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ABSTRACT 
At the DLR Institute of Flight Systems models of the ACT/FHS, an EC135 with a fly-by-wire/light flight control 
system, are needed for control law development and simulation. Thus, models are sought that cover the whole flight 
envelope and are valid over a broad range of frequencies. Furthermore, if the models are to be used in the feedforward 
loop of the model following control system, they have to be invertible and thus must not have any positive transmission 
zeros. Maximum likelihood system identification in the frequency domain was used to derive the desired models. For 
rotor flapping the explicit formulation with flapping angles was modified slightly to avoid positive transmission zeros. 
For the regressive lead-lag a simple model formulation was found that needs only one dipole with two states. The 
engine dynamics were first modeled separately and then coupled to the body/rotor model. The final integrated model 
has seventeen states and yields a good match for frequencies up to 30 rad/s. 

NOMENCLATURE 

a,b	 flapping angles, rad 
A..,B..	 flapping angle derivatives 
ax,ay,az	 body-fixed linear accelerations, m/s2 

c	 rotor blade chord, m 
CLα	 blade lift curve slope, 1/rad 
CT	 thrust coefficient, CT = T /[ρπR2(ΩR)2] 
C0	 inflow constant 

control derivatives of the lead-lag dipole Dδlon 
,Dδlat 

e	 hinge offset, m 
E..	 engine model parameters 
g	 acceleration of gravity, m/s2 

Iβ	 blade flapping moment of inertia, kg m2 

Kβ	 flapping stiffness, Nm/rad 
Kθ0	 control gain, rad/% 
L.., M..,N..	 moment derivatives 
m aircraft mass, kg 
p,q,r roll, pitch and yaw rates, rad/s 
Q	 engine torque, Nm 
R	 rotor radius, m 
T	 rotor thrust, N 
u,v,w	 body-fixed velocity components, m/s 
xi,yi, zi	 canonical dipole states, i = 1, 2 
X..,Y ..,Z..	 force derivatives 
β0	 coning angle, rad 
δlon,δlat	 longitudinal, lateral cyclic inputs, % 
δped ,δcol	 pedal and collective inputs, % 
ε	 hinge offset ratio, ε = e/R 
Φ, Θ	 roll and pitch angles, rad 
γ	 Lock number, γ = ρCLα cR4/Iβ 
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γ∗	 effective Lock number, 
γ∗ = γ/(1 +CLα

σ/(16ν̄0)) 
ν inflow, m/s  
ν̄0 trim inflow ratio, ν̄0 = CT0 /2 
ρ air density, kg/m3 

σ solidity 
τ time delay, s 
τ f flapping time constant, s 
ζ damping 
ω frequency, rad/s 

2[ζ ,ω] short for s + 2ζ ω + ω2 

Ω rotor speed, rad/s 
Indices 
0 trim value 
en engine 
ll lead-lag 
Acronyms 
ACT/FHS	 Active Control Technology / Flying Helicopter 

Simulator 
DLR German Aerospace Center 
ML maximum likelihood 

INTRODUCTION 

The German Aerospace Center (DLR) operates the ACT/FHS 
(Active Control Technology / Flying Helicopter Simula­
tor, see Fig. 1) as a test bed for various research projects 
(Refs. 1–3). The ACT/FHS is based on a Eurocopter EC135, 
a light, twin-engine helicopter with a bearingless main ro­
tor and a fenestron. Models of different complexity for the 
ACT/FHS are needed for simulation and control law devel­
opment. Therefore, system identification for the ACT/FHS 
is an ongoing process with first results already presented in 
2007 (Ref. 4). 
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Fig. 1. DLR research helicopter ACT/FHS 
As models are sought for the whole flight envelope, dedicated 
flight tests with sweep and multistep inputs in all controls have 
been performed at five reference speeds (hover, 30, 60, 90, 
120 knots) and yield the database for all system identifica­
tion efforts. If models for the different reference speeds are 
to be used as a basis for a full flight envelope quasi-nonlinear 
simulation as described in (Ref. 5), they must have the same 
model structure to allow for interpolation (model stitching), 
see (Refs. 6, 7). 

Models that are to be used in the feedforward loop of the 
model following control system (MFCS) (Refs. 2, 8, 9), must 
be invertible (see Fig. 2). Therefore, these models must not 
have any positive transmission zeros when reduced to the out­
put variables to be matched (p, q, r, az) because positive trans­
mission zeros would result in unstable poles in the inverted 
model. 
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Ideally, a model to be used for control law development 
should be accurate from one decade below to one decade 
above the cutoff frequency (± half a decade ist usually suf­
ficient). For the ACT/FHS with a cutoff frequency of 3 rad/s 
in pitch and 5 rad/s in roll, this means that the models should 
accurately cover the frequency range of 0.5-30 rad/s. There­
fore, an extended model structure is necessary that explicitly 
includes the regressive flapping, coupled inflow/coning, and 
regressive lead-lag states of the rotor. 

In the past, different modeling aspects of ACT/FHS sys­
tem identification have been described in separate papers 
(Refs. 10, 11). In this paper, these results are reevaluated 
with respect to the requirements of model interpolation and 
model inversion. Furthermore, results from investigations 
using the optimized predictor-based subspace identification 
(PBSIDopt) method (Ref. 12) are used to develop a simplified 
formulation for the influence of the regressive lead-lag. Also, 
this paper shows how deficits in yaw rate approximation are 
reduced by engine modeling. 

The paper will first describe the modeling that was used for 
the different rotor degrees of freedom. Next, the development 
of a dynamic engine model and its integration into the over­
all model will be shown. Finally, some results for the fully 
integrated model will be presented. 

FLAPPING 

Rotor flapping is usually accounted for in system identifi­
cation modeling with the explicit formulation developed by 
Tischler (Ref. 13). This explicit formulation includes two cou­
pled first order differential equations for the longitudinal and 
lateral flapping angles a and b that are triggered by the longi­
tudinal and lateral cyclic control inputs. 

τ f ȧ = −a + Abb + τ f q + Aδlon 
δlon + Aδlat 

δlat 
(1)

τ f ḃ = −b + Baa + τ f p + Bδlon 
δlon + Bδlat 

δlat 

The flapping angles are coupled to the rigid-body equations 
via 

u̇ =Xuu + Xvv + Xww − w0q +(Xr + v0)r 

− g cosΘ0Θ + Xaa + Xδcol 
δcol + Xδped 

δped 

v̇ =Yuu +Yvv +Yww +(Yp + w0)p +(Yr − u0)r 

+ g cosΘ0Φ +Ybb +Yδcol 
δcol +Yδped 

δped 

ṗ =Luu + Lvv + Lww + Lrr + Lbb (2) 
+ Lδcol 

δcol + Lδped 
δped
 

q̇ =Muu + Mvv + Mww + Mrr + Maa
 

+ Mδcol 
δcol + Mδped 

δped 

Compared to a standard 6-DoF model, the cyclic control 
derivatives Xδlon 

, and Mδlat 
, Xδlat 

, Yδlon 
, Yδlat 

, Lδlon 
, Lδlat 

, Mδlon 
have been replaced by the corresponding control derivatives 

, and Bδlat 
in the equations of the flapping dy­Aδlon 

, Aδlat 
, Bδlon 

namics. Similarly, the standard force and moment derivatives 
Xp, Xq, Yq, Lp, Lq, Mp, and Mq have been replaced by the ro­
tor force and moment terms Lb, Ma, Xa, and Yb that couple the 
main rotor to the fuselage. The quasi-static force derivative Yp 
is often retained to account for tail rotor effects. 

The force terms Xa, and Yb are constrained due to physical 
considerations Yb = −Xa. Their numerical value is theoreti­
cally equal to the acceleration of gravity g and therefore often 
constrained to this value for the identification. 

Xa = −Yb = g (3) 
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A theoretical value for the rotor flap time constant τ f can be 
calculated from the hinge offset e and the effective lock num­
ber γ∗ ,   

1 γ∗Ω 8e 
= 1 − (4)

τ f 16 3R

but τ f is usually left as a free parameter in the identification. 

For the identification of the ACT/FHS, an implicit formulation 
of the flapping equations as first described in (Ref. 4) had been 
used that results in ṗ and q̇ as two additional state variables. 

p̈ = L̂p p + L̂ṗ ṗ + ˆ δlat Lδlat (5) 
q̈ = Mqq + Mq̇q̇ + δlon ˆ ˆ M̂δlon 

In (Ref. 10) it was shown that the explicit and the implicit 
formulation of the rotor flapping dynamics produce equivalent 
results. 

The reason for using this implicit formulation was that for the 
ACT/FHS the explicit formulation led to models with positive 
transmission zeros that therefore could not be used for model 
following control. 

On the other hand, it was expected that models with explicit 
flapping would be superior regarding interpolation between 
different reference speeds for model stitching (Ref. 5) due to 
better separation of the rigid-body and rotor degrees of free­
dom. Thus, it was tried to modify the explicit model formula­
tion to solve the problem with the positive transmission zeros. 

Let Aex and Bex be the system matrices of the explicit model 

ẋex = Aexxex + Bexu (6) 

with a state vector of 

Tx = [u,v,w, p, q,r, Φ,Θ,a, b] (7)ex 

and control inputs u. Then a transformation matrix T that 
consists of an 8x8 identity matrix I8, an 8x2 matrix of zeros 
O8,2 and the rows of Aex that correspond to q and p ⎡ ⎤ 

I8 O8,2 
T = ⎣Aex(5, :) ⎦ (8) 

Aex(4, :) 

can be used to transform the system from eq. (6) via 

Aim = TAexT−1 , Bim = TBex (9) 

into an implicit model 

ẋim = Aimxim + Bimu (10) 

with a state vector of 

Txim = [u,v,w, p,q,r,Φ,Θ, q̇, ṗ] (11) 

Transforming the models identified with the explicit flapping 
equations into the implicit formulation as just described and 
comparing the resulting matrices showed that the main dif­
ferences were in the collective and pedal control derivatives. 

Therefore, the explicit formulation of rotor flapping was mod­
ified in such a way that the collective control input also acts 
on the flapping angles. 

τ f ȧ = −a + Abb + τ f q + Aδlon 
δlon + Aδlat 

δlat + Aδcol 
δcol 

τ f ḃ = −b + Baa + τ f p + Bδlon 
δlon + Bδlat 

δlat + Bδcol 
δcol 

(12) 

The corresponding quasi-static collective control derivatives 
Lδ0 and Mδ0 in the pitch and roll rate equations were 
dropped. This slight model modification led to models for 
the ACT/FHS without positive transmission zeros. The quasi-
static pedal control derivatives could remain unchanged. 

The match with this modified explicit flapping formulation is 
almost identical to the match achieved with the models with 
the implicit flapping formulation as can be seen from Fig. 3. 
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Fig. 3. Match in pitch rate for implicit and modified ex­
plicit flapping (60 kts) 

INFLOW/CONING 

Modeling of the inflow/coning dynamics is necessary to cap­
ture the rising amplitude in the frequency response for verti­
cal acceleration due to collective input and can be achieved by 
different modeling approaches. 

The approach most widely used for modeling the in­
flow/coning dynamics and their coupling to the fuselage is 
the hybrid formulation developed by Tischler (Ref. 13). It is 
based on the work by Chen and Hindson (Ref. 14) who devel­
oped analytical models for the coupled inflow/coning/heave 
dynamics. 

The first-order inflow dynamics are written as   
−75πΩ CLα σ

ν̇ = ν̄0 + C0ν +V
β̇0 

β̇032 16  
25πΩ2R CLα σ (13)

+ 
32 8

C0Kθ0 δcol 
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with the trim inflow ratio ν̄0 and thrust coefficient CT0 using 
T0 = mg for the trim thrust. The control gain Kθ0 transforms 
collective input to effective blade root pitch angle (θ0). 

For hovering flight, an analytical expression is available for 
V

β̇0 
−25πΩR CLα σ

V
β̇0 

= ν̄0 + C0 (14)
32 8 

The rigid-blade coning dynamics, ignoring the influence of 
hinge offset and flapping spring, are expressed as a second-
order differential equation 

Ωγ Ωγ Ω2γ¨ β0 = − β̇0 − Ω2
β0 − ν + Kθ0 δcol8 6R 8 (15) 

resulting in two states, coning angle β0 and coning rate β̇0. 

Finally, the coning/inflow dynamics are coupled to the fuse­
lage through the thrust coefficient CT , to achieve the hybrid 
model structure for the vertical dynamics 

ẇ =Zuu + Zvv + Zww +(Zp − v0)p +(Zq + u0)q + Zrr
 

ρπR2(ΩR)2
 
− g cos Φ0 sinΘ0Θ − CT (16) 

m 
+ Zδlon 

δlon + Zδlat 
δlat + Zδped 

δped 

where the perturbation thrust coefficient CT is given by 

0.543 1 4ν̄0 4ν̄0CT = ν̇ + ν + β̇0 (17)
Ω2R C0 ΩR 3Ω 

The quasi-steady collective control force derivative Zδcol 
is 

missing in eq. (16) for the vertical acceleration because the 
control path is now changed: Collective control inputs cause 
an increase in blade angle of attack that increases inflow and 
coning (see eqs. (13) and (15)). The corresponding dynamic 
variations in thrust from eq. (17) are transmitted to the fuse­
lage via eq. (16) resulting in a change of vertical acceleration. 

The inflow constant C0 in eqs. (13) and (17) allows for the 
selection of either the Carpenter-Fridovich theory inflow time 
constant (C0 = 0.639) or the Pitt-Peters time constant (C0 = 
1). Most system identification performed using the hybrid for­
mulation uses the Carpenter-Fridovich model (Ref. 15). Due 
to the lack of blade motion, inflow and thrust measurements, 
all derivatives of the inflow and coning equations are usually 
fixed at their theoretical predictions and only Zw is estimated. 

The hybrid inflow/coning model was applied to ACT/FHS 
flight test data in (Ref. 11). Due to its bearingless design, the 
rotor of the ACT/FHS has a relatively large equivalent hinge 
offset of 10%. Therefore, the coning equation (15) had to be 
extended to include the influence of hinge offset. 

Ωγ 8¨ β0 = − 1 − ε + ε2 
β̇08 3 

3ε Kβ− Ω2 1 + + β0 (18)2(1 − ε) Iβ Ω
2 

Ωγ 2 Ω2γ 4 − 1 − ε ν + 1 − ε Kθ0 δcol6R 3 8 3 

Furthermore, for the hover case two of the parameters of the 
hybrid model had to be freed from their analytical predictions 
to achieve a good match with the flight test data. For the for­
ward flight cases, no modification of the analytical predictions 
was necessary. 
However, when analyzing the identified models, it was dis­
covered that the inclusion of the coning motion led to a high 
frequency positive transmission zero for the forward flight 
cases. As can be seen in Fig. 4, the inclusion of coning 
does not really improve the match of az/δcol in forward flight. 
Therefore, it was decided to drop the coning equations by set­
ting the coefficients corresponding to β̇0 to zero in eqs. (13) 
and (17). 
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Fig. 4. Match in vertical acceleration for models with and 
without coning (60 kts) 

As it was desired to have the same model structure for all 
speeds to allow for model stitching, the coning equations were 
also dropped for the hover case even though this leads to a 
slight degradation in the match of the frequency response of 
vertical acceleration due to collective input for frequencies 
above 12 rad/s (see Fig. 5). 
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REGRESSIVE LEAD-LAG
 

Simple physical models for the lead-lag dynamics, such as 
those for the flapping dynamics, are not available. There­
fore, a modal approach is usually taken, where two closely 
spaced complex pole/zero pairs (dipoles) with a common de­
nominator are appended to the pitch and roll rate responses, 
see (Ref. 13). 

Second Order Dipole 

A complex (second order) dipole with input u and output y and 
the transfer function (num = numerator, den = denominator) 

with 

Lx1 (ωp 
2 − ωll 

2 ) Lx2 (2ζpωp − 2ζll ωll ) (28)= Lδlat 
= Lδlat 

No output equation is required in this case because the trans­
formation from δlat to δ lat,ll is already contained in the state 
equations. 

Extension to Two Inputs and Two Outputs 

If a second order dipole with the same denominator is also 
appended to the pitch axis and if both inputs δlon and δlat act 
on p and q, the first formulation with the dipoles at the output 
leads to state equations ⎤⎡⎞⎛ 

2 ṗ Lp 0 0 0 0 0+ 2ζnumωnums + ω2 
numy s

(19) ⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎠ 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

0 Mq 0 0 0 0 
0 0 0 1 0 0 
1 0 −ω2 

ll −2ζll ωll 0 0 
0 0 0 0 0 1 

q̇ 
ẋ1 
ẋ2 
ẏ1 

= 
u s2 + 2ζdenωdens + ω2 

den 
= can be modeled with the state equations       ẋ1 0 1 x1 0 −ω2 

ll −2ζll ωll ẏ2 0 1 0 0u (20)+ẋ2 
= −ω2 

den −2ζdenωden x2 1 ⎤⎡⎞⎛ 
p Lδlon 

Lδlat and the output equation 

y = (ω2 − ω2 (21)num den)x1 +(2ζnumωnum − 2ζdenωden)x2 + u • 

Regarding the following transfer function of roll rate (p) due 

⎜⎜⎜⎜⎜⎜⎝ 

q 
x1 
x2 
y1 

⎟⎟⎟⎟⎟⎟⎠ 

+ 

⎢⎢⎢⎢⎢⎢⎣ 

Mδlon 
Mδlat 

0 0 
0 0 
0 0 

⎥⎥⎥⎥⎥⎥⎦ 

δlon 
δlat 

y2 0 0to lateral cyclic input, where the first order quasi-static re­
(29) 

(30) 

sponse is augmented by a second order lead-lag (ll) dipole, 

2 and observation equations 
s + 2ζpωps + ω2pll Lδlat p

= (22) pll =p +(ωp 
2 − ωll 

2 )x1 +(2ζpωp − 2ζll ωll )x2δlat s − Lp s2 + 2ζll ωll s + ω2 
ll 

qll =q +(ωq 
2 − ωll 

2 )x1 +(2ζqωq − 2ζll ωll )x2it can be interpreted in two ways: 
pll p pll The resulting transfer functions are 

= (dipole at the output) (23)
δlat δlat p pll Lδlon [ζp, ωp] pll Lδlat [ζp,ωp] 

= = or δlon s − Lp [ζll , ωll ] δlat s − Lp [ζll ,ωll ]pll pll δ lat,ll (31)
= (dipole at the input) (24) qll [ζq,ωq] qll [ζq,ωq]Mδlon 

Mδlat δlat δ lat,ll δlat = = 
δlon s − Mq [ζll ,ωll ] δlat s − Mq [ζll ,ωll ]which leads to different state space implementations. 

This means that the dipoles in pll /δlon and pll /δlat are identi-For the first case (dipole at the output), the equations for 
cal. The same holds for the dipoles in qll /δlon and qll /δlat .p/δlat and the dipole pll /p (with p as the input) are appended 

to each other in the state equations For the ACT/FHS an alternative approach was used, where 

˙ ⎝ẋ1 

p 
two second order dipoles act on the longitudinal and lateral ⎤⎡⎞⎛⎤⎡⎞⎛ 

Lp 0 0 p Lδlat cyclic inputs (Ref. 16). With this modeling variant, different   ⎠ = ⎣ ⎝⎦ ⎠ +⎣ ⎦ δlat0 0 1 0x1 numerator coefficients for all dipoles are possible through 
ẋ2 1 −ωll 

2 −2ζll ωll x2 0 ⎤⎡⎞⎛ 
ṗll Lp 0 Lx1 Lx2 Ly1 Ly2(25) 

and the roll rate including lead-lag pll is calculated by the 
output equation (see eq. (21)) 

pll = p +(ω2 − ωll 
2 )x1 +(2ζpωp − 2ζll ωll )x2 (26)p 

⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎠ 

= 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

0 Mq Mx1 Mx2 My1 My2 
0 0 0 1 0 0 
0 0 −ω2 

ll −2ζll ωll 0 0 
0 0 0 0 0 1 

q̇ll 
ẋ1 
ẋ2 
ẏ1 

−ω2 
ll −2ζll ωll ẏ2 0 0 0 0 

For the second case (dipole at the input), the input δlat has to ⎤⎡⎞⎛ 
pll Lδlon 

Lδlat be replaced by δ lat,ll in the equation for ṗll . This leads to the ⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎠ 

⎢⎢⎢⎢⎢⎢⎣ 

Mδlon 
Mδlat 
⎥⎥⎥⎥⎥⎥⎦ 

pll following system: 
δlon 0 0x1⎤⎡⎞⎛⎤⎡⎞⎛ • + 
δlat Lp Lx1 Lx2 1 0ṗll Lδlat 

x2pll   ⎝ ⎠ = ⎣ ⎝⎦ ⎠ +⎣ ⎦ δlat0 0 1 0 0ẋ1 0 y1x1 
ẋ2 0 −ω2 

ll −2ζll ωll x2 1 y2 0 1 
(27) (32) 
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with 

(ω2 − ω2Lx1 =Lδlon xp ll ) Lx2 = Lδlon 
(2ζxpωxp − 2ζll ωll ) 

(ω2 − ω2Ly1 =Lδlat yp ll ) Ly2 = Lδlat 
(2ζypωyp − 2ζll ωll ) 

Mx1 (ω2 − ω2 Mx2 (2ζxqωxq − 2ζll ωll )=Mδlon xq ll ) = Mδlon
 

(ω2 − ω2
My1 =Mδlat yq ll ) My2 = Mδlat 
(2ζyqωyq − 2ζll ωll ) 

(33) 

The resulting transfer functions are 

pll Lδlon [ζxp,ωxp] pll Lδlat [ζyp, ωyp] 
= = 

δlon s − Lp [ζll ,ωll ] δlat s − Lp [ζll , ωll ] (34)
qll Mδlon [ζxq,ωxq] qll Mδlat [ζyq,ωyq] 

= = 
δlon s − Mq [ζll ,ωll ] δlat s − Mq [ζll ,ωll ] 

and thus the dipoles in pll /δlon and pll /δlat have different nu­
merators and are therefore not identical. The same holds for 
the dipoles in qll /δlon and qll /δlat . 

Fig. 6 shows that the lead-lag dipoles for the ACT/FHS in 
p/δlon and p/δlat are different and can thus only be captured 
by the model with two dipoles at the inputs and not by the 
usual formulation with dipoles at the outputs. 
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Fig. 6. Match in roll rate due to cyclic inputs for both lead-
lag models (hover) 

Another advantage of the model formulation with the input 
dipoles is that possible effects of the lead-lag on the longi­
tudinal and lateral accelerations can be captured (see Fig. 7). 

On the other hand, the modeling variant with the dipoles on 
the outputs has the advantage, that the lead-lag influence can 
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Fig. 7. Match in longitudinal acceleration due to cyclic in­
puts for both lead-lag models (hover) 

10
0

10
1

−60

−50

−40

−30

q/δ
lon

M
ag

ni
tu

de
, d

B

10
0

10
1

−80

−60

−40

−20

q/δ
lat

10
0

10
1

−150

−100

−50

0

q/δ
ped

M
ag

ni
tu

de
, d

B

−80

−60

−40

−20

q/δ
col

10
0

10
1

−200

−100

0

P
ha

se
, d

eg

10
0

10
1

−1000

−500

0

10
0

10
1

−500

0

500

P
ha

se
, d

eg

−400

−200

0

200

 

 

measured

dipole on p,q

dipole on δ
lon

,δ
lat

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency, rad/s
10

0
10

1
0

0.5

1

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency, rad/s
10

0
10

1
0

0.5

1

Frequency, rad/s

Fig. 8. Match in pitch rate due to collective input for both 
lead-lag models (30 kts) 

require specifying a model structure beforehand but instead 
the model states are determined along with the corresponding 
model parameters. The physical interpretation of the resulting 
models, however, is difficult because the model states cannot 
be specified and the system matrices are fully populated. Nev­
ertheless, from comparing the eigenvalues of the identified 
models, it was obvious that the PBSIDopt identified models 
needed only one dipole to model the regressive lead-lag. 

Thus, a new model formulation for the regressive lead-lag was 
developed where one dipole (with states z1 and z2) is triggered 
by both the longitudinal and lateral cyclic inputs. 

also be modeled for collective inputs (see e.g. Fig. 8). For ⎞⎛⎤⎡⎞⎛ 
the model with input dipoles, this would require a third dipole 
and thus two additional state variables. 

ṗll Lp 0 Lz1 Lz2 pll ⎜⎜⎝ 
q̇ll 
ż1 

⎟⎟⎠ = 
⎢⎢⎣ 

0 Mq Mz1 Mz2 
0 0 0 1 

⎜⎜⎝ 
⎥⎥⎦ 

pll 
z1 

⎟⎟⎠ 

⎤ 
ż2 0 0 −ωll 

2 −2ζll ωll z2Formulation with One Second Order Dipole (35)⎡ 
Lδlon 

Lδlat ⎢⎢⎣ 
⎥⎥⎦ 

δlon 
δlat 

At DLR, system identification for the ACT/FHS has also been Mδlon 
Mδlat 

Dδlon 
Dδlat 

+performed using the optimized predictor-based subspace iden­
tification (PBSIDopt) method (Ref. 12). This method does not 1 1 
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This results in the following transfer functions 

1 s2 + Px1 s + Px0pll Lδlon = 
δlon s − Lp [ζll ,ωll ] 

21 s + Py1 s + Py0pll Lδlat = 
δlat s − Lp [ζll , ωll ] 

2 (36) 
sqll 1 Mδlon 
+ Qx1 s + Qx0 = 

δlon s − Mq [ζll ,ωll ] 
21 s + Qy1 s + Qy0qll Mδlat = 

δlat s − Mq [ζll ,ωll ] 

with 
Px1 = Lz2 + Lz1 Dδlon 

+ Lδlon 
2ζll ωll
 

ω
2 

ω
2
Px0 = Lz1 + Lδlon ll − Lz2 Dδlon ll + Lz1 Dδlon 

2ζll ωll 

Py1 = Lz2 + Lz1 Dδlat 
+ Lδlat 

2ζll ωll
 

ω
2 

ω
2
Py0 = Lz1 + Lδlat ll − Lz2 Dδlat ll + Lz1 Dδlat 

2ζll ωll 
(37)

Qx1 = Mz2 + Mz1 Dδlon 
+ Mδlon 

2ζll ωll
 

ω
2 

ω
2
Qx0 = Mz1 + Mδlon ll − Mz2 Dδlon ll + Mz1 Dδlon 

2ζll ωll 

Qy1 = Mz2 + Mz1 Dδlat 
+ Mδlat 

2ζll ωll
 

ω
2 

ω
2
Qy0 = Mz1 + Mδlat ll − Mz2 Dδlat ll + Mz1 Dδlat 

2ζll ωll 

Again, all dipole numerators are different and thus difer­
ent dipoles in pll /δlon and pll /δlat respectively qll /δlon and 
qll /δlat can be realized. In the appendix it is shown analyti­
cally that the parameters of the two-dipole model can be cal­
culated from those of the one-dipole formulation when the 
pitch and roll equations are decoupled. 
Fig. 9 shows that this one-dipole approach leads to results that 
are comparable to those obtained with two dipoles at the input. 
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Fig. 9. Match in roll rate due to cyclic inputs for the one-
and two-dipole formulations (60 kts) 

Furthermore, this one-dipole approach can easily be extended 
so that the lead-lag is also excited by collective inputs by just 
adding another column in the control matrix from eq. (35). 
Thus the one-dipole formulation has the advantages of both of 
the other two-dipole modeling variants and is simpler because 
it needs only two lead-lag states. 

ENGINE MODELING
 

After accounting for the rotor degrees of freedom of flap­
ping, inflow and regressive lead-lag, the identified models of 
the ACT/FHS still had deficits that were attributed to miss­
ing engine dynamics. According to (Ref. 13) the effect of 
the engine/governor dynamics on the fuselage response pri­
marily manifests itself as a large additional phase lag in the 
p/δcol , q/δcol , and r/δcol frequency responses. In case of the 
ACT/FHS, deficits were only experienced in the response of 
yaw rate due to collective input. 

Preliminary Investigations 

First, it was investigated whether accounting for engine dy­
namics by a simple lag in the influence of collective input on 
the angular rates as suggested in (Ref. 13) would be sufficient. 
For this approach, the time delay in the collective input was 
approximated by a Padé approximation 

δ :
col 2/τen − s 

= (38)
δcol 2/τen + s 

where τen is the time constant. δcol is the original collective 
input and δ :

col the delayed collective input, that is used in the 
equations of motion for the pitch, roll, and yaw rates. This 
approach, hovever, did not yield the desired improvement. 

Therefore, a linear regression was performed in the time do­
main using the equation for yaw acceleration 

ṙ =Nrr + Nvv + Np p + Nδcol 
δcol + Nδped 

δped 
(39) 

+ NQQ + NΩΩ 

The coefficients Nr, ... NΩ were determined using measured 
time history data both for the output variable ṙ and the inputs 
r, ..., Ω. This investigation showed that torque Q has a pro­
found influence on the yawing motion whereas no direct influ­
ence of rotor speed Ω could be found. Thus, torque modeling 
with a dynamic engine model was needed. 

Frequency Response Modeling 

First, the frequency response for rotor speed due to collec­
tive was approximated separately. A good approximation was 
reached with the following model 

Ω Kδcol s − Ez,col 
= (40)

δcol s2 + 2ζenωens + ω2 s − Epen 

which consists of a second order system with frequency ωen 
and damping ζen combined by a first order pole/zero pair 
(dipole) with pole Ep and zero Ez,col . 

In the engine model that was identified for the Firescout UAV 
(Ref. 13), a second order system for rotor speed is combined 
with a washout filter modeling the governor dynamics. This 
washout filter corresponds to setting Ez,col = 0 in eq. (40). The 
engine of the ACT/FHS is controlled by a FADEC system and 
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a sufficient approximation of Ω/δcol could only be reached 
with Ez,col  = 0. 

Next, the frequency responses due to collective and pedal in­
puts were approximated with a common denominator. This 
corresponds to extending eq. (40) by 

Ω Kδped s − Ez,ped
= (41)

δped s2 + 2ζenωens + ω2 s − Epen 

Fig. 10 shows the resulting match for two of the five reference 
speeds. (The drop in coherence around 2 rad/s in Ω/δped for 
the 90 kts case is caused by the influence of dutch roll dynam-

Tischler (Ref. 13) suggests using a Taylor series for modeling 
the torque dynamics 

Q̇ = RQQ + RΩΩ + R ̇ ˙ δped (45)
Ω

Ω + Rδcol 
δcol + Rδped 

Inserting the equations for Ω̇ from eq. (43) yields 

Q̇ =R
Ω̇

Ω̇  en − EzRΩ̇
Ωen +(RΩ + EpR

Ω̇
)Ω + RQQ 

(46)
+ Rδcol 

δcol + Rδped 
δped 

This equations was added to the system from eq. (44) to arrive 
at the desired state space system for rotor speed and torque. ⎛ ⎡⎞ ⎛⎤ ⎞ics.) 

Ω̈en Ω̇en−2ζenωen −ω2 
en 0 0 

Ω̇en 
Ω̇ 

⎜⎜⎝ 
⎟⎟⎠ = 
⎢⎢⎣ 

⎜⎜⎝ 
⎥⎥⎦ 

⎟⎟⎠ 
Ωen 
Ω 
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Fig. 10. Transfer function approximation for rotor speed 
(blue = hover, red = 90 knots, solid = measured, dashed = 
model) 

State Space Model 

For inclusion in the identification model, the frequency re­
sponse models from equations (40) and (41) had to be con­
verted into a state space model. For this, a common zero 
Ez,col = Ez,ped = Ez was enforced. Defining an instrumental 
variable Ωen with 

Ω Ω s − EzΩen Kδcol= = (42)
s2 + 2ζenωens + ω2δcol Ωen δcol s − Ep en 

yields the two equations 

¨ Ω̇en − ω2 
Ωen + Kδcol

Ωen = −2ζenωen en δcol 
(43)

Ω̇ = Ω̇en − EzΩen + EpΩ 

Adding the pedal input and using matrix notation yields 

1 −Ez Ep 0 
Q̇ R ̇ −EzR ̇

Ω Ω RΩ + EpR ̇ RQ Q
Ω ⎡ ⎤

Kδcol 
Kδped⎢⎢⎣ 

⎥⎥⎦ 
δcol 
δped 

0 0 
0 0 

Rδcol 
Rδped 

+ 

(47) 

The parameters of this model were identified for each of the 
five reference speeds with the maximum likelihood (ML) fre­
quency domain method using collective and pedal sweep ma­
neuvers. The parameter R

Ω̇
exhibited high uncertainty and 

was thus set to zero. The identified models were validated 
with 3211-multistep maneuvers. Fig. 11 shows that the match 
in torque and rotor speed both for collective and pedal inputs 
in hover is quite good. 
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Fig. 11. Validation of the identified engine model in hover 
(blue, green = measured, red = model) 

⎛
Ω̈en 

⎡⎞ ⎛⎤ ⎞
Ω̇en−2ζenωen −ω2 

en 0 Model Simplifications 
Ω̇en ⎠ =⎣ 1 0 0 ⎝⎦ Ωen ⎝ ⎠ 

Ω̇ 1 −Ez Ep Ω Before the development of the models described in this paper, (44) 
corrections in transfer function form had been used to reduce 

⎤⎡ 
Kδcol 

Kδped δcol⎣ ⎦ the remaining model deficits of the prior models (Ref. 17). As 
the corrections to r/δcol , which were needed to account for the 

0 0+ 
δped0 0 
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missing engine dynamics, used the same transfer function for 
all speeds, it was tried to simplify the identified engine model 
accordingly. 

First the calculation of torque from rotor speed was investi­
gated by using the measured data for Ω and Ω̇ in eq. (45). This 
showed that the relationship between rotor speed and torque 
does not vary with speed. Also, the pedal influence coefficient 

could be neglected. Rδped 

Next, it was tried to simplify the rotor speed model. As the 
frequency responses from collective and pedal to Ω have a 
similar shape for all speeds and mainly a different amplitude 
(see Fig. 10), a model for rotor speed was determined where 
the parameters ζen, ωen, Ez and Ep are identical for all speeds 
and only the control derivatives Kδcol 

and Kδped 
are different 

(see eq. (44)). The match of this simplified model was almost 
as good as for the models that had been optimized separately 
for each reference speed. 

Model Integration 

Finally, the identified engine model was coupled to the overall 
model. Fig. 12 shows the match in the frequency responses 
r/δped and r/δcol in hover for the models with and without 
engine modeling. As expected, the yaw rate response to col­
lective input improves both in amplitude and in phase. In­
terestingly enough, the yaw response to pedal inputs (on-axis 
response) improves also. 
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Fig. 12. Improvement of yaw responses by engine model­
ing (hover) 

INTEGRATED MODEL 

The overall models including rotor and engine dynamics were 
identified in an incremental way. The ML frequency domain 
method was used for all state space model identification. 

First, 6-DoF models were identified over the frequency range 
of 0.1-10 rad/s. Next, the flapping dynamics were added us­
ing the modified explicit formulation as described in this pa­
per. The theoretical prediction from eq. (4) was used as a 

starting value for the flapping time constant and the frequency 
range for the approximation was extended to 0.5-15 rad/s. To 
extend the model range of validity even further, the explicit 
inflow equations were then added to the model and all model 
parameters optimized for a frequency range of 0.5-30 rad/s. 
To allow for model stitching, care was taken in every step, 
that it would be possible to interpolate between the models 
identified for each of the five reference speeds. Fig. 13 shows 
the identified moment derivatives versus speed. It can be seen 
that the models for the different reference speeds have similar 
sets of free parameters and that the change over speed for all 
derivatives is smooth. 
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Fig. 13. Identified moment derivatives versus speed 

Next, the engine dynamics were added. For this step, the en­
gine model parameters were fixed at the identified values from 
the separate engine model identification. Coupling deriva­
tives NQ and LQ (the latter only for hover and low speed) 
were introduced and estimated together with fuselage and ro­
tor derivatives over a frequency range of 0.5-30 rad/s. 
For the ACT/FHS the influence of the regressive lead-lag 
mode is only a very local effect around 12 rad/s (see Figs. 6 
and 7) and thus could be identified last. The one-dipole for­
mulation was used and extending it to collective inputs was 
not necessary because the lead-lag influence on the angular 
rates due to collective input is not significant throughout the 
flight envelope. For this step, all model parameters deter­
mined so far were fixed and only the lead-lag model parame­
ters were identified over a frequency range of 10-15 rad/s. Fi­
nally, the identified lead-lag parameters were fixed and the re­
maining parameters re-iterated over the full frequency range. 
Figure 14 illustrates the achieved frequency domain match of 
the hover model. The models for the forward flight cases are 
of similar quality. 
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(a) Roll rate due to longitudinal and lateral cyclic inputs (b) Longitudinal acceleration due to longitudinal cyclic and 
collective inputs 
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(c) Pitch rate due to longitudinal and lateral cyclic inputs (d) Lateral acceleration due to pedal and lateral cyclic inputs 
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(e) Yaw rate due to pedal and lateral cyclic inputs (f) Vertical acceleration and yaw rate due to collective inputs 

Fig. 14. Match of the overall model in hover 
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Some modeling deficits can still be seen where a rising ampli­
tude in the frequency range of 20-30 rad/s is not covered by 
the model, see for example r/δped in Fig. 14(e) or ax/δcol in 
Fig. 14(b). These deficites are attributed to structural modes 
such as tailboom flexibility and will be accounted for in the 
future. 

CONCLUSIONS 

System identification was used to generate models for the 
ACT/FHS helicopter that fulfill the following requirements: 

•	 The models should be accurate for frequencies up to 
30 rad/s. 

•	 It must be possible to interpolate between the models for 
the five reference speeds. 

•	 The models have to be invertible with respect to the out­
put variables p, q, r, az and thus the corresponding sub-
models must not have any positive transmission zeros. 

To arrive at this goal, the following submodel improvements 
were necessary: 

1. Using collective control as an input to the flapping an­
gles avoided positive transmission zeroes in the explicit 
flapping modeling. 

2. In the modeling of the vertical axis coning had to be ne­
glected as it caused positive transmission zeros for the 
forward flight cases. 

3. A new modeling variant for the regressive lead-lag was 
developed that needs only one second order dipole (two 
states). 

4. Integrating	 a seperately developed engine model im­
proved the yaw rate response, especially in hover. 

Models with this extended structure were identified for five 
reference speeds and form the basis for a quasi-nonlinear sim­
ulation and for control law development. 

Author contact: Susanne Seher-Weiß, susanne.seher­
weiss@dlr.de 

APPENDIX 

Relationship Between One-Dipole and Two-Dipole For­
mulation 

The relationship between the lead-lag formulation with two 
dipoles acting on the inputs and the model with only one 
dipole that is triggered by both the longitudinal and the lat­
eral cyclic input can be derived by comparing the numerator 
coefficients in the transfer functions from eqs. (34) and (36). 

2The coefficients for s are Lδlon 
and Lδlat 

respectively Mδlon 
and 

for both models which means that the control derivatives Mδlat 
for both models are identical. 

Comparing the coefficients for s1 and taking into account the 
eqs. (33) and (37) for the model coefficients yields 

(2ζxpωxp − 2ζll ωll ) = Lz2 + Lz1Lx2 = Lδlon	 
Dδlon 

(2ζypωyp − 2ζll ωll ) = Lz2 + Lz1Ly2 = Lδlat	 
Dδlat (48)

(2ζxqωxq − 2ζll ωll ) = Mz2 + Mz1Mx2 = Mδlon	 
Dδlon 

(2ζyqωyq − 2ζll ωll ) = Mz2 + Mz1My2 = Mδlat	 
Dδlat 

Similarly, comparing the coefficients for s0 yields 

(ω2 − ω2Lx1 = Lδlon xp	 ll )
 

ω
2
 = Lz1 − Lz2 Dδlon ll + Lz1 Dδlon 

2ζll ωll 

(ω2 − ω2Ly2 = Lδlat yp	 ll )
 

ω
2
 = Lz1 − Lz2 Dδlat ll + Lz1 Dδlat 

2ζll ωll 
(49) 

(ω2 − ω2Mx2 = Mδlon xq ll )
 

ω
2
 = Mz1 − Mz2 Dδlon ll + Mz1 Dδlon 

2ζll ωll 

(ω2 − ω2My2 = Mδlat yq ll )
 

ω
2
 = Mz1 − Mz2 Dδlat ll + Mz1 Dδlat 

2ζll ωll 

This shows that the coefficients of the two-dipole formulation 
can be calculated from those for the one-dipole version. 

For the reverse relationship, subtracting the first and second 
equation from (48) yields 

− Ly2 = Lz1 ) (50)Lx2 (Dδlon 
− Dδlat 

Multiplying the first equation from (48) by −Dδlat 
and adding 

the second equation multiplied by Dδlon 
gives 

) (51)Dδlon 
Ly2 − Dδlat 

Lx2 = Lz2 (Dδlon 
− Dδlat 

Similarly, subtracting the first and second equation from (49) 
yields 

Lx1 − Ly1 =Lz1 (Dδlon 
− Dδlat 

)2ζll ωll 
(52)

)ω2− Lz2 (Dδlon 
− Dδlat ll 

and multiplying the first equation from (49) by −Dδlat 
and 

adding the second equation multiplied by Dδlon 
gives 

) (53)Dδlon 
Ly1 − Dδlat 

Lx1 = Lz1 (Dδlon 
− Dδlat 

Inserting eqs. (50) and (51) into eq. (52) yields 

Lx1 − Ly1 = (Dδlon 
Ly2 Lx2 )ωll 

2 +(Lx2 − Ly2 )2ζll ωll − Dδlat 
(54) 

or 

Ly2 Lx2 )ω
2 = Lx1 − Ly1 +(Lx2 − Ly2(Dδlon 

− Dδlat ll	 )2ζll ωll 
(55) 

and combining eqs. (50) and (53) gives 

(56)Lx2 − Ly2 = Dδlon 
Ly1 − Dδlat 

Lx1 
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Now that Lz1 and Lz2 have been eliminated, Dδlon 
and Dδlat 

can 
be separated by multiplying eq. (55) by Lx1 and subtracting 
eq. (56) multiplied by Lx2 ω

2 
ll 

)ω2Dδlon 
(Lx1 Ly2 − Lx2 Ly1 ll 

=Lx1 (Lx1 − Ly1 )+ Lx1 (Lx2 − Ly2 )2ζll ωll (57) 

)ω2− Lx2 (Lx2 − Ly2 ll 

and multiplying eq. (55) by Ly1 and subtracting eq. (56) mul­
tiplied by Ly2 yields 

)ω2Dδlat 
(Lx1 Ly2 − Lx2 Ly1 ll 

=Ly1 (Lx1 − Ly1 )+ Ly1 (Lx2 − Ly2 )2ζll ωll (58) 

)ω2− Ly2 (Lx2 − Ly2 ll 

Eqs. (57) and (58) allow to determine Dδlon 
and Dδlat 

from the 
coefficients of the two-dipole model. Inserting the results into 
eqs. (50) and (51) then yields Lz1 and Lz2 . 

So far, only the coefficients of the roll rate transfer functions 
have been used. Analogously, Dδlon 

and Dδlat 
can also be de­

termined from the coefficients of the pitch equations. This 
leads to a constraint for the coefficients of the two-dipole for­
mulation. Thus, the two model formulations are not fully 
equivalent. 
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