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ABSTRACT
A data-driven clustering algorithm based on proper orthogonal decomposition was applied to assess the scatter found
in the UH-60A wind tunnel airloads measurements. Upon verifying the capability of the algorithm, pushrod loads,
blade surface pressure, sectional loads, and torsional moments were analyzed. Spatial eigenmodes resulting from the
decomposition provided the optimal basis; projection of the individual cycles on to the high singular value modes
allowed visualizing the statistical distribution of data over the entire azimuth. While not all cases showed furcation
in the data, bimodal distribution was found in the high thrust cases, where statistically normal distribution is gener-
ally assumed. Consequent clustering of the measured cycles produced excellent correlation among clusters found in
the pushrod loads, blade surface pressure, and torsional moment that suggest a common source for furcation in the
data. The cycles assigned to one group repeatedly showed distinguishable variations from the other group in terms
of the presence/absence of a dynamic stall vortex, azimuthal occurrence of stall, chordwise location of separation and
reattachment etc. When one of the cluster is smaller in size compared to the other, the conventional phase-average
obscured all the intricate features even when the loads are substantially higher than the larger cluster. In general,
clustering the data set when warranted showed not only higher peak loads but also lower variance for both the clus-
ters across the entire azimuth compared to the conventional simple phase-average results. Computational simulations
were conducted using CREATETM-AV Helios towards understanding the underlying flow field. Misjudged earlier
as under/over-predictive when compared with the simple phase-average data, Helios results consistently showed sig-
nificantly improved correlation with the smaller of the two clusters. Combining the clustered results and the flow
visualization provided by Helios, aperiodicity in the spatial location and the strength of both the trim tab vortices and
tip vortices have also been hypothesized as potential sources of furcation.

NOTATION

α angle of attack, deg
αmax maximum angle of attack, deg
µ advance ratio
θ0 collective pitch, deg
θ1c, θ1s collective pitch harmonics, deg
ψ azimuth angle, deg
ψp peak load azimuth, deg
σ standard deviation
cl lift coefficient
cm moment coefficient
cp surface pressure coefficient
CT coefficient of thrust
r radial station
R Radius of the rotor blade
s solidity
S singular values
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U spatial eigenmode
V time coefficients

Acronyms:

2D,3D two- and three-dimensional
APR all pushrods
ASAS all sensors - all stations
AS1S all sensors - 1 station
B1,B2,B3,B4 blades 1, 2, 3, and 4, respectively
CA1 cluster averages of group 1 cycles
CA2 cluster averages of group 2 cycles
JPDF joint probability density function
NDC n-Dimensional clustering
POD proper orthogonal decomposition
PR1,PR2,PR3,PR4 pushrod 1, 2, 3, and 4, respectively
SPA simple phase-average

INTRODUCTION

Conducting a full-scale rotor test or flight test is both chal-
lenging and cost expensive. When combined with the signifi-
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cance of such measurements in terms of data usage for design
and validation, reducing uncertainties in the measurements
becomes imperative. Generally, experimental measurement
of any phenomena exhibit scatter. In the case of rotor mea-
surements, scatter appears in the form of cycle-to-cycle vari-
ations in the measured loads. Reducing uncertainty through
accurate representation of scatter is, therefore, essential for
confident application in rotor design as well as to validate the
predictive accuracy of computational simulations.

Historically, assuming a statistically normal distribution in the
scatter, mean and variance are used to represent the data. For
example, pitching airfoil studies aimed at understanding rotor
dynamic stall were represented using simple phase-averages
(SPA) and standard deviation (Ref. 1–3). Variations in the
measurements caused by flow field turbulence, which is inher-
ently random, justifies applying SPA. However, recent pitch-
ing airfoil experiments showed that the data scatter is not com-
pletely random (Ref. 4). The cycle-to-cycle variations of sur-
face pressure, lift, moment, and drag coefficients measured
over the entire oscillation cycle fell under two or three groups,
suggesting a bi- or tri-furcated data.

Furcation refers to the measured parameters such as lift or mo-
ment occurring in clusters instead of exhibiting a statistically
normal distribution. For reference, general characteristics of
clusters are that the clusters (1) are discernible, (2) exhibit sta-
tistically significant differences in the measured loads among
them, and (3) are caused by different flow conditions (or from
the aeroelastic response of the blade). While the difference
between the clusters should be significant, the cycles within
each cluster must be similar. One such example is when the
flow shows the presence of a dynamic stall vortex in some
cycles that are absent in others for the same applied forcing
function (Ref. 5). The former set of cycles produce signifi-
cantly higher loads through lift augmentation compared to the
latter set; thereby forming two distinct clusters in the mea-
sured loads (Ref. 4). Historical application of SPA and vari-
ances are appropriate when the data distribution is statistically
normal. However, the consequences of ignoring the presence
of clusters on a bimodal data were found to be high; SPA
obscured majority of the important flow phenomena at best,
and produced severe under-determination of airloads that are
critical to designing helicopter components such as pushrods
(Refs. 4).

Evidences for a furcated data exist in experiments that were
conducted at different research facilities using different air-
foils (or wings) at different Mach numbers and, in general,
different operating conditions (Refs. 4, 6–8). Ramasamy et
al. (Ref. 4) showed several factors contributing to the data
furcation in pitching airfoil experiments using VR7 and mod-
ified VR12 airfoils. The factors include variations in the:
(1) chordwise location of separation, (2) phase occurrence of
dynamic stall, (3) strength of the dynamic stall vortex, (4)
presence/absence of dynamic stall vortex, etc. It was rec-
ommended in Ref. 4 that cluster-averages (CA) and associ-
ated cluster-variances be determined to represent each cluster
present in the data, as opposed to the conventional SPA. For

Figure 1. Complex flow field of UH-60A rotor simulated
using Helios

reference, cluster-averages are phase-averages determined us-
ing all the cycles that belong to a cluster.

A question that immediately followed the observed furcation
in 2D airfoil and 3D finite-wing experiments, which formed
the motivation for the present study, is the probable occur-
rence of furcation in rotor measurements. Rotors produce one
of the most complex flow field. Figure 1 shows the flow field
of a UH-60A simulation made using Helios corresponding to
one of the test case analyzed in this study (R45P36). As the
blade spins, it encounters tip vortices trailing from the pre-
ceding blade(s), vortex sheets, and root vortices, hub wake
etc. Tip vortices are known to trigger stall and their proven
aperiodicity (in terms of strength and the spatial location rel-
ative to the blade) can enable furcation in the data set. Such
complex flow can produce more than two groups in the data,
i.e., tri- or quad-furcation.

The primary objective of the present work is to analyze
the scatter found in one of the most widely used full-scale
rotor experiments, i.e., the UH-60A airloads test (Ref. 9),
conducted at the National Full-Scale Aerodynamics Com-
plex (NFAC). High-speed, high-thrust conditions are targeted
for stall and separation related furcation. The presence of
clusters in the data are assessed using an in-house devel-
oped, data-driven, optimal-basis clustering algorithm called n-
Dimensional Clustering (NDC). In cases that warrant group-
ing, correlation studies are conducted among multiple mea-
surement parameters (such as blade surface pressure, sec-
tional loads, pushrod loads, and torsional moments) to as-
certain the presence of clusters. Once confirmed, cluster-
averages, variances, and probability of occurrence of each
cluster are determined. The resulting cluster-averages are
an improved representation of the measured airloads with re-
duced uncertainty than the conventional SPA results. Lastly,
upon correlating Helios with the clustered results, simulated
flow fields that showed good correlation are used to iden-
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tify and understand various aerodynamic phenomena that may
have contributed to the formation of clusters.

UH-60A DATA SET

A comprehensive test measuring both the airloads and the
structural loads on a four-bladed, full-scale UH-60A rotor
was conducted at the NFAC wind tunnel (Ref. 9). Airloads
were measured on blade 1 (B1) using surface pressure sensors
mounted at nine radial stations from as inboard as r/R = 0.2
to as outboard near the tip as r/R = 0.99, where R is the ra-
dius of the blade. Each station carried 18 to 25 sensors that
are distributed along the chord. Figure 2 shows the location
of surface pressure sensors as mounted on the UH-60A rotor
blade. Sectional loads, such as cl , cm, and cd were determined
by integrating surface pressure at corresponding radial sta-
tions. Pushrod loads and sectional structural loads were mea-
sured using strain gauges. While all four pushrods were in-
strumented, structural loads were only measured using blade
3 (B3). Optical measurements were also employed to study
rotor wake and blade deflection (Ref. 10, 11). Details of the
experiment including the set up, instrumentation, and the ac-
quired data are given in Ref. 9.

Figure 2. UH-60A blade surface pressure sensor locations

The present study uses three kinds of data, in general: (1)
push rod loads, (2) surface pressure and other derived sec-
tional loads measured on blade 1, and (3) torsional moment on
blade 3. Among other structural measurements, torsional mo-
ment is of most interest as it allows correlation with pushrod
loads. In all the cases, data was acquired for a total of 128 cy-
cles. Both the pushrod loads and torsional moment were mea-
sured at 256/rev. Blade surface pressure data was acquired at a
much higher frequency, i.e., 2048/rev. Four specific test points
relating to a thrust-sweep run (listed in Table 1) are chosen for
analysis. Considering all four cases produced high thrust, P35
and P36 are referred to as lower thrust cases, and P37 and P38
as higher thrust cases throughout the analysis. While points
37 and 38 have very similar blade loading (CT/s), they dif-
fered in the collective and cyclic pitch settings needed to trim
the rotor.

Table 1. Test cases and relevant operating conditions
Run Pt. Mach µ CT /s θ0 θ1c θ1s

45 35 0.3 0.125 0.1104 9.1 2.1 -6.90
45 36 0.3 0.125 0.1203 10.4 2.8 -8.40
45 37 0.3 0.125 0.1253 11.9 3.6 -10.2
45 38 0.3 0.125 0.1255 12.3 3.8 -10.6

Preliminary Assessment: All Pushrod Data

Preliminary analysis is conducted to identify data with known
multi-modal characteristics. Such data set provides explicit
and irrefutable information necessary to validate the applied
clustering algorithm. To begin with, analysis is conducted on
the highest thrust case (R45P38) that exhibited dynamic stall
characteristics.

Raw data from all the four pushrods are shown in Figs. 3a
and b; the latter is color coded to separate the data among
pushrods. One of the biggest challenges in plotting all the
data simultaneously (Fig. 3d) is that it obscures the data distri-
bution. Visually, joint probability density function (JPDF) can
provide a better assessment of the distribution. JPDF first bins
both the azimuth (x-axis) and the load (y-axis), then counts
the number of cycles contributing to each bin. A brighter
bin refers to contribution from more cycles. JPDF results
in Fig. 3c shows two distinct paths at the peak load azimuth
(about 240◦). Approximately equal brightness for both the
paths suggest two equal-sized groups of loads being present
in the data.

Simple phase-average (SPA) determined from all the 128 cy-
cles for each pushrod is shown in Fig. 3d. Consistent with the
JPDF, two groups are seen. PR1 and PR3 form the first group
while PR2 and PR4 form the second group. The difference
between the two groups is vivid on the retreating side, begin-
ning with the waveform at around 180◦ azimuth. While the
pushrods corresponding to the instrumented blades (PR1 and
PR3) have a single peak (local peak), pushrods attached to the
un-instrumented blades (PR2 and PR4) show a dual-peak. At
the location of the overall peak load (about 240◦ azimuth), the
data from instrumented blades show an average of about 3400
lbs while the average peak of the un-instrumented blades is
around 2700 lbs.

Such groups among the pushrods is a result of the struc-
tural property differences (and the associated aeroelastic re-
sponse) between the instrumented (B1 and B3) and the un-
instrumented (B2 and B4) blade sets (Ref. 12). Nevertheless,
it is these explicit differences in loads and wave forms that are
needed to validate the applied clustering algorithm.

CLUSTERING ALGORITHM

In this section, a brief introduction to the in-house developed
clustering algorithm and the associated steps are discussed.
The algorithm begins with evaluating the nature of the data.
Typically, assessments on normality can be conducted rela-
tively easily using the Hartigans dip test (Refs. 13, 14). If
the data exhibits statistically normal distribution, the process
ends with determining SPA and variance. In the present study,
challenge begins at the first step itself, where the data dis-
tribution must be studied over the entire azimuth simultane-
ously. As seen earlier, JPDF provides the density distribution
at each azimuth. However the results can be contradicting
when the results are assessed at different azimuths. For exam-
ple, Fig. 3c showed bimodal distribution between 0◦ and 45◦,
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(a) (b)

(c) (d)

All cycles from all pushrods Color coded cycles from all pushrods

JPDF Simple phase-average (SPA)

Figure 3. Data from all cycles for all pushrods

and at the peak load azimuth (240◦). The same figure, how-
ever, showed normal distribution (one bright path) between
90◦ and 180◦. Such contradicting information is not helpful
in normality analysis. The ability to connect all azimuths, i.e.,
to treat the load variation over the entire azimuth for a given
cycle as a single data point is necessary.

Proper orthogonal decomposition (POD) provides the solu-
tion via dimensionality reduction, and forms the core of the
applied clustering methodology. The resulting spatial modes
are the basis over which the analysis is conducted. Details of
the clustering algorithm, referred to as n-Dimensional cluster-
ing (NDC) are explained in detail in Refs. 4, 15. NDC starts
with the application of POD such that

[X ] =U S V T (1)

where X can be any of the data matrix shown in Table 2. For
example, pushrod 1 loads (first row in Table 2) will have a data
matrix of 256 × 128. The 256 rows represent the azimuthal
angles at which the data is taken and the 128 columns corre-
spond to the number of acquired cycles. When all the four
pushrods are used, the number of columns increase to 128 ×
4. The decomposition of the mean centered data results in
three vectors: U is the spatial mode, S is the singular value
(significance of each mode in the data se), and V T represent
the time coefficient (or the projection of individual cycles onto
the spatial modes).

The number of modes for clustering is selected based on the
singular values. Using only the first mode (highest singular
value) means only the differences at the highest level must
be taken into account. Adding more modes begins including
smaller differences among cycles to be accounted while de-
termining the number of clusters in the data. Understandably,
when all the modes are used, each individual cycle forms its
own cluster. For the present study, by limiting the number of
modes to one or two, high frequency variations are prevented
in contributing to the determination of clusters.

Clustering analysis is conducted on the time coefficients of the
selected modes, which quantify the magnitude of the spatial
modes present in each of the individual cycles. Existing algo-
rithms such as k-means (Ref. 16), hierarchical agglomerative
clustering (Ref. 17), t-SNE (Ref. 18) etc. use Euclidean dis-
tance or Manhattan distances, which are prone to error from
high frequency oscillations. Also, all the other methods re-
quire the user to determine the number of groups present in
the data. NDC algorithm objectively determines the number
of clusters by counting the number of peaks present in the n-
Dimensional histogram of time coefficients, without subjec-
tive interpretation. The latter is very important because even
a normally distributed data can be forced to produce clusters
in other algorithms through incorrect user judgement of the
number of groups. However, NDC algorithm inherently can-
not cluster a data set that exhibits normal distribution.

Once the number of clusters are ascertained, individual cycles
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Table 2. Measurement analysis matrix.
Parameter Data Matrix

Pushrod load (PR1 or PR3) 256 × 128
Torsional moment 256 × 128
Surface pressure (1 sensor) 2048 ×128
All pushrod (APR) loads 256 × (128*4)
AS1S surface pressure (r/R = 0.200) (2048*19) ×128
AS1S Surface pressure (r/R = 0.400) (2048*20) ×128
AS1S Surface pressure (r/R = 0.675) (2048*18) ×128
AS1S Surface pressure (r/R = 0.765) (2048*23) ×128
AS1S Surface pressure (r/R = 0.865) (2048*25) ×128
AS1S Surface pressure (r/R = 0.920) (2048*29) ×128
AS1S Surface pressure (r/R = 0.965) (2048*25) ×128
AS1S Surface pressure (r/R = 0.990) (2048*25) ×128
Sectional load cm 2048 ×128
ASAS surface pressure (2048 *184) ×128

Figure 4. Singular values

are then assigned to their corresponding cluster. Assignment
was achieved through curve fitting the time coefficients using
a bimodal Gaussian mixture model (for a bimodal data) fol-
lowed by probing the individual cycle on to the mixture model
through the Gaussian probability method.

The last step in the clustering process is phase-averaging all
the cycles that belong to a cluster to determine the cluster-
average and variance. The process is repeated for each cluster.
A byproduct from such analysis is the determination of group
probability, i.e., percentage of occurrence of each cluster. Ta-
bles 2 shows the data matrix for all the choices of data analysis
conducted in the present study. Data from the individual sur-
face pressure sensors can be analyzed (1) independently, (2)
by combining all the sensors at one radial station (AS1S), or
(3) by combining all sensors from all stations (ASAS). An al-
ternative to AS1S would be to use derived cl , cm, or cd data
that inherently use all the pressure sensors through integra-
tion. Both approaches have their own merits and shortcom-
ings (Ref. 4).

Validation of Clustering Algorithm

The capability of NDC algorithm is first assessed to extract the
similarities and differences among the blades (pushrod loads)

Figure 5. Histogram of pushrod loads using the first mode

Figure 6. Cycles from all pushrods and the associated
groups clustered using only the first mode

that were discussed earlier in the preliminary analysis. For
this task, data from the fourth row of Table 2 was selected.
Upon applying POD, a total of 256 spatial modes are gen-
erated and are sorted based on the singular values. Figure 4
shows the sorted singular value of each mode. To begin with,
data analysis is first conducted using the first mode i.e., only
the differences at the highest level are accounted for cluster-
ing in this step. More modes are included later. The resulting
histogram of the time coefficients when using the first mode is
shown in Fig. 5, which implies a bimodal data. The bin counts
about zero in the x-axis suggests that the group sizes are al-
most even in that nearly equal number of cycles are present in
each cluster. The cluster that contains negative bin values (in

Figure 7. Cluster-averages of two groups present in the
pushrod data
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(a) Switched PR1 cycle

(b) Switched PR3 cycle

Figure 8. Explaining Cluster-averages using few individ-
ual cycles

the x-axis of the histogram) slightly outnumber the cluster on
the right with positive bin values.

The identity of each cycle for each pushrod in terms of the
group it belongs is shown in Fig. 6. The x-axis represents
the cycle number and the y-axis represents the group number
for each cycle. In the x-axis, each 128 cycles belong to one
pushrod, i.e., cycles 1 to 128 belong to PR1, the second 128
(i.e., cycle numbers 129 to 256) belong to PR2 and so on as
shown in the legend. The entirety of all the pushrod cycles
connected to the un-instrumented blades (PR2 and PR4) be-
long to group 1. Among the pushrod cycles connected to the
instrumented blades, a total of 18 cycles (16 from PR1 and 2
from PR3) were assigned to group 1, as well. The rest of the
cycles in PR1 and PR3 formed group 2. The 18 cycles that
switched groups from instrumented to un-instrumented blade
cluster explain the slight bias seen in the histogram (Fig. 5).
Cluster-averages for each group are then calculated by phase-
averaging all the cycles present in a group and is shown in
Fig. 7.

To understand the reason for certain cycles in PR1 (attached
to the instrumented blade 1) to be assigned to group 1 that
contains un-instrumented blades, two adjacent cycles from

Figure 9. 2D histogram of time coefficients

PR1 (cycles 72 and 73) are plotted against the two cluster-
averages in Fig. 8a. Cycle 72 switched to group 1 and cy-
cle 73 stayed with majority of the PR1 cycles at group 2.
The cluster-averages CA1 and CA2 are, as mentioned earlier,
phase-averages of cycles contained in groups 1 and 2, respec-
tively.

The un-switched cycle 73 follows CA2 throughout the az-
imuth explaining the reasoning behind the association (group
2). On the other hand, the switched cycle 72 follows CA2
only on the advancing side and then transitions to CA1 on
the retreating side. Beginning from the wave form at 180◦

to the overall peak load at 240◦ azimuth (and the subsequent
load peaks at 280◦, 300◦, and 330◦), the correlation of cycle
72 with CA1 is excellent. With such good correlation (when
combined with the higher magnitude of load seen on the re-
treating side) it is justifiable that cycle 72 belong to group 1 as
assigned by the NDC algorithm; not with group 2 where the
majority of PR1 cycles are assigned.

A similar depiction for one of the two switched cycles in
PR3 is shown in Fig. 8b; In this case, the switched cycle fol-
lows CA1 between 0 and 45 degrees azimuth (against ma-
jority of the PR3 cycles that contributed to the formation of
CA2 curve). Between 45 and 260 degrees (slightly past the
overall-peak load azimuth), the switched cycle correlates well
with CA2. However, after 260 degrees, the cycle correlates
again well with CA1.

Comparing the characteristics of the switched cycles between
the two instrumented blades, the reason for their assignment
to the un-instrumented blade group 1 is different. Ideally, it
may be desirable to create two more groups to account for
the two different characteristics of the switched cycles. As-
signing to one of the two groups, i.e., group 1 or group 2 is a
limitation imposed by selecting only one mode; adding higher
modes in the analysis would enable creating more groups to
assign cycles appropriately. Figure 8, nevertheless, provides
confidence on the algorithm that the groups selection is logi-
cal and can be explained with a reason.

To continue with the validation of NDC algorithm, clustering
was conducted using two modes (as suggested by the singular
values in Fig. 4). In this case, the input cycles were jum-
bled before decomposition as an added challenge. The 2D
histogram of time coefficients is shown in Fig. 9. Four peaks
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Figure 10. Cycles from all pushrods and the associated
groups clustered using the first two modes

were detected which suggests the presence of four groups – an
entirely expected outcome considering the rotor system uses
four blades. Upon clustering as described earlier (Gaussian
mixture model followed by probing each cycle) and resorting
the cycles (as they were jumbled), the resulting cycle-group
combination is shown in Fig. 10. Majority of the cycles that
belong to each pushrod form their own group; by including a
second mode with slightly lower energy, it became possible
to separate the loads among all the four pushrods even though
they were mixed together in the data analysis. The fundamen-
tal nature of the data, i.e., load cycles in each pushrod show-
ing similar characteristics while differing with other pushrods,
made such separation possible.

To summarize, when compared with the preliminary analy-
sis discussed earlier, two groups of pushrod loads shown by
NDC is consistent with the JPDF results (Fig. 3). The groups
are a result of the structural property differences between the
un-instrumented and the instrumented blade sets. The cluster-
averages captured the differences between the two pushrod
groups correctly, i.e., (1) the waveform difference near 180◦

azimuth and (2) the magnitude difference in the overall peak
load (and the subsequent local peaks). When two modes were
used, the algorithm separated the load cycles from all four
pushrods successfully. Any cycle that was assigned to a dif-
ferent group from their majority counterparts was explainable.
All the aforementioned results demonstrate the capability of
the clustering algorithm.

Having verified the capability of the clustering algorithm, the
next step is to analyze the individual pushrod loads and blade
surface pressure to assess the presence of clusters. Compu-
tational validation is often conducted using one of the four
blades (or pushrods) and the differences in the structural prop-
erties among blades are generally not accounted. A small
change in the control system input, changes in the flapping
characteristics, inadvertent trim tab changes, variations in the
flow such as a strong/weak tip vortex from the previous blade
could all have caused furcation in the data. Hypothetically, in
the case of flight test, it could result from simple presence of
gust as well. Separating these odd cycles from the rest of the
cycles is essential to ensure that the acquired measurements
were made at the desired operating condition and not inadver-

Figure 11. Histogram of time coefficients - R45P38 PR1

tently at other operating conditions.

RESULTS

In this section, beginning at the individual pushrod loads,
clustering analysis is progressively extended to the blade sur-
face pressure measurements made at all radial stations (sec-
tional loads) and ended at the individual blade surface pres-
sure sensor data. In the presence of clusters, correlation stud-
ies are conducted wherever possible among the aforemen-
tioned measurements to identify the radial sections and the
associated aerodynamic phenomena contributing to the for-
mation of pushrod load clusters.

From the all-pushrods (APR) data analysis, it was realized
that a few cycles (such as cycle 72 on PR1) behaved differ-
ently compared to the majority of the cycles from the same
pushrod. However, results from APR analysis alone are not
sufficient to separate all the odd cycles in PR1. When data
from all the pushrods are used in POD, the identified basis
inherently attempts to maximize the pushrod-to-pushrod load
differences, i.e., not within a given pushrod. The mode shapes
are arrived in such a way that minimum number of modes are
needed to reconstruct the most common azimuthal variations
in the data set. In the case of 4-bladed rotor system, the mode
shapes are chosen optimally to allow reconstruction of the az-
imuthal load variations of all pushrod loads. Forcing cycles to
choose one of the top four characteristics found in a 4-bladed
set does not allow separating more variations that may occur
within the blade. Instead, decomposition of a smaller subset
of data, i.e., measurements using one pushrod maximizes the
load differences found within the pushrod.

PR1 is chosen for conducting the clustering analysis on indi-
vidual pushrod loads as it allows correlation studies against
the surface pressure measurements made on blade 1. For ref-
erence, X in Eq. 1 in this case is a 256×128 data matrix as
given in the first row of Table 2.

PR1 Load Analysis

Histogram of the time coefficients obtained using the first
mode for the PR1-only cycles (case R45P38) is shown in
Fig. 11. Two peaks can be seen, meaning two groups are

7



Figure 12. Comparison of PR1 clusters when grouped us-
ing APR and PR1-only data sets - R45P38)

Figure 13. Cluster averages of PR1 loads R45P38

present even within the PR1 data. Clustered cycle-group
combination is shown in Fig. 12 along with results from all-
pushrods data analysis for comparison. Bimodality within
PR1 data is not unexpected considering 16 cycles from PR1
switched groups in the APR data analysis.

The two clusters are unequal in size, as conveyed by the his-
togram (Fig. 11). The groups had a ratio of 75% to 25% ratio,
i.e., 95 cycles (out of 128) formed group 1 and the remaining
33 cycles formed group 2. Compared to the 16 switched PR1
cycles found during the APR data analysis, the size of group
2 cycles increased, as expected. All the aforementioned 16
cycles are part of a similar but larger group 2 with 33 cycles.

The cluster-averages from analyzing PR1-only data is shown
in Fig. 13. Detailed visualization of the clustered results is
shown in Fig. 14 that includes cluster-averages of the two
groups, conventional SPA, and all the cycles that constitute
groups 1 and 2 (color coded). SPA lies between the two
cluster-averages at all the azimuths, and is closer to the CA1
because of the higher number of cycles found in group 1 com-
pared to group 2. The constituent cycles of each group are
scattered around their corresponding cluster-averages. Clus-
tered cycles show similar behavior, as expected. For example,
all the group 1 cycles that showed higher peak load compared
to the group 2 cycles at 240◦ azimuth stayed together showing
higher load than group 2 at subsequent azimuths, i,e, at 300◦

and 330◦ as well.

Tables 3 and 4 provide statistical details of the clusters. Data

(a) Group 1 cycles and Cluster 1 average

(b) Group 2 cycles and Cluster 2 average

(c) Comparing the standard deviation

Figure 14. Results of clustering R45P38 PR1 data
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in Table 3 is obtained from the cluster- and the phase-averaged
curves and Table 4 is obtained from the individual cycles.

From the peak load perspective, CA1 is at least 550 lbs higher
than CA2. In other words, conventional SPA incorrectly com-
bines two groups that differ by 18% at peak load. Compared
to the conventional SPA, the peak loads of CA1 and CA2 are
about 5% higher and 12% lower than the SPA, respectively.
The lower peak load from group 2 may not carry significance
in designing pushrods, however, a 5% higher peak load ob-
tained from 75% of cycles is important. From CFD validation
perspective, however, both results have significance.

Figure. 14c shows that the standard deviation is reduced
across all azimuths for both the clusters compared to SPA.
Such result confirms that the cycles within the two groups
are relatively similar, however, the two groups are different
from each other. At the peak load, the standard deviations of
both CA1 and CA2 are lower than the SPA by about 30%,
i.e. σ reduced from 10.5% to about 7% of the peak load. Re-
duced standard deviation, when combined CA1 load charac-
teristics, not only suggest that the pushrods are experiencing
higher peak load, but also with more certainty compared to
the conventional SPA approach.

Description SPA CA1 CA2
Mean peak load (lbs) -3373.5 -3523.6 -2968.4
σ at peak load (lbs) 351.45 245.18 238.05

Peak load azimuth (deg) 240.46 240.47 241.88

Table 3. Cluster- and phase-average curve statistics

Description All cycles Group1 Group 2
No. of cycles used 128 95 33

Ave. peak load (lbs) -3411.2 -3547.5 -3018.9
σ at peak load (lbs) 330.80 242.74 217.64

Ave. ψ at peak load (deg) 241.64 240.44 245.11
σψ at peak load (deg) 3.175 1.5 4.08

Table 4. Statistics obtained using individual cycles

Considering the historical significance of using SPA, recom-
mendations for any alternative (in the presence of clusters)
must be met with rigorous analysis to ascertain the improved
representation of the data. In the present study, such a require-
ment means (1) conclusively demonstrating the presence of
clusters, and (2) ensuring cluster-averages are good represen-
tations of the cycle-to-cycle (and cluster-to-cluster) variations
found in the data. While the former requirement is one of the
key objectives of the present work, the following discussion
attempts to answer the latter requirement.

Comparing Tables 3 and 4 provides insight about data distri-
bution within the clusters. For example, the peak loads ob-
tained from CA1 curve (3523.6 lbs) and the average of peak
loads obtained from group 1 cycles (3547 lbs) are within 1%.
The standard deviation is nearly identical as well (242.74 vs.
245.18). The azimuthal position where peak load occurs is
also nearly identical between the individual cycle statistics

and the CA1 (240.44 vs. 240.45 deg.), which suggests CA1
represents group 1 accurately.

It should be understood that even the cluster-averages are ob-
tained by phase-averaging all the cycles in a given group. As a
result, any aperiodic variation in the peak load azimuth would
not only smear the peak load magnitude but also the azimuth
when the peak occurred. The reason for such a good agree-
ment between CA1 and group 1 cycle statistics suggest that
the characteristics of the cycles within the cluster are nearly
periodic in terms of the load and the azimuthal occurrence.
The variation in the peak load azimuth (σp) for group 1 cycles
is 1.5 degrees (half of SPA).

Group 2 is not as compact as group 1. The difference in the
peak load (CA2 peak vs. average of the individual cycles in
group 2) is about the same as SPA (and higher than the group
1 statistics). Also, the difference in the peak load azimuth be-
tween CA2 and the average of group 2 cycles is high (241.88◦

vs. 245.11◦, i.e., about 4 degrees), along with the scatter mag-
nitude (σψp). In essence, group 2 cycles are characterized
by large azimuthal variations in the occurrence of peak load,
which translates into higher scatter in loads because of high
gradients in loads (d load/dψ).

One of the key differences between the group 1 and group
2 cycles is the peak load azimuth (240 vs 245 deg., respec-
tively). Conventional SPA simply combines the two groups
with different peak loads (that occur at different azimuths) re-
sulting in higher scatter while determining pushrod loads. In
other words, SPA represents a bimodal distribution using nor-
mal distribution parameters.

Other Test Cases

No clusters were found in both the lower thrust cases (R45P35
and R45P36). Consequently, SPA can be confidently ap-
plied to represent the load variations. However, PR1 loads of
R45P37 (with nearly the same thrust as R45P38 and slightly
different control inputs) showed bimodal distribution. The
clustered loads are shown in Fig. 15. The difference in the
cluster-average peak loads for the two groups is about 1000
lbs (i.e., 3752 lbs vs. 2793lbs), even higher than the R45P38
that showed 550 lbs. There are some interesting similarities
and differences comparing the two test points that produced
clusters. The similarities include: (1) large differences in the
peak load between the two CA(s) , (2) SPA aligning closer
with CA1 because group 1 is larger in size compared to group
2, (3) a compact set of group 1 cycles with reduced load varia-
tions (σ ) compared to group 2 , and (4) separating the smaller
group 2 cycles reduces the load variations (σ ) for the larger
group substantially compared to the conventional SPA analy-
sis (about 30% reduction at peak load and at subsequent high
load azimuths), and (5) groups stay together at all azimuths,
i.e., a group that exhibits higher load at one azimuth compared
to the other group continue to show higher loads at subsequent
azimuths.

It was argued in R45P38 that group 2 cycles carry less signif-
icance in pushrod design because they show lower loads than
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(a) All cycles and SPA (b) Group 1

(c) Group 2 (d) Cluster-averages and SPA

Figure 15. Cluster analysis of R45P37 PR1 data

group 1 cycles (and SPA). However, in R45P37, it was the
smaller group 2 that produced 30% higher load than group 1
cycles on average (and SPA). Nearly 10% of the cycles show-
ing consistently higher loads is an important outcome of the
clustering analysis that must be accounted for during pushrod
design process. Another observation from the two cases is
that the group that stalls earlier always produces higher loads
(group 1 for R45P38 and group 2 for R45P37).

To summarize, clustering analysis on pushrod loads showed
no groups in the lower thrust cases (i.e., normal distribution)
and two groups in both the higher thrust cases. NDC algo-
rithm successfully separated the two groups; the peak loads
between the two groups differed by 550 lbs and 1000 lbs in
R45P38 and R45P37 test points, respectively. In other words,

conventional SPA incorrectly combined two groups of loads
that were separated by an average peak pushrod load dif-
ferences of 25%. Consistently, at least one group produced
higher peak load than when using SPA. Clustering reduced
the standard deviation of both the clusters compared to the all-
cycle SPA analysis, which suggests cluster-averages provide
better representation of the variations found in the pushrod
loads.

While the clustered results exhibit the importance of repre-
senting a bimodal data accurately, as mentioned earlier, more
effort should be taken to unambiguously ascertain the pres-
ence of clusters by other means before recommending cluster-
averages in lieu of SPA. The next step provides a differ-
ent path through correlation using another measurement, i.e.,
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Figure 16. Comparing the clusters between pushrod and
surface pressure sensor data (R45P38)

Figure 17. Comparing the clusters between pushrod and
surface pressure sensor data (P45R37)

blade surface pressure.

Relating Pushrod Loads and Blade Surface Pressure

The azimuthal load variations of pushrods represent the aero-
dynamic environment experienced by the blades, at least
partly. As mentioned earlier, load fluctuations are caused by
the interaction between the rotor blades and the tip vortices
trailing from the other blades. Dynamic stall and subsequent
aeroelasticity induced load changes at various blade sections
also affect pushrod loads. Results from the clustering analysis
using the all PR data showed that some cycles experience dif-
ferent aerodynamic environment than the others. The follow-
ing section attempts to understand the source for such cluster-
ing by analyzing the airloads through blade surface pressure
measured using transducers mounted on the rotor blades. Any
further reference to pushrod data represent PR1-only analysis
unless specified.

To conduct this analysis, data from all the surface pressure

transducers at all the radial stations (last row in Table 2) are
used. This is a large data set comprising of 128 cycles of
data acquired at 2048 per revolution over 184 surface pressure
sensors that are distributed over 8 radial stations. The data is
concatenated to a matrix (X in Eq. 1) of (2048x184) × (128).
The data set is referred to as all-sensors at all-stations (ASAS).

Upon applying NDC algorithm, ASAS also produced two
clusters for both the higher thrust cases. The cycle-group
combination for R45P38 and R45P37 are shown in Figs. 16
and 17, respectively. In both cases, ASAS based clustering
shows fewer group 2 cycles than the PR1 based clustering. In
the case of R45P38, 25 cycles were found in group2 as op-
posed to the 33 cycles in the PR1 analysis. The difference
in the number of cycles is not unexpected; pushrod load is
an integrated effect over the entire blade surface while the
ASAS data is acquired at 8 discrete radial stations. Also, equal
weight given to all the sensors at all the radial stations in the
POD analysis may have played a role in diluting the contribu-
tion of some cycles at some stations. Conducting clustering
analysis at individual radial stations may provide the answer
along with an improved understanding of the clusters.

Nevertheless, Figs. 16 and 17 show remarkable correlation be-
tween two completely different measurements (PR loads mea-
sured using strain gauges at 256/rev and ASAS surface pres-
sure measured across the entire blade span using 184 pres-
sure sensors at 2048/rev) for two different test points. These
cases suggest that (1) blades are experiencing two different
flow conditions for a given control input, and (2) airloads are
the primary cause for data clusters found in pushrod loads.
The next step is to identify the specific radial stations that may
have contributed to the formation of clusters in the ASAS and
PR1 data sets.

Clusters At Radial Stations

As mentioned earlier, not all radial stations produce strong
loads that translate into higher pushrod loads. However, iden-
tifying those radial stations with high sectional loads is of
interest for rotor blade design. Furthermore, computational
simulations stand to benefit from such analysis as validation
at multiple radial stations using data with improved accuracy
becomes possible (Refs. 19–22). This section discusses the
results from conducting NDC analysis on the surface pressure
measurements made at several individual radial stations. The
data set and the results will be referred to as all-sensors at one
station (AS1S). Results are discussed in detail for the R45P38
cases; other test point are compared and contrasted for brevity.

The data set correspond to rows 5 through 12 in Table 2.
These are not individual surface pressure sensor data rather
a collection of all the sensors located at a given radial station.
For example, at 67.5% station, the data matrix (X in Eq. 1)
is (2048x18) × 128, where 2048x18 rows correspond to the
18 sensor data concatenated over 2048 data points per revo-
lution and 128 represents the number of cycles. Out of the 8
radial stations, the two inboard stations (20% and 40%) and
the outmost station (99%) did not show any clusters at least
for R45P38.
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(a)  P38 (b)  P37

(c)  P36 (d)  P35

Figure 18. Comparing clustering results using different data sets for all cases

For the radial stations that produced clusters, beginning from
67.5% up to 96.5%, the results are shown in Fig. 18 along with
ASAS and PR1 clusters. Different radial stations produce dif-
ferent clusters; the aerodynamic environment varies along the
blade. Assessing Fig. 18a that correspond to R45P38, the
source for the ASAS and PR1 clusters can be understood.
PR1 cycles are assigned to group 2 when cycles from one or
more radial stations were assigned to group 2. This figure
explains the missing 8 cycles, i.e., 25 vs. 33 group 2 cycles
found between ASAS and PR1 cases, respectively as shown
in Fig. 16. Those additional 8 cycles found in PR1 came from
several individual radial stations, whose load contributions (as
felt physically by the pushrod) were diluted mathematically in
the ASAS analysis due to the equal weight given to all the sta-
tions. Figure. 18 corresponds to R45P37 case; the results are
similar to the R45P38 case however the clusters across the
radial stations are more synchronous.

Figures 18c and d correspond to lower thrust cases R45P36
and R45P35, respectively. Even though distinct clusters ex-
ist at several radial stations and are relatively synchronized
enough to cause ASAS clustering, pushrod loads exhibited
normal distribution in the data. This may be because the loads
are not large enough to translate into pushrod load variations.

However, they are mathematically significant to produce clus-
ters in ASAS analysis. Results from the two lower thrust cases
emphasizes the significance of the two higher thrust case re-
sults, where loads are large and synchronized enough to be
seen in both ASAS and pushrod clusters.

Cycle vs. group-number plots (shown in Fig. 18) helped iden-
tify the radial stations that contribute to the pushrod load clus-
ters. The next step is to plot the sectional loads at the corre-
sponding radial stations to assess the magnitude of difference
between the clusters.

Sectional Loads Figure 19 shows the azimuthal load varia-
tion of clustered M2 cm at 67.5% radial station for all the test
points. Predictions made using Helios are plotted alongside
(wherever needed) to take advantage of its capability to pro-
vide flow field information that can explain the aerodynamic
phenomena causing clusters. Details related to Helios imple-
mentation are provided in Refs. 22, 25–27. Four important
azimuthal snapshots of flow field are shown in Fig. 20. Each
azimuth has two perspectives: (1) a view from above the ro-
tor plane and (2) an r − z plane taken 1-inch in front of the
blade. The latter moves with the blade and allows visualizing
the aerodynamic features such as the tip vortex and the trim
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(a) R45P35 (b) R45P36

(c) R45P37 (d) R45P38

Figure 19. Representative summary of clustered data at 67.5% radial station for all test cases

tab vortex that the blade is about to interact. The top view
plots are made using isosurface of Q-criterion and the colors
represent vertical velocity. Red represents upward flow and
blue represents downward flow. For example, separation can
be noticed using red shades on blades (see Fig.20a for flow
separation near the root section). The lower r − z plane has
vorticity as the color contour to highlight the tip and trim tab
vortices.

At r/R=67.5%, Fig. 19 shows three key azimuths: 225◦, 270◦,
and about 345◦. Observations from the three azimuths are
discussed in detail.

At 225◦ azimuth: There are no clusters at 225◦ azimuth for
the lower thrust cases. However, both the higher thrust cases
display similar kind of clusters. One group shows stall that

is accompanied by high moment magnitudes while the other
group is free of stall. For R45P37, about 8% of the 128 ac-
quired cycles (group 2) show deep stall. The cluster-average
(CA2) was higher than the highest value represented using
SPA at 270◦. The larger sized group 1 cycles (92% occur-
rence), on the other hand, did not stall. The group proportion
(8% and 92%) is very similar to the pushrod load groups for
R45P37 shown in Fig. 15, suggesting that the 67.5% station
plays a big role in the pushrod load clusters. Interestingly, it is
the smaller group that produces higher loads in both the PR1
loads and at the 67.5% radial station. More importantly, SPA
did not show any semblance of stall, obscuring the effect of
8% of cycles that cause significant moment (and PR loads).

In the case of R45P38, group 1 and 2 switched their charac-
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Y =   225 deg

(a)

Y =   270 deg

(b)

Y =   285 deg

(c)

Y =   345 deg

(d)

Figure 20. Simulated flow field at various azimuths (R45P38)

teristics compared to R45P37, however, showed similar ex-
cellent correlation with pushrod load clusters in both group
proportion and in load characteristics. Larger group (66%)
stalled and the smaller group (34%) showed no signs of stall,
which matched the higher pushrod loads for the larger group
1 (Fig. 14b and lower loads for the smaller group 2 (Fig. 14c).
Even though both test points (R45P37 and R45P38) were con-
ducted at the same thrust conditions, the small difference in
the control inputs (and the resulting flapping response of the

blades) may have played a role in the observed differences.

At 270◦ azimuth: There is a gradual increase in the sever-
ity of stall as thrust increases (i.e., from R45P35 to R45P38).
Clusters are seen only at higher thrust conditions albeit with
smaller difference in peak load magnitude between the clus-
ters compared to 225◦ azimuth.

Helios predictions followed the no-stall group at the 67.5%
station for both the test points (R45P37 and R45P38). Predic-
tions at R45P38 deserve more attention because the conven-
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(a) All cycles and SPA

(b) Group 1 cycles

(c) Group 2 cycles

Figure 21. Cluster analysis at r/R=67.5% radial station for
P45R37

(a) All cycles and SPA

(b) Group 1 cycles

(c) Group 2 cycles

Figure 22. Cluster analysis at r/R=67.5% radial station for
P45R38
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tional SPA suggests the presence of stall (even though 34%
of the cycles did not exhibit stall). Not only did Helios show
better matching with the no-stall group 2 at 225◦ azimuth, it
continues to show good correlation with the group 2 cm peak
at 270◦ as well. This can be related to behavior of cycles
within a group seen earlier, i.e., all cycles within a group tend
behave in a similar way at multiple azimuths.

Taking into account the improved correlation between Helios
and group 2 cycles (compared to SPA) at higher thrust condi-
tions, predictions can be used to visualize group 2 flow field,
as experienced by the blades. Figure 20b r − z plane view
(corresponding to R45P38) suggests that the stall at 270◦ az-
imuth is caused by the blade interaction with the trim tab vor-
tex. While blade tip vortices present in the rotor wake are
known to trigger stall (Refs. 23, 24), the deformed trim tab
vortex (with reduced vorticity magnitude compared to 225◦

azimuth) appears to indicate interaction with the blade result-
ing in stall. Even though tip vortex shows close proximity and
its induced velocity may play a role in the stall, the interac-
tion between tip vortex and blade occurs later at 285◦ near
86.5% radial station, as shown in Fig. 20c. Both the trim tab
vortex and the tip vortex are from the preceding blade. With
the interpretation that the stall causing mechanism may be the
trim-tab vortex, the severity differences in the peak cm mag-
nitude between the two clusters at 270◦ came either from (1)
the aeroelastic response to stall at 225◦ azimuth or (2) from
the aperiodicity in the strength and spatial location of the trim
tab and/or adjacent tip vortex (Ref. 10).

Even though the predictions did not capture the higher oc-
currence group (i.e., group 1 with 66% occurrence), corre-
lating significantly better with group 2 results at multiple az-
imuths (compared to SPA) provides added confidence to the
predictive accuracy of the simulations. Such correlation al-
lows newer questions to arise, such as identifying methodolo-
gies to capture the observed stall at 225◦ seen in group 1.

At 345◦ azimuth: Both the lower thrust cases show the pres-
ence of two clusters. Consistent with the 225◦ azimuth, one
of the clusters showed no stall or light stall and the other
showed deep stall. Higher thrust cases showed no clusters.
Even though there are two curves at 345◦ for the higher thrust
cases, their values are relatively close to each other. Therefore
the source for the formation of clusters may not have come
at that azimuth. Helios predictions are significantly different
from either of the groups found in the lower thrust measure-
ments. Consequently, flow field predictions may not be use-
ful. However, the trend and magnitude are relatively close to
R45P38 measurements allowing predictions to visualize the
flow field (Fig. 20d). The blade at 67.5% station appears to be
engulfed by the turbulent wake comprising of hub wake, tip
vortex, trim tab vortex, stalled and separated flow from the re-
treating blade etc. While significant scatter may be expected
in such flow field, no clear clusters can form as shown by the
measurements and predictions.

Detailed visualization of the clustered results for both the
higher thrust cases R45P37 and R45P38 at 67.5% radial sta-
tion are shown in Figs. 21 and 22, respectively. The color

coded cycles plotted against the cluster-averages show the
repetitiveness within each group, the difference between the
groups, and the improved representation of the groups using
cluster-averages compared to the SPA.

Chordwise cp Distribution: Sectional load clusters quan-
tified the difference between the two groups. And, Helios
helped visualizing the flow experienced by one of the two
groups and possible sources of furcation in loads. To comple-
ment Helios and to conclusively ascertain the existence of two
different flow conditions (as experienced by the blades), time-
stamped, chordwise cp distribution covering one full-rotation
of the rotor was plotted at 67.5% radial station for R45P37
in Fig. 23. The two solid lines represent the cluster-averages
resulting from applying the NDC clustering algorithm on all
the blade surface pressure sensor data (AS1S) at 67.5% sta-
tion. Blue and red colors are chosen to match the unstalled and
stalled groups found in the sectional moment clusters shown
in Fig. 21, respectively. Along with the cluster-averages, one
individual cycle from each group is plotted through blue and
red circles for each sensor. The subjectively selected indi-
vidual cycle represents the extreme case in each group. The
following discussion is based on the cluster-averages, how-
ever, the individual cycles can be seen to exaggerate all the
observations made from the cluster-averages.

From 0◦ to 202◦ (slightly into the retreating side), both groups
exhibit similar variation. The general characteristics include
increase in the suction pressure (80◦), the suction and the pres-
sure sides switching roles near the leading edge at 122◦ etc.
As expected, chordwise cp distribution showed the difference
at 217◦ and 226◦ azimuths. While the blue group continues to
remain attached, red line stalled. The individual cycle showed
separation until 60% chord at 217◦ that extended up to the
trailing edge at 226◦. At 277◦ both groups became similar
again and remained until the end of the revolution. Consider-
ing the difference seen between the two groups, it can be con-
clusively stated that two different flow conditions exist and
that the SPA incorrectly combines the two conditions into one
data set.

Similar results are found at several other radial stations, how-
ever, further discussion is limited to the 86.5% radial station
for R45P37 test case as it shows interesting correlation with
Helios – see Fig. 24). The stall at 285◦ is a result of the in-
teraction between the tip vortex and the rotor blade. Clusters
in this case are a result of bimodal data distribution at 345◦

azimuth; the peak cm magnitude between the two clusters dif-
fers by about 38%. While CA1 shows M2 cm of 0.29, CA2
and SPA show about 0.21. The two groups are almost equal
in size. Figure 25 shows CA, SPA, and all the individual cy-
cles color coded based on the associated group. SPA appears
to be a good representation of the scattered data in Fig. 25a.
However, upon clustering, the shortcoming of SPA becomes
clear.

There are two groups of data that are differentiated by the
peak load azimuth and the peak magnitude of moment. As
mentioned earlier in the pushrod load analysis, SPA suffers
from the scatter in the azimuthal occurrence of peak cm mag-
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Figure 23. R45P37 - clustered cp distribution at 67.5% radial station (solid lines: cluster-averages, circles: one individual
cycle from each cluster).

nitude that translates into incorrect determination of peak sec-
tional loads (along with high scatter). Clustering the data rep-
resents the groups appropriately and reduces scatter in both
the groups compared to SPA. A close up view of standard de-
viation is shown in Fig. 25c.

Figure 24 shows Helios over-predicting peak cm when com-
pared with SPA at 345◦ azimuth. Also, stall was believed to
have occurred earlier than measurements. Clustering results
show that there exists at least 50% of cycles matching the pre-
dictions of Helios both in terms of peak magnitude and az-
imuthal occurrence, adding more confidence to the predictive
capability of Helios. Flow field corresponding to this azimuth
can be seen in Fig. 20d. While other radial stations are en-
gulfed by turbulent wake, the 86.5% station seems to be free
of such turbulence. Time stamped chordwise distribution of
cp at 340◦ azimuth is shown in Fig. 26 to understand the flow
distribution on the blade surface. The red group shows sepa-
ration from the leading edge to about 60% chord and the blue
group shows separation only until 30% chord. The differ-
ence in the separation location contributed to the difference
in the sectional moment as seen in Fig. 24. It appears there
are two sources for the formation of clusters at 86.5% sta-
tion: (1) chordwise location of separation and (2) peak load
azimuth. Nevertheless, consistent with the 67.5% station, cp
distribution further confirms the presence of clusters through
two clearly distinct flow conditions experienced by the blade.

Individual Blade Surface Pressure Sensor

To complete the clustering analysis that began at the pushrod
loads that was followed by ASAS, AS1S, and sectional mo-
ments, similar analysis was conducted at the smallest sub-
component in the measurements, i.e., individual blade surface
pressure data. Again, POD was conducted using Eq. 1 with
X representing 128 cycles of blade surface pressure measured
at 2048Hz. A representative result from applying NDC algo-
rithm at one radial station (67.5%) and one chordwise station
(1/4th chord) for R45P38 is shown in Fig. 27. Results from
applying JPDF are shown as well for understanding the data
distribution. Again, two groups of data can be seen. One
group showed stall and the other showed no separation. The
group proportion (75% vs 25% for group 1 and 2) is consistent
with the PR1 loads. The results from JPDF and the NDC clus-
tering analysis are consistent, confirming that CA1 and CA2
are appropriate representation of the data distribution and the
two groups present in the data. SPA was lying in between the
two groups, where no data exist, i.e., an incorrect representa-
tion of both the groups.

Helios again agreed well with one of the two groups on the
retreating side. Considering that the SPA showed stall charac-
teristics, an incorrect conclusion would be that Helios failed to
capture the stall mechanism. The new clustered results again
suggest that there exists a group of cycles (not a subjectively
selected individual cycle), matching Helios predictions.

From the validation point of view, several cases of Helios re-
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Figure 24. Clustered data at 86.5% radial station for
R45P37
sults may have been wrongly judged as over/under predictive
of loads, delayed/early stall, or missing wave form (or missing
flow phenomena) etc. when compared with the SPA results
had it not been for the clustering analysis. Having mentioned
that, there are several cases where all the aforementioned is-
sues still exist in terms of predictions that are not shown. The
selected Helios cases allowed analyzing the flow field that
may have caused clusters in the measured loads. Neverthe-
less, such improved correlation with one of the two groups
(often with the smaller group) allows research to take a dif-
ferent direction. One such example is to identify methods to
capture the missing phenomena in Helios that is related to the
load characteristics of the large group.

Lastly, results from conducting similar clustering analysis on
the torsional moment measured using strain gauges on blade
3 and the correlation with PR3 loads is discussed in the Ap-
pendix.

SUMMARY AND CONCLUSIONS

A POD based, data-driven clustering algorithm was applied
to the UH-60A wind tunnel data acquired at four high thrust
conditions that exhibited higher scatter in general. After
validating the clustering algorithm using pushrod load vari-
ations caused by known blade-to-blade differences, results
were sought for individual pushrod loads, blade surface pres-
sure, sectional loads, and torsional moments. The results con-
firmed two states, i.e., in and out of stall at constant mean trim
conditions. Sectional airloads confirmed that the bimodality
in the data is caused by blade sections varying between stalled
and unstalled flow conditions. Non-periodic blade-vortex in-
teraction, tunnel variations etc. could have contributed to the
observed two states. Nevertheless, cluster-averages with re-
duced variations compared to the conventional simple phase-
average appear to be better representatives of widely varying
data. While arguments and analysis to identify the “correct”

(a) All cycles and SPA

(b) Cluster-averages and SPA

(c) standard deviation

Figure 25. Clustered sectional loads at r/R=0.865 for
R45P37
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Figure 26. R45P37 - r/R=0.865 cp distribution showing the
difference in cluster characteristics.

(a) Cp distribution of sensor 4 at 67.5% station

(b) JPDF of cp distribution

Figure 27. Sensor 4 pressure distribution

cluster could be made, recognizing the existence of clusters in
the data and using cluster-averages for comparison with anal-
ysis is the first step. Comparisons with parametrically varied
test data can help determine the validity of the analyses and
potentially providing explanations for the predicted accura-
cies and discrepancies. Helios predictions were first validated
using clustered sectional loads. When good correlation was
found, simulated flow fields were then used to study the na-
ture of flow experienced by the blade, and hypothesize poten-
tial aerodynamic phenomena that may have contributed to the
formation of clusters. Following are the specific conclusions
derived from the study.

1. Pushrod loads showed the presence of clusters for the
higher thrust cases. The average difference in the peak
load between the two clusters is about 25%. Compared
to the conventional simple phase-average, the peak load
for one of the clusters was higher by an average of about
20%. The clusters were unequal in size, and the smaller
cluster exhibited more scatter compared to the larger
cluster. Nevertheless, separating the data into two groups
resulted in a substantial reduction of standard deviation
for both the groups compared to the conventional simple
phase-average approach that assumes normal distribution
in the data set. At the peak load, standard deviation re-
duced by about 30%. i.e., from 10.5% of the peak load to
about 7%. The overall standard deviation at all azimuthal
locations reduced by about 8%. A conservative approach
to designing pushrod would be to use the cluster-average
results that show higher peak load with reduced uncer-
tainty. In the case of validating simulations, cluster-
averages, associated variances, and group proportional-
ity are better representatives of measured airload varia-
tions than simple phase-average.

2. No clusters were found in the pushrod loads at the lower
thrust cases. However, sectional moments still exhibited
the presence of clusters. The difference between the un-
clustered pushrod loads and the clustered sectional mo-
ment stem from the asynchronization in the grouped cy-
cles across multiple radial stations. Considering that the
sectional loads clusters showed measurable differences,
cluster-averages are again better representatives of sec-
tional loads for validating computational simulations ap-
propriately.

3. In the higher thrust cases, remarkable correlation was
found between pushrod loads and the surface pressure
data that combined all the surface pressure sensors mea-
surements at all radial stations. Such correlation confirm
that two different groups indeed exist, and are caused
by the local flow conditions (airloads) or the associated
aeroelastic response of the blades.

4. Clustering the sectional moments helped to identify the
important radial stations that contributed to the clustered
pushrod loads. Such stations were identified through the
excellent correlation found between the sectional mo-
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Figure 28. Comparing cluster-averages and phase-average
of loads measured using pushrod 3.

ments and the pushrod loads clusters. In general, clus-
ters causing higher sectional moment are directly related
to the higher pushrod load clusters.

5. Chordwise distribution of cp plotted using clustered data
revealed three distinct characteristics of data furcation:
(1) presence/absence of stall and separation, (2) chord-
wise location of separation, and (3) azimuthal location
of peak cm magnitude.

6. Helios predictions showed significantly improved corre-
lation with one of the two groups both at the sectional
moment level as well as at the individual surface pres-
sure level. The predictions may have been judged incor-
rectly as under/over-predicting test results had they been
compared to SPA. More importantly, the correlation with
one of the clusters enabled studying the flow field corre-
sponding to the cluster. Helios simulations allowed hy-
pothesizing the aperiodicity of trim tab vortices and tip
vortices (in terms of strength and spatial location) as one
of the aerodynamic phenomena causing clusters in the
data.

7. As expected, not all pushrods show identical groups as
their flow conditions are different. Pushrod 3 and the
torsional moment measured on blade 3 showed excellent
correlation in the formation of clusters and the composi-
tion of cycles within the clusters.

APPENDIX: TORSIONAL MOMENT
CLUSTERS

Similar to PR1, PR3 data alone was analyzed using POD. Fig-
ure 28 shows the cluster-averages of the two groups obtained
from POD analysis along with the phase-average. While the
number of groups is similar to PR1, the number of cycles in
each group is different in PR3. The ratio between the two
groups is 60% to 40%, compared to nearly 75% to 25% found
in PR1. The difference in the peak load between the two
groups in PR3 is 285 lbs. The cluster-average 1 peak load
was higher than the phase-average peak by about 125 lbs. (or
about 4%). Similar to B1, uncertainty in the data can be ex-
pected to be lower in the clustered data.

Figure 29. Comparing the clusters found between PR3 and
the torsion moment measured using strain gauge data at
40% station

Unlike B1 that also measured surface pressure, B3 measured
torsional moments instead. Similar to conducting clustering
analysis on the individual radial station surface pressure data
(AS1S) on B1, POD results obtained from 40% radial sta-
tion torsional moment is shown in Fig. 29. Out of 128 cy-
cles, only 5 cycles were different between the two clusters.
Again, excellent correlation between two clusters that were
obtained from two different measurements measuring two dif-
ferent component of airloads. Comparing blade 1 and blade 3
clusters, the difference in the size of each clusters again high-
light the variations between blades.
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