOmin(3,l)
Nwtn-OSOmin[5,l)

Time/Iter

4.07 sec
18.78 sec
26.16 sec
18.58 sec
26.35 sec

2.17 sec
10.65 sec
14.92 sec
10.68 sec
14.94 sec

.874 sec
4.14 sec
5.81 sec
4.13 sec
5.82 sec

.307 sec
1.45 sec
2.05 sec
1.42 sec
1.97 sec

.173 sec

.885 sec
1.23 sec
.823 sec
1.19 sec

% Comm

2.4%
2.5%
2.2%
2.1%
2.2%

4.6%
4.1%
4.2%
4.2%
4.8%

5.1%
5.4%
5.4%
5.3%
5.4%

8.9%
9.7%
10.1%
9.6%
9.9%

11.9%
13.5%
13.2%
12.3%
13.4%

Speedup

1
1
1
1
1

opt = 2
1.87
1.76
1.75
1.74
1.76

opt = 4.75
4.66
4.54
4.51
4.50
4.52

opt - 14.25
13.25
12.95
12.76
13.08
13.37

opt = 28.5
23.52
21.22
21.26
22.58
22.14

processor case.
Overall, all of the methods give comparable par-

allel performance. There are no significant differ-
ences in the parallel speedup, although the base-
line method (hybrid LU-SGS) and Newton-OSOmin
show slightly better speedups than Newton-GMRES
on 114 processors. There is a noticeable increase in
the percentage of communication for the Newton-
Krylov method on larger numbers of processors.
This is probably due to the larger number of global
dot product operations in the Krylov solvers, for
which the communications do not scale as well as
the border communications as the number of pro-
cessors grows.

GMRES and OSOmin show similar perfor-
mance but there are a few subtle differences. On
lower numbers of processors (i.e. 4 and 8), Newton-
OSOmin requires slightly more time per iteration
than Newton-GMRES because OSOmin requires
slightly more work. However, OSOmin is found to
achieve slightly better parallel on larger numbers of
processors. Hence, the time per iteration of Newton-
OSOmin is slightly faster than Newton-GMRES on
114 processors.

The measured execution rates of the code on

114

Figure 5: Execution rate attained on various proces-
sors of the SP2 for 236K gridpoint problem.

various processors of the SP2 applied to this prob-
lem are shown in Fig. 5. The Megaflop rate for each
processor partition is measured with IBM's paral-
lel hardware performance monitor (phpm) software.
The execution rate on a single processor of the Cray
C90 is also shown for comparison. The C90 ver-
sion of the code is slightly different in that it uses
a vectorised form of the original LU-SGS operator
rather than the hybrid LU-SGS operator used on
the SP2. Also, the measured rate on the C90 us-
ing Cray's hardware performance monitor is slightly
different for each method but is shown as a sin-
gle averaged point in Fig. 5 for convenience (ac-
tual rates on the C90 are 320 Megaflops for the
baseline TURNS code, 340 Megaflops for Newton-
GMRES, and 360 Megaflops for Newton-OSOmin).
The Newton-Krylov scheme shows slightly better
Megaflop per second rates than the baseline hy-
brid LU-SGS scheme, and OSOmin appears to show
slightly better performance than GMRES.

It should be noted that our efforts focussed pri-
marily on attaining efficient parallel performance
and only a small effort was made to optimize the
code for the Reduced Instruction Set Cache (RISC)
processors on the SP2. The total execution rate
could lae enhanced (perhaps substantially) if fur-
ther efforts were undertaken to optimize the single-
processor performance of the code. The execution
rate is also expected to improve with larger problem
sizes.

Time-Accurate Unsteady
The Newton-Krylov approach allows for a

higher degree of time-accuracy for implicit time-
stepping because a more exact form of the left hand
side Jacobian is employed, making the left and right
hand sides more consistent. The method is stud-
ied here for a time-accurate computation of a single
revolution of the OLS blade in forward flight.
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Figure 6: Unsteady error in Cp value at a representative point on the blade (1/4 chord, r/R=0.8). Calculation
of 1 rev using baseline method with three sub-iterations of hybrid LU-SGS (left) and Newton-OSOmin(3,l)
(right) (results with GMRES(3) identical to OSOmin(3,l)).

360

Srinivasan4 has shown that by using three sub-
iterations of the standard LU-SGS method at each
timestep, an time-accurate unsteady solution can
be obtained using a timestep that corresponds to
1/4 degree of blade revolution per timestep (A^> =
0.25°). We seek to match this result with the Krylov
methods and compare the performance.

First, an unsteady solution is run with a very
small timestep that corresponds to 1/10 degree az-
imuth per timestep (A^ = 0.10°). The baseline
hybrid LU-SGS method with three sub-iterations
at each timestep is used for this run. The time-
varying pressure coefficient is recorded at a repre-
sentative location on the blade (one-quarter chord
and r/R=0.80). Then, cases are run with larger
timesteps and the resulting unsteady pressure co-
efficients are compared to the A^1 = 0.10° result to
determine the error.

Figure 6 shows the pressure coefficient error us-
ing the baseline and inexact Newton method with
different timesteps. The left side of the figure shows
the error resulting from a timestep of A^> = 0.25°
and AV> = 0.50° with three sub-iterations -of LU-
SGS at each timestep (denoted LUSGS-3 in the fig-
ure). The right side of the figure shows the errors
with timesteps of A^ = 0.40° and AV> = 0.50°
using Newton-OSQmin(3,l) with a single iteration
of OSOmin(3,l) at each timestep. It is apparent
from the figures that the error from LUSGS-3 with
AV> = 0.25° and Newton-OSOmin with A^ = 0.40°
and AV> = 0.50° are comparable.

With LUSGS-3 using AV- = 0.25° considered
the baseline case, Fig. 7 shows a closeup compari-
son of the errors with Newton-OSOmin using A^" =
0.40° and A^> = 0.50°. The error with AV> = 0.40°
is slightly lower than the baseline, and the error
with A.ip = 0.50° is slightly larger. All are very

close, however. Newton-GMRES(3) was also tried
and gives essentially identical results to Newton-
OSOmin(3,l). Different spanwise locations were also
tested (reported in [30]) and show similar results.

By allowing the use of larger timesteps with
the same level of accuracy, the inexact Newton
method can yield faster overall solution times. Ta-
ble 3 lists the total time required to complete a
full 360° unsteady solution on 19 processors of the
SP2 using three methods; 1) three sub-iterations
of LU-SGS with a timestep of Ai/> = 0.25°, 2)
Newton-OSOmin(3,l) with A^ = 0.40°, 3) Newton-
OSOmin(3,l) with AV> = 0.50°. The total time
is determined from the time per timestep data for
each method in Table 2. With AV> = 0.40°, the to-
tal solution time with Newton-OSOmin is reduced
by a about 5% over hybrid LU-SGS alone. With
A^ = 0.50°, it is reduced by about 30%. Similar re-
sults are achieved with Newton-GMRES. Thus, the
inexact Newton algorithm is expected to yield wall-
clock solution time savings on the order of 10%-20%
for the same level of time-accuracy.

Table 3: Total solution time for time-accurate un-
steady calculation of a full 360° blade revolution on
19 processors of SP2.

Hybrid LUSGS (3 subits)
Nwtn-OSOmin(3,l)
Nwtn-OSOmin(3,l)

Timestep
AV> = 0.25°
A^> = 0.40°
A^> = 0.50°

Soln. Time
3844 sec
3717 sec
2973 sec
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Figure 7: Detailed comparison of unsteady Cp error;
LUSGS-3 with timestep Ai/> - 0.25° vs. Newton-
OSOmin(3,l) with AV> = 0.40° and 0.50.

Concluding Remarks
A parallelized Newton-Krylov algorithm is in-

vestigated for structured-grid calculations of the
flowfield of a helicopter rotor. Two preconditioned
Conjugate Gradient-like iterative methods are im-
plemented within the baseline TURNS code; the
well-known GMRES method and a relatively new s-
step modification of the classical Orthomin method
called Orthogonal s-step Orthomin (OSOmin). A
parallel implementation of the LU-SGS operator is
applied for left preconditioning, and the implemen-
tation is matrix-free. The numerical and parallel
performance is evaluated for quasi-steady and un-
steady three-dimensional Euler computations of a
non-lifting helicopter blade on the IBM SP2 multi-
processor.

For quasi-steady calculations, the Newton-
Krylov algorithm has a much faster convergence
rate than the baseline approach (hybrid LU-SGS
alone) but the wallclock solution time remains about
the same for both. However, for time-accurate un-
steady calculations, the Newton-Krylov algorithm
maintains a higher degree of consistency in the im-
plicit solution and consequently allows use of larger
timesteps for the same level of accuracy. This, in
turn, leads to reductions in the total solution time
of 10%-20%.

The parallel performance of the Krylov methods
is good but the overall parallel performance of the
baseline method was not enhanced appreciably with
their addition. The baseline method alone demon-
strates very good parallel performance (up to 114
processors tested) so, despite the high degree of par-
allelism inherent in the Krylov methods, their in-
corporation did not significantly enhance the overall
parallel efficiency of the code. OSOmin and GM-
RES show similar performance but OSOmin gives
slightly better parallel speedups on larger processor

partitions.
Although this work focussed on solution of the

Euler equations, the approach is readily adaptable
to viscous flows as well. Future application of the
Newton-Krylov approach to multiple grid solutions
(e.g. multi-blocked or overset) would be an interest-
ing extension of the present work.
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