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An approach for parallelizing the three-dimensional Euler/Navier-Stokes rotorcraft computational fluid dynam-
ics flow solver transonic unsteady rotor Navier-Stokes (TURNS) is introduced. Parallelization is performed using a
domain decomposition technique that is developed for distributed-memory parallel architectures. Communication
between the subdomains on each processor is performed via message passing in the form of message passing inter-
face subroutine calls. The most difficult portion of the TURNS algorithm to implement efficiently in parallel is the
implicit time step using the lower-upper symmetric Gauss-Seidel (LU-SGS) algorithm. Two modifications of LU-
SGS are proposed to improve the parallel performance. First, a previously introduced Jacobi-like method called
data-parallel lower upper relaxation (DP-LUR) is used. Second, a new hybrid method is introduced that combines
the Jacobi sweeping approach in DP-LUR for interprocessor communications and the symmetric Gauss-Seidel
algorithm in LU-SGS for on-processor computations. The parallelized TURNS code with the modified implicit op-
erator is implemented on two distributed-memory multiprocessor, the IBM SP2 and Thinking Machines CM-5, and
used to compute the three-dimensional quasisteady and unsteady flowfield of a helicopter rotor in forward flight.
Good parallel speedups with a low percentage of communication are exhibited by the code. The proposed hybrid al-
gorithm requires less CPU time than DP-LUR while maintaining comparable parallel speedups and communication
costs. Execution rates found on the IBM SP2 are impressive; on 114 processors of the SP2, the solution time of both
quasisteady and unsteady calculations is reduced by a factor of about 12 over a single processor of the Cray C-90.

I. Introduction

A CCURATE numerical simulation of the aerodynamics and
aeroacoustics of a helicopter is a complex and challenging

problem. The flowfield of modern rotorcraft is characterized by
three-dimensional transonic aerodynamic phenomena and complex
interaction of the blades with their shed vortices. Accurate prediction
of these effects is vital for the control of aerodynamic losses, vibra-
tion, and noise. Euler/Navier-Stokes computational fluid dynamics
(CFD) methods have been employed in recent years for prediction of
these effects. l ~4 Transonic flow is normally encountered by rotors in
high-speed forward flight, and by comparison with potential meth-
ods, Euler/Navier-Stokes methods more accurately describe shock
strength and position as well as viscous-inviscid interaction effects.
They also admit vortical solutions without an added wake model.

The use of Euler/Navier-Stokes methods for three-dimensional
complex rotorcraft configurations can put heavy demands on exist-
ing computer resources. These calculations are typically performed
on vector supercomputers of the Cray class and require many hours
of CPU time as well as large amounts of memory. Parallel process-
ing offers an alternative to vector processing that is both cheaper and
faster. At present, a number of vendors have released multiproces-
sor machines (e.g., IBM SP2, Intel Paragon, and SGI Power Chal-
lenge) that utilize commodity processors the same as those used in
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high-end workstations. The performance of these machines is scal-
able with the number of processors, and their price/performance
is significantly better than more traditionally used vector proces-
sors. Substantial increases in computational power, both in memory
and computation speed, are expected in future parallel machines.
Some companies are also utilizing parallel processing in the form
of networked workstations, which sit idle during off hours, to at-
tain supercomputer performance. An excellent review of the current
status of parallel computing in CFD is given by Knight.5

Although parallel processing offers considerable potential for in-
creased computational power, parallelizing modern CFD algorithms
is not a trivial task. While simpler methods such as explicit schemes
can be parallelized rather easily and usually exhibit high perfor-
mance on parallel machines, they are much less efficient than im-
plicit methods due to poor convergence rates. Implicit schemes that
have efficient convergence properties are often difficult to paral-
lelize and tend to perform far below the peak execution rate. This is
particularly true on distributed-memory parallel architectures.

In this paper, we investigate a parallel implementation of the
well-used Euler/Navier-Stokes rotorcraft CFD code transonic un-
steady rotor Navier-Stokes (TURNS).3-4 The implicit operator used
in TURNS for time stepping in both steady and unsteady calcula-
tions is the lower upper symmetric Gauss-Seidel (LU-SGS) scheme
of Yoon and Jameson.6 To make the implicit solution more paral-
lelizable, a modified form of this operator is proposed, which is
based on the data-parallel lower upper relaxation (DP-LUR) algo-
rithm of Candler et al.7 and Wright et al.8 but is designed to be
more efficient in the presence of the domain-decomposition imple-
mentation. Aside from the modified implicit operator, there are no
algorithm changes to the original code, and so the implementation
requires a relatively small amount of code rewriting. Communica-
tions between processors are performed via message passing inter-
face (MPI) subroutine calls. The distributed solver is implemented
on two modern distributed-memory multiprocessors, the Thinking
Machines CM-5 and IBM SP2, and its parallel performance is tested
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for three-dimensional quasisteady and unsteady calculations of a
helicopter rotor in forward flight. Parallel implementation and per-
formance issues are discussed along with the convergence charac-
teristics of the modified implicit operator. Earlier results of this work
were presented in Refs. 9 and 10.

Section II describes the solution algorithm used in the baseline
TURNS code. Section III discusses the LU-SGS implicit opera-
tor and the variants we propose for more efficient parallelization.
Section IV describes the parallel implementation, Sec. V presents
results from the IBM SP2 and Thinking Machines CM-5, and some
concluding remarks are given in Sec. VI.

II. Baseline Solver
The baseline solver used in this work is the structured-grid single-

block Euler/Navier-Stokes rotorcraft CFD code TURNS, devel-
oped by Srinivasan et al.3 and Srinivasan and Baeder4 in conjunc-
tion with the U.S. Army Aeroflightdynamics Directorate at NASA
Ames Research Center. The code computes the three-dimensional
flowfield of a helicopter rotor (without fuselage) in hover and for-
ward flight conditions. In addition to NASA and the Army, various
universities and the four major U.S. helicopter companies use the
code. TURNS is a free-wake method, computing the tip vortices
and entire vortical wake as part of the overall flowfield solution.
The excellent predictive capabilities of TURNS for lifting rotors in
hover and forward-flight conditions, in both subsonic and transonic
flow regimes, have been validated against wind-tunnel data in other
studies.11 '12 The code has also been applied within the framework of
overset grids.13'I4 In addition to aerodynamics predictions, TURNS
has been used for near-field aeroacoustic calculations by Baeder
et al.15 and for far-field noise prediction by Strawn and Biswas,16

Strawn et al.,17 and Lyrintzis et al.,18 who coupled the near-field
solution from TURNS with a linear Kirchoff method.

The governing equations solved by TURNS are the three-
dimensional unsteady compressible thin-layer Navier-Stokes equa-
tions, applied in conservative form in a generalized body-fitted
curvilinear coordinate system

(1)

where Q is the vector of conserved quantities; E, F, and G are the
inviscid flux vectors; and S is the viscous flux vector. The general-
ized coordinates are r — t, £ = f (jt, y, z, t ) , r\ = rj(x, y, z, t), and
£ = £(jc, y, z, t), where the coordinate system (jc, y, z, t) is attached
to the blade. TURNS is run in Euler mode (i.e., € — 0) for all cal-
culations presented in this paper, and so viscous flux determination
is not discussed.

The inviscid fluxes are evaluated using Roe's upwind differen-
cing.19 The use of upwinding obviates the need for user-specified
artificial dissipation and improves the shock capturing in transonic
flowfields. Third-order accuracy is obtained using the MUSCL ap-
proach of Anderson et al.,20 and flux limiters are applied so that the
scheme is total variation diminishing.

The implicit operator used in TURNS for time stepping in both
steady and unsteady calculations is the LU-SGS scheme.6 This op-
erator takes the form

" = -hR(qn) (2)

where Z), L, and U are diagonal, lower, and upper tridiagonal ma-
trices, respectively, A#" = Qn + l — Q\ and h is the time step. A
spatially varying time step as proposed in Ref. 21 is used for conver-
gence acceleration of steady-state solutions. The term/?(#") consists
of the spatially differenced inviscid flux vectors at time level n,

R(qn) = (3)

Srinivasan and Baeder4 showed that, for problems similar to those
studied in this work, adequate solution accuracy in time-accurate
unsteady calculations can be efficiently performed by employing
the LU-SGS operator for implicit time stepping. To reduce the im-
plicit factorization error, one applies inner relaxation iterations at
each time step, as follows; using the solution at time level n, set the

initial condition to g"4"1'0 = Q'1 and apply LU-SGS to solve the
following equation in each inner iteration:

= = -*[£

+l,m _ Qn

(4)

where Agn + l > w = Q» + l-m+l - g" + 1 'w. In Eq. (4), w refers to
the time level and m to the iteration level. Three inner iterations
were used for the unsteady cases in this work. Upon comple-
tion of the inner iterations, the solution at the next time level is
Qn + 1 __ Qn+ l,/nmax

Additional algorithm details of TURNS are given in Ref. 3.

III. Implicit Operator
LU-SGS

The LU-SGS method, originally proposed by Yoon and Jameson,6
is a popular implicit method that has recently been incorporated
into a number of well-known CFD codes (e.g., INS3D22 and
OVERFLOW23). The primary advantage of the scheme is its very
robust stability properties. For three-dimensional problems, three-
factor alternating direction implicit schemes can become neutrally
stable or even unstable with large time steps. The two-factor LU-
SGS scheme is formulated to be stable independent of the size of the
time step. In addition, the factorization error introduced by LU-SGS
is (9(Af2) as opposed to a factorization error of 0(Af3) for ADI
methods. Despite the many advantages of LU-SGS, the implicit so-
lution using this operator is the most difficult portion of the TURNS
algorithm to implement efficiently in parallel.

Although specifics of the LU-SGS algorithm are discussed
elsewhere,6 a brief discussion of its implementation in TURNS is
given here to facilitate description of the parallelization approach. In
a standard LU implementation, the diagonal factor D in Eq. (2) con-
tains the 5x5 matrices A, B, and C that are the Jacobians of the flux
vectors with respect to the conserved quantities (e.g., A = dE/dQ).
These matrices are split into their + and — eigenvalue parts, which
are backward and forward differenced, respectively,

A =
(5)

To compute D~l, the 5 x 5 flux Jacobians must be inverted at each
grid point, leading to costly computation times. Yoon and Jameson
propose an efficient spectral approximation for the flux Jacobians

± = $(A±pAI)±epAI (6)

where pA is the spectral radius of A (in the £ direction) and s is set
to some small value (e.g., s = 0.001). With the spectral approxi-
mation, the sum of the A± , B±, and C± terms in D reduce to the
scalar quantities pA, p#, and pc, and so inversion of this factor is
straightforward. Also, use of a spectral approximation ensures the
largest eigenvalues will be located on the diagonal of the flux Jaco-
bians, making L and U diagonally dominant regardless of the size
of the time step. With the spectral approximation applied, the D, L,
and U factors are

D = Pc}j,k,i

(7)

and solution of Eq. (2) is obtained by applying the following two-
step procedure:

* = -hR(q"), Ukq" = DA#* (8)

which can be efficiently performed using a symmetric Gauss-Seidel
algorithm, as follows.

Algorithm 1: LU-SGS. Do j,k,l= 1, . . . , 7max, tfmax, Lmux,
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End Do.
DO j , k, I = /max, ^max, ^max,

End Do.
The approach currently used to vectorize the LU-SGS algorithm

in TURNS is the hyperplane approach, as described by Barszcz
et al.24 Hyperplanes are formed in the solution domain in which the
grid point coordinates j + k + / = const and vectorization is per-
formed across these planes. Although the hyperplane approach leads
to good vector execution rates, parallelizing with this approach is dif-
ficult for two reasons; 1) the sizes of the hyperplanes vary through-
out the grid, leading to load balancing problems, and 2) there is a
recursion between the planes, leading to a large amount of commu-
nication. Barszcz et al.24 also describe an alternative approach for
parallelizing LU-SGS in a distributed environment by restructuring
the data layout using a skew-hyperplane approach. Although the
skew-hyperplane approach yields relatively good parallelism, the
data layout is complex, the restructuring of data on the left-hand side
causes the right-hand side layout to be skewed, and additional com-
munication is required. Overall, the LU-SGS algorithm in its origi-
nal form is not very conducive to efficient parallel implementation.

Domain decomposition implementations of LU-SGS have also
been investigated as an alternative for parallelizing the operator. In
this approach, the overall flowfield domain is divided into subdo-
mains and LU-SGS is applied simultaneously to each individual
subdomain. Wong et al.25 utilized domain decomposition LU-SGS
for two-dimensional structured-grid reacting flow problems, and
Taflin et al.26 performed similar tests with unstructured grids. Both
found that the convergence rate of LU-SGS remains good with a low
number of subdomains but deteriorates significantly as the number
of subdomains becomes large.

DP-LUR
Candler et al.7 and Wright et al.8 have introduced a modified form

of LU-SGS called data-parallel lower upper relaxation (DP-LUR)
that has been demonstrated to be very efficient in a data-parallel en-
vironment for solving reacting flow problems. Essentially, the mod-
ification involves transferring the nondiagonal terms to the right-
hand side and replacing the symmetric Gauss-Seidel sweeps with
Jacobi sweeps. Using the same notation as the LU-SGS algorithm,
the DP-LUR algorithm can be written as follows.

Algorithm 2: DP-LUR.

Atf(()! , = -£T]

For i = 1 , . . . , iswcep Do.
DO J, k, I = 1, . . . , /max, #max, ^max Do,

be implemented on parallel processors such that computations are
completely load balanced with communications occurring only at
the borders of each partition.

Although DP-LUR is much more amenable to parallel processing
than LU-SGS, it also requires more computational work. It is well
known that in solving linear systems the convergence rate of a Jacobi
algorithm is slower than symmetric Gauss-Seidel and will therefore
require more iterations for convergence. The inner domain sweeps
employed by DP-LUR at each time step are essentially multiple it-
erations that serve the purpose of approximating the solution to the
linear system to a sufficient level of accuracy such that the nonlin-
ear iterations will converge. Whereas LU-SGS performs two domain
sweeps at each time step (i.e., one forward and one backward), DP-
LUR was found to require five to six inner sweeps to maintain the
same nonlinear convergence rate as LU-SGS for the problems in-
vestigated in this work (the details of which will be discussed later).
The increased number sweeps in DP-LUR at each time step leads
to an overall increase in computational work in the implicit solution
by a factor of 2.5-3. Although DP-LUR is much more parallelizable
than LU-SGS, the question is whether the computational penalty of
DP-LUR is the best that we can do.

Hybrid
The DP-LUR algorithm was developed primarily for data-parallel

computations. Its convergence is independent of the number of
processors used because the on-processor computations and inter-
processor communications are performed using the same Jacobi
sweeping approach. Although data-parallel implementations gen-
erally require the on-processor computations to be performed in
the same way as the interprocessor computations, message passing
gives the user more control over the communication patterns and
allows for the possibility of performing them differently. With this
in mind, we propose an algorithm that couples the benefits of both
previously introduced algorithms, namely the efficient on-processor
computations of LU-SGS and the efficient interprocessor commu-
nications of DP-LUR.

The proposed algorithm is referred to as the hybrid algorithm, be-
cause it combines methodology from both LU-SGS and DP-LUR.
In the hybrid algorithm, the SGS sweeping approach of the original
LU-SGS algorithm is applied separately to each processor subdo-
main and executed simultaneously by all subdomains. Then inter-
processor communications are performed using the same Jacobi
sweeping strategy as is used in DP-LUR. The use of multiple inner
domain sweeps in DP-LUR is retained in the hybrid algorithm to
enhance the robustness.

Algorithm 3: Hybrid.

For/ = 1, .. ., /SWecp DO.

Communicate border A 1 data.

End Do.
End for

In the DP-LUR algorithm, zswecp is the number of sweeps of
the domain (usually 3-6). A certain minimum value is required to
achieve convergence, and the robustness can be enhanced by using
higher values. The algorithm is very amenable to parallel process-
ing because the Jacobi sweeping strategy uses only nearest neighbor
data and therefore allows computations to be carried out simulta-
neously on multiple processors with each processor holding local
data. Nearest-neighbor data that lie on the processor borders are
communicated in each global data update (i.e., after each domain
sweep), and because only a few global sweeps are required, the
total number of communication steps is small. The algorithm can

Perform Algorithm 1 locally to compute
End for

On a single domain (i.e., single processor) the hybrid algorithm
performs only the SGS sweeps and is therefore identical to the
original LU-SGS algorithm. On many processors (i.e., in the limit as
the number of subdomains approaches the number of grid points),
the hybrid algorithm performs only interprocessor communications
using the Jacobi algorithm and is identical to DP-LUR. The hybrid
algorithm can thus be considered a mixture of the two algorithm
types (i.e., SGS and Jacobi) with SGS having a more dominant
influence with a small number of processors and Jacobi being more
dominant with a large number of processors. Since SGS has a faster
convergence rate than Jacobi, the algorithm should have the fastest
convergence and be most robust with fewer numbers of processors.

Parallel implementation of the hybrid algorithm in a domain de-
composition format is straightforward and can be performed in the
same way as DP-LUR. Border data are communicated to nearest
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neighbors at the beginning of each sweep, and each processor simul-
taneously performs the standard LU-SGS algorithm on its subdo-
main. Like DP-LUR, the hybrid algorithm maintains load balanced
parallelism with only nearest-neighbor communications.

IV. Parallel Implementation
Two important requirements for effectively utilizing available

parallel computational power is to develop algorithms that can keep
pace with rapidly changing hardware designs and to have methods
that can be implemented on a variety of parallel environments (e.g.,
parallel supercomputers to workstation clusters). To better facilitate
these requirements and to avoid a costly Fortran 77 to Fortran 90
rewriting effort, a multiple instruction multiple data (requiring mes-
sage passing) approach is chosen over a data-parallel or single
instruction multiple data approach for parallel implementation of
TURNS. The message passing calls used in the code are taken from
the MPI standard library, which is supported by most vendors and
is becoming a standard in the parallel processing community. To
ensure portability, a set of generic message passing subroutines is
used. With this protocol, the specific message passing commands
can be altered in one line of the code rather than throughout, making
conversion to different message passing languages, such as parallel
virtual machine, a relatively short procedure.

A domain decomposition strategy that preserves the original con-
struct of the code is used to lay out the domain on an array of pro-
cessors. The flowfield domain is divided in the wraparound and
spanwise directions into subdomains and layed out onto a two-
dimensional array of processors, as demonstrated in Fig. 1. Each
processor executes a version of the code simultaneously for the
portion of the flowfield that it holds. The processors are assigned
coordinates that are used to determine the global values of the data
each holds. Border data are communicated between processors, and
a single layer of ghost cells is used to store this communicated data.

Although the amount of data communicated can be minimized by
using square subdomains in the decomposition of the flowfield, this
requires dividing the domain in the normal direction. The normal
direction is left intact in our implementation to avoid a load imbal-
ance from occurring during application of the boundary conditions
in the plane of the rotor. In the region outside of the rotor in the
rotor plane, the C-H grid collapses to a plane and an averaging of
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Fig. 1 Partitioning the three-dimensional domain on a two-dimen-
sional array of processors.

data is performed between nodes lying on either side of the plane.
This averaging requires communication of data to processors on the
other side of the plane. If the normal direction were to be divided,
processors not holding data on the C plane would sit idle while
those holding data on the plane would perform the communication,
inducing a load imbalance. In the present implementation, all pro-
cessors participate in this communication and the load imbalance
is avoided. The reduction in parallel efficiency caused by use of
nonsquare subdomains is expected to be less costly than if the load
imbalance were allowed to occur.

There are essentially three main portions of the solution algorithm
in TURNS. The first is the spatial discretization using the Roe up-
winded algorithm to form the right-hand side. The communication
required for this step is straightforward. After the flux vectors are
determined using the MUSCL routine, they are communicated and
stored in the ghost layer and first-order Roe differencing is applied.
This communication step could be avoided by using a ghost layer
of two cells, but the present approach is easier to implement into
the existing code. The second portion of the solution algorithm is
application of the boundary conditions. This can be done locally by
each processor, with the exception of the averaging of data across
the C plane, discussed earlier. The third part of the algorithm is the
implicit solution, for which the DP-LUR (Algorithm 2) and hybrid
(Algorithm 3) schemes are utilized.

Note that incorporating the hybrid algorithm into the baseline
code requires fewer overall code modifications than DP-LUR. Since
the hybrid method executes the baseline code's LU-SGS algorithm
on each subdomain, the only modification required in the implicit al-
gorithm of the baseline code is the addition of message passing calls
to incorporate the interprocessor communications approach. Addi-
tion of DP-LUR requires the LU-SGS algorithm in the baseline code
to be modified to incorporate the Jacobi sweeping approach, along
with the addition of message passing subroutine calls.

V. Results
The parallel implementation of TURNS is tested on two dis-

tributed-memory multiprocessors: the 160-node IBM SP2 at NASA
Ames Research Center in Mountain View, California, and the 896-
node Thinking Machines CM-5 at the Army High Performance
Computing Research Center in Minneapolis, Minnesota. The code
is used to compute the quasi steady (i.e., blade-fixed) and unsteady
forward-flight aerodynamic flowfield of a rotating helicopter rotor
without fuselage. Viscous effects have not yet been included in the
parallel implementation, and so the code is run in Euler mode for a
nonlifting test case.

The test case used in a symmetric operational load survey (OLS)
helicopter blade rotating with a tip Mach number of Mtjp = 0.665
and moving forward with an advance ratio of /x = 0.258. The
OLS blade has a sectional airfoil thickness to chord ratio of 9.71%
and is a one-seventh scale model of the main rotor for the Army's
AH-1 helicopter. This particular test case has been used in other
studies.16-18 A 135 x 50 x 35 C-H type grid is used that extends
out to 2 rotor radii from the hub in the plane of the rotor and 1.5
rotor radii above and below the plane. The upper half of the grid is
shown in Fig. 2.

The parallel performance of the code is investigated with various
numbers of processor subdomains on both machines. On the IBM
SP2, five different partitions are tested; 1, 4, 8, 19, 57, and 114
processors. The subdomains for these cases are formed as follows;
for the 4-8 processor cases, the wraparound direction in the grid
is left intact while the spanwise direction is divided into 4 and 8
subdomains, respectively. For the 19, 57, and 114 processor cases,
the wraparound direction is divided into 19 subdomains, and the
spanwise direction is divided into 3 and 6 subdomains, respectively.
Unlike the SP2, which allows specific processor partitions to be
chosen, the Thinking Machines CM-5 is available only in processor
partitions of 64,256, and 512 processors. Because of the dimensions
of the grid used, it is impossible to divide our problem into subdo-
mains that correspond exactly to these processor partitions, and so
the subdomains are formed to utilize most of the processors in the
partition. The extra processors simply sit idle. The 57 subdomain
case, described earlier, is executed on the 64 node partition. A 228
subdomain case, formed by dividing the wraparound direction into
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Fig. 2 Upper half of 135 X 50 X 35 C-H type grid.
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Fig. 3 Convergence with DP-LUR operator.

19 subdomains and the spanwise direction into 12, is executed on
the 256 node partition. A 456 subdomain case, with 19 subdomains
in the wraparound and 24 in the spanwise directions, is executed on
the 512 node partition. Because of the odd dimensions of the grid
in the wraparound direction, we were unable to use a more variable
distribution of processors in this direction.

Since the results of the TURNS code have been verified against
experimental data in other works, the main objective of these tests
is to investigate the parallel performance of the code and the numer-
ical performance of the two implicit operator modifications (i.e.,
DP-LUR and hybrid). Time-independent quasisteady blade-fixed

cases, which are started from ambient conditions, provide a conve-
nient framework for comparison of the numerical performance of the
implicit operators, and so results are first presented for quasisteady
calculations. Then, results from a more computationally intensive
time-accurate unsteady application of TURNS are presented. Both
quasisteady and unsteady solutions were verified against the orig-
inal version of the code run on the Cray C-90 to assure that they
are identical. Since the only algorithm modifications occur in the
implicit operator, the solutions from both machines are exactly the
same if converged to the same level of accuracy.

Quasisteady
The parallelized code is used to compute the quasisteady flow-

field with blade azimuth angles of ^ = 0 and 90 deg. The i/r — 0
deg case is predominantly subsonic because the tip moves in a direc-
tion perpendicular to the freestream. The ̂  = 90 deg case is more
transonic because the tip is moving directly into the freestream and
experiences an advancing tip Mach number of 0.835.

The convergence of the global L2 density norm (i.e., residual of
continuity equation) for the ̂  = 0 and 90 deg cases using the DP-
LUR operator are shown in Figs. 3a and 3b. Note that the norm of the
global residual of all equations, as well as the maximum residual,
was also plotted and showed very similar results to the global L2
density norm. A minimum of five inner sweeps (i.e., /sweep — 5) is
required for convergence in both cases. Figure 3b appears to indicate
that DP-LUR is well suited for transonic flow solutions because
it demonstrates more robust convergence for the same number of
inner sweeps for the transonic ty = 90 deg case. Because the Jacobi
algorithm in DP-LUR is used for both on-processor computations
and interprocessor communications, the convergence with DP-LUR
will be the same regardless of the number of processors used.

The convergence of the $ = 0 and 90 deg cases using the hybrid
operator with zsweep = 1 are shown in Figs. 4a and 4b. Because the
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hybrid operator uses a different algorithm for on-processor compu-
tations (i.e., SGS) than interprocessor communications (i.e., Jacobi),
its convergence varies with different numbers of processors. With
zsweep = 1, the total amount of computational work in each iteration
is the same as with original LU-SGS, and it is apparent from Figs. 4a
and 4b that although the convergence worsens with increasing num-
bers of processors, the global convergence with only a single sweep
is comparable to the original LU-SGS method. Also, as was the
case with DP-LUR, the hybrid operator appears to show no adverse
effects in the presence of transonic flow with the ̂  = 90 deg case.

Table 1 compares the time per iteration, percentage communica-
tion, and parallel speedup for the hybrid method with iswecp = 1 and
DP-LUR with /sweep = 5. These two cases are chosen because they
represent the fewest number of inner sweeps required in both meth-
ods to achieve convergence and will consequently have the fastest
per iteration time. The percentage of communication is determined
by timing the message passing calls in the code and comparing with
the overall solution time. Parallel speedup is determined by compar-
ing the time per iteration to the single processor case. The parallel
speedups for these cases are plotted in Fig. 5. The parallel speedup
and percentage of communication for the two operators is nearly
identical. This is expected because the communication routines per-
formed by both operators are identical. DP-LUR incurs a slightly
higher percentage of communication and lower parallel speedup,
which is probably due to the higher number of inner sweeps, but
the difference is small. The major difference between the two oper-
ators is in the CPU time per iteration. The hybrid operator requires
about 45% less computation time per iteration than DP-LUR. This
is because fewer inner domain sweeps are required at each iteration,
thereby incurring less computational work.

A comparison of the total solution time for the fy = 0 deg case is
shown in Fig. 6. This plot shows the convergence of the L2 density
residual vs wall clock time for the hybrid operator with one and
two inner sweeps and DP-LUR with five and six inner sweeps,
executed on 114 processors of the SP2. The convergence of the
baseline method with the original LU-SGS operator on a single
processor of the Cray C-90 is also shown for comparison. There is
very little difference in wall clock time with one and two sweeps of
the hybrid operator for the first three order of magnitude residual
reduction. After this, a single sweep is more efficient; DP-LUR is

Table 1 Quasisteady timings on IBM SP2
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Fig. 5 Parallel speedup of TURNS on SP2.

most efficient with six sweeps for the first three order of magnitude
reduction, but five sweeps is more efficient thereafter. It is apparent
from this plot that the hybrid operator requires less overall CPU
time than DP-LUR. The improvement in execution rate as a result
of using parallel processing is also clear from this figure. On 114
processors of the SP2, the code with the hybrid operator is about 12
times faster than the baseline method run on a single processor of
the Cray C-90. With DP-LUR, it is about seven times faster.

The performance of the hybrid operator is next investigated us-
ing a larger number of processors available on the Thinking Ma-
chines CM-5. Figure 7a shows the convergence of TURNS for the
^r = 0 deg quasisteady case on 57, 228, and 456 processors using
zsweep = 1 in the hybrid operator. Figure 7b shows the convergence
for the same case with/SWeep = 2. With two sweeps, all processor par-
titions converge nearly identically with single processor LU-SGS,
indicating that two sweeps in the hybrid method can be effectively
used to the eliminate the reduction in covergence caused by the
domain breakup on this larger number of processors.

Timings of TURNS with the hybrid operator with one and two
inner sweeps on 57, 228, and 456 processors of the CM-5 are pre-
sented in Table 2. With two sweeps, the time per iteration increases
by about 19%, but there is little difference in parallel speedup and
percentage of communication. One difference between the SP2 and
CM-5 results that should be pointed out is that the execution times
on the CM-5 are significantly slower than what was attained on the
SP2. The two machines differ in the processor type used in each
node. The SP2 uses RS6000 processors that have a single processor
peak execution rate of 260 megaflops, but most applications usually
achieve only 15-20% of this. TURNS was found to have an exe-
cution rate of about 41 megaflops per processor on the SP2. Each
node of the CM-5 contains a SPARC processor that has a peak ex-
ecution rate of 5 megaflops, and in addition to the processor, it also
contains vector units (VU) that accelerate the execution rate to 128
megaflops. Unfortunately, utilization of the VU requires rewriting
the code in CMFortran, a high-performance Fortran-type language,
which requires significant rewriting effort and is beyond the scope
of this work. Consequently, the results presented in Table 2 are de-
termined without utilizing the VU and are significantly slower than
the full performance of the machine. Despite the poor on-processor
performance, the parallel speedups attained on the CM-5 are good,
and the results demonstrate that the hybrid operator is effective at
maintaining the convergence rate on a large numbers of processors.

Unsteady
The performance of the hybrid operator is investigated for so-

lution of an unsteady time-accurate case that uses implicit time
stepping. Using the quasisteady solution at \j/ = 0 deg as a starting
solution, an unsteady flow calculation is performed for one com-
plete revolution of the OLS blade. The same solution mesh is used
to start the unsteady calculation, but the mesh is set to rotate with
the blade. A time step corresponding to 0.25 deg azimuth/time step
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Table 2 Quasisteady timings on Thinking Machines CMS Table 3 Unsteady timings on IBM SP2 (1 rev., 1440 time steps)
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Fig. 7 Convergence with hybrid operator on CMS.

is used, and so a complete revolution is performed in 1440 time
steps. Three relaxation iterations (i.e., mmax — 3) are performed in
each time step to reduce the factorization error introduced by the
implicit operator. Table 3 shows timing statistics using the hybrid
method with one and two inner sweeps. It should be pointed out that
the parallel speedup of the hybrid operator with two sweeps appears
artificially low in this table. Executing the hybrid operator with two
sweeps on a single processor introduces unnecessary computational
work, because the second sweep simply duplicates the first. Thus,
the parallel speedups on multiprocessor cases with two sweeps are
determined by comparing with the time of the single processor case
with one sweep, and the added computational work with two sweeps
is reflected artificially in the parallel speedup.

Figures 8a and 8b show plots of the norm of the global density
residuals for the unsteady case with one and two sweeps, respec-
tively. Although the CPU time is optimal with one inner sweep, a
comparison of these figures shows that use of two sweeps effectively
causes the convergence to be nearly identical to single processor
LU-SGS for all processor partitions tested.

The benefit of parallel computation is realized in this relatively
computationally demanding unsteady calculation. On a single pro-
cessor of the Cray C-90, this calculation required about 2 h of CPU

Hybrid, iswccp = 1 Hybrid, zswecp - 2

Number
ofprocs.

1
4
8
19
57
114

Total
time, min

986.3
286.0
152.4
51.6
18.4
10.2

Percent
comm.

2.2
4.3
7.8
13.7
18.0

Parallel
speedup

1.0
3.4
6.5
19.1
53.6
96.7

Total
time, min

329.0
175.2
63.7
22.6
12.3

Percent
comm.

2.6
4.9
7.9
14.0
19.3

Parallel
speedup

3.0
5.6
15.5
43.6
80.2

."9
1C'7

720

Timesteps

«V 'sweep =

icy6 .—L,

10'8

Hybrid (4;B;T9i57,T14 procs)

720

Timesteps

= 2

Fig. 8 Unsteady residuals using hybrid operator.

time running at an execution rate of 320 megaflops. On 114 proces-
sors of the SP2, the calculation is performed in only about 10 min,
which is a reduction in solution time by a factor of 12.

VI. Concluding Remarks
A parallelization approach is introduced for the Euler/Navier-

Stokes rotorcraft CFD code TURNS. The parallel implementation
utilizes a domain decomposition strategy designed for efficient ex-
ecution on distributed-memory parallel architectures. An algorithm
modification of the implicit LU-SGS operator is proposed to im-
prove parallelization in the implicit solution. Performance of the
parallelized solver is demonstrated on two multiprocessors, the IBM
SP2 and Thinking Machines CM-5, for Euler calculations of three-
dimensional quasisteady and unsteady aerodynamic flowfields of a
helicopter blade in forward flight.

With the hybrid and DP-LUR modifications of the implicit LU-
SGS operator, the code exhibits good parallel performance for both
quasisteady and unsteady calculations. The parallel speedup and
percentage of communication is nearly identical for both hybrid
and DP-LUR, but the total solution time with the hybrid operator
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is about 45% faster because fewer inner sweeps are required at
each iteration. The hybrid operator is most efficient on small to
moderately sized processor partitions, requiring no additional com-
putational work than LU-SGS while maintaining good parallelism.
On larger numbers of processors (i.e., >19), the hybrid operator re-
quires an additional domain sweep to match the convergence rate of
LU-SGS, requiring approximately 20% more computational work.
However, good parallel performance is demonstrated with up to
456 processors, and it is expected that the improved parallel per-
formance outweighs the cost of the added computational work. Im-
pressive reductions in solution time are achieved on the IBM SP2
multiprocessor. For both quasisteady and unsteady calculations, the
parallelized code with the hybrid operator on 114 processors of the
SP2 yielded a 12-fold reduction in solution time over the vectorized
baseline code run on a single processor of the Cray C-90.

Although the code studied in this work is primarily used for ro-
torcraft applications, the parallelization approach is not unique to
this application and could readily be applied to other codes that use
the LU-SGS implicit operator. It is anticipated that the hybrid algo-
rithm modification of LU-SGS presented here can be extended in a
straightforward way to include viscous effects. Since Navier-Stokes
calculations tend to be much more computationally demanding than
the Euler calculations presented here, it is expected that the benefits
of parallel processing should be most realized for these applications.
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