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PREFACE 
 
 

 This introduction to rotorcraft and their technology begins with a broad review of 
several types of rotorcraft. The evolution of these unique aircraft, from autogyros to 
helicopters to high-speed configurations, has spawned a major industry and an associated 
technology. The history of rotorcraft, beginning with very early concepts and model 
helicopters, has been well recorded in the popular literature. On the other hand, the evolution 
of the technology resides in literally thousands of technical publications. 
 
 I have tried to bring together the popular history of rotorcraft evolution and the 
parallel, major technical steps made by its pioneers. Tying the engineering explanations and 
analyses to configuration evolution provides the reader with two foundations. The first 
foundation is a more complete appreciation of what has been accomplished in creating the 
rotorcraft industry. The second foundation is a clear and simple introduction to (1) physical 
and mechanical aspects, (2) basic nomenclature, (3) engineering symbols, and 
(4) fundamental equations. As you will see, the early pioneers encountered and solved a 
number of problems simply by cut-and-try methods. More often than not, the dynamics, 
aerodynamics, structural, and other associated analytical technologies actually followed 
successful demonstration that the problem had been understood and solved.  
 
 In bringing these two branches of history and technology together, I have found the 
occasional use of first-person pronouns to be a more natural and comfortable style to adopt.  
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Rotorcraft enjoy a unique position in the transportation industry. 
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1 OVERVIEW 
 
 
 Rotorcraft, both low- and high-speed classes, enjoy a unique position in the field of 
transportation. Today, the helicopter is the most well-known example of a low-speed 
rotorcraft, but during the 1920s to the early 1940s the autogyro was the dominant rotorcraft in 
production. The autogyro, however, was not designed to hover. When the helicopter proved 
feasible in the late 1930s, further development of the autogyro was curtailed. Industry 
capitalized on the efficient hovering ability of the helicopter by incorporating the evolution of 
the gas turbine engine in the mid-1950s. Together, these two features resulted in the most 
favorable ratio of horsepower to gross weight of any vertical takeoff and landing aircraft in 
widespread use as the preface figure clearly shows [1]. 
 
 If the helicopter has inherent shortcomings, it now appears to be in providing high 
forward speed and range commensurate with its hovering ability. This impression, created by 
comparisons such as the preface figure, shows the helicopter to be about 100 to 300 miles per 
hour slower than other aircraft in its power-to-weight-ratio class. On the horizon you can now 
see at least one high-speed rotorcraft, the tiltrotor. This configuration has demonstrated 
efficient hovering, the transition from helicopter to airplane flight, and efficient forward flight 
to 300 knots. It is this latest evolution that has been the goal of virtually every rotorcraft 
inventor since the industry began. 
 
 There are no less than four very clear milestones for an industry that began, perhaps 
you could say, as early as 1785 with a rudimentary helicopter model. There are, of course, any 
number of “firsts” in any industry that grows. For the rotorcraft industry, I have selected the 
four that seem to me to have the broadest and most far reaching effects.  
 
 The first milestone was reached by Juan de la Cierva with his successful 
demonstration of the autogyro. This first successful rotorcraft was developed through a series 
of trials and errors that began with an idea in 1919 [2]. After trying three distinct 
configurations, Cierva succeeded, as he relates in references [3-5] with his Type 4 autogyro 
shown in Fig. 1-1. This rotorcraft “was ready to be used in real flight, and on 17th January 
1923, it flew [piloted by Cavalry Lieutenant Alejandro Gomez Spencer] right across the 
aerodrome at Getafe [Spain] at a height of several meters.”  
 
 The Type 4 underwent considerable modifications and evolved into the Model C.6A. 
In October 1925, Cierva concluded 3 weeks of flight demonstrations of his Model C.6A at 
Farnborough, England, with a resounding success. This rudimentary rotorcraft required a total 
of 32 different experimental steps as Cierva struggled with the technical fundamentals of rotor 
system design, but with his strong engineering background, he was able to lay the theoretical 
foundation for the rotorcraft industry today.  
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 Cierva, with help from co-author Don Rose, wrote a more popular narrative of his 
work entitled Wings of Tomorrow [6], which was published in 1931. This book is fascinating 
from two points of view. First, it explains the more technical side of his aircraft in laymen 
terms, and second, it is clearly marketing the product. The capabilities to invent, develop, 
produce, and sell are not often found in one person. You can appreciate the contributions 
Cierva made even further by reading an up-to-date, detailed, and well-researched history such 
as Cierva Autogiros—The Development of Rotary-Wing Flight written by Peter Brooks [7]. 
 
 Autogyro development flourished not only in England but also in the United States, 
principally around the Philadelphia, Pennsylvania area, which became a veritable hot bed of 
rotorcraft activity. In early 1929, Harold F. Pitcairn acquired the U.S. rights to the Cierva 
Autogiro and became president of the Pitcairn-Cierva Autogiro Company of America, Inc. 
The Kellett Aircraft Corporation acquired a license from Pitcairn in 1931 and autogyro 
development really took off. Even with Cierva’s untimely death on December 9, 1936, the 
success of the rotorcraft industry was ensured.  
 
 
 

 
Fig. 1-1. On January 17, 1923, the Cierva Autogiro Type 4 laid the foundation for the 

rotorcraft industry today [3]. 
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 The second milestone I would suggest is the demonstration of a truly practical 
helicopter. E. H. Henrich Focke accomplished this milestone with his model F. 61. His side-
by-side configuration is shown in Fig. 1-2. The F. 61 astounded the world with its stability, 
control, and performance just prior to the beginning of World War II. The pilot, Ewald 
Rohlfs, made the first flight of 28 seconds on June 26, 1936. Focke, in relating his story [8, 9] 
set the number-one design requirement to provide the “possibility of a forced landing in case 
of engine failure.” He records [10] that “on 10th May 1937 he [E. Rohlfs] performed the very 
first auto-rotational landing, with engine off; a perfect 3-point, tail-down landing.” Focke set 
five additional design criteria “in the order of their importance”: 

•  Controllability and stability 
•  General safety in operation 
•  Simplicity of the piloting maneuvers 
•  Acceptable performance 
•  Reasonable servicing 

These design criteria were just as important to Cierva and remain a top priority today. 
 
 

 
Fig. 1-2. The Focke F. 61 helicopter astounded the world in June 1936 and ushered in  

the first growth step of the industry [9]. 
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 One statement Focke makes in giving the Fifth Cierva Memorial Lecture [10] is 
particularly interesting. He writes that  

“The licence agreement with Cierva did not give the author’s firm the right to theoretical 
information, so that a copy of Cierva’s Engineering Theory of the Autogiro was not made 
available to my company. It was asserted by some that to make a helicopter it was necessary 
only to modify slightly an Autogiro. In reality, with the help of the Reports and Memoranda 
of Glauert and Lock it was necessary to reconstruct again all the technical knowledge 
concerning the blades, the rotor-head, the controls, and further, during 1932 to 1936, to make 
special application of all this knowledge to the helicopter.” 

The copy of Cierva’s Engineering Theory of the Autogiro [11] that Focke refers to does not 
appear to have been widely circulated. However, the two notebooks were edited by Dr. James 
A. J. Bennett, and a copy came into the hands of Dr. Richard Carlson in the mid-1970s. 
Dr. Carlson made three copies, forwarded one to the American Helicopter Society, and gave 
me one. The engineering theory is in one volume and the Theory of Stresses on Autogiro 
Rotor Blades [12] is in the second volume. Even a quick review of Cierva’s notes shows just 
how advanced his engineering analysis was as he developed his Autogiro.1 
 
 Focke also refers to the Reports and Memoranda of Glauert’s first study [13] published 
in November 1926, which was followed quickly by Lock’s report [14] published in March 
1927. Together, these reports set the formative standards for technical work that exist even to 
this day. The R&Ms were, and still are, published by the Aeronautical Research Committee of 
Great Britain. These early theoretical reports, along with the extensive licensing arrangements 
that Cierva entered into, spread autogyro technology around the world.  
 
 The Henrich Focke helicopter development program was accompanied by “more than 
2,000 wind tunnel measurements,” testing of “a free flight flying model with a small engine of 
0.7 hp and an all-up weight of 9 pounds,” and lengthy whirl stand testing on a special ground 
test rig. “A 50-hours-of-endurance test was made, and after disassembly, inspection, and 
reassembly, 10 more hours were run.” Focke thus added to the theoretical foundation. Just as 
importantly, he set the precedent for what constitutes a satisfactory supporting test program 
for rotorcraft development within the industry. He seems to offhandedly pass all this work off 
(in his Cierva Lecture) with the thought that: “By and by, the whole theoretical foundation of 
the behaviour of the rotor was established.” 
 
 The 2,100-pound-gross-weight F. 61 went on to establish record levels of performance 
on June 26th and 27th of 1937. Test pilot Ewald Rohlfs demonstrated a 62-mile flight at an 
average speed of 77 miles per hour. He took the rotorcraft to 7,800 feet, which was some 
7,300 feet above the previous record. As you will read later, the German government placed 
production orders for the follow-on design, the much larger Model Fa 223 with a takeoff gross 
weight over 8,000 pounds. 
  

                                                 
1 Peter Brooks [7] states in note 2, pg. 357, that the word Autogiro was a Cierva Company trademark, to be 
spelled with a capital A and with the “i.” He further says the generic term is autogyro, spelled with a lowercase 
“a” and a “y.” Others have noted that autogiro is Spanish for autogyro in some dictionaries. 
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 The history of the helicopter has been told (and retold) many times with new and 
marvelous stories still coming to light. A history I found particularly satisfying was published 
in 1982 by Jean Boulet in his History of the Helicopter as Told by its Pioneers [15]. From this 
history, it becomes even clearer that the Focke success inspired companies in both England 
and the United States. In England, Gand J. Weir, Ltd carried on with two rotorcraft based on 
the Focke design. This step ultimately led to today’s Westland Helicopters Ltd. In the U.S.A., 
the Platt-LePage Aircraft Company was formed. This company won the first U.S. Army Air 
Corps helicopter design competition on April 15, 1940, with a configuration patterned after 
the Focke F. 61. The Army assigned this rotorcraft the model number XR-1. This step 
ultimately led to the Piasecki Helicopter Corporation2 and to today’s Helicopter Division of 
the Boeing Company, which produces the modern tandem rotor helicopter. 
 
 The third milestone I have selected was accomplished by Igor Sikorsky with his 
Model VS-300. He pioneered the single main rotor (with anti-torque and directional control 
provided by a tail rotor) configuration shown in Fig. 1-3. Sikorsky’s interest in the helicopter 
is frequently traced back to his first unsuccessful attempts to build a coaxial helicopter in 
Russia in the early 1900s. However, it is the progressive development of the more modern, 
single main rotor configuration over the period from late 1938 to the end of December 1941 
that stands out. Sikorsky, supported by United Aircraft, achieved a 10-second first flight with 
the initial VS-300 on September 14, 1939. The rotorcraft was nearly uncontrollable because 
the pilot’s (Igor Sikorsky himself) stick was about 60 degrees out of phase with the necessary 
rotor motion. This caused a normal fore and aft stick movement to produce more helicopter 
roll motion than the desired pitch motion. I found this initial effort by Sikorsky somewhat 
surprising in view of the theory and data available at the time, but, in retrospect, history does 
not show that lessons learned are always readily interchanged and heeded. This initial VS-300 
crashed on December 9, 1939, and the direct control system of the main rotor with collective 
and cyclic pitch was abandoned for two years. During those two years, a number of small tail 
rotors were added to control pitch, roll, and yaw. As control was improved, these additional 
tail rotors were selectively removed. Finally, on December 8, 1941, the prototype of what 
most people accept as the modern day, single-rotor helicopter was successfully flown. 
Sikorsky had returned to direct control of the main rotor (with correct phasing), and only one 
tail rotor, used for anti-torque and yaw control, was needed. Along the way, Sikorsky captured 
the world endurance record with a 1-hour, 32-minute (and 26.1-second) hover flight. The  
VS-300 continued flight research until it was retired in October 1943. These efforts supported 
development of the XR-4 that was to become the first production helicopter obtained in 
quantity by the U.S. Army Air Corps. (The XR-2 and XR-3 were assigned to the Kellett 
Autogiro Corp.)  
 

                                                 
2 In 1955, at the start of my senior year at Rensselear Polytechnic Institute, I interviewed for any “job” with the 
Piasecki Aircraft Corp. When I actually hired on (June 1956), the company had become the Vertol Aircraft 
Corporation, and I missed the opportunity to work for (well, at least in the same building with) Frank Piasecki 
himself. That is my only regret about my career with an industry that has given me so much downright fun and 
to which I owe so much. 
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Fig. 1-3. The Sikorsky VS-300 established the modern helicopter, single main rotor 
configuration in December 1941 (photo from author’s collection).  

 
 
 You can follow the development of the VS-300 in Sikorsky’s own words. His reports 
of the 1941 and 1942 period [16-21] are fascinating. A nephew of Igor Sikorsky wrote a 
somewhat more technical overview of the development of the VS-300 [22]. In 1998 William 
Hunt wrote an excellent, very technically oriented story [23]. The book written by Sikorsky’s 
chief test pilot, Charles Morris [24], and the one by Col. Franklin Gregory [25] bring the story 
home with the most important view—the user. You will also find excellent accounts of rotary 
wing history recorded by the Air Corps [26, 27]. 
 
 In selecting just two helicopter-related milestones for this overview, I have not 
intended to dismiss the enormous efforts that came before or after. Rather, I have brought 
many of these accomplishments to light in Volume II—Helicopters. The number of books 
available about the helicopter (its history, the many companies that have come and gone, and 
the several “family trees” of production helicopters today) will let you peruse the past as 
thoroughly as you like. I have always enjoyed each new view that has been published and 
continue to learn a great deal.  
 
 Before going on to discuss the fourth rotorcraft milestone I have selected, a little more 
must be said about the helicopter and its rotor system.  
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 The helicopter rotor system is fundamental to its hovering efficiency. The rotor system 
is also the reason for the slower speed of the helicopter relative to fixed-wing aircraft, as 
shown in the preface figure. As the primary lifting and propelling device, the rotor system 
permits installation of a minimum horsepower engine for hovering, but with power available 
set by hovering requirements, airplane-like speeds have yet to be commonly achieved. Finally, 
the rotor system blades and hub aerodynamic drag at high speed is, today, two to three times 
that of the equivalent fixed-wing airplane. 
 
 Helicopter development and rotor system technology is still in its infancy. 
Chronologically, airplane or fixed-wing development leads rotorcraft by 30 to 40 years. To 
illustrate this point, the principles of helicopter flight and control were convincingly 
demonstrated by 1940 in contrast to the accomplishments of the Wright brothers and others in 
the fixed-wing industry by 1910. As another example, the rotorcraft industry adopted the 
retractable landing gear for helicopters in the late 1970s, but this feature was incorporated on 
airplanes in the mid-1930s. Higher cruising speed made the reduced drag worthwhile despite 
the extra weight and mechanical complications. On balance, however, the helicopter is well 
suited to a diverse group of tasks because of its broad range in operating speeds. However, the 
helicopter breakthrough that parallels the swept-wing and gas turbine engine combination of 
the airplane is still awaiting full-rate production. Since Cierva’s Autogiro burst on the scene, 
there has been a continual search for a high-speed rotorcraft to compliment the helicopter. 
 
 This brings me to the fourth milestone I have selected for this introduction to 
rotorcraft. Today, the search for a configuration that combines both helicopter and airplane 
capabilities has yielded the tiltrotor. This vertical takeoff and landing aircraft (VTOL) is 
illustrated in Fig. 1-4. The Bell–Boeing V-22 tiltrotor is in production for the U.S. Marines. 
The V-22 was preceded by the Bell XV-15, the first practical tiltrotor, which reached 
300 knots at 16,000-feet altitude on June 17, 1980. While perhaps not as familiar to you as the 
helicopter, the tiltrotor has already demonstrated speeds above 300 knots at over 15,000-feet 
altitude, and with its large diameter rotors, the hovering efficiency of the tiltrotor approaches 
that of the helicopter.  
 
 This most recent step, as impressive as it is, is not the fourth milestone I have in mind. 
Milestone number four is, in fact, not a product. Rather it is the outgrowth from a technical 
meeting held in the United States at Philadelphia, Pennsylvania, on December 9, 1949. The 
occasion was the First Convertible Aircraft Congress. This meeting was sponsored by the 
Philadelphia Sections of the American Helicopter Society (a relatively new group founded in 
1943 by a small group of Sikorsky Aircraft employees) and the Institute of the Aeronautical 
Sciences (now the AIAA). The chairman for the 1-day meeting was E. Burke Wilford and 
proceedings were published [28]. The morning session had five papers and was chaired by 
Richard H. Prewitt, by then president of his own company. Laurence LePage chaired 
the afternoon session and six papers were presented. Over 200 pioneers attended this 
“Congress.”3 
 
                                                 
3 This first Convertible Aircraft Congress was followed by a second in Dec. 1952 [29], a third in Nov. 1955 [30], 
and a fourth in Dec. 1958 [31].  



1.  OVERVIEW 

 8

Fig. 1-4. The Bell–Boeing V-22 is the first practical tiltrotor to reach production 
(photo courtesy of Bell Helicopter Textron).  

 
 At that time, late 1949, there was only one demonstrated suggestion of a convertible 
aircraft. This rotorcraft, the HV-2A4 shown in Fig. 1-5, was championed by Gerard P. Herrick. 
The HV-2A was patterned after the autogyro, however the top “wing” could be started and 
stopped in flight. Its predecessor, the HV-1 that began fixed-wing flying on November 6, 
1931, was destroyed when a blade struck the vertical stabilizer during a rotor start-up from the 
fixed, biplane mode.  
 
 The HV-2A, piloted by George Townson, completed the first of about 100 
“conversions” from fixed to rotary wing towards the end of July 1937. A very interesting 
article [32] appeared in early 1991 that provides more detail of this first successful step 
towards a practical VTOL. Gerard Herrick presented the first paper in the afternoon session of 
the First Convertible Aircraft Congress. He showed a movie of past efforts and then discussed 
his newest design, the HC-6D.  
 
 The foreword to the proceedings of the First Convertible Aircraft Congress is a proper 
conclusion to this discussion of milestone four. The words that appear over the signature of 
Chairman Wilford read as follows: 

                                                 
4 The H stood for Herrick, of course, and the V stood for Vertoplane. All manner of names for a “convertible 
aircraft” can be found in the literature. We seem to have settled today on VTOL, short for Vertical Takeoff and 
Landing, to capture the capability still being sought. 
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Fig. 1-5. The Herrick, HV-2A stoppable rotor autogyro completed 100 conversions from 

fixed to rotating wing in the 1939–1940 period (photo from author’s collection).  
  

“Eleven years have passed since the First Rotary Wing Aircraft Congress at [The] Franklin 
Institute paved the way for the modern conception of the Helicopter. At that time Sikorsky had 
not flown his famous test ship, Arthur Young was working on his models in his barn at Paoli 
[Penn.], and Frank Piasecki was just finishing his course in aeronautical engineering under 
Dr. Klemin. Pitcairn, Kellett, Dr. Myers, Herrick and others had spent large sums of money and 
better than a decade of their lives to lay the foundation for Rotary Wing and Convertible 
Aircraft. 

 History often repeats. The proceedings of this [First Convertible Aircraft] Congress 
will be read and will attract many new minds and hearts to the final solution of useful flight for 
humanity. We want to thank the members of the general committee and the Philadelphia 
Section of the Institute of the Aeronautical Sciences for their help. We all hope that something 
of great use to the U.S.A. and the citizens of the world will come to pass. 

 The work is only begun. Let us all remember that saying of Dr. Johnson of London in 
the 18th century: 

 ‘The Power of Invention is conferred by nature upon the few, but the labor of working 
out the Science of an Invention is more than can be easily endured.’ ” 

 
 Shortly after this milestone meeting, the search for a VTOL aircraft began in earnest. 
This intense period started in the United States with a U.S. Army- and Air Force-sponsored 
research program that led to the McDonnell Aircraft Corp. XV-1 Convertiplane and the Bell 
Helicopter XV-3 tiltrotor of the mid-1950s. The intense period seems destined to continue as 
successful high-speed rotorcraft such as the XV-15 and its larger derivative, the V-22 
(currently in low-rate production), are demonstrated. Koch [33], Schneider [34], and more 
recently Rogers [35] report nearly 50 configurations that have been built and flown to date, 
and the search continues. How influential this meeting—this First Convertible Aircraft 
Congress—was in initiating the VTOL era is, of course, open to conjecture. To me, it was a 
milestone of the first order.  
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 To summarize this overview, consider the progress made in this industry by just the 
sheer numbers of rotorcraft developed. Fig. 1-6 gives a thumbnail sketch of this progress. In 
its growth from the early 1900s, the rotorcraft industry has seen basic technology evolve first 
with the creation, development, and production of nearly 500 autogyros. Many lessons 
learned from this relatively low-speed rotorcraft were then applied to achieve successful 
prototypes of modern helicopters in the late 1930s and early 1940s. The helicopter quickly 
replaced the autogyro and, by 1950, formed the production base for the industry that exists 
today. The number of helicopters produced is in the tens of thousands. So far, a seven-decade 
search has yielded the tiltrotor as the most promising configuration with which to expand the 
industry a third time. 
 
 This overview, concluding with Fig. 1-6, provides a background to discuss the 
rotorcraft industry and the associated evolution of technology that made the industry possible. 
Consider first Volume I—Autogyros; second, Volume II—Helicopters; and then other vertical 
and short takeoff and landing (V/STOL) aircraft, Volume III.  
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Fig. 1-6. V/STOL aircraft development has been continuous over the past nine decades. 
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2 AUTOGYROS 
 
 
 The autogyro was conceived by Juan de la Cierva [3], a Spaniard, in 1919, and his 
concept was patented in Spain, November 15, 1922 (No. 81,406). The initial developments 
borrowed heavily from existing biplane aircraft in that the upper wing was replaced by a free-
wheeling “horizontal airscrew.” The fuselage, lower wing, engine, and forward thrusting 
propeller, etc., were more or less retained. Brooks [7] provides an excellent historical 
summary of Cierva’s rotary wing flight development. Brooks is able to trace the concept of a 
gliding windmill (to coin a term) or—more precisely—an autorotating rotary wing back to the 
Middle Ages. Be that as it may, Cierva’s jump from idea to formal demonstrations outside 
Spain took 5 years. His early work did not go unnoticed [36]. In October 1925 he concluded 
3 weeks of flight demonstrations and tests [37] of his Model C. 6A in Farnborough, England 
with a paper presented to the Royal Aeronautical Society [3]. He ended this lecture with the 
words: “Type 6 has been completely remodeled twice, which gives a total number of 32 
distinct machines built and tested in order to arrive at the results demonstrated earlier in this 
week before many of those present tonight.” 
 
 The door that Cierva opened up was perceived by members of the Society to be “one 
of the most wonderful inventions since the original invention of the aeroplane itself.” As  
Fig. 1-6 shows, the number of experimental and developmental autogyros grew rapidly as the 
aeronautical community around the world became familiar with the technology breakthrough 
Cierva had made. By 1933 Cierva had developed the Model C.30, and this configuration was 
the production leader. Brooks [7] estimates that out of the roughly 500 autogyros made by 
1945, about 180 were the Model C.30 illustrated in Fig. 2-1. 
 

 
Fig. 2-1. Over 180 Model C.30 Cierva Autogiros were produced by 1945.  
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 Cierva described [3] the fundamental rotor system problem inherent to his concept as 
follows: “The chief difficulty was now the asymmetry of lift on the [rotary] wings, for the 
wings rotating against and with the relative wind would have their average velocities through 
the air respectively increased or decreased, with a corresponding asymmetry of lift and a 
displacement of their resultant lift from the vertical, leading to a sideways movement and 
ending probably in a sideslip.” He was obviously quite certain that “a lifting windmill” would 
turn “provided the axis [about which the blades rotated] was slightly inclined backwards from 
the vertical.” It was the rolling moment caused by asymmetrical lift between the advancing 
blade side of the rotor disc and the retreating blade side of the disc that had to be reduced.  
 
 His first approach to overcoming this fundamental problem was to stack two rotors 
coaxially. The top rotor was set to turn clockwise, and the lower rotor was set to turn 
counterclockwise. After several taxi tests, this first solution proved unsatisfactory and was 
abandoned because the lower rotor autorotated at two-thirds the RPM of the top rotor. Using 
“the blade element theory of airscrews,” he designed his second configuration with a single 
rotor system “with the cantilever blades capable of being set at varying incidence by the pilot, 
who could thus displace the resultant lift to right or left at will.” This second autogyro was 
“reconstructed nine times.” But, after identifying “[in]sufficient torsional rigidity to withstand 
twist and consequent change of effective incidence [of the blades] caused by a shift of the 
[airfoil] centre of pressure,” the second approach was abandoned. His third approach “had a 
lifting windmill of five rigid blades, [with] lateral [rolling moment] control being obtained by 
the differential effect of a large elevator divided into two parts, right and left. The fuselage 
was designed to take the resulting torsional couple.” This third autogyro “was damaged and 
rebuilt four times in the course of these experiments.” This third approach was finally 
abandoned as well.  
 
 It was with his fourth design that Cierva finally achieved success by incorporating 
what is referred to today as a flapping hinge into his rotor system. Appendix A provides the 
patent Cierva obtained first in Spain on April 18, 1922, and then in the United Kingdom on 
June 30, 1924. The patent illustrates the early approaches and explains the flapping hinge with 
patent figure 4.  
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2.1 ROLLING MOMENT 
 
 
 The first, second, and third Cierva prototypes used rotor blades virtually cantilevered 
from the hub and with additional wire bracing. These aircraft were not successful although the 
rotors did begin to windmill as forward speed was built up. Cierva does not say how many 
times the prototypes rolled over on takeoff, but one can imagine a number of near flights 
before the rotor blades began to create a show-stopping problem. By then he must have fully 
understood the inherent root cause of the rolling moment problem.  
 
 Understanding the rolling moment problem Cierva encountered, and how he solved it, 
is fundamental to understanding rotorcraft.  
 
 Cierva traced the rolling moment problem to the cantilevered “wings” which were 
rotating against, and with, the relative wind as illustrated in Fig. 2-2. In this figure, the rotor 
blades are shown at the instant of rotation when one blade is advancing with the aircraft while 
its pair is retreating. In rotorcraft terminology, rotation is measured with an azimuth angle 
denoted by the Greek letter psi (ψ). The common reference for ψ = 0 is when the master blade 
is trailing downwind, which generally places the master blade over the rotorcraft fuselage and 
pointing toward the tail. In Fig. 2-2, the master blade is shown after a quarter of a revolution 
so that ψ = 90 degrees. The blades are rotating at a speed of (Ω) so the peripheral speed at the 
blade tip is Vt = ΩR, the blade radius being denoted by (R). The tip of the advancing blade 
experiences the maximum relative velocity of Vt + V while the tip of the retreating blade sees 
the least relative velocity of Vt – V. In fact, the relative velocity at any radial station (r), 
measured outwardly along the blade from the center of rotation and with the master blade at 
any azimuth point (ψ), is described by  

(2.1)   r,V r Vsinψ = Ω + ψ . 

This is the most fundamental equation in rotor system technology. 
 

 

Fig. 2-2. Forward speed creates a lateral velocity asymmetry across the rotor disc. 
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Fig. 2-3. Blade element aerodynamics. 
 
Cierva related the radius and azimuth varying relative velocity to an asymmetry in lift using 
“the blade element theory of airscrews.” The concept of a blade element is also fundamental 
to rotor technology. A blade element is a small-cross section of the blade located at any given 
blade radius station (r) as shown in Fig. 2-3. A blade element has a planform area defined as 
chord times elemental radius (c dr). Its cross-sectional shape is that of an airfoil. The blade 
element can carry an element of lift (dL) as shown in Fig. 2-3, and this elemental lift can be 
calculated with simple aerodynamics (see Appendix B) as 

(2.2)   ( ) ( )( )2
r, r,

1dL r Vsin a cdr
2ψ ∞ ψ= ρ Ω + ψ α . 

In Eq. (2.2), ρ is the density of air (0.002378 slugs/ft3 at sea level), αr,ψ is the airfoil angle of 
attack, and a� is the lift-curve slope of the airfoil (nominally 0.1 per degree of angle of 
attack).  
 
 Calculation of rotor lift for Cierva aircraft is rather simple and illustrates some 
additional basics of rotor system technology. The first step is to obtain the total blade lift 
when the blade is at any given azimuth angle (ψ). Mathematically this is done by integrating 
over the blade radius assuming that (1) the blade element angle of attack is the geometric 
pitch angle (θ), and (2) both the blade chord and the geometric pitch are constant over the 
span. The results are: 

(2.3)   

( ) ( )( )

( ) ( )

( ) ( )

R 21
r,20

2 2 2

2 2 2

L r Vsin a cdr

a cR R 3 R Vsin 3V sin
6

a cR 3 3R V 3 R Vsin V cos 2
6 2 2

ψ ∞ ψ

∞

∞

= ρ Ω + ψ α

ρ θ ª º= Ω + Ω ψ + ψ¬ ¼

ρ θ ª º= Ω + + Ω ψ − ψ« »¬ ¼

³
. 

dLr,ȥ 

Vr,ȥ 
Į r,ȥ 
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Now the total lift of one blade is seen to vary around the azimuth. It is the average or steady 
value of this azimuth-varying lift over one revolution that defines the force called rotor lift. 
The averaging mathematics is quite straight forward, as follows: 

(2.4)    ( ) ( )

( )

2
1

2 0

2
2 2 2

0

22
2 2 t

t

Rotor Lift b L d

a cRb 3 3R V 3 R Vsin V cos 2 d
2 6 2 2

a cRVa cR 3 3 Vb R V b 1
6 2 6 2 V

π

ψπ

π
∞

∞∞

ª º≡ ψ« »¬ ¼

ρ θ ª º= Ω + + Ω ψ − ψ ψ« »π ¬ ¼

ª º§ ·ρρ ª º « »= Ω + θ = + θ¨ ¸« »¬ ¼ « »© ¹¬ ¼

´
µ
¶

³

. 

In Eq. (2.4), the lift from all blades (b) is introduced to give the total rotor system capability. 
Remember that Vt = ΩR.  
 
 Cierva was quite satisfied that his rotor would windmill up to some tip speed (Vt) once 
the aircraft gained forward speed (V). But it was the sum of all the blade element lifts (dL)—
acting at a moment arm (r sin ψ) about the longitudinal aircraft axis—that created a 
substantial rolling moment on early Cierva aircraft. In his early configurations, the blades 
were cantilevered from the hub and could, therefore, introduce an elemental rolling moment 
of  

(2.5)    ( )r, r,Elemental Rolling Moment dMR r sin dLψ ψ≡ = − ψ . 

The same integrations that calculated rotor lift show immediately that the magnitude of the 
rolling moment about the longitudinal axis of the aircraft is 

(2.6)    ( )
2 22

t

t

a cR Va cR VRolling Moment b R V b
6 6 V

∞∞ ª ºρρ= − Ω θ = − θª º « »¬ ¼
¬ ¼

. 

In Eqs. (2.5) and (2.6), the minus sign says that the rolling moment raises the “starboard 
wing” if the rotor is rotating counterclockwise when viewed from above. 
 
 As Cierva noted, the asymmetry in blade element velocity leads to “a corresponding 
asymmetry of lift and a displacement of their resultant lift from the vertical [centerline of 
rotation].” The amount of displacement of the lift from the shaft is obtained by substituting 
Eq. (2.4) into Eq. (2.6), which shows that 

(2.7)    
( )

t
23

t2

V VRolling Moment R (Rotor Lift)
1 V V

ª º
= − « »

+« »¬ ¼
. 
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Since V/Vt had to be about 0.2 for the rotor system to generate enough lift for takeoff, the 
effect was that the lift, equal to the gross weight of the aircraft, was, approximately, acting 
0.2R to the starboard side of the aircraft. Even large ailerons would have a tough time 
counteracting a rolling moment of this magnitude at such low speed! Cierva’s successful 
autogyros cruised at V/Vt from 0.4 to 0.6, so things might have gotten even worse had the 
aircraft taken off and the flight path speed increased.  
 
 It is very interesting to note that Cierva designed his second configuration with a 
single rotor system “with the cantilever blades capable of being set at varying incidence by 
the pilot, who could thus displace the resultant lift to right or left at will.” Cierva appears to 
have introduced the capability to vary the blade pitch angle (θ) (or warp the blade twist) as the 
blade was turning. If this is the case, then the lift of the advancing blade could be reduced 
while the lift of the retreating blade could be increased, which could reduce the rolling 
moment to zero. A number of mechanisms could be designed which would vary blade pitch 
angle in a sinusoidal matter such that  

(2.8)    o 1CB sinψθ = θ − ψ  

where θo is a mean or average blade pitch angle common to all blades and B1C is the 
amplitude of the oscillating or cyclic pitch angle. Cierva suggests that the pilot could control 
B1C in some fashion. Both the preceding rotor lift and rolling moment expressions can be 
rederived assuming the varying blade pitch angle of Eq. (2.8) with the results that 

(2.9)    
22

t
o 1C

t t

a cRV 3 V 3 VRotor Lift b 1 B
6 2 V 2 V

∞
 ½ª º§ ·ρ ° °« »= + θ −® ¾¨ ¸
« »© ¹° °¬ ¼¯ ¿

 

and 

(2.10)   
22 2

t
o 1C

t t

a cR V V 3 3 VRolling Moment b 1 B
6 V 8 2 V

∞
 ½ª º§ ·ρ ° °« »= − θ − +® ¾¨ ¸

« »© ¹° °¬ ¼¯ ¿
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Suppose now that that rolling moment must always be zero. Then Eq. (2.10) can be used to 
find what cyclic pitch angle (B1C) must be applied to zero-out rolling moment. With this 
requirement, the pilot would be making a cyclic pitch control input of 

(2.11)   
o

t
1C 2

t

8 V
3 VB for Rolling Moment 0
3 V1
2 V

θ
= =

§ ·
+ ¨ ¸

© ¹

. 

 Cierva rebuilt this second prototype nine times. Ultimately he identified “[in]sufficient 
torsional rigidity to withstand twist and consequent change of effective incidence [of the 
blades] caused by a shift of the [airfoil] centre of pressure” as a significant impediment. This 
observation suggests that blade element airfoil aerodynamics were twisting the torsionally 
limber blade in a very counterproductive way.  
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 The second prototype was abandoned and, with his third prototype, Cierva tried to 
control rolling moment from five rigid blades “by the differential effect of a large elevator 
divided into two parts, right and left. The fuselage was designed to take the resulting torsional 
couple.” This third autogyro “was damaged and rebuilt four times in the course of these 
experiments.” This third approach was finally abandoned as well. The fourth Cierva prototype 
was successful because he stopped trying to overcome the powerful rolling moment of 
cantilevered rotor blades with weak, fixed-wing aerodynamics. Instead he inserted a hinge 
near the blade-root end so that all integrated blade loads were forced to act at a very small 
moment arm. This hinge was called a flapping hinge. 
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2.2 FLAPPING HINGE 
 
 The Cierva flapping hinge solution to asymmetrical rotor system lift and associated 
rolling moment is shown in Fig. 2-4, which is reproduced from the late-1924 paper, An 
Introduction to the Helicopter [38] by Alexander Klemin. Professor Klemin’s paper laid a 
strong foundation for rotorcraft and was later published as NACA TM 340. The Cierva 
flapping hinge approach centered the centrifugal force of the blade above the hinge. His 
objective for this vertical offset appears to ensure that the rotor would track in a plane nearly 
normal to the shaft. That is, the centrifugal force moment about the hinge would tend to droop 
the blade-tip down and this would oppose the tip-up moment created by blade lift. This design 
was applied to the Cierva C.4 Autogiro, shown in Fig. 2-5, which demonstrated success on 
January 17, 1923.  
 
 

 
Fig. 2-4. Cierva patented his flapping hinge in Spain in late 1922 (see Appendix A).
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Fig. 2-5. The Cierva C.4—the first truly successful rotorcraft [7]. 

(Gross weight 1,200 lbs, weight empty 925 lbs, diameter 26 ft 3 in., rotor speed 140 rpm,  
LeRone 9C 80 hp, speed range 35 to 55 mph.) 

 
 The success with the C.4 led to the C.5, a two seater with a 3-bladed, nearly 38-foot-
diameter rotor, more than a 10-foot increase in diameter relative to the C.4. Unfortunately, a 
blade fatigue failure stopped development of the C.5. Cierva then designed the C.6, which had 
a 4-bladed rotor and diameter of just under 33 feet. The C.6, with additional development, 
was so successful that Cierva took the rotorcraft to England for a 3-week demonstration 
during October 1925. Following the demonstration, and at the invitation of the Royal 
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Aeronautical Society, Cierva gave a lecture explaining much of what led up to the C.6. This 
lecture was later published in the Journal of the Royal Aeronautical Society [3].  
 
 As has been pointed out many times, the concept of a flapping hinge was first 
suggested by Charles Renard in 1904 and patented in 1908 by Louis Bréguet who then used 
the idea for his own helicopters.5 An excellent photo of a vintage 1909, 3-bladed propeller 
with flapping hinges is provided by Rosen [41] on page 25 of his history of the propeller. Otto 
and Richard Baumgärtel also patented the use of hinges to reduce rotor system loads in 
Germany in March 1908. Their configuration, as applied to a propeller (Fig. 2-6), included a 
hinge that allowed inplane lead-lag motion as well as out-of-plane flapping motion. Attaching 
the blade with, in effect, a universal joint was a step that Cierva later took, and I will discuss 
shortly. It is generally believed that Cierva developed his flapping hinge solution without 
knowledge of Renard or Baumgärtel patents.  
 
 To grasp the importance of the flapping hinge and rotorcraft technology at any level, 
Fig. 2-7 must be fully understood at the onset. The rotor blade shown in this figure (when the 
system is viewed from the top) is rotating counterclockwise at an angular velocity (Ω), which 
is normally expressed in radians per second. The blade, one of a set, is attached to the hub arm 
by the flapping hinge. All of the blade lift is concentrated at the hinge point. By keeping the 
hinge point as close to the center of rotation as structurally possible, the moment introduced 
from any given blade is reduced to the blade lift (Lb) times the hinge offset distance (rβ). The 
 

Fig. 2-6. The 1908 Baumgärtel patent for blade attachment with articulation. 

                                                 
5 Bréguet’s fame in the world of aeronautics is well known. He describes his helicopter work in references [39] 
and [40]. His 1935 coaxial helicopter was the world leader at the time Focke came forward with his F.61. 
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early hinge assemblies were made up of ball bearings and a hinge pin, and were grease 
lubricated. Modern configurations remain similar. The attachment is designed primarily by 
centrifugal force, which varies between 10,000 and 100,000 pounds depending on the size of 
the rotorcraft.  
 
 The hub and shaft assembly shown in Fig. 2-7 is inclined slightly aft of vertical and 
gliding with a flight path velocity (VFP). Thus, the hub and its arms trace out a plane that is at 
a slight positive angle of attack denoted as (αhp). The up-flow through the rotor (VFP sin αhp ) 
is the velocity component that acts on the blades to turn the rotor system and create lift. If the 
hub plane angle of attack were 90 degrees, the rotorcraft would be in vertical descent and 
might well be called a windmill. In fact, most autogyros rarely descended at more than  
45-degrees angle of attack until the last 10 to 15 feet of altitude. 
 
 A standard rotor reference axis system has evolved over the years, which defines the 
blade position during rotation by the azimuth angle (ψ). The azimuth angle can be expressed 
in time as ψ = Ω t or in radians or degrees from some zero reference angle. The zero angle for 
blade azimuth is most commonly set by when the reference blade is trailing aft over the 
fuselage or is aligned downwind. In Fig. 2-7, the reference blade is shown having completed 
about three-quarters of a revolution so (ψ) is approximately 270 degrees. The second key 
reference angle is the blade incidence or pitch angle (θ). This angle defines the inclination of 
an airfoil to the hub plane. In Cierva’s time the reference airfoil was taken at the two-thirds 
radius station (i.e., about two-thirds of the distance from the center of rotation to the tip of the 
blade). Since the airfoils in favor during the early 1920s had flat bottom surfaces, attaching 
the blade to the hub arm at the “optimum” fixed-pitch angle of 2 or 3 degrees was a relatively 
simple matter. 
 
 

 
Fig. 2-7. The modern schematic of the flapping hinge (drawing by Rick Peyran). 
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 The third key reference angle is the flapping angle (β). This angle is one measure of 
the rotation of the blade or deflection out of the plane of rotation. The flapping angle is not 
constant in the general case. The blade rises and falls in a well-behaved manner as it 
completes each revolution. Now consider the Cierva Model C.30 as an example. This 
autogyro had a 37-foot-diameter rotor that turned at about 190 to 210 rpm (say 20 rad/sec) 
when flying at a normal cruise speed of 85 to 90 mph (130 ft/sec). Thus, the blade tip had a 
peripheral or tip speed (Vt) on the order of ΩR = 20×37/2 = 370 ft/sec. One revolution was 
completed in roughly one-third of a second. When the blade advanced from ψ = 0 to ψ = 
90 degrees, the apparent or resultant velocity (VR) at the blade tip increased from VR = Vt = 
370 ft/sec at ψ = 0 degrees to a maximum of VR = Vt + V = 500 ft/sec at ψ = 90 degrees. 
When the blade reached an upwind azimuth of ψ = 180 degrees, the resultant tip velocity 
dropped back to VR = Vt = 370 ft/sec, identical to the downwind or ψ = 0-degree azimuth 
position. Then, as the blade reached ψ = 270 degrees on the retreating portion of its 
revolution, the resultant velocity was reduced to VR = Vt − V = 240 ft/sec. This resultant 
velocity pattern is, of course, periodic or harmonic in character and described simply by 

R tV  = V +V sin  ψ  for the blade tip. The more general description for all radial distances (r) 
along the blade, including the tip where r = R, is conventionally written as 

(2.1)    r,V r Vsinψ = Ω + ψ  

where the subscripts to V, (r) and (ψ), are used to reinforce the physical point that the resultant 
velocity varies with both radius station along the blade and blade azimuth (and thus with time 
since ψ = Ω t). 
 
 The flapping motion of the blade (βψ) and the physics behind the motion are quite 
simple to understand if the overall requirement for rolling moment equilibrium is kept in 
mind, as Cierva did. With the freedom to flap, a blade has the inherent capability to self-
correct its lift distribution due to the varying resultant blade element velocity (Vr,ψ) it sees in 
forward flight. The self-correcting velocity that does this is an angular flapping velocity, 
which takes the assumed form (actually an educated guess) of  

(2.12)   ( )1S 1S d /dt = a sin b cosβ Ω ψ − ψ . 

The coefficient (a1S) in Eq. (2.12) is referred to as the first harmonic, longitudinal flapping 
coefficient. The coefficient (b1S) is the first harmonic lateral flapping coefficient. In the first 
harmonic, the subscript 1 implies a Fourier series and refers the coefficients to sin 1ψ or  
cos 1ψ as opposed to, say, sin 2ψ or some higher harmonic. The subscript S keys the motion 
to the shaft, hub plane, or the axis about which the blades rotate. 
 
 A linear velocity all along the blade is created by the flapping motion. This velocity—
out of the rotational plane—varies linearly from blade root to tip and is simply  

(2.13)   ( )1S 1S r d /dt = r a sin b cosβ Ω ψ − ψª º¬ ¼ . 
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Fig. 2-8. The blade element environment is quite different between 90- and  
270-degree azimuths. 

 
 Since the resultant velocity is symmetrical when the blade is at ψ = 0 degrees and at  
ψ = 180 degrees (i.e., Vr,0 = Vr,180 = r Ω), the lift distribution along the blade radius from root 
to tip is symmetrical between these two azimuths. In this fore and aft situation, the blade sees 
no cause to do any flapping. Therefore, the flapping velocity is zero (i.e., dβ/dt is zero and 
thus b1S is zero to the first approximation). However, when the blade is at ψ = 90 and 
270 degrees, the blade element sees two very different resultant velocity distributions and 
potentially two very different lift distributions. A simple illustration of this velocity 
distribution laterally across the rotor disc was shown in Fig. 2-2. The blade, with its flapping 
degree of freedom to create another velocity (r d β/dt ), nearly equalizes the lift between 
advancing and retreating portions of the revolution. The near equalizing of lift between  
ψ = 90 and 270 degrees becomes clearer by looking at Fig. 2-8. The blade tip is shown here as 
an airfoil in cross-section. The velocities, angles, and lift forces acting on the blade tip at both 
azimuth positions are also shown.  
 
 The lift at a blade tip is found from the simplest aerodynamic theory for an airfoil. This 
basic, linear, aerodynamic theory states that an element of lift (dL) depends on an element of 
blade area, the dynamic pressure at the blade element, the angle of attack of the blade element, 
and the lift-curve slope of the airfoil. Thus, 

(2.14)   ( )( )( )2
R, R, R,dL c dr 0.5 V aψ ψ ∞ ψ= ρ α  

where (c) is the chord or local width of the blade, (dr) is the element of blade span, (ρ) is the 
density of air, (VR,ψ) is the local velocity, and (αR,ψ) is the airfoil angle of attack. In linear 
aerodynamic theory, the airfoil lift coefficient is given as Cl = a α where the lift-curve slope is 
denoted by (a or a∞ ), as discussed in Appendix B. From Fig. 2-8 you can see, on the 
advancing side of the disc where ψ = 90 degrees, that the blade-tip lift becomes 
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(2.15)   ( ) ( )22
R,90 R,90 R,90 t R,90dL 0.5 a cdr V K V V∞= ρ α = + α  

and, because ( )1SRd / dt R aβ = − Ω  in accordance with Eq. (2.13), it follows that 

(2.16)   ( )R,90 1S tR a V Vα = θ − Ω + . 

Similarly, on the retreating side of the disc where ψ = 270 degrees, 

(2.17)   ( )2
R,270 t R,270dL K V V= − α  

where 

(2.18)   ( )R,270 1S tR a V Vα = θ + Ω − . 
 
 The first order magnitude of the flapping velocity (a1S) can easily be found by 
balancing advancing and retreating blade-tip lifts. This is the first approximation to balancing 
the rotor system in rolling moment. Thus, you let 

(2.19)   R,90 R,270dL dL=  

and therefore  

(2.20)     ( ) ( ) ( ) ( )2 2
t 1S t t 1S tK V V R a V V K V V R a V V+ θ − Ω + = − θ + Ω −ª º ª º¬ ¼ ¬ ¼ . 

With a little algebra, you find that  

(2.21)   1S ta 2 V V≅ θ . 

This approximation for (a1S) can be substituted into Eq. (2.12) to give     

(2.22)   1S td dt a sin 2 V sin Vβ = Ω ψ = Ω θ ψ . 

Integrating the flapping angular velocity of Eq. (2.22) once with respect to time, while 
including the lateral flapping velocity term (b1S cos ψ), gives the flapping deflection more 
generally as 

(2.23)   1S 1S 0 1S 1S  constant a cos b sin a cos b sinψβ = − ψ − ψ = β − ψ − ψ . 

The integration constant, (β0) in Eq. (2.23), is generally referred to as the blade coning angle. 
This angle is physically the steady deflected slope of the blade and represents the balance 
between total blade lift (Lb) and total blade centrifugal force (FC). To the first order, 

(2.24)   0 b CL Fβ = . 
 
 The lift of one blade (Lb) is, of course, nothing more then the total rotor lift divided by 
the number of blades (b). To a first approximation, blade lift would be the rotorcraft gross 
weight (W) divided by (b). The centrifugal force (FC) is on the order of ten times the aircraft 
weight divided by the number of blades or roughly 10,000 to 100,000 pounds. The steady 
coning angle is generally about 4 to 6 degrees or 0.1 radian.  
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 The solution to the rolling moment problem that Cierva achieved with the flapping 
hinge is described by Eq. (2.23). Physically, the reasoning is quite simple. Whenever the blade 
element dynamic pressure ( 2

r,0.5 V ψρ ) is large, the blade flaps to lower the local blade element 
angle of attack (αr,ψ). This blade response, primarily in the first harmonic of blade motion 
(i.e., at sin ψ and out of the rotational plane), provides the dominate velocity to control blade 
element angle of attack and equalize blade element lift. While you may not see the velocity at 
work, you can definitely see the resulting flap angle displacement given by Eq. (2.23).  
 
 The flapping motion or slope given by Eq. (2.23) is seen more clearly by looking in at 
the rotor system from the ψ = 270-degree side view. As shown in Fig. 2-9, this view lets you 
think of the autorotating or gliding rotor as a lifting wing. The rotor shaft is inclined slightly 
aft of vertical to obtain autorotation as Cierva stated. A blade in the downwind position has a 
flap angle of (β0 – a1S) since ψ = 0 degrees. When the blade rotates to the upwind azimuth of 
ψ = 180 degrees, the flap angle increases to a maximum of (β0 + a1S). The longitudinal line 
joining the blade tips in this side view defines the tip path plane (tpp). The angle between the 
tip path plane and the forward velocity is then defined as the tip-path-plane angle of attack  
(αtpp). 
 
 With the introduction of the flapping hinge, Cierva reduced the steady hub moments 
that the rotor could apply to his autogyro. To a first approximation, the pitching moment (MP), 
acting about the aircraft lateral axis, became simply 

(2.25)   C
P 1S

F r b
M a

2
β= . 

 
 

 
Fig. 2-9. The tip path plane (tpp) has an angle of attack much like a fixed wing.  

Thus, αtpp = αhp + a1S. 
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This pitching moment was small enough that the normal-size horizontal elevator provided 
quite adequate longitudinal stability and control. Cierva did find, however, that a residual 
rolling moment (MR) still remained. This moment was caused by a small amount of lateral 
flapping (b1S) and was of magnitude 

(2.26)   C
R 1S

F r b
M b

2
β= . 

To balance this rolling moment, Cierva inclined the rotor shaft to one side. Early autogyros 
then flew with a slight list that varied from 1 to 3 degrees depending on flight condition. 
Small, auxiliary wings were also retained until a more direct control of the rotor hub plane 
was achieved.  
 
 It is worth taking time out for a moment to define two key nondimensional rotorcraft 
parameters that have stood the test of time. These two very important velocity ratios were 
created from Fig. 2-9. The first is advance ratio defined as 

(2.27)   FP hp
hp

t

V cos
V

α
µ ≡ . 

This velocity ratio establishes the flow condition parallel to the hub plane or perpendicular to 
the rotor shaft. The second parameter is the inflow velocity ratio defined as 

(2.28)   FP hp i
hp

t

V sin v
V
α −

λ ≡ . 

This parameter measures the flow through the rotor and parallel to the shaft. Throughout 
technical literature you will find a mix in sign convention for the inflow ratio (λhp). About half 
of the investigators have chosen inflow down through the rotor as positive; the other half have 
chosen flow up as positive. Since the lifting rotor creates a wake just like a lifting fixed wing, 
there is an averaged induced velocity (vi) that also must be accounted for in the first order 
definition of the inflow ratio. The rotor wake for positive rotor lift induces a downward flow, 
which I chose as negative inflow. Both advance ratio and inflow ratios can be related to the tip 
path plane (tpp) as well. In that case you have 

(2.29)   FP ttp FP ttp i
ttp ttp

t t

V cos V sin v
and

V V
α α −

µ ≡ λ ≡ . 

These two velocity ratios are in very common use today.6 In some studies you will find the 
subscripts vary. For example, µS and λS may appear as a reference to the shaft axis system. 
The shaft axis system and the hub plane really are the same when you think about it. 
 

                                                 
6As you can see from Eq. (2.28), I have chosen αhp to be positive when the rotor shaft is inclined aft in the sense 
of a conventional lifting wing. This quite arbitrary selection makes the component of flight path speed (V) 
parallel to the shaft, that is (V sin αhp), positive for upflow. 
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 The Cierva Model C.6A was so well received in England that Cierva moved his 
activities there. With enormous help from James G. Weir, the Cierva Autogyro Company Ltd. 
was established on March 24, 1926, with Weir as chairman and Cierva as technical director. 
An order for one C.6A to be built by A.V. Roe & Co. Ltd. was received from the British Air 
Ministry, and Cierva ordered one additional rotorcraft for test flying and further 
demonstrations. 
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2.3 LEAD-LAG HINGE 
 
 
 With Frank Courtney [42] as the pilot, Model C.6A development continued, without 
catastrophic incident, until February 7, 1927. On that day, Cierva had to deal with a very 
serious metal fatigue failure when a rotor blade simply snapped off near the root on his Model 
C.6C. The aircraft fell to the ground from about 250 feet, and at around 15 feet above the 
ground another blade came off. The aircraft was destroyed, but Courtney escaped serious 
injury. The British Air Ministry immediately grounded their autogyro.  
 
 Solving the structural fatigue problem Cierva encountered was akin to finding out how 
many times you can bend and unbend a paper clip before it breaks. On the Model C.6C, the 
blade was cycling back and forth in the plane of rotation. There was no hinge to accommodate 
this motion, which induced one cycle of bending for every revolution of the blade. 
Considering a rotor speed of about 190 rpm and perhaps 25 hours of flight time, this would 
mean that only 300,000 bending cycles had occurred before the fatigue failure. By 
comparison, rotorcraft industry design standards today demand at least 2,000 to 10,000 hours 
of safe life, which is more on the order of 10-million fatigue cycles.  
 
 A degree of freedom that allowed the blade to lead and lag in the plane of rotation was 
the design improvement that Cierva incorporated on his Model C.6C, and this led to the 
Model C.6D. This additional hinge, shown in Fig. 2-10, was initially referred to as a drag 
hinge but is called a lead-lag hinge or just a lag hinge today. The inplane blade motion this 
hinge allows is defined by the angle (ξ). The lag hinge is centered about a vertical pin in 
contrast to the flapping hinge, which can be thought of as a horizontal pin joint. Together, the 
two hinges act very much like a universal joint or like the ball-and-socket shoulder-to-arm 
joint of a human. The lag hinge was placed just outboard of the flapping hinge on the Cierva 
Model C.6D at a distance from the centerline of rotation (and toward the blade tip) defined as 
(rξ). The lag hinge relieved the substantial inplane bending moments that were, in fact, created 
by the flapping motion. But remember, the rotor needed flapping in the first place to avoid 
rolling moment, and it was rolling moment that caused Cierva so much trouble with his first 
three prototypes. Fixing one problem while creating two new ones is not an uncommon 
occurrence in the development of rotorcraft. 
 
 Lead-lag motion occurs primarily at once per revolution and, as for the flapping 
motion, can be described most conveniently by a Fourier series because the motion is 
harmonic. Physically, the cause of the lead-lag motion is quite easy to understand. Whenever 
the rotor blade flaps away from its steady coning angle position (βo), each blade element 
moves slightly closer to (or further from) the centerline of rotation. To conserve angular 
momentum, the blade must accelerate (or decelerate) relative to the rotor shaft steady 
rotational speed (Ω). Thus, the flapping motion creates a Coriolis force on each element of the 
blade. The sum of the elemental forces leads to a moment about the lag hinge. The moment is 
reacted by both inertia and centrifugal force terms. As you will see later, this is a relatively 
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Fig. 2-10. The lead-lag hinge relieved blade-root inplane bending loads  
(drawing by Rick Peyran).  

 

simple dynamics problem that shows the inplane lead-lag motion is out of phase with the 
flapping motion by 90 degrees. Cierva solved this engineering problem7 (and many others), 
and today the lag motion is described to the lead-lag first order as 

(2.30)   ( )2
0 0 1S 1S

3 3     1- r r a sin b cos
2 2ψ ξ ξ

§ ·ζ = ζ − − β ψ − ψ¨ ¸
© ¹

. 

The steady lead-lag angle (ζ0) for a given rotor system depends primarily on how much power 
(P) the system is absorbing. This angle is approximated by 

(2.31)   0
C

P / b
r Fξ

Ωζ = . 

In the early Cierva autogyros, the rotor system was unpowered and therefore the steady lead-
lag angle was nominally zero. However, a power takeoff from the main engine was added to 
later autogyro models, which I will discuss shortly. This power takeoff was first used to pre-
spin the rotor up to near flight RPM so that taxi and takeoff distance could be reduced. Later, 
the pre-spin was fast enough for jump takeoffs. This gave the autogyro nearly vertical takeoff 
and landing capability. 

                                                 
7 Brooks notes on pages 100 and 101 of Cierva Autogiros—The Development of Rotary Wing Flight that Cierva 
prepared two design analysis documents, but that they were never formally published. Fortunately, they have 
been preserved. Dr. J. A. J. Bennett undertook the task of editing the two volumes. Copies of the draft volumes 
were entrusted by Dr. Bennett to Dr. Richard M. Carlson who, in turn, made a copy for the American Helicopter 
Society library (and a copy for this author who is most grateful). The first volume is titled Engineering Theory of 
the Autogiro and dates from 1929. The second volume is titled Theory of Stresses on Autogiro Rotor Blades 
dating from 1934. Both volumes were originally provided courtesy of the Cierva Autogiro Co. Ltd. 
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 The addition of the lead-lag hinge solved one of the major blade structural-fatigue 
problems, but, as often happened, the solution created a new problem. This new problem 
became known as ground resonance and, as Brooks [7] (pages 235 to 237) notes, “recurred 
repeatedly throughout the development of rotor-wing aircraft.” The culmination of incidents 
associated with the unexplained phenomena of ground resonance came in 1941 with the 
absolutely total destruction of the Kellett XR-2 autogyro “in less than five seconds.” Brooks 
(page 235) records that the catastrophe occurred “during one of the first tests of a jump 
takeoff ” and that the vibration “built up so rapidly that the aircraft broke up before anything 
could be done to stop it.” The photograph Brooks  shows on page 235 (reproduced here as 
Fig. 2-11) confirms what potential for disaster the lag hinge introduced. 
  
 The hardware fix for this potential mechanical instability was the lead-lag damper 
shown in Fig. 2-10. At the Kellett Autogiro Company, Richard Prewitt, the chief engineer, 
developed what became the modern oil damper. He notes [43] that:  

“We had diverged from the standard form of friction dampers on this model [the KD-1] and 
experienced considerable difficulty in making our self-centering oil dampers function properly. 
The difficulty proved to be one of obtaining proper arrangement and adjustment of the self-
centering cam and of obtaining proper dampening in the oil plunger unit. This unit was finally 
corrected, when a unique orifice arrangement made the units self-filling. Their maintenance 
requirements are now substantially nil.” [See Fig. 2-12.] 

 
 The standard form of friction damper, Fig. 2-13, that Prewitt refers to is the type both 
Cierva and Pitcairn used on their Autogiros. This damper development at Pitcairn is describe 
in detail by Joseph Pecker [44], a mechanical engineer who consulted with the Pitcairn 
Autogiro Company on many of their hardware programs. Neither the Kellett oil damper nor 
the Pitcairn/Cierva friction type of lead-lag damper is readily apparent in any autogyro 
photographs I have seen because it was buried inside the spar and the lead-lag hinge, but a 
damper of some form was incorporated on all very successful autogyros.  
 
 The theory that explains ground resonance was, as is frequently the case, developed 
after the XR-2 disintegrated. Brooks [7] (page 237) notes that “Bob Wagner of Kellett and 
Robert Coleman of the National Advisory Committee on Aeronautics (N.A.C.A.) came up 
independently with mathematical solutions for the proper configuration and for damping to 
prevent ground resonance. This was a major step in the development of rotary-wing aircraft. 
Paul Stanley of the Autogiro Company of America had also arrived at mathematical and 
engineering solutions to the problem with the result that Pitcairn Autogiros are claimed to 
have largely avoided ground resonance.”  
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Fig. 2-11. The Kellett XR-2 autogyro before and after ground resonance in 1941 [7]. 

 
Fig. 2-12. The Kellett KD-1 oil piston lead-lag damper (figure courtesy of W. Wiesner). 

 

 
Fig. 2-13. The Cierva- and Pitcairn-style friction lead-lag damper [44]. 
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 The ground resonance dynamics analysis is not one of the easier engineering problems 
to solve as you can see from Appendix C. However, George Townson, in his excellent book 
containing both history and engineering features of autogyros [45], has the clearest illustration 
of the ground resonance situation I have ever seen. His illustration from page 149 of his book 
is reproduced here as Fig. 2-14. The problem is basically a two-degrees-of-freedom vibration 
problem with damping included. One degree of freedom is the rotorcraft rocking on its 
landing gear. Since shock absorbers were standard equipment for all autogyros just for hard 
landings, this first degree of freedom was well damped. The second degree of freedom is the 
blade lead-lag motion, which, the inventors found out, definitely needed additional 
mechanical damping. The two motions of rotorcraft rocking and blade lead-lagging have the 
potential to couple together such that one motion can feed the other. Without damping in both 
degrees of freedom, there can be real problems. Fortunately, theory to predict ground 
resonance was in place when practical helicopters began to evolve [46].  
 
 

 
 

Fig. 2-14. De-patterned blades in the lead-lag plane create a potentially destructive 
force that can lead to ground resonance [45]. 
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2.4 ROTOR STARTUP 
 
 
 Cierva was invited to present a second paper to the Royal Aeronautical Society on 
February 13, 1930. This lecture [4] gave him a chance to update his audience after 5 years of 
progress. By this time, his development efforts had taken him from the C.6, the autogyro they 
had first seen fly, up to the Cierva C.19 Mk. III, the first true production rotorcraft. He 
mentions the lead-lag hinge, points out improved blades and their smooth skin construction, 
hints about his vortex theory for vertical descent, and spends considerable time discussing his 
autogyro versus a comparable fixed-wing aircraft. Judging from the audience remarks [4], 
they were generally pleased with Cierva’s progress, although they commented that there was a 
lack of quantitative data in his presentation.  
 
 Audience members believed that the autogyro was safer than an airplane by virtue of 
its near vertical landing capability. Indeed, demonstrations continued to show vertical speed at 
touchdown in the 13- to 16-feet-per-second range with less than a 4-yard ground run. These 
rates of descent, equivalent to a free fall from 3 to 4 feet, are less than are found with a 
parachute whose diameter equals the rotor diameter. 
 
 The next problem that needed to be solved completely—according to remarks from 
the audience [4]—was to dramatically reduce the takeoff distance of the autogyro. Initially, 
the early autogyros used a rope or wire wound around pegs under the blades that was pulled 
by several men (or a horse or even a car) to pre-spin the rotor up to 30 to 50 rpm. Then, by 
taxiing around the generally rough airfield at 20 to 30 miles per hour, rotor speed increased to 
the required takeoff of 130 to 150 rpm. Cierva quickly learned that taxiing alone did the trick, 
although several minutes were required. In short, the autogyro takeoff distance and takeoff 
time were considerably longer than those of an airplane.  
 
 The Cierva C.19 Mk. II, similar to Fig. 2-15, but with a 30-foot-diameter rotor, was 
flight tested at the Royal Aircraft Establishment in early 1930. Their report [47] showed that 
the “scorpion tail” (a name coined by Mr. Wimperis, the Director of Scientific Research at the 
British Air Ministry [4]) brought the “windmill speed” up to 90 rpm or about 50% of normal 
flight speed. At 50% rotor speed, “the run to unstick Gyroplane C.19” was 200 yards. 
Additional testing at 68% pre-spin reduced the lift-off distance to 150 yards, and at 95% pre-
spin, the C.19 could get off the ground in 110 yards. This performance was obtained with a 
takeoff gross weight of 1,400 pounds.  
 
 Cierva considered a power takeoff from the engine with shafting and gearing to the 
rotor, but thought that this approach added too much complexity and weight (165 pounds). 
Instead, he took an aerodynamic approach that used the propeller slipstream. The biplane 
horizontal stabilizer was enlarged and included a pilot-selected, large, trailing-edges-up angle 
to turn the slipstream up through the aft portion of the rotor disc. The stabilizer took a nearly 
closed, venetian blind position for rotor startup as shown in Fig. 2-16. Cierva notes [4] that 
“sixty to seventy percent of the flying revolutions are obtained in no wind by this means.” 
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Fig. 2-15. The first production autogyro was the Cierva C.19 [7].  

 
 
With the pre-spin, which took 45 to 60 seconds, the takeoff run was on the order of 100 to 
200 feet. This solution was incorporated on the C.19. (Frankly, it looks rather ungainly to me, 
but the two large rudders mask the stabilizer in most photos.) However, the “turned-up tail 
was considered the most promising of several approaches,” one of which was rockets on the 
blade tips. Mr. Wimperis went on to say that he hoped the up-turned tail would “reduce the 
length of the [takeoff] run to something that they were accustomed to with normal types of 
aircraft.” 
 
 As it turned out, a satisfactory engine drive for rotor mechanical spin-up evolved quite 
quickly because Harold Pitcairn became convinced that autogyros were the safe aircraft he 
envisioned. 
 
 Harold Pitcairn was an aviation pioneer [48]. He built an airplane manufacturing 
company specializing in mail carrying airplanes in Bryn Athyn, a town just outside of 
Philadelphia, Pennsylvania, and, with the award of airmail delivery routes during the late 
1920s, his company grew into Eastern Airlines. Pitcairn was a very strong advocate of safe 
airplanes. His chief engineer was Agnew Larsen, a close friend, who provided enormous 
talent in bringing autogyros to a budding industry. A more technical story of autogyro 
development written by Larsen was included in the first-issued Journal of the American 
Helicopter Society [49]. When Pitcairn became aware of the success Cierva had in England, 
he and Larsen visited Cierva, bought a C.8, and brought it back to the United States. The C.8 
was the first truly successful rotorcraft to fly in the U. S. In the spring of 1929, Pitcairn flew 
the C.8 to Langley Field, Virginia. Additional demonstrations followed with overwhelming 
press coverage and public interest. 
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Fig. 2-16. The horizontal tail of the C.19 could be pilot-adjusted to deflect propeller 

slipstream up into the rotor for pre-spin [50]. 
 
 In February 1929, after three unsuccessful negotiating efforts, Pitcairn obtained the 
exclusive U.S. rights to inventions and patents from the Cierva Autogyro Company, Ltd. 
Almost immediately, he renamed Pitcairn Aeronautics, Inc. to the Autogiro Company of 
America, Inc., and a virtual partnership with Cierva in England was cemented. The Autogiro 
Company of America operated along the lines shown in Fig. 2-17. It became the licensing, 
technical, and business center for autogyro development in the United States. The company 
itself granted manufacturing licenses and did research, development, and engineering for its 
first licensee, the Pitcairn Autogiro Company. The second manufacturing license was granted 
to Wallace Kellett and the third to Lawrence Buhl.  
 
 When a fire destroyed his factory in mid-November 1929, Pitcairn moved his 
operations from Bryn Athyn to Willow Grove, Pennsylvania, and then bought additional land, 
which became Pitcairn Field. (This facility was later taken over by the government during 
World War II and became Willow Grove Naval Air Station.) Then, in December 1929, 
Pitcairn bought a Cierva C.19 Mk. II with a “scorpion tail” pre-spin configuration. He and his 
engineering team (lead by Agnew Larsen) were not satisfied with the Cierva up-turned tail for 
rotor pre-spin. They got busy designing a unique clutch and gear train that was incorporated 
into the PCA-2. At the end of March 1930, his design team had the first PCA-2 flying. The 
PCA-2, Fig. 2-18, was created from PCA-1, -1A, and -1B developments during 1929 and 
1930, and was the first autogyro sold in the United States. It received its Approved Type 
Certificate (ATC No. 410) on April 2,1931, and became commercially successful.  
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Fig. 2-17. Harold Pitcairn laid the foundation for the rotorcraft industry in the U.S. 
  
 

Fig. 2-18. The first production autogyro certified in the United States was the 
Pitcairn PCA-2. This one was sold to the N.A.C.A. in 1931 [53].  

 The story of this mechanical rotor starter is well told by Agnew Larsen [49]. By way 
of background, he writes early in his paper (in studying the Cierva C.8 and applying the 
knowledge gained to the PCA-1) that:  
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“The engineering personnel of the Pitcairn Aviation Company were essentially all airplane 
designers, with limited or no experience in mechanical engineering design and therefore not 
capable of refining the large and bulky rotor hub on the Cierva C-8 autogyro, or reducing its 
weight from 200 pounds to the 75 pounds that was considered a rational allocation for it. 
Consequently, the services of the Machine and Tool Designing Company were called in soon 
after the completed negotiations with the Cierva Company to carry on this phase of the work. 
The first designs of rotor hubs as incorporated in the two original American autogiros [PCA-1 
and -2], were marvels of light weight with great strength. This was accomplished through the 
employment of alloy steels, heat-treated to high physical properties. During this phase of the 
pioneering work, the highest authorities, such as metallurgists from Bethlehem Steel and the 
International Nickel Co., ball bearing experts from SKF, Norma–Hoffman, Fafnir and others 
were always consulted and followed. In this way, serious mishaps in the very early embryonic 
stages of our efforts were avoided while we learned and progressed.” 
 

Larsen next writes about setting specifications for a mechanical starter that “were liberalized 
in RPM’s desired, but much stricter in weight allowance” and then recounts: 
 

“The Machine and Tool Designing Company produced a beautiful, light weight, twin disc 
starting clutch and gear reduction unit, weighing only 48 lbs. This transmission was capable of 
delivering 15 to 20 horsepower, which was the maximum allowed by Wright Aeronautical, for 
delivery by the rear accessory drive shaft on their Whirlwind engine. This was sufficient to 
turn the 42 foot rotor at about 80 or 90 rpm, permitting stabilization of rotor speed in about 30 
to 40 seconds and requiring only a short forward run for takeoff. Starting from this humble, 
light weight beginning, this very same design of rotor starter was gradually developed in the 
next three years up to an ultimate 55 horsepower, delivering 125 rpm on a large 50-foot 
diameter rotor.” 

 
Agnew Larsen, in telling this story of a major autogyro improvement, quietly omits his own 
leadership role in engineering the rotor startup assembly. Joseph Pecker [44] notes that 
“through the extensive research work conducted, under the supervision of Mr. Larsen, by 
Mr. Stanley, the writer [Pecker], and others of the Pitcairn Engineering Staff, a basically 
sound engineering foundation, dealing with hubs and starters, was established.” All the details 
of the starting system and the hub are described with excellent engineering drawings in the 
patent awarded to Pecker [51]. Pecker applied for this patent in June of 1932, and he assigned 
the patent to the Autogiro Company of America when it was awarded on April 14, 1936. 
 
 Cierva incorporated the Pitcairn pre-spin drive system into his Mk. IV upgrade of the 
C.19. It was a feature in all future autogyros, including the best-selling Cierva C.30. The C.30 
mechanical starter is shown in Fig. 2-19. 
 
 Starting the rotor up in preparation for takeoff required some caution when the 
prevailing wind was blowing at more than 20 to 25 miles per hour. Autogyros were started 
facing downwind or with the wind on either the port or starboard sides. For example, Brie 
[52] notes that the C.30 Autogiro was certificated in Britain for operation in winds up to 
30 miles per hour. He teaches that the rotorcraft should be started with the wind coming on 
the starboard side (because the C.30 rotor rotated clockwise when viewed from the top). The 
rotor starter is engaged and the rotor is brought up to 100 rpm. Then the autogyro is taxied to 
an into-the-wind position. The rotor is then brought up to 185 rpm. At that point the takeoff is 
begun.  
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 The piloting technique addressed concern for flapping, which could become quite 
erratic in the 0- to 100-rpm range because centrifugal force was too low relative to blade lift. 
The possibility of blade-fuselage contact was real. You can see the situation from Eq. (2.21), 
which is repeated here for convenience as 

(2.21)   1S ta 2 V V= θ . 

At 100 rpm, the 37-foot-diameter C.30 rotor had a tip speed of 194 ft/sec. The blade pitch 
angle (θ) of all blades, accounting for the airfoil angle of zero lift of –4 degrees, was 
6.75 degrees. At 30 mph, 44 ft/sec, the flapping would be a reasonable 3 degrees. However, 
the flapping would behave inversely with RPM as  

(2.32)   mph
1S

V
a 10.2 in degrees

RPM
= . 

 
 
 

 
 

Fig. 2-19. The C.30 mechanical starter [52]. 
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 The C.30 did have limiting stops to flapping motion. The down-flapping stop was set 
to –4 degrees and the up-flapping stop was set at 30 degrees [52]. These angles were 
referenced to the hub plane. Roughly speaking then, a blade might contact the down stop at 
any RPM below 75 when the wind was 30 mph. (Banging the down stop created excessive 
blade-root-end stresses.) Since it took from 30 to 45 seconds for the mechanical starter to 
bring the rotor up to speed, the pilot had to take considerable care by following the advice 
from Brie [52]. By starting with the wind against the starboard side, the potentially large 
flapping would be high on the upwind, starboard side, and low on the port side. This 
minimized the chance of a blade striking the aft end of the fuselage (i.e., the vertical 
stabilizer).  
 
 By the end of 1931, over 100 autogyros had been built and sold. Having started their 
own companies, Wallace Kellett and Lawrence Buhl were exercising their license from the 
Pitcairn Autogiro Company of America. The Kellett K-2 was certificated with ATC No. 437 
on July 17, 1931. The Buhl Autogiro, the first autogyro with a pusher engine and propeller, 
made its first flight on December 15, 1931, and both Cierva C.19s and Pitcairn PAC-2s were 
performing well in the field. The next deficiency to overcome was control at low speed.  
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2.5 DIRECT CONTROL 
 
 
 In these early autogyros, the rotor hub spun on bearings attached to a short shaft fixed 
to the airframe. The assembly was called a spindle, and the shaft was frequently referred to as 
the axle. Control was simply the normal airplane ailerons, rudder, and elevator. These surfaces 
were virtually useless at speeds below 25 miles per hour and in descent. Fortunately, the basic 
autogyro was stable enough in these flight regions, so landings—in calm wind—were 
generally successfully made by low-time or even first-time pilots. But, everyone, including 
experienced pilots, was having trouble on 
windy days. As might be guessed, Cierva was 
already conceiving a way to give the pilot 
direct control of the rotor thrust vector.  
 
 Invited by Pitcairn, Cierva made his 
third visit to the United States, arriving just 
before Christmas 1931. It was to be a working 
vacation. Cierva presented his ideas for direct 
control to Pitcairn and a small group during 
January and early February 1932 at Pitcairn’s 
Bryn Athyn, Pennsylvania home. The concept 
was quite simple as the schematic, provided 
by Brie [52] for the Cierva C.30, shows (see 
Fig. 2-20). The spindle assembly would be 
mounted on a universal joint attached at the 
lower side to the airframe structure (i.e., the 
pylon struts). A control stick would hang down 
from the spindle into the cockpit. The pilot 
could pull aft on the stick handle, which, 
through an intermediate lever, tilted the 
spindle nose up and inclined rotor thrust 
rearward. Moving the stick handle right tilted 
the spindle to the right, which inclined the 
rotor thrust to starboard. Smith, in telling the 
Harold Pitcairn story [48], says that “Cierva’s 
presentation, couched in mild bland tones, had 
a stunning effect [on the group] as he 
proceeded with a novel theory that he had 
developed in England.” Smith writes later that 
“as he [Cierva] proceeded in an almost 
pedantic manner, the enormous significance of 
his thinking overwhelmed his audience.” 

Fig. 2-20. The direct control system of 
the C.30 [52].
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 Brooks [7] notes that “Cierva achieved a workable system of direct control in Britain 
in March 1932. Later that spring, the C.19 Mk V with this improvement incorporated was 
demonstrated to Harold Pitcairn, Jim Ray [Pitcairn’s chief pilot] and Agnew Larsen of the 
American Autogiro Company who had come to England specially to study this new 
development. Pitcairn and Ray later flew the C.19 Mk V. In April 1933, Cierva publicly 
demonstrated the direct control C.30 prototype. Early in 1934 the direct control Avro [A.V. 
Roe & Company, Cierva’s manufacturer] C.30A entered full production in Manchester and 
deliveries stared in July [1934].” 
 
 The universal joint Cierva incorporated allowed the pilot direct control of the 
longitudinal incidence angle (ihp) of the hub, relative to an aircraft station line. To define the 
hub angle of attack (αhp) then required the sum of the autogyro waterline angle of attack (αwl) 
and (αhp). The hub could also be tilted left and right by an angle (iφ). These variable hub 
angles relative to the autogyro, (ihp) and (iφ), were governed by the kinematics of the pilot 
stick and linkage as Fig. 2-20 shows. Direct control gave pitch and roll control independent of 
flight path velocity and was a major improvement. Wings and ailerons came off, and rudder 
and elevator became fixed-stabilizer surfaces. 
 
 Pitcairn, Ray, and Larsen rushed home and immediately built a small prototype, the 
PA-22. Unfortunately, this autogyro experienced several development problems and took until 
mid-1933 before direct control was working satisfactorily. The PA-22 then became a test bed 
for many advanced concepts. In fact, Pitcairn did not produce a production direct control 
autogyro until 1941 (this was the Pitcairn PA-39). Efforts by Kellett were more successful, 
and they went into production with their KD-1, Fig. 2-21, which received its ATC (No. 712) 
in January 1935, with first delivery in early 1935. Kellett used a conventional “joy stick” 
mounted to the cockpit floor rather than the hanging stick used by Cierva and Pitcairn.  
 
 Unfortunately, direct control of the hub plane with a hanging stick did not appear 
feasible as larger-sized autogyros were studied. Experience up to the mid-1930s had shown 
that any appreciable dissimilarity in manufactured blades caused extreme feedback to the 
pilot’s handle. These and other vibratory loads came on top of the normal steady loads created 
by rotor blade flapping. The magnitude of just the minimal loads at the pilot’s handle is 
relatively easy to see because these minimal loads come primarily from hub moment due to 
flapping. Thus, the steady-hub pitching moment is 

(2.25)   C
P 1S

F r b
M a

2
β= . 

Now, using Fig. 2-20 and data from the Theory of Stresses on the Autogiro Rotor Blades by 
Cierva [12], consider the three-bladed (b = 3) Cierva C.30 as an example. Cierva says “the 
blade can be assumed to be an 18.5-feet-long uniform beam weighing 41 pounds.” This gives 
a running weight ( w ) of 2.22 pounds per foot and, therefore, a running mass ( m ) of 0.0689 
slugs per foot based on a gravitational constant of 32.17 feet-per-second squared. At 210 rpm 
for normal flight, rotor speed is 22 radians per second, and the centrifugal force (FC) is 
calculated as  
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Fig. 2-21. The first production direct control autogyro in the U.S. was the Kellett KD-1. 
The control stick was in the cockpit with control mechanization run up through 
the rotor support structure (photo courtesy of Jean-Pierre Harrison).  

 

(2.33)   
2 2R R2 2

C 0 0

m RF r dm r mdr 5,700lbs
2

Ω= Ω = Ω = =³ ³ . 

The flapping hinge offset (rβ) was located 1.75 inches from the rotor centerline, so  
rβ = 1.75 inches. Therefore, the rotor system could generate, following Eq. (2.25), roughly 
15,000 inch-pounds of moment per radian of flapping, which translates into 260 inch-pounds 
per degree of flapping. With Fig. 2-20 as a guide, the first reaction to this moment is the end 
of “control lever fixed to rotor hub,” which was about 11 inches long. Thus, the force on the 
“ball joint” would be about 24 pounds per degree of longitudinal flapping. The distance from 
the “ball joint” to the “universal joint and fixing of control lever” is approximately 3 inches; 
from “universal joint” to the pilot’s grip is about 49 inches. These approximate dimensions, 
following Fig. 2-20, suggest the pilot had a 16-to-1 mechanical advantage, which would mean 
a longitudinal stick force of, say, 1.5 pounds per degree of longitudinal flapping (a1S). (Note 
that these dimensions also give about 3 inches of stick travel in an arc per 1 degree of hub 
plane tilt, or spindle tilt, if you prefer.) 
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Fig. 2-22. Details of the Cierva C.30 upper control system [5]. 
 
 A stick force of 1.5 pounds per degree of flapping might be acceptable if that was all 
the C.30 needed for trim, but, in fact, flapping could easily be 5 degrees at certain high-speed 
flight and center-of-gravity conditions. On the other hand, in low-speed flight, the rotor tip 
path plane remained virtually parallel to the hub plane, so the pilot was simply tilting the 
thrust vector without creating flapping. Therefore, Cierva added “bias springs” in the upper 
control system so the pilot had adjustments to bring his (or her) stick force to zero in high 
speed and to provide a force feel in low-speed flight. Details of the upper control bias spring 
system are shown in Fig. 2-22.  
 
 The book by Reginald Brie [52] on how to fly the Cierva C.30 explains, in Chapter VI, 
several other facets of the “machine,” which give considerable insight. I quote as follows: 
 

The main number of control movements essential in any aircraft are three – longitudinal, 
lateral, and directional, and, whereas these are normally obtained on the aeroplane by the 
coordinated movement of the control column, rudder and throttle, for the first time they are 
obtained with the “direct control” method employed on the modern Autogiro by the movement 
of the control column and throttle only. Whilst these two controls are independent in 
themselves they are not independent in their action, as an analysis of their functioning will 
show – 
  (a) A movement of the control column laterally results in DIRECTIONAL control. 
In other words, although the machine tilts as it turns, it is actually turning because of the tilt 
produced by this lateral movement, rather than tilting as a result of the turn. An analogy is 
provided by the man who steers his bicycle “hands off” through the movements of his body 
only. 
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  (b) A movement of the control column fore and aft results in SPEED control. Within 
the limits of minimum and maximum speeds in horizontal flight, and with a constant throttle 
setting, if the control column is eased forward there will be an increase in speed and if 
backward, a decrease. 
 
  (c) A movement of the throttle results in ALTITUDE control. Assuming the machine 
to be flying level at 60 m.p.h., if the throttle is opened there will be an increase in height, and if 
closed then a loss in height will result. It will thus be observed that there is a close relationship 
between (b) and (c), and it is necessary to appreciate how dependent each is for cause and 
effect upon the other, for once the minimum horizontal speed with full throttle stage is 
reached, there is a reversal in the results indicated in (b), as the control column then becomes 
the ALTITUDE control, and in order to gain height it must be eased FORWARD. The result of 
easing the control column backward at this stage (approximately 15–20 m.p.h.) would be to 
lose height, a situation fraught with an element of risk if practised at a low height with 
obstacles ahead, although the machine itself is under perfect control. 
 
Two examples will help to explain this – 
 
  1. The most economical throttle setting for slow level flying is not that for the 
slowest minimum horizontal speed. For an indicated air speed of, say, 40 m.p.h. in the first 
case the throttle will be about two-thirds open, whereas in the latter case at 15 m.p.h. full 
throttle is required. 
 
  2. At full throttle one can achieve either maximum or minimum horizontal speeds in 
level flight. 
 
In order that these facts may be fully appreciated an analysis of the “drag” [drag that propeller 
thrust overcomes] on the Autogiro gives the following approximate results – 
 
  (a) Power [required by propeller to provide thrust that overcomes] losses due to 
friction [profile drag] on the rotor system which, owing to the continuous and uniform 
rotational speed within narrow limits of the rotor, are practically constant at all speeds. 
 
  (b) Power [required by propeller to provide thrust that overcomes] losses due to the 
displacement of air to ensure adequate lift [induced drag]. These losses are at a minimum at 
high speeds and at a maximum at slow speeds, due to the difference in the amount of air 
encountered by the rotor per second, which is dependent on the machine's speed. 
 
  (c) Power [required by propeller to provide thrust that overcomes] losses due to the 
resistance offered to a smooth air-flow by the fuselage and structure. The increase in drag from 
these sources alone being proportional to the square of the speed of the machine [parasite 
drag]. 
 
At high speeds, therefore, although the power losses on the rotor are less owing to the greater 
amount of air-flow dealt with per second by the disc, the drag from the fuselage, undercarriage, 
etc., considerably increases.  
 
Conversely, at slow speeds a point is reached where the rotor ceases to act at its optimum 
efficiency for ensuring minimum horizontal flight with full throttle, and where the machine 
will definitely lose height. 
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This, as stated previously, is at an indicated air speed of 15 to 20 m.p.h., and in order to climb 
the control column must be eased forward, the best climbing speed being at approximately 
65 m.p.h. 
 
Control Characteristics 
 
  The main essential of flight is motion, for without it there can be no lift. On the 
Autogiro this motion is obtained by the automatic self-rotation of the blades during flight, 
which provides all the necessary lift independently of any forward movement of the machine 
as a whole. In addition, as all normal control surfaces, such as ailerons, elevators and rudder 
are suppressed, all necessary control is obtained by tilting the rotor disc in any desired 
direction about the horizontal; the further practical result is that stability and control are also 
independent of any forward speed of the machine. The rotor being a stable surface, the 
directional and longitudinal stability of the Autogiro under all conditions of flight is ensured by 
means of the fixed vertical and horizontal fins at the rear. 
 
  The lift on all blades being equal, the machine flies on an even keel, and the resultant 
lift force on the rotor is located in close proximity to the centre of rotation of the blades, and in 
a direction that is normal under all conditions to the plane of the disc. In consequence, any 
tilting of the rotor disc from a normal position by means of the control column results in a 
displacement of the total rotor lift force relative to the centre of gravity position, which in turn 
causes an immediate change in the attitude of the machine. In other words, the backward tilting 
of the rotor disc by the easing back of the control column causes the line of the lift force to 
advance in relation to the centre of gravity of the machine, and the nose to rise. 
 
  Conversely, the easing forward of the control column will result in the raising of the 
tail. 
 
  A movement of the control column to left or right will cause the machine to bank, 
and at the same time to turn, the latter additional change in direction occurring as a result of 
the sideslip produced by the bank, the resultant wind action produced on the inner side of the 
machine acting on the fairly large fixed tail surface in much the same way as on a 
weathercock. 
 
  It is of importance that the reaction of the machine to any given movement of the 
hanging control column should be thoroughly understood, as the first impression might be that 
the result would be the reverse of normal practice. This is not so, as a link is provided between 
the control column and rotor head, and if a movement is made to left or right the machine will 
turn in that direction. It is impossible, however, to sideslip or yaw independently of a turn. 
 
  Very positive directional control of the machine on the ground is provided by means 
of a steerable tail wheel operated by conventional rudder bar. There being no rudder, the 
secondary sphere of usefulness of this control is as a “pilot’s comforter” to those accustomed 
to conventional aircraft, who, through force of habit, would otherwise feel lost without 
something to do with their feet. 
 
  With the method of control employed on the “direct control” Autogiro there is 
normally no corresponding increase in the load felt on the control column with an increase in 
movement as experienced on a fixed wing machine with ailerons and elevators; so, in order to 
give the pilot a corresponding “feel,” a load or resistance is provided by artificial means, which 
consists of a bias gear in the form of coil springs attached to the top end of the control column. 
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  In addition to making control more flexible the bias tends to make the machine 
automatically stable in all directions, as by the method of adjustment provided the machine can 
be trimmed for high- or low-speed conditions of flight, and also for variations in load; a further 
feature being that the control column has not only a tendency to remain in the normal flying 
position, but also to return to it if deflected, as, for instance, by an air disturbance. 

 
 The discussion by Brie [52] is, of course, aimed at the general pilot and laymen. The 
overall tone is that the thrust vector is directed in space and the “machine” just follows. He 
does not hint, rightly so, at hub moment or other forces involved in the direct control of a 
modern autogyro. Fortunately, an entirely different view of flying the Cierva C.30 is obtained 
from the comments of flight test pilots. This group of pilots has the responsibility to point out 
deficiencies and shortcomings in an aircraft, and they can be counted on to do so. In the C.30 
investigation by the Air Ministry, a view from a test pilot is recorded in Appendix I of 
Reference [54]. The pilot, Squadron Leader H. P. Fraser, reports a number of shortcomings 
and at least one major deficiency (in my mind) that deserved notice. Some of them, which I 
have paraphrased, follow:  
 

1. The hand moves in the same way as in an aeroplane, but the control column tilts in the 
opposite direction. 
 
2. On takeoff and landing, the steering bar controls the tail wheel, which leads to an 
overwhelming desire to correct for drift by the steering bar rather than the control column. 
 
3. In the normal speed range the autogiro is very simple to handle, but  

a. there is a good deal of lag in the fore and aft control, though practically none in 
the lateral control, 

b. the control is rather heavy, especially in turns, 
c. banking beyond 45 degrees can lead to a spiral dive of increasing speed with 

recovery possible only by leveling out the aircraft first, 
d. with aft control column movement, the autogiro swings to the right as the nose 

rises; pushing forward, the autogiro swings to the left as the nose falls, 
e. suddenly closing the throttle causes a nose left yaw, the reverse occurring when 

power is pulled, 
f. even in still air the autogiro cannot be flown hands-off for any length of time, and 

in average bumps it is definitely unstable; but departures from a given attitude 
occur slowly so control corrections can be made in a leisurely fashion. 

 
4. In flight above and below the normal speed range, the autogiro is not so easy to handle as 
might at first be expected, and 

a. up to 115 mph, the nose has to be forced down, but beyond that speed the autogiro 
becomes nose heavy. Beyond a certain speed it becomes very difficult, if not 
impossible, to recover from a dive. [My italics because it is a major deficiency.] 

b. in slow-speed flying there is a large time lag in the fore and aft control. 
c. in slow-speed flying the control column cannot be pushed forward too quickly to 

increase speed or the autogiro will sink bodily onto the ground before it has had 
time to get the nose down and pick up speed. 

d. the safe height for slow flying at full throttle in smooth air over level ground is 
above 5 feet, while in bumpy air, stay above 15 to 20 feet.  

e. descents at glide angles below 45 degrees, with or without engine, present no 
peculiar difficulty, 
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f.  descents at gliding angles approaching 70 degrees are only possible by vigorous 
and skilful use of the controls, and the aircraft pitches and rolls considerably and is 
quite uncontrollable directionally. 

 
5. The takeoff is accomplished in three stages: 

a.  Starting the rotor with the autogiro stationary. 
b.  Accelerating the whole aircraft with the rotor disc at minimum incidence (stick 

forward). 
c.  Establishing autorotation by increasing disc incidence, thus accelerating blades to 

the speed of rotation necessary to lift the autogiro off the ground. 
 
6. Landing with the engine off necessitates two things: 

a. Having a minimum gliding speed of 40 mph just before flattening out. 
b. Having no drift when touching down. 

 
7. Bad view downwards and ahead. 
 
8. If it became necessary to make a parachute descent from a direct control autogiro, the 
present form of hanging control column would probably hinder the pilot from getting out of 
the cockpit. On one occasion, small splits developed in the trailing edges of two blades during 
flight, causing the control column to vibrate through an amplitude of about 12 inches at high 
and 6 inches at low speed. 
 
9. Laterally, the autogiro rolls immediately [when] the control is applied, but there is a definite 
time lag before sideslip, which follows, has caused sufficient yaw to turn the aircraft. 
 
10. The lack of a rudder is considered a serious drawback, particularly for correcting drift 
when landing. 
 
11. It would be advantageous if [there were] some means of increasing control power to get the 
autogiro out of a dive. An elevator is suggested. 
 
12. The simplicity of the direct control should make the autogiro an easy craft to fly in clouds 
and conditions of bad visibility, but the possibility of getting into a dangerous dive makes 
blind flying definitely unsafe. 

 
 This partial list of test pilot observations did not keep the Cierva C.30 from receiving a 
commercial certification in Britain in December of 1933. However, by United States 
helicopter standards created in 1952 [55], modified in 1962 [56], and used through 1995, the 
flying qualities of this aircraft would not be acceptable. Flying quality considerations such as 
aircraft trim, with associated control position and stick force, are key subjects that receive 
considerable attention by aircraft engineers.  
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2.6 LONGITUDINAL TRIM 
 
 
 Understanding how a direct control autogyro trims out aircraft pitching moment, and 
how the stick position influences this trim, is a very important subject. It was brought to 
Cierva’s attention with a quite unfortunate, fatal accident caused by a change in airfoils while 
designing the C.30. Prior to the C.30, all rotorcraft used airfoils having virtually zero pitching 
moment (see Appendix B). For the C.30, Cierva chose to use a highly cambered airfoil, the 
Göttingen 606, which was developed in Germany. The intention was to improve rotor 
performance. This airfoil may, indeed, have raised performance, but the blades responded to 
the airfoil pitching moment with several degrees of periodic elastic twisting, which took trim 
control away from the pilot at high speed. The outcome was that at high speed, the C.30 could 
not be recovered from a high-speed dive. This led to the first fatal autogyro accident in Britain 
on January 21, 1935. The Air Ministry grounded their C.30s and initiated efforts by the 
National Physical Laboratory and the Royal Aircraft Establishment that were reported in 
references [54] and [57]. The maximum speed of the C.30 was placarded at 1.5 times 85 miles 
per hour (i.e., 127 mph) by the Air Ministry until a fix was found. Brooks provides many 
more details about the situation in reference [7], pages 192 to 194. 
 
 The trim situation and how periodic elastic twisting could cause a very serious, if not 
catastrophic, problem was examined by Cierva [12] who passed his notes to J. A. Beavan and 
C. N. H. Lock. They analyzed the C.30 situation in depth, reported their findings [57] (in what 
I consider a classic piece of engineering), and showed that airfoil pitching moment easily 
explained the C.30 accident. In the United States, Kellett also used the Göttingen 606 airfoil 
in developing their KD-1 Autogiro (Fig. 2-21), and ran into the same adverse longitudinal 
trim situation as the Cierva C.30. Richard Prewitt, the chief engineer at Kellett, along with his 
staff, developed a short-term fix for the problem. Prewitt wrote [43]:  

“Shortly after the first flight of this autogiro [the KD-1 on December, 1934], we found it to be 
longitudinally unstable above eighty m.p.h. We developed a theory of this instability, based on 
the assumption that the slightly unstable blade sections caused a negative pitching moment 
when operating on the advancing side of the rotor where the velocities are high. This theory 
proved to be correct when small turned-up trailing edge tabs were attached at the tips of the 
blades. In fact the pitching moment coefficient of the blade section was over corrected to the 
extent that the pilot reported it required a heavy forward load on the stick at high speed. This 
over-correction was rectified by successively cutting off the inboard end of the tab section until 
a desired longitudinal stability was obtained. Fortunately, the lateral stability was improved 
with the correction in longitudinal stability.” 

Later, the flying qualities of the Kellett KD-1s were studied at the N.A.C.A. in Langley, 
Virginia. John Wheatley, another pioneer in autogyro rotor technology, wrote a number of 
exceptional reports that I will discuss later. References [58] and [59] deal with blade elastic 
twisting. He used data from the N.A.C.A. flight testing of the KD-1 to show how influential 
airfoil pitching moment characteristics were on the longitudinal trim of the direct control 
autogyro. Work from Lock, Beavan, and Wheatley led to the Göttingen 606 airfoil being 
replaced by the NACA 23012 airfoil. 
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2.6.1 Fundamentals 
 
 Studying longitudinal trim, as Beavan and Lock did in reference [57], requires only 
the simplest force and moment diagram, which is provided in Fig. 2-23.  
 
 Beavan and Lock wrote only one longitudinal trim equation to analyze the C.30 
accident as you can see in Appendix II of their report [57]. Their equation, Eq. (2.34) in more 
up-to-date symbols, was an aircraft pitching-moment equation written in the body axis 
system. The body axis system follows the conventional aircraft waterline and station line 
references used by draftsmen to layout, for example, the side view shown in Fig. 2-23. Station 
lines are vertical lines that conventionally move from nose to tail. Station lines are 
perpendicular to water lines, which set vertical dimensions in the aircraft. The body axis 
reference system always rotates with the body, so that in Fig. 2-23, where the C.30 is shown 
landing nose up at the angle (Θ), this angle is measured between the gravity vector and a 
station line (or between the horizon and a waterline). The aircraft angle of attack (αAC) is 
measured between the flight path velocity (VFlight Path= VFP) and a waterline. 

(2.34)   ( )p hp p hp hp tMoments about c.g. 0 M T i H a T c L b ( Nose up)= ≈ + + − − +¦ . 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2-23. The force and moment longitudinal trim diagram for the Cierva C.30 [52]. 
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 Beavan and Lock, in writing Eq. (2.34), accepted a number of assumptions in their 
aircraft pitching-moment trim analysis, including:  

1. The C.30 was in level flight or only in a slight descent, so angles would be small, 
making sine of an angle equal to the angle (in radians) and cosine of an angle 
would be unity. 

2. The propeller thrust acts as a force passing through the aircraft center of gravity 
(c.g.), and the propeller normal force and pitching moment would be zero. 

3. The drag and lift forces of the fuselage (includes wheels, rotor support, etc.) act at 
the c.g. 

4. The fuselage pitching moment without the horizontal stabilizer lift (Lt) would be 
zero. 

5. The tail drag and pitching moment would be zero. 
6. The rotor would induce a velocity on the horizontal tail. 

 
Because of these assumptions, they did not worry about the force trim equations. They simply 
said that the propeller would provide thrust to overcome the drag of the C.30—whatever that 
might be—and they were satisfied with rotor thrust approximating the weight of the autogyro. 
However, for completeness here, the two force equations, written in the flight path velocity 
coordinate system, with many fewer assumptions, are 
 
Parallel to the flight path velocity (positive is forward) 

(2.35)   

( ) ( )
( )

( )

X prop AC pr op prop AC pr op fuselage

hp hp hp hp tail AC tail interference

tail AC tail interference

F 0 W sin T cos i H sin i D

T sin H cos L sin i

D cos i

= = γ + α + − α + −

− α − α − α + − α

− α + − α

¦
 

 
Perpendicular to the flight path velocity (positive is down) 

(2.36)   

( ) ( )
( )

( )

Z prop AC pr op prop AC pr op fuselage

hp hp hp hp tail AC tail interference

tail AC tail interference

F 0 W cos T sin i H cos i L

T cos H sin L cos i

D sin i

= = γ − α + − α + −

− α + α − α + − α

− α + − α

¦
 

 
 While most of the symbols used in Eqs. (2.34), (2.35), and (2.36) are defined in  
Fig. 2-23, some additional information is needed. First of all, the propeller thrust (Tprop), 
which is not shown in Fig. 2-23 for clarity, acts perpendicular to the face of the propeller. The 
normal force of the propeller (Hprop), also not shown, acts perpendicular to propeller thrust 
and is positive upwards. In addition, a propeller operating at angle of attack has a pitching 
moment (Mprop), also not shown, which is positive nose up. The face of the propeller need not 
be perpendicular to the aircraft waterline. In Fig. 2-23, I have shown the rotational axis of the 
propeller (iprop) at a negative incidence because the C.30 propeller incidence was set to a nose-
down angle of  iprop = –5 degrees.  
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 The fuselage lift (Lfuselage), drag (Dfuselage), and pitching moment (Mfuselage) are not 
shown in Fig. 2-23 for the sake of clarity. These are conventional aerodynamic loads that 
generally are assumed to act at the aircraft center of gravity. These fuselage loads follow 
conventional aircraft aerodynamics as described in any number of textbooks, for example, 
reference [60]. The horizontal stabilizer lift (Ltail) is shown in Fig. 2-23 because it is a major 
contributor to aircraft pitching moment, but neither stabilizer drag (Dtail) nor pitching moment 
(Mtail) is shown because they are generally small contributors to aircraft pitching moment. The 
horizontal stabilizer may not be installed parallel to a waterline. It can have some small angle 
of incidence (itail), which, in the case of the C.30, was itail = 2.0 degrees leading edge up. 
Loads from the vertical stabilizers are ignored completely in this study of the C.30 
longitudinal trim. 
 
 The lifting rotor induces a downwash velocity (Kv) on the horizontal stabilizer. This 
interference velocity is not small. The immediate effect of this interference is to reduce the 
angle of attack of the stabilizer by the angle (αinterference), which Beavan and Lock [57] 
calculated “on the assumption that the rotor is equivalent to a monoplane aerofoil [wing] of 
the same lift and span with elliptical distribution of lift.” This assumption defines the induced 
velocity (v)—in rotorcraft aerodynamic terms—as 

(2.37)   ( )
hp

2
FP

T
v

2 R V
=

ρ π
. 

Actually, if Beavan and Lock had wanted to make calculations that included very low-speed 
flight including vertical descent, they had available the classical rotorcraft assumption from 
Glauert given in reference [13], which was 

(2.38)   
( ) ( ) ( )

hp

2 22
FP hp FP hp

T
v

2 R V sin v V cos
=

ρ π α − + α
. 

However, in their calculation of the interference angle (αinterference), Beavan and Lock accepted 
(1) small angle assumptions; (2) simple wing theory applicable to reasonable flight path 
velocities; and (3) a value K = 1.76. They thus arrived at 

(2.39)   ( )
hp

interference interference 2 2
FP FP

TK vtan 1.76
V 2 R V

ª º
« »α ≈ α ≈ =

ρ π« »¬ ¼
. 

 
2.6.2 Blade Twisting Effect 
 
 Now let me return to the specific problem of why the Cierva C.30 Autogiro could not 
be pulled out of a high-speed dive. Beavan and Lock saw from their very simple aircraft 
pitching moment equation, Eq. (2.34), that the rotor hub incidence (ip) [and therefore the pilot 
longitudinal stick position (δ)] was explicitly given as 

(2.40)   hp hp t p
p

hp

T c H a L b M
i

T a
− + −

= . 



2.6  LONGITUDINAL TRIM 

 55

The solution task only required calculating rotor thrust (Thp), rotor H-force (Hhp), hub pitching 
moment (Mp), and stabilizer lift (Ltail). Beavan and Lock calculated thrust, H-force, and hub 
moment using the simple equations Lock originally gave in reference [14], but with their 
addition of steady and cyclic elastic twisting. (Since the original work by Lock, several 
authors have revamped, extended, changed notation, and otherwise adapted the equations as 
needed.)  
 
 Beavan and Lock did not bother to express their results in longitudinal stick position. 
Rather, the adverse C.30 longitudinal trim situation was clear enough once they had the hub 
incidence angle (ip). However, for my purposes here, I will express the situation in 
longitudinal stick position (δLong.). The C.30 longitudinal stick position was kinematically 
related to hub plane incidence (see discussion surrounding Fig. 2-20) as  

(2.41)   ( )Long. p3-in. long. stick per deg. hub incidence iδ = . 

The effect of the Göttingen 606 airfoil pitching moment coefficient (Cm = –0.052) must have 
been a real eye opener to these two engineers when they had their version of Fig. 2-24 in front 
of them. What should have been a positive stick gradient requiring the pilot to move the stick 
forward to increase speed became dangerously adverse above 80 to 100 miles per hour. Their 
prediction of flight test data when blade elastic twist was included is impressive.  
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Fig. 2-24. Blade elastic twisting due to airfoil pitching moment adversely affected the 

C.30 longitudinal trim. 
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 Beavan and Lock satisfactorily traced the inability of a pilot to recover from a high- 
speed dive to longitudinal flapping (a1S). What was happening was that the requirement for 
zero rotor rolling moment was being met by a combination of blade feathering, according to 
Eq. (2.11), and by flapping, according to Eq. (2.21). They found that, as speed increased with 
initial forward stick, elastic twisting tilted the rotor forward more than was required for trim, 
so the pilot was required to pull aft on the stick to bring the rotor tilt back. Unfortunately, the 
pilot ran out of aft stick margin, and from then on the autogyro began an outside loop! Brooks 
recounts on pages 193 and 194 of reference [7] that a test pilot, Alan Marsh, flying a float-
equipped military C.30, did recover from an outside loop situation by switching off the 
engine. Marsh landed on the water, restarted the engine, and taxied to shore. I can imagine 
Marsh wondering just who was flying the machine!  
 
 In analyzing the rotor behavior, Beavan and Lock improved the equations Lock gave 
in reference [14] with the addition of elastic twisting. First they derived a very reasonable 
equation estimating blade elastic twisting (see Appendix D), which they wrote (with a little of 
my rearranging) as 

(2.42)    
( ) ( ) ( )

( ) ( )

2
hp4 3 2o

x, x,

2
hp hp3 2

ABA CElastic E 4x x 3x x 2x x
12 6 4 2

A A
3x x sin 2x x cos 2

3 4

ψ ψ

ª º§ ·µβθ ≡ θ = − + − + + −« »¨ ¸¨ ¸« »© ¹¬ ¼
µ µ

+ − ψ − − ψ

 

 
where the constants A, B, and C are 
 

3 2 22 4 2
cg cg

m

m x R m x R gc RA C B C and x r / R
2GJ GJ GJ

Ωρ Ω= = = = . 

They conveniently provided the needed C.30 rotor characteristics and operating conditions 
tabulated here:  

Torsional stiffness, GJ 17,720 foot-pounds/radian per foot run of blade 
Chord, c 0.917 feet 
Radius, R 18.5 feet 
Mass of blade per unit length, m 0.0615 slug per foot 
Flapping hinge offset, rβ 1.75 inch (0.00788 R) 
Spar axis behind airfoil leading edge 0.21091 feet (0.23 c) 
Distance airfoil c.g. behind spar axis, xcg 0.06 foot 
Geometrical pitch at root, θroot 0.0465 radians (2.664 degrees) 
Weight moment, Mw 338.6 foot-pounds 
Flapping inertia, Iflap 129.8 slugs per square foot 
Air density, ρ 0.002378 slugs per cubic foot 
Advance ratio, µhp 0.4 (Flight path velocity of 129 mph) 
Rotor speed, Ω 25.65 rad/sec (245 rpm and tip speed of 474.6 fps) 
Gravitational constant, g 32.17 feet-per-second squared 
Airfoil angle of zero lift, αo –2.58 degrees (–0.04503 radians) 
Blade coning angle, βo 5.32 degrees (0.09285 radians) 
Airfoil pitching moment, Cm –0.052  (nose down is negative) 
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Fig. 2-25. C.30 blade elastic twisting due to airfoil pitching moment at high speed.  

 
 With the above information in hand, Beavan and Lock calculated blade elastic twist at 
four azimuth positions (ψ) for this high-speed point. They added the elastic twist to the blade-
root geometric pitch angle (θroot) of 2.664 degrees. Their results, presented here as Fig. 2-25, 
show that at the blade tip (r = R) the cyclic elastic twist amounted to nearly ±3.5 degrees 
about a steady blade angle of 0.5 degrees. This newly found feathering angle behavior needed 
to be added into the rotor blade flapping equation.  
 
 In contrast to their rather accurate calculation of elastic twist, Beavan and Lock 
incorporated this elastic twisting into the rotor’s contribution to longitudinal trim with a 
surprisingly crude approximation. They wrote that “In the first draft of the report [57] the 
approximate formula θ = θo + θ1 sinψ was adopted, the values of θo and θ1 being chosen to 
make θ coincide as nearly as possible with its value at 0.7R from the root, as given by the 
exact expression. This position was taken since, owing to the higher velocity there, the outer 
portions of the blades are much the most important.” Their revised equations for calculating 
rotor thrust (Thp), rotor H-force (Hhp), hub pitching moment (Mp), and stabilizer lift (Ltail) 
were then rederived based on 

(2.43)   
2

root o o hp

hp hp

0.213A 0.293 B 0.228A 0.455C

0.586A sin 0.228A cos 2
ψ ª ºθ = θ − α + + β + µ +¬ ¼

+ µ ψ − µ ψ
. 
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 The six rotor equations describing rotor behavior that Beavan and Lock wrote formed 
a classical foundation to rotorcraft rotor system technology.8 In modern notation then, they 
first used advance ratio and inflow ratio as defined earlier with Eq. (2.29), which is repeated 
here for convenience as 

(2.29)   FP hp FP hp
hp hp

t t

V cos V sin v
and

V V
α α −

µ = λ = . 

They ignored powers of advance ratio greater than squared and proceeded to assume simple 
first harmonic flapping (β) and first harmonic pitch angle (θ) of the form 

(2.44)   
o 1S 1S

2 4 2

o 1C 1C m hp

a cos b sin

c RB sin where they set B 0.586 C
2GJ

ψ

ψ

β = β − ψ − ψ

§ ·ρ Ωθ = θ − ψ = − µ¨ ¸
© ¹

. 

Then, in the order needed for calculation, they wrote 

(2.45)   ( )
4

2 w
o hp hp o hp 1C 2

flap flap

Ma c R 1 1 11 B
2I 3 4 3 I

ρ ª ºβ = λ + + µ θ − µ −« » Ω¬ ¼
. 

(Historically, it is worth noting that Lock introduced the notation γ = 4
flapa c R / Iρ in Part II of 

his March 1927 report, R&M 1127 [14]. At that time airfoil lift-curve slope (a) was taken as 
one-half of our modern lift-curve slope associated with C a= αA  where a 2≈ π . Thus, in 1927, 
when Lock wrote ( ) 4

flapa in 1927 c R / Iγ = ρ , he numerically meant our modern definition. 
Beavan and Lock adopted the modern definition for airfoil lift-curve slope in their April 1936 
report [57], although they had a typographical error in their equation 11.) 

(2.46)   
hp o

1S 1C
2
hp

8
3b A11

2

µ β
= +

+ µ
. 

(2.47)   

2
hp hp hp o 1C hp

1S
2
hp

8 32 B 1
3 2a 11

2

§ ·µ λ + µ θ − + µ¨ ¸
© ¹=

− µ
. 

They knew that the torque equation should reduce to zero for the autogyro autorotating rotor, 
so they wrote this key equation (updated to the modern form) as:  

                                                 
8 The most elementary rotorcraft aerodynamic theory that derives six classical equations formulated by Lock is 
(in my mind) quite well explained in the book by Alfred Gessow and Garry Myers, Aerodynamics of the 
Helicopter [61]. This is a time-honored reference book that is still available and should be found in the library of 
anyone interested in accumulating rotorcraft knowledge. Only the effect of blade elastic twisting (θe) in response 
to airfoil pitching moment (Cm) needs to be included, which I have done in Appendix E. 
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(2.48)   

( )

2 2 2
hp o hp hp hp 1S hp hp 1C hp o hp o 1S

2 2 2 2 2 2do
hp hp 1S hp 1S 1C hp 1S2

t

2
hp o 1C hp 1S 1C

2 1 1 2a B b
3 2 2 3

CQ a 1 3 1 1 1 11 1 a 1 a B 1 b
bcRV R 8 4 4 2 4 2 4 2

1 1 1A 1 b A
3 4 2

ª º
λ + θ λ + µ λ − µ λ + µ β − µ β« »
« »
« »§ · § · § ·= + µ − + + µ + − µ + + µ« »¨ ¸ ¨ ¸ ¨ ¸ρ © ¹ © ¹ © ¹« »
« »§ ·+ µ β − + µ« »¨ ¸

© ¹¬ ¼

. 

 

 From just these first four equations, Beavan and Lock defined the autorotating rotor 
situation. They, with slide rule, pencil, and paper (or you, with a spreadsheet software like 
Microsoft® Excel®) first set values of rotor characteristics and operating conditions. This gave 
them cg W flap root o FP hp FP t, a, x ,c,R,M , I , , , ,V , rpm, V / Vρ γ θ α µ ≈ . They knew many of the blade 
input values “from measurements on the full scale blades made at the R.A.E.” The Göttingen 
606 airfoil characteristics, such as lift-curve slope (a), angle of zero lift (αo), and pitching 
moment coefficient (Cm), were obtain from wind tunnel tests. Operating values, such as rotor 
speed (rpm), came from C.30 flight test data. All they had to do then was vary (λhp), 
recalculating all four equations until the torque equation became zero. They were searching 
for a positive inflow ratio, since only the positive root of the quadratic in Eq. (2.48) is 
applicable for an autorotating rotor. Now having the inflow ratio they could calculate rotor 
thrust (Thp), H–Force (Hhp), and hub pitching moment (Mp)9 from 

(2.49)   hp 2
hp hp o hp 1C2

t

T a 1 1 3 11 B
bcRV 2 2 3 2 2

ª º§ ·= λ + + µ θ − µ¨ ¸« »ρ © ¹¬ ¼
 

(2.50)   
hp 1S hp o 1C o hp 1S 1S

hp
hp do2

t
1S hp 1S o hp 1C

3 1 1 1 1a B a b
H 4 2 4 4 61 aC

bcRV 4 2 1 1 1a a B
4 3 2

ª º§ · § ·λ − µ θ − + β µ −¨ ¸ ¨ ¸« »© ¹ © ¹« »= µ +
« »ρ § ·µ + θ + µ« »¨ ¸

© ¹¬ ¼

 

(2.51)   C
P 1S

F r b
M a

2
β= . 

The final steps were to calculate the hub plane angle of attack (αhp) and, from the aircraft 
pitching moment equation, the hub plane incidence (ip) using  

(2.52)   
2 2

hp hp t
hp 2 2

hp hp hp hp

T R V
tan

2

λ ρπ
α = +

µ µ µ + λ
   and    (2.40)   hp hp t p

p
hp

T c H a L b M
i

T a
− + −

= . 

                                                 
9 I have purposely left out a portion of the pitching moment caused by lateral flapping that arises when the 
flapping hinge is not at the center of rotation. Beavan and Lock correctly included the term even though it is 
quite small for the C.30 study they were doing. I will introduce the missing lateral flapping term later. 
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 In Eqs. (2.49), (2.50), and (2.48), the thrust, H-Force, and torque coefficients are more 
commonly found today in coefficient form using a definition of solidity as the ratio of actual 
total blade area (bcR) to disc area (πR2)—assuming a rectangular blade. Thus 

(2.53)   

2
2

T hp H hphp hp Q
2 2 2
t t t

b c RSolidity so bc R R
R

C CT H C Qand therefore , , and
bcR V bcR V bcR V R

≡ σ = = π σ
π

= = =
σ ρ σ ρ σ ρ

. 

 
 There is more to be learned from the Beavan and Lock report [57] as Fig. 2-26 shows. 
The first computation these two engineers made was with a fixed collective pitch  
(ș = șroot – Įo = 5.54 deg) and no elastic twist. Their trim solution showed that thrust exceeded 
the C.30 flight test weight of about 1,900 pounds, particularly at the higher speeds. This result 
is the top line in Fig. 2-26, where their calculated rotor thrust (Thp) is shown next to the open-
circle data points. I confirmed their longitudinal trim analysis results with simple spreadsheet 
software; then I recomputed the trim adjusting collective pitch so rotor thrust equaled weight 
AND aircraft pitching moment was zero.  
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Fig. 2-26. C.30 longitudinal trim analysis. 
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 My additional result is shown in Fig. 2-26 with the × symbols and a light dashed line. 
The collective pitch required is tabulated next to each × symbol. Clearly, elastic twisting, 
which reduces the mean collective pitch—the bracketed term in Eq. (2.43)—only accounts for 
about one-third of the C.30 adverse stick position characteristic. I suspect that if the flight-
test-measured stick position trend with speed were no worse than my light dashed line, the 
C.30 would have been considered satisfactory. However, the periodic or cyclic elastic twisting 
created the dangerous characteristic of this Autogiro. 
 
 Beavan and Lock ended their report [57] with conclusions and “Further develop-
ments.” Their opening sentence to conclusions was: 

“The blades are found to twist to the extent of several degrees, in the sense that the mean pitch 
angle (at any radius) round the circle is decreased and that superimposed on this is a periodic 
variation.” 

 
They ended their conclusions with: 

“[By] applying the results to the motion of a complete machine, much better agreement is now 
found with the experimental values obtained for incidence and stick position in gliding tests at 
the R.A.E., Farnborough. In particular, the somewhat anomalous reversal of stick position at 
the higher speeds is predicted.” 

 
Their recommendations for follow-on work have occupied the careers of more rotor system 
technology engineers than I could possibly list. In April 1936, Beavan and Lock wrote: 
 

“An attempt should be made on the more complex problem of the bending of the blades, where 
the inertia is not negligible as is the torsional moment of inertia of the [blade element] section. 
 
In addition, further consideration may be needed with regard to the questions of tip loss and 
varying induced flow over the disc. 
 
Wind tunnel measurements of the fuselage drag and rotor downwash on the tail are very 
desirable in order to make a more complete comparison of performance. 
 
The question of longitudinal and lateral stability can also be attacked from the theoretical 
side.” 
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2.6.3 Flapping and Feathering Interchangeability 
 
 The effect of cyclic torsional twisting was not the only key point Beavan and Lock 
made in their report [57]. They used C.30 experimental data to confirm the interchange 
between first harmonic pitch change (B1C) and first harmonic longitudinal flapping (a1S). They 
acknowledged, on page 13, “Cierva’s conclusion that the [elastic] twist to some extent takes 
the place of [longitudinal] flapping.” Further on they write that “this is in agreement with the 
theory of R & M 1127, Part I [14], where a non-twisting flapping rotor and a non-flapping 
blade whose pitch angle is varied sinusodially around the circle are compared.”  
 
 The fact that either (B1C) or (a1S) can satisfy the zero rolling moment requirement was 
pointed out earlier with Eqs. (2.11) and (2.21). The exact interchange as affected by 
longitudinal trim became clear with the Beavan and Lock analysis. A key point from their trim 
study is shown in Fig. 2-27. This figure points out that the rotor angle of attack as measured 
between the flight path velocity and the tip path plane (see Fig. 2-28) AND the aircraft angle 
of attack as measured between the flight path velocity and a waterline (see Fig. 2-23) are 
nearly independent of how the rotor zero rolling moment requirement is met—provided the 
thrust equals weight in both cases. Beavan and Lock proved this very important and useful 
point mathematically.  
 
 The proof that longitudinal flapping (a1S) and cyclic pitch (B1C) are interchangeable on 
a one-for-one basis starts with the assumption that flapping is a small angle and the statements 
that 

(2.54)   hp tpp 1S hp tpp tpp 1S hp tppa and therefore a andα = α − λ = λ − µ µ = µ . 

Then the hub plane inflow (λhp) can be replaced in the Beavan and Lock equation for 
flapping, Eq. (2.47), so that  

(2.55)   
( ) 2

hp tpp tpp 1S hp o 1C hp

1S
2
hp

8 32 a B 1
3 2a 11
2

§ ·µ λ − µ + µ θ − + µ¨ ¸
© ¹=

− µ
. 

Now collecting terms gives 

(2.56)   ( ) ( )2 2 2 21
1S hp 1S hp 1S hp hp tpp hp o 1C hp2

3 8 3a 1 a 2 a 1 2 B 1
2 3 2

§ · § ·− µ + µ = + µ = µ λ + µ θ − + µ¨ ¸ ¨ ¸
© ¹ © ¹

 

and therefore, since the functions of advance ratio are the same for both longitudinal flapping 
(a1S) and cyclic pitch (B1C), you have 

(2.57)   
hp tpp hp o

1S 1C
2
hp

82
3a B 31

2

µ λ + µ θ
+ =

+ µ
. 
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Fig. 2-27. Trimming with cyclic pitch or longitudinal flapping result in nearly 

equal angles. 

 

 
Fig. 2-28. The tip-path-plane angle of attack is the sum of the hub-plane angle of attack 

and the first harmonic longitudinal flapping, or αtpp = αhp + a1S. 
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 The longitudinal pitching moment trim is nearly independent of whether the tip path 
finds its place in space with flapping (a1S) or with cyclic pitch (B1C). The reason nearly is 
italicized is because the hub pitching moment (Mp) depends directly on flapping (a1S) 
according to 

(2.51)   C
P 1S

F r b
M a

2
β= . 

Therefore, if flapping is adjusted to zero with cyclic pitch according to 

(2.58)   
hp tpp hp o

1S 1C
2
hp

82
3a B31

2

µ λ + µ θ
= −

+ µ
 

then the hub pitching moment will go to zero, and this will cause a change in the aircraft 
pitching moment solution. The change is very small in the case of the Cierva C.30 and hardly 
perceptible in Fig. 2-27. The reason for the small effect with the C.30 is that the flapping 
hinge offset (rβ) is only 1.75 inches or 0.00788R. Thus, the aircraft pitching moment solution 
is driven much more by the rotor forces (Thp and Hhp) times their moment arms to the aircraft 
center of gravity, than by the hub pitching moment (Mp).  
 
 One other contribution Glauert [13], Lock [14], and Beavan and Lock [57] made must 
be mentioned before closing this discussion of longitudinal trim. They provided a much 
simpler way to solve for the torque (or power) that a rotor required to produce lift. Their 
original calculations were based on Eq. (2.48), repeated here for convenience as  
 
(2.48)   

( )

2 2 2
hp o hp hp hp 1S hp hp 1C hp o hp o 1S

2 2 2 2 2 2do
hp hp 1S hp 1S 1C hp 1S2

t

2
hp o 1C hp 1S 1C

2 1 1 2a B b
3 2 2 3

CQ a 1 3 1 1 1 11 1 a 1 a B 1 b
bcRV R 8 4 4 2 4 2 4 2

1 1 1A 1 b A
3 4 2

ª º
λ + θ λ + µ λ − µ λ + µ β − µ β« »
« »
« »§ · § · § ·= + µ − + + µ + − µ + + µ« »¨ ¸ ¨ ¸ ¨ ¸ρ © ¹ © ¹ © ¹« »
« »§ ·+ µ β − + µ« »¨ ¸

© ¹¬ ¼

. 

 
Through a number of substitutions (plus pencil, paper, and elbow grease), they proved that 
this cumbersome torque equation was nothing more than 

(2.59)    ( )Q 2doP T H
hp hp hp

hp hp

C CC C C1
8

§ · § ·= = + µ − λ − µ¨ ¸ ¨ ¸σ σ σ σ© ¹ © ¹
. 

In fact, when the coefficient form was stripped away, things got even simpler because 

(2.60)    ( ) ( ) ( )
2 3

t do 2
hp hp hp hp hp FP hp

R V C
Power Q T v T sin H cos V 1 3

8
ρ π σ

= Ω = − α + α + + µ  

and furthermore ( )hp hp hp hpT sin H cosα + α  is just rotor drag.  
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2.6.4 Stick Vibration 
 
 The addition of mechanical rotor startup and direct control, the removal of the wing, 
the installation of more power per pound of gross weight, and the correction of elastic twist 
effects on trim plus other improvements led the military of several countries to seriously 
consider autogyros for field evaluation. Problems with stick vibration [62] with direct control 
rotors, however, began to be openly talked about. In fact, Captain Franklin H. Gregory, who 
was championing rotary wing aircraft in the U.S. Army [25], commented about the stick shake 
shortcoming at the banquet following the Second Annual Rotating Wing Aircraft Meeting. 
This was the evening of December 1, 1939. The banquet toastmaster, Laurence Le Page, 
invited Captain Gregory to say a few words, which were transcribed into the end of the 
meeting proceedings. After a pleasant joke, Gregory closed with two thoughts: 

 “The rotary winged aircraft, the present rotary winged aircraft, does land in a 
surprisingly small amount of space, and every time I fly one across the country—particularly 
with a head-wind, I get discouraged because you don’t go fast, but, on the other hand, I always 
fly low because the head-winds are also smaller down low and I think it is great because if the 
engine stops any of those fields down below are possible landing spaces. That is a fact. 
 
 But, again, getting out on arriving at my destination I say ‘Hello, Joe, how are you.’ 
(Making motion of hand quivering) Those of us that know anything of the present rotary 
winged aircraft know that the stick is directly connected to the rotor and there are certain 
vibrations transmitted to the stick and the stick does assume a periodic motion in the cockpit 
and, after flying a few hours you forget you haven’t got that stick. So, to you engineers, I say, 
remove that shake and you have increased your popularity with the pilots tremendously.” 

Shortly thereafter, the Army Air Corps lent the N.A.C.A. a YG-1B (a military version of 
the Kellett KD-1 pictured in Fig. 2-21) to specifically investigate control stick vibration.  
F. J. Bailey reported the investigation results in reference [63] in June of 1940. 
 
 Bailey, who presented a paper at the Second Rotating Wing Aircraft Meeting (and 
presumably went to the banquet), begins his report introduction with: 

“Conventional three-bladed direct-control autogiros of the tilting-hub type are generally 
regarded as unsuitable for extended cross-country flights, largely because of severe vibration 
of the control stick that appears at airspeeds above 80 miles per hour. The importance of the 
problem of stick vibration has been recognized by designers and several solutions have been 
proposed.” 

In the report summary, Bailey wrote that: 
“The most important component of the variation in stick force was found to have a frequency 
of three times the rotor speed and an amplitude that rose from negligible values at tip-speed 
ratios [VFP/Vt] below 0.20 to ± 5.2 pounds longitudinal and ± 3.2 pounds lateral at tip-speed 
ratios of 0.35. Variations in stick force at all other frequencies were small in comparison with 
those at three times the rotor speed.” 
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Fig. 2-29. The Kellett YG-1B rotor system [63]. 

 
 
 The report Bailey presented contained a sketch of the Kellett YG-1B rotor system,  
Fig. 2-29, which was 40 feet in diameter and rotated counterclockwise when viewed from 
above. The blade chord was 12 inches, but he noted that “over the outboard portion of the 
blades, between 72 and 93 percent of the radius, the chord was extended 1 inch by a trailing-
edge tab. The tab was reflexed [bent up] approximately 10o to counteract the unstable center-
of-pressure travel of the Göttingen 606 [airfoil] section.” The sketch Bailey included shows 
that the hub pitched fore and aft about an axis 1-5/8 inches ahead of the rotor rotational axle; 
the hub rolled left and right about an axis 7/16 inches to port of the rotor rotational axle. Both 
of these “trunnions” were located in a plane 2-3/4 inches below the plane of the flapping 
hinges.  
 
 A “control-force recording stick” was calibrated by loads acting about 1.9 feet above 
“a flexible, elastic section located near its lower end” that allowed deflection to be recorded 
on film. The calibration expressed moments about the trunnions in terms of stick force. The 
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calibration figures given were: 7.3 foot-pounds of longitudinal trunnion moment per 1 pound 
of longitudinal stick force, and 10 foot-pounds of lateral trunnion moment per 1 pound of 
longitudinal stick force. Bailey gave no other information about the control system.  
 
 Bailey gives representative example waveforms of the “control-force recording stick” 
marked on the film. A tick mark on the film was made by a once-per-revolution counter, so 
that zero azimuth could be defined. The waveform, a Y versus azimuth trace, was then 
measured every 10 degrees by ruler to obtain a tabulated set of longitudinal and lateral 
moments versus azimuth. Then a 12-harmonic Fourier series was calculated that best fit the 
waveform. The “control-force recording stick” had a natural frequency of 31 cycles per 
second, so each harmonic of the recorded data was corrected for the instrument’s dynamic 
amplification. The resulting waveform was so dominated by three cycles per rotor revolution 
and six cycles per rotor revolution, that Bailey used just the following simple Fourier series to 
present the final results: 

(2.61)   3 3 6 6M A cos3 B sin 3 A cos 6 B sin 6ψ∆ = ψ + ψ + ψ + ψ . 

He removed the steady moment and tabulated the coefficients A3 through B6 for both 
longitudinal and lateral moments at the nine speeds where measurements were obtained. His 
reasoning for not including the steady was that the steady only “indicated failure to trim out 
the average stick forces [to zero] with the bungee.” 
 
 Longitudinal moment about the hub pitch axis, Fig. 2-30, and lateral moment about 
the hub roll axis, Fig. 2-31, illustrate the 3-per-rev character of the control loads at 97 miles 
per hour. In these 2 figures, I have shown the Bailey 12-harmonic Fourier series fit to the 
recorded data, which are shown with the symbols. The waveform after correction for the 
dynamic response is also shown. This corrected moment waveform, when expressed as a stick 
shake in pounds, is described mathematically as 

(2.62)   Long. Stick Force 1.712cos3 3.740sin 3 0.014cos 6 0.904sin 6= ψ + ψ + ψ + ψ  

(2.63)   Lateral Stick Force 2.50cos3 1.50sin 3 0.45cos 6 1.30sin 6= − ψ + ψ − ψ − ψ . 
 
 A very informative view of stick shake is shown in Fig. 2-32. Rather than waveforms 
plotted versus azimuth, the vibratory longitudinal stick force, Eq. (2.62), is plotted versus the 
vibratory lateral stick force, Eq. (2.63), in Fig. 2-32. As you look at this graph, keep in mind 
that your hand is being shaken three times per revolution and in a somewhat diagonal sense. 
You would feel a vibration at roughly 10 cycles per second, which is a very fast pounding. 
Bailey noted that stick vibration at low speed was “negligible.” This would correspond to the 
flight path speed of 62 miles per hour, which is the smallest ellipse shown on the figure. He 
also noted in his report’s introduction that “severe vibration of the control stick appears at air 
speeds above 80 miles per hour.” That vibration level is the one next to the smallest ellipse on 
Fig. 2-32. One can only guess about the comments from the pilot regarding stick shake at the 
108-miles-per-hour test point! 
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Fig. 2-30. Longitudinal moment at the hub pitch trunnion at 97 mph [63]. 
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Fig. 2-31. Lateral moment at the hub roll trunnion at 97 mph [63]. 
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Fig. 2-32. The YG-1B stick vibration increased with speed [63]. 
 
 
 Calculating control loads and stick forces—even in the year 2010 with the best of 
theories and computers—is “iffy” at best. The problem can be addressed, but without 
including blade bending (over and above flapping), twisting, and lead-lagging, no meaningful 
estimates can be made. Even Cierva [12] was just beginning to scratch the surface of the 
problem in the early 1930s.  
 
 There is, however, something to be learned without knowing all the details of the 
problem. Consider this question arising from the Bailey report: Why were the stick forces 
dominated by the three-per-rev waveform and, to a lesser extent, six-per-rev harmonics? The 
answer begins with the simplest view given in Fig. 2-33. Suppose only one force, a vertical 
force, is acting at the flapping hinge. Assume there is no flapping moment at the hinge. This is 
not correct because the hinge uses bearings and the friction from a bearing creates a moment, 
which Pecker [44] shows is not insignificant. Now, thinking of the Bailey planform view,  
Fig. 2-29, the vertical force (FBlade 1) creates a nose-down moment about the longitudinal 
control trunnion located a distance (a = 1-5/8 inches) ahead of the rotor axis. The moment arm 
of this vertical force must include the flapping hinge offset rβ = 1.781 inches. Therefore, the 
moment contribution from Blade 1 is  
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Fig. 2-33. The YG-1B longitudinal hub plane tilting geometry. The hub is in the rotating 

system and the blade is shown at ȥ = 0 degrees. The nonrotating longitudinal 
control trunnion is 1-5/8 inches forward of the rotor hub axle. 

 
 

(2.64)   ( ) Blade1Blade 1 Moment a r cos Fβ= − + ψ . 

Blade 2, following Bailey’s sketch, Fig. 2-29, trails behind Blade 1 by 120 degrees, so it puts 
in a nose-down moment of 

(2.65)   ( )o
Blade2Blade 2 Moment a r cos 120 Fβª º= − + ψ −¬ ¼ . 

Blade 3, following Bailey’s sketch, trails Blade 1 by 240 degrees, so it puts in a nose-up 
moment about the trunnion of  

(2.66)   ( )o
Blade3Blade 3 Moment a r cos 240 Fβª º= − + ψ −¬ ¼ . 

Now think about the total moment created by the sum of each blades’ contribution. 
 
 The three blade moments, when added together (and after a little trigonometry is 
applied), give a pitching moment about the longitudinal control trunnion of  

(2.67)   ( ) ( ) ( )1 2 3 3 2 3 2 1
3 1Trunnion Moment a F F F r F F sin r F F 2F cos

2 2β β= − + + + − ψ + + − ψ . 
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Now imagine that the vertical force of blade 1 varies periodically with azimuth and can be 
approximated by a Fourier series of the form  

(2.68)   1 o 1S 1C 2S 2C 3SF F F sin F cos F sin 2 F cos 2 F sin 3 etc.= + ψ + ψ + ψ + ψ + ψ +  

If the other two blades are a perfect match with blade 1, then their vertical force becomes 

(2.69)   ( ) ( ) ( ) ( )o o o o
2 o 1S 1C 2S 2CF F F sin 120 F cos 120 F sin2 120 F cos2 120 etc.= + ψ− + ψ− + ψ− + ψ− +   

(2.70)   ( ) ( ) ( )o o o
3 o 1S 1C 2SF F F sin 240 F cos 240 F sin 2 240 etc.= + ψ − + ψ − + ψ − +  

 
 It is a simple matter to make the substitutions of the force equations (2.68), (2.69), and 
(2.70) into the trunnion moment Eq. (2.67). After you do the substitution and tackle the 
trigonometry, you get  

(2.71)   
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ }
o 3S 3C

1C 2S 4S 2C 4C

Trunnion Moment a 3F 3F sin3 3F cos3

r
3F 3F 3F sin3 3F 3F cos3

2
β

= − + ψ + ψª º¬ ¼

− + + ψ + + ψª º ª º¬ ¼ ¬ ¼
. 

There are three things you should notice about this result: 

1. All the force harmonics that appear in Eq. (2.71) have been multiplied by 3, which 
is the number of blades (b). 

2. The force sum (F1+F2+F3) acting at the arm (a) only has a steady component (3Fo) 
and the three-per-rev components (3F3S) and (3F3C). This shows the other 
harmonics have cancelled out in going from the rotating system (i.e., the hub) to 
the nonrotating system (i.e., the trunnion). The next harmonic in the pattern would 
be a six per rev. Note that (3Fo) is the rotor thrust (Thp). 

3. The hub moment terms, those containing the hinge offset (rβ), involve the force 
harmonics that are one less than the blade number (b) and one more than the blade 
number (b). This means moments translate from the rotating to the nonrotating 
system at harmonic frequencies of (b –1) and (b +1). The next harmonics in the 
pattern would be at six per rev and involve (F5) and (F7). 

The reason Bailey saw control load waveforms that were dominated by three per rev and, to a 
much less extent, six per rev, was because the Kellett YG-1B Autogiro had three blades— that 
were nearly perfectly matched. If the blades had been mismatched to any greater extent, the 
canceling of certain force harmonics would not occur, and the control load required to balance 
the trunnion moment would have severely shaken the pilot stick even more. 
 
 Gessow and Myers [61] provide a short chapter at the end of their classic book that 
will introduce you to other vibration problems. 
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2.7 SWASHPLATE CONTROL 
 
 
 While Cierva and Pitcairn continued to equip their Autogiros with direct control rotors 
into the early 1930s, others (notably Raoul Hafner and David Kay in England, and E. Burke 
Wilford and Richard Prewitt at Kellett in the United States) made a practical design for the 
pilot to directly control the blade incidence or pitch angle (θ) shown fixed in Fig. 2-7 and  
Fig. 2-10. The Wilford design is particularly noteworthy. He successfully developed what he 
referred to as a “gyroplane,” Fig. 2-34, that first flew in August 1931. He intended to compete 
directly with Cierva, Pitcairn, and Kellett, using a very different rotor system and control 
system. The Wilford rotor system, about 40 years ahead of its time, had neither flap nor lead-
lag hinges, and, in  terminology used today, was clearly a “hingeless” rotor system. You 
should recall that Cierva apparently tried some form of this control system on his second 
prototype as noted earlier in the rolling moment discussion, Section 2.1. Wilford incorporated 
a blade incidence control system, Fig. 2-35, that made use of Eq. (2.57). He based his design, 
in part, on the inventions patented, and the prototype built, by Rieseler and Kreiser in 
Germany in 1926 [64-66]. The successful application by Wilford, Kay, Hafner, and Kellett 
was to become the key element in helicopter control and stability.  

Fig. 2-34. The first E. Burke Wilford “gyroplane” after some modifications  
on August 5, 1932 (photo courtesy of Wayne Wiesner). 

D = 32, A = 804, bcR = 72, Chord = 1.125 feet = 13.5 inches, RPM = 170, Sw = 100, Vcr = 85 mph, Vland = 
26 mph, GW = 1800, Jacobs = 160 hp, DL = 2.24. First flight without wing on October 1, 1932.
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Fig. 2-35. The Wilford rotor system had neither flapping nor lead-lag hinges. Instead, 
blade feathering followed Eq. (2.57) to zero the rolling moment (photo courtesy of 
Wayne Wiesner). 

 
2.7.1 The E. Burke Wilford Rotor System 
 
 The details of the Wilford rotor system are shown in Fig. 2-35 and, in my very rough 
sketch, Fig. 2-36, which follows shortly. There were neither flapping nor lead-lag hinges. The 
centrifugal force of one blade was exactly counteracted by its pair, which is a very light 
structural arrangement for blade retention. The four blades, grouped in counteracting pairs, 
were all fixed at the same root collective pitch angle (θo). Each blade pair could change pitch 
cyclically (that is, they followed o 1C 1CB sin A cosψθ = θ − ψ − ψ ) because of the feathering 
bearings located just inboard of where the blade airfoil contour ends. Each blade in a pair had 
its cyclic pitch controlled by a pitch link. The bottom end of each pitch link was controlled by 
one arm of a “spider,” an early version of what is called a swashplate today. The four-arm 
spider rotated with the blades about its own ball bearing. The inner race of the spider bearing 
was attached to a nonrotating rod and ball assembly that could tilt the spider about the ball 
just below the spider. Thus, the plane of the four-arm spider could be inclined relative to the 
rotational axis of the blades. This created up and down travel of the bottom of each pitch link, 
which changed the blade pair incidence in a sinusoidal manner as the blades rotated. In 
essence, these upper controls acted like a simple, variable-amplitude cam, which the pilot 
could control.  
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 In contrast to the Cierva C.30 with its tightly packed, 1.75-inch flapping hinge offset 
(rβ = 0.00788R) retaining 3 blades of 18.5-feet radius, Wilford blade spars flexed about a 
point some 15 inches from the rotor centerline, and the blades were only 16-foot radius  
(rβ = 0.078R). Therefore, according to Eq. (2.51), the Wilford rotor system was capable of 
generating very large hub pitching and rolling moments (about 10 times the hub moment of 
the C.30) to trim his “gyroplane” in flight.  
 
 E. Burke Wilford, who was very well known, liked, and respected in the rotorcraft 
industry, told his story [67] about the development of “feathering control” at what became the 
first Rotating Wing Aircraft Meeting. This historic meeting was held at The Franklin Institute 
in Philadelphia, Pennsylvania, on Friday and Saturday, October 28 and 29, 1938. The meeting 
was sponsored by the Philadelphia Chapter of the Institute of the Aeronautical Sciences, later 
to become the A.I.A.A. All the papers presented were made available in a bound volume; I 
have included the index to the volume in Appendix F. E. Burke Wilford, president of the 
Pennsylvania Aircraft Syndicate Ltd., was the I.A.S Philadelphia chapter president and 
general chairman of what we call today, an annual American Helicopter Society Forum. The 
meeting began with Wilford welcoming the large group of rotorcraft enthusiasts10 and 
thanking the committee of very prominent figures in the field who helped put the four-session 
event together: 
 
 Mr. Agnew E. Larsen, chief engineer of the Pitcairn Autogiro Company 
 Mr. Wynn Laurence LePage, educator, editor, columnist, and prominent rotary wing aircraft engineer 
 Mr. Richard H. Prewitt, chief engineer at Kellett Autogiro Corporation 
 Mr. James G. Ray, chief pilot for the Pitcairn Autogiro Company 
 Mr. Ralph H. McClarren, director of the Aeronautics section at The Franklin Institute 
 
 He then went on, saying: 

“As this is probably the first rotary wing aircraft conference occurring in the world, we hope to 
make a little history here, and the only way that we can do that is for everyone to say what he 
thinks. Don’t be afraid of hurting anybody’s feelings, or departing from conventional 
procedure. That’s what this meeting is for, and we hope that it will be the start of a real boom 
in the rotary wing aircraft industry. We hope to see that within the next ten years, there will be 
at least 10,000 men working in this industry. To all you young men that are here, why, this is 
the line to work in, because it is going places.” 

 
 Dr. Alexander Klemin11 of the Guggenheim School of Aeronautics at New York 
University was the chairman of the first session. Burke Wilford’s paper [67] was the last paper 
presented in the first session. In his lecture, Wilford first showed a 7-minute film of the 
“development of feathering control, which I [Wilford] believe was the first rotor control 
which was ever flown in the world—the rigid blade adaptation to a rotor that flew without 
hinges, which Cierva said was impossible.” He further notes that “ground resonance is still 
unsolved in all other types of rotary wing aircraft, this one doesn’t seem to have it. But it is 
only fair, also, to say that this one hasn’t had much flying, and it is now in the hands of the 
                                                 
10 In Appendix I of the proceedings, Ralph McClarren, the meeting secretary, notes that 242 people registered at 
this first Rotating Wing Aircraft Meeting (1938), but no list of attendees is included.  
11 Dr. Klemin gave a special lecture titled Principles of Rotary Aircraft [68] at the regular meeting of the 
Franklin Institute at 8:15 p.m. on Thursday, October 27th, the night before the forum started. 
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N.A.C.A., and I hope they will give it a lot of flying.” A portion of the film appears to have 
dealt with Cierva activities in 1928 in England, which made Wilford “realize that rotor control 
was an absolute necessity; to that end I [Wilford] got [Walter] Rieseler and [Walter] Kreiser, 
who were two men who started in Germany without knowledge of Cierva, to come to 
America; and in Professor Klemin’s wind tunnel we made the first wind tunnel tests on rotor 
[blade feathering] control.”  
 
 The wind tunnel tests of rotor control plus early flights of the first Wilford gyroplane 
[69] on August 5, 1931, with subsequent modifications over the following year (including 
wings off), led to a quite acceptable autogyro, Fig. 2-34. In discussing the configuration 
development in his paper, Wilford makes a very significant technical point. He says: 

“I think one of the most interesting things which Elliott Daland [engineer] and Paul Hovgard 
[pilot and engineer] contributed in this particular year was the leading of the control to offset 
gyroscopic couple. Many people thought, may I say, semi-rigid blades were impossible, due to 
gyroscopic torque, but he [Daland, I think] led the control by the system of cut and try by 
40 degrees. I believe Bleeker had done the same thing in his helicopter, and it appears 
necessary in any kind of feathering control. I think they also use it [lead the control] in the 
Hafner type, where they have hinges. You will notice the little ball stick in the middle. That 
was the cam [spider or swashplate upper control, see Fig. 2-35], and it was effective for both 
longitudinal and lateral control. The angles of movement are exceptionally small—I think only 
a degree and a half on the blades.” 

Wilford was highlighting the control geometry between the spider (i.e., swashplate) and the 
rotor response so that fore and aft pilot stick motion gave the aircraft pure longitudinal pitch 
displacement; and lateral stick movement only produced roll response. He also passes on the 
information that the cyclic pitch amplitude was on the order of “only a degree and a half on 
the blades.” Wilford pointed out several times during the forum that his blades were definitely 
not rigid and, in fact, the behavior of his rotor system was not caused by gyroscopic forces. At 
one moment in the forum he questioned whether a truly rigid, propeller-like rotor blade could 
be made.  
 
 It is relatively easy to understand how the “feathering, semi-rigid” rotor blades 
Wilford designed were able to control his “gyroplane” given (a) further discussion and 
expansion of basic equations already introduced, and (b) review of Fig. 2-36. To get 
orientated, reconsider the two equations for first harmonic flapping and feathering  

(2.72)    o 1S 1Sa cos b sinψβ = β − ψ − ψ  

(2.73)    o 1C 1CB sin A cosψθ = θ − ψ − ψ . 

The sign convention and symbols used in Eqs. (2.72) and (2.73) have persisted for decades. 
They have been used by virtually all authors until the arrival, beginning in the 1980s, of 
advanced technical papers and newer text books, such as references [70] and [71], which 
assume the flapping and feathering motions are represented by more mathematically familiar 
positive Fourier series. The original equations grew out of autogyro analyses and were guided 
by some physical intuition about rotor system behavior. As you learned from the earlier 
discussion about flapping in Section 2.2, a rotor blade responds to an airload roughly 
90 degrees later in azimuth. Thus, a reduction in pitch angle at ψ = 90 degrees (i.e., a positive 
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control input of + B1C) leads to a nose-down input to the aircraft and an increase in aircraft 
speed, which is positive. The logic sequence is: 

a. the pilot pushes forward on the cyclic stick, which is positive (+δlong) 
b. the swashplate tilts to produce only a (+ B1C) and no (A1C) 
c. the blade element angle of attack at 90-degrees azimuth is reduced 
d. the blade lift at 90-degrees azimuth, say at the tip, is reduced 
e. the blade gets a negative flap velocity, ( 1Sd / dt a sinβ = Ω ψ ) because (a1S) is 

negative 
f. the flapping velocity integrates to ( 1Sa cosoβ = β − ψ ), which gives the 90-degree 

later response that some might call a gyroscopic response 
g. the rotor flaps down at 180-degrees azimuth to ( )1Saoβ − and up at 0-degrees 

azimuth to ( )1Saoβ +  
h. the rotor tip path plane tilts forward from trim by (a1S) and the rotorcraft pitches 

nose down 
i. the rotor thrust vector is tilted forward 
j. an increment of positive propulsive force, [ ]1S– )T( a− , is created 
k. the rotorcraft is accelerated forward which is positive speed stability 

( )FP longV /+∆ + ∆δ . 
 
2.7.2 Pitch-Roll Coupling With the Wilford System 
 
 The Wilford rotor system introduced the equivalent of a flapping hinge far removed 
from the centerline of rotation. As noted above, the Cierva C.30 physical flapping hinge was 
offset to rβ = 0.00788R; Wilford blade spars flexed with rβ = 0.078R. This difference caused a 
significant change in the rotor flapping response. The altered flapping behavior changed how 
pure stick movements must be coupled to blade feathering.  
 
 Flapping hinge offset (rβ) causes cross coupling between (a1S) and (b1S). The basic 
equations defining the hub pitching moment (MP) and rolling moment (MR) do not change, of 
course, which is to say  

(2.74)   C
P 1S

F r b
M a

2
β=        and       (2.75)   C

R 1S

F r b
M b

2
β= −  

but the first harmonic longitudinal flapping (a1S) and lateral flapping (b1S) expressions—
including the influence of flapping hinge offset—now become 

(2.76)   
( )

2
hp hp hp o hp 1C 1S

1S
2
hp

12r8 32 1 B b
3 2 R r

a 11
2

β

β

ª ºª º§ ·µ λ + µ θ − + µ + « »¨ ¸« » γ −© ¹¬ ¼ « »¬ ¼=
− µ
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(2.77)   
( )hp o 1S

1S 1C
2
hp

12r4 a
3 R r

b A11
2

β

β

ª º
µ β − « »

γ −« »¬ ¼= +
+ µ

. 

 To see the coupling introduced by flapping hinge offset, consider a simplification 
where the advance ratio is low enough to ignore (i.e., 2

hp 0µ ≈ ). Then Eqs. (2.76) and (2.77) 
can easily be solved simultaneously for the flapping coefficients to obtain 

(2.78)   

( )
( )1S 1C 1C2

12r1a B A
R r12r

R r

β

ββ

β

 ½ª º° °= − + « »® ¾γ −« »ª º ° °¬ ¼¯ ¿« »
γ −« »¬ ¼

 

(2.79)   

( )
( )1S 1C 1C2

12r1b A B
R r12r

R r

β

ββ

β

 ½ª º° °= + « »® ¾γ −« »ª º ° °¬ ¼¯ ¿« »
γ −« »¬ ¼

. 

Then it follows that the hub moments are reduced to  

(2.80)   

( )
( )

C
P 1C 1C2

F r b 12r1M B A
2 R r12r

R r

β β

ββ

β

 ½ª º° °= − + « »® ¾γ −« »ª º ° °¬ ¼¯ ¿« »
γ −« »¬ ¼

 

for pitch, and for roll, 

(2.81)   

( )
( )

C
R 1C 1C2

F r b 12r1M A B
2 R r12r

R r

β β

ββ

β

 ½ª º° °= − + « »® ¾γ −« »ª º ° °¬ ¼¯ ¿« »
γ −« »¬ ¼

. 

Remember that (γ) is the number Lock used in his equation where ( )4
flapa c R Iγ = ρ  as 

discussed on page 58.  
 
 From Eqs. (2.80) and (2.81) you can see that in order to obtain a pure, uncoupled 
pitching moment (MP), a forward longitudinal stick movement must introduce both 
longitudinal cyclic (B1C) and lateral cyclic (A1C). The proportions must be such that the 
rolling moment comes out zero; and, from Eq. (2.81), that means the term 

( )1C 1C

12r
A B

R r
β

β

 ½ª º° °+ « »® ¾γ −« »° °¬ ¼¯ ¿
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must be zero. Therefore, if the forward stick motion (say 1 inch) produces 1 degree of 
longitudinal cyclic (i.e., B1C = 1 deg), then the same 1 inch of forward stick motion must 
produce a lateral cyclic amounting to  

( )1C 1C

12r
A B

R r
β

β

ª º
= − « »

γ −« »¬ ¼
. 

Accept, for the sake of discussion, that the Wilford gyroplane had an “equivalent flapping 
hinge” of rβ = 0.078R and a Lock number of Ȗ = 5. Then A1C would need to be – 0.2 degrees 
for every 1 degree of B1C. This represents a phase angle shift in azimuth of 11.6 degrees 
where the maximum resultant cyclic occurs. 
 
 Now, with the preceding equations in mind, take a look at Fig. 2-36 where I have 
taken a schematic guess about how the feathering control and hingeless rotor system that 
Wilford designed worked. For the sake of simplicity, the master blade, blade 1, is shown at the  
90-degree azimuth position, which, according to Eq. (2.73), is the azimuth position for 
maximum longitudinal cyclic (B1C). The blades are numbered in the direction of rotation, so 
blade 4 is at the 0-azimuth position on Fig. 2-36. This orientation helps in the discussion of 
pitching moment. Wilford wrote in his paper that Elliott Daland and Paul Hovgard “led the 
control by the system of cut and try [my italics] by 40 degrees.” Frankly, while I do 
understand “cut and try,” I do not quite understand the words “led the control” or the 
magnitude of “40 degrees.” But, with modern knowledge, we know what Daland and 
Hovgard were doing. Their objective was to get the fore and aft stick motion from the pilot to 
give a pure longitudinal pitching response without some lateral response, such as aircraft 
rolling. The same uncoupling statement applies to lateral stick movement.  
 
 Based on Fig. 2-35 and Fig. 2-36, the “system of cut and try” appears to have begun  
with a rotating, four-arm spider (or swashplate, if you prefer) placed below the blade spar 
feathering axis. I assume the spider is mounted at the top end of a nonrotating control rod with 
a bearing. This control rod, I imagine, extends from the fuselage interior, up the rotor pylon 
support, through the centering ball, and ends at the inner race of the bearing holding the 
spider. The lower end of the control rod can be moved to the right by the pilot pushing on his 
stick (or moved left by the pilot pulling on his stick), given the simple linkage shown in  
Fig. 2-36.  
 
 The outboard end of each spider arm is attached with a rod end bearing, somewhere 
along the length of a pitch control lever. One end of the pitch control lever is fixed to the 
rotating blade support arms. The other end of the pitch control lever connects to the lower end 
of a pitch link. The upper end of the pitch link connects to the outboard end of the pitch arm. 
The inboard end of the pitch arm is rigidly attached to the blade spar.  
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 Now suppose the bottom of the control rod is pulled to the right by the pilot pushing 
forward on his stick, which would be a positive stick displacement (+δlong). The spider plane 
would tilt to the left about its longitudinal axis by an angle (χ). The spider-arm-to-blade-1 
pitch control lever would rise an amount (h = χc). Because the pitch control lever pivots about 
its pinned end, the bottom of the pitch link would rise a distance [blade 1 H = (d+e)(h/e)]. 
Upward movement of the pitch link would feather the blade nose down because of the trailing 
pitch arm. This would be a positive longitudinal cyclic in the amount (+B1C = H/b), but this is 
not all that would be going on. Because of the longitudinal cyclic input, an increment of 
forward (negative) longitudinal flapping given by Eq. (2.76) would be created. This 
longitudinal flapping would give rise to an increment of rotor hub rolling moment.  
 
 Now you can see that the pilot, with just forward stick motion, would be creating both 
pitching and rolling moments. With the control system coupled both mechanically and 
aerodynamically (do not forget a1S and b1S in the previous two equations), we can fully 
appreciate the acknowledgement by E. Burke Wilford of the lengthy trial and error search by 
Daland and Hovgard—and admire their success in obtaining uncoupled “gyroplane” response. 
 
 It is impossible to conclude this discussion about the E. Burke Wilford “gyroplane” 
and its hingeless rotor controlled by feathering without recognizing John Brooks Wheatley. 
John B. Wheatley was the first of a number of outstanding engineers at the N.A.C.A. to tackle 
rotorcraft problems head on. He, along with Glauert, Lock, Beavan, and others in England, 
single-handedly laid the foundation for a practical aerodynamic theory of rotors. In support of 
the “gyroplane” approach Wilford was offering, Wheatley published [72] an aerodynamic 
analysis showing that “the aerodynamic principles of the gyroplane are sound, and further 
research on this wing system is justified.” The N.A.C.A. management clearly supported 
Wheatley’s view because a 10-foot-diameter, 4-bladed model rotor was built and tested in the 
N.A.C.A. Langley 20-foot wind tunnel. Wheatley reported the 4-bladed results [73] and 
included 2-bladed results as well. The primary results covered an advance ratio range from 
0 to 0.8 and hub plane angles of attack from 0 to 90 degrees. He also provided data for the 
“idling rotor” case (he suggests an advance ratio of 1.5) covering angles of attack from 0 to 
5 degrees at several collective pitch settings. As you read on, the name John Wheatley comes 
up quite frequently, and you will gain an appreciation of what he, his cohorts, and those who 
followed—supported by the N.A.C.A. (and later NASA) management—did for the rotorcraft 
industry.  
 
 The demonstration by E. Burke Wilford that a nonflapping, feathering rotor system 
was quite feasible opened the door to our modern swashplate configuration. The first one 
through this door was Raoul Hafner.  
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Fig. 2-36. One possible schematic of the Wilford feathering rotor. 
 
 
2.7.3 The Raoul Hafner Rotor System—Part I 
 
 Raoul Hafner [74], who immigrated from Austria to England in 1932, used his early 
efforts with helicopters as an “opportunity to discover many of the peculiarities of rotors.” He 
quickly found that rotor control, not rotor lift and drag, was where he should focus his 
engineering attention. In 1934–1935 he completed design of the A.R. III gyroplane12 which 
then “made its first flight at Heston in September, 1935, piloted by Captain V. H. Baker. 
Further development work was carried out during the following year, and in its final form the 
machine [see Fig 2-37 and Fig. 2-38], to which we give the type No. A.R. III, had its first 
public demonstration when Flying Officer A. E. Clouston, R.A.F.O., flew it at the Society’s 
garden party on May 9th of this year [1937].” 
 

                                                 
12 Hafner notes that he used the word gyroplane for his A.R. III because it was “the official British class-name 
for a windmill plane.” 
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 Hafner read a lecture before the Royal Aeronautical Society on October 14, 1937. His 
excellent lecture, along with the very interesting discussion that followed, were published in 
the February 1938 issue of the Royal Aeronautical Society Journal [74]. The published paper 
is 35 pages long and the discussion that followed occupies another 16 pages. Hafner went into 
great design detail about his A.R. III and then continued with a detailed theoretical rotor 
analysis. He concluded the paper with an excellent control load analysis of what was to be a 
prototype of the modern swashplate control system. 
 
 The description of the A.R. III autogyro by Raoul Hafner is accompanied by rather 
poor engineering photos but excellent drawings. In his introduction of the aircraft, he 
mentions that his two early machines (helicopters R. I and R. II) had neither flapping nor lag 
hinges and used only feathering for control. In this regard, Hafner started down the Wilford 
path at about the same time, but Hafner soon gave up because the rotor shaft of the R. II was 
too rigid and the blades created “unpleasant forces” which proved to be “unsurmountable.” 
He was thus led “to the adoption of freely hinged rotor blades.” The Hafner A.R. III 
demonstrator was more than comparable to the Cierva C.30 or both Pitcairn and Kellett 
autogyros in the United States. For example, the A.R. III featured:  

a. a conventional welded tubular fuselage 
b.  a cambered elevator arranged to counteract engine torque (flat surface to starboard, 

cambered surface to port) 
c. pilot trimable elevator positions over a very wide incidence angle  
d. a cocked rudder hinge (forward at the top) so it was effective in descent 
e. airplane-like cockpit controls, albeit with a hanging stick 
f. pedal control of rudder and tail wheel 
g. pedal operated brakes 
h. a collective pitch lever mounted on the left-hand-side of the pilot 
i. a rotor startup drive and an overriding clutch 
j. a rotor brake 
k. flapping hinges on the rotor centerline (rβ = 0) with three blades 
l. lead-lag hinges with friction dampers 
m. blade retention with a long tie rod (i.e., tension-torsion assembly) plus fail-safe 

secondary retention 
n. the lowest solidity rotor of the era for performance (σ = 0.0237) 
o. zero pitching moment airfoil for blade sections 
p. high-inertia blades 

 
On top of this impressive list, Hafner successfully incorporated jump takeoff capability 
(discussed in the next section), which Cierva, Pitcairn, and Kellett were still perfecting. 
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Fig. 2-37. Raoul Hafner publicly demonstrated the prototype of our modern swashplate 

control system with his A.R. III on May 9, 1937 [74]. 
 
 

 
Fig. 2-38. The Hafner autogyro had a 33-foot-diameter rotor, an 84-hp Pobjoy engine, 

and a takeoff gross weight of 890 pounds. Rotor solidity was 0.0237 [74]. 
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 The upper control system of the Hafner A.R. III is quite clearly conveyed with two 
figures he included in his paper. I have reproduced them here as Fig. 2-39 and Fig. 2-40. The 
key to the system is the upper end of the pilot “joystick” which passes through the spherical 
bearing located at the point Hafner refers to as the “focus point.” This long nonrotating 
control tube houses a rod that carries the inner races of the two tapered bearings. The outer 
races of the two bearings support the three-arm spider. The three arms of the spider are bent 
downward at their outer ends so as to lay in the flapping hinge plane for the nominal 
collective pitch setting. The cyclic stick input from the pilot tilts the upper control shaft about 
the focus point, which tilts the spider (i.e., swashplate plane). The ends of the spider arms are 
ball jointed to the pitch arm of each blade. The pitch arms, unlike the approach Wilford took 
with trailing pitch arms shown in Fig. 2-35, are leading the blade spar axis. 
 
 The collective pitch input to the Hafner control system was quite simple. The rod, 
sliding within the spider control tube, simply raised and lowered the two tapered bearings and 
spider assembly. This up and down travel of the rod was controlled by the pilot “lift” lever. 
Today the “lift” lever is referred to as the collective pitch control.  
 
 The planform view of the Hafner A.R. III rotor head, shown in Fig. 2-41, indicates that 
the blades rotate clockwise when viewed from above. The flapping hinges for all blades are at 
the centerline of rotation. The ball joint connection between the tip of the spider arm and the 
free end of the pitch arm does not lie on the flapping hinge line. If it did, the pitch arm would 
be considerably longer and the 3-arm spider would be indexed roughly another 30 degrees in 
the direction of blade rotation. If you say that blade 1 is the master blade and that this blade is 
at the 0-degree azimuth position, the spider arm is advanced from the blade 1 span axis by 
approximately 60 degrees. 
 
 

Fig. 2-39. The Raoul Hafner A.R. III rotor head in 1937 [74]. 
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Fig. 2-40. Layout details of the Hafner A.R. III rotor head [74].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2-41. The Hafner spider control system introduced coupling between flapping and 
feathering because of the control advance angle, ∆ [74]. 
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 The identification of flapping and feathering coupling with the pitch arm extending 
ahead (or behind) in azimuth of the blade span axis is quite significant to rotor system 
behavior. The primary influence is on pilot control and the secondary influence is on aircraft 
stability and gust response. Hafner determined the amount of pitch (θ) coupling with flap (β) 
using “the control advance angle” (∆). He measured (∆) as a positive angle when it was ahead 
of the blade in azimuth as shown in Fig. 2-41. Were the pitch arms trailing the blade, that 
would be a negative (∆). You can see from Fig. 2-41 that if, in the Hafner design, the spider 
arm stays perpendicular to the rotor shaft (i.e., in the plane of the paper) then the ball joint at 
the end of the pitch arm must stay in the spider control plane. But now, if the blade flaps up 
(i.e., comes out of the paper) its feathering or pitch angle will be reduced. Just folding a 
rectangular piece of paper on a diagonal illustrates the flap-up/feather-down kinematics. The 
universally accepted sign convention for this flap-up/feather-down coupling is negative 
coupling. The coupling, as Hafner used it, is defined as 

(2.82)   cotangent ∆θ = − ∆
∆β

 

and with the Hafner design, (∆ = 60 degrees), which means that 0.5773∆θ β = − . Of course, 
if the pitch arm/spider arm ball joint extended around to the flapping hinge line  
(∆ = 90 degrees), there would be no pitch-flap coupling.13 
 
 The influence of pitch-flap coupling through the “the control advance angle” can be 
very large. While the fundamental flapping equation, Eq. (2.72), remains unchanged, the 
blade pitch definition from Eq. (2.73) must now contain a term reflecting the coupling. That 
is, the flapping equation remains 

(2.72)   o 1S 1Sa cos b sinψβ = β − ψ − ψ  

but the feathering equation becomes 

(2.83)   o 1C 1CB sin A cosψ ψ
∆θθ = θ − ψ − ψ + β
∆β

. 

A general solution approach, such as Wheatley provided [75],14 to solve for the thrust 
(2CT/σa), the coning (βo), the longitudinal flapping (a1S), and the lateral flapping (b1S) yields 

(2.84)   2 2T
hp hp o hp 1C hp o hp 1S

2C 1 1 1 1 1 1 1B b
a 2 3 2 2 3 2 2

ª º ∆θ§ · § ·= λ + + µ θ − µ + + µ β − µ¨ ¸ ¨ ¸« »σ ∆β© ¹ © ¹¬ ¼
 

                                                 
13 The modern angle notation for this pitch-flap coupling is į3 which is equal to 90o – ǻ. The modern definition 
is therefore ǻș/ǻȕ = – tan į3. 
14 The John Wheatley classic 1934 NACA technical report [75] provides the simplest derivation of the blade 
flapping motions, rotor forces, and rotor moments I could recommend. Many authors have extended his original 
work, but no one, in my opinion, has improved upon his clarity.  
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(2.85)   
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(2.87)   
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b A11
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β

β

ª º∆θ§ ·µ β − − + µ« »¨ ¸ ∆βγ − © ¹« »¬ ¼= +
+ µ

. 

 I have written these four equations in their coupled form so that the effect of flapping 
hinge offset (rβ) and the pitch-flap coupling (∆θ/∆β) are clear. These equations are, of course, 
four linear equations. A simultaneous solution of the three blade motion equations (βo, a1S, 
and b1S) is required before the flapping and blade pitch waveforms can be seen and the thrust 
can be calculated. 
 
 Pilot control is the fundamental design aspect affected by pitch-flap coupling. To see 
the potentially adverse control situation, simply think of the Hafner A.R. III in vertical descent 
where advance ratio (µhp) is, for practical purposes, zero. Because the Hafner rotor hub and 
blades were designed with the flapping hinge at the centerline of rotation (rβ = 0), the 
preceding blade motion equations reduce, with µhp= 0, to 

(2.88)   
hp o

o hp

1 1
2 3 4 for r 0 and 0

1
8

β

γ ª ºλ + θ« »¬ ¼β = = µ =γ ∆θ−
∆β

 

(2.89)   1S 1C 1S hpa B b for r 0 and 0β
∆θ= − − = µ =
∆β

 

(2.90)   1S 1C 1S hpb A a for r 0 and 0β
∆θ= + = µ =
∆β

. 

The first harmonic flapping coefficients, found by solving Eqs. (2.89) and (2.90) 
simultaneously, are 
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(2.91)   
1C 1C 1C 1C

1S 1S2 2

B A A B
a b

1 1

∆θ ∆θ− − −
∆β ∆β= =

§ · § ·∆θ ∆θ+ +¨ ¸ ¨ ¸∆β ∆β© ¹ © ¹

. 

Note here that pitch-flap coupling is squared in the denominator, which means that coupling 
of either sign reduces flapping motion—for a rotor in axial flight. This is not true for a rotor 
in edgewise flight.  
 
 Now consider how the pilot’s stick motion affects longitudinal and lateral flapping. 
Suppose the pilot pushes the grip of the hanging “joystick” directly forward 3 or 4 inches, say 
a distance (δlong). This will (with the reversing linkage Hafner mentions) cause the spindle to 
tilt nose down an angle (ϕ) in the autogyro plane of symmetry. The amount of forward spindle 
tilt is dependent on the mechanical gear ratio between the stick movement and the spindle. 
Hafner gives virtually zero information about this gear ratio (∆ϕ/∆δlong), but I would estimate, 
from Fig. 2-38 and Fig. 2-40, that 1 inch of grip travel gave 1.5 degrees of spindle tilt. 
Therefore let ϕ = (∆ϕ/∆δlong)δlong. Now, with a tilted spindle, the spider will travel in a plane 
inclined to the rotor hub axis. Therefore, the ball joint at the pitch-arm-to-spider-arm junction 
will travel up and down a height (h ball joint) relative to its mean position. This height is simply 

(2.92)   ( ) ( )ball jointh spider arm length cos= ϕ ψ + ∆ª º¬ ¼ . 

Keep in mind that the azimuth angle (ψ) is keyed to the master blade, which, in Fig. 2-41, I 
have taken as zero degrees. Now, the master blade feathering angle (or more commonly, the 
pitch angle) will be, assuming small angles, 

(2.93)   ( )ball joint
long

long

h spider arm length cos
pitch arm length pitch arm lengthψ

ª º§ · ∆ϕθ = = δ ψ + ∆« »¨ ¸ ∆δ« »© ¹ ¬ ¼
. 

From Fig. 2-38 (and with thanks to the 5-foot scale Hafner included), the spider arm length 
(s.a.l) measures 7.5 inches. That is, s.a.l. = 7.5. Furthermore, the ball joint is 6.625 inches 
measured perpendicular to the blade span axis, which defines the pitch arm length as p.a.l. = 
6.625. Note that knowing the individual spider arm and pitch arm lengths (s.a.l. and p.a.l. 
respectively) really does not matter according to Eq. (2.93). All that counts is the ratio of the 
lengths, which, in the Hafner design, is quite adequately measured from Fig. 2-41 as  
2.15/1.86 = 1.155. In fact, the ratio (s.a.l./p.a.l.) is identical to 1/sin ∆ with the Hafner spider 
control system.  
 
 The master blade pitch angle, Eq. (2.93), takes a more familiar form by expanding its 
cosine function to give 
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(2.94)   

long long
long long

long long
long long

long long
long long

s.a.l. s.a.l.cos cos sin sin
p.a.l. p.a.l.

1 1cos cos sin sin
sin sin

cos sin becau

ψ
 ½  ½∆ϕ ∆ϕθ = ∆ δ ψ − ∆ δ ψ® ¾ ® ¾∆δ ∆δ¯ ¿ ¯ ¿

∆ϕ ∆ϕ ½  ½= ∆ δ ψ − ∆ δ ψ® ¾ ® ¾∆ ∆δ ∆ ∆δ¯ ¿ ¯ ¿

 ½∆θ ∆ϕ ∆ϕ= − δ ψ − δ ψ® ¾∆β ∆δ ∆δ¯ ¿
se cotangent ∆θ = − ∆

∆β

. 

You can immediately see that the forward movement of the pilot “joystick” grip introduces 
both longitudinal and lateral cyclic pitch to the blades. That is, because 

1C 1CA cos B sinψθ = − ψ − ψ , the pilot forward longitudinal stick input with the Hafner spider 
control system is really giving the rotor 

(2.95)   1C long 1C long
long long

A and B ½∆θ ∆ϕ ∆ϕ= δ = δ® ¾∆β ∆δ ∆δ¯ ¿
. 

These kinematics can be substituted into Eq. (2.91), and the A.R. III blade flapping motion 
responds to a longitudinal stick input in vertical descent as 

(2.96)   1S long 1S
long

a b 0∆ϕ= − δ =
∆δ

. 

 This is really a beautiful result. Of course, this result might have been deduced directly 
from Eq. (2.91) because if lateral flapping is to be zero (i.e., b1S = 0), then Eq. (2.91) says 
lateral feathering (A1C) must equal pitch-flap coupling (∆θ/∆β) times longitudinal feathering 
(B1C). Therefore, longitudinal flapping (a1S) will equal negative longitudinal feathering. The 
Hafner control system design yielded uncoupled response to a fore and aft longitudinal stick 
motion in a vertical descent, and the same is true for lateral stick motion. Furthermore, the 
coupling was minimized in steady-level flight. Of course, if the flapping hinge offset were 
other than zero, then there would have been some coupling. The Hafner paper [74] has a 
lengthy section dealing with the theory of the rotor. The control system design plus 
engineering analysis shows that he knew exactly what he was doing.  
 
2.7.4 Gust Response With Hafner Rotor System 
 
 As I stated earlier, pilot control is the fundamental design aspect affected by pitch-flap 
coupling. Hafner clearly ensured that the pilot would have no surprises in this regard. The 
second most important aspect is aircraft response due to a disturbance. A good example of a 
disturbance is a gust.  
 
 Imagine that the A.R. III, while flying in trim at 115 miles per hour, encounters a  
20-foot-per-second updraft. The pilot takes no corrective action so his control-inputs to blade-
feathering remain fixed. Assume the autogyro is trimmed with zero longitudinal and lateral 
flapping before the updraft is encountered. The question is: What does the rotor do? This 
question is answered by comparing the two columns in Table 2-1, which were calculated 
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using Eqs. (2.84), (2.85), (2.86), and (2.87).15 The first column shows the trim conditions 
prior to the gust. The second column of Table 2-1 shows that the 20-foot-per-second gust 
immediately increases rotor thrust by nearly 60 percent. This is an increase in load factor from 
1 g to 1.56 g and a very noticeable bump to the pilot. Additionally, the rotor flaps aft 
0.94 degrees from its 0-degree trimmed state. This causes the autogyro to pitch nose up, since 
the rotor thrust vector is now inclined aft of its trimmed orientation. The rotor also flaps 
laterally 0.45 degrees. This tilts the thrust vector slightly, which introduces a rolling moment 
to port because Hafner chose clockwise rotor rotation when viewed from above. Fig. 2-42 
shows the calculated waveforms.  
 
 You can see that the Hafner control system design for his A.R. III gave the pilot 
uncoupled control and minimized aircraft response to disturbances. His control system was 
easily on par with modern standards.  
 
 

Table 2-1. The Hafner A.R. III Response to a 20-fps Vertical Gust With Control  
Advance Angle of Positive 60 Degrees, ǻș/ǻȕ = – 0.578 

 

                                                 
15 Hafner provides virtually no A.R. III dimensional data in his Society lecture [74]. He does give the rotor area 
as 846 square feet from which the diameter is 32.82 feet. The three blades are quoted as having an area of 
20.04 square feet, which makes solidity 0.02369 and an average blade chord of 0.4071 feet. Fortunately, his 
Flight magazine article [76] is more helpful. This article gives a flight weight of 900 pounds and a blade 
centrifugal force of 3,400 pounds. I guessed a normal rotor speed of 270 rpm and, therefore, a uniform blade 
section mass of 0.031 slugs-per-foot to give 3,400 pounds of centrifugal force. The flapping second moment of 
inertia calculates as 45.66 slug-ft2 and, therefore, the Lock number comes out at 8.8. The flight path speed of 
115 miles per hour plus an estimated hub plane trim angle of 5.5 degrees nose-up seemed to give reasonable 
results. Brooks [7] provides some information about gross weight and speed.  

Input Parameter Trimmed 20-fps Gust 
Flight Speed, V (mph) 115 Same 
Rotor Speed (rpm) 270 Same 
Hub Plane Angle of Attack, αhp (deg) +5.5 +12.3 
Advance Ratio, ȝhp 0.36 Same 
Induced Velocity, v (fps) 1.33 Same 
Inflow Ratio, Ȝhp +0.0320 +0.0751 
Pilot Input to Blade Pitch   
     Collective Pitch, θo (deg) +5.19 Same 
     Longitudinal Cyclic, B1C (deg) +3.29 Same 
     Lateral Cyclic, A1C (deg) –1.95 Same 

Results   
Rotor Thrust, Thp (lbs) 900 1,300 
Coning, βo (deg) +5.45 +7.64 
Longitudinal Flapping, a1S (deg) 0 +0.94 
Lateral Flapping, b1S (deg) 0 +0.45 
Flapping Amplitude (deg) 0 +1.04 
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Fig. 2-42. Rotor trim upset due to a 20-fps vertical gust at 115 mph.  

 
 An appropriate question to ask about the Hafner control system design decision at this 
point is “Why not have a trailing pitch arm where the control advance angle would be ∆ = –60 
degrees? Or, for that matter, why not have zero pitch-flap coupling (i.e., ∆ = 90 degrees)? 
After all, Eq. (2.96) shows that the pilot inputs would be uncoupled.” This question is 
answered with Table 2-2. Clearly, the flapping response is reduced as long as ǻș/ǻȕ is 
negative. Conversely, positive ǻș/ǻȕ values where flap up increases pitch are clearly to be 
avoided. Excessive lateral flapping alone would create a dangerous aircraft.  
 

Table 2-2. Response to a 20-fps Vertical Gust With Various Values of ǻș/ǻȕ  
Pitch-Flap Couplings 

 

 
Parameter Trim 

ǻș/ǻȕ
0 

ǻș/ǻȕ 
–0.578 

ǻș/ǻȕ
–1.0 

ǻș/ǻȕ 
–1.732 

ǻș/ǻȕ 
1.0 

ǻș/ǻȕ 
0.578 

Hafner Control Advance Angle, ǻ (deg)  90 60 45 30 –45 –60 
Delta 3, į3 (deg) Variable 0 30 45 60 135 150 
Rotor Thrust, Thp (lbs) 900 1,535 1,300 1,214 1,138 5,960 2,151 
Coning, βo (deg) 5.45 9.07 7.64 7.12 6.66 36.70 12.92 
Longitudinal Flap, a1S (deg) 0 1.91 0.94 0.51 0.20 7.04 2.71 
Lateral Flap, b1S (deg) 0 1.64 0.45 0.25 0.20 21.19 4.95 
Flap Amplitude (deg) 0 2.52 1.04 0.56 0.28 22.33 5.64 
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 You should take careful notice of the last two columns in Table 2-2. These results 
suggest that the more positive ǻș/ǻȕ becomes, the greater the gust response. In fact, there is a 
value of positive ǻș/ǻȕ where flapping motion is completely divergent. In simple 
mathematical terms, this means that there is no simultaneous solution to Eqs. (2.85), (2.86), 
and (2.87). Therefore, longitudinal flapping (a1S), lateral flapping (b1S), and coning (ȕo) are 
indefinable. In terms of the dynamic equation of flapping motion as explained by Johnson, 
starting on page 602 of reference [70], the flap frequency is reduced from once per revolution 
to zero. A simple equation estimating this critical pitch-flap coupling to absolutely avoid is  

(2.97)   ( )2 4
hp hp

r11
2 R8 1 1.803 2.594

r
1

R

β

β

§ ·§ ·+¨ ¸¨ ¸∆θ © ¹¨ ¸= + µ + µ
¨ ¸∆β γ § ·−¨ ¸¨ ¸

© ¹© ¹

. 

 
2.7.5 The Raoul Hafner Rotor System—Part II 
 
 Hafner [74] summarizes the control system noting that “it is in fact due to the 
smoothness and precision of this control that the pilot is able to carry out the various flying 
manœuvers with accuracy and confidence, of which the aviation correspondent of a leading 
London newspaper, when describing the demonstration at this Society’s Garden Party, stated 
that ‘No flying machine ever built is so manœuvrable as the Hafner gyroplane,16 for in effect 
the whole of the sustaining member [the rotor] is also a control surface, infinitely and 
instantly responsive.’” To substantiate his claim, Hafner tells the Royal Aeronautical Society 
members that “the fundamental difference between the two rotors [other autogyro control 
systems like the Cierva C.30 tilting hub direct control and his design] lies in the fact that the 
hub of the Hafner rotor rotates about a rigid axle through which all the flying loads are carried 
direct to the fuselage, which the variation of incidence is achieved by a separate control 
linkage which enables the rotor to be controlled by light loads on the control column, which, 
as is shown in the mathematical analysis of control and as has been proved in flight, is free 
from all parasite loads and vibrations.” Recalling the earlier discussion (Section 2.6.4) of 
vibratory control loads measured by Wheatley [62] from the N.A.C.A. with the Pitcairn  
YG-2, and Bailey [63] with the Kellett YG-1B, the words Hafner spoke would have been 
music to the ears of Captain Frank Gregory.  
 
 Hafner included his control load analysis near the end of his lecture. He reminded the 
audience that the blade was retained to the hub with a long tie rod, which I have shown here 
in Fig. 2-43. One feathering bearing is clearly shown just outboard of the lag hinge in his 
drawing. He states that:  
 

“The blades produce no [torsional] moments about their longitudinal [spanwise] or pitch 
change axes due to  

                                                 
16 When I read that the “aviation correspondent of a leading London newspaper” wrote that in his column, I 
believe the fixed-wing community would have hotly disputed the claim. Certainly, the Cierva Autogiro 
Company was quick to take issue as you will read shortly.  
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(a) aerodynamic forces, because the blades are fitted with aerofoil sections, the centre of 
pressures of which lie always on a straight line coinciding with the pitch change axis; and 

(b) weight and centrifugal forces, because the centre of gravity of each blade lies also in this 
[pitch change] axis.”  

This frees him to first calculate control loads only due to twisting the tie rods. He assumes 
that the feathering motion is periodic as given by Eqs. (2.83) and (2.72) combined so that 

(2.98)   
( )o 1C 1C o 1S 1S

o o 1C 1S 1C 1S

B sin A cos a cos b sin

B b sin A a cos

ψ
∆θθ = θ − ψ − ψ + β − ψ − ψ
∆β

§ · § · § ·∆θ ∆θ ∆θ= θ + β − + ψ − + ψ¨ ¸ ¨ ¸ ¨ ¸∆β ∆β ∆β© ¹ © ¹ © ¹

. 

 

 

 

 

Fig. 2-43. Each A.R. III blade was retained by a tie rod [74].  
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 The control loads depend on the forces required to twist the tie rods under a 
centrifugal force. Assume a tie rod was made of spring steel. Perhaps Hafner used classical 
torsion theory of the era, provided, for example, by the second edition of Mechanical 
Engineer’s Handbook [77] by Marks. In this 1925 handbook, the torsional stiffness of the tie 
rod (in modern notation) is 

(2.99)   Torsion Moment GJ
L
θ= . 

Hafner does not give the tie rod dimensions in his Society lecture [74], but in a later Flight 
magazine article [76] he states that 91.4 inch-pounds of moment twists the assembly 
5.5 degrees. This information says that the torsional spring constant, (GJ/L) in Eq. (2.99), 
equals 635 inch-pounds per radian. Fig. 2-38 shows that the tie rod was about 50 inches long, 
and from the Marks handbook, Section 5, spring steel has a sheer modulus of elasticity (G) of 
12,000,000 pounds per square inch. These estimates suggest the tie rod polar moment of 
inertia (J = πd4/32) was 0.002644 inches,4 and therefore the tie rod diameter was about 
0.40 inch. Hafner notes that his preliminary stress analysis was favorable, and then goes on to 
say: 

“but in view of the importance of this member one of these rods was given a very thorough test 
for possible fatigue effects due to the torsional oscillation. A tensile load four times the normal 
operating load was applied to one end through a large roller bearing, the other end being 
rigidly held. A torsional oscillation was applied to the free end with an amplitude more than 
twice the maximum possible in the aircraft, and with a frequency approximately four times that 
occurring in flight. The tie-rod underwent about three million reversals (equivalent to about 
300 flying hours) without showing any sign of fatigue or strain, although one bearing failed in 
the course of the test.” 

Hafner appears satisfied that the tie rods can be designed based only on centrifugal force 
considerations saying “the proportions of the tie-rods are such that from a stressing point of 
view, the twisting causes only a very small increase in the stress intensity due to the 
centrifugal load….”  
 
 In fact, the tie rod was rather highly stressed and was, therefore, probably made of 
nickel chromium steel with a Brinell hardness over 250. Assuming it had an 0.40-inch 
diameter, the tie rod area was 0.1289 square inches. Hafner writes that he tested it in torsional 
oscillations with “a tensile load four times the normal operating load.” He gives the normal 
centrifugal force as 3,400 pounds [76], which means the tie rod was being tested at a tensile 
stress (Stensile = 4 CF/A) of about 106,000 pounds per square inch. The Marks 1925 handbook 
suggests, on pages 480/481, that the tie rod probably would not have yielded (i.e., take a 
permanent set) until the stress reached 20 to 50 percent higher depending on the exact 
composition of steel—and any manufacturing defects. I suspect that the threaded lengths of 
the tie rod, even though of larger diameter as shown by Fig. 2-43, was of much greater 
concern.  
 
 One thing seems clearly apparent about the tie rod design. Hafner made sure that the 
rotor could be over-sped by at least a factor of 1.5 for jump takeoff and, perhaps, even to 
twice normal rotor speed. Secondly, he refers to his concept [76] as “the torsionally flexible 
member described in my patents Nos. 418,212 and 418,698 published in October 1934.” 
Presumably these are British patents. 



2.7  SWASHPLATE CONTROL 

 95

 Now, having some rough idea about the tie rod properties, let me go on to the pilot 
control loads. The blade is feathered by twisting the tie rod. The tie rod is twisted nose-up by 
a force acting up at the spider-arm-to-pitch-arm ball joint (Fball joint) as Fig. 2-40 shows. The 
pitch arm length (p.a.l.) was taken earlier as 6.625 inches, which means that the ball joint 
force is 360 pounds per radian of pitch or about 6.3 pounds per degree of feathering (θψ). This 
force for one blade, say the master blade, is resolved into the spider nonrotating spindle roll 
and pitch axis system by the spider arm length (s.a.l.) simply as 

(2.100)   ( ) ( ) ( )spindle
GJSpindle Roll Moment RM s.a.l. sin

L p.a.l. ψ

ª º
= = θ ψ + ∆ª º« » ¬ ¼

¬ ¼
 

and 

(2.101)   ( ) ( ) ( )spindle
GJSpindle Pitch Moment PM s.a.l. cos

L p.a.l. ψ

ª º
= = θ ψ + ∆ª º« » ¬ ¼

¬ ¼
. 

As noted earlier, the ratio of spider arm and pitch arm lengths is (s.a.l./p.a.l. = 1/sin ∆). Then, 
substituting the periodic feathering, Eq. (2.98), into the spindle moment equations gives the 
blade 1 contribution to the spindle moments as 

(2.102)     ( )spindle o o 1C 1S 1 1C 1S 1 1
GJBlade 1 RM B b sin A a cos sin

Lsin
ª º§ · § · § ·∆θ ∆θ ∆θ= θ + β − + ψ − + ψ ψ + ∆ª º« »¨ ¸ ¨ ¸ ¨ ¸ ¬ ¼∆ ∆β ∆β ∆β© ¹ © ¹ © ¹¬ ¼

 

and 

(2.103)   ( )spindle o o 1C 1S 1 1C 1S 1 1
GJBlade 1 PM B b sin A a cos cos

Lsin
ª º§ · § · § ·∆θ ∆θ ∆θ= θ + β − + ψ − + ψ ψ + ∆ª º« »¨ ¸ ¨ ¸ ¨ ¸ ¬ ¼∆ ∆β ∆β ∆β© ¹ © ¹ © ¹¬ ¼

. 

Of course, the contributions from blade 2 and blade 3 must be added. This is done by 
repeating Eqs. (2.102) and (2.103), but with a blade 2 azimuth of ψ2 = ψ1 + 120o and a blade 3 
azimuth of ψ3 = ψ1 + 240o. The trigonometry is somewhat tedious, but the result is simplicity 
itself.  
 
 The resulting spindle roll and pitch moments for the Hafner three-bladed rotor are only 
steady moments—there are no vibratory components—given by 

(2.104)   spindle 1C 1S 1C 1S
3 GJRM A a B b cot
2 L

ª º§ · § ·∆θ ∆θ§ ·= − + + + Λ« »¨ ¸ ¨ ¸ ¨ ¸∆β ∆β© ¹ © ¹ © ¹¬ ¼
 

and 

(2.105)   spindle 1C 1S 1C 1S
3 GJPM B b A a cot
2 L

ª º§ · § ·∆θ ∆θ§ ·= + − + Λ« »¨ ¸ ¨ ¸ ¨ ¸∆β ∆β© ¹ © ¹ © ¹¬ ¼
. 

There is, of course, a vertical spindle load that the pilot must apply with the “lift” lever to 
increase the collective pitch of the three blades simultaneously. This load amounts to 

(2.106)   ( )2
o o install o o

GJSpider Lift Force 3 3 I R
L θ

§ · § ·∆θ ∆θ§ ·= θ + β − θ + Ω θ + β¨ ¸¨ ¸ ¨ ¸∆β ∆β© ¹© ¹ © ¹
. 
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The second vertical load in Eq. (2.106) comes from operating the blade at any pitch angle 
(other than zero) in a centrifugal force field. This force is somewhat akin to sitting on a swing, 
twisting the swing, then letting go and the swing untwisting. The force depends on the polar 
moment of inertia (Iθ) of the airfoil-shaped blade section. However, if the blade section were 
cylindrical, this force would be zero. With respect to this vertical force, Hafner installed the 
tie rods at the angle expected for flight (θinstall) to give the tie rods a centering position and 
reduce the “lift” lever load to near zero in flight. Note that the 3 in the preceding equations 
denotes the three blades, so the equations can be used for any number of blades (b) by simply 
replacing the 3.  
 
 To get the pilot forces at the “joystick” grip, Hafner gives the information [76] that the 

resultant spindle moment ( ) ( )2 2

spindle spindleRM PM+  for 5.5 degrees of feathering “and 

including friction on the pitch change bearing and ball joint due to control loads = 91.4 lb. in.” 
Additional friction in the “control mechanism” adds 2.27 inch-pounds so that together the 
“total moment, 94.12 inch-pounds [there must be a little more somewhere] gives a stick load 
of 2.51 pounds.” This information implies an equivalent mechanical gear ratio of 37.5 to 1.  
 
 From the little sketch below, the pilot grip force (P) is related to the nonrotating 
spindle moment as  

(2.107)   ( )bP Spindle Moment
a c

= . 

Fig. 2-39 indicates the lengths (a) and (b) are about equal, which 
makes c = 37.5 inches for the Hafner A.R. III.  
 
 Hafner closes his analysis of control loads [74] by addressing 
“Control Load Due to Moment of Inertia of Blade about Pitch Change 
Axis.” The half page derivation is ill advised, in my opinion, because 
he leaves a distinctly wrong impression. However, in his “Summary of 
Mathematical Analysis” he says “The analysis further shows that if the 
plane of rotation of the rotor [i.e., the tip path plane, Fig. 2-9] coincides with that of the hub 
[giving zero flapping], which arrangement is to be preferred, then the inertia of the blades 
with respect to the pitch change axis acts exactly in the opposite sense to the action of the tie-
rods, thus very fortunately, reducing still more the loads in the joystick.” His statement, 
written as a single degree of freedom vibration problem in modern notation, becomes 

(2.108)   
2

2
2

d GJTorsion Moment I I
d t L

ψ
θ θ ψ

θ § ·= + + Ω θ¨ ¸
© ¹

. 

Since the feathering motion is simple harmonic, ( )2 2 2
od dtψ ψθ = −Ω θ − θ , the inertial once-

per-revolution torsional moment about the pitch change axis is cancelled, which reduces the 
torsion moment equation to the static problem Hafner solved. In effect, the blade is near 
resonance when feathered at once per revolution, and the torsion moment depends primarily 
on the tie rod spring constant (GJ/L). It is precisely this fact that makes the Hafner control 
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system design so attractive—and so feasible, particularly for larger machines—a point that 
Hafner drives home in his Flight magazine article [76].  
 
 Before leaving the Hafner story of swashplate control development, there was some 
very interesting discussion that followed his Royal Aeronautical Society lecture [74]. The 
chairman, Lieutenant Colonel J. T. C. Moore-Brabazon, a past president of the Society, 
opened the discussion by immediately saying that in a hundred years’ time people would be 
saying “What wonderful engineers they had in those days, what marvelous machines they 
designed, but what poor photographs they took of them.” Brabazon took Hafner to task and 
suggested “to the young workers present who were trying out new things that they would do 
well to be really careful about their first photographs.” Hafner, in his turn, apologized and 
added that the film “represented the first effort of an amateur.”  
 
 Chairman Moore-Brabazon then asked Captain Frank Courtney [42] to say a few 
words. Courtney reminded the group that even though he had been in America the past few 
years, he had stayed close to “rotative-wing aircraft and still believed these rotating wings 
were the solution of the problem of safety in flight.” He did include the statement that because 
the autogyro “had not leapt suddenly into tremendous success right at the start, people had 
regarded it as being, while very interesting, neat, and even beautiful, not particularly reliable.” 
 
 Dr. A. P. Thurston was asked to speak next and he began by saying that “it was 
difficult for him to realise that when he first met Herr Hafner he could hardly speak a word of 
English, but he had delivered his lecture that evening as one who was perfect in the 
language.” Thurston went on to remind the audience that Major Jack Coats’ [late of the RAF] 
generosity helped Hafner through the “development and building of the present machine and 
its forerunner.” Major Coats first met Hafner in Vienna in 1930 and was so impressed he 
agreed to “set aside a certain sum of money for the building of machines [these were probably 
the R. I and R. II helicopters] and their further development.” Hafner responded that he was 
grateful for the reference Dr. Thurston made to Major Coats, because to him “is due a great 
deal of credit for anything I have been able to achieve.”  
 
 The third audience member to speak was another pilot, Reginald Brie [52] who 
wanted to keep his remarks short so that “as much time as possible should be allowed to the 
unconverted.” Brie noted that he had known Herr Hafner since 1932 and thought that he “was 
imbued with an infectious enthusiasm such as seemed to grip all those associated with 
rotative-wing flying.” 
 
 Dr. H. C. H. Townend, the next audience member to speak, apparently had absorbed 
all of the Hafner engineering analysis, had seen the Garden Party flight demonstration, and 
chose to raise a very significant point. He was puzzled about “the difference in performance, 
particularly in controllability between the de la Cierva autogiro and the Hafner aircraft.” 
Townend saw that rotor control by tilting the hub or by swashplate was aerodynamically the 
same and that it therefore “seemed to him inadequate to account for the difference in 
controllability [between the two control systems].” Hafner, in his response, said, “There is 
very little difference aerodynamically between the Cierva autogiro and the Hafner gyroplane. 
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The extra controllability of the latter [spider control] is mainly due to the fact that the control 
is free from parasitic loads, and together with a low gear ratio to the joystick, which is 
possible in such a case, enables the pilot to carry out the various flying manœuvers quickly, 
effortlessly, accurately and with confidence.” 
 
 The next several audience members who spoke touched on several subjects which I 
will briefly summarize as follows: 

Dr. Watts: Now that lifting and controllability are demonstrated, what about performance? 

Mr. Reder: As a member of the Cierva Autogiro Company he thought it was too soon to make 
any comparison with different types of rotative-wing aircraft and that he hoped “they all got 
what they wanted to see, which was a machine that could carry out taxi flights from house to 
house.” 

Mr. Forman: From his experience of the work in America, he thought “they [Pitcairn and 
Kellett] were having about the same amount of success over there as was attained in Europe by 
Herr Hafner and Senior de la Cierva.” He said that “when high speeds were achieved he thought 
the whole problem would be solved.” 

Mr. Kronfeld: “Why had Herr Hafner given up—he hoped only for the time being—the idea of 
going up into the sky absolutely vertically?” 

Mr. Norman: The machines were coming along he could see, but what about “places from which 
such aircraft could be operated, in the centre of cities, and that would involve the question of 
flying in air much more turbulent than that experienced on the aerodromes where tests were at 
present carried out.” 

Mr. Radcliffe: “Up to the present, gyroplanes have not shown a very good ratio of gross weight 
to tare weight [weight empty] and could Herr Hafner indicate what this ratio might be when the 
all-up weight [takeoff gross weight] is 9,000 pounds.” 

 
 The discussion part of the paper Hafner published [74] ends with a 6-1/2-page 
communication from Dr. J. A. J. Bennett. Keep in mind that at the time of the Hafner lecture 
(October 1937), Dr. Bennett had stepped forward to fill Cierva’s position as technical director 
of the Cierva Autogiro Company because of Cierva’s death on December 9, 1936. One can 
imagine that Bennett was disappointed in not attending the lecture—or, if he was there, he 
chose not to speak, preferring a written discussion. At any rate, Bennett’s 6-1/2 pages gave 
Herr Hafner a thorough lesson sprinkled with some very pointed remarks.  
 
 Apparently a “controversy,” as stated by Hafner, was in full roar. The chronology of 
the situation seems to have begun when (if not before) the Hafner A.R. III performed at the 
Royal Aeronautical Society Garden Party on May 9, 1937. Clearly the press gave the 
demonstration, which included jump takeoffs, a glowing report as did the many people who 
saw the “gyroplane” fly. That event led to Hafner giving his lecture to the Society on October 
14, 1937. Then Bennett wrote an article about Hafner’s lecture for Flight magazine [78], 
which was published on October 28, 1937, just two weeks after the lecture. The article 
Bennett wrote set the mood of the Cierva Autogiro Company. Hafner replied in detail to the 
article by Bennett in the November 11, 1937, issue of Flight [76]. At this point the Flight 
magazine editor intervened with:  
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“The arguments pro and con could obviously go on indefinitely. While Flight has been very 
pleased to give the hospitality of its columns to Dr. Bennett and Mr. Hafner we do suggest that 
the discussion should now be continued in the Journal of the R.Ae.S–Ed.”  

After that exchange, the Hafner lecture was published in the February 1938 issue of the Royal 
Aeronautical Society Journal. It included the communication by Bennett, which, as Hafner 
saw it (and as I thought when I read both), was “on the whole a repetition of an article 
published by him [Bennett] in Flight of October 28th 1937, where he opened a controversy on 
my paper.”  
 
 An opening facet of the “controversy” was that Bennett continually referred to the 
Hafner hub and control system as a “false hub.” Hafner, in his published paper, really took 
issue with that description saying, “Dr. Bennett considers the general use of the phrase ‘direct 
feathering’ to describe the A.R. III control as misleading terminology, since bodily tilting of 
the hub also produces feathering, and moreover he prefers to describe the former [Hafner’s 
system] as a ‘false hub’ control. I cannot agree with this nomenclature which confuses means 
with ends.” Bennett, after a couple of engineering pages, does equate the spider plane to “the 
false hub.” Fortunately, both Hafner and Bennett were at least in agreement that both systems 
achieved control by tilting the rotor thrust vector relative to the aircraft center of gravity. 
However, they both went to enormous mathematical length to state that flapping and 
feathering were equivalent, [see Eq. (2.57)], when the objective was to reorient the tip path 
plane.  
 
 Bennett, in his communications, does congratulate Hafner “on designing such a neat 
and spectacular machine…..” But very pointedly refers to several Cierva British Patent 
Specifications that covered every important aspect of the Hafner design. Specifically, Bennett 
refers to 

 •  B.P.S. No. 410532—November 1932, Spider 
 •  B.P.S. No. 264753—November 1925, Delta-3 
 •  B.P.S. No. 393976—December 1931, Benefit of focus point 

Furthermore, Bennett made sure everyone knew that “the word Autogiro is the registered 
trade mark of the Cierva Autogiro Co.” To me, many parts of the Bennett communication 
sound as if the Cierva Autogiro Company was preparing to take Hafner to court. And yet, 
Peter Brooks, on page 21 of reference [7], suggests that “Hafner is believed to have made use 
of several Cierva patents with Cierva’s knowledge and permission.” Of course, by the time of 
this “controversy” Cierva had, unfortunately, been dead nearly a year. 
 
 However, I think the real heart of the “controversy” was twofold. First, the Hafner 
swashplate design plus tie rod blade retention reduced control loads, both steady and 
vibratory, in comparison to the Cierva C.30. Bennett acknowledged this point, but blamed the 
characteristics of the C.30 on the cambered airfoil. Secondly, the jump takeoff capability of 
the A.R. III was enhanced by the pilot having a “lift” lever, which Bennett said Cierva felt 
was an unwanted cockpit control because the “consistent use of the control in the most 
effective manner is probably beyond the capacity even of an expert pilot.” (I doubt the pilots 
took that comment to heart!) It took Bennett and Otto Reder completing the C.40 (under 
development at the time Cierva died) before the Cierva Autogiro Company had, by August 
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1938, an Autogiro that compared to what the Hafner A.R. III gyroplane demonstrated a year 
earlier. I will return to this “controversy” again when the subject of jump takeoff is 
addressed.17 
 
 While all this progress (and controversy) was going on in England, the swashplate 
control efforts of Raoul Hafner were carried forward by Richard Prewitt, chief engineer at the 
Kellett Autogiro Company in the United States. The Prewitt design came closest to what we 
think of today as the modern swashplate control system.  

 
2.7.6 Closing Remarks 
 
 The modern version of a blade pitch control system is shown schematically in  
Fig. 2-44. The swashplate, really a large ball bearing as Fig. 2-44 suggests, is the bridge 
between the nonrotating environment of the pilot and the rotating world of a blade. The inner 
ring of the swashplate is nonrotating and is ball-mounted to a slider. The slider permits the 
swashplate to travel up and down the rotor shaft a short distance of only several inches. The 
ball allows the swashplate to tilt left or right, and fore or aft, in response to pilot input. 
Maximum angles of swashplate tilt today are on the order of 15 to 25 degrees. The pilot 
dictates the swashplate rise and fall (i.e., the linear travel of the swashplate along the rotor 
shaft) with a “collective stick.” He or she (or even some form of autopilot) controls the 
swashplate tilt in any direction with a “cyclic stick.”  
 
 The physical connections between the collective and cyclic sticks used by the pilot, 
and the nonrotating ring of the swashplate, have been made in any number of ways as new 
technology evolved. The Hafner hanging stick gave way to cables, pulleys, tubes, and bell 
cranks such as Kellett used in their XR-3 and XR-60. Today, hydraulic actuators combined 
with electronics and computers provide extremely reliable control for modern rotorcraft. 
 
 The ball bearing feature of the swashplate bridges the gap from nonrotating to rotating 
systems. The rotating ring of the swashplate is forced to rotate with the shaft by a “scissors” 
assembly (not shown), which allows swashplate tilting. Pitch links then make the connection 
from the swashplate rotating ring to each blade pitch arm. The pitch arm is rigidly attached to 
the blade-root end. 
 
 

                                                 
17 The Raoul Hafner paper [74] contains even more worthwhile material than I have touched on here. One thing 
is for sure, the discussions following a lecture to the Royal Aeronautical Society were very well recorded. They 
make reading historically significant engineering absolutely fascinating for me.  
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Fig. 2-44. Blade feathering and a modern swashplate gave the pilot complete control 
(drawing by Rick Peyran). 

 
 
 The blade-root end is generally of circular shape and is attached to the hub with two 
feathering bearings and a “tension-torsion strap,” which, in the Hafner blade retention 
assembly, was a long tie rod. The two feathering bearings react flap and lead-lag bending 
moments created by all blade loads. The tension-torsion strap restrains the blade against 
centrifugal force, but is designed to be quite easy to twist. Very little centrifugal force is 
loaded onto the two bearings. The total control system—from the pilot stick to blade-root 
end—requires only a small pilot force to vary blade pitch when the rotor system is at rest. The 
stick forces, without some power assist or force-balancing springs, can, for large rotorcraft, 
become very large in flight as you will see later. 
 
 The mathematical description of the control system, shown in Fig. 2-44, needs one 
other term added to what you have read so far. The term accounts for pitch (θ) – lag (ξ) 
coupling so that the blade feathering equation now appears as 

(2.109)   0 1C 1CB sin A cosψ ψ ψ
∆θ ∆θθ = θ − ψ − ψ + β + ξ
∆β ∆ξ

.  
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The step that added collective pitch to what began as the Wilford “feathering blade” rotor 
system was made by Raoul Hafner with his A.R. III and David Kay18 with his Kay Gyroplane 
in England, and by Kellett and his chief engineer, Richard Prewitt, with the XR-3 in the 
United States in 1941.19 The objective in the 1930s and early 1940s was to produce a machine 
that could do a jump takeoff.  
 

                                                 
18 Unfortunately, I have yet to find much detail about the Kay hub and control system. The 1938 Jane’s All The 
World’s Aircraft [79] volume states on page (53c) that he had a patented hub, “in which blades are hinged on 
bushes are keyed to eccentrically mounted Z spindles. By rocking the Z spindles, the bushes are rotated and also 
oscillated about a transverse axis. This gives control over 8 degrees of the rotor blade incidence in the air. The 
same motion is used to tilt the rotor head for lateral control.” 
19 Brooks notes on page 237 of reference [7] that “the rotor hub in the XR–3 was of completely new design, 
having a fixed spindle [hub] with collective and cyclic pitch control instead of the tilting direct-control head. 
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2.8 JUMP TAKEOFF 
 
 
 By the end of 1933 the autogyro industry had begun serious research and development 
of ways to give their aircraft jump takeoff capability. At that time the industry had (1) a 
configuration that could land in a very small area, (2) a rotor system that could be pre-spun up 
to near takeoff rotor speed, and (3) direct control of the aircraft throughout its flight envelope. 
But the true coming of the helicopter could already be seen because Louis Bréguet, assisted 
by René Dorand, was only 2-1/2 years away from first flight [39].20 The view of the autogyro 
advocate was that if their rotorcraft could takeoff from the same small area in which it landed, 
then the autogyro had every benefit of the helicopter—except true hover—with considerably 
less complexity. 
 
 The autogyro pioneers all tackled the problem from the same starting point. Because 
the mechanical drive for rotor startup worked well, that drive, with strengthening, could be 
used to over speed the rotor to 125 to 175 percent of normal flight RPM while the autogyro 
was on the ground. Any anti-torque the aircraft required would come from wheel-to-ground 
contact. The rotor would be over-sped at virtual zero collective pitch and, presumably, near 
zero thrust, so the full weight of the autogyro would be on the wheels. The rotor would store 
up an excess of kinetic energy. To release this energy, the pilot would declutch the startup 
drive and something would increase collective pitch from zero to the flight setting of 4 to 
6 degrees. The autogyro would get an initial burst of thrust far in excess of its weight, and the 
leap upward would begin. The trajectory was not necessarily straight up because the propeller 
thrust would already be accelerating the autogyro up to speed so normal slow-speed forward 
flight would be obtained quite quickly. The flight could then be continued as if from a normal 
takeoff.  
 
 Each band of engineers appears to have agreed on the physics of how to do a jump 
takeoff. The differences were in just what would be the mechanical something that would 
raise collective pitch from zero to the flight setting. It is not clear if the height to which the 
autogyro should jump was initially a design objective. The early efforts appear to have 
resulted in 0 (i.e., failure) to 15 feet. With improvements over an 8-year period, jump heights 
ranged from 25 to 35 feet, depending on the prevailing wind. But then U.S. Army Air Force 
Captain Gregory [25] cleared things up in the United States by stating that the military 
requirement was to clear a 50-foot obstacle with no forward speed, whether landing or taking 
off.21

                                                 
20 As it turned out, the helicopter also arrived in the United States (the Platt-LePage XR-1 and the Sikorsky  
XR-4) and the autogyro advocates were virtually out of business by 1943 or, like Kellett, had converted their 
configuration to the helicopter.  
21 I believe this one requirement said that only a helicopter would satisfy the U.S. Army. In my opinion, this 
statement by Gregory spelled doom for the autogyro. 
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 The fact that jump takeoff was not fully developed until the very early 1940s should 
not diminish technical interest in the engineering approach to moving collective pitch from 
zero degrees to 4 to 6 degrees with a flick of the pilot’s wrist. Cierva, Pitcairn Kellett, and 
Hafner each made their mechanical system work. Some details are a little sketchy, but let me 
describe each approach in turn. 
 
2.8.1 Cierva’s Approach 
 
 Cierva began efforts in August 1933 when, according to Brooks [7], “the first jump 
takeoffs had been achieved with the C.30 prototype, G-ACFI [British registration 
designation], fitted with a special rotor head.” Apparently the early efforts were kept out of 
the public eye because Cierva did not announce the successful development of “direct 
takeoff” until his lecture before the Royal Aeronautical Society on March 15, 1935 [5]. Even 
then, he was quite tentative because he said,  

“I want to make perfectly clear that the results obtained, only a few feet high jump, while 
absolutely conclusive are still experimental, and prudence forces me to refrain from making 
any forecast as to how soon they will be obtainable in a practical way. The eighteen months of 
development have given us a thorough insight into the theoretical aerodynamics of the new 
effect, together with a considerable experience of its practical side.” 

Then, Cierva goes on with  
“All our conclusions will be incorporated in a new experimental machine [this was to be the 
C.40], which not only should show a very improved performance but which ought to be free 
from the secondary imperfections of the first one [ground resonance tendency and vibration]. 
Until the new machine has been thoroughly tested, nothing more can be said about this 
development. I will only mention that the mechanism used for the pitch change involves no 
addition whatsoever to the existing element of normal direct control autogiros, consisting 
substantially in a tilt of the drag hinge in a vertical plane containing the axis of the blade, and 
that it operates automatically by the mere application of the starting torque in the usual way 
[my italics]. Also, the actual manœuvre from the pilot’s point of view is a very simple one, 
easier and more pleasant than an ordinary takeoff.” 

The details were described in depth by Dr. James A. J. Bennett. Dr. Bennett met Cierva in 
1930, became a leading member of the autogyro community, and carried on as technical 
director at the Cierva Autogiro Company after Cierva died.22 In 1960, the Royal Aeronautical 
Society established the Cierva Memorial Lecture series when the Helicopter Association of 
Great Britain merged with the Society. Dr. Bennett had the enormous honor of giving the first 
lecture [80]23. His recollections about working with Cierva provide insight into Cierva—both 
the man and the engineer. By custom, there was no discussion at a Memorial Lecture, but 
Wing Commander Reginald Brie [52] was asked to say a few words about Cierva, which give 

                                                 
22 Señor Juan de la Cierva Codorníu was killed on December 9, 1936, when the DC–2 he was on crashed. 
Brooks describes the unfortunate circumstances surrounding the accident on page 248 of his book [7]. 
23 In January 1939, Harold F. Pitcairn published a wonderful, unsurpassed tribute to Cierva [81]. A long-time 
friend, Wayne Wiesner, gave me his copy of the tribute. A Cierva Memorial Fellowship was started at New York 
University and Brooks [7] notes that there were 45 sponsors. Wallace Kellett became chairman of the Fellowship 
Committee. In the spring of 1940, Wayne Wiesner was one of the first recipients of the Cierva Fellowship.  
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even more insight into the man himself. The evening ended by Brie saying that “there was 
nobody better qualified [than Bennett] to present an appreciation of Cierva’s life and work.” 
Brie closed by proposing “a hearty vote of thanks to Professor Bennett for delivering this First 
Cierva Memorial Lecture.” 
 
 In his lecture, Bennett includes a rather detailed discussion of the Cierva method to 
mechanically adjust collective pitch from 0 to the 4-to-6 degrees needed for a burst of thrust 
that initiates jump takeoff. He describes “a tilt of the drag hinge in a vertical plane containing 
the axis of the blade” and how “it operates automatically by the mere application of the 
starting torque.” The figure Bennett uses to illustrate the hinge geometry is shown here as  
Fig. 2-45.  
 
 The technical aspects of Cierva’s idea are rather interesting when you think about it. 
He tried the approach with the C.30 prototype and the aircraft jumped up “a few feet.” The 
flight rotor speed of the C.30 was nominally 245 rpm (25.65 radians per second or a tip speed 
of 475 feet per second for the C.30 blade radius of 18.5 feet), so the over-speed at zero 
collective pitch might have been, I will guess for this example, equal to 125 percent 
(32.06 radians per second). Because thrust is zero and advance ratio is zero, the horsepower 
and torque at this condition is easily estimated from Eq. (2.60) as 

(2.110)   
( ) ( )( ) ( )( )32 3

t doR V C 0.002378 1075 1.25 475 0.047 0.01
Power Q

8 8
ρ π σ ×

= Ω = =  

which works out to about 31,500 foot-pounds per second (57 hp) and a torque of 980 foot-
pounds. A simple first question to answer is this: How long does it take for the rotor to slow 
down from 32.06 to 25.65 radians per second if the collective pitch stays at 0 degrees? The 
answer to this question gives some idea about how long the aircraft can take to get up to flight 
speed. 
 
 To answer the question I have posed only requires the angular deceleration equation, 
which is 

(2.111)   ( )
2

2 2 3 2 2
t Q Q2

d dI I Q AV RC R R C 0.954
dt dt

ψ Ω ª º= = = ρ = ρ π Ω = − Ω¬ ¼ . 

Note that while power is being drawn from the engine, the torque coefficient (CQ) is positive. 
However when declutched, the torque coefficient goes immediately from positive to negative 
(CQ = – σCdo/8) and the rotor draws energy from the over-sped RPM. Now integrate, 
assuming that the torque coefficient is constant over the integration interval, and that at time 
equals zero, rotor speed equals the initial 125 percent value (Ωo = 32.06 radians per second). 
The result is that rotor speed bleeds off as 
 



2.8  JUMP TAKEOFF 

 106

 
Fig. 2-45. The inclined lead-lag hinge Cierva used to decrease blade pitch during rotor 

over-speeding prior to a jump (i.e., direct) takeoff [80]. 
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Keep in mind that I arrived at Eq. (2.112) by assuming that the torque coefficient (CQ) was 
constant over the integration interval and that (CQ = – σCdo/8). This result, applied to the C.30 
Autogiro where the polar moment of inertia (I) for all blades is (I = 3×128.8 slug-feet2), 
shows that after 3.2 seconds the rotor speed will have dropped from 32.06 to 25.65 radians per 
second, the normal rotor speed.  
 
 Looking at the problem from an energy point of view is also interesting. The exchange 
of energy behaves as 

(2.113)   ( )2 3 3
P

dKinetic Energy per unit of time I power R R C
dt
Ω ª º= Ω = = ρ π Ω¬ ¼  
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which, upon integrating with a constant power coefficient (CP) and decaying rotor speed 
defined by Eq. (2.112), gives 

(2.114)   
( ) ( ) ( )
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The kinetic energy given up to slowing the rotor down from 32.06 to 25.65 radians per second 
is 72,000 foot-pounds at zero thrust. If this same amount of kinetic energy were, instead, all 
applied to lifting the 1,450 pound C.30, the Autogiro would have jumped 50 feet above the 
ground instead of the “only a few feet high jump” which Cierva obtained in his first trials. 
The difference, of course, is that when the collective pitch goes from 0 to 4-to-6 degrees, the 
burst of thrust is accompanied by a very large increase in power required, which dissipates the 
kinetic energy even more quickly than the example above suggests. 
 
 Now consider the blade motion coupling Cierva used to make jump takeoff work. The 
application of 57 horsepower to the prototype C.30 yielding a 125-percent over-speed creates 
a steady lag angle (ξo) as Eq. (2.31) shows. This lag angle, under power with zero blade pitch, 
amounts to 

(2.31)   ( )( )
( )( )( )o

C

550 57P / b 0.063 radians 3.6 degrees
r F 3 32.06 1 5, 200ξ

Ωζ = = = = . 

Then, when the engine is declutched, the blade returns to a straight-out position and the flight 
collective pitch increases to about 6 degrees as Bennett suggests in Fig. 2-45. This pitch-lag 
coupling is determined quite simply by 

(2.115)   1 1tan so that arc tan § ·∆θ∆θ = ∆ξ α α = ¨ ¸∆ξ© ¹
 

where (α1) is the lead-lag hinge inclination from vertical.24 For the C.30 prototype, this 
inclination is roughly 60 degrees, which is somewhat more than Bennett suggests in Fig. 2-45. 
 
 While the basic approach worked on the three-bladed C.30, the lead-lag dampers 
impeded the return of the blade to straight out from the 3.6-degree lag position at the over-
sped rpm condition. The lag damping was reduced but then ground resonance became an 
issue. As Brooks [7] relates the story, 

                                                 
24 Bennett [80] provides an excellent discussion of some 15 flapping and lead-lag hinge geometries that were 
tested on the Cierva C.30 Autogyro. In his figures 18, 19, and 20 in reference [80], he shows the mechanical 
layout of each one. With figure 17, he explains hinge angles such as delta-3. Furthermore, he notes that the lead-
lag hinge, when inclined fore and aft from vertical, couples flapping to lead-lag motion, which provides enough 
damping in the lead-lag motion that lag dampers can be removed. His nomenclature has been handed down 
through the decades. This makes the First Cierva Memorial Lecture absolutely required reading. 
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“The main drawback to this elegantly simple system lay in the fact that unrestricted movement 
of the blades in the drag plane, required for the jump, meant that it was not possible to provide 
adequate drag hinge damping to prevent ground resonance. Because of this, the system was 
found to be only practical [at that moment] for two-blade rotors and, even then, vibration levels 
were high. Even with two blades, to avoid resonance, it was found that the blades had to be held 
in flat pitch against the forward stops, instead of being simply allowed to lag during the spin-up. 
This design was a feature of the Autodynamic rotor which first publicly demonstrated jump 
takeoffs [to over 20 feet] on June 23, 1936.” 

An account by Bennett [80] is also very interesting. He writes that, 
“only a two-bladed rotor having been free from ‘ground resonance’ when Cierva’s inclined 
drag hinges were operated without dampers, and the two-bladed rotor having had inherent 
vibration of twice rotor frequency and of unpleasant amplitude throughout the entire speed 
range, it was necessary to find a solution to this difficulty before the jump takeoff technique 
developed by Cierva could be applied to an aircraft suitable for production. The three-bladed 
rotor system of the C.40 was relatively free from vibration and the ‘ground resonance’ 
difficulty was overcome by the provision of drag dampers which damped the motion of the 
blades with respect to each other but which allowed the symmetrical oscillation of the three 
blades with respect to the hub to remain undamped [my italics]. This configuration, which 
proved to be most successful, brought the Autogiro once more to the production stage.” 

The Cierva C.40 (Fig. 2-46) jumped to about 12 feet in height by over-speeding the rotor to 
285 rpm versus its normal flight rotor speed of 180 rpm, which is an over-speed of 58 percent.  
 
 As it turned out, the C.40 was the last of the Cierva Autogiros. Bennett writes that “a 
batch of five C.40 Autogiros was supplied to the Royal Air Force shortly before the Second 
World War and they were used by the British Expeditionary Force in France in 1940.”  
 
2.8.2 Pitcairn’s Approach 
 
 Pitcairn engineers demonstrated a collective pitch mechanism for jump takeoff with 
their P-22 research aircraft. Rather than try to accomplish the change from flat pitch to 4 to 
6 degrees through hinge geometry, they used the excessive centrifugal force in a much 
different way. The details are a little sketchy, but Agnew Larsen, chief engineer at Pitcairn, 
writes [49]  

 “While Cierva initiated this important new development in England by employing 
large inclinations of the lead-lag hinge in the rotor blade span axis, the approach in this country 
was different. The mechanical principle employed by the Autogiro Company of America was 
to permit the blades to increase their pitch by a four or five degree rotation on a steep pitch 
multithreaded shank in the blade root. The source of energy to effect this was the powerful 
centrifugal pull on the blades, causing them to momentarily move outward, away from the hub 
center. This motion was minute and was, of course, confined between positive stops, one for 
minimum pitch and one for maximum. The means of control was hydraulic pressure which 
held the blades in the position of minimum pitch and, upon the sudden release of pressure, 
simultaneously with the declutching of the power torque, the blades were all equally free to 
shift outward and upward to the aerostational pitch [flight setting] of approximately 4-3/4 
degrees where they remained throughout the entire flight regime. There could be no flutter of 
the blades, because the pitch on the sextuple thread was so steep that the powerful centrifugal 
pull on that angle virtually locked it there. This system was first tried out on the PA-22 flying 
mock-up, and later it was thoroughly applied in the more advanced PA-36 all-metal cabin,  
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jump-takeoff, and roadable autogiro, and later in the PA-39 conversions of the older PA-18 
autogiros under contract for the British Air Ministry. The system worked very well and proved 
eminently successful in every way. It was remarkably free from any bugs, its automatic 
functioning being virtually fool-proof; smooth, sure and positive.” 

 
Thus, with the Pitcairn approach, the blades were drawn inward, by a hydraulic cylinder, to a 
minutely smaller radius, and the blade was then in flat pitch. The rotor was then over-sped. At 
the pilot’s command, engine power to the rotor was removed, hydraulic pressure was released, 
and centrifugal force took over. As soon as the hydraulic pressure was turned off, the blades 
slid outward along a very course thread, which increased pitch to 4.75 degrees. I like the part 
where Larsen says: “It was remarkably free from any bugs, its automatic functioning being 
virtually fool-proof; smooth, sure and positive.” 
 
 The Pitcairn P-22 (which led to the P-36, in its ninth research configuration) over-sped 
the rotor to about 150 percent and, as Townson [45] states, “When the meteorological 
conditions were right a vertical jump to eight to ten feet was not unusual.” The P-36  
(Fig. 2-47) did better, reaching some 35-foot-high jumps. 
 
2.8.3 Hafner and Kellett’s Approach 
 
 Both Hafner, with his A.R. III, and Kellett, with their XR-3, used a swashplate 
configuration, as I have already discussed. This gave the pilot control of collective pitch for 
the jump takeoff maneuver and was independent of centrifugal force.  
 
 Each chief engineer, as you can see, found a way to nearly instantaneously change 
blade collective pitch from flat pitch to flight setting by a flick of the pilot’s wrist. The Cierva 
and Bennett approach required no additional hardware to the direct control rotor system. 
Larsen, at Pitcairn, added hydraulics to the aircraft systems and kept the Cierva direct control 
system. Hafner, in England, and Prewitt, at Kellett, introduced the modern swashplate control 
system, which reduced control loads and vibration—and gave the pilot complete control of 
the jump takeoff maneuver.  
 
 Now let me return to the Raoul Hafner lecture [74] and its “controversy” for a 
moment. Giving a pilot (even an “expert pilot”) control of rotor system collective pitch with a 
“lift” lever was not something that either Cierva or Bennett favored, as you will recall reading 
in Section 2.7. On top of this, Hafner created discord with Bennett and the Cierva Autogiro 
Company regarding the jump takeoff maneuver. In his lecture, Hafner showed a comparison 
between two jump takeoff trajectories. He used a diagram, reproduced here as Fig. 2-48, to 
say that his gyroplane could perform a “towering” jump takeoff and implied that all other 
autogyros were taking off along the “jumping” path. The film that he showed during his 
lecture must have included both trajectories because he answered a question from 
Dr. Townend by saying:  
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Fig. 2-46. The Cierva C.40 performing a jump takeoff not too long after first flight 

in February 1938 (photo courtesy of Gordon Leishman). 

 
Fig. 2-47. The Pitcairn P-36 publicly demonstrated jump takeoffs in July 1940 [45]. 
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 “The diagram which Dr. Townend mentioned showing the contrast between jumping and 
towering takeoffs of the A.R. III was obtained from film records [the numbers are actual times 
in seconds] and is in agreement with calculations. It was drawn to scale. In both cases wind 
conditions and initial rotor revolutions were identical, and it serves, therefore, as a good 
comparison. The towering takeoff in question was shown later in the film. On one or two 
occasions when an extreme jump takeoff was carried out the aircraft in the subsequent sink 
actually touched the ground.”  

Hafner suggests that the “towering” takeoff is preferable and is only possible because of the 
superior controllability provided by his A.R. III spider control system. Of course, Bennett [78] 
immediately took issue with this outlook saying: 
 

 “the kinetic energy is most efficiently converted into potential energy the more sudden the 
change in pitch, and in the type of jump takeoff demonstrated last year by the ‘Autogiro’ and 
filmed by Flight the machine ‘towered’ right from the top of the jump. That the change of pitch 
is effected automatically does not necessarily mean that the change of pitch is sudden. In fact, 
de la Cierva intended that the rate of change of pitch should be controlled so that any quality of 
direct takeoff from ‘towering’ to pure vertical ‘jumping’ could be achieved and he patented 
suitable means for obtaining this result in January, 1935. It is considered that multiplication of 
manual controls is a retrograde step and that a manual control for effecting pitch change for 
takeoffs is undesirable, as consistent use of the control in the most effective manner is 
probably beyond the capacity even of an expert pilot.” 

 

 

 
Fig. 2-48. The Hafner view of the benefits to a pilot-controlled jump takeoff [74]. 
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Hafner immediately took advantage of Flight magazine, which was “pleased to give the 
hospitality of its columns” to pros and cons—up to a point. Regarding jump starts, Hafner 
wrote [76] that, yes,  

“de la Cierva patented various elaborate mechanisms in order to delay the rate of change [of 
pitch] and obtain takeoffs varying from the direct jump. The lift lever of the A.R. III is a simple 
mechanism, and its use during a direct takeoff is in effect analogous to the fore-and-aft 
movement of the joystick in an orthodox aircraft during a running takeoff, and anyone who can 
be trusted with a joystick is safe to handle it, since the worst misuse of it would be a very crude 
jerk, which would produce a jump takeoff.” 

A little further on Hafner says, “I fail to see how any automatic device could improve on the 
performance of even a mediocre pilot.” 
 
 Personally, I doubt that Hafner was particularly concerned about (1) Bennett’s 
criticism of the A.R. III spider swashplate, (2) his criticism of giving a pilot the “lift” lever, 
(3) his view of jump takeoff trajectories, or even (4) about what to call autogyros. I believe 
Hafner was ready to return to designing helicopters. The helicopter, I think he knew, was 
going to require his control system.  
 
2.8.4 Kellett’s Predictions 
 
 The jump takeoff maneuver, applicable to both autogyros and helicopters, is a very 
interesting problem in F = ma and energy use. Before discussing the 1934 theoretical and 
model experimental study by John Wheatley of the N.A.C.A. [82], let me first discuss the 
simpler, 1938 Richard Prewitt analysis of the problem [83], which used the energy method.  
 
 Richard Prewitt, chief engineer of the Kellett Autogiro Corporation, presented a paper 
at the Rotary Wing Session during the Sixth Annual Meeting of the Institute of Aeronautical 
Sciences (later to become the A.I.A.A.). This meeting was held on January 25, 1938, and the 
paper by Prewitt was titled Possibilities of the Jump-Off Autogiro. At that time, Kellett was 
responding to U.S. Army Air Force field use of its YG-1/1A/1B autogyro, which had direct 
control—not swashplate control—and no jump takeoff capability. He also was in the midst of 
developing the XR-2 with the jump takeoff feature when it encountered ground resonance 
(see Fig. 2-11).  
 
 In his paper, Prewitt [83] first answers the question about how much power is 
“required for sustentation [hovering]” as a reference point. He develops a “simple plot of 
power loading vs. disc loading” based on the 1920 view by E. P. Warner [84] of the 
“theoretical optimum values of horsepower required based on rotor diameter, rotor r.p.m., 
power loading, and disc loading.” Prewitt confirms the view held by Warner with 
experimental data from eight helicopters provided by R. N. Liptrot [85] during an April 1930 
lecture to the Royal Aeronautical Society. This historically significant graph is reproduced 
here as Fig. 2-49. The solid line that Prewitt chose to represent the hovering power required 
by an “actual helicopter” was computed as 
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Fig. 2-49. The Prewitt view of hovering helicopter performance in January 1938 [83]. 
 

(2.116)   W 550 FM
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where (W) is weight in pounds, (HP) is the brake horsepower of the reciprocating engine, (ρ) 
is the density of air, and the rotor, or rotors as the case may be, have an area (A). The constant 
(FM) is referred to today as Figure of Merit. Were the helicopters 100 percent efficient, their 
Figure of Merit would be 1.0. The line Prewitt shows in Fig. 2-49 assumes the Figure of Merit 
is 0.7. Thus, his opinion was that the helicopter rotor would produce 30 percent less thrust per 
horsepower than what should be expected from the ideal rotor. 
 
 Prewitt gave the very simplest approach to analyzing the jump takeoff by extending 
the energy approach described in Eq. (2.113) to include potential energy. Following his 
thought, but with modern notation, he wrote 

(2.117)   d dhI P W
dt dt
ΩΩ = + .  

This equation can be easily integrated, assuming power is constant, to give 



2.8  JUMP TAKEOFF 

 114

(2.118)   ( ) ( )2 2
o t
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Ω − Ω = +  

and this result can be solved for the jump takeoff height (h), which is simply 

(2.119)   ( )2 2
o t

I 550h t
2W W HP

= Ω − Ω − . 

 
 This result can be used to approximate the jump height for an autogyro, say the Cierva 
C.30. Suppose the initial rotor speed (Ωo) is 75 percent higher than the C.30’s normal low 
rotor speed of 180 revolutions per second (i.e., Ωo = 1.75×19 radians per second). The C.30 
rotor system polar moment of inertia (I) is 390 slug-feet2, its takeoff gross weight is about 
1,900 pounds, and its rotor diameter is 37 feet, which is an area of 1,075 square feet. From 
Eq. (2.116), with the C.30 disc loading (W/A) of 1.77 pounds per square foot, and assuming a 
sea-level density (ρ) of 0.002378 slugs per cubic foot, the power loading (W/HP) comes out 
20 pounds per horsepower. Now, assume the jump takeoff is completed within 1.75 seconds 
(see Fig. 2-48) and that the rotor speed decays to (Ωt = 1.75 = 19 radians per second) or 
180 revolutions per second. From Eq. (2.119), the jump height is 27 feet. This is, of course, an 
optimistic result.  
 
 There is one major reason the preceding example yields the optimistic result of 
27 feet. If the rotor thrust only equals the autogyro weight then there is no excess rotor thrust 
to climb, and the autogyro would simply be “hovering” for 1.75 seconds with its wheels just 
off the ground. Prewitt recognized the introductory nature of Eq. (2.119) and offered several 
realistic engineering equations (and a step-by-step solution method using the equations) to 
obtain a more realistic jump height. The equations and method Prewitt used, which parallel 
the more exact method given by Wheatley [82] that I will discuss next, yielded results for four 
cases that he tabulated as follows: 

Table 2-3. The Prewitt View of Possible Jump Takeoff Performance 
 
 

Ship 

 
Propeller 

Type 

Rotor 
Blade Angle, 

deg 

 
Jump Height, 

feet 

Horizontal 
Distance, 

feet 

 
Time, 

sec 

Initial 
Acceleration,

ft/sec2 
1 Fixed 0 to 5 Normal takeoff    
2 Fixed 0 to 15 40 25 2.5 35 
3 Controllable 0 to 20 75 34 3.8 40 
4 Controllable 0 to 30 225 55 4.2 60 

  
Along with this table, Prewitt gives the jump takeoff paths shown here as Fig. 2-50 and offers 
two conclusions: 

“(1) It appears that all-purpose autogiros can be built to ‘jump-off’ up to 100 feet and that for 
special purposes, autogiros can be made to ‘jump-off’ 200 feet. In the former case, the gross 
weight of the ships will be increased less than 5 per cent to account for the increase in blade 
weight and extra mechanism involved and in the latter case, the gross weight will be increased 
less than 15 per cent for the same items. 

(2) The available kinetic energy in the rotor system for ‘jump-off’ is directly proportional to 
the weight of the blades and to the square of the rotational speed of the rotor. Thus, with a 
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Fig. 2-50. The Prewitt calculated jump takeoff trajectories [83]. 
 
given autogiro having the weight of blades fixed, the height of ‘jump-off’ is dependent upon 
the horsepower available for accelerating the rotor. This in turn, is dependent upon the pitch 
setting of the propeller which, for relatively high jumps, would have to be of controllable 
[pitch] type to provide adequate power for the rotor and yet hold down the engine r.p.m. at top 
speed.” 

 The potential for autogyro jump takeoff that Prewitt suggested must have been well 
received by aircraft advocates. However, at this point in time the Henrich Focke side-by-side 
German helicopter, Fig. 1-2, had already astounded the world in 1936 and this first industry 
growth step was about to be taken in the United States. Clearly, the capability Prewitt 
predicted did not meet the U.S. military objective of a vertical takeoff to 50 feet height—but 
it did come close. 

 
2.8.5 Wheatley’s Research 
 
 Concluding discussion of jump takeoff at this point would dismiss the contribution 
John Wheatley made to this aspect of rotorcraft technology. In October of 1936, Wheatley 
[82] published a thorough analysis, supported with 10-foot-diameter model testing, which 
gave predicted jump takeoff performance a real foundation. He began with the statement that 
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vertical acceleration (d2h/dt2) depended on the difference between excess rotor thrust (T) and 
aircraft weight (W). He wrote the F = ma physics as 

(2.120)   
2

2

W d h T W
g dt

= −  

and proceeded to methodically integrate from acceleration to vertical velocity (dh/dt) to 
vertical height (h). The problem, of course, requires knowing how thrust varies over the 
integration interval. Thrust depends upon vertical velocity and the decaying rotor speed, and 
rotor speed depends on deceleration torque, which itself depends on vertical velocity. The 
exact solution is readily obtained, given some auxiliary equations, by doing numerical 
integration on a computer. However, Wheatley found that the problem could be linearized 
with engineering accuracy. His solution provided answers in closed form, which is—I 
believe—always the most useful form.  
 
 The variation of thrust and torque with vertical velocity and rotor speed is obtained 
from Eqs. (2.48) and (2.49). These equations are simplified for the vertical jump takeoff 
problem because advance ratio (µhp) is zero. Because advance ratio is zero and the pilot 
intends to go straight up, both longitudinal and lateral feathering (B1C and A1C) are zero and 
there is no flapping (i.e., a1S and b1S both equal zero). The general equations for thrust and 
torque therefore reduce, with slight rearranging to make rotor speed (Ω) and solidity (σ) more 
visible, to  

(2.121)   hp
Thp hp o4 2

T a 1 1C
R 2 2 3

σ ª º= = λ + θ« »ρπ Ω ¬ ¼
 

and 

(2.122)   2do do
Q hp hp o Q hp Thp5 2

C CQ a 2C or C C
R 8 4 3 8

σ σσ ª º= = − λ + λ θ = − λ« »ρπ Ω ¬ ¼
. 

Now the inflow (λhp) to the rotor depends primarily on the flight path velocity (VFP) and the 
angle of attack of the hub plane (αhp) as Eq. (2.28) shows. In the jump takeoff case, the 
velocity is the vertical climb speed (VFP = dh/dt) and the hub plane is at –  90 degrees angle of 
attack. Thus, the rotor inflow becomes  

(2.123)   
i

hp
t

dh v
dt
V

− −
λ = . 

For all intents and purposes, the vertical jump takeoff is exactly equivalent to the horizontal 
takeoff of a fixed-wing aircraft. This allows the induced velocity (vi), defined by Eq. (2.38), to 
be simplified to 

(2.124)   

( )
Thphp i

i 2 2
t2 i

i
t t

CT vv or
Vdh vdh dt2 R v 2dt V V

= =
§ · § ·ρ π − − − −¨ ¸ ¨ ¸© ¹ © ¹

. 
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Note that the induced velocity equation, (2.124), is a quadratic which gives the induced 
velocity directly as 

(2.125)   
2

i
Thp

t t t

v 1 dh dt 1 dh dt2C
V 2 V 2 V

§ · § ·
= + −¨ ¸ ¨ ¸

© ¹ © ¹
. 

 
 The explicit equation for thrust coefficient [obtained by substituting Eq. (2.125) into 
Eq. (2.123) and substituting the result into Eq. (2.121), which can then be solved for (CThp)] is  

(2.126)  
22 2

hp
Thp 4 2

t t t

T a 1 4 dh dt 1 1 1 dh dt dh dtC
R 8 8 3 a aV 64 3 a 4 aV aV

ª º§ · § · § ·σ θ θ§ · § ·« »= = + − − + − +¨ ¸ ¨ ¸ ¨ ¸¨ ¸ ¨ ¸« »ρπ Ω σ σ σ σ σ© ¹ © ¹© ¹ © ¹ © ¹¬ ¼

 

With rotor thrust known, the decelerating torque [obtained by substituting Eq. (2.125) into 
Eq. (2.123) and substituting the result into Eq. (2.122)] is 

(2.127)   
23 3

Thp Thpdo
Q 5 2 2 2 2 2

t t

C CCQ a dh dt dh dtDecel C 2
R 8 2 aV aV a a

ª º§ · § ·σ σ « »= − = − − + +¨ ¸ ¨ ¸« »ρπ Ω σ σ σ σ© ¹ © ¹¬ ¼

. 

The variation of thrust and decelerating torque coefficients, Eqs. (2.126) and (2.127), with the 

nondimensional climb velocity 
t

dh dt
V

§ ·
¨ ¸
© ¹

, is illustrated in Fig. 2-51. I chose a rotor solidity (σ) 

of 0.1, assumed the airfoil lift-curve slope (a) to be 5.73 per radian and its drag coefficient 
(Cdo) to be 0.012, and set collective pitch (θ) to 10 degrees (0.1745 radians). These constants 
correspond to one of Wheatley’s experimental points. As Fig. 2-51 shows, the torque 
coefficient Wheatley measured was somewhat higher (i.e., more decelerating torque) than that 
computed by Eq. (2.127). He included a table showing test data versus his calculated results. I 
have included his comparison here, but I cannot reproduce his calculated torque coefficients.  
 
 

Table 2-4. The Wheatley 10-Foot-Diameter Model Rotor Static Torque 
Coefficient Comparison 

Pitch Angle 
θo, deg 

Measured d(1/Ω)/dt
sec/rad per sec 

Measured 
CQ 

Calculated 
CQ 

10 0.00525 –0.000726 –0.000587 
14 0.00812 –0.001122 –0.009690 
18 0.01273 –0.001760 –0.001460 
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Fig. 2-51. Thrust and torque coefficient trend with vertical climb ratio.  

 
 
Fig. 2-51 also shows the linear approximation to the thrust coefficient versus nondimensional 
climb velocity that Wheatley accepted. He took a somewhat roundabout way to arrive at  

(2.128)   hp
Thp Thp4 2

t

T a dh dtC Initial C
R 8 V

σ= = −
ρπ Ω

. 

Wheatley, ever the practical engineer,25 chose to assume that the torque coefficient did not 
vary with the nondimensional climb velocity. This is clearly a very first approximation to the 
exact trend shown in Fig. 2-51, but he had a reasonable rational saying 

“It is proposed that CQ be assumed independent of h / RΩ�  at all pitches less than 16o; the 
error introduced by the approximation is greater in figure 2 [refer to Fig. 2-51] where the 
solidity is 0.10 but is still reasonably small for the lower values of h / RΩ� . Experimental 
justification for this assumption will subsequently be presented.”  

                                                 
25 My opinion: A practical engineer is one who can get 90 percent of the right answer in 10 percent of the time. 
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The “experimental justification” Wheatley used, which I will discuss in more detail in a 
moment, came from tests of a 4-blade, 10-foot-diameter model. The rotor had a solidity (σ) of 
0.10. The rectangular blades were untwisted. His test setup allowed the rotor to be spun up, 
released to climb up vertically, and then caught by a safety harness. Time histories of several 
“jumps” showed that 1/Ω varied nearly linear with time.  
 
 To begin integrating Eq. (2.120), an approximation is first required for how rotor 
speed (Ω) varies with time (t). Since the decelerating torque coefficient is assumed constant at 
its initial value, Eq. (2.112) is directly useable. For convenience, that equation is repeated here 
as  

(2.112)   ( )
o

t 2 3
Q

o

R R C
1 t

I

ΩΩ =
ª ºρ π

− Ω« »
« »¬ ¼

. 

Note that the reciprocal of rotor speed (Ωt) is a simple linear equation, which Wheatley found 
characteristic during his model testing. Knowing how rotor speed varies with time from its 
initial value (Ωo) means that thrust is known; then the F = ma problem can be restated with 
the linear thrust coefficient assumption Wheatley used as 

(2.129)   ( )( ) ( )
2

4 2 4 2
t T hp t2

t

W d h a dh dtR Initial C R W
g dt 8 R

σ= ρπ Ω − ρπ Ω −
Ω

. 

This equation is a linear second-order differential equation, which becomes clearer after the 
time-varying rotor speed from Eq. (2.112) is substituted into Eq. (2.129). Thus, after some 
simplification, the problem Wheatley solved is  

(2.130)   
( )( )4 2 32

0 T hp o
2 52 5

o Qo Q

R Initial C R ad h g 1 g dh g
R Cdt W 8 W dtR C 1 t1 t II

ª º
« »ρπ Ω ρπ Ω σ= − −« »

ρπ Ω« »ª ºρπ Ω −− « »« » ¬ ¼
¬ ¼

. 

Keep in mind that the torque coefficient (CQ) in Eq. (2.130) is that value at time equals zero 
and that it is a deceleration torque coefficient where the vertical velocity is zero. That is, for 
this problem 

(2.131)   

3
3 3 3 3 2

T hp T hp T hpdo do
Q 2 2 2 2 2 2

C C CC Ca 2 aC 2
8 2 a a 8 2 a

§ ·σ σσ σ= − − = − − ¨ ¸σ σ σ© ¹
. 

 
 There are three constants involved in the vertical acceleration equation. Therefore, to 
avoid an unwieldy mess, Wheatley defined 



2.8  JUMP TAKEOFF 

 120

(2.132)   
( )

( )( )

5
o Q3

1 o 2

hp4 2
3 0 T hp

R C1 gK R a K
8 W I

Initial TgK R Initial C g
W W

ρπ Ω
= ρπ Ω σ = −

= ρπ Ω =
 

and then the vertical acceleration is abbreviated to  

(2.133)   
( )

2
31

22
2 2

KKd h dh g
dt 1 K t dt 1 K t

+ = −
+ +

. 

This equation, as Wheatley notes, “can be integrated quite easily. Reference to a text on 
differential equations establishes that” the vertical velocity is 

(2.134)   ( )( )
( )

( ) ( ) 1

2

23 1
K

1 2 2 1 2 K
2

g 1 K tK Cdh
dt K K 1 K t K K 1 K t

+
= − +

− + + +
. 

The time history of vertical height (h) follows immediately as 

(2.135)   ( ) ( ) ( ) ( ) ( )
1

2

2
2

3 1
2 K 12 1 2 1 2 1 2 K

2

1g t K t
K C 12h log 1 K t 1

K K K K K K K 1 K t −

§ ·+ ª º¨ ¸
© ¹ « »= + − + −

« »− + − +« »¬ ¼

 

where the integration constant (C1) is 

(2.136)   ( ) ( )1 2 3 1 2
1 2 2

1 2

g K K K K K
C

K K
− − +

=
−

. 

 
 Wheatley made comparisons of his linear jump takeoff theory to the test data acquired 
with the experimental setup shown in Fig. 2-52. The rotor was spun up to as high as 
725 revolutions per minute by a 25-horsepower electric motor. He makes no statement about 
the ballast spinning, and I would guess that it did not because he would have mentioned its 
polar moment of inertia. Wheatley was quite concerned about the safety harness tension, 
which lowered the actual weight being lifted. He made cable tension a test variable but 
concluded that the actual tension during a jump was about one-third of the static tension. Test 
data from 160 vertical jumps was given in tabular form. A moving picture, taken up from 
below, gave rotor speed, and the rotor dragged a cord up as it went, which gave the height of 
the jump. 
 
 The 10-foot-diameter, 3-blade rotor used in the experiment had a polar moment of 
inertia (I) of 3.23 slug-feet2. The blade chord (c) was 0.523 feet and the solidity (σ) was 0.10. 
The constant chord blades were untwisted and the airfoil was the NACA 0018, which is 
uncambered. The collective pitch was ground adjustable and remained “fixed while the rotor 
was being brought up to speed and jumped.” The tests were conducted in the return section of 
the N.A.C.A. Langley large wind tunnel, which provided an enclosed space about 50 feet by 
200 feet, and 70 feet high.  



2.8  JUMP TAKEOFF 

 121

 
Fig. 2-52. The Wheatley jump takeoff test with a 10-foot-diameter rotor [82]. 

 
 
 Wheatley provided the bulk of the 160 test results in tabular form giving only 
collective pitch, disc loading, initial rotor speed, cable tension (TC), and maximum height 
attained. His report [82] compares theory to test for only 3 of the 160 jump takeoff time 
histories, 2 of which are shown here as Fig. 2-53 and Fig. 2-54. The theory, Eq. (2.135), 
shown on the two figures is as given in the preceding discussion. However, the equations I 
have written for thrust coefficient, Eq. (2.126), and torque coefficient, Eq. (2.131), are slightly 
more optimistic than what Wheatley actually used. Wheatley states that “the influence of the 
cable tension on the jumps was uncertain.” Therefore, both Fig. 2-53 and Fig. 2-54 show 
theory for the influence of initial torque and cable tension. 
 
 The two preceding examples illustrate several points that disturbed Wheatley. These 
points were: 

1. “The figures establish that the allowance that should be made for the cable tension is 
considerably less than the nominal value of this variable.” Wheatley felt, for example, that the 
nominal cable tension of 12.5 pounds should really be closer to 3 pounds. As it turns out, the 
broader issue deals with the accurate calculation of initial thrust and torque. 
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Fig. 2-53. Theory vs. test: W = 83.3 lbs, θ = 10o, initial RPM = 700. 
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Fig. 2-54. Theory vs. test: W = 130.3 lbs, θ = 18o, initial RPM = 600. 
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2. “It will be noted in table III [see Table 2-4 herein] that the experimental and calculated 
torque coefficients differ by an appreciable amount.” He added that if  “the rotor pitch angle 
increased slightly because of the dynamic twist of the rotor blades; while this twist should be 
quite small, a twist of approximately 1o would explain most of the discrepancies between the 
torque coefficients of table III.” 

3. “It is considered possible that the source of compensating error is the ground effect, which 
would tend to increase the thrust of the rotor when it was near the ground plane at no 
additional cost in torque.” 

4. “The analysis is not as exact at a pitch angle of 18o as at one of 10o.” 

He concluded that the experiment “served a useful purpose in attesting to the validity of the 
mathematical analysis, which can be used with more confidence than would have been 
justified without experimental verification.” 
 
 The larger body of data from the Wheatley jump takeoff experiment gives just the 
maximum height reached (along with collective pitch, disc loading, initial rotor speed, and 
cable tension) and is also of considerable value. Maximum height reached (hmax) is 
determined by only a few physical facts. While Wheatley did not extend his theory in this 
direction, a quite simple approximation is easily obtained. 
 
 An estimate of maximum height reached in a jump takeoff depends on when the 
vertical velocity is zero. Thus, by setting (dh/dt = 0) in Eq. (2.134), an estimate of time to 
reach maximum height is  

(2.137)   
( )

( )

2 23
2 1 1 2

max
2 1 2

KK K K K
g

Approximate time to max. height t
K K K

− + −
= ≈

−
. 

The rotor speed will decay to 

(2.112)   ( )
o

t 2 3
Q

o max

R R C
1 t

I

ΩΩ =
ª ºρ π

− Ω« »
« »¬ ¼

 

and the corresponding maximum height is simply approximated as 

(2.138)   o

o

To
max 4

o Q

CT4I Wh ln 1
R a W T C

ª ºª º§ · § ·≈ + − « »« »¨ ¸ ¨ ¸ρπ σ −© ¹© ¹ « »¬ ¼ ¬ ¼
. 

 All 160 maximum height test points Wheatley tabulated are compared in Fig. 2-55 to 
the maximum height predicted by Eq. (2.138). At the lower collective pitches, the prediction 
of  maximum height by Eq. (2.138) is optimistic. The deterioration in accuracy as collective 
pitch is increased above 12 degrees is also quite evident. This leads me to the calculation of 
initial thrust and torque. As you can see from Eq. (2.138), maximum height depends on three 
parameters. The constant term depends on just rotor physical properties and the density of air 
(ρ). This constant is hardly a source of major error since it is nothing more than the ratio of 
blade density to air density. The second parameter is the ratio of initial thrust (To) to weight 
(W). Both Fig. 2-53 and Fig. 2-54 suggest that this ratio is too large. The third parameter is 
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the ratio of initial thrust coefficient (CTo) to initial torque coefficient (CQo). It is the inaccurate 
prediction of initial (i.e., static) thrust coefficient by Eq. (2.126) and, as Wheatley tabulated, 
torque coefficient by Eq. (2.127) that drives Eq. (2.138) to its optimistic result.  
 
 You might think that the fixed-wing industry would have known all about static thrust 
and torque calculations from their propeller design work. However, the calculation of 
propeller static thrust and the torque required to produce that thrust was not, surprisingly, a 
burning issue for the fixed-wing industry. Their concentration was on designing fixed-pitch 
propellers for maximum efficiency in cruise and at maximum speed, as early NACA reports 
by Dr. William Durand and Professor E. Lesley [86] and [87] illustrate. In 1917 and 1918, 
they accumulated test data from nearly 100 model propellers in “the aerodynamic laboratory 
of the Leland Stanford Junior University.” The school was named by Stanford for his son; 
hence the Junior. At that time, Dr. Durand was Chairman of the N.A.C.A. 
 
 When the controllable pitch, constant speed (rpm) propeller came on the scene [41], 
propeller blades were still designed for high speed. With variable pitch propellers, collective 
pitch was simply adjusted to maximize takeoff performance. And so it was left to the 
rotorcraft industry to maximize the thrust-to-torque ratio for autogyro jump takeoff 
performance. At the same time, the ground work was being laid to maximize the thrust-to-
horsepower ratio for the hovering helicopter. 
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Fig. 2-55. Prediction of jump takeoff maximum height.  
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2.8.6 Static Thrust and Torque 
 
 A milestone step in understanding rotor static performance was completed by 
Montgomery Knight and Ralph Hefner at the Georgia School of Technology in December of 
1937 [88].26 Their initial theoretical and experimental work was timely for the autogyro jump 
takeoff performance problem and, of course, just as applicable to the helicopter, which clearly 
was becoming the second-generation product of the rotorcraft industry. Knight and Hefner 
carefully documented application of what is called blade element momentum theory.27 Their 
experimental work gathered thrust and torque for rotors having two, three, four, and five 
blades, which led them to prove that the fundamental way to account for solidity (σ) was by 
scaling thrust coefficient by the square of solidity, and torque coefficient by the cube of 
solidity. This very fundamental point appears to have been lost somewhere during the 
seven decades that followed publication of their report. You can regain an appreciation of its 
importance, however, by just rewriting the autogyro maximum jump takeoff height equation 
as  

(2.139)   
( )
( )

o

o

2
To

max 34
o Q

C aT4I Wh ln 1
R W T C a

ª ºσª º§ · § · « »≈ + −« »¨ ¸ ¨ ¸ρπ © ¹ − σ« »© ¹ ¬ ¼ ¬ ¼
 

or rewriting the static thrust coefficient, Eq. (2.126), letting vertical velocity (dh/dt) equal 
zero, which leads to  

(2.140)   Thp hp
2 2 4 2 2 2

C T 1 1 4 1 1
a R a 8 8 3 a 64 3 a

ª ºθ θ§ · § ·= = + − +« »¨ ¸ ¨ ¸σ ρπ Ω σ σ σ© ¹ © ¹« »¬ ¼
 

or, rather than thinking of decelerating torque, think of a powered helicopter rotor in hover, in 
which case Eq. (2.127), becomes 

(2.141)   

3do
2Q

Thp
3 3 5 2 3 3 2 2

CC CQ 28
a R a 2 a

σ− § ·
= = ¨ ¸σ ρπ Ω σ σ© ¹

. 

 Knight and Hefner focused their work on rectangular, untwisted blades having a  
2.5-foot radius and a 2-inch chord. Their blades used the NACA 0015 airfoil and were 
carefully balanced so the section center of gravity was at the airfoil 1/4-chord point. They 
noted in their report that “five blades and three hubs were used. The blades were identical and 
interchangeable, thus making possible the four rotor combinations.” The 2-inch chord was 
constant from “the tip to a radius of 5 inches.” Moving inboard, the airfoil transitioned to a 
circular cross section (3/4-inch diameter) at the 1.5-inch radius station. A flapping hinge was 
installed at the 1-inch radius station. Their test results were provided in tables as well as 

                                                 
26 Montgomery Knight presented a paper at the first Rotating Wing Aircraft Meeting held at the Franklin 
Institute in late October of 1938 [see Appendix F]. His session dealt with Research Programs and he spoke in 
depth about “Research at Georgia Tech.” 
27 A more up-to-date explanation of blade element momentum theory is given by Alfred Gessow and Garry 
Myers in their classic book, Aerodynamics of the Helicopter [61]. 
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figures. The agreement between their equations for thrust and torque, derived from blade- 
element momentum theory, was quite impressive.  
 
 The key results from the 1937 ground-breaking work by Knight and Hefner begin with 
Fig. 2-56. With 35 data points from their 4 separate rotors, they developed the relationship 
that if collective pitch (ș) is scaled as 

(2.142)   16 in radians
a

θ§ ·Θ = ¨ ¸σ© ¹
 

then 

(2.143)   ( )( )3/ 22
T
2 2

1 3 1 2 1C a 1 1
32 2 3 15

ª º− Θ + Θ −
= + Θ +« »

σ Θ« »¬ ¼
. 

 
When you read the Knight and Hefner report you will see that I have altered the structure of 
their equations to be consistent with the structure used in this discussion.28  
 
 

0

0.002

0.004

0.006

0.008

0.01

0.012

0 2 4 6 8 10 12 14

2 blades, solidity = 0.0424

3 blades, solidity = 0.0636

4 blades, solidity = 0.0849

5 blades, solidity = 0.1061

Thrust
Coefficient

Collective Pitch   (degrees)

2T
t

TC
AV

=
ρ

 
Fig. 2-56. Knight and Hefner model test results from 1937 [88]. 

                                                 
28 There are a few typographical errors in the Knight and Hefner equations [88], however their numerical 
comparisons are quite correct. In sorting out these errors, I chose a somewhat simpler form to use here. 
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 The thrust coefficient versus collective pitch data for the four different solidity rotors 
shown in Fig. 2-56 can be “collapsed” to one line when graphed as  

T
2

C versus θ
σ σ

. 

This is done in Fig. 2-57 assuming, as their airfoil data showed, that the airfoil lift-curve slope 
(a) is 5.73 per radian for the NACA 0015. As you can see, the form that Knight and Hefner 
found theoretically is well supported by their simple experiment. Fig. 2-57 also includes 
Wheatley’s thrust approximation, Eq. (2.140), for the sake of completeness. Either equations 
from Wheatley or Knight and Hefner are adequate for the prediction of thrust coefficient. 
 
 On the other hand, prediction of torque coefficient with Eq. (2.141) is totally 
inadequate. In analyzing the torque coefficient, Knight and Hefner wrote, “The torque may be 
divided into three parts analogous to the partition of drag on an airfoil [i.e., wing].” In the 
somewhat more commonly used terminology today, total torque is the sum of: 
 1. Induced torque. 
 2. Minimum profile torque. 
 3. Delta profile torque. 
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Fig. 2-57. Accounting for solidity when calculating thrust coefficient [88]. 
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Then, using blade element momentum theory, they proceeded to arrive at the following 
equations: 

(2.144)   ( )
3

3/ 2Q T
3 2 2

C Ca 384Induced 1 2 1 3
3,584 a

ª º§ ·= + Θ − − Θ − ¨ ¸« »σ σ© ¹¬ ¼
 

(2.145)   Q do
3 2

C CMin. Profile
8

=
σ σ

 

(2.146)   ( ) ( )3/ 2 7 / 2
Q 2
3 2

C 7 1 2 3 1 2 44 1Delta Profile 1
512 3 4 42

ª º+ Θ − + Θ −δ= + Θ + Θ +« »
σ Θ« »¬ ¼

 

where, again, 16
a

θ§ ·Θ = ¨ ¸σ© ¹
 in radians. Knight and Hefner acknowledged that there is some 

delta profile torque due to the increase of airfoil drag coefficient with airfoil lift coefficient, a 
component that Wheatley ignored in his jump takeoff study. Knight and Hefner, from their 
airfoil experiment, chose to account for this airfoil drag rise as  

(2.147)   
2

2 2
d do do do

CC C C C C
a

§ ·= + εα = + ε = + δ¨ ¸
© ¹

A
A . 

From their torque equations, they were immediately able to see that induced and delta profile 
torque were both dependent on collective pitch. They therefore concluded that subtracting 
minimum profile torque from total torque would yield the sum of induced and delta profile 
torques, a torque that could be scaled by solidity cubed. Thus, the experimental data should be 
examined in the form 

o
Q

3

CC
8 versus

σ− θ
σ σ

. 

Fig. 2-58 shows that the blade element momentum theory had led them toward the right 
conclusion. They compared two values of airfoil drag rise constant (δ) and finally satisfied 
themselves that a (δ) of 0.038 was quite reasonable considering the small scale of their model. 
I have included the result Wheatley obtained from Eq. (2.141) in Fig. 2-58, as well as his data 
from Table 2-4 based on the Knight and Hefner minimum airfoil drag coefficient (Cdo) of 
0.0113.  
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Fig. 2-58. Accounting for solidity when calculating torque coefficient [88]. 

 
2.8.7 Ground Effect 
 
 Wheatley, you will recall, raised a question about how “ground effect” might have 
influenced his jump takeoff experiment. He wrote [82]: 

“It is considered possible that the source of compensating error is the ground effect, which 
would tend to increase the thrust of the rotor when it was near the ground plane at no 
additional cost in torque.” 

The subject of ground effect on rotor thrust and torque coefficients was the second task 
Knight and Hefner took on as part of their “research program at Georgia Tech.” They 
introduced their report [89] on ground effect with: 

“Proximity to the ground has a pronounced effect on the aerodynamic characteristics of the 
lifting airscrew. Ground effect is therefore of importance in the study of the landing and the 
takeoff qualities of gyroplanes and helicopters. No comprehensive attack on this problem has 
thus far been found by the writers although it has been mentioned occasionally in the literature 
(references 1, 2, and 3), and an approximate mathematical analysis has been made by Betz 
(reference 4).”29 

                                                 
29 References from Knight and Hefner are included here as references [90], [8], [91], and [92] respectively. 
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Knight and Hefner gave their own mathematical analysis of ground effect, which they 
supported with 5-foot-diameter model experiments. The models were from their early work 
[88], but this time they only used two-, three-, and four-bladed configurations. They tabulated 
their experimental results in the coordinates of  

o
Q

T
2 3

CCC 8versus and versus

σ−θ θ
σ σ σ σ

. 

 Based on the work by Knight and Hefner, Fig. 2-59 shows that Wheatley did have 
reason to wonder about how ground effect might be influencing his jump takeoff experimental 
results because his 10-foot-diameter model began its jump takeoff at a height (Z)-to-diameter 
(D) ratio of about 0.35 [Fig. 2-52]. Wheatley, in writing that thrust would increase at “no 
additional cost in torque,” clearly anticipated the experimental trend Knight and Hefner 
reported [89] some 5 years later.  
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Fig. 2-59. At equal collective pitch/solidity ratio, thrust increases as the rotor approaches 

the ground, but power is unaffected. 
 



2.8  JUMP TAKEOFF 

 131

 Knight and Hefner give a power required calculation method based on their 
theoretically derived correction factor. I have revised their approach slightly so that 

(2.148)   ( ) ( )do
Q Q QOGE OGE

C 11 ZIGE C Delta C tanh ln 1 2 Induced C
8 8 D

σ ª º§ ·= + + +¨ ¸« »© ¹¬ ¼
. 

The initials IGE and OGE stand for in and out of ground effect, respectively.  
 
 Using Eq. (2.148) is relatively simple. The rotor geometry and flight condition are 
used to calculate the ratio of thrust coefficient to solidity squared. With (CT/σ2) known, 
Eq. (2.143) is used to find the collective pitch parameter (Θ). Then, Eq. (2.146) is used to 
calculate delta profile torque OGE, and Eq. (2.144) is used to calculate induced torque OGE. 
These steps provide the information to calculate IGE torque (or power, since CQ = CP). 
Applying this approach to all of the experimental data from Knight and Hefner [88, 89] 
yielded the correlation of test and theory shown in Fig. 2-60. The inverse problem of 
predicting the increase in thrust as the ground is approached at equal power is, of course, 
equally simple using the same four equations. It is just a matter of finding the collective pitch 
parameter (Θ) that makes Eq. (2.148) constant, even though the ratio of height above the 
ground (Z) to rotor diameter (D) is decreasing. Each value of (Z/D) yields a (Θ), which is 
used to calculate thrust with Eq. (2.143) with results such as those shown in Fig. 2-59.30 
 
 Despite the theoretical work by Knight, Hefner, and Betz, rotor power in ground 
effect—for a given thrust—was strictly an empirical-to-semiempirical engineering art. It was 
an art then and still is today, unfortunately. However, as I will discuss later, enough additional 
experimental data in and out of ground effect was acquired to create a fairly reliable, 
empirical, power-required correction [93, 94]. 
 
2.8.8 Thrust Overshoot 
 
 Besides ground effect, there is another facet of jump takeoff that Wheatley did not 
address in his experiment. Cierva, Pitcairn, Hafner, and Kellett autogyros increased collective 
pitch from flat pitch (i.e., a near-zero-thrust collective-pitch setting used for over-speeding the 
rotor) to a normal flight setting. Wheatley powered his 10-foot-diameter model rotor up to 
over-speed with collective pitch already set at 6 to 18 degrees. He then sprung a release, and 
the model rose. This is the simple “toy Chinese top” problem, and relatively simple equations 
can be used to estimate maximum height. With full-scale autogyros, the rapid increase in 
collective pitch from zero to some value, (either by the pilot as Hafner and Kellett chose or by 
centrifugal force as Cierva and Pitcairn chose), raises a question about how thrust varies with 
a transient change in collective pitch. This question was answered by Carpenter and Fridovich 
at the N.A.C.A. in 1953 [95]. 

                                                 
30 I have used Microsoft® Excel® spreadsheet software for this and nearly every other calculation and figure in 
this book. Personally, I think this software is wasted on accountants. Of course, the equations included can be 
easily programmed in any other computer language.  
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Fig. 2-60. Knight and Hefner model rotor experimental OGE data [88] and IGE data 

[89] predicted with Eqs. (2.144) and (2.146), assuming δ = 0.0447. 
 
 
 You might be surprised that this question was still unanswered nearly two decades 
after the Wheatley experiment [82]—and with helicopters well into production. The 
introduction to the report by Carpenter and Fridovich provides the answer: 

“One of the methods currently used to get an overloaded helicopter airborne is the maneuver 
commonly referred to as the “jump takeoff” or “engine over speed takeoff.” This maneuver is 
a takeoff with a flight path initially vertical, effected by the release of excess kinetic energy 
stored in the rotor. The rotor is initially accelerated at or near a blade pitch angle of 0o to a 
rotor speed greater than its normal speed. At this over speed condition, the blade pitch is 
suddenly increased to its normal value or higher and the consequent rotor thrust, being greater 
than the weight of the machine, lifts it vertically from the ground. During the takeoff, the 
rotor decelerates, the thrust returns to its normal value, and the pilot must gain sufficient 
forward speed to stay airborne with the power available.” 

 
 Helicopters flying in 1953 were all powered by reciprocating piston engines. These 
engines were, as you will read later in Volume II—Helicopters, quite underpowered for their 
weight (even with supercharging) and did not give early production helicopters much 
performance. In fact, the U.S. Army Air Corps’ first helicopter, the Sikorsky R-4, could only 
hover in ground effect when loaded to normal gross weight.  
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 Carpenter and Fridovich used the N.A.C.A. “Langley helicopter test tower” and a 
three-bladed rotor to conduct their experiments. This “apparatus” was built between 1946 and 
1947 and first used in 1948. The whirl tower, as this type of test facility came to be commonly 
called, was described in detail by Carpenter [96]. The rotor hub was approximately 40 feet 
above the ground, which placed the 38-foot-diameter rotor nearly out of ground effect. At that 
time, the N.A.C.A. had two sets of full-scale rotor blades available. Sikorsky provided these 
blade sets in support of flight research on the R-4 conducted by the N.A.C.A.  
 
 The objective for the 1953 Carpenter and Fridovich test [95] with the three-bladed,  
38-foot-diameter, 0.042-solidity rotor was to measure the time history of thrust for several 
rates of pitch change from zero to maximum collective pitch. Their results quantified the 
“overshoot” in thrust, which accompanied an induced velocity that could not keep up with 
collective pitch change. They obtained the behavior of the induced velocity during the 
transient period “by measuring the drag of balsa-wood paddles (approximately 4 inches 
square) mounted on a horizontal bar about 2 feet below the rotor blades. The paddles were 
mounted on strain-gage beams and their response to a change in induced velocity was 
recorded by an oscillograph.” The Carpenter and Fridovich data showed that the Knight and 
Hefner basic thrust equation, Eq. (2.143) repeated here for convenience, was inadequate.  

(2.143)   ( )( )3/ 22
T
2 2

1 3 1 2 1C a 1 1
32 2 3 15

ª º− Θ + Θ −
= + Θ +« »

σ Θ« »¬ ¼
. 

  
 Carpenter and Fridovich measured “thrust over shoot” during pitch change rates of 6 
to 200 degrees per second. The collective pitch was increased from 0 to a maximum of 3, 6, 9, 
and 12 degrees. Their data summary chart is reproduced here as Fig. 2-61. At the highest rate, 
probably typical of Cierva and Pitcairn Autogiros, the rotor was quite capable of a maximum 
thrust coefficient (CT max) nearly twice that of the final, steady-state thrust coefficient (CT final).  
 
 An example of the Carpenter and Fridovich experimental time history results is shown 
in Fig. 2-62 and Fig. 2-63. I chose this particular test case because, as they said, 

“For a pitch rate of 48o per second [see Fig. 2-62] which is thought to be the maximum rate at 
which a pilot can move the controls (based on unpublished CAA and NACA tests), the time lag 
between full induced velocity is approximately 0.7 second, whereas at still a slower rate of 20o 
per second the time lag is about 0.4 second. For the most rapid rate of blade-pitch increase 
[200 degrees per second], the blade inertia accounts for about 38 percent of the total maximum 
thrust and decreases to about 2 percent of the total maximum thrust for the slowest rate of 
blade-pitch increase [6 degrees per second].” 
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Fig. 2-61. The Carpenter and Fridovich test showing the effect of rapid collective pitch 

changes on maximum thrust [95]. 
 
 
 The rotor thrust coefficient (CT) variation with time, in response to the collective pitch 
increase from 0 to 12 degrees at a 48-degrees-per-second rate for one-fourth of a second, is 
shown in Fig. 2-63. Thrust “overshoots” the final steady-state thrust for about one-fourth of a 
second and reaches a maximum of 1.35 times the final steady value. I have not reproduced the 
blade coning time history Carpenter and Fridovich provided because it follows thrust almost 
exactly. The induced velocity exhibits no “overshoot” as Fig. 2-62 shows. This behavior was 
characteristic of the induced velocity time history regardless of the pitch change rates. 
 
 Carpenter and Fridovich present a very simple theory to explain the experimental 
results shown in Fig. 2-61, Fig. 2-62, and Fig. 2-63. The key assumption of their theory is that 
there is an “apparent additional mass of air influenced by the rotor disc.” This mass of air 
must be accelerated from zero velocity, and this additional force must be included in the blade 
element momentum theory. Based on work by Max Munk [97], Carpenter and Fridovich 
defined the apparent air mass as 



2.8  JUMP TAKEOFF 

 135

0

2

4

6

8

10

12

14

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Collective
Pitch (deg)

&
10 times the 

ratio (Induced 
Velocity/Final 

Induced 
Velocity)

Time  (seconds)

Experimental

Experimental
and

Theoretical
Collective

Pitch

time

final

v10
v

§ ·
¨ ¸
© ¹

Carpenter Theory
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(2.149)   3
air

4Apparent Mass m 0.637 R in slugs
3

§ ·≡ = ρ π¨ ¸
© ¹

 

and then wrote the blade element momentum theory for induced velocity (v) as 
 

(2.150)   ( )2 2
air t time

t

dv 2R d 1 3 v 1 dm 2 R v v bcaRV
dt 3 dt 6 2 V dt

ª º § ·§ ·β β+ πρ + = θ − −« » ¨ ¸¨ ¸ Ω© ¹ © ¹¬ ¼
. 

Because the rotor blades were attached to the hub with a flapping hinge, Carpenter and 
Fridovich needed to include the effect of flapping velocity (dβ/dt) on the blade element angle 
of attack. (When you read their report [95], you will see that I have reduced his basic equation 
to a rectangular blade and assumed the induced velocity to be uniform over the whole rotor 
disc.)  
 
 The Carpenter and Fridovich theory required the flapping velocity. To calculate this 
velocity, they wrote the classic, second-order differential equation for flapping as 

(2.151)   ( )
2

2 4
flap flap time W2

t

d 1 4 1 dI I acR v M
dt 8 3V dt

§ ·β β+ Ω β = ρ θ − − −¨ ¸Ω© ¹
 

where I have again assumed a rectangular blade and uniform induced velocity. 
 
 The simultaneous solution posed by Eqs. (2.150) and (2.151) was, in 1953, solved by 
an analog computer; they used “the Bell Telephone Laboratories X-66744 relay computer at 
the Langley Laboratory.” They used a time step of 0.02 seconds. Today, powerful digital 
computers, coupled with any one of the numerical integration schemes available [98], make 
short work of the problem Carpenter and Fridovich faced.  
 
 Once the time histories of induced velocity (v) and coning (β) were obtained, they 
computed the vertical hub force (Thub) measured by the whirl tower balance as 

(2.152)   
2

2
hub air blade 2

dv 2R d R dT m 2 R v v bm
dt 3 dt 2 dt

ª β º β§ ·= + πρ + −¨ ¸« »© ¹¬ ¼
 

and then converted this force to a thrust coefficient by  

(2.153)   hub
T 2 2

t

TC
R V

=
ρπ

. 

 Based on my literature survey, the test and analysis by Carpenter and Fridovich 
received very little immediate follow-on attention from others in the rotorcraft industry. 
Nearly 20 years passed before their problem was studied again. But then, in the early 1970s, 
Peters [99] extended the concept of “apparent mass” to help explain rotor behavior during 
other transient conditions. Peters’ explanatory efforts were quite successful and his work came 
to be known as the “dynamic inflow” theory. Most recently, Bhagwat [100] published his 
Ph.D. thesis dealing with an advanced free-wake theory programmed on a powerful digital 
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computer. This modern analysis brought a half-century of accumulated theoretical and 
computer power to bear on what may appear as a simple problem. As part of his thesis, 
Bhagwat studied the Carpenter and Fridovich problem in some detail. His quite modern 
theory prediction of thrust “overshoot” is shown in Fig. 2-61. The modern theory hardly 
differs from the Carpenter and Fridovich result of 1953; however, Bhagwat [101] concludes 
that their apparent mass approach, while in good agreement with observed behavior, is not the 
source of the dynamic overshoot. The correct source is the complex wake springing from 
behind each blade, the induced velocity field about the rotor caused by this wake, and the 
actual lift of each blade section airfoil.  
 
2.8.9 Closing Remarks 
 
 As you can see, prediction of jump takeoff trajectories involves several important 
variables that influence the initial thrust and decelerating torque. Rotor over-speed, rotor 
inertia, ground effect, and thrust “overshoot” are just the beginning. I have found no 
comprehensive study of the autogyro’s real limits to performing jump takeoffs. However, 
analytical capability does exist today to investigate the problem—should the need arise. 
 
 Jump takeoff capability, even to heights of 35 feet as demonstrated by late model 
autogyros, did not add enough capability to this first generation of rotorcraft. The autogyro 
quickly faded in the face of competition offered by even underpowered helicopters. In fact, 
the autogyro is still frequently referred to as a short takeoff and landing (STOL) aircraft, when 
fuel efficient vertical takeoff and landing (VTOL) aircraft with modern jet aircraft cruise 
speed remains the goal.  
 
 Of course, the autogyro pioneers did lay the foundation that the helicopter pioneers 
needed in order to expand the rotorcraft industry. A perfect example of this foundation is the 
development of rotor blades during the autogyro era.  
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2.9 BLADES 
 
 
 The evolution of rotor blades during the autogyro era is a fascinating story. On one 
hand, you see the story unfold by studying the many aircraft photos and three view drawings 
that exist in popular literature. But these two sources give only a feeling about the number of 
blades and their external geometry such as span or radius (R) and width or chord (c). On the 
other hand, it is the technical reports and papers that provide the facts and figures that bring 
the accomplishments of the autogyro pioneers into true focus.  
 
 In a simplistic sense, a rotor blade is a rotating wing. In a structural dynamics sense, a 
rotor blade is nothing more than a centrifugally stiffened rotating beam—with a cross section 
shaped like an airfoil. However, the planform variations among rotor blades, even during the 
autogyro era, are quite interesting. In January 1923 the C.4, the first successful Cierva 
Autogiro, had four rectangular planform blades (see Fig. 2-5). The blades had a very wide 
chord for their radius as you can see from Table 2-5. Then Cierva developed the C.6A, a 
slightly expanded C.4, which he demonstrated in England in 1925. With the introduction of 
the C.6A, the budding rotorcraft community almost immediately adopted the term “solidity” 
to describe aerodynamic planform geometry. The term solidity that Cierva introduced 
accounted for two reference areas that might be used in studying rotors—one being the swept 
disc area (π R2 ) and the other being the physical blade planform area (bcR) for a rectangular 
blade, where (b) is blade number. These two areas were formed into a ratio referred to as 
solidity (σ). This descriptive parameter remains in use today, so you should remember that 

(2.154)   ( )2

bcR bc bSolidity for rectangular blade
R R R c

≡ σ ≡ = =
π π π

 

The ratio of blade radius (R) to blade chord (c) is, of course, blade aspect ratio. 
 
 The influence of solidity on rotor performance was the basis of early criticism of the 
autogyro. While Cierva enjoyed the praise of the overwhelming majority of those who saw his 
C.6 fly in England, he got little encouragement from one of the most highly respected fixed-
wing aeronautical engineers of the era. The critic was Herbert Glauert. In November 1926, 
about a year after Cierva demonstrated the C.6, H. Glauert published a landmark analysis [13]  
entitled A General Theory of the Autogyro, released as Aeronautical Research Committee, 
Reports and Memoranda, Number 1111 (R&M 1111). This appears to be the first formally 
published study of autogyro rotor system performance. The report by Glauert laid a firm 
cornerstone for all future rotorcraft performance analysis and may well be one of the most 
referenced documents in the technical world of the rotorcraft industry.  
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Table 2-5. Rotor Solidity Was Greatly Reduced in Less Than 10 Years 
General  

Model C. 4 C. 6A C. 19 
Mk. III

PCA-2 C.19  
Mk. IV

C.30 
P&A

KD-1 A.R. III PA-36 

Year 1923 1925 1929 1930 1931 1933 1934 1936 1939 
Gross Weight (lb) (lbs) 1,200 2100 1450 2940 1450 1800 2100 890 1,800 
Installed Power (hp) (hp) 80 110 105 300 105 140 225 84 175 
GW/hp 15.0 19.1 14.8 9.8 14.8 12.9 9.3 10.6 10.3 

Rotor  
Blades  4 4 4 4 3 3 3 3 3 
Diameter (ft) 32 36 35 45 34 37 40 32.82 43 
Chord (in.) 28 30 18.6 22 18.6 (est.) 11 12 4.9 17 to 11 
Disc Area (sq ft)   803 1,018 962 1,588 908 1,075 1,257 846 1,452 
R/c 6.86 7.20 11.3 12.3 11.0 20.2 20.0 40.2 17.2 
Solidity  0.189 0.1768 0.1107 0.0976 0.084 0.0470 0.0478 0.0237 0.0444 
Tip Speed (ft/sec) 234 260 230 340 320 370 420 464 450 
Blade Airfoil Eiffel 

106 
Gött. 
429 

Gött. 
429

Gött. 
429

RAF  
34

Gött. 
606

Gött. 
606 

Sym. NACA 
23012

Wing  
Span (ft) None None 20.5 30.33 20.5 None None None None 
Chord-Root (ft) na na 2.53 4.33 2.53 na na na na 
Projected Area (sq ft) na na 45 101 45 na na na na 
 
 In R&M 1111, Glauert captures the essence of Cierva’s aerodynamic theory, but when 
you read beyond the technical work, you will find that he included several rather pessimistic 
statements about rotary wing performance. For instance, in the general discussion part of his 
report, he states:  

“The maximum lift drag ratio of rotating wings is poor compared with that of ordinary fixed 
wings; its ordinary value is approximately 6 and it is unlikely to exceed 8 in any practical case. 
It occurs at a small value of lift coefficient [using disc area, π R2, as the fundamental area and 
the forward speed as fundamental speed] in the neighbourhood of 0.05 and so at a speed 
approximately three times the stalling speed.......The important conclusion is reached that as 
the maximum speed of the gyroplane is increased, the loading must also be increased in order 
to maintain a sufficient ratio of tip speed to forward speed; and there is a corresponding 
increase of the stalling [speed]........Thus, the principal merit of a gyroplane, its low landing 
speed, inevitably disappears when high speed of level flight is required, and there remains only 
the absence of a sudden stall to counter-balance the very poor efficiency as compared with an 
aeroplane.” [My italics] 

 
Glauert based his numerical examples and statements on an autogyro rotor having four blades 
of 17.5-foot radius and 2.75-foot chord, or a solidity of 0.20. His comment at the end of 
Appendix II of his R&M is particularly interesting because he noted:  

“ A reduction of the solidity leads to improved speed of horizontal flight since the power taken 
by the windmill is reduced. Also the best loading falls more rapidly than the maximum lift 
coefficient and hence the higher top speed is accompanied by a lower stalling speed. The 
limiting condition for this method of [ L / D ] improvement is clearly the impossibility of making 
very thin [narrow chord with thin airfoil] blades of large radius and is a matter of structural 
strength.” [My italics] 
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 What Glauert failed to consider was Cierva’s, Pitcairn’s, Kellett’s, and Hafner’s 
resourcefulness. In 4 years, as Table 2-5 shows, solidity was halved and, 4 years later, solidity 
was halved again. The Hafner A.R. III, with a rotor solidity of 0.0237, made it quite clear that 
Glauert’s use of the word “impossibility” was hardly visionary. However, Glauert’s view that 
the maximum rotor lift-to-drag ratio was “unlikely to exceed 8” was more correct as you will 
read later. 
 
 Cierva used his models C.6 through C.18 to evaluate several planform geometries 
before selecting the production configuration used on the C.19. Cierva Autogiros—The 
Development of Rotary Wing Flight by Peter Brooks [7] contains a photographic chronology 
of the blade planform study. In his Engineering Theory of the Autogiro [11], Cierva discusses 
the aerodynamic merits of several planforms. I have reproduced a few of his sketches in  
Fig. 2-64, Fig. 2-65, and Fig. 2-66. While Cierva investigated the effect of blade twist in 
flight, Fig. 2-64, he made no attempt to calculate performance for other than untwisted 
rectangular blades. However, in Part IV of his Engineering Theory he says that: 

“It is quite certain that a certain degree of [aerodynamic] improvement can be obtained by (a) 
giving the blades a wash-in in pitch angle, which diminishes the stalling of certain [radial 
airfoil] sections and (b) tapering the tips, with a decrease of the profile losses in that region, 
which is little useful for lift and (c) decreasing the chord near the root, where stalling is more 
pronounced and the trailing and leading edges change places in horizontal flight.” [See  
Fig. 2-2.] 

Cierva goes on to say that “but, in every case, there is a possibility of impairing the efficiency 
by overdoing (a), (b), or (c).” He then concludes with: 

“My results, so far, are that not a great degree of [aerodynamic] improvement is obtained, 
either by (a), (b), or (c), but, by using shapes such as the types RB 53 [see Fig. 2-66] and 
RB 55 [see Fig. 2-65] with a considerable parallel (constant chord) portion in the optimum 
region, the best results are obtained. The types F 1017 and F 1038 are not so good, probably on 
account of the very long tapering and thick tip, and the F 1038 (modified) [see Fig. 2-64] was 
slightly worse than the F 1038 because of the increased tapering and the decrease of the  
wash-in.” 

 
 Cierva did not give theoretical results for twisted blades with arbitrary planform. 
Instead, he seems confident in using the blade-tip pitch angle as the reference angle (θ = θtip) 
in his rectangular, untwisted blade equations. With respect to planform, he recommends his 
basic equations, but with a solidity he defines as (σshape). In effect, he defines an average 
chord equivalent to a rectangular blade chord. For nonrectangular planforms he writes  

(2.155)   

R 2 2
r0

shape 3

c r R r drb for nonrectangular planform
R R / 3

 ½−° °σ ≡ ® ¾π ° °¯ ¿

³  

where (cr) is the chord variation with radius. Cierva performed the integration required by 
Eq. (2.155) graphically for all but the simplest planforms.  
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Fig. 2-64. Cierva rotor blade type F-1038 (modified). Equivalent rectangular blade 
solidity of 0.19 [11].  

 
Fig. 2-65. Cierva rotor blade type R.B. 55. Equivalent rectangular blade  

solidity of 0.088 [11].  

 
Fig. 2-66. Cierva rotor blade type R.B. 53. Equivalent rectangular blade  

solidity of 0.090 [11].  
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 The concept of an equivalent rectangular blade solidity for any nonrectangular 
planform has altered slightly over the decades. Today, in technical literature [61] you will find 
an equivalent chord leading to a thrust-weighted solidity, which is what Cierva had in mind. 
This solidity is calculated as 

(2.156)   

R 2
r0

T 3

c r drbThrust weighted for nonrectangular planform
R R / 3

 ½
° °σ ≡ ® ¾π ° °¯ ¿

³ . 

In addition, an equivalent chord leading to a torque- or power-weighted solidity is used 
occasionally and is calculated as 

(2.157)   

R 3
r0

Q 4

c r drbTorque weighted for nonrectangular planform
R R / 4

 ½
° °σ ≡ ® ¾π ° °¯ ¿

³ . 

 When Cierva went into production it was with the C.19 shown in Fig. 2-67 and  
Fig. 2-68. The blade planform, as the top view shows, certainly appears to be a derivative of 
the Cierva Type R.B. 53 shown in Fig. 2-66. Photos by Brooks [7] of early Pitcairn, Kellett, 
and Buhl machines all show the stamp of the Cierva production blade planform.  

Fig. 2-67. A Cierva C.19 Mk. III in final assembly [7].  
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2.9.1 Structural Details 
 
 Looking closely at Fig. 2-68, you can almost guess the basic blade design from the 
artist rendition. The leading edge of each blade is solid white back to about the 30-percent 
chord point. Beyond that to the trailing edge there are closely spaced lines that represent 
airfoil ribs—some 65 per blade by my count.  
 
 Considerably more detail about the C.19 blades is shown in Fig. 2-69 and Fig. 2-70. 
These informative sketches are from The Book of the C.19 Autogiro [50]. The foreword states, 
“The authors of the book [Mr. Sanders, in charge of the design staff, and Mr. A. H. Rawson, 
test pilot] are those who have been most closely in touch with Senor Don Juan de la Cierva, 
the inventor of the Autogiro, during the development of the principle, and in particular of the 
type of machine explained and illustrated.” 

 

 

Fig. 2-68. The Cierva C.19 Mk. III [7]. 
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Fig. 2-69. The Cierva C.19 Mk. III blade with 18.6-inch chord [50]. 

 
 
 The description of the C.19 blade that Sanders gives is quite complete for a book 
addressed to the uninitiated autogyro enthusiast. He writes: 

 “The rotor blades, which are the chief components of the Autogiro, are designed to 
give the necessary lift to the machine. These are of wood and metal construction. Each blade is 
17 ft. 6 in. long with a chord of 18.6 inches (along the main portion) and is of “Göttingen 429” 
section, set at an angle of incidence of 2°10' [Fig. 2-69]. 
 
 The main spar is of high tensile steel tube, 1-3/4 in. diameter by 20 S.W.G. This spar 
runs the length of the blade (except at the extreme tip) at 0.25 of the chord from the leading 
edge. The ribs are of wood, consisting of a mahogany core 5/32 in. thick, faced on each side 
with 1/16 three-ply [Fig. 2-69]. Each rib is grooved along its top and bottom edges and drilled 
to take the sewing string fixing the fabric covering. The ribs are very closely spaced (3 in. 
apart) and each one is riveted to a flanged clip which is sweated to the main spar. In addition, 
every third rib is bolted to the spar. Owing to the close spacing of the ribs the load carried by 
each is very small. 
 
 To stiffen the blade in a horizontal plane an auxiliary spar is fitted at approximately 
midway between the main spar and the trailing edge, starting from the root end, and continuing 
to the outer end of the main spar. This auxiliary spar is of 1/4 in. thick spruce, approximately 
7/8 in. deep, and is glued and bradded to each rib. The trailing edge is a strip of 26 G. 
duralumin, 2-1/2 in. wide, doubled back over the ribs and riveted to each. 
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 The nose portion of the blade is covered with 1/16 in. 3-ply extending back to the 
centre of the main spar. The whole blade is fabric covered, and the outer end of the blade, 
known as the rotor blade tip, is a 22 S.W.G. aluminum fairing, which is made in halves and 
riveted. To stiffen this fairing two duralumin ribs and two channel pieces are fitted inside. One 
of these ribs is bolted to the end of the main spar as a means of attachment to the blade. In 
addition the inner edge of the tip is doubled back and screwed to a special thick rib at the end 
of the main portion of the blade. At the root end of the blade is another aluminum fairing, 
stiffened with a spruce former, and screwed to the end rib [Fig. 2-70].  
 
 Provision is made for draining any moisture that may get into the blade by means of 
six drain eyelets spaced at intervals along the bottom surface near the trailing edge.  
 
 A machined fork end is bolted and sweated in the root end of the main spar, forming 
an attachment to the articulation joints in the rotor hub [Fig. 2-70].  
 
 On assembly the rotor blades are inter-braced with 15 cwt. cable, the ends of which 
are attached to friction dampers on the main spar.  Turnbuckles are provided in this bracing for 
adjustment. 
 
 The friction dampers [Fig. 2-71] work somewhat on the principle of the shock 
absorbers used on cars, and the friction between the steel plates and cork disc can be adjusted 
to give the required stiffness. The crank arms of the dampers are designed so as to have a 
certain degree of free movement in a vertical plane, thus enabling them to adjust themselves to 
the rise and fall of the blades. The friction dampers are fitted at 8 ft. 3-1/2 in. from the centre 
line of the rotor hub. 
 
 A 20 cwt. suspension cable is fitted from the top of the rotor hub to a bracket on the 
main spar at 6 ft. 6-1/2 in. from the centre line of the rotor hub. This cable is of such a length 
that a relax angle of 8o is allowed. Provision for adjustment is also made in this bracing by 
means of turnbuckles.  
 
 Each blade is balanced to a standard weight so that all blades of the same type are 
interchangeable, provision being made for correcting weight at the outer end of the main spar.” 
 
 

 

 
 

  
Fig. 2-70. C.19 root end [50]. Fig. 2-71. Lag damper [50]. 
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 Sanders [50] points out that cables carried damper loads from one blade to another. 
Thus, the blades were free to lead-lag as a group, but motion relative to each other was 
restricted. Furthermore, cables were used to hold the blades up when they were stationary. 
These cables were referred to as “droop” cables. These cables were soon to be removed, as I 
will discuss shortly.  
 
 The main load member for these early blades was a constant diameter, constant wall 
thickness, high-strength steel tube. This tube is referred to as the blade spar. The “forked” 
extension to the spar, used to capture the lead-lag hinge pin, was also high-strength steel. This 
fitting was “sweated and bolted” to the main spar. Sanders [50] indicates “every third rib is 
bolted to the spar.” Apparently, 3/16-inch-diameter holes were drilled into the spar. The holes 
were drilled on the inplane or chordwise axis of the spar. Even with the stress rise correction 
factors Cierva applied, this deliberate damage to such a critical load-carrying member would 
never be considered today.  
 
 Very interesting information about the Pitcairn PCA-2 blade was included by George 
Townson in his technically oriented book [45]. He provides a photograph of a blade before 
covering, shown here in Fig. 2-72.  
 
On page 23 of his terrific book, Townson gives an unmatched detailed description of the 
PCA-2 blade, writing: 
 

“The rotor blades were generally rectangular in plan form. The chord of the blade was of two 
widths; the one outboard being larger than the inboard. Transitional section of increasingly 
longer ribs faired the inner, narrow chord to the wider outer chord. The tip was curved with its 
thickness tapering into a rather sharp edge at the tip. Drain holes were provided at several 
places along the trailing edge of the blade to ventilate the inside to expel any moisture that was 
present as the result of condensation. These holes also prevented air pressure being built up 
from the centrifugal pumping caused by the rotation of the blade. The outer chord width was 
22 inches; the inboard 5-3/4 feet had a chord of only 14-25/32 inches, the transition required 
three feet from inner to outer. The main member was a round tube of 4130 steel, 2-1/8 inches 
in diameter straightened to a close tolerance, heat treated and hand polished. Approximately 
fifty plywood ribs, an average of three inches apart, formed the airfoil. A Pitcairn #4 airfoil 
was developed. It was a modification of the Göttingen 429. Ribs were routed from five-ply 
wood having alternate layers of mahogany and birch and were one quarter of an inch thick. 
 

 
Fig. 2-72. Pitcairn PCA-2 blade before covering [45] 

 (do not let the shadows confuse you). 
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Each rib had a stainless steel collar riveted onto one side, and these in turn were fastened to the 
steel spar. Some of the early blades had these collars soldered to the spar, but this was later 
changed to spot welding. The welding process was especially developed by Pitcairn engineers 
so that the maximum strength in the weld could be developed without reducing the strength of 
the spar tube in the process. The blade was covered to a point just aft of the spar tube with thin 
plywood that had been preformed to the leading edge shape. The trailing edge was formed into 
a stainless steel "vee" of thin sheet which was nailed to the ribs on earlier models. Later a steel 
tail was formed for each rib and the wood rib cut off blunt about three inches from the end of 
the rib. The stainless steel trailing edge was provided with slip joints so that one section of the 
trailing edge telescoped into the other if the blade flexed fore and aft. As the entire blade was 
finished in doped fabric, the slip joints were covered with small leather patches so as not to 
wear out the trailing edge fabric. The fabric was held down to the ribs by rib stitching in the 
same manner as an airplane wing.” 

 
 Two very important components, used by early developmental autogyros and the first 
production models, were “droop” cables and blade-to-blade lead-lag limit cables. These 
cables, clearly visible on the Cierva C.19 while stationary (Fig. 2-73), are frequently invisible 
to the eye when studying photographs of autogyros in flight. The purpose of the “droop” 
cables is, of course, obvious. With the flapping hinged blade, some limits to both minimum 
and maximum flap angles are required. On early autogyros, these limits were rubber pads on 
the hub spaced below and above the blade spar, which allowed for nearly a 30-degree range in 
flapping. The blade-to-blade lead-lag cables were designed to keep the blades from 
depatterning in relative azimuth, which could lead to ground resonance (recall Fig. 2-14). 
 
 The design requirements for both “droop” and lead-lag cables was carefully explained 
by Cierva in Part V of his Engineering Theory [11]. Part V is titled “Kinematics and 
Dynamics of the Rotary Blades” and covers rotor speed and motions about both flap and lag 
hinges. With respect to flapping, he concludes, from three possible flight situations, that a 
“sudden increase in speed without change of incidence, such as occurs at top speed in strong 
gusts” will create maximum flap-up angles ranging from 13 to 21 degrees and minimum flap 
angles around –10 degrees. In an abbreviated analysis, Cierva concludes that the lead-lag 
angle will range from ±2.15 to ±5.2 degrees, but an increase of 50 to 100 percent on these 
angles “should be allowed for abnormal conditions [such as] sudden accelerations, bumpy air, 
etc.” He further notes that “the restrictive interbracing should give a perfect freedom between 
consecutive blades of about 0.5 to 1 degree, and the restriction should be absolute for an angle 
equal to o 1S0.5 a+ β  in order to prevent the stops, limiting the movement at the hinge, from 
taking any loads when starting or stopping the blades.” Cierva is very emphatic about the 
lead-lag cables saying, “If any elastic interbracing is used, great care should be taken to have 
it sufficiently slack to not restrict the motion in flight, since resonant conditions can easily be 
reached, with the subsequent vibration and risk of [blade] failure.” 
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Fig. 2-73. Cierva C.19 Mk. III showing “droop” and lead-lag cables [7]. 

 
 While the Cierva C.19 Mk. III sold in limited quantities, it clearly had several 
imperfections. The “droop” and lead-lag cables were right at the top of the list. At this time, 
the rotor startup problem had been solved, but direct control had yet to be invented. This 
period does not receive much attention in the popular literature, but it deserves, in my 
opinion, a great deal of attention. During this interval, roughly between November 1930 and 
June 1931, Cierva developed the low-solidity, three-bladed rotor system having no cables.31 
Brooks [7] recounts the period, writing: 

“While he was in the United States, Cierva had also been analyzing Autogiro rotor 
performance and had satisfied himself about the considerable potential increase in efficiency 
that would result if the parasite drag of blade suspension and inter-blade bracing cables and 
friction damper arms could be eliminated. Tests were conducted at Willow Grove on a C.19 in 
which damping was by means of felt blocks at the [rotating] wing roots. Inter-blade cables 
were eliminated. Short flights were made with both four-blade and two-blade rotors with this 
arrangement.” 

Cierva returned to Europe, via Paris, to attend the First Congress on Air Safety (December 
10–23, 1930) and then went home to Spain. In March 1931 he arrived back in England and 
immediately began development of what was called the “cantilevered” blade. The use of 
cantilevered only meant that a “droop stop,” projecting out from the hub, provided a resting 
spot for the blade flapping hinge assembly (and thus the blade spar) when not rotating.  
 
 As Fig. 2-74 shows, the droop stops, despite the blade bending or elastically drooping, 
provided ample clearance between the blade and the aft fuselage. Note that the two rudders 
were removed, and the single, conventional rudder was enlarged. Brooks [7] quotes the 
maximum speed of the C.19 Mk. IV as 100 to 102 miles per hour, an increase of some 
10 miles per hour over the C.19 Mk. III (82 to 95 miles per hour). Minimum speed remained 
at 25 miles per hour.  

                                                 
31 It is at this point, circa June 1931, that I think the modern rotor system was born. The modern control system 
of cyclic and collective pitch came later with the Hafner A.R. III. 

Droop 
Cable
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Fig. 2-74. Cierva C.19 Mk. IV with “cantilevered” blades circa June 1931 [7]. 
 
 The importance of rotor blade droop is not always appreciated in rotor blade design. 
Flapwise bending stiffness (EIflap) in pound-feet squared, running weight (wb) in pounds per 
foot, running mass (mb) in slugs per foot, and blade radius (R) in feet are, of course, key 
parameters defining droop of a “cantilevered” beam.32 But these four key structural 
parameters, along with rotor speed (Ω) in radians per second, also define the natural vibrating 
frequencies of the rotating, pin-ended (i.e., flapping hinged) beam and, of course, vibratory 
loads and stresses. There is little published evidence that the autogyro pioneers saw the 
connection. However, I have run across comments here and there about aircraft vibration with 
the three “cantilevered” blade rotor system, which never appeared about autogyros with four-
bladed, cable-supported rotor blades.  
 
 Cierva progressed from a four-bladed, high-solidity, cabled rotor to a three-bladed, 
low-solidity, “cantilevered” blade rotor using the same basic airframe, as Fig. 2-73 and  
Fig. 2-74 show. His calculated performance improvement was obtained, so it is natural to 
wonder about the structural dynamics of the two rotor systems.  
 
 The structural dynamic behavior of a rotating beam subjected to airloads is, to many 
engineers, the most interesting applied mathematical problem that rotorcraft offer. Fortunately 
for my discussion here, early autogyro blades were constructed as uniform beams, so an 
introduction to rotor blade structural dynamics is relatively simple. To begin with, think just 
about the blade deflection when the autogyro is stationary, and the blades are not rotating. The 

                                                 
32 The units of many rotor blade parameters are frequently NOT given in the pound, slug, foot, second, system. 
For example, structural engineers will quote flapwise stiffness in pound-inches squared and dynamic engineers 
denote mass in slugs. In the exchange of data between the two groups, a 12 or 32.174 has quite often been 
misplaced, generally to the embarrassment of members from both groups. So, remember that weight, in pounds, 
equals mass, in slugs, times 32.174 feet-per-second squared. 
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C.19 Mk. III and Mk. IV provide two distinct examples as Fig. 2-73 and Fig. 2-74 show. In 
both configurations, Cierva appears to allow the same minimum clearance of about 12 inches 
between a blade and the airframe. With the Mk. III, the “droop” cables (according to Sanders) 
were adjusted by turnbuckles to give a blade-root slope of –8 degrees. Assuming first that 
there is no elastic bending, the blade tip would therefore be hanging some 28 or 29 inches 
below a straight-out reference line as Fig. 2-75 shows.  
 
This rigid blade deflection (rigid Z r) in feet, at any radius station (r) in feet, is calculated 
simply as 

(2.158)   ( )
o

r
8rigid Z root slope r r

57.3 degrees/radian
= = . 

Note here that degrees are converted to radians by the factor 180/π or 57.3. Elastic bending 
increases this deflection all along the radius. In the Mk. IV case, the elastic bending deflection 
of the uniform beam (elastic Zr) in feet, from any strength-of-materials textbook [102], is 

(2.159)   
42 2 3 4

2 3 4b b
r

flap flap

w w RR R 1 x x xelastic Z r r r
EI 4 6 24 EI 4 6 24

§ ·§ · § ·= − + = − +¨ ¸¨ ¸ ¨ ¸¨ ¸© ¹ © ¹© ¹
 

where (EIflap) is the flapwise bending stiffness in pound-feet squared and (wb) is the running 
weight in pounds per foot. The blade radius (R) is measured in feet, and the nondimensional 
radius (x) is the ratio (r/R). 
 
 The elastic bending depends solely on the beam parameter (wbR4/EIflap) or its 
reciprocal (EIflap/wbR4), which is occasionally encountered in structural dynamic work. Note 
that the beam parameter is not unitless; it has the units of feet. This parameter is a major 
factor in designing a blade free of resonance vibration behavior, as you will learn shortly.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2-75. Cierva C.19 Mk. IV “cantilevered” blades drooped [7]. 

Droop 
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 The beam parameter (wbR4/EIflap) can be estimated first for the C.19 Mk. III, and then 
inferred for the Mk. IV, based on information that Sanders and Rawson [50] and Cierva [11, 
12] have provided. According to Sanders, the Mk. III “main spar is a high tensile steel tube,  
1-3/4 in. diameter by 20 S.W.G.” High tensile steel has an elastic modulus (E) of 29,000,000 
pounds per square inch and weighs about 520 pounds per cubic foot [77]. Sanders gives the 
“tube” outside diameter as 1-3/4 inches. He quotes the wall thickness as “20 S.W.G.,” which 
is British Imperial standard wire gage equating to 0.036 inches [77]. This makes the spar 
inside diameter (ID) equal to 1.678 inches. The spar cross-sectional moment of inertia (Iflap) 
is, therefore, 

(2.160)   ( )4 4 4
flapspar I OD ID 0.07122 inches

64
π= − =  

and so the flapwise stiffness is about 

(2.161)   ( )( ) 2
flap 2

1spar EI 29,000,000 0.07122 14,340 pound feet
12
§ ·= = −¨ ¸
© ¹

. 

Cierva, in his detailed calculations of the C.30A blade including comparisons to bench test 
results [12], finds that the wooden and other parts increase the spar bending stiffness by 
40 percent. Therefore, 

(2.162)   ( ) 2
flapblade EI 1.4 14,340 20,080 pound feet= = − . 

The cross-sectional area of the spar is 0.1938 square inches, so the running spar weight is 

(2.163)   ( )( ) ( )( )2 2
spar 2

1w OD ID density 0.1938 520 0.7 pounds / foot
4 12
π § ·= − = =¨ ¸

© ¹
. 

Cierva [11, 12] states that for the C.30A, the wood and other parts of the blade weigh about 
85 percent of the spar, so 

(2.164)   b sparblade w 1.85 w 1.295 pounds / foot= = . 

On this basis, considering the radius as 17.5 feet, the C.19 Mk. III beam parameter is 

(2.165)   ( )( )44
b

flap

1.295 17.5w RC.19 Mk.III 6.049 feet
EI 20,080

= = . 

 
 Given the beam parameter, the elastic deflection of the C.19 Mk. III blade—without 
the “droop” cable—would be, from Eq. (2.159), on the order of 

(2.166)   
4

b
tip

flap

w R 1elastic Z 0.756 feet 9 inches
EI 8

§ ·§ ·= = =¨ ¸¨ ¸¨ ¸© ¹© ¹
. 

(Actually, because of the vertical component of cable support tension, the elastic deflection is 
only about 5 inches.) 
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 By my estimate, the C.19 Mk. III blade weight, neglecting the “forked” root-end 
extension, lag damper, etc., is on the order of 22.7 pounds. The centrifugal force (Fc) at the 
blade-root end for the Mk. III normal rotor speed of 125 rpm, or 13.1 radians per second, is 
about 

(2.167)   ( ) ( )2 22 2b
C

w1 1 1.295F at root R 17.5 13.1 1,060 pounds
2 g 2 32.174

§ ·= Ω = =¨ ¸
© ¹

. 

This makes the spar tensile stress  

(2.168)   2C
C

spar

F 1,060F stress at root 5, 460 pounds per inch
A 0.1938

= = = . 

 
 Now consider the step from the Mk. III to the Mk. IV. With reduced solidity, the three-
bladed rotor operated at a higher rotor speed of 180 rpm or 18.9 radians per second. Assuming 
no other changes, this higher rotor speed raises the centrifugal force to 2,060 pounds and more 
than doubles the tensile stress due to centrifugal force. It seems most likely to me that Cierva 
would have accepted the higher stress during this 6-month prototype phase. Going to a 
thicker-walled tube does not reduce the centrifugal force stress appreciably because the 
centrifugal force goes up in proportion to area as the preceding equations show. Therefore, he 
would have needed to reduce wood part weight. Brooks [7] provides some evidence that this 
redesign did happen, however, saying: 

“The three blades of the revolutionary new cantilevered rotor, like those of the previously 
cabled-braced type were manufactured at Hamble [England] using techniques developed by 
Avros. They had tubular steel spars at about [the] quarter chord. Initially, light spruce ribs were 
bolted to the spar by steel clips (“scrivits”). There was an ash leading edge member and a 
much lighter spruce strip at the trailing edge. The blades were fabric covered. By late 1931, 
however, Cierva had decided on a solid balsa wood fairing to the tubular spar with a spruce 
core, the whole assembly being covered with fabric. This type of blade remained in use until 
the introduction of the C.30 direct control Autogiro which reverted to built-up blades with 
spruce ribs and plywood covering.” 

Brooks’ recounting leads me to believe that Cierva made only minor modifications to MK. III 
blades for the prototype Mk. IV, namely reducing the radius from 17.5 feet to 17 feet. 
Accepting this view means that the Mk. IV had a beam parameter of about 

(2.169)   ( )( )44
b

flap

1.295 17.0w RC.19 Mk.IV 5.386 feet
EI 20,080

= = . 

 
 The rotor blade parameter can also be established for both the Cierva C.30 and the 
Hafner A.R. III. As Brooks notes above, the next Cierva production Autogiro was the C.30A, 
and the blade for this Autogiro followed the built-up design he used on the C.19 Mk. III. 
Cierva provides quite detailed technical data about the C.30A blade in his Theory of Stresses 
on Autogiro Rotor Blades [12]. Measurements of blade flapwise stiffness and mass were made 
and recorded. Using the Cierva data, the blade flapwise stiffness (EIflap) is 3,650,000 pound-
inches squared, and the blade weight per inch is based on 41 pounds for a 222-inch radius or 
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0.1847 pounds per inch (2.216 pounds per foot). Therefore, with great confidence you can 
determine the C.30 had a rotor blade parameter, (2.170), of about 

(2.170)   ( )( )44
b

2
flap

2.216 18.5w RC.30A 10.241 feet
EI 3,650,000 /12

= = . 

An estimate of the Hafner A.R. III blade parameter is obtained from the blade-tip droop, seen 
quite pronounced in Fig. 2-38. From this figure, the droop stop measures about –10 degrees 
and the rigid blade deflection is 33 inches. I measured the elastic tip deflection as 
approximately 23 inches giving a total tip deflection of some 56 inches. From Eq. (2.159), the 
maximum elastic droop is a direct measure of the blade parameter. That is, since 

(2.171)   
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b
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w R 1elastic Z
EI 8
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it follows that, for the Hafner machine,  

(2.172)   ( ) ( )
4

b
tip

flap

w RA.R. III 8 elastic Z 8 23 /12 15.333 feet
EI

= = = . 

Earlier calculations leading to a centrifugal force of 3,400 pounds at 270 rpm rotor speed (see 
footnote, page 90) gave the Hafner blade a running mass of 0.03158 slugs per foot, which is 
1.016 pounds per foot. With a radius of 16.405 feet, the blade flapwise bending stiffness 
(EIflap) was probably on the order of 4,800 pound-feet squared or 691,100 pound-inches 
squared. 
 
2.9.2 Vibration Frequencies 
 
 Given this background about rotor blade structural parameters, let me proceed to the 
very important subject of vibrating beams. This subject bears directly on vibratory loads and 
the shaking forces transmitted through the airframe to the pilot or other occupants and even to 
critical components of the machine, such as instruments.  
 
 A rotor blade vibrates just like any structural beam. Imagine a blade hanging by its 
flapping hinge. If the blade is “plucked” or hit with a mallet, it responds by vibrating in 
several shapes, some of which are clearly visible. Each shape has an associated frequency. 
The shapes are called normal modes of vibration. Simply shaking one end of a telephone cord 
can reproduce a good example of this vibration and the associated normal modes. The first 
mode of the telephone cord is simply a straight line from the telephone to your hand. When 
you move your end up and down very, very, slowly, the cord will remain a straight line. The 
second mode will appear if you shake the cord rather slowly. At just the right rate of up and 
down motion, the cord will vibrate between a concaved shape on the low side and a convexed 
shape on the high side. If you look at the telephone cord from the side, it appears just like a 
jump rope being turned by two children, one at each end. If you shake the telephone cord 
much faster, it will appear to divide itself into two jumping ropes with the middle standing 
quite still. This is the third mode. In the telephone cord examples, the shaking you have 



2.9  BLADES 

 155

selected is an up-and-down motion having the natural frequency (cycles per second) of a very 
limber “beam.” When a rotor blade is struck, all normal modes respond, but it takes special 
sensors to record detailed data that you see so clearly with a telephone cord. 
 
 If the rotating rotor blade is forced to vibrate by an airload, then the responding 
vibratory shape is dictated, in part, by the airload distribution along the rotor radius. All 
natural mode shapes will be excited, though not in equal proportions. The proportion each 
mode contributes depends on the airload frequency and amplitude.  
 
 A crucial rotor blade design question arises when the blade has a natural mode 
frequency (ωM), in radians per second, that corresponds to an airload forcing frequency. 
Airloads are powerful forces, but, in simple cases, they act at integers of rotor speed. That is, 
airloads are periodic (harmonic) forces which load the blade at once per revolution, twice per 
revolution, and so on. An example of this type of harmonic airload is a blade element of lift 
(dLr,ψ) written as 

(2.173)   r, o 1S 1C 2S 2C 3SdL L L sin L cos L sin 2 L cos 2 L sin 3 etc.ψ = + ψ + ψ + ψ + ψ + ψ +  

where rotor azimuth (ψ) is in radians and, you will recall, is equal to rotor speed (Ω) in 
radians per second times time (t) in seconds. Should the blade have a mode frequency (ωM) 
equal to any integer (n = 1, 2, 3, etc.) times rotor speed (i.e., nΩ), then the airload will shake 
the blade at the blade’s natural frequency. This, of course, is the case of resonance, which 
must be avoided since it can lead to excessive vibratory blade bending and premature blade 
failure due to fatigue if there is little or no damping.33  
 
 The calculation of rotor blade frequencies and mode shapes is quite simple in two 
specific cases. The first case corresponds to the situation where the blade is not rotating  
(Ω = 0). The second case corresponds to the situation where the blade is rotating but has no 
flapwise stiffness (EIflap = 0). This second case is, in effect, just a rotating chain. 
Unfortunately, from the point of view of a theoretician, real rotor blades fall between these 
two extremes. As you might assume, Cierva, in his Theory of Stresses on Autogiro Rotor 
Blades[12], gives an engineering equation to calculate the natural frequency of the most 
critical flapwise mode. This critical mode is the second mode of a flapping hinged, rotating 
blade, because it falls, for practical blades, above 2.5 per rev and below 3.5 per rev. Thus, in a 
poor design, the second mode might have its natural frequency right on 3 per rev giving a 
chance for resonance. The equation Cierva derived, using beam theory of the day, is 
 

(2.174)   flap
2 4 2

b

EI
6.4 373

m R
ω = Ω +

Ω
. 

                                                 
33 I feel certain that Cierva, with his structural engineering background, was quite knowledgeable about 
vibrating beams and fatigue failure. My reference [103], which dates back to 1928, deals with the subject as part 
of vibrations of elastic bodies. Unfortunately, a centrifugally loaded beam, with one end pinned and the other 
free, does not have a simple solution in elementary functions such as sine, cosine, or any hyperbolic functions as 
do the classic beam problems discussed in textbooks. 
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You should immediately notice in Eq. (2.174) that the rotating blade natural frequency 
depends on the same beam properties as the nonrotating elastic deflection or droop.  
 
 All flapwise frequencies of uniform beams hinged at one end and free at the other end, 
such as early autogyro blades with zero or near-zero flapping hinge offset, can be estimated 
quite closely with Eq. (2.175).34 Modes are numbered from M = 1 to however high you want 
to go, but most studies stop at M = 5. The first mode, M = 1, is called the rigid-body mode, 
which has a natural frequency of rotor speed (i.e., ω1 = Ω). In the first mode, the blade 
vibrates without any bending and simply flaps up and down as a rigid blade. Rigid blade 
flapping motion is completely determined by damping provided by the airloads. This is the 
only mode that acts this way. All higher modes (M = 2, 3, 4, etc.) have elastic bending. 
Equation (2.175) can be used to calculate the natural frequency of each mode. 

(2.175)   
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 Again, notice in Eq. (2.175) that the rotating blade mode frequencies depend on the 
same beam properties as the nonrotating elastic deflection or droop. This very important fact 
means that the blade frequency parameter [(mbR4/EIflap)Ω2] is related to the beam parameter 
(wbR4/EIflap) as 

(2.176)   
4 42

2b b

flap flap

m R w R
EI g EI
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© ¹
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Because rotor speed (Ω) is in radians per second and the gravity constant (g) equals 32.174 
feet-per-second squared, the blade frequency parameter has no units. Furthermore, 
[ ( )4 2

b flap Mm R EI ω ] also has no units because the natural frequency (ωM) is in radians per 
second. 
 
 The natural frequency in the two limiting cases, (Ω = 0 and EIflap = 0), are directly 
given by Eq. (2.175). They are 

(2.177)   ( )
4

flap2
M 4

b

EI
4M 3 for 0 (a nonrotating blade)

4 m R
§ ·πª ºω = − Ω =¨ ¸« »¬ ¼ © ¹

 

                                                 
34 I created this frequency approximation for flapping hinged blades in the mid-1970s after being inspired by the 
Dave Peters frequency approximation for a rotating beam cantilevered at the root [104]. 
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and 
 
(2.178)   ( )2 2

M flapM 2M 1 for EI 0 (a chain)ω = − Ω = . 

 Given the several blade structural properties and the ability to estimate the natural 
frequency of a blade from Eq. (2.175), it is helpful to summarize the information about the 
four autogyro blades under discussion. Table 2-6 shows the progress made by the autogyro 
pioneers developing blades. This autogyro blade property summary shows that as solidity was 
reduced, tip speed increased. Blade static elastic deflection, or droop, increased, and no 
natural frequency ratio was exactly at an integer of rotor speed, although several are too close 
by modern standards. That is, the frequency ratio (ωM/Ω) does not exactly equal 1, 2, 3, 4, 5, 
etc. Remember, the airloads are periodic as Eq. (2.173) suggests, and if an airload harmonic, 
say L3S sin 3ψ, is large (which it is as you will see shortly), then the blade having a natural 
frequency ratio of 3 will experience excessive bending, perhaps to the point of early fatigue 
failure.  
 
 There is, of course, an additional concern. As you learned from the discussion about 
stick shake with the three-bladed Kellett autogyro (recall Fig. 2-30 and Fig. 2-31), a three-
bladed rotor passes 3-per-revolution vertical vibration to the airframe. Therefore, 
amplification of 3-per-revolution airloads (because the blade has a natural frequency ratio too 
close to 3) will mean the airframe is subjected to just that much higher vibratory loads. A very 
important frequency ratio trend from Table 2-6 is, in fact, the second mode (i.e., M = 2 or the 
first elastic mode) dropping from comfortably above 3 times rotor speed (ω2/Ω > 3) to 
uncomfortably close to 3 per rev to reasonably below 3 per rev.35  
 
 The blade natural frequencies (ωM) or frequency ratios (ωM/Ω) can be presented 
graphically. I prefer the frequency ratio (ωM/Ω) form, which is shown in Fig. 2-76.36 Equation 
(2.175), for uniform beams, gives the lines in this figure, and the data points are from  
Table 2-6. For the sake of completeness, Cierva’s recommended frequency from Eq. (2.174) is 
also shown. When a specific configuration is selected, say the Cierva C.30A, I prefer plotting 
the frequency ratio versus rotor speed, in revolutions per minute, to an expanded scale as 
shown in Fig. 2-77.  

                                                 
35 Rotorcraft engineers rarely say “3 per revolution” or “3 times rotor speed.” They use the shorthand “3 per rev” 
or “N per rev” or write “N/rev” because so many conversations deal with vibration and vibratory loads. 
Everyone “just knows” that the blade airloads—in most cases—are harmonic integers of rotor speed, and so the 
most asked structural dynamic question is, “What part of the aircraft is responding to what airload harmonic, and 
do we have a resonance situation?” 
36 The reason the frequency ratio format appeals to me is because the proximity to an airload integer, particularly 
3 per rev on a three-bladed rotor, is immediately read on an engineering scale.  
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 Fig. 2-77 raises the question about rotor speed operating range. The C.30A, according 
to Cierva’s Theory of Stresses on Autogiro Rotor Blades, was designed for the rotor speed 
range of 180 to 210 revolutions per minute. The higher rotor speed was associated with low-
speed forward flight at altitude; the lower rotor speed was expected during takeoff at sea 
level. Fig. 2-77 shows that the second mode is rather close to 3 per rev (by modern standards) 
while the third mode could easily be exactly at 6 per rev. Since a three-bladed rotor can pass 
6-per-rev vibratory loads (as well as 3-per-rev loads) to the airframe, this high frequency 
vibration might have been noticed by a pilot as a buzz. The third way natural frequencies are 
presented (Fig. 2-78) is the one most often seen in technical material.  

 

Table 2-6. Early Autogyro Blade Properties 
 Model 

Parameter C. 19 Mk. III C.19 Mk. IV C.30A A.R. III 
Year 1929 1931 1933 1936 
Gross Weight (lb) 1,450 1,450 1,800 890 
Number of Blades 4 3 3 3 
Radius (ft) 17.5 17 18.5 16.41 
Chord (in.) 18.6 18.6 (est.) 11 4.9 
Disc Area (sq ft)   962 908 1,075 846 
Solidity  0.1107 0.084 0.0470 0.0237 
Tip Speed (ft/sec) 230 320 407 464 
Rotor Speed (rad/sec) 13.14 18.82 22.00 28.28 
Blade Airfoil Gött. 429 RAF 34 Gött. 606 Sym. 
Running Weight (lb/ft) 1.295 1.295 2.216 1.017 
Flapwise Stiffness (lb-ft2) 20,080 20,080 25,350 4,800 
Running Mass (slug/ft) 0.04025 0.04025 0.06888 0.03161 
Blade Weight (lb) 23 22.342 41.000 16.7 
Centrifugal Force (lb) 1,060 2,060 5,700 3,400 
Weight Moment (ft-lb) 198 187 379 137 
Second Moment of Inertia (slug-ft2) 71.90 65.92 145.37 45.66 
Lock Number (at sea level) 27.5 26.75 10.06 8.83 
wbR4/EIflap (ft)   6.049 5.386 10.241 15.333 
(mbR4/EIflap)Ω2 32.462 59.292 154.057 381.137 
Frequency Ratio Mode 1  ω1/Ω 1.0 1.0 1.0 1.0 
Frequency Ratio Mode 2  ω2/Ω 3.69 3.21 2.79 2.61 
Frequency Ratio Mode 3  ω3/Ω 9.70 7.70 5.77 4.84 
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Fig. 2-76. Rotor blade flapwise natural frequency ratios for a uniform beam. 
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Fig. 2-77. Cierva C.30A blade natural frequency ratios. 
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Fig. 2-78. Cierva C.30A blade natural frequencies. 

 
 
2.9.3 Mode Shapes 
 
 The mode shapes I have mentioned several times are simply graphs of flapwise 
deflection (Zr), divided by radius (R), and normalized to 1.0 at the blade tip. They are plotted 
versus nondimensional radius station (x = r/R). Both of the limiting cases have mode shapes 
calculable from simple equations. The mode shapes for a nonrotating blade (Ω = 0) are 
calculated, using hyperbolic and trigometric sine, as 

(2.179)   ( )
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. 

The mode shapes for the case of a rotating chain (EIflap = 0) are even simpler because they are 
Legendre polynomials (the odd ones), so that for the first several modes 
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Graphs of these two limiting cases are provided in Fig. 2-79 for the second and third modes. 
Autogyro blades, as Fig. 2-80 shows, fall between the two limiting cases. (Appendix G 
provides the methodology I used to calculate these mode shapes and the corresponding 
frequencies given in Table 2-6.) 
 
 The flapwise axis is, of course, not the only axis about which a blade has natural 
frequencies and mode shapes. Both chordwise (i.e., inplane or lead-lag) and torsion axis are, if 
anything, even more important than the flapwise axis. This is because, unlike the flapwise 
modes, these lag modes have next to zero damping to protect the blade from resonance 
response.  
 
 The chordwise natural frequencies are quite dependent on the root-end restraint. 
Cierva, in his Theory [12], provides no frequency equation and only devotes 1 page (out of 
149 main body pages) to this subject. This one page discusses root restraints such as lead-lag 
dampers of various types. He does note that “when plain bearings are used on the drag hinge, 
it is advisable to calculate the additional frictional restraint due to centrifugal force [and] a 
frictional coefficient of 0.15 is recommended.” He does express the view that “in the general 
case, where the superstructure has a very high moment of inertia in the direction considered, 
the bending on the spar will be negligible at all points except at the root and close to it.” This 
statement says that chordwise stiffness (EIchord) contributed by the trailing edge and skin leads 
to a chordwise stiffness about (in my experience) 10 to 20 times the flapwise stiffness. If the 
blade lead-lag hinge is similar to the flapwise hinge, and there is no lag damper, the chordwise 
natural frequencies of each mode can be estimated to the first order with 
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 The chordwise mode shapes, in this fundamental pinned-free, no-damper beam case, 
are quite similar to the flapwise mode shapes. Designing a blade so that chordwise frequency 
placement is between integers of rotor speed is not easy. Many a rotorcraft has experienced 
broken trailing edges. Unfortunately, the total subject is beyond the scope of this volume.  
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Fig. 2-79. Mode shapes two and three for nonrotating beam and rotating chain. 
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Fig. 2-80. Autogyro blade second mode shape is closer to nonrotating beam.  
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 The torsion natural frequencies are also dependent on the root restraint. The direct 
control rotor systems that Cierva, Pitcairn, and Kellett pioneered used a very rigid fixing of 
the blade root to maintain blade collective pitch. On the other hand, when Hafner and Kellett 
introduced the swashplate, the blade root was, in effect, connected by a reasonably stiff 
spring, but a spring nonetheless. For example, the Hafner A.R. III (Fig. 2-39) spider arms 
were hardly a rigid connection for a blade’s pitch arm.  
 
 The fascinating thing about the torsional vibratory modes is that the first mode, 
assuming the root is not restrained, has a natural frequency of 1 per rev, and there is no elastic 
twisting from blade root to tip. Because this is a resonance condition (ω1 = Ω), the blade can 
be oscillated about its torsion axis with zero force. In the Hafner spider design, the spider 
arms are just gently guiding the blade to feather at once per revolution. Hafner recognized this 
fact and designed the control system for just the loads required to twist the torsion rod. The 
fact that cyclic pitch, in and of itself, creates no control system loads is quite remarkable—and 
rotorcraft have no size restraint in this regard. Of course, both flapwise and chordwise 
deflections can—and do—affect torsion natural frequencies because of the coupling. 
However, for the uncoupled case with a rigid root condition, the natural frequencies are found 
from 

(2.182)   ( )
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where the blade element torsional stiffness (GJ) is in pound-feet squared per radian per foot of 
blade, the second moment of inertia (Iθ) is in slug-feet squared per foot of blade, and the 
torsion natural frequency (ωM) is in radians per second as is rotor speed (Ω).  
 
 In Eq. (2.182), the second term is the nonrotating blade torsional natural frequency. 
This frequency is classically obtained by assuming mode shapes of the form 

(2.183)   ( )x
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where the blade radial station (x) equals (r/R), and the elastic twist (θx) is normalized to one 
unit of the tip torsional deflection (θtip).  
 
 Cierva, in analyzing the torsion axis [12], derives the first mode nonrotating frequency 
by summing potential energy with kinetic energy. He calculates both energies assuming an 
approximate first mode shape of 

(2.184)   x
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rather than the more rigorous sin(πx/2). This gives him the first torsion mode natural 
frequency as 
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Cierva analyzed four causes of elastic twisting and was satisfied that elastic twisting would be 
governed by 1-per-rev and 2-per-rev loads, and “so, if the blade has a natural frequency of 
oscillation in torsion not less than 3 or 4 per revolution, dynamic effects can be neglected.” 
He then sets an “arbitrary” design criteria for the lowest torsion mode frequency as 
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This criteria means that at the maximum rotor speed (Ωmax), the first mode rotating frequency 
divided by rotor speed would be at least 10 =3.16 per rev, and at lower rotor speeds the 
frequency ratio would, of course, be higher. 
 
 Cierva uses the C.30A blade as a numerical example of the torsion natural frequency 
calculation. He found, for example, that the “wooden superstructure” increased the spar-tube-
alone torsional stiffness by 1.25 or 25 percent. That is, his bench tests show the 18.5-foot-long 
blade had a blade element torsional stiffness of 2,700,000 pound-inches squared (18,750 
pound-feet squared). He calculates the spar torsional stiffness using a “chrome-nickel steel” 
modulus (G) of 12,000,000 pounds per square inch and a polar moment of inertia (J) of 0.18 
inch4, which gives a spar-alone torsional stiffness of 2,160,000 pound-inches squared. Cierva 
recommends that the second moment of inertia (Iθ) be calculated for the total blade as  
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The C.30A dimensions he gives are that the “tube” (the spar) is 1.5 inches in diameter, the 
spar weight is 21.1 pounds, the “wooden superstructure” weighs 17.9 pounds, and the blade 
chord is 11 inches. With these properties, he calculates that  
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which gives, on a per-foot basis, a second moment of inertia (Iθ) of 0.00393.  
 
 With respect to rotor speed, Cierva designed the C.30A for a “maximum” rotor speed 
of 294 revolutions or 30.8 radians per second. Based on the preceding data and the design 
maximum rotor speed versus his criteria, he calculates that 
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which shows the C.30A blade having a satisfactory and significant torsional natural frequency 
margin.  
 
 It is worth noting that the engineering approach Cierva took was conservative. Had he 
used the classic frequency solution, the 3/2 in Eq. (2.189) would change to π2/4 = 2.47 and 
rather than 145, he would have arrived at 185. Through my study and use of two Cierva 
design manuals [11, 12] I found many more conservative engineering approximations. 
 
2.9.4 Bending Moments and Stresses 
 
 The design of rotor blades is, of course, not complete by achieving nonresonance 
frequency placement. The real criterion is “Thou shall not break.”  This criteria means 
designing to calculated blade bending moments and forces and, most importantly, stresses. 
Cierva, in Part VIII of his Engineering Theory [11]37, devotes 25 pages and several figures to 
“Stresses on the Rotor Blade.” This 1929 design manual addresses every component in the 
blade and a number of design conditions, such as on ground, during landing, when the rotor 
brake is applied, and, of course, in normal flight. Cierva writes, for example, that  

“a load factor of 6 on the combined centrifugal tension and torsion at the root, in normal flight 
at sea level, should be sufficient, in my opinion, for machines with ceilings less than 22,000 
feet, the worst possible case being an increase of 50% on the speed of rotation at the ceiling, 
which means an increase in centrifugal force of about 400% while torsion will only increase 
125%, leaving still a factor of safety greater than 1.25. 

 These stresses are taken exclusively by the central spar of the blade, but combined 
forces along the blade can be distributed between the spar and the covering, especially when 
the blades are covered by metal, plywood or timber planking. 

 In any case, a load factor of 6 on whichever normal flight case is worse, should cover 
any momentary increase in load and the fatigue due to periodical changes in the bending.” 

 
 As might be expected, this first-ever rotor blade loads and stress analysis includes 
many “rules of thumb.” Cierva just simply lacked blade airloads and the blade response that 
airloads create. His second volume, Theory of Stresses on Autogiro Rotor Blades, was, I will 
guess, first printed sometime in 1934. It was more polished than the first volume and stood on 
a less empirical foundation. This second volume was much more than a theory of stresses; in 
my opinion it was closer to being a very comprehensive design manual. This later volume 
includes four appendices of quite noteworthy engineering information.  
 
 

                                                 
37 Several figures in this first volume are dated November 1929 and signed by Cierva. 
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Fig. 2-81. The first blade flapwise bending stresses were measured on the Pitcairn  

PAA-1 in January 1931 [photo courtesy of NASA Images]. 
 
 The first appendix contains measured “extensometer”38 data giving “alternating fiber 
stresses on the upper fiber of the tubular spar, the known centrifugal stress having been 
deducted in every case.” The Pitcairn Autogiro Company of America obtained this data, at 
four radius stations, during a series of tests in January 1931. Cierva notes that “special 
recording extensometers weighing only a few ounces were designed and supplied by Mr. A.V. 
de Forest and under his guidance a series of flights were done.” Brooks [7] records that the 
test, along with bench fatigue tests, were done “to obtain useful information as to the proper 
and safe location of spot welds on Autogiro rotor blade spars.” The test aircraft was the 
Pitcairn PAA-1, shown in Fig. 2-81. 
 
 The first appendix gives the PAA-1 test weight as 1,550 pounds, the radius as 
18.5 feet, the chord as 18.6 inches, the airfoil as the Göttingen 429, the rotor speed as 
145 revolutions per second, the airspeed as 90 to 95 miles per hour, the altitude as sea level, 
and the probable in-flight blade pitch at the tip as 4 degrees. From the measured flapwise 
bending stress waveforms, Cierva tabulates the maximum and minimum stresses (in pounds 
per square inch and with the stress due to centrifugal force removed) from two flights. Cierva 
concludes the first appendix to his Theory of Stresses on Autogiro Rotor Blades by providing 
blade property data, writing that  

 “The weight of each blade, uniformly distributed, was of approximately 40 lbs. But a 
friction damper of 3.2 lbs. weight, was attached at about 0.45 of the radius. The tubular spar of 
1.75 inch outside diameter, high properties steel, had a moment of inertia, in a normal section, 
equal to 0.11046 inches4 [Iflap]. The effect of the superstructure, partially three-ply wood and 

                                                 
38 The extensometer came before the strain gage [105]. The strain movement was mechanically amplified and a 
scribe scratched a metal plate. The result was similar to an oscillograph trace or, in the case of the Pitcairn  
PAA-1, the flapwise bending stress waveform. 
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fabric, was to increase the rigidity [EIflap] of the tube alone by about 20%. Fig. 8 represents 
graphically the distribution of upper fiber stresses along the radius, corresponding to the 
relative maximums given before.  

 An application of the theory to this blade and comparison with the above 
[experimental] results is given in Appendix II.” 

 
 The figure 8 Cierva refers to is reproduced here as Fig. 2-82, with measurements 
tabulated in Table 2-7. The data is for an advance ratio of 0.5. I believe this figure is the first 
graph of experimental flap bending stresses the rotorcraft industry ever saw. Finally, Cierva 
had some stress data at the outermost fiber of the spar. The figure shows that stress at the  
1/3-radius station, not counting stress due to centrifugal force, varied between “compression 
of +23,000 lbs/inch2  [blade-tip bent up] and tension of –7,500 lbs/inch2 during a rotor 
revolution.”  
 

Table 2-7. Blade Flap Bending Stresses Measured on the PAA-1 
Flight Radius Maximum Minimum 

1 0.333R 22,650 –6,750 
 0.491R 20,600 –8,700 
 0.724R 14,800 –8,100 
 0.875R 5,300 –2,700 
2 0.491R 25,500 –13,600 
 0.724R 17,650 –10,950 
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Fig. 2-82. Blade flap bending stresses measured on the PAA-1 [12].  
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 In the second appendix, Cierva compares his flap bending theory with the test data 
obtained with the PAA-1 from the first appendix. He begins with the blade properties, which I 
have converted to the convention used in this discussion, as   

( )( )

( )( ) ( )

2 2
flap

b

4
2b

flap

EI 1.2 29,000,000 0.11046 3,850,000 lb / in 27,740lb / ft

40 145m 0.0672 slug / ft 2 15.18 rad / sec
32.174 18.5 60

m R 65.42
EI

= = =

= = Ω = π =

Ω =

. 

With these parameters at hand, Cierva calculates the spanwise distribution of maximum and 
minimum stresses for a worst-case condition and for “normal” conditions. From these two 
cases, he defines the design to “values to be taken for fatigue stressing, in accordance with the 
theory, [which] are the averages between the worse case and normal values.” He tabulates and 
graphs the results, and I have included his figure here as Fig. 2-83. By mid-1931, Cierva is 
satisfied that his theory of 1929 gives him design methodology to calculate fatigue stresses 
that are “in excess of the real ones [test data], proving that the assumptions made are on the 
safe side.” 
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Fig. 2-83. PAA-1 test data fell below the flapwise stress parameters of the 

Cierva theory of design [12].  
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 Cierva clearly shows that he is well aware of the fatigue loading that his “design to” 
stresses imply. In the body of Theory of Stresses on Autogiro Rotor Blades, he gives the 
equations for steady and alternating stress, written here in modern notation, as 

(2.190)   

max min

max min

S SSteady stress
2
S SAlternating stress

2

+=

−=
. 

Furthermore, he closes the second appendix with a brief discussion of the “Periodicity of 
Bending Moment.” An enlarged photograph of one of the extensometer records is provided 
for the 0.333R radius station. The data was recorded in smooth air, normal flying conditions. 
Cierva then does a Fourier analysis out to 3 per rev, compares it to what he has calculated for 
0.4R, and concludes that “the resemblance is marked.”  
 
 The third appendix included in the Theory of Stresses on Autogiro Rotor Blades is 
titled “On Fatigue Stresses of Steel.” From two German papers published in 1931–1932, 
Cierva concludes that for the proportions of steady and alternating stresses on his blade, the 
allowable alternating stress for his chrome-nickel steel spar should be no higher than one-third 
of the static ultimate tensile stress of the material. For chrome-nickel steel, this static stress 
can range from 100,000 to 150,000 pounds per square inch [77]. The specific value depends 
on proportions of ingredients used to produce the steel and the surface finish. Cierva used 
145,000 pounds per square inch, which means that alternating stresses below ±50,000 pounds 
per square inch would indicate a reasonable design. Fig. 2-83 clearly shows that Cierva 
evaluated the PAA-1 blades as satisfactory because the highest alternating stress was about 
±26,000 pounds per square inch.  
 
 In the fourth and last appendix, Cierva provides a step-by-step analysis of the C.30A 
blade. By any standard, the 22 pages of calculations and tables, plus 8 figures, are quite 
thorough. The summation of all stresses in combination, then multiplied by four additional 
safety factors, gives a maximum critical fiber ultimate stress (at the 0.2R radius station) of 
158,000 pounds per square inch for a short portion of the blade. This calculated absolute total 
stress exceeded the 145,000 pounds per square inch he felt comfortable with. Cierva, while 
accepting the C.30A blade, says that “it is recommended to lengthen the tapered part of the 
spar to about 0.25R (for similar blades) which, as can readily be appreciated in figure 8, 
would result in an almost uniform distribution of stresses over the first quarter of the tube 
[length].”  
 
 With all the preceding background, you might now be wondering how to calculate 
loads and stresses for a rotor blade in flight. The flapwise bending moment calculation 
requires solving the problem presented in Fig. 2-84. The equation to solve is simply: 
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(2.191)   ( ) ( ) ( ) ( ) ( ) ( )R R R

r,t ,t ,t r,t ,t ,tr r r
Flapwise M r d L Z Z d CF r d Iη η η η= η − − − − η −³ ³ ³ . 

 
 Equation (2.191), born when propellers burst on the scene, has occupied rotorcraft 
engineers for at least seven decades. I have absolutely no doubt that 1,000 man-decades, if not 
more, have been spent in obtaining, slowly but surely, increasingly accurate approximate 
solutions to this equation. The equation does not look too formidable until you insert the 
definitions of blade element lift (dL), centrifugal force (dCF) and inertia (dI). Then you begin 
to see the impending complexities because 
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This is a differential-integral equation, which uses the dummy variable, η. 
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Fig. 2-84. Flapwise forces and bending moment on a rotating rotor blade. 
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 You can see from Fig. 2-84 and Eq. (2.192) that the flapwise bending moment at any 
radius station (r) depends on the sum of all moments outboard of the station you are interested 
in. Furthermore, this moment (FMr,t) depends on the deflected shape (Zr,t) of the blade whose 
value varies with both radius and time, which introduces the centrifugal stiffening in the 
second integral of this classic equation. On top of this, a third integral is included that 
accounts for the inertial loads due to acceleration. If that were not bad enough, the solution 
depends on airloads, which, you can see, also depend on knowing the deflection of the blade. 
 
 I often wonder if Cierva had this bending moment figure and equation in front of him 
when he was conceiving, designing, building, and trying to get his first Autogiro (Fig. 2-85) 
off the ground.  
 
 Cierva did not stop to solve Eq. (2.192) while designing his blades. In fact, I do not 
think that he even bothered to try. The only thing he wanted from the formidable flapwise 
bending moment problem was the critical fatigue stresses the blade would be subjected to. He 
knew that the blade would flex during a revolution and, at some point in the revolution, the 
blade would be bent, tip up, a maximum. Then, somewhere else in the revolution, the blade 
would be bent, tip down, a maximum. Therefore, for his purposes, Equation (2.192) only 
needed to be solved for the peak values of moment. From the positive and negative peak 
moments, he could calculate steady and alternating stresses according to Eq. (2.190).  
 
 

 
 

Fig. 2-85. The Cierva C.1, his earliest full-size experimental machine [3, 106]. 
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 The details of the Cierva engineering solution for flap moments became available to 
close associates when his Theory of Stresses on Autogiro Rotor Blades was printed. Cierva 
then shared his approach to using Eq. (2.192) with a larger audience when he gave a third 
lecture before the Royal Aeronautical Society on Friday, March 15, 1935. A much larger 
group was able to read about his approach in the published paper [5]. This paper gives real 
insight into Autogiro development. After discussing the Aerodynamical Progress, he goes on 
to Dynamical Problems, beginning with: 

 “Perhaps the most irritating of the secondary difficulties met with in the autogiro 
developments have been those of a dynamical nature. The dis-symmetry of speeds on both 
sides of the rotor produces periodical variation in the lift and drag and in lift and drag moments 
on each blade. The articulations which allow the blades to flap, correct the dis-symmetry of the 
lift moments as far as their average value at any rate, and an equivalent reason makes 
practically essential a second articulation which permits the blades a certain freedom in their 
relative angular distances from each other. But, while the flapping motions are strongly 
damped by the variations in lift they entail, there is no appreciable damping in the horizontal 
oscillations, and this can produce important resonant phenomena and unpleasant free 
oscillations of relatively large amplitude following any impulsion – a bump for instance.” 

He adds more detail about what is today called ground and air resonance, and he notes that lag 
damping between each blade and the hub is a better solution than blade-to-blade interbracing 
or blade-to-blade damper connections with cables. 
 
 In the next section of the paper, The Engineering Technique, Cierva begins discussing 
the flap bending problem. He writes that  

“considerable progress has been made in the knowledge of the strength requirements of the 
blades. Their proper study involves what for a long time appeared to be insurmountable 
difficulties. The tensile stresses due to centrifugal force can, of course, be very easily 
estimated, and the torsional stresses (if proper precautions to avoid torsional resonances are 
taken) can be minimised to the point where they can be neglected, but secondary bending 
moments of a periodic nature are present in the vertical [flapwise] plane.”  

After several more background paragraphs, he begins describing his approach to “bending 
moments in the vertical plane.” (I have included all that he wrote.) 

 “An analysis of the influence of the several parameters affecting the bending 
moments permits to determine the maximum values which any extreme maneuvers is likely to 
produce. That extreme maneuver is assumed to be similar to the one which would suddenly 
increase the incidence of the wing of an aeroplane to the angle corresponding to the maximum 
lift coefficient.  

 Once the bending moments are calculated on the assumption that the blade is 
absolutely rigid, the differential equation representing the deflected shape of the blade axis can 
be established, if the elastic characteristics of the blade are given. If that equation could be 
integrated, the radius of curvature at any point could be calculated, and from it the true bending 
moment. Unfortunately this is not the case, and I have been obliged to devise an approximate 
method consisting in integrating the differential equation on the assumption that the blade is 
perfectly flexible by making the product of the moment of inertia of the section by the 
elongation coefficient, or I × E, equal to zero. The equation is immediately integrable and the 
radius of curvature of the perfectly flexible blade can be calculated. Multiplying it by the I × E 
product, an auxiliary bending moment is found. Calling it BMf, and the bending moment for 
the same point of the blade assumed perfectly rigid BMr, it can be shown that the expression 
BMr BMf /(BMf+BMr) graphically represented in Fig. 4 gives a very close approximation to 
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the true bending moment, particularly for its maximum values. The magnification 
[amplification] factor due to dynamic effects can be calculated by estimating the period of free 
oscillation of the blade when deflected in the approximate shape it adopts under the action of 
the bending moments, the aerodynamical damping introduced and, finally, by expanding the 
periodical bending moment, with time as the independent variable, into a Fourier series. The 
magnification factor corresponding to the amplitude of each harmonic can then be immediately 
calculated and also the difference of phase of the forced oscillation in that harmonic. 

 A graphical summation of the harmonics of the forced vibration gives a representation 
of the final bending moments, and the ratios of the positive and negative maximums to those 
calculated in the static assumption are the corresponding magnification factors. 
 
 This process is of course exceedingly elaborate, and a number of simplifying 
assumptions have to be made which are not of a nature that could substantially alter the results. 
Of particular difficulty is the calculation of the harmonics of the periodic bending moment 
with any degree of accuracy, since the third and even fourth harmonics are of importance but 
this can he done at least in the case corresponding to maximum stresses under the limiting 
maneuvers mentioned. 
 
 The most interesting conclusions of this study are that maximum bending stresses are 
almost independent of the weight of the machine, being a definite characteristic of each design 
of blade, and that they are also almost independent of the moment of inertia of the blade spar. 
 
 Measures in flight by means of extra light extensometers made by M. de Forest 
especially for the Autogiro Company of America, have substantially confirmed the conclusions 
of my theoretical analysis.”  

 
These several paragraphs from the 1935 Cierva paper do not do justice to the nearly 
100 pages of assumptions, inferences, simplifications, logic paths, and equations documented 
in his Theory of Stresses on Autogiro Rotor Blades. His solution technique follows the 
Rayleigh–Ritz method, better known to some as the energy method.  
 
2.9.5 C.30A Flapwise Bending Analysis 
 
 As fascinating as the Cierva method of calculating flapwise bending moments is,39 it is 
even more interesting to compare the results of modern day methods to the C.30A results 
Cierva gives in the fourth appendix of his Theory of Stresses on Autogiro Rotor Blades. (This 
will take several pages!)  
 
 The first step Cierva took to predicting the flapwise bending stresses of the C.30A 
blade, shown in Fig. 2-86 (and which includes a modern theory result I will discuss shortly), 
was to define the operating condition. Cierva was a pilot; in fact, he was one of a very small 
group of autogyro test pilots. Therefore, he selected an operating condition well outside of the 
normal flight envelope. He first established the rotor speed (Ω) and advance ratio (µ) design 
condition for the one point where he was going to do the calculations. (He was not joking 
                                                 
39 Reading, interpreting, and understanding Cierva’s work was slow going. First off, I had to translate his 
symbols to those that I have grown up with. For example, he uses Ω for tip speed. On the plus side, his slide rule 
was quite accurate. Most fascinating was his ability to accurately infer loads (both radially and azimuthally) from 
very fundamental equations; but his logic was difficult—very difficult at times—to follow. Even today, I do not 
think I could fully explain his application of Lord Rayleigh’s methodology. 
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when he said in his lecture that the “process is of course exceedingly elaborate.”) He 
determines first that, for a collective pitch of 6.25 degrees, the low rotor speed would be 
19.6 radians per second at a light weight of 1,500 pounds and 110 miles per hour at sea level, 
which is an advance ratio of 0.445. The high rotor speed at a weight of 1,800 pounds (at sea 
level with the same collective pitch) and “in turns or pull ups was obtained before as equal to 
30.8 [radians per second].” From figures relating bending moment amplification in terms of 
damping coefficient (ρcR/mb) and the blade frequency parameter, he concludes that the design 
point should be 

(2.193)   
2 4

b

flap

m R 0.004
EI
Ω =  

which, he assumes, is representative of a worst case. Since the flapwise stiffness (EIflap) of the 
C.30A blade is 25,350 pound-feet squared, and the running mass (mb) is 0.06888 slugs per 
foot, the rotor speed derived from Eq. (2.193) is 28 radians per second. This is a tip speed (Vt) 
of 518 feet per second making the advance ratio, at 110 miles per hour, equal to 0.311. The 
Cierva design tables and figures go out to an advance ratio of 0.5 and beyond, so he selects 
the worst case as µ = 0.5. This becomes the design point he uses as the example in his fourth 
appendix.  
 
 The design advance ratio of 0.5 at a design tip speed of 518 feet per second implies a 
design flight speed of 176 miles per hour. This speed could only be reached in a dive. How 
many “g’s” might be pulled during the recovery from this dive is open to question. However, 
an estimate of the ratio of rotor thrust coefficient to solidity (i.e., the blade loading constant, 
CT/σ) at the onset of retreating blade stall is40  
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Cierva chose the Göttingen 429 with an airfoil maximum lift coefficient of 1.40, so for a 0.5 
advance ratio, the blade loading coefficient (CT/σ) at stall onset is 0.0626. The rotor thrust is, 
therefore, at least  

(2.195)   
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which gives a load factor of 1.35 g. This is a very mild pull-out from a dive at the weight of 
1,500 pounds and does not compare to the 2- or 3-g pull-outs modern rotorcraft can be 
subjected to and are designed for. 

                                                 
40 Eq. (2.194) is an update to the low advance ratio expression I included in a 1987 paper [107]. 
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Fig. 2-86. Estimated C.30A blade flapwise bending stresses at µ = 0.5 [12]. 

 
 Now with the design condition selected, consider a modern day theory solution of 
Eq. (2.192) leading to the prediction included in Fig. 2-86. Since the bending is known to be 
periodic (i.e., harmonic), Eq. (2.192) can be rewritten in terms of azimuth with the 

substitutions 2
2 2

1 1t or
dt d

ψ = Ω = Ω
ψ

 to give  
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Solving this equation requires some reasonable estimate of the running airload (dLη, t/dη). It 
is, of course, simple enough to write the blade element statement that 

(2.197)   , 2
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and then say the blade has uniform running mass (mb), the blade has constant chord (c), the 
blade element velocity (Vη,ψ) is approximately Ω η + VFPsinψ, and finally to invoke linear 
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aerodynamics where the airfoil lift coefficient (Clη,ψ) equals the lift-curve slope (a) times the 
blade element angle of attack (αη,ψ). These assumptions do simplify the problem somewhat 
because now you have the problem stated as  

(2.198)  
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No further significant progress can be made without some reasonable estimate of the blade 
element angle of attack.  
 
 The classic expression for the blade element angle of attack (available for decades) is 
derived in several rotorcraft technology reports [75] and reference books [70], so you can 
write immediately that 
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The increase in the complexity of the flap bending problem should be all too clear now. The 
angle of attack, which gives the airload that the blade responds to with deflection (Z), depends 
on the rate of deflection (Ω ∂Zη,ψ/∂ψ = ∂Zη,ψ/∂t) and the slope of the bending blade 
(∂Zη,ψ/∂η). Furthermore, the blade pitch angle (θη,ψ) has its own elastic response, which 
means the solution of the real problem requires solving a blade torsion equation at the same 
time blade bending is being calculated. On top of this growing list of inner dependence (i.e., 
coupling) between airload and deflection, lies the fact that the velocity induced on the blade 
element (vη,ψ) by the trailing wake of the lifting rotor is not constant. No wonder Cierva 
sought—and fortunately found—an engineering solution that a very small group of engineers 
could tackle with a slide rule! 
 
 As I mentioned earlier, the blade flapwise bending problem has been “solved” by quite 
a few engineers and mathematicians over the past seven decades. In Appendix H, I have 
included one example of a numerical solution using an implicit, finite difference integrating 
scheme.41 The solution is obtained by solving the fourth order, partial differential equation 

                                                 
41 This method was first constructed by Mark Dreier of Bell Helicopter in the early 1980s. He did the original 
work for the fun of it, in response to a challenge I proposed. Mark never published the work despite my 
encouraging words. Then in 1992/1993, after I grasped the approach and had a fast, large computer, I 
“programmed” an embellished version of Mark’s creation on a Microsoft® Excel® spreadsheet. This version used 
25 beam elements. In 2002, Anubhav Datta, then a graduate student at the University of Maryland, inquired 
about “my” Excel flapwise only, beam bending solver. I sent my notes and the spreadsheet file to Anu and he 
wrote a Fortran code that could handle up to 100 beam elements. With his code, Anu compared the finite 
difference approach to his much more comprehensive, fully coupled (i.e., flap, lag, torsion) blade bending solver 
and confirmed that with 80 beam elements, the solution was stable and accurate.  
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form of the moment equation. This fourth order equation is obtained by differentiating 
Eq. (2.192) twice and putting it in nondimensional form. Then, because the beam is assumed 
to have constant running mass (mb) in slugs per foot, constant stiffness (EIflap) in pound-feet 
squared, and constant chord (c) in feet, you have  

(2.200)   ( ) ( ) ( ) ( )4 2 22
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2 4 4 2 2 2 2

b b

Z / R Z / R Z / R Z / REI L1 x 1x
m R x x 2 x m R x

ψ ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂§ · −+ − + =¨ ¸Ω ∂ ∂ ∂ ∂ψ Ω ∂© ¹
 

where, assuming linear aerodynamics of the blade element airfoil, the lift loading is 
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 You should immediately notice that Eqs. (2.200) and (2.201) are completely 
nondimensional. Just as important, the solution depends on the reciprocal of the blade 
frequency parameter ( )2 4

b flapm R / EIΩ , which Cierva set equal to 0.004 in his analysis of the 

C.30A blade “vertical bending.” The parameter ( )bacR / mρ  depends, of course, on the ratio 
of air density to blade density and is, therefore, sensitive to altitude.  
 
 Cierva, in his Theory, used the nondimensional parameters to construct 33 pages of 
tables and some 60 figures to facilitate the rapid computation of vertical bending fatigue 
stresses. He provides ways to account for nonconstant mass and stiffness, including additions 
of point masses, and ways to account for nonconstant chord blades. In subsequent historical 
information that I will discuss shortly, it took “six men and a boy” to deal with this problem, 
but I have found no elapsed times quoted. 
 
 In contrast to the Cierva approach in the 1930s with tables, charts, figures, 6 men, 
1 boy, and slide rules, Appendix H, programmed in my personal computer, provides 
converged flapwise bending moments in 5 minutes doing 4 rotor blade revolutions in 2-degree 
increments while keeping track of 25 radial stations, albeit for uniform blade properties. 
 
 Now consider the results, shown in Fig. 2-86, when modern day tools are applied to 
Cierva’s specific design condition. Equations (2.200) and (2.201) were solved by the finite 
difference scheme from Appendix H, for the conditions shown in Table 2-8, using C.30A 
blade properties: 
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Table 2-8.  C.30A Design Conditions 
Parameter Value  Parameter Value 

Flight Speed (ft/sec) 177  Flapwise Stiffness (lb-ft2) 25,350 
Tip Speed (ft/sec) 518  Running Mass (slug/ft) 0.06888 
Density (slug/ft3) 0.002378  Hinge Offset (ft) 0 
Blade Number 3  Collective Pitch (deg) 6.5 
Radius (ft) 18.5  Cyclic Pitch (deg) 0 
Chord (in.) 11.0  Hub Plane α (deg) 7.2 
Blade Twist (deg) 0  Frequency Parameter 0.00400 

 

Cierva did not quote a hub plane angle of attack (αhp) for these inputs. However, he did 
explain that the rotor would have as many blade elements operating at the airfoil maximum 
lift coefficient of 1.4 as possible for the design condition. I chose the hub plane angle of attack 
of 7.2 degrees as reasonable for a nonaerobatic aircraft. At these conditions, the rotor 
produced a calculated thrust of 3,000 pounds, which means the 1,500-pound C.30A is 
experiencing a 2-g pull-up. 
 
 The bending moments get converted to spar stresses, conventionally, as 

(2.202)   ( ) ( ) ( ) ( )2
flap x,

x, x, 2
flap flap
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ψ

ψ ψ

 ½ª º∂° °= = « »® ¾∂« »° °¬ ¼¯ ¿
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Cierva uses the elastic modulus (E) as 29,000,000 pounds per square inch and the spar 
thickness as its outside diameter (OD), a constant 1.5 inches. Using blade radius (R) in inches 
gives the spar stress in pounds per square inch, which makes structural engineers happy. In 
addition, Cierva gives the details that inboard of radial station 0.1R, the spar moment of 
inertia (Iflap) is 0.1306 inches,4 and outboard of radial station 0.2R, the spar moment of inertia 
is 0.09 inches4. The variation is linear between 0.1R and 0.2R. He further makes the point in 
his Theory that  

“in most practical cases, the structure is composed of a main spar and some sort of 
superstructure. In this case, the total EIflap, which is the sum of EI for all structural elements, 
should be taken for K [a curvature multiplying constant] but the individual values of E and d 
[OD/2] should be used in order to calculate the fiber stresses on each element……..In the 
ordinary type of [blade] construction now in use, EIflap is approximately 20 to 40 % greater 
than [the spar’s EI] so that it can be seen that the spar receives no real relief from the 
superstructure.” 

  
 The preceding pages lead to the calculated flapwise bending stress at the 0.65 radial 
station varying with azimuth as shown in Fig. 2-87. The maximum positive stress, which 
occurs at 260 degrees, and the maximum negative stress are two of the points plotted on  
Fig. 2-86.  
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 The solid line on Fig. 2-87 has been calculated using Appendix H methodology built 
from Eqs. (2.200) and (2.201), however several much more comprehensive theories have, of 
course, become available in the last several decades. The pace of these progressively 
improving theories has been keyed to bigger, faster, digital computers. One such theory, 
CAMRAD, was initially created by Wayne Johnson in 1980 and began with a calculation of 
the induced velocity (vx,ψ) acting at each blade element based on wake geometry provided by 
Scully [108] in 1965. Over time, Johnson incorporated several improvements to his program, 
and in 1993 he introduced CAMRAD II [109].  
 
 The induced velocity is assumed constant (i.e., uniform over the rotor disc) and the 
airfoil is linear in lift versus angle of attack in the Appendix H solution to Eq. (2.201). 
Johnson’s more comprehensive calculation of bending moment, including what is commonly 
called nonuniform downwash (i.e., vx,ψ) and nonlinear airfoil lift and drag properties that 
allow stall, is shown with the dashed line in Fig. 2-87. While the maximum positive and 
negative peaks are of similar values between the two solutions of the beam problem, 
nonuniform downwash and blade stall clearly create several higher harmonic loads and 
stresses. The accurate calculation of these higher harmonic loads is very important to 
rotorcraft vibration, as you will learn shortly. 
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Fig. 2-87. Estimated C.30A blade flapwise bending stresses at r/R = 0.65, µ = 0.5. 
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 Cierva clearly was the first to study rotor blade bending in “the vertical plane.” 
J. B. B. Owen was the second man to tackle the flapwise bending problem and obtain visible 
results, which were published in 1938 [110]. Later, on October 6, 1951, at an all-day meeting 
of the Helicopter Association of Great Britain, Owen presented a discussion [111] of bending 
moments in both vertical and horizontal planes. Interestingly, in 1968, Westland Helicopters 
Limited published a book titled A History of British Rotorcraft, 1866–1965 [112], and Owen 
contributed a short discussion about rotor blade research from 1933 to 1939. Owen’s first-
person summary of 1968 is quite interesting. In the opening paragraphs he writes: 

 “My first contact [1933] with Autogiros came when I joined Mr. H. A. Mettam who 
was then working in this field with Messrs. A. V. Roe at Manchester [England]. The blades of 
these machines were then occasionally failing at the root fittings [see Fig. 2-70], due probably 
to corrosion fatigue associated with the swetting on of the ends, and I became interested in the 
strength problems associated with this type of aircraft. I had access to what I remember as 
‘black and green’ volumes, which had been written by Cierva. These if I remember correctly, 
included the bending moment rule which he eventually published in the December 1935 
[Royal Aeronautical] Journal. This rule is reproduced in equation (36) of R & M 1875 [110], 
where I demonstrated that it is very satisfactory except in the regions of the blade tip where 
bending moments are not usually important. 
 
 The contribution of R & M 1875 was that it shed physical light on what was 
happening in the bending of Autogiro blades and demonstrated the very large reduction in the 
transverse bending moment on a blade, due to the centrifugal forces present. Up to this time, 
this had not been generally accepted…….In this and later reports I drew attention to the lack of 
knowledge of the aerodynamic loads on blades…..” 

The Owen R & M 1875 report from 1938 was a catalyst to the small rotorcraft industry. 
Owen, of course, had identified the real problem—“the lack of knowledge of the aerodynamic 
loads on blades.” In 1964 the first bit of “knowledge” finally became available. In the mid-
1960s, a Sikorsky H-34 was instrumented with differential pressure transducers on one of its 
four blades and data was obtained—in flight—by NASA. The long-awaited data was 
published by Scheiman [113] in 1964. The heavily instrumented rotor was then removed from 
the H-34 helicopter and tested in the NASA Ames Full-Scale Wind Tunnel. Results from that 
“rotor alone” test were published by Rabbott in 1966 [114]. You will learn more about this 
acquisition of “knowledge” in Volume II—Helicopters.  
 
 A significant question grew out of Cierva’s and Owen’s work. The question, rather 
simply stated, is this: Are the flapwise bending stresses lower with a low flapwise stiffness 
blade (in the limit, a chain or EIflap = 0) or with a high stiffness blade (in the limit, completely 
rigid or EIflap = ∞)? This question is worth answering before leaving vertical plane (flap) 
bending and going on to horizontal plane (chord) bending. Let me use the flap bending 
calculator in Appendix H to give you an answer. Suppose the C.30A blade is the reference 
point with (a) the spar outside diameter constant at 1.5 inches, and (b) the superstructure 
remaining constant. The only variable then is the wall thickness of the spar. The bench testing 
by Cierva showed that the experimental value of flapwise stiffness was 3,650,000 pound-
inches squared. The tubular spar accounts for 2,600,000 pound-inches squared of the total,  
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leaving the “superstructure” as 1,050,000 pound-inches squared or 7,290 pound-feet squared. 
(Frankly, the units of pounds and inches preferred by structural engineers are handier for this 
illustration.) Therefore, in this example, the blade element flapwise stiffness (EIflap) varies 
with tube-wall thickness (in inches) as 

(2.203)  ( )4 4 2
flap sparEI EI 1,050,000 29,000,000 1.5 ID 1,050,000 in lb in

64
πª º= + = − + −« »¬ ¼

 

where the spar inside diameter (ID) in inches equals the outside diameter (OD = 1.5 inches) 
less twice the wall thickness of the tube. For reference, the C.30A spar wall thickness is 0.08 
inches. In a similar manner, the blade weight (Wb) in pounds varies with wall thickness as 

(2.204)   ( ) ( )( )2 2 2 2
bW Density OD ID R 18.83 0.3 OD ID 222 18.83

4 4
 π ½  π ½ª º ª º= − + = − +® ¾ ® ¾« » « »¬ ¼ ¬ ¼¯ ¿ ¯ ¿

 

where the density of steel is taken as 520 pounds per cubic foot or 0.3 pounds per cubic inch. 
For reference, the C.30A radius of 18.5 feet equals 222 inches. 

 
 The Appendix H bending moment calculator uses flapwise stiffness in pound-feet 
squared and needs the running mass—not total blade weight, which means a conversion of 

(2.205)   ( )( )
2

flap 2 b b
flap b2

EI in lb in W WEI in lb ft m in slugs / ft
12 gR 32.174 18.5

−
= − = = . 

For this example, the input to Appendix H, using the C.30A design condition from Table 2-8, 
is given in Table 2-9. Keep in mind that the radius, chord, rotor speed, spar outside diameter, 
and “superstructure” remain constant, and the thrust is set to 3,000 pounds. 
 
The influence of spar wall thickness, the only variable in this example, is shown in Fig. 2-88 
and Fig. 2-89. Notice in Fig. 2-88 that while the flapwise bending moment waveform changes 
substantially, the magnitude of the fatigue moment (i.e., the peak-to-peak divided by 2) as 
seen in Fig. 2-89 is relatively independent of the large range in blade stiffness. Therefore, the 
fatigue flapwise bending stress increases as the  second moment of inertia of the spar becomes 
smaller, as Eq. (2.202) dictates. I imagine Cierva performed a “vertical bending” trade study 
similar to Table 2-9 to arrive at the C.30A spar and “superstructure.”  
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Table 2-9. Spar Wall Thickness Study 
Parameter S.W.G. 25 S.W.G. 19 S.W.G. 14 S.W.G. 10 S.W.G. 3 S.W.G. 0000000 
Wall Thickness (in.) 0.020 0.040 0.080 0.128 0.252 0.500 
Inside Diameter (in.) 1.460 1.420 1.340 1.244 0.996 0.500 
Flap Stiffness (lb-in.2) 1,771,591 2,451,826 3,650,000 4,830,554 6,838,836 8,150,759 
Running Mass (slug/ft) 0.04208 0.05223 0.07170 0.09356 0.14253 0.20794 
Spar 2nd Moment (in.4) 0.02547 0.04892 0.09024 0.13095 0.20020 0.24544 
Lock Number 16.47 13.27 9.67 7.41 4.86 3.33 
mbΩ2R4/EIflap 314.09 281.72 259.76 256.14 275.61 337.37 
Mode 2 Frequency Ratio 2.636 2.654 2.669 2.671 2.658 2.625 
Mode 3 Frequency Ratio 4.994 5.087 5.162 5.176 5.107 4.936 
EIflap/R (in.-lb) 7,980 11,044 16,441 21,759 30,806 36,715 
OD/2I (1/in.3) 29.45 15.33 8.31 5.73 3.75 3.06 
Fatigue Moment (in.-lb) 27,124 27,274 25,745 26,130 26,208 22,684 
Fatigue Stress (lb/in.2) 66,570 34,843 17,831 12,472 8,182 5,776 
Blade Weight (lbs) 25.0 31.1 42.7 55.7 84.8 123.8 
 
 
2.9.6 C.30A Chordwise Bending Analysis 
 
 Now let me proceed to the chordwise axis. Cierva, of course, considered spanwise 
bending moments and stresses in the horizontal, or inplane, or chordwise plane as well. 
However, in contrast to the considerable number of pages devoted to flapwise bending 
moments and stresses, he deals with inplane moments and stresses in less than five pages. 
With respect to chordwise loads and stresses in forward flight, he writes in his Theory that: 

 “The only bending moment which can be of any importance is the alternat[ing] one 
which appears when there is any restraint to the free motion of the blade, either in relation to 
the others or to the hub. In the general case it is imposed by a damper, more commonly a 
frictional one. 
 
 In certain cases there will be no appreciable restraint for the small motion of the order 
of 1o to 2o 30' either side of the central position, which the blades perform in any condition of 
flight. In other cases, on the contrary, the restraint will be obtained even for very small 
motions. 
 
 If the restraint is of the frictional type, it will be constant and independent of both 
rotational speed and the amplitude of the motion, but there may be other cases, such as friction 
dependent on centrifugal force or hydraulic dampers, where the restraint will increase with 
either centrifugal force or angular speed of the oscillatory motion, which will depend directly, 
everything else equal, on the angular speed of rotation. Each case will have to be treated on its 
merits, but it will be convenient in any case to assume a constant restraining torque equal to the 
maximum which normally can be applied and consider it for fatigue stressing. In certain 
systems, where high exceptional values might be attained, this case should also be considered, 
not as a fatigue case. 
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Fig. 2-88. Flapwise bending moment at µ = 0.5 for several wall thicknesses. 
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Fig. 2-89. Fatigue moment and stress at µ = 0.5 for several wall thicknesses. 
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 The distribution along the radius can be calculated by equation (1) and (2) (Part I, (2) 
(b)). All said there [in Part I] applies to this case. In the general case, where the superstructure 
has a very high moment of inertia in the direction considered [inplane], the bending on the spar 
will be negligible at all points except at the root and close to it. In the case of ordinary blade 
construction, it is reasonable to assume that the stresses on the spar become negligible at a 
distance from the first rib equal to about 0.1 of the radius. A linear law may be assumed for the 
change.  
 
 When plain bearings are used on the drag hinge, it is advisable to calculate the 
additional frictional restraint to centrifugal force. A frictional coefficient of 0.15 is 
recommended.” 

 
Part I, (2) (b) of his Theory that Cierva refers to addresses “Stresses On Ground”; subset (2) 
(b) is “Bending in [the] Plane of Rotation” during starting. 
 
 The Cierva approach to chordwise bending moments and stresses is quite interesting. 
The only loads of interest in forward flight are those loads created by the lead-lag damper and 
the frictional moment caused by the plain bearings of the lag hinge. In the fourth appendix of 
his Theory Cierva gives the C.30A example along with the explanation that: 

 “The blades are restrained in their motions relative to the tube by friction dampers, 
which are never adjusted to a torque superior to 15 [pounds force] × 200 [inches for moment 
arm] = 3,000 lbs-inches. In addition, however, the friction due to centrifugal force on the drag 
pin [pin through the lead-lag hinge], which has a plain bearing, will have to be considered. 
 
 The maximum centrifugal force in any condition of flight considered will be, at the 
vertical drag pin equal to 

( ) ( ) ( )2
C max

41F 0.5 18.5 30.8 11, 200 lbs
32.2

§ ·= =¨ ¸
© ¹

 

The pin diameter is 1-5/8 inch = 1.625 inch, so that assuming a coefficient of friction equal to 
0.15, greater than any value that can reasonably be expected, the centrifugal friction torque 
will be equal to 11200 × 0.15 × 1.625/2 = 1380 lbs-inches. 
 
 The total maximum horizontal BM [bending moment] at the root will be taken as 
3000 + 1360 = 4360 lbs-inches. It will be considered as an alternative one, changing once a 
revolution from + 4360 to – 4360 lbs-inches.” 

Using the planform view of the C.30A blade, Fig. 2-90, he assumes the ±4,360 fatigue 
moment is transferred from the spar to the superstructure in a linear manner. At the 0.1 radial 
station, the spar takes the full moment; at the 0.3 radial station, the superstructure takes the 
full moment. Then he calculates the spar chordwise stresses over the root end out to a radius 
station of 0.3R and tabulates the results shown in Table 2-10 . 
 

Table 2-10. The Cierva C.30A Spar Chordwise Fatigue Stress Analysis [12] 
Parameter Point A to r/R = 0.1 r/R = 0.15 r/R = 0.20 r/R = 0.25 r/R = 0.30 

Moment (in.-lbs) ±4,360 ±3,270 ±2,180 ±1,090 0 
Z (in.3) 0.1741 0.1426 0.1199 0.1199 0.1199 
Fatigues Stress (lb/in.2) ±25,000 ±23,000 ±18,150 ±9,075 0 
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 The symbol Z in this table is frequently used by structural engineers. It is the ratio of 
the second moment of inertia (I), in inches4, to the distance (d), in inches, from the cross-
section neutral axis to the outermost fiber being stressed. Thus, Z = I/d, and so moment in 
inch-pounds divided by Z is stress in pounds per square inch, in this case, fatigue stress. 
 
 When you look closely at the C.30A planform sketch, Fig. 2-90, you will see that the 
basic spar starts out (point A on the sketch) as British Imperial S.W.G. number 10 which 
means a tube having a 0.128-inch wall thickness. The outside diameter is 1.5 inches. At 
20 inches inboard of point B, a tapering-in wall thickness begins so that at point B the tube is 
still 1.5 inches in outside diameter but has become S.W.G. 14, a wall thickness of 
0.080 inches. This movement to a spar having a tapered wall thickness was considerably 
refined in the autogyro era. 
 
 It is fascinating to me that Cierva, in his Theory, never discusses stresses in the 
“superstructure” and, in particular, the trailing edge. Apparently, he was more than satisfied 
that “the rigidity of the superstructure in a horizontal plane is very great” and, therefore, the 
stresses must be quite low. Any thought that a chordwise resonance condition might occur is 
conspicuously absent in his design manual. I think this confidence must have been obtained 
from other calculations and data suggested by Fig. 2-89, which shows that high stiffness 
results in very low flapwise fatigue stresses.  
 
 

 
Fig. 2-90. A sketch of the C.30A blade drawn by Cierva and included in his Theory. 



2.9  BLADES 

 186

2.9.7 C.30A Torsional Bending Analysis 
 
 Cierva provides considerable guidance about loads and stresses in the torsion axis. In 
his Theory, Part II, Stresses in Flight, Section 6, Torsional Stresses, he lists the possible 
sources of torsional stresses as 

“(1) Transverse offset between the [blade element airfoil] lift and inertia forces acting on the 
blade 

 (2) Pitching moments due to camber of the aerofoil 
 (3) Transverse offset between the vertical shear due to bending in a vertical plane and the 

elastic central axis of the blade 
 (4) Secondary torsion induced by bending in a horizontal plane combined with deformations 

in bending in a vertical plane.” 

and proceeds to derive simple equations for each contributor to torsional stresses.  
 
 The first contributor is referred to today in shorthand as c.g.–a.c. offset. Fig. 2-90 
shows that the blade element center of gravity is located chordwise 32.4 percent of chord (i.e., 
3.564 inches) behind the airfoil leading edge. Since the airfoil lift acts, nominally, at the  
1/4-chord point (2.75 inches), that is to say at 25 percent of chord behind the airfoil leading 
edge, a positive blade element lift tends to twist the blade nose up. You will recall that Hafner 
[74] was very careful to keep the “superstructure” light so that the blade element center of 
gravity was placed at the 1/4-chord point. Hafner specifically intended to reduce this torsional 
moment component to zero. The C.30A blade, with its aft c.g., introduced a nose-up torsional 
moment (Tx) along the blade, which Cierva calculates (in modern notation) as  

(2.206)  ( ) ( )3 2 21
x max max4

3c.g. a.c. offset T c.g.offset c C cR 1 x
16

− = − ρ Ω −A . 

This moment, in foot-pounds, depends on the c.g. offset in feet behind the airfoil 1/4-chord 
point (i.e., the airfoil aerodynamic center, a.c.) in feet, on the air density (ρ) in slugs per cubic 
foot, on blade chord (c) in feet, on blade radius (R) in feet, and, following Cierva’s worst-case 
assumption, on the maximum design rotor speed (Ωmax) in radians per second. He assumes 
that in forward flight the blade could be operating at the airfoil maximum lift coefficient 
(Clmax) over the full span. The nondimensional radial station is (x = r/R).  
 
 Cierva argues, correctly to the first approximation, that the torsion moment due to 
c.g.–a.c. offset will “in the case of the extreme manœuvre, oscillate between zero and the 
value given by Eq. (2.206).” 
 
 The next torsion moment Cierva considers is due to the airfoil pitching moment 
coefficient (Cm). Beavan and Lock [57] tackled this moment in 1936 when they sought to 
explain the adverse stick gradient of the C.30, as you learned in Section 2.6. They credited 
Cierva’s notes for starting them in the right direction. In 1937, Wheatley [59] gave an even 
more in-depth analysis at the N.A.C.A. of both c.g.–a.c. offset and pitching moment loads in 
the torsion axis. But in the early 1930s, Cierva calculated this airfoil pitching-moment-
dependent torsional moment, in foot-pounds, from 
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(2.207)   ( ) ( ) ( )2 3 2 3 2 21
x m 3pitching moment T C c R 1 x 1 x 1 xª º= ρ Ω − + µ − + µ −¬ ¼ .  

The airfoil pitching moment coefficient (see Appendix B) is taken about the airfoil 1/4-chord 
point. In his torsion analysis [12] Cierva includes the situation where the blade might have 
two different airfoils in separate span segments of the blade. 
 
 The third torsion moment considered deals with the coupling between the vertical 
shear due to flapwise bending and torsion. He writes: 

 “The shear force studied in (4) will be situated, transversely [the chordwise direction] 
to the blade, at ¼ c from the leading edge. If the neutral elastic axis of the blade (the axis of the 
tubular spar in the general case) is at a distance ds from the leading edge, it will produce a 
torsional moment equal to  

( ) ( )1
3 x s 4x = S d cτ −  

By using equation (156) in conjunction with (146), (147), (148) and (149), the values of (τ3) 
for any point (r/R) or those at the root (maximum), can be obtained. 
 
 The maximum value (absolute) will be for (S+)o which corresponds, as said in 
((4)(h)), to ψ = 3π/2 and the absolute maximum of opposite sign will be for (S–)o, 
corresponding to ψ = 0 and ψ = π.” 

 
 The fourth torsional moment, due to simultaneous bending in vertical and horizontal 
planes (he later calls this “torsion due to double bending”), causes Cierva to write a very clear 
2-1/2-page dissertation on the real coupled bending/torsion deflection and loads he sees with 
rotor blades. He relies on the assumption that there will be no inplane bending—if there is no 
lead-lag damper and the lag hinge is frictionless—and gives the fascinating approximation 
that the maximum fatigue torsional moment due to “double bending” will be  

(2.208)   ( )2 max
x R4

b3

C1 1 4 2 cRmaximum flap-lag T Q 1 x
9 1 3 m 2

ª º§ · § ·− µ ρ § ·= ± − + µ −« »¨ ¸ ¨ ¸¨ ¸+ µ © ¹« » © ¹© ¹¬ ¼
A  

where the restraining torque at the drag hinge (QR) is that value found from the chordwise 
stress analysis summarized in Table 2-10 (i.e., QR = 4,360 foot-pounds). 
 
 To arrive at the total fatigue moments in torsion, Cierva simply adds up the four 
contributors. He assumes no dynamic amplification and then distributes the torsion between 
spar and superstructure saying, “the [spar’s] relief due to superstructure will be taken into 
consideration by multiplying the values above by (1-1/2).” Then he writes, “we have finally” 
the table (reproduced here as Table 2-11) where (J) is the spar polar moment of inertia about 
the spar neutral axis. The torsion stress is calculated in the conventional manner [102] as 

(2.209)   ( )( )
x

Torsion Moment Distance to outermost fiber
Torsion shear stress

J
=τ . 
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Table 2-11. The Cierva C.30A Spar Torsion Fatigue Stress Analysis [12] 
 

Parameter 
Point A 

r/R = 0.093 
Point B 

r/R = 0.186 
r/R 

 = 0.3 
r/R 

 = 0.4 
r/R 

 = 0.5 
r/R 

 = 0.6 
r/R 

 = 0.7 
Max + Moment (in.-lbs)   1,880   1,720   1,500   1,290   1,070     845   620 
Max – Moment (in.-lbs) –2,400 –2,190 –1,910 –1,660 –1,400 –1,120 –810 
Spar J (in.4)   0.261 0.18 0.18 0.18 0.18 0.18 0.18 
Max + Shear Stress (lb/in.2)   5,400   7,150   6,250   5,400   4,500   3,520   2,580 
Max – Shear Stress (lb/in.2) –6,900 –9,110 –7,950 –6,900 –5,830 –4,650 –3,370 

 
 
2.9.8 C.30A Total Blade Stresses 
 
 The concluding steps in the Cierva stress analysis of the spar are reasonably 
conventional, but he does take the most conservative path. The resultant flapwise and 
chordwise stresses are first determined “assuming alternate maximums occur simultaneously.” 
To this table of plus and minus maximum stresses, he adds in the steady stress due to 
centrifugal force calculated at the maximum design rotor speed of 30.8 radians per second and 
accounts for the torsion stress (which is minor).  
 
 There is an end to the process Cierva described as “exceedingly elaborate” and where 
“a number of simplifying assumptions have to be made which are not of a nature that could 
substantially alter the results.” The conclusion to the process begins with the final summary 
(Table 2-12) of the steady and alternating (fatigue) stresses [see Eq. (2.190)].  
 

Table 2-12. The Cierva Summary of C.30A Spar Steady and Fatigue Stresses [12] 
 

Parameter 
Point A 

r/R = 0.093 
Point B 

r/R = 0.186 
r/R 

= 0.3 
r/R 

= 0.4 
r/R 

= 0.5 
r/R 

= 0.6 
r/R 

= 0.7 
Steady Stress (lb/in.2)    20,390    35,300    34,025    30,200    26,525    22,125    16,350 
Fatigue Stress (lb/in.2) ±30,650 ±27,600 ±19,825 ±20,900 ±21,825 ±21,925 ±22,150 
 
Now Cierva’s thoroughness really comes to the forefront. He completes the stress analysis by 
introducing four factors that raise the stresses summarized in Table 2-12. In paragraph 4 of 
the example from Appendix IV used for the C.30A blade [12], he writes [my comments are in 
brackets]:  

 “Fatigue Factor K1. Appendix III gives for nickel-chrome steels with a final stress of 
85 tons [British tons of 2,200 pounds per ton] (by extrapolation) a ratio of Pf/Ps = 0.46 [fatigue 
stress to steady stress]. As the ratio Py/Ps [yield stress over ultimate stress, in British tons] is 
taken as 65/85 = 0.765, the factor K1 = 0.765/0.46 =1.66.” [This factor accounts for the 
damage fatigue can do when the alternating stress is occurring around a high steady stress.] 

 “Form Factor K2. There are holes well spaced, 3/16 [inch in] diameter, in the [spar] 
horizontal plane. They represent a decrease in section [moment of inertia] of about 8 %. For 
BM [bending moment] in a horizontal plane, they represent a decrease in the Z [see Table 
2-10] of the section of about 25 %. As the centrifugal tension represents about 50 % of the 
stress and the BM are in planes oblique to the horizontal, a reasonable assumption is to take a 
drop of strength of about 15 % (as done in the case of stresses on the ground). As fatigue 
stresses are very important, however, a factor K2 = 1.3 will be taken.” [Each hole creates local 
stress risers that cannot be ignored.] 
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 “Safety or Material Factor K3. It will be taken, as stated, as equal to 1.5, since the 
material is consider as reliable.” [Material imperfections and manufacturing defects are a very 
real consideration.] 

 “Load Factor K4. Taken equal to 1.” [Cierva has calculated loads at an extreme point 
in the flight envelope, which makes 1 reasonable in my opinion.] 

With these reasonable factors in hand, Cierva applies the factors to see if the sum of steady 
and fatigue stresses exceed the maximum allowable stress (65 British tons per square inch or 
145,000 pounds per square inch). He calculates this absolute maximum stress as 

(2.210)   [ ]2 3 1 4Absolute maximum stress K K Steady K Fatigue K= × × + × ×  

and gives the results tabulated and also graphed, as shown in Fig. 2-91. 
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Fig. 2-91. The maximum absolute stress results Cierva included in his Theory. 
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In reviewing this summarizing result, Cierva writes of the C.30A blade analysis that: 
 “It will be observed [from Fig. 2-91] that for a short length about Point B the factored 
stress exceeds the value Py = 145000 lbs/in2 so that, strictly speaking, the blade is under 
strength by the criterion laid down in the Theory [12]. As, however, the maximum value of 
V/Vt in horizontal flight, fully loaded, is very appreciably less than the value V/Vt = 0.5 
maximum for which the assumptions of the Theory hold, and as the stresses below that value 
[µ = 0.5] decrease very appreciably, the final factor of 0.92 [a negative margin of calculated 
stress divided by Py, the yield stress] can be accepted as satisfactory, but in new designs it is 
recommended to lengthen the tapered part of the spar to about 0.25 R (for similar blades) 
which, as can readily be appreciated in Fig. 2-91, would result in an almost uniform 
distribution of stresses over the first quarter of the tube.” 

 
2.9.9 Closing Remarks 
 
 The Cierva rotor blade loads and stress analysis has come down through the decades. 
Perhaps not in the “black and green volumes” that Owen recalled [112] or in the somewhat 
illegible two volumes edited by James Bennett that Dick Carlson gave me. But with the very 
abbreviated preceding discussion, I believe you will agree that Juan de la Cierva knew exactly 
what he was doing in the engineering world, not just in the world of invention, building, 
flying, licensing, and selling his own Autogiros.  
 
 I can think of no better way to conclude this introduction to rotor blades than with 
those words written by the Pitcairn chief engineer, Agnew Larsen, in his historical 
recollections [49] published in the first volume of the Journal of the American Helicopter 
Society. He passes on two thoughts, the first of which reads as follows: 

“At the very start of the American autogiro engineering efforts of both Pitcairn and Kellett, it 
became apparent that little could be done without some working knowledge of a “theory” for 
the whole procedure. Consequently, early in the Spring of 1929, a hurried trip was made to 
England by Harold Pitcairn, the author [Larsen], and Jean Nicol, the clever designer of the M 
& T Design Co., to acquire this basic design information. At this time Mr. Pitcairn urged 
Cierva to direct his efforts toward the accumulation and collating of his vast supply of 
technical data for condensation into a workable volume, The [Engineering] Theory of the 
Autogiro [11]. Later in the fall of 1929, when Cierva made his first trip to this country, he 
spent much time on it, with Paul Stanley as his assistant. The momentous work was compiled 
and copyrighted, and privately published for the benefit of licensees like Kellett, Pitcairn’s 
manufacturing company, and for the use of proper personnel of the Department of Commerce, 
NACA, Air Force, and Bureau of Aeronautics. Without this authoritative guide, no progress 
could have been made, nor could the government authorities have granted type certificates 
required for manufacture of autogiros. The Autogiro Company of America’s recommendations 
for Approved Type Certification were endorsed by them.” 

Mr. Larsen could easily have added praise for Cierva’s second volume, Theory of Stresses on 
Autogiro Rotor Blades. 
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The second thought from Agnew Larsen is even more important because he wrote: 
 “The direct control of all the original smaller models, up to a gross weight of approximately 
2500 lbs., as in the Kellett KD-1, KD-1B and KD-2, proved to work very well indeed. In the 
still smaller models, like the Pitcairn PA-22, the British Cierva C-30, and the French LePere 
jobs, this direct control was, if anything, even better. The chief difficulties in all of these direct 
control ships, however, was an uncomfortable characteristic vertical bouncing, or a three-per-
rev vibration of the whole aircraft, to a greater or lesser degree. This was a new and most 
disturbing annoyance which grew out of the more rigid, though hinged, [three] rotor blades 
owing to the absence of the droop support cables. The final solution of this problem required 
some two or three dozen different, direct-control rotors (tested internationally in England, 
France, and America) and between three to four years, before ultimate satisfactory solution. 
The cue to this solution lay in the fact that this bouncing fault was virtually non-existent in the 
two most flexible rotors, out of a total of twenty-six that were methodically analyzed. This led 
to step-tapered steel spars and the ultimate elimination of bouncing in all rotors where proper 
considerations of bending flexibility were applied.” 

Clearly, a solution to autogyro vibrations—caused by the more advanced, three-bladed rotor 
system—was found by trial and error. 
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2.10 VIBRATION 
 
 
 Vibration has been, and unfortunately continues to be, a very detracting feature of 
rotorcraft. The magnitude of vibration, say at the pilot seat, is an immediate question asked of 
a test pilot at the end of a first forward flight of a prototype. After first flight, there has always 
been (at least in my experience) a vigorous effort to reduce vibration throughout the machine, 
until, finally, the first acceptable production aircraft is ready for delivery. Thereafter, 
incremental product improvement frequently includes a program aimed at reducing vibration 
even further. In retrospect, autogyro vibration or “vertical bouncing” as Agnew Larsen called 
it, was a relatively minor vibration problem compared to what many modern rotorcraft have 
encountered. Cierva wrote in his 1935 paper [5] that:  

“Perhaps the most irritating of the secondary difficulties met with in the autogiro developments 
have been those of a dynamical [vibration] nature.” 

I believe that a large number of rotorcraft engineers would agree that Cierva’s words are a 
considerable understatement.  
 
 The Agnew Larsen recollection [49] that vertical vibration “was virtually eliminated” 
with “the two most flexible rotors” is a direct indication of how important it is to tune the 
blades of a three-bladed rotor system well away from a 3-per-rev natural frequency. As you 
learned in the section on blades and can see from Fig. 2-93, the early four-bladed rotor 
systems, with their cable support for droop, were “rigid” or “stiff.” Later, three-bladed 
systems were, as Larsen says, “flexible.” I have put quotes around the words rigid, stiff, and 
flexible because they are extremely inexact engineering terms with which to describe blades—
or fuselages. These words, rigid, stiff, and flexible have no place in the study of vibration.  
 
 Vibration depends on the proximity of natural 
frequencies to the frequency of the applied forces and 
moments, and the magnitude of the applied forces and 
moments. To illustrate this point, remember the classic 
dynamics problem given in the first chapter of any text book 
[115] used to study vibration. The fundamental single-
degree-of-freedom problem, Fig. 2-92, shows a mass (m), in 
slugs, hanging on a spring attached to an overhead beam 
(A). The spring stiffness is (k) in pounds per foot. The mass 
is also attached to the beam with a dashpot (a damper). The 
units of the damping constant (c) are pounds per foot per 
second. The system is acted on by an oscillating force (Po 
sin ωt) or, more generally, (FS sin ωt + FC cos ωt). The mass 
shakes up and down a vertical distance (x) governed by the 
classic F = ma equation:  

Fig. 2-92. Vibration problem. 

(2.211)   
2

S C2

d x dxm c kx F sin t F cos t
dt dt

+ + = ω + ω .
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Fig. 2-93. Frequency ratio for the second flapwise mode of a uniform beam.  

 
 
The classic solution to this second-order differential equation gives mass displacement (x) in 
feet as a function of time (t) in seconds. The solution is, quite simply 

(2.212)   
( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 2
S C C S

t 2 22 22 2

F k m F c F k m F c
x sin t cos t

k m c k m c

ª º ª º− ω + ω − ω − ω
« » « »= ω + ω
« » « »− ω + ω − ω + ω¬ ¼ ¬ ¼

.  

The mass experiences an acceleration that varies with time. This acceleration, which is the 
second derivative of displacement with respect to time, is 

(2.213)   
( ) ( )

( ) ( )
( ) ( )

( ) ( )

2
2

t2
t

2 2
S C C S2

2 22 22 2

d x x
dt

F k m F c F k m F c
sin t cos t

k m c k m c

§ · = −ω¨ ¸
© ¹

 ½ª º ª º− ω + ω − ω − ω° °« » « »= −ω ω + ω® ¾« » « »− ω + ω − ω + ω° °¬ ¼ ¬ ¼¯ ¿

.  

At some point in time, the acceleration will be a maximum, either positive or negative. The 
magnitude of this maximum acceleration is 
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(2.214)   
( ) ( )

2 2 22
S C

2 2 22max

F Fd x
dt k m c

ω +§ · = ±¨ ¸
© ¹ − ω + ω

.  

 Now, suppose you are sitting on the mass, seat belt on, but assume your mass is trivial 
compared to the mass of the block (m) you are sitting on. Then your body will feel a 
maximum force (Fmax) equal to  

(2.215)   
( ) ( )

2 2 22
body body S C

max 2 2 22max

W W F Fd xMax. body force F
g dt g k m c

ª º
ω +§ · « »= = = ±¨ ¸ « »© ¹ − ω + ω« »¬ ¼

.  

This maximum body force is a vibratory force and is a fraction of your weight (Wbody) and, 
therefore, a fraction of the gravity constant (g). You could, therefore, express your vibratory 
environment as 

(2.216)   
( ) ( )

2 2 22
S Cmax

2 2 22body max

F FF 1 d x 1
W g dt g k m c

ª º
ω +§ · « »= = ±¨ ¸ « »© ¹ − ω + ω« »¬ ¼

.  

 For example, suppose the vibration is due to 3-per-rev rotor loads. Assume a rotor 
speed (say for the Cierva C.30A) of 180 revolutions per minute, which is 3 revolutions, or 
cycles, per second. Then the 3-per-rev rotor vibratory load is oscillating at 9 cycles per second 
or 18π radians per second. For this example then, ω=18π.  
 
 Now imagine the block you are sitting on is really the Cierva C.30A Autogiro 
weighing 1,500 pounds, which is a mass (m) of 46.62 slugs. Suppose the rotor shaking force 
is one-tenth of the gross weight (i.e., FS = FC = 150 pounds), and assume that the spring has a 
spring constant (k) of 43,750 pounds per foot. For the sake of discussion, assume there is no 
damping (i.e., c = 0). Using Eq. (2.216) with this information you calculate that 

(2.217)   ( )
( )( ) ( )

2 2 2 2
max

222 2body

18 150 150F 1 6.4348 ft / sec 0.2g
W g 32.174 ft / sec43,750 46.62 18 0 18

ª º
« »π +

= ± = =« »
« »− π + × π« »¬ ¼

.  

 
Note that resonance occurs in this classic dynamics problem when  

(2.218)   ( )2 kk m 0 or
m

− ω ≡ = ω .  

For this example 

(2.219)   k 43,750 932 18
m 46.62

= = ω = π� .  
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 The conclusion from this example is that you are experiencing a 0.2g vibration at 3 per 
rev, which, by the way, is much worse than a “most disturbing annoyance” as Agnew Larsen 
described. In fact, many rotorcraft test pilots have returned from their first forward flight of a 
new prototype with much more forceful words, such as “intolerable,” “totally unacceptable,” 
“couldn’t read the instruments,” “everything is a blur,” “won’t sell,” and “we’ve got one hell 
of a vibration problem.” To a chief engineer (like Cierva), a test pilot might be less restrained. 
Of course, when seen in print, Cierva’s words “most irritating” might be very appropriate.   
 
 Keep in mind that the pilot is not the only one that is unhappy in this example. The 
beam is reacting to the two forces shown in Fig. 2-92. The spring force is the spring constant 
times the displacement (x), and the damper force is (c dx/dt). Taken together, the beam is 
providing a reacting force (Rt) in pounds that amounts to 

(2.220)   

( ) ( )
( ) ( )

( ) ( )
( ) ( )

22 3
S C

t 2 22

22 3
C S

2 22

F k k m c F cm
R sin t

k m c

F k k m c F cm
cos t

k m c

 ½ª º ª º− ω + ω + ω¬ ¼° °¬ ¼= ω® ¾
− ω + ω° °¯ ¿

 ½ª º ª º− ω + ω − ω¬ ¼° °¬ ¼+ ω® ¾
− ω + ω° °¯ ¿

 . 

This reactive force, at some point in time, will reach a maximum, either positive or negative, 
of 

(2.221)   
( )( )
( ) ( )

2 2 2 2 2
S C

t 2 22

k c F F
R

k m c

+ ω +
= ±

− ω + ω
.  

Using the parameter values from the preceding example, you will calculate that the reactive 
force is slightly greater than ±500 pounds. This vibrating force, at 3 per rev, requires careful 
attention to the structure because significant fatigue damage will occur over the life of the 
aircraft. Just consider the fact that 25 years—or longer—is not uncommon for a service life. 
Rotorcraft, say on average, fly 500 hours a year. This means 12,500 hours will be 
accumulated on the structure over a typical service life. With a rotor speed of 180 revolutions 
per minute, a 1-hour flight accumulates 10,800 cycles per hour at one per rev. However, this 
±500-pound load is occurring at 3 per rev, which means 32,400 cycles per flight hour are 
accumulated. After 25 years, portions of the airframe will have accumulated (32,400 times 
12,500 equals) 400 million cycles (i.e., 400 × 106 cycles) and each cycle could be at ±500 
pounds on the 1,500-pound-gross-weight Cierva C.30A.42  

                                                 
42 Many rotorcraft structural elements can be designed to withstand a million to 10-million cycles, but I, 
personally, do not believe any material is suitable for 400-million cycles of fatigue loading. It is simply a 
question of how many times can you bend a paperclip before it cracks or breaks. 
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2.10.1 C.30 Vibration Background 
 
 The preceding example adapts the classic single-degree-of-freedom vibration problem 
to the world of autogyros. In many ways, the example is somewhat extreme. Consider the 
more practical vibration problem presented in Fig. 2-94. To keep things reasonably simple, I 
have assumed that the C.30 three-bladed rotor system only applies a vertical vibratory force 
(FZ), and a fore and aft, or longitudinal, vibratory force (FX). Both forces are in pounds and 
are applied at the rotor hub. Following Fig. 2-23, the vertical force acts behind the aircraft 
center of gravity (c.g.), a distance (c) in feet; the longitudinal force acts above the c.g., a 
distance (a) in feet. The pilot sits in the aft cockpit in a seat located (d) feet behind the c.g.  
 
 The vertical force will not only shake the aircraft up and down, but this vibratory force 
will also pitch the aircraft nose up and nose down because this force acts behind the aircraft 
c.g. The longitudinal force will shake the aircraft fore and aft (which I will ignore) and also 
pitch the aircraft because it acts above the c.g. The pilot will feel the combination of vertical 
displacement (Zcg) of the c.g. and angular displacement (Θcg) about the c.g. Because he sits 
behind the c.g. a distance (d), his vertical displacement (Zpilot) will be 

(2.222)   ( )pilot cg cgZ Z d= − Θ   

where a positive vertical displacement is upwards, and a positive angular displacement is nose 
up. The pilot will, therefore, feel an acceleration of  

(2.223)   
2 2 2

pilot cg cg
2 2 2

d Z d Z d
d

dt dt dt
Θ

= − .  

 Now, think in terms of F = ma, and include in your thinking I d2θ/dt2 = M, because 
there is a rotation. In this case, the moment of inertia (I) is the aircraft moment of inertia (IAC) 
about the center of gravity and is in slug-feet squared. Consider Fig. 2-94 for the autogyro 
versus the classic vibration problem of Fig. 2-92. First off, there is no obvious spring. Any up 
and down motion of the aircraft c.g. will mean that the hub goes up and down an equal 
amount because the autogyro structure is, for all intents and purposes, “rigid.” Therefore, 
vertical displacement will create a vertical velocity and vertical acceleration that each blade 
feels. This is also true for pitching motion.  
 
 Similarly, there is no obvious damper to include in the autogyro problem. Thus, any 
spring or damper must appear in the rotor blade forces and moments behavior. This means 
that any spring or damper is included in the vibratory forces acting at the hub (i.e., FZ and FX). 
With this logic, the linear and angular accelerations at the aircraft c.g. become simply  

(2.224)   
2 2

cg cgZ Z X
2 2

AC AC

d Z dF cF aFand
dt m dt I

Θ − += = .  

Note that in Eq. (2.224), I have assumed the vertical force to be positive upwards and that a 
positive longitudinal force is aft. The acceleration that the pilot feels is now known in terms of 
the two forces acting at the rotor hub because 



2.10  VIBRATION 

 198

(2.225)   
2

pilot Z Z X
Z X2

AC AC AC AC AC

d Z F cF aF 1 dc dad F F
dt m I m I I

§ · § · § ·− += − = + −¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

.  

You can see here that a vertical shaking force will amplify the acceleration that the pilot feels 
because the nose-down motion of the aircraft will raise the pilot just as the linear vertical 
motion does. At this point, it is not clear whether an upward vertical force will be 
accompanied by a longitudinal force in the forward or aft direction. With a longitudinal force 
of the right magnitude acting aft, the pilot might feel a rocking motion rather than a “vertical 
bounce.” 
 
 There is a little more that can be deduced about three-bladed autogyro vibration before 
you (and the pioneers) become stymied. The step is to assume the vertical and longitudinal 
forces to be 

(2.226)   Z ZS ZC

X XS XC

F F sin t F cos t
F F sin t F cos t

= ω + ω
= ω + ω

  

and, therefore, the acceleration at the pilot seat, in feet-per-second squared, becomes  

(2.227)   
2

pilot ZS ZS XS ZC ZC XC
2

AC AC AC AC

d Z F cF aF F cF aFd sin t d cos t
dt m I m I

ª º ª º§ · § ·− + − += − ω + − ω« » « »¨ ¸ ¨ ¸
© ¹ © ¹¬ ¼ ¬ ¼

.  

 
 Let me now repeat the vibration calculation. From the approximate geometry, the rotor 
longitudinal force acts 4 feet above the c.g., so a = + 4; the vertical force acts 0.5 feet behind 
the c.g., so c = + 0.5; and the pilot seat is 3.5 feet behind the aircraft c.g., so d = + 3.5. The 
C.30A second moment of inertia in pitch (I will guess) is roughly 1,000 slug-feet squared, so 
IAC = 1,000, and at a gross weight of 1,500 pounds, the aircraft mass (mAC) is 46.62 slugs. As 
in the classic problem, assume that the rotor hub forces act at 3 per rev, so ω = 18π radians per 
second. With no knowledge about the forces at this time, I will assume that 

ZS ZC XS XCF F 150 lbs and F F 15 lbs= = = =  

which leads to the result that 

(2.228)   ( ) ( )
2

pilot
2

d Z
3.22 0.0525 sin t 3.22 0.0525 cos t

dt
= − − ω + − − ωª º ª º¬ ¼ ¬ ¼ .  

The pilot will feel a maximum vibratory acceleration of 

(2.229)   
2

pilot 2 2 2
2

max

d Z
3.28 3.28 4.64 ft / sec 0.14g

dt
§ ·

= ± + = ± = ±¨ ¸¨ ¸
© ¹

.  

 The crux of the “vertical bounce” problem Agnew Larsen referred to lies, of course, in 
predicting the hub forces (and moments).43  
                                                 
43 In the Cierva C.30, the flapping hinge, located a the 0.00788R radial station, permits hub moments to be 
ignored in this discussion. 
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Fig. 2-94. The C.30 vibration problem. 
 
 
 
2.10.2 C.30 Vibratory Hub Loads 
 
 Consider first the vertical force (FZ) acting at the flapping hinge. From Fig. 2-84 you 
can see that centrifugal force cannot create a vertical force. Therefore, only the blade lift 
elements (dL) and blade inertia elements (dI) need be considered. Then, the vertical force for 
one blade is simply 

(2.230)   ( ) ( ) ( )
RR 2

R R ,t ,t
Z ,t ,t 20 0

0 0

dL Z
One blade F d L d I d m d

d t
η η

η η η

§ ·∂§ ·= − = η − η¨ ¸¨ ¸ ¨ ¸η ∂© ¹ © ¹

´´
µµ

¶ ¶
³ ³ . 

Since the blade element loads are known to be periodic (i.e., harmonic), Eq.(2.230) can be 

rewritten in terms of azimuth with the substitutions 2
2 2

1 1t or
dt d

ψ = Ω = Ω
ψ

 to give  

(2.231)   ( )
R R 2

, ,2
Z 2

00

dL Z
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d
η ψ η ψ

η

§ ·∂§ ·= η − Ω η¨ ¸¨ ¸ ¨ ¸η ∂ ψ© ¹ © ¹

´ ´
µ µµ ¶¶

.  

A solution to the flapwise bending moment problem, Eqs. (2.196) through (2.201), provides 
all the information needed to calculate the vibratory vertical force at the hub for one blade.  

FX 

FZ 
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 The discussion of blades, Section 2.9, included an example of flapwise bending 
moments calculated with two modern theories. One theory is contained in Appendix H; the 
other, more comprehensive theory, is embodied in the computer program called CAMRAD 
[109]. The flapwise bending stress calculated with the two solution methods led to Fig. 2-87. 
Those two solutions at Cierva’s design condition also provide the comparison of vibratory, 
vertical force (FZ) at the hub for one blade, which follows:  

(2.232)   
ZAppendix H F 991 687 cos 322sin 147 cos 2 56sin 2

51cos3 5sin 3 32cos 4 17sin 4
20cos5 5sin 5 9cos 6 1sin 6

= − ψ − ψ − ψ − ψ
− ψ − ψ − ψ − ψ
− ψ + ψ − ψ + ψ

  

and 

(2.233)   
ZCAMRAD F 984 880cos 1260sin 170cos 2 214sin 2

76cos3 45sin 3 9cos 4 12sin 4
0cos5 14sin 5 17 cos 6 9sin 6

= − ψ − ψ − ψ + ψ
− ψ − ψ − ψ − ψ
− ψ + ψ + ψ + ψ

 . 

 
These two results show just how large the difference between predicted vibratory vertical hub 
loads can be. The vertical vibratory load amplitudes of the first six harmonics are shown in 
Fig. 2-95. The amplitudes are calculated in the conventional manner as 

(2.234)   2 2
n nC nSAmplitude F F F= +   

Note that I have used a semilog scale to display the amplitudes in Fig. 2-95. An extremely 
rough rule of thumb is that the amplitude decreases as the harmonic (n per rev) squared. The 
contrast, when shown graphically as in Fig. 2-95, is a clear indication of just how difficult a 
vibration problem the autogyro pioneers were facing and how little could be learned from 
theory of the era. 
 
 The vibratory vertical hub load for one blade is not the whole story, of course. The 
total hub load for three blades is the answer sought. The total vertical force created by three 
blades was discussed earlier in Section 2.8. The process of adding the vertical forces from 
three blades together is quite simple. All that is required is the assumption that each blade in 
the set has the identical one-blade vertical vibratory force description in a Fourier series. This 
means the total three-bladed vertical hub load is computed from 

(2.235)   o o
Z Z Blade 1 Z Blade 1 Z Blade 1F F (calculated at ) F (cal.at 120 ) F (cal.at 240 )= ψ + ψ + + ψ +   

and the very explicit result of the trigonometry is 
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(2.236)   [ ]Z o Z3C Z3S Z6C Z6SF 3 F F cos3 F sin 3 F cos 6 F sin 6 etc= + ψ + ψ + ψ + ψ + .  
 
 Using Appendix H and the CAMRAD Fourier series for one blade (FZ Blade 1) from 
Eqs. (2.232) and (2.233), the immediate results for the Appendix H solution are 

(2.237)   [ ]ZAppendix H F 3 991 51cos3 5sin 3 9cos 6 1sin 6
2,973 153cos3 15sin 3 27cos 6 3sin 6

= − ψ − ψ − ψ + ψ
= − ψ − ψ − ψ + ψ

  

and similarly, for the CAMRAD solution 

(2.238)   ZCAMRAD F 2,952 228cos3 135sin 3 51cos 6 27sin 6= − ψ − ψ + ψ + ψ .  

 
 It is customary when conveying vibratory forces and moments to remove the steady 
force (the zero harmonic, Fo in this example) from the final results. Therefore, in Fig. 2-96 
you see a comparison of the two modern-theory views about the vertical vibratory hub load 
for the 1,500-pound-gross-weight C.30 Autogiro at an advance ratio of 0.5 during a 2-g  
pull-up.  
 
 With this background in hand, let me proceed to a more practical example. I say more 
practical because vibration during a 2-g pull-out at an advance ratio of 0.5 (i.e., the extreme 
flight condition Cierva chose for stressing the rotor system) can be expected to exceed 
vibration in cruise flight. Therefore, consider the cruise situation where the flight speed is 
110 miles per hour, and the rotor speed is 200 revolutions per minute. Assume the C.30A is at 
a gross weight of 1,500 pounds. For this example, CAMRAD II [109], a most modern theory, 
is far superior to the calculator provided in Appendix H. Therefore, CAMRAD II is the source 
of the calculated vibratory forces (FZ and FX) shown in Fig. 2-94, tabulated by harmonic in 
Table 2-13, and required by Eq. (2.225), which is repeated here for convenience 

(2.225)   
2

pilot Z Z X
Z X2

AC AC AC AC AC

d Z F cF aF 1 dc dad F F
dt m I m I I

§ · § · § ·− += − = + −¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

  

where, again for the Cierva C.30A autogyro, the rotor longitudinal force (FX) acts 4 feet above 
the c.g., so a = + 4; The vertical force (FZ) acts 0.5 feet behind the c.g., so c = + 0.5; and the 
pilot seat is 3.5 feet behind the aircraft c.g., so d = + 3.5. The C.30A second moment of inertia 
in pitch is roughly 1,000 slug-feet squared, so IAC = 1,000, and at a gross weight of 
1,500 pounds, the aircraft mass (mAC) is 46.62 slugs.  
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Fig. 2-95. The vertical vibratory force of one blade in a three-bladed rotor system. 
 

 
Fig. 2-96. Estimates of vertical hub load for a three-bladed rotor system, µ = 0.5. 
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Table 2-13. Vibratory Hub Loads for the C.30A in Cruise as Predicted by CAMRAD II 

Harmonic FZ  (pounds) FX  (pounds) 
Mean 1,500 81 

Cos 3ψ –58 –4 
Sin 3ψ –18 +14 
Cos 6ψ –16 –3 
Sin 6ψ –2 –3 
Cos 9ψ –1 +2 
Sin 9ψ +1 –2 

 
 The calculation of vertical vibration at the pilot seat (d2Zpilot/dt2) is now, of course, 
quite straightforward. The “vertical bounce,” as Larsen described it, is quantified with  
Fig. 2-97. Vibration at the pilot seat is about ±0.05 g’s in cruise flight, which is close to 
imperceptible, but during the pull-out at high speed, the pilot could easily experience ±0.13 to  
±0.14 g’s. At this vibration level, pilots today would definitely express dissatisfaction in no 
uncertain terms.  
 
 

 
Fig. 2-97. Estimated C.30A vertical vibration at the pilot seat. 
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 This simple introduction to vibration created by n per rev (n being 3, 6, and 9 in this 
C.30A example) has only scratched the surface of the most vexing rotorcraft problem. The 
rotor system can produce moments and other forces that shake the machine, and the fuselage 
will respond with bending over and above rigid body deflections. Engines and propellers 
simply add to the vibration problem. Vibration caused by airflow interaction between the rotor 
and the airframe can be the most vexing of them all.  
 
2.10.3 C.30 Once-per-Revolution Vibration 
 
 There is a second potential vibration source that needs to be discussed. This is the 
likelihood of a once-per-revolution vibration. A primary source of this vibration is 
mismatched blades. You will recall in the discussion about blades, Section 2.9, Sanders and 
Rawson wrote in The Book of the C.19 Autogiro [50] that 

“Each blade is balanced to a standard weight so that all blades of the same type are 
interchangeable, provision being made for correcting weight at the outer end of the main spar.” 

This balancing only deals with the requirement met when balancing, for example, an 
automobile tire. It does not address blade mismatching due to blade element airfoil 
differences or blades of different twist. Despite tight tolerances called out on an engineering 
drawing, it is unrealistic to expect that manufacturing, even with the most skillful craftsmen, 
will produce “interchangeable” blades. Furthermore, there is little guarantee that a set of 
blades will remain identical over any extended period of service. Blades of the autogyro era 
absorbed moisture and warped, and frequent rebalancing was often required.  
 
 To appreciate this point about 1-per-rev vibration, consider three blades having, for 
some reason, different vertical force harmonics. That is, assume  

(2.239)   

( ) ( )
( ) ( )
( ) ( )

Z 1 o 1S 1S 1C 1C

Z2 o 1S 1S 1C 1C

Z3 o 1S 1S 1C 1C

F F F F1 sin F F1 cos

F F F F2 sin F F2 cos

F F F F3 sin F F3 cos

= + + ∆ ψ + + ∆ ψ

= + + ∆ ψ + + ∆ ψ

= + + ∆ ψ + + ∆ ψ

. 

In Eq. (2.239), the incremental forces (∆F1, ∆F2, and ∆F3) represent differences of each blade 
from some master blade. An engineering drawing or, more likely, some average blade from 
the collection of blades produced by manufacturing could define this master blade. Now the 
vertical force sum of the three blades is 

(2.240)   

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

Z o 1S 1S 1 1C 1C 1

1S 1S 1 1C 1C 1

1S 1S 1 1C 1C 1

F 3F F F1 sin F F1 cos

F F2 sin 120 F F2 cos 120

F F3 sin 240 F F3 cos 240

= + + ∆ ψ + + ∆ ψ

+ + ∆ ψ + + + ∆ ψ +
+ + ∆ ψ + + + ∆ ψ +

 

which, with some trigonometry, becomes 
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(2.241)   
( ) ( )

( ) ( )

Z o 1S 1S 1S 1C 1C 1

1C 1C 1C 1S 1S 1

1 3F 3F F1 F2 F3 F2 F3 sin
2 2

1 3F1 F2 F3 F2 F3 cos
2 2

ª º
= + ∆ − ∆ + ∆ − ∆ − ∆ ψ« »

¬ ¼
ª º

+ ∆ − ∆ + ∆ + ∆ − ∆ ψ« »
¬ ¼

. 

 
Notice immediately that there will be, in the practical world, a once-per-revolution vibration 
for any combination of incremental forces other than the perfect case where all incremental 
forces equal zero. The only practical questions are what the level of 1-per-rev vibration will 
be, and will the pilot notice it? 
 
 A very real example of unmatched blades is seen when the blades have unmatched 
twist. Cierva was quite satisfied with the performance of zero twisted blades, but I believe that 
autogyro era blades would have been lucky to match twist to within plus or minus one degree 
about zero. However, no quantitative data appears to exist. To correct the behavior of each 
blade in an unmatched set—at least during a ground run-up—the autogyro pioneers developed 
a tracking procedure. This procedure consisted of chalking the tips of each blade in the set. 
Each blade tip was chalked a different color. The rotor was run up and a ground engineer 
would let the blade tips touch a strip of cloth stretched along a tall pole (Fig. 2-98). The 
ground engineer allowed the blade tips to just “kiss” the cloth so that a colored chalk mark 
was made. He could then tell if all blades were tracking in the same plane. If, say, the blue 
blade was tracking high relative to the green and red blades, the autogyro would be shut 
down, and the root-end pitch of the blue blade would be adjusted to a lower pitch setting. 
When all blade chalk marks were superimposed, the effects of all sources of blade 
mismatching were deemed removed. Tracking 
and balancing a set of blades could be a lengthy 
process, although the art was improved with 
experience over time. 
 
 The premise of on-ground tracking is that 
if the tip displacement (a measure of blade 
coning angle) is equal for each blade in an 
unmatched set, then that is good enough. 
Unfortunately, the premise does not hold once 
forward flight is begun. The adverse effect of 
unmatched twist becomes more pronounced as 
forward speed is increased. To see this, consider 
the basic equations associated with the tracking 
procedure.  
 

 
Fig. 2-98. Blade tracking flag [23].    
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 To begin with, imagine three Cierva C.30A blades perfectly balanced but differing in 
twist. Each blade should have zero twist, but, unfortunately, blade 1 has a 1-degree washout 
(i.e., the tip pitch angle is nose up 1 degree relative to the root reference pitch angle). Blade 2 
has 0.5 degrees of washout, and blade 3 has 1 degree of wash in. Assume the deviation of 
twist from zero increases linearly from the blade root to the tip. To analyze this situation, the 
fundamental blade feathering equation, Eq. (2.73), must now be generalized to include a 
radial variation of pitch angle, so that  

(2.242)   x, o t 1C 1Cx B sin A cosψθ = θ + θ − ψ − ψ . 

Relative to this blade pitch equation, blade 1 twist (θt1) is + 1.0 degrees, blade 2 twist (θt2) is 
+ 0.5 degrees, and blade 3 twist (θt3) is – 1.0 degrees. Remember that (x = r/R). 
 
 Now, following Wheatley [75], the coning angle (βo) is approximated as 

(2.243)   ( )2 2
o hp o hp t hp hp 1C

1 1 1 5 11 1 B
2 3 4 5 6 3
γ ª º§ ·β = λ + θ + µ + θ + µ − µ¨ ¸« »© ¹¬ ¼

. 

The previous longitudinal flapping angle expression [see Eq. (2.76)] must also include the 
effect of twist, but the lateral flapping angle [see Eq. (2.77)] remains unchanged, so that now  

(2.244)   
( )

2
hp hp hp o hp t hp 1C 1S

1S
2
hp

12r8 32 2 1 B b
3 2 R r

a 11
2

β

β

ª ºª º§ ·µ λ + µ θ + µ θ − + µ + « »¨ ¸« » γ −© ¹¬ ¼ « »¬ ¼=
− µ

 

and 

(2.245)   
( )hp o 1S

1S 1C
2
hp

12r4 a
3 R r

b A11
2

β

β

ª º
µ β − « »

γ −« »¬ ¼= +
+ µ

. 

where all angles are in radians. 
 
 Next, assuming the blades are infinitely rigid, the tip deflection (Zt) during a tracking 
ground run-up is simply 

(2.246)   t oZ R= β . 

Because each C.30A blade has a slightly different twist, the coning angle of each blade will be 
slightly different in turn. The assumptions here are, of course, that each blade is installed at 
the same root collective pitch (θo) and that the average inflow ratio (λhp) is applicable to all 
blades. Of course, advance ratio (µhp) is zero because the autogyro is on the ground, and there 
is little, if any, wind. 
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 Because, in this example, each blade has a twist error relative to the master blade, each 
blade will have a deviation in coning angle and blade tip deflection with the 222-inch radius 
(R) C.30A blades. From Table 2-6, the C.30A blade Lock number (γ) is 10.06. The situation 
facing the ground engineer is tabulated as 

Deviation Master Blade 1 Blade 2 Blade 3 
Twist (deg) 0 + 1.0 + 0.5 – 1.0 
Coning (deg) 0 + 1.0 + 0.5 – 1.0 
Longitudinal Flapping (deg) 0 0 0       0 
Lateral Flapping (deg) 0 0 0       0 
Tip Deflection (in.) 0 3.87 high 1.94 high – 3.87 low 

 
This is an excessive out-of-track situation. The ground engineer must adjust the root 
collective pitch of each blade to correct the tip deflection caused by the twist deviation. If the 
relative coning angle is brought to zero on the ground (i.e., µhp = 0), that means 

(2.247)   ( )o t 0 t
1 1 50 so that the required deviation
4 5 4

θ + θ = ∆θ = − θ . 

The ground engineer would make the root-end collective pitch change, do another tracking 
run (or more), and then the pilot could takeoff and check 1-per-rev vibration in flight. The 
rotor system as flown would then have the blade settings of 
 

Deviation Master Blade 1 Blade 2 Blade 3 
Twist (deg) 0 + 1.0 + 0.5 – 1.0 
Collective Adjustment (deg) 0 – 1.25 – 0.5 + 1.25 
Master Collective (deg) 4.25 + 4.25 + 4.25 + 4.25 
Flight Collective (deg) 4.25 + 3.0 + 3.75 + 5.5 

 
 Now calculate, according to Eqs. (2.243), (2.244), and (2.245), the flapping angles in 
forward flight, say at an advance ratio (µhp) of 0.35 with an inflow ratio (λhp) of + 0.02. The 
results for each blade, provided in Table 2-14, are  
 

Table 2-14. Flapping Differences Due to Mismatched Blade Twist 
Parameter Master Blade 1 Blade 2 Blade 3 

Twist (deg) 0 + 1.0 + 0.5 – 1.0 
Flight Collective (deg) 4.25 + 5.0 + 5.75 + 7.5 
Ground Coning 0 0 0 0 
Advance Ratio 0.35 0.35 0.35 0.35 
Inflow Ratio 0.02 0.02 0.02 0.02 
Longitudinal Flapping (deg) 5.08 4.58 4.96 5.58 
Lateral Flapping (deg) 3.48 3.19 3.42 3.77 
Flight Coning (deg) 7.92 7.26 7.77 8.58 
Tip Deflection at 180-deg azimuth (in.) 50.37 45.87 49.32 54.86 
Tip Path Plane Split at 180-deg azimuth (in.) 0 – 4.50 – 1.05 + 4.49 
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The results in Table 2-14 show that the three blades are no longer tracking in forward flight. 
The pilot would, in fact, readily see three distinct rotor tip planes when looking forward (i.e., 
the 180-deg azimuth position). However, it is not at all clear how much 1-per-rev vibration he 
would feel.  
 
 The amount of 1-per-rev vibration due only to the vertical force (FZ) from one blade is 
found by solving 

(2.248)   ( )
R R 2

, ,2
Z 2

00

Zo Z1S Z1C

dL Z
One blade F d m d

d

F F sin F cos etc.

η ψ η ψ
η

§ ·∂§ ·= η − Ω η¨ ¸¨ ¸ ¨ ¸η ∂ ψ© ¹ © ¹
= + ψ + ψ +

´ ´
µ µµ ¶¶   

which, upon integration following Wheatley [75], gives the 1-per-rev forces (FZ1S and FZ1C) in 
pounds as 
(2.249)   

( )

2 2
2 2t b t

Z1S hp hp hp o hp t hp 1S hp 1C 1S

2 2
2t b t

Z1C hp 1S 1C hp 1C 1S

acRV m V2 1 3 1 9F 1 a 1 B b
2 3 3 4 3 4 2

acRV m V1 3 1F 1 b A B a
2 3 4 2 2

ρ ª º§ · § ·= µ λ + µ θ + µ θ − − µ − + µ −¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼
ρ ª º§ ·= + µ − − µ −¨ ¸« »© ¹¬ ¼

 . 

These equations are applied to each blade. The results, calculated using the C.30A as an 
example, are shown in Table 2-15. The C.30A is assumed to be cruising at sea level  
(ρ = 0.002378 slug/ft3) at 110 miles per hour with a rotor speed of 200 revolutions per minute. 
The airfoil lift-curve slope (a) is 5.73 per radian, and the blade running mass (mb) from 
Table 2-6 is 0.06888 slugs per foot. Remember that the C.30A was a direct control rotor 
system, so both longitudinal and lateral cyclic angles are zero (i.e., B1C and A1C = 0). 
 

Table 2-15. Vertical 1-per-rev Vibration Due to Mismatched Blade Twist 
Parameter Master Blade 1 Blade 2 Blade 3 

Twist (θt in deg) 0 +1.0 +0.5 –1.0 
Flight Collective (θo in deg) 4.25 +5.0 +5.75 +7.5 
Longitudinal Cyclic (B1C in deg) 0 0 0 0 
Lateral Cyclic (A1C in deg) 0 0 0 0 
Advance Ratio (µhp) 0.35 0.35 0.35 0.35 
Inflow Ratio (λhp) 0.02 0.02 0.02 0.02 
Longitudinal Flapping (a1S in deg) 5.08 4.58 4.96 5.58 
Lateral Flapping (b1S in deg) 3.48 3.19 3.42 3.77 
Coning (βo in deg) 7.92 7.26 7.77 8.58 
Vertical Force Sine (FZ1S in lbs) –208.1 –198.3 –208.3 –217.9 
Vertical Force Cosine (FZ1C in lbs) –494.3 –446.4 –482.4 –542.1 
Deviation Force Sine (∆F1S in lbs) 0 –16.25 –6.27 +16.25 
Deviation Force Cosine (∆F1C in lbs) 0 +2.97 +0.69 –2.97 
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 With the sine and cosine components of the deviation forces (∆F11S through ∆F31C)  
in-hand from the last two rows of Table 2-15, and following Eq. (2.241), the 1-per-rev vertical 
vibratory force is 

(2.250)   [ ] [ ]Z o 1 1F 3F 36.9 sin 74.0 cos= + − ψ + + ψ . 

This is the vertical vibratory 1-per-rev force that is transmitted from the rotor hub to the 
autogyro. The magnitude of the pilot seat vibration (in feet-per-second squared) is found from 
Eq. (2.227). The C.30A geometry is, again, a = + 4 feet, c = + 0.5 feet, d = + 3.5 feet, IAC = 
1,000 slug-feet squared, and mAC = 46.62 slugs. I have only considered the vertical vibratory 
force (FZ), so the horizontal vibratory force (FX) is taken as zero. The net results are that 

(2.251)   [ ] [ ]
2

pilot
2

d Z
0.86 sin t 1.72 cos t

dt
= − Ω + + Ω .  

Note here that the frequency of the vibration (ω) is once per rev, which means the frequency 
equals rotor speed (Ω) in radians per second. Finally, the maximum amplitude of the 1-per-rev 
vibration that the pilot feels is then simply 

(2.252)   ( ) ( )
2

2 2pilot 2
2

d Z
0.86 1.72 1.92 ft / sec = 0.06g

dt
= ± − + = ± ± .  

This is a quite unacceptable level of 1/rev vibration by today’s standards. 
 
 This illustration (using the simplest of theory) of how once-per-rev vibration due to 
mismatched blades comes about is, unfortunately, quite optimistic. A comparable calculation 
using modern advance methodology such as the Johnson CAMRAD II [109] gives 

(2.253)   [ ] [ ]Z o 1 1F 3F 48.3 sin 127.3 cos= + + ψ + + ψ . 

The magnitude of the pilot seat vibration (in feet-per-second squared) is again found from 
Eq. (2.227) with the result that 

(2.254)   [ ] [ ]
2

pilot
2

d Z
1.12 sin t 2.95 cos t

dt
= + Ω + + Ω .  

Finally, the maximum amplitude of the 1-per-rev vibration that the pilot feels is then simply 

(2.255)   ( ) ( )
2

2 2pilot 2
2

d Z
1.12 2.95 3.16 ft / sec = 0.098g

dt
= ± + + = ± ± .  

This 1-per-rev vibration level based on hub vibratory loads predicted with an up-to-date 
comprehensive theory is, of course, totally unacceptable. Rotorcraft industry today demands 
considerably tighter tolerances relative to blade mismatching, with a considerable increase in 
manufacturing costs. 
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2.10.4 Closing Remarks 
 
 This introductory discussion of vibration barely touches the surface of what Cierva 
described as the “most irritating of the secondary difficulties” and Larsen classified as 
“vertical bouncing.” As you will learn in Volume II—Helicopters, the rotorcraft industry has 
continually battled this problem with each new machine it has developed.  
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2.11 PERFORMANCE 
 
 
 The subject of aircraft performance is a very dear topic to those engaged in 
aeronautics. Cierva, with his invention and demonstration of the autogyro, simply added a 
whole new branch to the subject. His efforts in expanding the branch while “selling” his 
aircraft and its performance are easily traced using the three papers he presented to the Royal 
Aeronautical Society and the discussions that followed his presentations [3-5]. The three 
papers were presented in 5-year intervals and form, when supplemented with some equations 
and figures, a very interesting view of autogyro performance (and safety) versus what 
airplanes of the era offered. The views expressed by both supporters and critics make the birth 
of the rotorcraft industry a fascinating technology story.44  
 
2.11.1 Descent and Landing 
 
 Cierva presented his first paper before the Royal Aeronautical Society in October 
1925. It was published, along with audience discussion, in the January 1926 issue of the 
Society’s Journal [3]. Cierva’s paper, you will recall, followed the demonstration of his Model 
C.6A (shown in Fig. 2-99) at Farnborough, England, which many in the audience had seen. 
Cierva made it clear in the first three paragraphs of his paper that the autogyro was developed 
to solve the one shortcoming of the airplane—stalling at low speed. He notes that he and his 
brother, during 1911 glider experiments, “had some rather dangerous falls due to loss of 
flying speed, the most prolific cause of accidents to aeroplanes in their present form.” Cierva 
continued, saying,  

“In 1918 I had constructed a large biplane with three engines which, after most satisfactory 
trial flights, was wrecked precisely by losing flying speed. The accident diverted all my 
energies to the solution of the problem of eliminating this danger; for the possibility of losing 
flying speed and the uncertainties of landing are, in fact, the only faults with which we can 
reproach the aeroplane, which otherwise is practically perfect in point of speed and 
manœuvrability.” 

From Cierva’s point of view, his aircraft was created to improve aviation safety.  
 
 The first questions asked of Cierva at the conclusion of the paper came from 
Mr. C. N. H. Lock (who, along with Glauert and Wheatley, laid the technology foundation for 
rotorcraft). Lock, after beginning with several complimentary remarks, posed five very direct 
questions, asking, 

“First of all…..are there any conditions which may occur in flight which might stop the 
windmill from rotating? Secondly…….might there possibility be a danger of the rotating 
wings stopping if the machine dived very rapidly at a high speed and then checked itself by 
raising the elevators as in an ordinary aeroplane when diving and flattening out? Thirdly, what 
would be the actual velocity of descent in a very steep glide? Fourthly, would it be possible for 
the machine to descend absolutely vertically at a safe speed apart from considerations of 
stability?

                                                 
44 In October 1925, Cierva spoke very little English, and his paper was read to the Society by the Chairman, Sir 
Sefton Brancker. Throughout this first paper, Cierva’s machine is referred to as an autogyro or Autogyro. In the 
second and third papers, the spelling became autogiro and, occasionally, Autogiro. 
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Fig. 2-99. The Cierva Model C.6A as demonstrated at Farnborough, England  
in October 1925 [7]. 

 
 It was the fifth question that Lock asked which raised considerable speculation and 
various opinions about the landing performance of the autogyro. Lock asked Cierva  

“whether he anticipated that the resistance of the Autogyro, in falling vertically, would be very 
much greater than that of a parachute of area equal to the disc area of the Autogyro, since a 
simple calculation indicates that a parachute having the same area and loading as the Autogyro 
would fall at a velocity of between 30 and 40 feet per second.” 

Cierva, responding to Lock, said that “in vertical descent the speed was about 3 to 4 meters 
per second (about 9.8 to 13 feet per second); the disc being nearly perpendicular to the 
vertical path.” Cierva also added that “the landing speed with descent at 30o was about 4 m./s. 
[13 feet per second] horizontal, 2 m./s. [6.6 feet per second] vertical; the disc being nearly 
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horizontal and therefore about 30o to the flight path.” Furthermore, Cierva, “in answer to the 
general queries as to area, rotational speed and loading of windmill blades, by nearly every 
speaker,” gave the following data for the Model C. 6A,  

“Blade area = 5.5 × 0.75 × 4 = 16.5 m.2 
  Total mass 900 kg. 
  Blades 40 × 4 = 160 kg. 
  Loading = 900/16.5 = 54.5 kg. /m.2 
  Available power 90 h.p.” 

In English units, the four blades had a diameter (D) of 36.09 feet and blade chord (c) was 
29.53 inches. The rotor solidity (σ) was 0.1736. The flight weight (GW) was 1,980 pounds, 
and each blade weighed 88.2 pounds. The disc area (A = πR2) was 1,023 square feet, making 
the disc loading (GW/A) 1.94 pounds per square foot. Cierva further noted that “the angular 
velocity remains about constant at about 130 r.p.m.” This is a tip speed (Vt) of 245 feet per 
second. 
 
 The fact that Lock chose to compare the autogyro vertical descent performance to a 
parachute is, of course, not surprising. After all, the parachute was the only aerodynamic 
device the aeronautical world had in 1925 that descended in the manner many in the audience 
had seen demonstrated by the C.6A. Parachutes of the day achieved a measured drag 
coefficient (CD = D/qS) on the order of 1.2, to perhaps 1.4,45 which leads to a descent velocity 
(R/D) equation of 

(2.256)   
D

2WR / D
C S

=
ρ

.  

A parachute, having an inflated diameter of 36.09 feet (equal to the C.6A rotor diameter, so 
S = 1,023 square feet) with a drag coefficient (CD) of 1.2 and carrying a weight of 1,980 
pounds, has a rate of descent of 36.8 feet per second at sea level where the air density (ρ) is 
0.002378 slugs per cubic foot. Lock said, “a parachute having the same area and loading as 
the [C.6A] Autogyro would fall at a velocity of between 30 and 40 feet per second.” The fifth 
question Lock asked in regards to the first Cierva paper [4] inferred that the C.6A actual rate 
of descent of 10 to 13 feet per second—which few in the audience would debate having seen 
the flight demonstrations—meant that the C.6A rotor had a drag coefficient of 9.6 to 16.3!  
 
 When Lock asked his fifth question he had experimental data for vertically descending 
model rotors in hand. This data came from France [117], the United States [118], and his own 
tests in England [119]. (Lock had completed his work prior to the Cierva demonstration of the 
C.6A, but his formal report came later.) These data generally confirmed that a rotor would 
descend at about the same speed as a parachute of equal diameter, carrying the same load. Just 
as importantly, the descending rotor did not follow the Glauert theory for an airplane 
propeller, which acted in a “normal state.” This early work [117-120] (as the titles state) was 
aimed not at an autogyro, but rather at the helicopter and specifically at the vertical descent 
                                                 
45 The drag coefficient of a parachute is rather dependent on the porosity of the material as pointed out by 
Hoerner [116]. 
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performance of the helicopter following loss of power. What this meant to the rotorcraft 
pioneers of the era was that autorotating rotor thrust in vertical descent (αhp = 90 degrees) 
would be calculated as 

(2.257)   ( ) ( )2 2
hp D

1T R / D R C
2

= ρ π   

and that Glauert’s suggestion for the rotor-induced velocity [Eq. (2.38) repeated her for 
convenience]  

(2.258)   
( ) ( ) ( )

hp

2 22
FP hp FP hp

T
v

2 R V sin v V cos
=

ρ π α − + α
 

had serious limitations when the hub plane angle of attack (αhp) was positive, and the flight 
path velocity (VFP) was of certain magnitudes.  
 
 Before completing the discussion of vertical descent, it is worth taking a moment to 
examine Glauert’s suggestion [Eq. (2.258)]. Glauert’s equation is a quartic in induced velocity 
(v) and therefore has four roots, not all roots being meaningful. The quartic is 

(2.259)   ( ) ( ) ( ) ( )
42

2
2 2 hp hp

FP hp FP hp 2 2
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which expands to 

(2.260)   ( ) ( ) ( )44 3 2 2
FP hp FP hv 2V sin v V v v 0− α + − = . 

The solution is generalized by defining ( )
hp

h 2

T
v

2 R
=

ρ π
 as the reference velocity and then 

dividing through by this reference velocity raised to the fourth power. The result is a quartic 
of the form 

(2.261)   
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and the solution to this quartic for the most applicable root for autogyros (and helicopters) is 
given in Appendix I and seen visually in Fig. 2-100.  
 
 Now consider the autorotating rotor in the general sense. The autorotating rotor 
operates with no shaft power input. Therefore, from Eq. (2.60), you can write 

(2.262)   ( ) ( ) ( )
2 3

t do 2
hp hp hp hp hp FP hp

R V C
Power 0 T v T sin H cos V 1 3

8
ρ π σ

≡ = − α + α + + µ . 
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Fig. 2-100. The Glauert theory to calculate induced velocity. 

 

In vertical descent, the hub plane angle of attack (αhp) is 90 degrees, the hub plane advance 
ratio (µhp) is zero, and the flight path velocity (VFP) becomes a rate of descent (R/D), in which 
case Eq. (2.262) reduces to  

(2.263)   ( ) ( )2 3
t do

hp hp FP

R V C
Power 0 T v T V

8
ρ π σ

≡ = − +  

and the rate of descent is calculated as 

(2.264)   
( )2 3

t do
FP

hp

R V C
V R / D v

8T
ρ π σ

= = + . 

The second term in Eq. (2.264), the profile power per pound of thrust (a velocity), can be 
partially evaluated based on the dimensions Cierva quoted. That is  

( ) ( )( )( ) ( )
( ) ( ) ( )

32 3
t do

do do
hp

R V C 0.002378 1,023 245 0.1736
C 392 C

8T 8 1,980
ρ π σ

= = . 
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As you can see, the rate of descent required to just overcome the blade drag depends on the 
airfoil drag coefficient (Cdo), which, as a minimum, is on the order of 0.011.46 On this basis, 
no less than 4 feet per second of descent velocity is required to maintain rotor speed at 
130 revolutions per minute during steady-state vertical descent with the rotor providing 
1,980 pounds of thrust, as in the case of the Cierva C.6A.  
 
 The descent rate must also provide energy to create rotor thrust. In the ideal case of 
zero airfoil drag (i.e., Cdo = 0), the rate of descent required is simply VFP = R/D = v. This is 
where the Glauert theory fails. A quick look at Eq. (2.261) shows that if VFP = v and hub plane 
angle of attack is 90 degrees, the quartic returns –1 = 0, and no solution exists. To overcome 
this situation, Lock and others turned to experiment and empirical methods to obtain the 
autogyro induced velocity in vertical descent. The parallel to a parachute was the beginning. 
 
 When an autorotating rotor is in steady vertical descent, little, if any, net flow goes 
through the rotor disc just as in a parachute. That is, the rotor vertical descent velocity is 
directly opposed by the mean induced velocity (i.e., FPV v 0− ≈ ). Accepting this 
approximation means that the rate of descent, following Eq. (2.256) and assuming a parachute 
drag coefficient (CD) of 1.2, is calculated as 

(2.265)   ( )FP 2
D

2W WV R / D 1.29
C S R

= = =
ρ ρ π

  

and the induced velocity (v) is approximated from Eq. (2.264) as 

(2.266)   
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Using the Cierva C.6A data, the rate of descent is 36.8 feet per second, 4 feet per second of 
which is used to turn the rotor against its own drag. Thus, the mean induced velocity (v) is 
about 32.8 feet per second.  
 
 This derived point can be placed on the Glauert induced velocity graph, Fig. 2-100, by 
calculating the reference velocity (vh), so that 

(2.267)   ( ) ( )( )
hp

h 2

T 1,980v 20 ft / sec
2 0.002378 1,0232 R

= = =
ρ π

  

and it follows that 

                                                 
46 Lock, in a very thorough manner, tested the Cierva C.6A rotor blade airfoil. The experimental aerodynamic 
properties of this airfoil, the Göttingen 429, were reported [121] in November 1926. The testing covered the 
Reynolds number range from 64,000 to 960,000 using 4-inch and 18-inch chord models. The full-scale C.6A 
rotor blade had a chord of 29.53 inches. At a tip speed of 245 feet per second, the Reynolds number of the tip 
airfoil is on the order of 3,855,000. 
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(2.268)   FP

h h

Vv 32.8 36.81.64 at 1.84
v 20 v 20

= = = = .  

This point is shown in Fig. 2-101 as the large, solid black circle. 
 
 The Cierva C.6A demonstration—of what many though was vertical descent at a rate 
slower than a parachute—provided a research challenge to Glauert and Lock. They, along 
with Bateman, Townend, Caygill, and Nutt, immediately began an experimental program 
[119-124] in search of explanations for the difference between the descent rates Cierva quoted 
and model results. By the end of 1926, Caygill and Nutt [124], based on drop tests of 2.2-foot-
diameter and 10-foot-diameter models, drew the conclusion that “no evidence has been found 
of the very high value [of equivalent parachute drag coefficient] indicated by the full scale 
[C.6A] demonstration flights.” Caygill and Nutt also wrote that “no further dropping tests are 
proposed. Further wind tunnel tests are being made by the National Physical Laboratory, and 
further full scale tests will be made by the Royal Aircraft Establishment.” In short, truly 
vertical autorotation testing with models consistently led to a parachute-like drag coefficient 
of 1.2. No theoretical or experimental explanation was found for the vertical descent rates that 
Cierva quoted, and the researchers wanted more flight test data and more wind tunnel tests. 
 
 Model rotor testing in vertical descent did not end in 1926. In fact, it was not until 
1951, when Castles and Gray at Georgia Tech in the U.S.A. provided definitive wind tunnel 
test results [125], that the researchers could, with some confidence, empirically describe rotor 
performance in vertical descent. They followed the Lock experimental approach [119], but 
only a portion of the Glauert analysis approach [122]. Castles’ and Gray’s models were 
powered and their tests were conducted in an open-throat wind tunnel, a much closer 
approximation to free-air testing than the closed-throat wind tunnel Lock used. The Castles 
and Gray models were powered (as were Lock’s) because their tests encompassed helicopters 
descending at partial power. Fortunately, they investigated autorotation and extended their 
investigation into the windmill regime where a rotor absorbs energy from the wind.  
 
 Castles and Gray, with very careful measurements of key parameters, were able to 
establish an experimentally defined trend for the induced velocity ratio (v/vh) as a function of 
the flight path velocity ratio (VFP/vh) for the 90-degree hub plane angle of attack (αhp). To 
obtain this trend, they used the Glauert [122] simple blade element momentum theory for 
thrust, a refinement to Eq. (2.49), to solve for induced velocity. That is, they let 
 

(2.269)   ( ) ( ) ( )hp 2 2 3 2T
hp c hp o c hp 1C c2

t

TC a 1 1 3 11 x 1 1 x B 1 x
bcRV 2 2 3 2 2

ª º§ ·= = λ − + + µ θ − − µ −¨ ¸« »σ ρ © ¹¬ ¼
 

where the refinement was to account for the actual blade length. The airfoil portion of most 
blades was not apparent until some distance out from the centerline of rotation. This radial 
distance was called the root cutout radius (rc = xcR).  
 
 Glauert, and Castles and Gray, solved Eq. (2.269) for inflow ratio (λhp) with the 
advance ratio (µhp) set to zero (i.e., vertical descent), so that 
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and the induced velocity ratioed to tip speed (Vt) is then defined as 

(2.271)   FP
hp

t t

Vv
V V

= − λ . 

At this point, the analysis by Castles and Gray departed from the Glauert and Lock approach 
of 1925.47 From the measured rotor thrust, Castles and Gray calculated the reference velocity 
(vh) and its ratio to tip speed (Vt) as 

(2.272)   ( ) ( )
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and this leads directly to the nondimensional form of  

(2.273)   hpFP

h h T

Vv
v v C / 2

λ
= − . 

  
 This approach to solving backwards for induced velocity was successful because 
(1) the collective pitch (θo) for the untwisted, rectangular blades was accurately measured; 
(2) the test conditions of wind tunnel speed (VFP), tip speed (Vt), and density (ρ) were 
controlled in the open-throat wind tunnel; and (3) thrust and torque were accurately recorded 
from a balance. Blades for the Castle and Gray models were built with the NACA 0015 
airfoil, and airfoil test results gave the lift-curve slope (a) as 5.73 per radian. The results of 
data reduction from the Castles and Gray 4- and 6-foot-diameter models (NACA TN 2474) 
are shown with the open-circle points in Fig. 2-101.  
 
 Based on the empirical results shown in Fig. 2-101, two equations are needed to 
estimate vertical descending rotor performance. These two equations allow power required to 
be calculated over a very large range in the flight path velocity (i.e., rate of descent). Using 

Eq. (2.263) as a basis, when FP

h

V0 1.5
v

≤ ≤   

                                                 
47 Glauert and Lock, in an effort to adapt their propeller theory of the era to vertically descending rotors, 
introduced two empirical parameters, (1/f) and (1/F) that, politely said, were really confusing, at least to me. In 
1947 [126] Lock tried to clarify their early work, but many rotorcraft engineers had come to the conclusion that 
their experiments and analysis from 1925 were inadequate or, more probably, just plain wrong. Their primary 
experiment, R&M 1014, was with a two-bladed, 3-foot-diameter rotor in a 7- by 7-foot, closed-throat wind 
tunnel. This was too much rotor for such a small tunnel, and no reliable tunnel corrections were known, which 
cast considerable doubt on the experimental data. My analysis of R&M 1014 data following Castle and Gray—
but making a 1-degree change in collective pitch—is shown in Fig. 2-101 with the × symbol. I believe that 
Glauert and Lock did obtain a little meaningful data, but their data reduction and analysis led to considerable 
confusion in the decades that followed. I also re-analyzed Munk’s NACA TN 221 [118] and found that this early 
test (1922) was quite acceptable as the solid black squares in Fig. 2-101 show. 
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 Fig. 2-101, in one form or another, is one of the classic curves that all rotorcraft 
engineers encounter. It is frequently used to define a region of vertical descent (approximately 
VFP/vh = 0 to 1.7) where the descending rotor becomes increasingly immersed in its own 
turbulent wake. This region is commonly referred to as the vortex ring state. The vortex ring 
state is a very important avoid region for helicopters, particularly when pilots attempt to 
descend vertically from a hover by reducing power (a subject I will discuss more completely 
later). Of course, the autogyro is always flying outside the vortex ring state (i.e., VFP/vh > 1.7), 
in the region commonly called the windmill brake state.  
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Fig. 2-101. Induced velocity of a rotor in vertical descent. 
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 The preceding, somewhat lengthy, introduction to the Glauert quartic equation, the 
efforts to overcome its shortcomings with empirical trends [Fig. 2-101], and then applying 
results to estimate induced velocity (v) in all regimes of flight [see Eq. (2.262)] is still an 
evolving story. However, autogyro (and helicopter) development and flight testing was not 
delayed at all while Glauert, Lock, and many others pursued their research.  
 
 Now let me leave the discussion of the Glauert induced velocity equation and return to 
the main story about performance. 
 
2.11.2 Gliding and Landing 
 
 Cierva presented his second paper before the Royal Aeronautical Society on February 
13, 1930. It was published in the Society’s Journal in November 1930 [4]. Introducing Cierva 
(who then had an excellent command of English), the Chairman noted that “of the fourteen 
types which had been produced recently in this and other countries, the inventor and designer, 
Senor de la Cierva, had himself made all the first tests; so he at least had absolute confidence 
in his own invention.” When Cierva took the podium, he addressed two topics—product 
development and research—saying (my comments are in brackets) 

 “Today, taking advantage of your kind invitation, I come before you to tell you of 
how the crude experimental autogiros of 1925 [the C.6A,] have been developed into practical 
flying machines [the C.19, Fig. 2-15, and the Pitcairn PCA-2, Fig. 2-18]. I will also deal with 
a number of theoretical points in justification of the assertions I have often made about the 
qualities of the autogiro and in answer to the criticisms of which my system has been made the 
object from time to time.” 

 
 With respect to product development, Cierva showed two slides of the C.19 and 
pointed out some new features, all in four paragraphs of an eight-page paper! Then he began 
to “deal with a number of theoretical points.” First, he restated a reasonable view (in my 
opinion) of the growing competition between autogyros and airplanes of the era, saying  

 “The autogiros lately produced [the C.19 and the PCA-2] have no better performance 
than the equivalent conventional aeroplanes…[and]…the comparison in performance between 
existing autogiros of several types and best equivalent aeroplanes can be summed up as 
follow:–Top speed, five to ten per cent less. Rate of climb, twenty per cent less. Steepness of 
climb, fifty percent more. Minimum horizontal speed, fifty per cent less. ……If they 
[autogyros] fall a little short of the best aeroplanes in that rather vague quality which is called 
“performance” they have a performance of their own, which is utility and safety.” 

He then alerted the audience about the still current landing and vertical descent issue, saying 
 “The landing qualities are so well known that it is hardly necessary for me to mention 
them. In any case, I want to state that the present autogiro can, with proper handling, be landed 
in perfectly still air with no run at all after touching the ground. In steep descent of about forty-
five degrees the vertical speed of the latest machines is not more than 12 to 13 feet per second. 
I will deal later in this paper with the theory of the purely vertical descent, one of the more 
discussed performances of the autogiro.” 

Finally, he addressed the general topic of autogyro aerodynamics, saying 
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 “The aerodynamics of the autogiro is one of the most complex problems that can be 
imagined. A considerable number of parameters, both mechanical and aerodynamical, make it 
really awkward to handle from a purely theoretical point of view. On the other hand, scale 
effect being astonishingly great, wind channel experiments [such as reported by Lock in R&M 
1154] are of little use to check any approximate theory. Together with this, the extraordinary 
sensitiveness of the autogiro to changes in certain parameters, such as pitch and profile drag, 
explains why both eminent mathematicians [for instance, Glauert] and experimenters [for 
instance, Lock] have conservatively fixed the best lift-on-drag ratio of the autogiro [rotor 
alone] somewhere near seven (in some wind channel experiments it was only three point five), 
its maximum lift coefficient around point five [0.5] and its maximum thrust coefficient at about 
point seven [0.7], referred to the disc area. 

 I must say that some of the machines I produced in the course of the experimental 
development were not much better than what could be expected from those conclusions [recall 
the quite negative views Glauert expressed in R&M 1111]. I took more than one false step.  

 
 To continue this discussion of performance, let me address the three points somewhat 
out of order. I will continue with landing, then move to lift and drag of rotor blades alone, and 
conclude with autogyro performance compared to airplane performance in the period around 
1930. 
 
 One of the reasons Cierva could say that “the landing qualities are so well known that 
it is hardly necessary for me to mention them” is because of The Book of the Autogiro, written 
by Sanders and Rawson [50]. In the chapter about how to fly the C.19 Autogiro, they include 
three topics: gliding and vertical descent, approach to landing, and landing. Their instructions, 
with some highlighting (italics) and notes by me, read as follows: 
 

Gliding and Vertical Descent. 
 
 The machine will glide at 55 to 60 miles per hour like the normal aircraft. If the 
“stick” is pulled back the forward speed drops and the angle of descent increases until the 
condition, which is popularly termed “vertical descent,” is reached. With the “stick” hard back 
and throttle shut the machine takes up a nearly horizontal position and descends at a steep 
angle on an even keel somewhat like a parachute. The horizontal forward speed as registered 
on the air speed indicator in this condition of flight is 25 miles per hour, but in actual fact it is 
considerably less. Turns can be made with impunity in this condition of flight, the machine 
taking its own bank, but the response to controls, with the exception of the elevator, is 
necessarily somewhat sluggish. 

Approach to Land. 
 
 The approach to land is normally made by gliding in at a rather steeper angle with 
relation to the ground than that taken by a normal aircraft, though actually the angle of the 
machine with relation to the horizontal is rather flat. If this angle is correctly judged the air 
speed indicator should register 35–40 miles per hour. If undershooting the landing mark, ease 
the “stick” forward so as to give the machine an increased speed and a flatter angle of glide, 
and if overshooting, bring the “stick” back so as to lose height by decreasing forward speed 
and making a more “vertical descent,” but do not make the latter manoeuvre as a general rule 
if the machine is less than 50 feet from the ground. There is no need to perform an “S” turn in 
order to land on a mark. 
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Landing. 
 
 Land as near as possible into wind, as any drift is greatly accentuated at the low, 
forward speed with which the machine touches the earth. When 5 to 20 feet from the ground, 
pull the “stick” back smoothly but fairly quickly. The machine will hang against the wind and 
parachute gently on to the ground on an even keel, [This is called a flare, which keeps the rotor 
speed up and decelerates the autogyro] provided it is kept straight with the rudder, though it is 
not as liable to veer as a normal aircraft. The landing will be light or heavy according to the 
judgment exercised in gauging the height from the ground from which the machine is allowed 
to drop, a 5-feet drop being the optimum condition.  

 “Vertical descent” right on to the ground should only be used for landing in case of 
emergency as, though the undercarriage is designed to withstand the shock if occasion 
demands, it is unnecessary to submit it repeatedly to the abnormal stresses imposed by a 
landing of this sort. If the wind speed is from 25–40 miles per hour, it is necessary to land in 
the manner of a normal aircraft to avoid touching the ground with a reversed ground speed. 
Above 40 miles per hour wind speed a landing party will be necessary to hold the machine on 
the ground when landing, unless the machine is flown close to the ground in the lee of a 
building or other wind-break available. 

 
Clearly, vertical descents were not encouraged in landing the C.19, despite Cierva’s position 
that the rate of descent would be about 15 feet per second. In his second paper Cierva did not 
include any measured data that supported his position, and he was somewhat taken-to-task by 
several members of the Society.  
 
 The first quantitative picture about autogyro gliding performance became public when 
John Wheatley’s test report on the Pitcairn PCA-2 was published by the N.A.C.A. in the 
United States [127]. Wheatley tested the PCA-2 at a gross weight (GW) of 2,940 pounds. Its 
rotor diameter (D) was 45 feet and, with four blades of 22-inch chord (c), the PCA-2 rotor had 
a solidity (σ) of 0.0976. The disc loading (GW/A) was nominally 1.85. The rotor area (A) was 
1,588 square feet, and the wing area (Sw) was 101 square feet. The gliding performance of the 
PCA-2, as obtained by Wheatley and described in terms of vertical descent speed versus 
horizontal speed, is shown in Fig. 2-102.  
 
 The flight test data Wheatley carefully obtained illustrates that the resultant of vertical 
and horizontal velocity is constant after the descent angle reaches 45 degrees—a very useful 
trend. Thus, the resultant force in slow speed gliding is nearly constant for 45 to 90 degrees of 
descent angle. The constant is, as we know today, the vertical rate of descent equivalent to a 
parachute. Stated more precisely, low speed “gliding” performance at descent angles greater 
than 45 degrees is described simply by the relationship 

(2.276)   ( ) ( ) ( )
2 2 hp

horizontal 21
D2

T
R / D V

C R
+ =

ρ π
 

where the “parachutal” drag coefficient (CD) is reasonably taken as 1.2. 
 
 You will notice two additional sets of data in Fig. 2-102—one set shown with open 
triangles and the other with solid squares. These data are measured speeds at touchdown 
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during landing of the Pitcairn PCA-2 by an average pilot in generally low wind conditions. It 
is interesting how this test program came about. Shortly after the Wheatley flight research 
program [127], the Bureau of Air Commerce (within the U. S. Department of Commerce) 
requested that the N.A.C.A. conduct “an investigation to determine the rate of descent, the 
horizontal velocity, and the attitude at contact of an autogiro in landings.” The Bureau wanted 
data to examine the strength and shock absorption requirement for an autogyro. The Pitcairn 
PCA-2 was the test aircraft. The flight testing was done at the N.A.C.A. Langley and reported 
by Peck [128], who wrote that the results  

“disclosed that the maximum rate of descent at contact with the ground (10.6 feet per second) 
was less than the minimum rate of descent attainable in a steady glide (15.8 feet per second); 
that the rates of descent at contact were of the same order of magnitude as those experienced 
by conventional airplanes in landings; that flared landings resulted in very low horizontal 
velocities at contact; and that unexpectedly high lift and drag force coefficients were 
developed in the latter stages of the flared landings.” 

Peck drew the conclusion that the rate of descent at touchdown was quite dependent on when 
the pilot began leveling off or flaring. The when was measured by that height above the 
ground when the stick was pulled back and elevator input appeared [Fig. 2-103]. 
 
A key point that emerged from the PCA-2 landing tests was that rotor speed remained in the 
range of 129 to 136 revolutions, which was only slightly below the normal flight rotor speed 
of 140 revolutions per minute. Peck wrote that 

“the reasons for the constant rotor speeds during the accelerated portions of the landing 
approaches and the unexpectedly high forces coefficients [CL about 2.1, CD about 1.8 based on 
flight path velocity and rotor swept area] prevailing during the flared landings are impossible 
to explain owing to lack of development of autogiro theory covering accelerated flight and the 
influence of ground effect on the effective angle of attack. It is believed, however, that a major 
contributing factor toward the high force coefficients is a relatively large ground effect at the 
large angles of attack [about 45 degrees] and low airspeeds attained in the abruptly flared 
landings.” 

The ability of the pilot to flare and not stall—while not predictable at the time—was a distinct 
advantage to lowering forward speed and rate of descent at touchdown. 
 
 Cierva made it quite clear in his second paper to the Royal Aeronautical Society that 
“real vertical descents are difficult, since, by construction, the center of gravity of the machine 
is placed in front of the axis of the rotor, so that a purely vertical descent can only be obtained 
during a short period…...” However, he devoted nearly two pages to his theory of vertical 
descent trying to construct the trailing vortex wake structure of the vertically descending 
rotor. He based his theory on the flow visualization data available at the time [123, 124, 129]. 
The more knowledgeable audience members did not buy his views, and the subject seems to 
have been dropped. Arguments about vertical descents not withstanding, the landing of an 
autogyro was unquestionably simple.  
 
 A fitting way to close this discussion of the autogyro gliding and landing performance 
comes from the chairman (president of the Society) of the meeting on February 13, 1930, 
when Cierva completed his talk. To open the discussion, he said that 
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 “he had been fortunate enough to be flying one of the later models [probably a C.19] on 
several occasions, and he had been amazed at the performance of the machine in the air. When 
one arrived over the aerodrome, say at 1,000 feet, and one found merely by casually shutting 
off the engine that the machine would ultimately arrive on the ground without doing anything 
else at all, it did take one a little time, if one were accustomed to flying the ordinary machine 
[an airplane], to get used to sitting perfectly still and admiring the surrounding scenery. But 
that was undoubtedly what happened. The ground simply came up in a gentle fashion, as the 
machine approached it at somewhere round 15 ft. per second, which the under-carriage was 
capable of coping with.” 

 
2.11.3 Maximum L/D 
 
 Cierva, in his second paper [4] presented before the Royal Aeronautical Society on 
February 13, 1930, addressed the subject of autogyro rotor aerodynamics, which is, he said, 
“one of the most complex problems that can be imagined.” This technical subject, along with 
vertical descent, appears to have escalated an engineering difference of opinion (between 
Cierva on the one side, and Glauert and Lock on the other) that began, I will guess, in the 
autumn of 1926. Peter Brooks recounted the situation in his book [7] as follows: 

 “As a result of the British Air Ministry’s sponsorship of Autogiro development,48 the 
Royal Aircraft Establishment also undertook numerous investigations into the Autogiro’s 
characteristics. This work was notably done by H. Glauert, C.N.H. Lock, J.A. Beavan, P.A. 
Tufton, J.B.B. Owen, and a number of others, their findings being fully written-up in official 
RAE and Aeronautical Research Committee R & M reports. On January 20, 1927, Glauert also 
read an important paper before the Royal Aeronautical Society on the theory of the gyroplane. 
Despite the fact that this paper correctly defined the mechanism, performance, and 
fundamental limitations of rotors with flapping blades, Cierva publicly took strong exception 
to almost every point Glauert made. He rather unfortunately gave the impression that he 
resented other investigators in the field he had made his own. This attitude, in its turn, 
probably contributed to the antagonism toward the Autogiro which seems to have existed in 
certain official circles and in at least part of the British technical press – specifically in The 
Aeroplane, under its controversial and astringent editor, the formidable C.G. Grey.” 

 
 Brooks’ recounting of the January 20, 1927 presentation that Glauert made to the 
Royal Aeronautical Society, and the reaction Cierva had to it, does not convey the magnitude 
of the controversy that was stirred up. (I can only recommend that you read Glauert’s 
published paper [131], and particularly the discussion that followed, for yourself.) First of all, 
Cierva did not attend the meeting. Instead, he sent a letter asking that it be read “after the 
lecture.” In fact, Colonel Semple, Chairman of the Society, who presided at the meeting 
concluded his introduction of Glauert (who “needs no introduction to you. His reputation in 
aerodynamics is international as you well know”) saying 

“The papers which have been handed round are copies of a letter sent to me by Senior de la 
Cierva as his contribution to the discussion. He excuses himself from coming to speak in 
person on the grounds of his difficulty in speaking English. [Cierva had also written “owing to 
the uncertainty of my being in London on the date arrange.”] I have had these copies circulated 
so that you may appreciate his views and so that time during the discussion may be saved.” 

                                                 
48 Cierva was very fortunate to have the support of the Air Ministry. Mr. H. E. Wimperis, Director of Scientific 
Research at the Ministry, was instrumental in getting Cierva to come to England and was enthusiastic from the 
onset [130]. He remained a staunch supporter of rotorcraft.  
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When Handley Page49 spoke during the discussion, he must have captured the mood of the 
audience when he said, 

“I think one of the most interesting things about this paper [Glauert’s lecture] is the 
extraordinary divergence of opinion among the experts. ……. When the next paper comes I 
hope it will be a paper from Senior de la Cierva, but I suppose it will be replied to by letter 
from Mr. Glauert, who will be unable to be present. I do hope, however, that then we shall 
have the facts of the whole thing.” [The next paper was Cierva’s lecture of February 13, 1930, 
and there was no response by Glauert.] 

 
 Handley Page was, I think, even more disgusted than his full discussion remarks 
imply. He had come to Glauert’s January 1927 lecture expecting to see theory developed and 
compared to available test data. Glauert presented not one shred of evidence along those lines. 
Three years later, when Cierva responded to Glauert with his second lecture [4] in February 
1930, Handley Page, if he was there (no discussion by him is included), would have been 
even more disgusted. Cierva presented absolutely no information about his theory and no test 
data. He simply said, 

 “My engineering theories, all based on energy equations since 1924 and very similar 
in general lines to that developed later by Mr. C. N. H. Lock, and published by the Air Ministry 
in the R. & M. 1127 in 1927, were not a useful guide to me until, in 1928, I succeeded in 
finding an analytical method of integrating the frictional losses of energy, when the aerofoil 
used is the Göttingen 429, which gives the average profile drag in any conditions and for any 
value of the parameters defining a rotor. The theory [11] completed in this manner has allowed 
me to produce autogiros with the correct proportions [recall the reduction in rotor solidity 
shown in Table 2-5] and I can safely say that the present results check with amazing accuracy 
the simple assumptions which form the basis of my theory.” [Cierva also did not give one 
equation or theory versus test data comparison to support this statement!] 

 
 The dominant issue in the Cierva–Glauert standoff was the current and future 
performance of the autogyro and—quite specifically—the maximum lift-to-drag ratio of a 
rotor. Glauert gave his initial pessimistic view in November 1926 with R&M No. 1111. Then 
Glauert used the lecture before the Royal Aeronautical Society on January 20, 1927 to further 
put Cierva’s invention in its place. Understandably, Cierva did not like it. 
 
 Cierva, in the second paragraph of his letter, which the chairman had distributed 
before Glauert began his lecture, writes: 

“In the first place I must, with respect, record my protest against the manner in which Mr. 
Glauert has made assertions in an almost axiomatic form, from which the evident conclusion 
must be drawn that the autogiro is, in effect useless. Such assertions are based only on very 
incomplete and uncertain calculations which I am able to state are not at all in agreement with 
the experimental results.” 

Cierva became even more emphatic as his letter went on! In his turn following the general 
discussion, Glauert responded to Cierva’s letter saying 

                                                 
49 Handley Page pioneered the development of wing trailing-edge flaps and leading-edge slots. These high-lift 
features for a wing lowered airplane landing speeds without detracting from high-speed potential. He died in 
1962. 
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“It is rather difficult for me to reply to Senor de la Cierva’s contribution because on the whole 
it is a simple statement of disagreement and I am not acquainted with the particular 
experiments to which he refers. All the experimental evidence which I have seen, both model 
and full scale, indicates that the lift/drag ratio of an autogyro and the performance of the 
aircraft is rather less favorable than I should estimate theoretically. I hope, however, that I have 
not given the impression that the autogiro is ‘useless’. I believe that it is less economical than 
an aeroplane, but that it has very considerable advantages as regard safety and ease of 
landing.” 

In retrospect, at this point in the development of rotorcraft aerodynamics (i.e., 1925 to 1930), 
neither Cierva, Glauert, Lock, or anybody else for that matter, had (in my opinion) a solid 
basis for arguing anything. Handley Page, clearly a cool head in the unfortunate dispute, was 
quite correct to say that there was “an extraordinary divergence of opinion among the 
experts.” 
 
 Calculating autogyro rotor drag for a given lift in 1930 was, in fact, rather simple, but 
only because the real details necessary for an accurate calculation could not be included with 
just a slide rule, pencil, and paper. The power required (Preq) by a rotor is correctly defined 
from energy considerations as you learned earlier with Eq. (2.60). In its basic form, the 
governing equation is  

(2.277)   
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In the autorotating rotor configuration used by Cierva where power required is zero, the rotor 
drag force (DR), that is, the force that the autogyro propeller thrust (TP) must overcome, is 
defined as 

(2.278)   ( )R hp hp hp hpRotor drag D T sin H cos= = α + α . 

Notice here that when the rotor hub plane angle of attack (αhp) approaches 90 degrees (i.e., 
vertical descent), rotor drag becomes rotor thrust (Thp). 
 
 Now, in the autorotating rotor, power required is zero so, from Eq. (2.277), it follows 
that 

(2.279)   ( )2 R 2 R 3
R r, r, r BE d0 0 0 0

FP

1 1 b 1D v dT c V C dr d
V 2 2 2

π π

ψ ψ
ρ ½= + ψ® ¾π π¯ ¿³ ³ ³ ³  

which brings me to the hard part—performing the integrals called for in Eq. (2.279). The first 
integral gives the rotor-induced power that, when divided by the flight path velocity (VFP), is 
the rotor-induced drag. Both Cierva and Glauert knew that the induced velocity (vr,ψ) was not 
a constant value. That is, the induced velocity varied at every radial station (r) along the blade 
and varied at every azimuthal station (ψ) as the blade rotated. However, neither pioneer had 
the computational tools to obtain the nonuniform distribution of this velocity. Glauert 
recommended and Cierva—among many, many others down through the decades—agreed 
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that, until further notice, the induced velocity would be assumed constant as given by 
Eq. (2.38), which is repeated here for convenience,  

(2.38)   
( ) ( ) ( )
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Moving induced velocity outside the integral sign as a constant leaves just the integral of 
elemental thrust (dTr,ψ), which is total rotor thrust (Thp). With an assumed constant induced 
velocity, calculating rotor drag is therefore reduced to  

(2.280)   ( )2 R 3hp
R r BE d0 0

FP FP

T v 1 b 1D c V C dr d
V V 2 2

πρ  ½= + ψ® ¾π¯ ¿³ ³ . 

The remaining integral calculates the profile power (that Cierva called “the frictional losses of 
energy”) due to airfoil drag. Dividing profile power by flight path velocity (VFP) establishes 
the rotor profile drag. This integral, as written, assumes that the blade chord (cr) need not be 
constant from blade root to blade tip (i.e., r = R). The velocity acting at a blade element (VBE) 
in its simplest and lowest value form follows Eq. (2.1), so that 

(2.281)   ( )BE r, FP hpV V r V cos sinψ= = Ω + α ψ . 

Airfoil drag coefficients (Cd) for symmetrical airfoils such as the Göttingen 429 [121] are well 
known to behave, below stall, approximately as 

(2.282)   2
d d minC C C= + δ A . 

 At this point you can guess the next step to handling the profile drag integral. The 
blade will have a constant chord (i.e., cr = c), the lowest blade element velocity given by 
Eq. (2.281) will be assumed, and the airfoil drag coefficient will be no greater than its 
minimum value (i.e., δ = 0), which, it will be assumed, does not vary with radius or azimuth. 
Then the profile drag integral is readily performed, and the rotor drag (DR) is simply 

(2.283)   ( )2hp 3 4 2
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Eq. (2.283) is generally considered rather clumsy, so some factoring of rotor speed (Ω), in 
radians per second, and radius (R), in feet, is quickly done, and then 

(2.284)   
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The final step to obtaining the traditional form of minimum rotor drag is to identify the 
conventional parameters of  

( ) FP hp2
t hp

t
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V
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and substitute these definitions into Eq. (2.284) to obtain 
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(2.285)   ( )
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 In the debate that Cierva and Glauert were having, at least up to 1930, the rotor 
maximum lift-to-drag ratio was a key autogyro performance parameter issue. While they did 
not agree—exactly—on rotor drag (I will discuss some differences shortly), they both agreed 
that rotor lift (LR) would be calculated as 

(2.286)   ( )R hp hp hp hpRotor lift L T cos H sin= = α − α . 

Furthermore, Cierva and Glauert (and Lock) were willing to say that, in level forward flight, 
the rotor would be autorotating at a small value of hub plane angle of attack (αhp). Accepting 
this small angle assumption brings considerable simplification because:  

1. hp hp hpcos 1 and sinα ≈ α ≈ α  
2. hp R hp hp hpT L and H sin T≈ α �  

3. R R
FP hp

FP hp FP

L LV sin v 0 so v or v
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ρ α ρ

. 

 
This approach reduces the minimum rotor drag expression to 
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One thing I should mention is that Cierva wrote [11] the minimum rotor drag equation in the 
slightly different form of 

(2.288)   
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 In their lectures to the Royal Aeronautical Society, neither Glauert (on January 20, 
1927) or Cierva (on February 13, 1930) showed any test-versus-theory comparison, and many 
in the audience were disappointed. Handley Page, for one, wanted facts at Glauert’s lecture 
and, while some odds and ends of experimental numbers were quoted, he hoped that Glauert 
would “at some time be able to add results of a corresponding [to Glauert’s theory] full scale 
research work in flight.” Personally, I think Glauert was premature in presenting his paper 
before Lock and Townend had finished the wind tunnel testing of a 6-foot-diameter model of 
the C.6A rotor in forward flight [132]. This model test began in July 1927, with results 
reported in March 1928, so Glauert really did not have comprehensive data in hand. On the 
other hand, Cierva, in his second lecture some 3 years after Glauert’s lecture, had the chance 
to show his theory in comparison to Lock’s model test, but chose not to, apparently because 
he had little regard for the scale effects models introduced. 
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 Cierva and Glauert could have collaborated on a paper in mid-1928 showing Lock’s 
and Townend’s model results versus theory as given by either Eq. (2.287) or Eq. (2.288). Had 
they joined forces, they would have seen the comparisons shown in Fig. 2-104 and Fig. 2-105. 
The baseline results of Fig. 2-104 are for four blades that modeled the Cierva C.6A rotor 
blades. Lock and Townend also tested two blades as shown in Fig. 2-105 because, as they 
wrote: 

“In view of the success of the [Cierva] Autogyro Company in flying a 2-bladed autogyro, it 
was decided to test the present [4-bladed] model as a 2-blader by removing two of the blades. 
The experiment was conveniently made after the accident to the model in which one blade was 
damaged [I never was that lucky]. The experiments showed no special features except that as 
expected there was greatly increased vibration due to the periodic variation of the drag which 
necessitated additional damping in the drag balance. The vibration increased rapidly with 
decreasing incidence [higher speed] and the lowest incidence attained was 4o, which was 
hardly low enough to establish the maximum L/D.” 

The experimental data and the theory shown in Fig. 2-104 and Fig. 2-105 are for blades alone. 
The rotor test stand was built to accommodate a 10-foot-diameter model of the Cierva C.6A, 
but those blades, which were scaled  full scale including the spar, wooden ribs and fabric 
cover, were unsatisfactory. The testing proceeded with 6-foot-diameter, solid-wood blades. 
The drag of the hub and stub roots was measured as a tare, and then the drag of the assembled 
rotor system, less the tare, was tabulated as blades-alone drag.  
 
 In computing the rotor drag with Eq. (2.287), I set the operating parameters and rotor 
lift equal to the Lock and Townend data. For the minimum airfoil drag coefficient (Cd min), I 
selected 0.013 for the theory-versus-test comparisons. This is a somewhat arbitrary choice. 
Lock tested the Göttingen 429 airfoil [121] at both 4-inch and 18-inch chord sizes, each wing 
with an aspect ratio of 6. In the standard method of the era, this wing data was converted to 
infinite aspect ratio, which corresponds to the airfoil data required by blade element theory. 
The airfoil drag polar behaved approximately as 

( )2
d d minC C 1 C= + A  

and its minimum drag coefficient and maximum lift coefficient depended on the Reynolds 
number as given in Table 2-16. Lock also tested the airfoil with the trailing-edge first over a 
small angle-of-attack range. The drag coefficient for trailing-edge first was about double that 
of the leading-edge-first drag coefficient.  
 
 In both four- and two-bladed comparisons, I have shown a linear regression fit to the 
test-versus-theory data. Obviously, the drag of the four-bladed model is rather well predicted 
by Eq. (2.287). That is to say, the theory underestimates test drag by about 2 percent plus the 
offset of 0.25 pounds (possibly a tare). I would think that both Cierva and Glauert would have 
been very encouraged with this comparison. However, with the two-bladed rotor test versus 
theory appearing so poorly correlated, that encouragement would have been short lived. In 
fact, for the majority of two-bladed rotor data, the rotor was operating at high advance ratio 
with a great deal of retreating blade stall as you will learn shortly. The simple theory is quite 
inadequate if there is significant blade stalling.  
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Table 2-16. Göttingen 429 Airfoil Data [121] 

Reynolds 
Number 

Minimum 
Drag 

Coefficient 

Maximum 
Lift 

Coefficient 
  63,940 0.0160  
  85,040 0.0154  
106,780 0.0146  
127,880 0.0137 0.88 
148,980 0.0134  
287,720 0.0112 0.96 
383,630 0.0108 1.00 
575,450 0.0104 1.08 
767,260 0.0102 1.16 
959,080 0.0102  

 
 
 Now let me address the subject of maximum rotor lift-to-drag ratio, a seriously 
debated subject between Cierva and Glauert. At this point, you might not view the simple 
expression for minimum drag, Eq. (2.287), as adequate; nevertheless, the rotor lift-drag ratio 
is approximated by  

(2.289)   
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The rotor lift (LR) at which maximum rotor L/D occurs is found in the usual manner, so 
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The rotor maximum L/D is, therefore, calculated simply as 
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 This fundamental, very simplified theoretical result is compared to the Lock and 
Townend 6-foot-diameter C.6A model test results in Fig. 2-106. Glauert’s simple theory 
shows that maximum rotor L/D improves by reducing rotor solidity (σ). Halving the solidity 
from 0.1896, with four blades, to 0.0948, with two blades, is clearly beneficial as the 
experimental data shows. 
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 As you can see, Fig. 2-106 leaves plenty of room to debate what the maximum lift-to-
drag ratio of a rotor might be, at least beyond an advance ratio of 0.3. Glauert [131] made it 
quite clear when he replied to Cierva’s letter that 

“All the experimental evidence which I have seen, both model and full scale, indicates that the 
lift/drag ratio of an autogyro [rotor] and the performance of the aircraft is rather less favorable 
than I should estimate theoretically.” 

Certainly, the 6-foot-diameter-model rotor blades alone were not performing up to their 
calculated potential, never mind the rest of the aircraft. Cierva, on the other hand, made it 
quite clear that 

“The autogyro, in spite of its extreme simplicity, is not at all an obvious [simple] problem, and 
any attempt to develop its theory as an extension of the aerofoil [wing or propeller] theory 
must perforce be regarded with very great diffidence owing to the fact that, in order to avoid 
almost insuperable complications, it is necessary to attempt simplification of the phenomena 
and perhaps also to neglect terms which might seem to be of the second order whereas in fact 
they may be, under certain most interesting conditions, of the first order.” 

So, each had made their case and, I will guess, neither man had conferred with the other with 
Fig. 2-106 in hand. 
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Fig. 2-106. Maximum rotor L/D theory versus test. 



2.11  PERFORMANCE 

 234

 A natural question when looking at Fig. 2-106 is, “Why did the model perform so 
poorly at high advance ratio, assuming the simple theory is approximately right?” A partial 
answer to this question lies within Fig. 2-107. To obtain lift-to-drag ratios well above 10 
(which would be on-par with nonrotating biplane wings of the era), the 6-foot-diameter-model 
rotor should have been tested to much higher thrust coefficients. But the ability of the rotor to 
produce the necessarily high thrust—without many blade element airfoils stalling and creating 
very high drag—is not at all clear. Lock offered an opinion about blade stall [14] and noted 
that 

“the order of magnitude of the effect of “[blade] stalling” could be determined in any particular 
case by evaluating graphically the integral in equation 29 [see Eq. (2.280)] on the basis of the 
performance data of the airfoil section.” 

It would take the rotorcraft industry three more decades (and the digital computer) before the 
graphical integration Lock was suggesting could be done for just a few “particular cases.”  
 
 However, a sense of just where, in relation to blade stall onset, the Lock and Townend 
6-foot-diameter model was tested can be obtained from Eq.(2.194), repeated here as 

(2.293)   ( )
2 3 4 5 6 725 46 54 1

hp max 3 24 15 16 90T
2 2 4blade 8 3 32 5blade

stall t 3 2 45 24stall
onset onset

T 1CC
bcRV 6 1

π π π

π

ª º§ · − µ − µ + µ − µ − µ + µ§ · = = « »¨ ¸¨ ¸σ ρ + µ + µ + − µ© ¹ « »© ¹ ¬ ¼
A . 

This estimate, along with the 1928 model test results for an autorotating rotor [132], is shown 
in Fig. 2-108. Clearly, the rotor, whether two bladed or four bladed, produces thrust well 
outside the estimated blade stall onset boundary suggested by Eq. (2.293). But this high thrust 
at high advance ratio is accompanied by a great deal of rotor drag and relatively poor rotor 
lift-to-drag ratios as Fig. 2-106 shows. As you will read in Volume II—Helicopters, modern 
helicopter rotor blades have improved rotor maximum L/D, but they still do not achieve levels 
much above 10 in the 0.3 to 0.5 advance ratio range, primarily because both rotor solidity and 
tip speed were significantly increased over autogyro values. 
 
2.11.4 Minimum Rotor Drag 
 
 It was immediately apparent that the simple theory used to predict rotor drag had one 
troublesome factor that bothered both Glauert and Cierva in 1928. The simple theory, 
Eq. (2.287), which I have repeated here 

(2.287)   ( )
32

2tR
R d min hp2

FP FP

A VLD C 1 3 Glauert Form
2 AV 8V

ρ σ= + + µ
ρ

 

raised an issue about the factor 3 in the ( )2
hp1 3+ µ  term, which came, you recall, from the 

simplified profile power integral. Glauert, in his first paper on autogyros [13], pointed out in 
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Fig. 2-107. Thrust coefficient for maximum rotor L/D—theory versus test. 
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Fig. 2-108. Blade stall onset. 
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an appendix of the paper that the blade element velocity (VBE) should include the radial 
velocity component ( )FP hpV cos cosα ψ , as well as the tangential velocity component 

( )FP hpr V cos sinΩ + α ψ . That is, he recommended that 

 (2.294)   ( ) ( )2 2

BE r, FP hp FP hpV V r V cos sin V cos cosψ ª º ª º= = Ω + α ψ + α ψ¬ ¼ ¬ ¼  

which compares to Eq. (2.281). This leads to a profile power integral that falls in the elliptical 
integral family. Appendix J includes a closed-form approximation to this problem. What was a 
constant 3 became a factor (n); but then (n) was itself a function of advance ratio. Glauert 
took a shortcut around the elliptical integral complication by providing a table. The 
reproduced table, plus a comparison to ( )2

hp1 3+ µ , is 
 

Advance Ratio µhp ( )2
hp1 3+ µ  ( )2

hp1 n+ µ  Glauert’s n 
0 1.00 1.00 4.5 

0.30 1.27 1.43 4.73 
0.40 1.48 1.78 4.87 
0.50 1.75 2.26 5.03 
0.60 2.08 2.88 5.22 
0.75 2.69 4.11 5.53 
1.00 4.00 7.13 6.13 

 
Cierva, when his theory became available [11], agreed with Glauert that the blade element 
velocity should include the radial flow velocity and, with his own approximation, decided that 
it would be satisfactory to replace ( )2

hp1 3+ µ  with ( )2
hp1 4+ µ . It would be several decades 

(plus the advent of the digital computer and several full-scale helicopter rotor system wind 
tunnel tests) before a more accurate picture began to emerge about this radial flow velocity. A 
review of this work [133] provided the approximation  

(2.295)   2 4 6
hp hp hp1 4.65 4.15+ µ + µ − µ  

which seemed to fit the experimental data up to an advance ratio of 1.0 and was, therefore, 
more realistic than ( )2

hp1 3+ µ . On this basis, the rotor drag would be more accurately 
calculated as 

(2.296)   ( )
32

2 4 6tR
R d min hp hp hp2

FP FP

A VLD C 1 4.65 4.15
2 AV 8V

ρ σ= + + µ + µ − µ
ρ

. 

 
 A comparison of this somewhat refined rotor drag theory versus the Lock and 
Townend 6-foot-diameter-model data is shown in Fig. 2-109. I kept the airfoil minimum drag 
coefficient (Cd min) at 0.013, so this result can be compared to Fig. 2-104. 
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Fig. 2-109. Test versus theory for four and two blades (prediction with Eq. (2.296)). 

 
 
 
2.11.5 Autogyro Versus Airplane 
 
 The fundamental issue of autogyro versus airplane performance in forward flight was 
not settled with Cierva’s second lecture to the Royal Aeronautical Society on February 13, 
1930. In this lecture, Cierva addressed his third point saying, you will recall, that 

“the comparison in performance between existing autogiros of several types and best 
equivalent aeroplanes can be summed up as follow:–Top speed, five to ten per cent less. Rate 
of climb, twenty per cent less. Steepness of climb, fifty percent more. Minimum horizontal 
speed, fifty per cent less.” 

To Cierva, that was the current situation as he saw it. In his lecture, he showed his figure 3, 
which I have reproduced here as Fig. 2-110, to explain his views. (Major Green said during 
the discussion that “a diagram like Fig. 3 meant very little when there was no scale to it.”). Of 
course, no one defined “best equivalent aeroplane.” With this figure displayed to the audience, 
Cierva made a number of points, some of which I have summarized as follows: 
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1.  Figure 3 [Fig. 2-110] shows power required versus speed “for two normal 

equivalent machines.” 
a. Both aircraft are at equal weight. 
b. The autogyro rotor diameter and airplane wing span are equal, so, at equal 

weight, the induced drags are equal. Since power is drag times velocity, 
induced powers are equal for both machines. 

c. “Both machines have the same parasite drag.” [Equal total drag of fuselage, 
landing gear, rudder and elevator, rotor hub, etc.]  

d. Therefore, “the required horse-power equations would differ only in the term 
corresponding to profile drag.” [Profile power when drag is multiplied by 
speed.] 

e. The airplane wing profile power increases as the cube of speed, but the 
autogyro rotor profile power rises “directly proportional to the speed within 
wide limits.” [See Eq. (2.288).] 

2.  The airplane has its maximum efficiency in the middle speed range, “while the 
autogyro is at its best at both ends [of its speed range].” 

3.  The two distinct slopes of power required with speed (at high speed) show that the 
autogyro benefits by having increased power available more than the airplane 
does. 

 

 
Fig. 2-110. Cierva’s comparison of autogyro versus airplane performance [4]. 
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 Perhaps a word of explanation about the power available lines and their shape versus 
speed in Fig. 2-110 is in order before proceeding. During this era, propellers were fixed pitch. 
Rather than reflect propeller efficiency in power required to obtain engine power required 
(which can then be compared directly to engine power available), engine power available was 
reduced by propeller efficiency to define a thrust power available (which is then compared to 
thrust power required). That is, when you start with 

(2.297)   prop.req. ACProp Thrust Required T Aircraft Total Drag D= = =  

then multiply by flight path velocity (VFP) to get thrust horsepower required, you see 

(2.298)   prop FP AC FP
thrust req.

T V D VThrust Horsepower Required HP
550 550

= = . 

But, the propeller is not 100 percent efficient. The propeller efficiency (ηP) was optimized for 
high speed during this era. Therefore, the total engine horsepower available (HPeng. avail.) only 
provides available propeller thrust amounting to  

(2.299)   eng.avail.
propavail. P

FP

550HP
Available Propeller Thrust T

V
§ ·

= = η¨ ¸
© ¹

 

so the available thrust horsepower is only 

(2.300)   ( )prop FP
thrust avail. eng.avail. P

T V
Available Thrust Horsepower HP HP

550
= = η . 

Thus, the shape of a thrust horsepower available line mirrors the propeller efficiency because 
engine horsepower available is considered constant with airspeed. The helicopter pioneers did 
not follow this fixed-wing practice. 
 
 A comparison of the 1930s-era autogyro to the best equivalent airplane is very 
worthwhile because the debate over which machine is better is still going on today. To 
quantify the comparison, let me choose the 1930 Pitcairn PCA-2 as the representative 
autogyro and then present airplanes of that era in comparison. The performance of the PCA-2 
was thoroughly established by John Wheatley at the N.A.C.A. He published PCA-2 flight test 
results in NACA Report No. 434 in May 1932 [127]. Because he could not satisfactorily 
separate the rotor-blades-alone performance from the total autogyro performance, the full-
scale, 45-foot-diameter rotor system was tested in the 30-foot by 60-foot wind tunnel at the 
N.A.C.A. Langley. Data from that test was reported in NACA Report No. 487 [75] in 1934. 
These two reports are an enormously valuable autogyro data base for the rotor-plus-wing 
configuration (including the Cierva C.19) before direct control autogyros (such as the Cierva 
C.30A) became available. Both reports provide all the experimental data in tables. 
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Wheatley, in the introduction to NACA Report No. 434, wrote that 
“The determination of lift and drag characteristics was decided upon as the initial step into an 
extensive program of research because of the lack of reliable full-scale information on the 
fundamental aerodynamic characteristics of the autogiro and the need to establish clearly a 
datum to which further work will be referred. The curves and data contained in the body of this 
report constitute, so far as is known, the first authentic full-scale information concerning 
autogiro characteristics that has been published.”50 

He goes on to describe the test apparatus (Fig. 2-111), and how aircraft lift and drag were 
obtained from a gliding test, shown in Fig. 2-112. Wheatley included one adverse comment 
about the PCA-2 that affected the performance: 

“The problem of control at the low air speeds and high angles of attack attainable in the 
autogiro demands attention [the direct control rotor was the response]. During glides at air 
speeds near the minimum value, corresponding to angles of attack from about 35o to 90o, 
lateral control was inadequate and the aircraft was unsteady. Elevator control, although 
sluggish, remained positive at all times, but ailerons and rudder often proved unable to check 
or delay a tendency of the autogiro to roll or yaw [many minor autogyro accidents occurred on 
landing because of this characteristic].” 

Some evidence of controlling the aircraft in trim during a glide is, in fact, apparent. However, 
overall, the flight test data is as good, and probably better, than data acquired in a wind tunnel. 
 

 Rotor Symbol 
Number of blades ......................................................... b ............................. 4. 
Profile of section .......................................................................................... Göttingen 429. 
Diameter ....................................................................... 2R .......................... 45.0 ft. 
Blade chord (outer straight portion) .............................. c ............................ 1.833 ft. 
Disk area ....................................................................... SD .......................... 1,5888 sq. ft. 
Solidity .......................................................................... Total blade area/ 
                                                                                        disk area ................  0.0976. 
 
 Wing 
Profile .......................................................................................................... Modified N.A.C.A.–M3. 
Span ............................................................................................................. 30 ft. 3-5/8 in. 
Chord—root ................................................................................................. 4 ft. 4 in. 
Area—projected ............................................................ SW .......................... 101 sq. ft. 
Aspect ratio .................................................................................................. 9.1. 
Incidence ...................................................................................................... 1.7°. 
 
 General 
Total area ...................................................................... S = SD+SW ............. 1,689 sq. ft. 
Gross weight as flown ................................................... W ........................... 2,940 lb. 
Wing loading ................................................................ W/S ........................ 1.74 lb./sq. ft. 
Engine .......................................................................................................... Wright R-975. 
Power-rated .................................................................................................. 300 hp 

 
 

Fig. 2-111. Pitcairn PCA-2 geometry tabulated by Wheatley [127]. 

                                                 
50 Wheatley was right; nothing had been published at the time he wrote NACA Report No. 434, but I believe that 
the Royal Aircraft Establishment in England acquired a great deal of technical data about Cierva Autogiros, 
specifically the C.6A [37] and the C.19 (I will bet). There are many references to unpublished T. numbered 
reports in the Aeronautical Research Committee R & M's. If those old reports could be recovered, it would add a 
great deal of historical technology to the birth of the rotorcraft industry.  
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Fig. 2-112. Aircraft lift and drag obtained from gliding tests. 

 
 
 Wheatley obtained the PCA-2 lift and drag from gliding tests with the engine off and 
propeller stopped. One hundred and eighty-four separate glides were made in 22 flights. After 
each glide, the pilot restarted the engine, regained altitude, and started another glide. After 
each flight, the aircraft was refueled. The first glide in each flight began at about  
2,900-pounds gross weight, and the last glide in that flight finished, on average, at about 
2,760-pounds gross weight. Wheatley carefully accounted for the varying gross weight, which 
was caused by fuel burn off. The glide angle and flight path velocity were measured with a 
“trailing bomb,” which was slung by a thin cable some 80 feet below the aircraft. Aircraft 
attitude was measured and the hub plane angle of attack was computed and tabulated. 
 
 The lift and drag data that Wheatley obtained from this ground-breaking flight test is 
shown in Fig. 2-113. The accompanying hub plane angle of attack is shown in Fig. 2-114. In 
general, the PCA-2 remained nearly horizontal with only a moderate nose-down attitude—but 
still slightly positive angle of attack—to reach the higher speeds (over 100 feet per second). 
The rotor speed deviated very little from an average of 14.9 radians per second. Wheatley 
accounted for this slight rotor speed variation, as well as the hub plane angle of attack, to 
compute advance ratio. In calculations requiring air density, he used the density for each 
glide, but the average density was 0.002103 slugs per cubic foot. Some measurements of 
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performance with the engine and propeller at flight idled satisfied Wheatley that the drag of 
this stopped propeller was relatively unimportant. 
 
Fig. 2-113 shows that in vertical descent, the flight path velocity (i.e., the rate of descent) was 
35 feet per second. Additional analysis led Wheatley to conclude that “the minimum vertical 
velocity when gliding with the stopped propeller is 15 feet per second, at an airspeed of 
36 miles per hour, and at a flight-path angle of – 17o.” He further noted that 

“The maximum lift coefficient, based on the sum of wing and swept-disc area [1,689 square 
feet], is 0.895 [based on dynamic pressure, not tip speed]. The minimum drag coefficient with 
propeller stopped is 0.015, the maximum L/D with propeller stopped is 4.8, and the maximum 
resultant force coefficient is 1.208 [based on dynamic pressure and 1,689 square feet]. 

The fact that the maximum aircraft L/D was only 4.8 certainly could not have been very 
encouraging to autogyro advocates. Glauert and Lock had probably been getting comparable 
values with Cierva machines in England. In my opinion, Glauert’s initial pessimism was 
warranted, but without the drive from Cierva (plus Pitcairn and Kellett)—and support from 
the Air Ministry in England, specifically from Mr. H. E. Wimperis—the rotorcraft industry 
could have easily died in 1930, along with the biplane. 
 
 Before bringing performance of comparable airplanes into the discussion, it is 
worthwhile to predict the PCA-2 drag using simple aerodynamic technology available in 
1930. As Cierva pointed out, the propeller thrust must overcome the drag created by all 
components of the aircraft, not just the drag created by the rotor blades alone. The rotor 
system hub and the exposed spars (commonly referred to as blade shanks) must be accounted 
for as well. Then, in the case of the PCA-2, the wing, which carries some lift, creates drag. 
And finally, the fuselage, wheels, vertical and horizontal stabilizer, engine, other 
protuberances, etc., must be added to the propeller load.  
 
 Now suppose all the drag from all the items—except the rotor blades alone—amounts 
to some equivalent parasite drag area (fe) in square feet that varies with angle of attack. Then 
the aircraft drag (DAC) is estimated simply as 

(2.301)   ( )( )2 2
prop.req. AC FP e hp R

1T D V f 1 K D
2

= = ρ + α +  

with the autorotating rotor-blades-alone drag (DR) estimate coming from Eq. (2.296). Thus, 
the aircraft drag is nothing more than 

(2.302)   
( )( )

( )

2
2 2

AC FP e hp 2
FP hp

3
2 4 6t

d min hp hp hp
FP

1 WD V f 1 K for autogyro.
2 2 AV cos

A V C 1 4.65 4.15
8V

= ρ + α +
ρ α

ρ σ+ + µ + µ − µ
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Fig. 2-113. PCA-2 lift and drag forces versus flight path velocity [127]. 
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Fig. 2-114. PCA-2 trim during the Wheatley gliding tests [127]. 
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Notice in Eq. (2.302) that I assumed rotor lift (LR) equal to aircraft weight (W), which 
implicitly says the wing operates at zero lift. Also notice that I have retained cosine αhp in the 
denominator of the induced drag term, which extends the equation to higher angles of attack.  
 
 Given the PCA-2 configuration details and tabulated data of the flight parameters 
Wheatley provided, you only have to estimate or guess the equivalent parasite drag area (fe), 
and its variation with angle of attack, to make the answer come out right (i.e., test and theory 
agree). It does help to adjust the airfoil minimum drag coefficient for the Göttingen 429 from 
the model value of 0.013 to 0.010 for the full scale. The specific data leading to the drag 
breakdown lines shown in Fig. 2-115 is: 

Parameter Value Rational 
Weight, lbs 2,825 Average for test 
Rotor Speed, rad/sec 14.9 Average for test 
Radius, ft 22.5 PCA-2 
Tip Speed, ft/sec varies Average for test 
Rotor Area, sq ft 1,588 PCA-2 
Solidity 0.0976 PCA-2 
Density, slug/cubic ft 0.002106 Average for test 
Cd min 0.0100 Estimated full scale 
Base Parasite Area, fe, sq ft 19 Best guess 
Parasite Area Constant, K, 1/sq rad 20 Best guess 

 
 Although rather semiempirically arrived at, the drag breakdown of Fig. 2-115 
illustrates the fact that drag at high speed is dominated by base parasite drag area (fe) of the 
configuration and, to a lesser extent, the profile drag of the rotor blades alone. Drag at low 
speed is dominated by rotor drag and mostly by rotor-induced drag.  
 
 Now consider, in Cierva’s words, “ a normal equivalent machine.” Before Pitcairn got 
into the autogyro business, he and his company were very prominent in the fixed-wing 
business. His airplane manufacturing side developed the “Mailwing” series, which refined his 
PA-5, -6, and -7 into the PA-8 shown in Fig. 2-116. The PA-8 was certificated on September 
19, 1930. Seven months later, the Pitcairn PCA-2 autogyro, shown in Fig. 2-117, was 
certificated. Consider then these five points: 

1. both aircraft were built by a well established and very reputable company, 
2. the two aircraft were certificated within 7 months of each other,  
3. both aircraft used the same engine (Wright, 9 cylinders, J6 having 300 available 

horsepower),  
4. the selling prices at the factory were close ($15,000 for the PCA-2 in 1931 versus 

$12,500 for the PA-8 in 1930), and  
5. the chief engineer for both aircraft was Agnew Larsen.  

I believe that the PA-8 is a satisfactory example of an airplane equivalent to the PCA-2 
autogyro. Of course, the PA-8 was quite well developed while the PCA-2 was the first in the 
series. Direct control and the lower solidity, three-bladed cantilevered rotor technology were 
yet to come, so the PCA-2 was not in the Cierva C.30A class.  
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Fig. 2-115. Estimated PCA-2 drag breakdown. 

 
 The comparison of the two aircraft is shown in Table 2-17. I have used the summary 
data from two volumes of U. S. Civil Aircraft Series by Joseph P. Juptner [134, 135] as the 
source for the comparison. There are, of course, some glaring differences that appear on  
Table 2-17 such as range, speed, and useful load. These differences cannot be assumed away 
as Cierva tried to do in his definition of “normal equivalent machines.” He attempted to 
reduce the differences to just profile drag of the wing “which increases as the cube of flight 
path velocity” versus the rotor profile power which increases “directly proportional to the 
speed within wide limits.” [4].  
 
 Cierva’s view in February 1930 was that: “top speed, five to ten per cent less [than the 
airplane].” The tabulated comparison gives 118/145, which is more like 20 percent less. 
Cierva said, “rate of climb, twenty per cent less.” My comparison shows 800/1,100, which is 
21 percent less. Table 2-17 does not include Cierva’s “steepness of climb, fifty percent more,” 
but many photos support that view. Finally, Cierva stated “minimum horizontal speed, fifty 
per cent less.” Table 2-17 shows 20–25 versus 60-miles-per-hour landing speed, which is 
better than 50 percent. Glauert stated his belief that the autogyro “is less economical than an 
aeroplane, but that it has very considerable advantages as regard safety and ease of landing.” 
Obviously, whether vertical descent was an issue or not, autogyro economics were not then, 
and I suspect Glauert thought they would never be, competitive with an “equivalent machine.” 



2.11  PERFORMANCE 

 246

 Table 2-17 shows that the autogyro purchase price was only 20 percent more than the 
airplane. Furthermore, the PA-8 got roughly 600 miles out of 80 gallons of gas, or about 
7.5 miles per gallon, while the PCA-2 got only 5.6 miles per gallon. Fuel economy certainly 
favored the airplane in 1931. (Personally, I am glad that Glauert said he did not “think the 
autogyro was useless.”)  
 
 

 
Fig. 2-116. The Pitcairn PA-8M “Super Mailwing,” ATC No. 364, Sept. 19, 1930 [134].  

 

 
Fig. 2-117. The Pitcairn PCA-2, ATC No. 410, April 2, 1931 [127].  
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Table 2-17. Autogyro Versus Airplane Comparison in the 1930/1931 Era 
Parameter PCA-2 PA-8 

Engine Wright J6 Wright J6 
Horsepower available 300 300 
Length overall 23 ft 1 in. (blades folded) 24 ft 10 in. 
Height overall (tail down) 13 ft 0 in. 9 ft 9 in. 
Rotor diameter 45 ft  
Rotor blade chord 22 in.  
Rotor blade area 159.5 sq ft  
Rotor blade airfoil Göttingen 429  
Wing span upper  35 ft 0 in. 
Wing span lower 30 ft 0 in. 31 ft 1 in. 
Wing chord upper at root  58 in. 
Wing chord upper at tip  58 in. 
Wing chord lower at root 52 in. 52 in. 
Wing chord lower at tip 30 in. 52 in. 
Wing area upper  161 sq ft 
Wing area lower 88 sq ft 117 sq ft 
Total wing area 88 sq ft 278 sq ft 
Wing airfoil NACA M-3 modified Pitcairn -2 
Weight empty 2,093 lbs 2,294 lbs 
Useful load 907 lbs 1,706 lbs 
Payload with 52 gal. fuel 375 lbs  
Payload with 78 gal. fuel  1,008 lbs 
Gross weight 3,000 lbs 4,000 lbs 
Maximum speed @ sea level 118 mph 145 mph 
Cruise speed @ sea level 98 mph 122 mph 
Landing speed  20–25 mph 60 mph 
Climb in one minute @ sea level 800 ft 1,100 ft 
Climb after 10 minutes  7,500 ft 
Ceiling 15,000 ft 16,000 ft 
Gasoline capacity 52 gal. 80 gal. 
Oil capacity 6.5 gal. 8 gal. 
Cruising fuel flow 16 gal. /hr 15 gal. /hr 
Range at cruising fuel flow 290 miles 600 miles 
Price at factory field $15,000 in 1931 $12,500 in 1930 

 
 
 Now let me examine the thrust horsepower required and thrust horsepower available 
comparison (recall Fig. 2-110) that Cierva presented to the Royal Aeronautical Society on 
February 13, 1930. To begin with, the PCA-2 aircraft drag (in pounds) from Fig. 2-115 
becomes propeller thrust horsepower required simply by multiplying by flight path velocity 
(in feet per second) and dividing by 550, the conversion from foot-pounds per second to 
horsepower. The result of this rescaling is shown in Fig. 2-118 with flight velocity now given 
in miles per hour. The thrust horsepower available shown in the figure, following Eq. (2.300), 
is 300 horsepower times the propeller efficiency (ηP). The propeller efficiency is somewhat of 
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an educated guess [136] for illustration purposes.51 Note, however, that this guess must at 
least agree with the PCA-2 maximum and landing speeds quoted in Table 2-17. 
 
 The next step in the performance comparison is to obtain a thrust-horsepower-required 
line for the PA-8 airplane. The propeller thrust for airplanes is generally determined from the 
airplane parabolic drag polar. That is, the drag coefficient of an airplane is well approximated 
[60]—but only up to near stall—as 

(2.303)   
22

2 eL
D Do L

W W W W

fCD B LC C KC B
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and therefore the airplane drag is simply 

(2.304)   
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where dynamic pressure (q) equals 1/2 ρV2, (bW) is the wing span, and K and B are constants. 
 
 Two estimates of PA-8 performance are included in Fig. 2-118. The parasite area (fe) 
of 12.5 square feet gives a maximum speed at sea level of 145 miles per hour. If the PA-8 had 
the same parasite drag area as the PCA-2 (i.e., fe = 19 square feet), the maximum speed would 
only be 125 miles per hour, which is not consistent with the certificated speed shown in Table 
2-17. The Munk biplane theory [137] gives B = 0.83 for the PA-8 biplane gap-to-span ratio. 
Perkins and Hage [60] suggest K = 0.012. The drag rise with stall is patterned after the Knight 
and Wenzinger experiments [138]. A maximum lift coefficient of about 1.4 set the landing 
speed at 60 miles per hour.  
 
 Viewing Fig. 2-118, it should be clear that Cierva took a great deal of liberty in 
comparing autogyros to airplanes (recall Fig. 2-110). In my opinion, I doubt that the more 
knowledgeable audience members bought his simplistic explanation. By assuming that “both 
machines have the same parasite drag,” he completely dismissed hub and blade shank drag 
and tried to make his point based solely on blades-alone profile drag. Today, the rotorcraft 
industry is well aware that without reducing hub and blade shank drag, very high speeds will 
never be reached without a great deal more engine horsepower. Brooks [7] notes that the 
PCA-2 was given the larger Wright R-975 E2 engine having 420 horsepower, and the 
maximum speed only increased to 125 miles per hour. By extrapolation, the PCA-2 might 
have reached 145 miles per hour with another 120 horsepower. Perhaps Cierva had on his 
“marketing hat” when he gave his second lecture to the Royal Aeronautical Society on 
February 13, 1930. 
 

                                                 
51 The applied aerodynamics text I have referred to here was taught in my first aero class at Rensselaer 
Polytechnic Institute in Troy, New York, in 1952. It is a small, thin, red-covered book—only 231 pages counting 
the index. It is also the best book on applied aero that I have read, and used, in 50 years. The only other 
comprehensive, applied aerodynamics text for airplanes that I have, which is of real value, is Perkins & Hage 
[60]. Of course, Fluid-Dynamic Drag by Hoerner [116] is indispensable.  



2.11  PERFORMANCE 

 249

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

PCA-2
THPreq.

W =3,000 lbs 
fe = 19.0 ft2

PA-8
W = 4,000 lbs
fe = 19.0 ft2

fe = 12.5 ft2

Propeller
Thrust

Horsepower 

Flight Path Velocity   (mph)

Thrust 
Horsepower 

Available
Engine = 300 hp 

 
Fig. 2-118. PCA-2 and PA-8 performance curves. 

 
 
2.11.6 Improvements 
 
 Cierva presented his third—and last—lecture before the Royal Aeronautical Society 
on March 15, 1935. By this time his most advanced Autogiro, the C.30, was in low-rate 
production and doing well in the field. Rotor startup with power takeoff from the engine had 
replaced the “scorpion” tail. Direct control had significantly improved the C.19 and PAC-2 
low-speed handling qualities, and the “cantilevered,” low-solidity, three-bladed rotor system 
was improving performance. Cierva chose this 1935 opportunity to divulged the newest 
development progress [5]—jump takeoff.  
 
 Despite all of this development progress, Cierva began the lecture, after the 
introductory paragraph, with the following words: 

 “One of the characteristics of the development has been the great number of difficult 
secondary problems [ground resonance for one]. The very large number of parameters and the 
heterogeneity of the requirements, some aerodynamical, some dynamical and some structural, 
make correct compromising–which is the secret of all successful engineering–an exceedingly 
delicate task. 
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 In many instances, sacrifices in one direction have to be made in order to improve 
some other point, until increased knowledge has permitted to redress the balance again. 
Simultaneous progress all along the line is only possible when a final formula is established, 
and the autogiro is only now arriving at that stage. Until then it [the autogyro] will necessarily 
lack that refinement of design which can only be attained by repeated steps in the same 
direction.” 

From this rather philosophical beginning, Cierva used the following two paragraphs to 
respond to his autogyro critics:52 

 “Let these considerations [the preceding two paragraphs] be my answer to those 
critics of the autogiro who ask, for example, why, after such a relatively long development, we 
have failed to substantiate our early and repeated claims about the autogiro being capable of 
competing with the airplane in speed.  
 
 We are convinced of the potential truth of our claims and, if we had left aside the 
fundamental development, we feel we might have proved them by now. However, and we 
think wisely, we adopted the other course. Speed, which incidentally we do not consider to be 
the only criterion of utility of aircraft free from some of the limitations of the aeroplane [such 
as stalling and spinning], will come as the result of stabilisation of the general conception and 
of the concentrated efforts of a great number of engineers. So will useful load, and while we 
make no claim to superiority in every respect, we are convinced that we will not be far behind 
the aeroplane in what might be called aeroplane performance.” 

Cierva never said who “we” were. As it turned out, “we” were the rotorcraft industry, who, 
given Cierva’s start, and “with the concentrated efforts of a great number of engineers [and 
many, many others],” developed the second-generation rotorcraft, the helicopter. Of course, as 
you know now, utility, not speed, became the prime objective. 
 
 Let me now interject a remark Mr. Manning made during the discussion period that 
followed the second Cierva lecture in 1930 (which described the C.19 and dealt with aircraft 
maximum lift-to-drag ratios). Mr. Manning pointedly said, 

 “He thought the loss of top speed was important. The only excuse for the aeroplane 
was that its speed was greater than that of any other form of transportation. That was an 
advantage that must be pressed. With a good many light aeroplanes, if the conditions were 
slightly unfavorable, say a 20 miles per hour head wind, it was probably difficult for the 
machines with passengers and luggage to fly from London to Paris without landing to obtain 
further supplies of petrol. The expenditure of petrol in the case of the autogiro would be worse, 
and……..” 

In 1930, Manning was half wrong about light airplanes and all wrong about the growing civil 
aviation transportation system.  
 
 The 1930 to 1935 period, when Cierva developed and brought the C.30 to market, saw 
Pitcairn and Kellett make considerable progress in the United States. The greatest strides in 
U.S. aeronautical research were made by John Wheatley at the N.A.C.A. at Langley Field in 
Virginia. After completing initial flight testing with the Pitcairn PCA-2 [127], Wheatley 
investigated the wing loading of the production PCA-2 [139] and then the influence of 

                                                 
52 Hermann Glauert was not in the audience. He was killed in an accident at Farnborough, England, on August 4, 
1934. 
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varying the load-sharing between rotor and wing [140].53 But at this point, after having 
published a classic theory and test report [75], there was not much more that Wheatley could 
learn about the rotor system and its drag, without a wind tunnel test. In the introduction to 
Full-Scale Wind-Tunnel Tests of a PCA-2 Autogiro Rotor [141], he described the situation as 
follows:  

“No quantitative evaluation of the interference of the remainder of the machine upon the rotor 
was possible [wing loading and interference on the rotor was established, but no more could be 
done], but the most serious fault with the results lay in the fact that the drag of the rotor, its 
most important characteristic, could not be found. In order to obtain complete and accurate 
information concerning the aerodynamic characteristics of the PCA-2 autogiro and to supply 
data applicable to an analysis of the sources of its drag, the rotor was removed from the 
machine and tested alone in the full-scale wind tunnel at Langley Field in December 1933.” 

The rotor system was installed in the 30- by 60-foot, open-throat wind tunnel. The entire 
supporting system beneath the rotor was shielded from the airstream to eliminate tare drag. 
The testing procedure was quite straightforward as Wheatley explained: 

“The rotor was started by the air stream, no mechanical starting gear having been incorporated 
in the test set-up. The rotor was set at about 10o [hub plane] angle of attack, the wind tunnel 
was started slowly by jogging on and off the lowest speed switch point, and the air speed was 
gradually increased as the rotor picked up speed. 
 
Force tests were made by the following procedure: The wind tunnel control was set for the 
lowest airspeed, the angle of attack was adjusted so the rotor operated steadily at a desired 
speed, and the necessary readings were taken. The angle of attack was then adjusted to give 
other desired rotor speeds, readings were again taken, and the process was repeated at other air 
speeds.” 

To ensure reasonably low vibration, Wheatley used a variation on the blade tracking 
procedure you learned about earlier. He wrote: 

“In order to check the track of the blades, the rotor was run [he does not say to what condition] 
and a paint brush was lowered onto the rotor from above until the high blades were marked. 
Indicated adjustments were then made and the process repeated until the rotor operated 
smoothly as indicated by the steadiness of the balance scales. When the rotor operation was 
considered satisfactory, the blade tips tracked to within 1-1/2 inches.” 

With tracked blades and a smooth rotor, Wheatley collected 89 data points with the 
production rotor, Table I, [141].54 The points fall into 4 sets grouped reasonably close to rotor 
speeds of 100, 120, 140, and 150 revolutions per minute. All data were corrected for jet-
boundary and blocking effects and “in addition, the drag of the rotor hub was measured with 
the blades removed and subtracted from the rotor [plus blades, droop cables, and lead-lag 
cables] data. 
 
 Wheatley presented rotor lift and drag in fixed-wing coefficient notation. That is 

                                                 
53 Both of these reports provide data about the performance of what was to become a high-speed, compound 
helicopter. I will discuss these two reports in the third volume of this book, Other V/STOLs. 
54 His report also includes some points where many of the droop and lead-lag cable end fittings were faired. He 
made the point though that “the results are of minor practical importance because of the current trend toward the 
use of cantilevered blades with no protuberances.” 
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With the hub plane angle of attack (αhp) as his reference, he calculated advance ratio in the 
usual manner 

(2.306)   FP hp
hp

t

V cos
V

α
µ =  

and that became the measure of forward flight speed. Fig. 2-119 and Fig. 2-120 show the 
primary results Wheatley obtained.  
 
 All 89 data points shown in Fig. 2-119 and Fig. 2-120 were obtained with identical 
root collective pitch (θroot). The variables are only wind tunnel speed and the approximate set 
of rotor speeds of 100, 120, 140, and 150 revolutions per minute. The approximate 
corresponding rotor lifts are 1,200, 1,700, 2,500, and 3,000 pounds. However, knowing that 
collective pitch at the blade tip (today we would use collective pitch at the 3/4-radius station) 
was a key parameter in the rotor equations, Wheatley was quite concerned about what he 
called “dynamic twist.” Today dynamic twist is more commonly referred to as elastic windup. 
From PCA-2 flight testing, he “established the fact that the dynamic twist is about 0.89o at the 
tip for 1,000 pounds thrust.” With the blades at rest, the collective pitch at the tip, measured 
with an inclinometer, was 1.9 degrees. But when rotating, Wheatley felt the more correct tip 
collective pitch would be 3 degrees for the 100-revolutions-per-minute data rising to 
4 degrees when the rotor speed reached 150 revolutions per minute. I have made no 
distinction in Fig. 2-119 or Fig. 2-120 for rotor speed, thrust, or “dynamic pitch,” but 
Wheatley does in his report. 
 
 The prediction of the PCA-2 rotor lift and drag requires only six equations. These 
equations, primarily given by Wheatley [75], are simply refinements to those equations you 
have encountered earlier. The following equations now account, approximately, for the 
reverse flow region as Wheatley derived. The radial velocity effect on profile drag is 
accounted for as suggested by Harris [133]. The blade flapping motion is described by 

(2.307)   o 1S 1Sa cos b sinψβ = β − ψ − ψ  

and the feathering, by 

(2.308)   x, o t 1C 1Cx B sin A cosψθ = θ + θ − ψ − ψ . 

The rotor inflow ratio (λhp) and advance ratio (µhp) are defined relative to the rotor hub plane 
and calculated as  

(2.309)   FP hp FP hp
hp hp

t t

V sin v V cos
V V

α − α
λ = µ =  

and, as a reasonable approximation in forward flight, the induced velocity (v) is taken as 
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Fig. 2-120. PCA-2 blades-alone lift and drag performance in autorotation. 



2.11  PERFORMANCE 

 254
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The coning (βo), longitudinal flapping (a1S), and lateral flapping (b1S) are calculated from 
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The rotor thrust (T) is obtained from 
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and the rotor H-force (H) from 
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 The preceding five equations allow the rotor-power required or torque required to be 
calculated simply as 

(2.316)   ( ) ( )( ) ( )
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once the rotor solidity (σ), airfoil lift-curve slope (a), and airfoil drag coefficient (Cdo) are 
established. The rotor lift (LR) and drag (DR) are, of course, easily calculated from 
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 There is no doubt that the preceding path to calculating rotor lift and drag represents 
early autogyro rotor performance technology applicable up to, perhaps, an advance ratio of 
1.0. However, given just a slide rule, pencil, and paper, the calculations are rather daunting; 
but keep in mind that rotorcraft pioneers were not put off by the task. The fact that reasonable 
engineering had led to equations worth the calculating effort (i.e., the elbow grease) was 
really quite a breakthrough. The fact that a comparison of this 1930s theory could be made to 
full-scale rotor performance data acquired in a very large wind tunnel must have made the 
work both fun and exciting. 
 
 The predictive capability (compared to Wheatley’s experimental results) when using 
Eqs. (2.307) through (2.317) is illustrated by Fig. 2-121 for lift and Fig. 2-122 for drag. To 
obtain the rotor forces in pounds, I used the data Wheatley tabulated for rotor speed, hub 
plane angle of attack, and advance ratio to determine flight path velocity (i.e., wind tunnel 
airspeed) in feet per second. Then, assuming the air density to be 0.002378 slugs per cubic 
foot, I calculated the dynamic pressure (q). Wheatley gives the reference rotor area (πR2) as 
1,588 square feet, so with the tabulated lift and drag coefficients, it was an easy matter to 
convert coefficients back to pounds (thus, the experimental values shown in Fig. 2-121 for lift 
and Fig. 2-122 for drag). 
 
 The prediction of lift and drag for all 89 data points was easy after the performance 
equations were “programmed” onto a spreadsheet (I used Microsoft Excel). As input, I set the 
collective pitch (θo) to 1.9 degrees (but in radians), which Wheatley says was the tip pitch 
angle nonrotating. I assumed the blades were manufactured with zero twist, BUT allowed for 
the “dynamic twist” that Wheatley knew existed when the rotor was operating. The airfoil lift-
curve slope (a) was taken as 5.73 per radian. The rotor speed, hub plane angle of attack, and 
advance ratio were set to the values Wheatley tabulated for each point. Finally, at each point, 
the blade linear twist term (θt) was iterated to the value that zeroed torque, which satisfied the 
condition of autorotation. (I used the Goal Seek tool provided by Excel to do the iteration.) 
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 Using blade twist (θt) as the iteration parameter to obtain zero torque was a simple 
way to approximate “dynamic twist,” the largest unknown that Wheatley addressed in his 
report [141]. The amount of blade twist required to zero torque varied from 1.4 degrees at low 
speed to – 1.4 degrees at high speed. Wheatley used a figure of 0.8 degrees per 1,000 pounds 
of lift. However, guided by Eq. (2.42), it appears a more rigorous approximation found by 
linear regression analysis would be  

(2.318)   2 2 2
t t o t FP0.0000199V 0.00000729 V 0.0000263Vθ = − + β − . 

In fact, the influence of elastic twisting (both steady and periodic) could be pursued more 
thoroughly by following Eq. (2.42) and studying the two Wheatley reports on the subject [58, 
59]. But once the step towards including blade elastic twisting is taken, then blade bending 
both flapwise and chordwise should be included along with lead-lag motion. At that point, a 
much more comprehensive tool such as the Johnson CAMRAD computer program [109] is 
called for.  
 
 The capability of simple performance equations to approximate rotor drag is shown in 
Fig. 2-122. The average airfoil profile drag coefficient (Cdo) used for the Göttingen 429 was 
0.0127, which was increased from an estimate based on both British [121] and N.A.C.A. 
[142] data to account for droop and lead-lag cables (etc.).  
 
 John Wheatley’s thorough flight testing of the Pitcairn PCA-2 Autogiro [127], 
followed by full-scale, rotor-alone wind tunnel testing [141], finally quantified practical 
autogyro performance as it existed before Cierva introduced the wingless, direct control C.30. 
The performance situation is simply stated in Fig. 2-123. The rotor blades alone (plus the 
droop and lead-lag cables, and associated fittings) were producing a maximum lift-to-drag 
ratio just under 7. The PCA-2 aircraft reached a maximum lift-to-drag ratio slightly over 4.5 
at an advance ratio of 0.3. By similarity, it is quite likely that the Cierva C.19 (see Fig. 2-15) 
reached maximum lift-to-drag ratios comparable to the Pitcairn PCA-2 (Fig. 2-123), although 
I have no flight test data to confirm this statement.  
 
Cierva makes the point in his 1935 lecture, his last, that 

“The most efficient rotor produced so far has a maximum lift-drag ratio (excluding the drag of 
the hub) of the order of between 13 and 14. This represents an increase of some 40 percent on 
the best rotor of five years ago, and perhaps 80 percent on the early autogiro rotors. At the 
same time, the maximum lift coefficients have been materially increased. These results have 
been obtained by making the blades cantilevered, suppressing the suspension cables, replacing 
the cumbersome interblade bracing by non-reactive dampers at their root attachment, using 
more efficient aerofoil sections, replacing the fabric covering which constituted a relatively 
irregular and deformable surface by rigid superstructure, and by diminishing the solidity 
considerably.” 
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Cierva noted two additional performance points in his paper that are quite interesting. He 
writes first that “the symmetrical aerofoil makes a very poor autogiro blade.” This may be 
true, but the Göttingen 606 airfoil (which had a 0.17 thickness-to-chord ratio) he chose for the 
C.30 had a large nose-down pitching moment, which caused a fatality and a maximum speed 
restriction to be placed on the aircraft. Second, he was of the opinion that the introduction of 
direct control on the C.30 now meant that “a fixed wing in present machines [the PCA-2 and 
C.19] would certainly not pay for its extra weight.” 
 
 When Cierva presented his March 15, 1935 paper, the Royal Aircraft Establishment 
(RAE) had finally (in 1934) obtained a C.30 to use to conduct an end-user evaluation. A 
report was ultimately published in March 1939 [54]. The RAE conducted gliding tests similar 
to those Wheatley did with the PCA-2 [127]. The C.30 demonstrated a lift-to-drag ratio that 
was only slightly better than the Pitcairn PCA-2, as Fig. 2-124 shows. And—most certainly—
the performance of the C.30 fell far short of the “best equivalent airplane.” I cannot help but 
feel that Cierva knew—as he spoke to the Royal Aeronautical Society that Friday in 1935—
that further rotor system improvements were not going to close the gap shown in Fig. 2-124. 
That was the position taken by the RAE [54] who concluded that  
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“the experiments do not suggest any very obvious method of improving performance of the 
aircraft [the C.30] except by reducing the parasitic drag of the fuselage. It has been estimated 
that the reduction of solidity and increase of blade angle as compared with the C.6 autogiro has 
increased the L/D ratio of the rotor at top speed from 5.9 to 8.8 and it seems unlikely that much 
further improvement in the aerodynamic performance of the rotor can be obtained.” 

 
 
2.11.7 Drag Reduction 
 
 The view of the Royal Aircraft Establishment [54] that further autogyro performance 
improvements would come “by reducing the parasitic drag of the fuselage” was not a new 
thought in December 1936. Airplanes just after World War I55 were not “things of beauty” 
from a drag point of view. John Anderson, in his superb book  A History of Aerodynamics 
[143], credits the April 1922 Louis Bréguet paper [144] and, in particular, the 1929 Melvill 
Jones paper [145] as the catalysts for drag reduction and improving fixed-wing aircraft lift-to-
drag ratios. Both Bréguet and Jones presented their views before audiences of the Royal 
Aeronautical Society. 

                                                 
55 By 1920, this war was generally referred to as “The Great War” or “The War to End All Wars.” These were 
just working titles until we could give it a number. 
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 To point out just how important aircraft lift-to-drag ratio (L/D) was to air transport 
costs, Bréguet displayed the now-famous range equation. In modern notation, he showed the 
audience that 

(2.319)   P L Takeoff Wgt.Range 375 ln
s.f .c. D Landing Wgt.

ª º§ ·η= « »¨ ¸
© ¹¬ ¼

 

where range is in statute miles, propeller efficiency is (ηP), specific fuel (and oil) consumption 
(s.f.c.) of the engine is in pounds per horsepower per hour, and weights are in pounds. The 
constant, 375, is in statute miles per pound per horsepower per hour. The landing weight (WL) 
is the takeoff weight (WTO) less the weight of fuel (WF) and oil (WO) used. That is, 

( )L TO Fuel OilW W W W= − + . This quite well known equation applies here to propeller-driven 
aircraft using a reciprocating engine.56 
 
 Since fuel and oil weight used is generally 10 to 20 percent of the takeoff weight (the 
Lindbergh Spirit of St. Louis is one of several exceptions [146, 147]), Bréguet’s range 
equation is easily simplified to  

(2.320)   
2

F O F O F OP

TO TO TO

W W W W W WL 1 1Range 375 1
s.f .c. D W 2 W 3 W

ª ºª º § · § ·+ + +η « »= + + +¨ ¸ ¨ ¸« »
« »¬ ¼ © ¹ © ¹¬ ¼

" . 

To simplify this further, aviation gasoline weighs about 6 pounds per U.S. gallon, and engine 
lubricating oil weighs about 7.4 pounds per U.S. gallon, so  

(2.321)   ( )Fuel OilP

TO

6Gal 7.4GalLRange 375 1.05
s.f .c. D W

ª º+η≈ « »
¬ ¼

. 

Now, oil consumption is about 1/10 of fuel consumption by gallon, so  

(2.322)   ( )FuelP

TO

6.74GalLRange 375 1.05
s.f .c. D W

ª ºη≈ « »
¬ ¼

 

which means that statute miles per gallon of fuel is roughly 

(2.323)   P

Fuel TO

St.Miles L 12,650
Gal s.f .c. D W

ª ºη≈ « »
¬ ¼

. 

 The message Bréguet sent in 1922 was to get busy and (a) raise aircraft lift-to-drag 
ratio from 8.3 to 16.6; (b) raise propeller efficiency from 0.73 to 0.775; and (c) reduce engine 
fuel and oil consumption by 25 percent. Assuming  a new design, these steps would nearly 
double the payload, and the “London to Paris passenger fares can then be brought down to 
some 450 or 500 francs—without profit for the company. Although very high, these last 
figures are more encouraging and nearly workable.”   
 

                                                 
56 Variations of the Bréguet equation, including its derivation, are available in references [60] and  [136]. 
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 Using the simplified Bréguet range expression, Eq. (2.323), autogyros, up to the 
Cierva C.30A, can be compared to light, civil airplanes produced and certificated by the 
United States fixed-wing industry in the era of 1927 through 1933. This comparison is shown 
in Fig. 2-125. The basic trend was confirmed—miles per gallon vary inversely with takeoff 
weight, and, just as Glauert maintained, autogyros were not “economical” when compared to 
either biplane or monoplane airplanes.  
 
 The over 500 data points shown in Fig. 2-125 come from the 9-volume U. S. Civil 
Aircraft Series by Joseph P. Juptner, 2 volumes of which were referenced earlier [134, 135]. 
This concise source provides maximum still air range (without reserves) in statute miles, and 
total fuel and oil capacity in U.S. gallons. The miles per gallon of gasoline were calculated 
from this data. Nearly 240 biplanes are shown with an × symbol in Fig. 2-125, and shaded 
circles denote an equal number of monoplanes. No seaplane or amphibian airplanes are 
shown. All the aircraft are single engine. 
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Fig. 2-125. Fuel efficiency of autogyros versus airplanes in 1927–1933. 
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 Fig. 2-125 shows three lines of aircraft performance as defined by the factor P L
s.f .c. D

η  

used in the Bréguet range equation. The lowest line, where the factor equals 6.0, suggests the 
position of the autogyro relative to the airplane as representative of the 1927 through 1933 
era. The dashed line corresponds to relatively unstreamlined biplanes having a factor of 7.2. 
The highest line shows the evolution of the monoplane through 1933, which is a factor of 
13.8. Remember, the period from 1934 up to World War II was when the performance of the 
monoplane really improved. No data from that era is shown in Fig. 2-125.  
 
 Ignoring Cierva’s position that autogyros would compete favorably with airplanes, I 
think that by the mid-1930s, biplanes were being replaced by monoplanes. As Fig. 2-125 
shows, the monoplane was more fuel efficient than the biplane at any takeoff weight. 
Monoplanes became the configuration of the future, and single-engine biplanes served 
primarily as light, one- or two-, or sometimes three-passenger sport planes. Airplane 
performance was improving by leaps and bounds through the 1930s, but real autogyro 
development was just getting started with the C.30. Still, many thought the autogyro was just 
another sport plane.  
 
 I think you will agree with John Anderson that motivation for fixed-wing aircraft 
performance improvement really did come from the 1929 Melvill Jones paper—once you 
have read Professor Jones’ paper. His paper is titled The Streamlined Aeroplane, and it is the 
most entertaining aerodynamic performance paper I have ever read.57 Furthermore, his logic 
is irrefutable. The Professor’s position was that the “correct aeroplane” should have no more 
drag than induced drag (because lift is required) plus skin friction drag (because an airplane 
has a surface.) He concedes that propeller efficiency of 0.75 “is practical on present-day craft, 
and efficiencies higher than say 85 to 90 per cent are unlikely to be achieved in the near 
future.” His view on induced drag was that “although it is an important item in the power 
account at the lower cruising speeds, it is not the predominating factor at speeds above 
90 m.p.h.” With respect to skin friction drag, Jones concludes—after a very thorough 
discussion of flat plate and minimum airfoil drag—that airplanes of the era must have a 
turbulent boundary layer, not a laminar boundary layer. 
 
 Based on representative data for biplanes of the 1920s, Professor Jones used his 
assumptions for induced drag, skin friction drag, and propeller efficiency to calculated engine 
brake horsepower per 1,000 pounds of weight for his ideal, streamlined aeroplane. Then he 
chose aircraft from the 1927 edition of Jane’s All The World’s Aircraft to see how close they 
came to his ideal.58 He chose installed engine maximum brake horsepower as the reference 
power and top speed as the reference velocity, but remarked in a footnote that he was “aware 
that cruising speed is of more general interest than top speed, but I have used the top speed in 
computing these points because of the difficulty of estimating engine power at cruising 
                                                 
57 Melvill Jones’ opening sentence is: “Ever since I first began to study Aeronautics I have been annoyed by the 
vast gap which has existed between the power actually expended on mechanical flight and the power ultimately 
necessary for flight in a correctly shaped aeroplane.” His paper just gets better. 
58 Professor Jones said, “I took the figures from Jane to avoid argument. Being, as I suppose, a makers’ own 
figures, they are unlikely to be pessimistic as regards performance.” (Now that is straightforward!) 
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speed.” Fig. 2-126 is my reproduction of the performance assessment that Professor Jones 
presented to the fixed-wing industry in 1929. The figure shows that a sorry performance 
situation did indeed exist at the time. No wonder the aircraft industry was motivated to 
decrease drag and raise aircraft L/D. The progress just from 1927 through 1933 was certainly 
impressive, and development, as you know, did not stop then. 
 
 The performance of Cierva, Pitcairn, and Kellett autogyros compared to Professor 
Jones’ perspective about “aeroplanes” is also shown in Fig. 2-126. In retrospect, it appears 
that Cierva was, in fact, improving performance and reducing drag—at least relative to the 
first-generation autogyros and pre-1930 biplanes. Certainly retracting the landing gear would 
have been a big step forward. In fact, if Cierva had not died, he could have used his creative 
engineering ideas to further drag reduction, not of the rotor but of the rest of the machine. He 
would have had some very useful wind tunnel test results provided by the National Physical 
Laboratory to start with. 
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Fig. 2-126. Professor Jones’ assessment of airplane performance in 1927 versus his ideal 

of the streamlined aeroplane [145]. 



2.11  PERFORMANCE 

 264

 

 
Fig. 2-127.  The NPL performed wind tunnel tests on this C.30A 1/8-scale model [54]. 

 
 

 The C.30 evaluation [54] by the Royal Aircraft Establishment and National Physical 
Laboratory contains a drag breakdown for a 1/8-scale model (Fig. 2-127) of the C.30A 
autogyro, shown in Table 2-18. This C.30 parasite drag baseline was obtained from wind 
tunnel tests. The original data is presented as drag in pounds at 100 feet per second, a 
common practice in that era. I have converted the data to the modern form of equivalent flat 
plate drag area (fe) in square feet, which is drag divided by dynamic pressure (i.e., fe = D/q). 
These data are for the fuselage at zero angle of attack. At a 26-degree angle of attack, the drag 
of the complete model was twice as high.  
 
 Table 2-18  shows the component drags of the Cierva C.30 Autogiro, but it just as 
easily could be relabeled as drag breakdown for an early biplane or, for that matter, any one of 
a number of monoplanes. In 1929, Professor Melvill Jones admonished the aircraft industry to 
reduce equivalent flat plate drag area (fe)—the measurement of parasite drag. As you know, 
the aircraft industry has never stopped reaching for the Professor’s ideal “streamlined 
aeroplane.” To illustrate this point, consider Fig. 2-128. I constructed and interpreted this 
parasite drag area chronology primarily from the enormously valuable technical survey titled 
Quest For Performance [148] by Laurence Loftin. Cierva, Pitcairn, and Kellett autogyros had, 
as you can see, considerable room for parasite drag reduction.  
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Table 2-18. C.30A Drag Breakdown Based on 1/8-Scale-Model Tests 
 

Component 
Drag at 

100 fps (lbs) 
Parasite Area

(fe in sq ft) 
 

Percent 
Undercarriage and its wheels 29 2.44 32 
Engine and exhaust ring 17 1.43 18 
Fuselage, with vertical fins 11 0.93 12 
Pylon 10 0.84 11 
Rotor hub 10 0.84 11 
Tail plane   7 0.59   8 
Windscreens     4.5 0.38   5 
Tail wheel     1.5 0.13   2 
Total 90 7.57 100 
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Fig. 2-128. The progress of the aircraft industry towards “the streamlined aeroplane.” 

 
2.11.8 Kellett YO-60 Predicted Performance 

 
 This introduction to autogyro performance would not be complete without an example 
of typical engine horsepower versus airspeed for a top-of-the-line autogyro. The complete 
performance of “modern” autogyros did not depend only on the rotor system L/D, of course. 
The drag of the fuselage, landing gear, hub, blade shanks, and other protuberances (i.e., 
everything but the blades) were quite important too. The propulsive efficiency of propellers 
was also a dominant factor in arriving at the total engine brake horsepower required to fly. 
The example I have chosen is the last Kellett autogyro. 
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 As Brooks notes on pages 238 and 239 of reference [7]: “The [one] XO-60 [and 
seven] YO-60’s were the last Autogiros delivered to the United States Army Air Forces. They 
were extensively tested after delivery but their higher initial cost and greater maintenance 
demands, as compared with fixed-wing liaison light aircraft, led to their rejection for army 
cooperation work.” This last autogyro delivery was accompanied by a performance analysis 
[149] of the XO-60/YO-60 series.59 I have taken some liberty in transposing the final data and 
results into 1990s terminology. The XO-60/YO-60 series, shown in Fig. 2-129, had the 
primary physical characteristics shown in Table 2-19.  
 
 The estimated XO-60 power required versus speed and data necessary to the estimate, 
based on [149], are shown in Fig. 2-130 to Fig. 2-133. The standard method of relating power 
available and power required in the autogyro era was to reduce power available by propeller 
efficiency as discussed earlier. However, in Fig. 2-130, I have chosen to increase power 
required by propeller efficiency so that engine brake horsepower required (BHPreq’d.) becomes 

(2.324)   rotorcraft FP
req 'd.

prop

D VBHP
550

=
η

. 

 
 

 
Fig. 2-129. The Kellett YO-60 [7]. 

                                                 
59 Wayne Wiesner, a longtime friend and a pioneer in his own right, sent me this reference in a private letter. In 
the early 1940s Wayne worked at Kellett under chief engineer Richard Prewitt. Wayne later joined Stan Hiller’s 
innovative team as Jay Spenser notes in reference  [150].  



2.11  PERFORMANCE 

 267

Table 2-19. XO-60 Physical Properties 
Parameter Value 

Design Gross Weight 2,800 lbs 
Operating Weight Empty 2,180 lbs 
Normal Fuel 36 gal. 
Main Rotor 3 blades 
   Diameter 43.2 ft 
   Chord at 70% radius 12.92 in. 
   Solidity 0.0476 
   Airfoil (root) 23016 NACA 
   Airfoil (tip) 23010 NACA 
   Rotor Speed at max speed at sea level 241 rpm 
   Rotor Speed at min speed at sea level 189 rpm 
Horizontal Tail  
   Span  10 ft 
   Chord 30 in. 
Fuselage  
   Number of Seats 2 
   Overall Length 21 ft 5 in. 
Propeller  2 blades 
   Hamilton Standard, constant speed 2150 rpm 
   Hub Model 2B20 
   Blade Design 6135A-6 
   Diameter 8.5 ft 
Engine  
   Jacobs I-6MB-A rated at  300 hp 
   Operating Speed 2,150 rpm 

 
The reason I have chosen this alternate form is to facilitate performance comparisons of the 
late-model autogyros to helicopters, as you will see later in Volume II—Helicopters. The 
rotorcraft drag (Drotorcraft) is estimated at flight weight (W) by 

(2.325)   ( ) ( ) ( )
2 2

rotorcraft e FP rotor e FP
rotor

WD f 0.5 V D f 0.5 V
L D

= ρ + = ρ + . 

The parasite drag area (fe) varies with fuselage angle of attack (or, alternately, the hub plane 
angle of attack, αhp) and, hence, with flight path velocity (VFP). A longitudinal trim analysis 
must be completed to obtain the angles of attack. For the XO-60, this variation is shown in 
Fig. 2-131. Note the auxiliary scale giving flight path velocity. 
 
 The propeller efficiency for the Hamilton Standard constant speed propeller was 
obtained from Hamilton Standard and is shown in Fig. 2-132. With previous Kellett flight test 
data available from the YG-1B, Wiesner was able to estimate the blades-alone drag for a gross 
weight of 2,800 pounds and altitudes of sea level, 5,000, and 10,000 feet. The blades-alone 
lift-to-drag ratio at sea level is shown in Fig. 2-133. Rotor speed and hub plane angle of attack 
varied at each speed, which meant that advance ratio could not be based on one single defined 
tip speed.  
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Fig. 2-130. The XO-60 did not have great performance, even at sea level.  
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Fig. 2-131. The parasite drag area of “modern” autogyros was high.  



2.11  PERFORMANCE 

 269

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140

Airspeed  (mph)

Propeller
Efficiency

ηprop

 
Fig. 2-132. The efficiency of the XO-60 variable-pitch propeller.  
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Fig. 2-133. The three L/D ratios estimated for the Kellett XO-60 in 1943. 
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Table 2-20. Estimated and Guaranteed YO-60 Performance Parameters 
Parameter Value Guaranteed 

Gross Weight 2,800 lbs  
Design Altitude Sea level  
Maximum Speed at Sea Level 134 mph 127 
Minimum Speed 26 mph 30 
Cruise Speed 70 to 94 mph  
Maximum Range with 36 gal. 210 statue miles  
Average Cruising Speed for Max Range 70 mph  
Endurance at 60% Power with 36 gal. 2.2 hours 2.0 
Service Ceiling 13,750 ft  
Minimum Time to Climb to 10000 ft 16 min  
Takeoff Distance (to clear 50-ft obstacle) 247 ft 250 
Landing Distance (to clear a 50-ft obstacle) nil  
Maximum Permissible Diving Speed 154 mph  

 

 You will note in Fig. 2-133 that there are three lift-to-drag ratios that can be quoted. 
The rotor-blades-alone L/D has been discussed at length earlier in this volume. The L/D based 
on parasite drag plus blade drag represents performance obtainable in a power-off glide. This 
is what Wheatley, for example, obtained with PCA-2 testing. The third L/D ratio shown in 
Fig. 2-133 is, I believe, the most meaningful because it is based on engine brake horsepower 
required (EHPreq’d.) in level flight. This third L/D ratio is defined here as 

(2.326)   FP

EPR req 'd.

W VL
D 550 EHP

§ · =¨ ¸
© ¹

. 

 
 Some typical summary performance data is provided in Table 2-20. Kellett actually 
based the final tabulated performance summary on 320 horsepower available from the engine 
and a gross weight of 2,800 pounds. The Kellett Autogiro Corporation guaranteed certain  
YO-60 performance parameters to the U.S. Army Air Force and those are also shown in  
Table 2-20. 
 
 The final power required versus airspeed performance displayed in Fig. 2-130 
illustrates the penalty of having a propeller for forward thrust and a rotor for lift. Both devices 
incur a profile power loss. This represents a double loss in profile power. In fact, as you will 
see later, the rotor is quite capable of lifting and thrusting forward—very efficiently—as the 
helicopter has demonstrated. This aspect of wings, propellers, and rotors will be reopened in 
the discussion about high-speed rotorcraft. 
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2.11.9 Closing Remarks 
 
 Despite ongoing efforts by Cierva, Pitcairn, Kellett, and others, the autogyro never 
demonstrated airplane-like performance. In fact, the majority of autogyro improvements dealt 
with the rotor system and its shortcomings, such as the vibration it transmitted to the airframe. 
The reduction in rotor solidity and the move to three cantilevered blades certainly helped, but 
hub and blade-shank drag reduction were never even addressed. Furthermore, no effort to 
retract landing gear was ever even discussed. Rotor-blades-alone maximum lift-to-drag ratios 
much above 10 were never realized, and the one attempt at utilizing an improved airfoil led to 
stability and control problems that caused a fatality. It almost seems to me that the mold was 
cast for all rotorcraft performance during the autogyro era. 
 
 As you will read in Volume II—Helicopters, preoccupation with the rotor system and 
its undesirable features permutated helicopter development.  
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2.12 MAINTENANCE 
 
 
 The autogyro matured with the addition of (1) direct rotor control (accompanied by the 
removal of the wings, ailerons, and rudder) and (2) auxiliary power drive to pre-spin the rotor 
prior to takeoff (leading to nearly vertical jump takeoffs). Not incidentally, maintenance and 
safety generally improved as Cierva, Pitcairn, and Kellett, the industry leaders, developed 
new models. By the time the Cierva C.30 was fielded, Reginald Brie [52] was able to list 
rather specific maintenance requirements for this most produced autogyro model. Brie 
recommended that grease lubrication be periodically performed as shown here in Table 2-21.  
 
Brie also prescribed that every 50 flying hours, the following points required lubrication: 

a. Engine Controls and Petrol Control Rods 
b. Clutch and Brake Controls in Cockpit 
c. Actuating Gear for Bias Control in Cockpit 
d. Levers for Bias Control on Pylon 
e. Operating Controls and Pins for Dog and Plate 
f. Clutch Controls 
g. Casings in All Bowden Controls Are Well Packed With Vaseline and Should Receive Occasional 

Attention 
 

 
Table 2-21. Lubrication Requirements of the Cierva C.30 

•  Rotor System 
1.  Grease Flapping Articulation Pin Every 10 Flying Hours 
2.  Drag [lead-lag] Articulation Pin, Grease Every Flying Day 
3.  Grease Hub Every 20 Flying Hours 

•  Control System 
4.  Grease Longitudinal Hinge Pin [hub pivot] Every 10 Flying Hours 
5.  Grease Lateral Hinge Pin on Starboard Side Every 10 Flying Hours 
6.  Ball Joint on Top of Control Column, [Grease] Every 10 Flying Hours 
7.  Grease Hinge Fork Every 10 Flying Hours 
8.  Center of Cross Shaft, Grease Every 10 Flying Hours 

•  Pre-Spin Drive 
9.  Top Unit-Mechanical Starter [gear box], Grease Every 20 Flying Hours 
10.  Grease Top Ball Joint Every 10 Flying Hours 
11.  [Grease] Spline at Bottom of Transmission Shaft Every 10 Flying Hours 
12.  Grease Bottom Ball Joint Every 10 Flying Hours 
13.  Engine Clutch—Grease When Dismantling Only 

•  Landing Gear 
14. to 22.  Eight Grease Points Done Every Flying Day 
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 Maintenance in the rotorcraft world today uses scheduled maintenance man-hour per 
flight hour as one contributor to operating cost per flight hour. Therefore, let me guess from 
Reginald Brie’s list that 2 man-hours would be scheduled for every 10 hours of flying plus 2 
more hours for the 50-hour lubrication list. This gives 12 man-hours for 50 flying hours or 
about one-quarter of a man-hour for every flying hour. The cost of grease and the lubricant is 
not included.  
 
 What is left off of Brie’s scheduled maintenance list is, of course, the 140-horsepower, 
Armstrong Siddeley Genet Major IA engine (military designation, the Civet I), the fuel system 
and, by the way, the propeller. Fortunately, a much more complete picture of the Cierva C.30 
autogyro maintenance requirements is available. The AVRO Company delivered several 
military versions of the C.30 to the Royal Air Force. These aircraft were known as ROTA 
gyroplanes. Manuals [151-157] were provided for the autogyro.60 It is from these manuals that 
I have constructed a much clearer picture of the C.30 aircraft and its maintenance. 
 
 The Royal Air Force version of the Cierva C.30, Fig. 2-134, is describe in Air 
Publication 1490, Volume I [152] as a two-seater, single engine gyroplane aimed at 
communication duty. Chapters I through VII of this primary volume give a specification-like 
description of the fuselage, undercarriage, tail units, rotor, controls, engine installation, flying 
equipment (i.e. instruments), and miscellaneous equipment. Rigging, Assembly, and Various 
Adjustments are covered in Chapter VIII, and Special Flying Notes are provided in 
Chapter IX.  
 
 Volume III of Air Publication 1490 [156] provides an index of assemblies by drawing 
number and the breakdown of parts in each assembly. This view of the ROTA is virtually a 
drawing tree, which I have summarized in table form along with a parts count in Table 2-22. 
Cierva and the AVRO Company organized the ROTA description into 25 assemblies and, by 
my count, about 2,800 parts defined by a drawing were required to build-up one ROTA. Of 
course, shop-floor supplies such as standard nuts, bolts, and washers, etc., added at least 
another 2,200 parts. 
 
 Once assembled, these parts required maintenance. The maintenance schedule [154] 
called for inspection between flights, and inspections (a) daily, (b) every 10 hours, (c) every 
20 hours, (d) every 40 hours, and (e) every 120 hours. The Civet I engine and its “airscrew” 
required inspection as well, of course. The engine and propeller inspection intervals were 
identical to the airframe. The Air Ministry publication makes it quite clear that  

“This schedule describes the technical detail of the maintenance and shows the routine which 
is considered to be necessary in normal circumstances. It is not to be interpreted as absolving 
any persons concerned from the responsibility of acquainting themselves with or acting upon 
any circumstances indicating the necessity for additional [i.e., unscheduled maintenance] 
work.” 

                                                 
60 Miss Mary Jane Millare, Office Administrator of the Department of Research and Information Services at the 
Royal Air Force Museum in London, tracked down the original manuals and got me a copy. The rotorcraft 
industry, myself included, is extremely grateful. 
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Fig. 2-134. The Royal Air Force C.30 was known as the ROTA Gyroplane. 
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Table 2-22. Index of Assemblies and Parts Count for the ROTA 

Assembly 
Drawing 
Number 

Subassemblies 
 Per Assembly 

Drawing Parts 
Per Assembly 

Shop Parts Per 
Assembly 

Controls, Rotor Clutch and 
Brake, Wheel Brake T556 8 79 86 

Controls, Engine O529 9 52 65 

Controls, Machine Not Given 8 191 128 

Controls, Magneto Starting O1938 1 16 45 
Controls, Rotor (really rotor hub 
+ transmission) Not Given 21 435 297 

Engine Cowling E735 1 13 69 

Engine Mounting O535 1 65 36 

Fuel System P552 3 86 72 

Fuselage, Bulkhead O532 1 51 118 

Fuselage, Clutch Mounting C589 1 19 46 

Fuselage, Fairings E557 12 151 149 

Fuselage, Flooring D529 1 20 24 

Fuselage, Joints Not Given 0 0 0 

Fuselage, Seating N509 1 4 0 

Fuselage, Skeleton C576 10 80 0 

Fuselage, Windscreens M518 2 13 115 

Instruments Not Given 11 45 152 

Miscellaneous Not Given 5 59 44 

Oil System P546 3 39 55 

Pylon Structure J612 4 81 16 

Rotor Blades F699 3 1,056 516 

Tail Plane G550 2 41 0 

Tail Struts G544 5 26 38 

Tail Wheel K549 8 8 24 

Alighting Gear (undercarriage) K546 12 182 134 

Airframe Grand Totals  133 2,812 2,229 

Plus One Engine and One Prop n/a n/a n/a n/a 
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Fig. 2-135. The Royal Air Force C.30 lubrication diagram  

(the C.30 had 39 lubrication points). 

 For historical purposes, I have included both airframe and engine maintenance 
schedules in Appendix K. You will see that many of the maintenance items required 
lubrication. The lubrication diagram, Fig. 2-135, shows points that accepted grease and those 
that just got a squirt of oil. 
 
 So much for the practical subject of maintenance. Now let me proceed to the most 
important autogyro aspect—safety. 
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2.13 SAFETY 
 
 
 The proponents of the autogyro argued that the first merit of the autogyro was its 
freedom from the dangers of fixed-wing stalling at low speed.61 The lift performance at low 
speed was, in fact, better than fixed-wing aircraft, and this safety was carried over to the 
helicopter during power-off landings. You will recall that Henrich Focke, like Cierva, set the 
number one design criteria for his helicopter as safety following power failure. For the 
autogyro, the rotor was unpowered in flight so a transition from level to gliding flight 
following power failure was quite benign. The autogyro was virtually automatic in going into 
a glide. The reasonable management (by the pilot) of potential and kinetic energies available 
from altitude, speed, and rotor inertia became the key to successful power-off landings, as you 
will read later. 
 
 By 1938 (about a 10-year span), Brooks [7] notes that five people had died in autogyro 
accidents: one in Britain, three in France, and one in the United States. By 1938, I estimate 
that 

• Over 500 autogyros had been built, including nearly 50 prototypes 
• More than 50 pilots had been trained 
• At least 100 fixed-wing pilots had flown autogyros in the U. S. alone 
• About 40,000 flight hours and over 2-1/2 million miles had been accumulated by 

the fleet.  
 

Accepting these estimates leads to a statistic of 8,000 fleet hours flown for each fatality. The 
fatality rate of the autogyro was, of course, at least twice as good as the fixed-wing industry 
was experiencing by 1938 [158]. That does not mean though that autogyro crashes were not 
happening. In his eleventh and twelfth appendices, Brooks [7] provides manufacturers’ serial 
numbers. In his remarks’ column, he notes that 30 “crashes” had happened, but lists no 
information about the 97 Kellett autogyros built by Japan. Therefore, on the basis of, say 400 
autogyros, about 30 crashed. This would be an attrition rate of 7.5 percent, which actually is 
not too bad when compared to general aviation statistics. 
 
 Perhaps you will find this additional information about aviation safety useful [159]. 
The subject will come up again in the helicopter discussion presented in Volume II. 
 
 The gathering, analyzing, and reporting of aviation accident data has played an 
important part in making air transportation safer. One of the earliest examples of this safety 
improvement activity took place in November 1921, at the Premier Congrés International de 
la Navigation Aérienne, held in Paris. During this conference, Albert Tete presented a review 
of the status of aerial transportation in France [160]. In addition, R. Mayo presented a paper 
entitled Aviation and Insurance [161], which discussed the “causes of the many accidents 
which account for the high insurance rates.” Specifically, he stated: 

                                                 
61 The more optimistic of autogyro champions strongly suggested that forward flight efficiency comparable to 
the airplane would undoubtedly be achieved, however airplane development was already so far ahead that the 
lead held by the fixed-wing industry could not be overtaken.  
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 “The frequent accidents to airplanes employed on air routes have been due to widely 
divergent causes. Probably 90% of them were due to carelessness and could have been 
avoided, had the necessary precautions been taken. The principal causes of accidents may be 
enumerated as follows: 

1.  Poor piloting; 
2.  Engine trouble; 
3.  Lack of system; [organization of personnel] 
4.  Poorly adapted airplanes; 
5.  Poor airdromes; 
6.  Unfavorable meteorological conditions.” 
 

With only minor changes, the Mayo paper presented in 1921 could be presented at any “aerial 
transportation” safety conference today. 
 
 In the United States, following World War I, the National Advisory Committee on 
Aeronautics (N.A.C.A.), by request of the Assistant Secretaries for Aeronautics in the 
Departments of War, Navy, and Commerce, established a special commission “to prepare a 
basis for the classification and comparison of aircraft accidents, both civil and military.” In 
NACA Report No. 308 [162], 13 classes of accidents, 4 classes of injuries, and 6 classes of 
damage to material were defined. Categories of immediate and underlying accident causes 
were established and an accident form was adopted. This approach was used to analyze 1,432 
military and 1,400 civilian accidents that occurred before January 1929 [163]. In June 1936, a 
further refinement to definitions and methods of analysis was established with NACA Report 
No. 576 [164]. That report, entitled “Aircraft Accidents, Method of Analysis,” became the 
standard United States reference on the subject and formed the foundation for current 
National Transportation Safety Board (NTSB) aviation accident reporting.  
 
 There was an immediate payoff for the efforts of the N.A.C.A.-led committee. 
Analysis of the data revealed major shortcomings in aircraft design and pilot training (e.g., 
deficiencies in aircraft stability and control, and spin recognition and recovery) for which 
corrective actions were developed and implemented. It should be noted that solving these 
problems did not require computing accidents per flight hour or other ratios that are 
considered important measures of transportation safety today. The priority then, as now, was 
to put an end to accidents.  
 
 In October 1944, the U.S. Civil Aeronautics Administration (CAA), the predecessor to 
the Federal Aviation Administration (FAA), published the first “Statistical Handbook of Civil 
Aviation” [158]. This first of many CAA handbooks pointed out that reported accident 
statistics were based on definitions and classifications established by NACA Report No. 576 
(although the Statistical Handbook incorrectly referenced the NACA report as “TR-567”). 
This document summarized aviation statistics dating back to 1926, including air carrier and 
private flying accident statistics compiled by the U.S. Civil Aeronautics Board (CAB), the 
predecessor to the NTSB. In the introduction, the CAA acknowledged that “there are some 
gaps in the early statistics because fact-gathering machinery had not been fully organized and 
it also was extremely difficult to obtain reliable figures from an industry still inchoate.” With 
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respect to private flying, the CAA noted that, “Because of the dislocation caused by the War, 
statistics on the amount of private flying during the war years are incomplete.” Despite these 
reservations, the 1944 CAA handbook provided early examples of detailed tables regarding 
such aircraft operating statistics as the number of hours flown, miles covered, and passengers 
carried. Many of the safety measures using these statistics are still used today.  
 
 Today, the NTSB investigates civil aviation accidents and has amassed a database of 
coded, as well as narrative, information. Over 32,000 aviation accidents, which have occurred 
since 1982, are summarized at the NTSB website (www.ntsb.gov) and at the FAA Office of 
System Safety (http://nasdac.faa.gov./asp/asy_ntsb.asp). The FAA Statistics and Forecast 
Branch publishes a yearly “Census Of U.S. Civil Aircraft.” The census provides details about 
the number and types of aircraft currently operating in the U.S. civil aviation fleet, along with 
other relevant data. Fleet-size data are obtained by extrapolating data from a survey 
questionnaire mailed to a sample of registered owners. The validity of this extrapolation has 
been questioned occasionally. Today there are approximately 350,000 U.S. civil registered 
aircraft, which makes updating and correcting the census and registration records a daunting 
task. Nevertheless, by combining data from the FAA and NTSB, such statistics as accidents 
per 100,000 operating hours for each civil aircraft grouping are prepared and widely 
distributed. 
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2.14 CONCLUDING REMARKS 
 
 
 The contributions made by Cierva before his tragic, untimely death (he was killed 
December 9, 1936 at the age of 50 in a Douglas DC-2 accident at Croydon Airport near 
London, England) cannot be restricted to just the preceding, technically oriented discussion. 
Just as importantly, Cierva spread rotorcraft technology worldwide—in the most direct way—
by helping other companies get started in the autogyro business. Brooks [7] records that 
autogyros were manufactured in at least seven countries, which certainly hastened the arrival 
of a practical helicopter.  
 
 The autogyro era of the rotorcraft industry developed from the roots established by the 
Cierva Autogiro Company, Limited, as shown in Fig. 2-136. This initial industry base was 
created from the technology developed by Cierva and the business strength provided by the 
Weir brothers, in particular James Weir who became chairman of the company. In effect, the 
Cierva Autogiro Company was the engineering department and business headquarters for the 
autogyro and its development. The A.V. Roe & Co., Ltd. became the manufacturing facility 
for the early contracts with the Air Ministry of Great Britain.  
 
 
 

Cierva  Autogiro
Company, Ltd.

March 24, 1926

Chairman
James G. Weir

Tech. Dir.
Juan de la Cierva

Pitcairn Aviation Inc.

Feb. 14, 1929

Pitcairn-Cierva
Autogiro Company Of America

President Harold F. Pitcairn

Pitcairn Aircraft 
Company

Kellett  Aircraft
Corporation

Buhl Aircraft
Corporation

Jan. 1929

Weymann-Lepere Co.
France

Dec. 1931

Dec. 1931

Liore-et-Olivier Co.
France

Focke-Wulf Flugzengban A.G.

Germany

Jan. 1931

Mar.1931

Dec. 1929

A.V. Roe & Co. Ltd.
Air Ministry Contract
No. 680624/26

Jan. 1926

 

Fig. 2-136. In 5 years the autogyro industry spread to Europe and the U.S.  
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 As word of Cierva’s success with the autogyro spread, Harold Pitcairn saw the 
potential in the United States and initiated a strong business tie with Cierva and Weir. This led 
to the Autogiro Company of America as a principal licensee. An immediate subsidiary, the 
Pitcairn Aircraft Company, was set up to design, develop, market, and produce its own line of 
autogyros. The Kellett brothers obtained a license from the Autogiro Company of America 
and became a competing firm with its own products. 
 
 In Europe, the initial license to the Weymann-Lepere Company passed on to the  
Liore-et-Olivier Company in France, and Henrich Focke brought the technology to Germany.  
 
 The efforts of these pioneering companies, and TsAGI in Russia and Kayabe in Japan, 
were rewarded. Brooks [7] points out that the industry developed some 46 different autogyro 
types and delivered about 450 rotorcraft by the end of World War II. A summary of delivered 
production models shown in Fig. 2-137 confirms that the Cierva Model C.30 and its 
derivatives dominated the market. 
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Fig. 2-137. A Summary of delivered production models (about 450 autogyros were 

delivered by the time the era ended). 
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 Brooks also uncovered (and included in his excellent history) enough detailed data to 
construct several other summary charts, which capture the accomplishments during the 
autogyro era. For example, the industry demonstrated that it had a product at a reasonable 
price. Fig. 2-138 shows that in “back-then dollars” these early rotorcraft could be delivered 
for something on the order of $ 5.50 per pound of empty weight. The most produced model, 
the Cierva C.30, even approached $3.50 per pound. Updating these prices to 2010 dollars 
provides an estimate of about $50 to $77 per pound of empty weight.  
 
 The industry also made considerable progress in reducing the weight empty fraction of 
the autogyro over the two-decade period. This structural efficiency measure, the ratio of 
empty weight to maximum takeoff gross weight, is shown in Fig. 2-139. As the rotor systems 
improved and other components incorporated prevailing fixed-wing aircraft technology, the 
weight-empty fraction dropped from about 0.81 to 0.58. Advanced configurations, on the 
drawing board as the era came to close, suggested that the structural efficiency would 
continue to improve and that empty weight would be less than half of the maximum takeoff 
gross weight. 
 
 These first successful rotorcraft certainly enjoyed a unique position in the 
transportation system of their day. With the wealth of technical data provided by Brooks [7], it 
is quite easy to incorporate the autogyro onto Gabrielli’s and Von Karman’s view shown in the 
front piece art of this volume. The future position of the practical helicopter that was yet to 
come is shown by the autogyro data in Fig. 2-140.  
 
 There is one last note I would like to make in closing this brief introduction to 
autogyros. In the early 1960s, the Royal Aeronautical Society established the Cierva 
Memorial Lecture honor. Dr. James A. J. Bennett, who carried on after Cierva’s untimely 
death, had the privilege of giving the first lecture on February 16, 1961 [80]. Henrich Focke, 
in being honored for developing the first practical helicopter, gave the Fifth Cierva Memorial 
Lecture on October 23, 1964 [10]. In his introduction, Henrich Focke said,  
 

 
“The author was brought to the task of making the first practical helicopter 
because de la Cierva did not do it himself.” 
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Fig. 2-138. Autogyros were not unreasonably expensive. 
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Fig. 2-139. The autogyro industry reduced the weight-empty fraction from  

0.81 to 0.58 over two decades. 
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APPENDIX B 
 

AIRFOIL LIFT AND PITCHING MOMENT 
 
 

 The aerodynamics of airfoils is a subject included in any number of textbooks studied 
by undergraduates. The subject has many degrees of complexity. For my purposes here, I 
have sought the least complex discussion and aimed for results, not derivations. To that end, I 
have turned to my early reference books1,2,3 from which the fundamentals of lift and pitching 
moment of an airfoil in steady flow are crystal clear. However, an airfoil embedded in a rotor 
blade experiences unsteady flow, which means that this appendix must deal with an additional 
factor beyond introductory considerations. The effect of unsteady flow on airfoil lift and 
pitching moment is not found in many textbooks. My reference (Helicopter Theory by Wayne 
Johnson)4 provides the theory using advanced mathematics, which I have reduced to 
elementary terms. 
 
 There are many sketches and photos showing how air flows around an airfoil. The one 
I have selected for Fig. B-1 is from the thin book by L. Prandtl and O. G. Tietjens covering 
Applied Hydro-Aeromechanics. In this photo the airfoil is stationary, and streamlines of air 
are shown flowing about the airfoil. Fortunately, in studying fluid mechanics, it is only the 
relative motion between the air and the airfoil that matters.  

Fig. B-1. Air flow around a cambered airfoil set at positive angle of attack.
                                                 
1 L. Prandtl and O. G. Tietjens, Fundamentals of Hydro- and Aeromechanics, Dover Publications, Inc., New 
York. 
2 L. Prandtl and O. G. Tietjens, Applied Hydro- and Aeromechanics, Dover Publications, Inc., New York. 
3 Paul E. Hemke, Elementary Applied Aerodynamics, Prentice-Hall, New York, 1946. 
4 Wayne Johnson, Helicopter Theory, Princeton University Press, New Jersey, 1980. 
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That is, an airfoil flying in still air is exactly equivalent to an airfoil at rest in a moving air 
stream. The particles of air that pass over the upper surface of the airfoil travel faster than the 
particles passing along the lower surface of the airfoil. The difference in particle velocities 
between the upper and lower surface lead to a reduced pressure on the upper surface relative 
to the lower surface. In effect, the airfoil is sucked up—which is the force called lift. 
 
 The website http://en.wikipedia.org/wiki/Liftforce has a rather good, modern 
discussion of airfoil lift should you have the interest, but for this appendix it is the calculation 
of airfoil lift and pitching moment I intend to convey. 

 
Thin Airfoil in Steady Flow 
 
 First imagine that an airfoil, shown as a dashed outline in Fig. B-2, is placed in a wind 
tunnel, and the tunnel velocity is (V). Following thin airfoil theory, imagine the airfoil is 
reduced in thickness so that it appears as a line. In thin airfoil aerodynamics this line is called 
the mean line, and it is upon this line that the actual airfoil shape is constructed. Figure B-2 
shows this mean line to be straight, and the outlined airfoil is considered symmetrical about 
this straight mean line. However, the mean line can be curved to many shapes in which case 
the airfoil is classed as cambered versus symmetrical (a cambered airfoil is shown in  
Fig. B-1). The aerodynamic properties of the cambered airfoil will be discussed shortly. 
 
 Physically, the airfoil mean line shown in Fig. B-2 can be thought of as a simple flat 
plate inclined in a wind tunnel to the relative wind (V) at angle of attack (Į). Imagine this 
very thin airfoil to be an elemental portion of a wing that has an extremely large wing span. 
Assume the elemental span (dr) to be very small, and let the chord (c) of the airfoil times the 
elemental span define the elemental area (dS) of this portion of the wing (i.e., dS = cdr). Use 
the coordinate (x) to measure distance from the leading edge towards the trailing edge at 
which x then equals c. The pressures on the very thin airfoil produce an elemental normal 
force (dFN/dr), an elemental chordwise force (dFC/dr), and an elemental moment about the 
leading edge (dMLE/dr). The resultant of the normal and chordwise forces is the airfoil 
elemental lift (dL/dr). In aerodynamic theory, the lift force always acts perpendicular to the 
velocity as Fig. B-1 shows. In simple aerodynamic theory, airfoils of any type have no drag, 
so the lift force is computed as 

(1) NdF drdL
dr cos

=
α

. 

 

 Imagine now two streams of air particles flowing along the velocity vector (V). The 
two streams strike the bottom of the dashed line airfoil at a point called the stagnation point, 
which is noted in Fig. B-1. At the stagnation point, the two streams separate. One stream 
flows along the airfoil surface: first forward, then around the airfoil nose, and then back to the 
airfoil trailing edge. The other stream leaves the stagnation point and travels directly along the 
bottom surface of the airfoil to the trailing edge. The particles that traveled along the stream 
that traces out the upper surface move faster than the particles traveling in the stream that 
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Fig. B-2. Forces and moment on an airfoil. 

 
traces out the lower surface. This difference in stream velocity creates a pressure vacuum on 
the upper surface and a higher pressure on the lower surface. In effect, the airfoil is lifted up 
by suction. The velocities of particles in the two streams are determined by5 

(2) upper
c xUpper surface velocity u V cos sin

x
§ ·−≡ = α + α¨ ¸¨ ¸
© ¹

 

and 

(3) lower
c xLower surface velocity u V cos sin

x
§ ·−≡ = α − α¨ ¸¨ ¸
© ¹

. 

These two velocities create pressures on the very thin airfoil. The upper surface experiences a 
large suction relative to the lower surface because of the greater velocity of the particles. The 
two pressure distributions are calculated using Bernoulli’s law as 

(4) 2 2
upper o upper

1 1Upper surface pressure P P V u
2 2

≡ = + ρ − ρ  

and 

(5) 2 2
lower o lower

1 1Lower surface pressure P P V u
2 2

≡ = + ρ − ρ . 

In these pressure equations, (Po) is the barometric (or static) pressure of the air in which the 
airfoil is immersed. The second term (1/2ȡV2) is commonly called the dynamic pressure and 
generally denoted by the letter (q). 

                                                 
5H. J. Stewart, A Simplified Two-Dimensional Theory of Thin Airfoils, J. of the Aeronautical Sciences, Oct. 1942. 

dL/dr
dFN/dr 

Į 
V 

dMLE/dr 

c

x 

dFC/dr 
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 It is the pressure difference between the lower and upper surface that creates a normal 
force on the airfoil. That is, ǻP = Plower – Pupper and this pressure differential (ǻP) varies from 
leading edge to trailing edge as 

(6) 21 c xP V 4sin cos
2 x

§ ·−∆ = ρ α α¨ ¸¨ ¸
© ¹

. 

This pressure differential is frequently nondimensionalized by the dynamic pressure 
parameter (q = 1/2ȡV2) to read as 

(7) 21
2

P c x4sin cos
V x

∆ −= α α
ρ

. 

 

 The distribution of the differential pressure (divided by the dynamic pressure) along 
the airfoil chord is shown in Fig. B-3. The computation offered by Eq. (7) is shown at 5- and 
10-degree angles of attack. Note that this theoretical result—from what is called thin airfoil 
theory—shows that the differential pressure is infinite at the nose of the very thin airfoil when 
the airfoil thickness is theoretically zero. In practical cases the pressure differential can be 
very large, but is never infinite. This singularity reflects the behavior and velocity of the air 
particles that must go around the zero-thickness airfoil sharp leading edge with an infinite 
velocity. Real airfoils have a rounded leading edge, which is acted on by pressure, and this 
creates the chordwise force (dFC/dr) shown in Fig. B-2. This chordwise force is created 
primarily by leading-edge suction. 
 
 The differential pressures shown in Fig. B-3 act perpendicular to the very thin airfoil 
surface. The pressure distribution acts as a suction, which creates an elemental normal force 
(dFN/dr). This force is found by the integral   

(8) 
c

c 2N
0

0

dF 1 c xPdx V 4sin cos dx
dr 2 x

ª º§ ·−= ∆ = ρ α α« »¨ ¸¨ ¸« »© ¹¬ ¼

´
µµ
¶

³  

which, upon integration, gives the elemental normal force 

(9) ( )( )2NdF 1 V c 2 sin cos
dr 2

§ ·= ρ π α α¨ ¸
© ¹

. 

It then follows from Eq. (1) that the elemental lift is  

(10) ( )( )2NdF drdL 1 V c 2 sin
dr cos 2

§ ·= = ρ π α¨ ¸α © ¹
. 

Equation (10) is generally rearranged to appear as 

(11) ( )( ) ( )21
2

dL 2 sin
V cdr

= π α
ρ

. 
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Then, by assigning dynamic pressure the symbol (q = 1/2ȡV2) and taking the elemental area as 
(dS = cdr), airfoil lift from thin airfoil aerodynamic theory is most frequently seen in the lift 
coefficient ( CA ) form as 

(12) ( )dLC 2 sin 2
q dS

= = π α ≈ παA . 

The lift coefficient is now clearly seen as a lift curve slope (2ʌ) times an angle of attack and, 
for small angles of attack, sin Į is approximately Į. 
 
 Thousands of airfoil experiments have been performed. The overwhelming conclusion 
from theory versus test comparisons is that the airfoil lift coefficient does vary in direct 
proportion to the angle of attack for angles of attack up to about 10 to 12 degrees. The 
experiments have shown, however, that the slope is not dC d 2 6.28α = π =A  per radian as 
thin airfoil theory suggests; rather the slope is more on the order of 0.1 per degree or 5.73 per 
radian. As the experimental data began to accumulate, it became common to write 
dC d a∞α =A . Even more common was the simple statement that  

(13) C a= αA . 

 

 

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Angle of 
Attack
10 deg.

 5 deg.

21
2

P
V

∆
ρ

Chordwise Station (x/c)  
Fig. B-3. Differential pressure distribution over an airfoil from thin airfoil theory. 

 



APPENDIX B 

310 

 Now consider the elemental pitching moment about the airfoil leading edge (dMLE/dr). 
This elemental moment is calculated from the pressure distribution quite simply as 

(14) 
c

c 2LE
0

0

dM 1 c xP xdx V 4sin cos xdx
dr 2 x

ª º§ ·−= − ∆ = − ρ α α« »¨ ¸¨ ¸« »© ¹¬ ¼

´
µµ
¶

³  

which, upon integration, shows that 

(15) ( )( )c 2 NLE
0

dFdM c 1 cP xdx V c 2 sin cos
dr 4 2 4 dr

ª º § ·§ · § · § ·= − ∆ = − ρ π α α = −¨ ¸ ¨ ¸ ¨ ¸¨ ¸« »© ¹ © ¹ © ¹© ¹¬ ¼
³ . 

This result states immediately that the moment center of the pressure distribution is one-
quarter of a chord length aft of the leading edge. That is, the elemental moment about the 
leading edge is simply the elemental force (dFN/dr) times the moment arm (c/4). The negative 
sign arises from the sign convention that a positive moment is nose-up.  
 
 It should be obvious that taking moments about the 1/4-chord point rather than the 
leading edge results in  

(16) c/4dM 0
dr

= . 

This very important result leads to the oft quoted statement that an airfoil’s center of pressure 
is extremely close to the quarter chord. Furthermore, thin airfoil theory finds that the center of 
pressure (i.e., the chordwise point at which the lift force acts) does not move as angle of 
attack and lift are changed. Advanced theories and experiments show these conclusions from 
thin airfoil theory are not quite correct as I will discuss shortly. 
 
Cambered Airfoil in Steady Flow  
 
 Figure B-1 uses smoke to show streamlines of air particles flowing around a cambered 
airfoil, which is installed in a wind tunnel. The wind tunnel free-stream velocity is (V). Far 
ahead, and well above and below the airfoil, this velocity is parallel to the wind tunnel center 
line. However, air flow direction near the airfoil is increasingly influenced by the airfoil as the 
streamlines show.  
 
 A cambered airfoil has a shape built around a curved mean line. A typical example is 
shown in Fig. B-4. The mean line of a cambered airfoil is referenced to the trailing edge. The 
ordinate of the mean line is on the Y-axis. As Fig. B-4 shows, angle of attack (ĮC) is measured 
as the angle between the free-stream chord line, which is the X-axis. The chord line 
geometrically connects the leading edge to velocity and the chord line. The cambered airfoil 
adds two aerodynamic properties to a symmetrical airfoil. The first property is the addition of 
an angle (of attack) of zero lift (Į0L), which alters the elemental airfoil lift equation to 

(17) ( ) [ ] ( )( ) ( )2
C 0L C 0L

dL 1 V c C qc 2 qc 2 qc 2
dr 2

§ · ª º= ρ = πα = π α + −α = π α − αª º¨ ¸ ¬ ¼¬ ¼© ¹
A .
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Fig. B-4. A cambered airfoil set at positive angle of attack, which is measured between 
the free-stream velocity and the chord line. 

 
 
The reason I have expanded the angle of attack somewhat awkwardly is that the 
overwhelming number of cambered airfoils have a negative angle of zero lift.6 That is, to 
produce zero lift the chord line angle of attack (ĮC) must be equal to the angle of zero lift 
(Į0L) so that the total angle of attack (Į) is zero.  
 
 The second property a cambered mean line adds is that the airfoil pitching moment 
coefficient about the 1/4-chord point (

1/4cMC ) is no longer zero as Eq. (16) shows is true for a 
symmetrical airfoil. That is, Eq. (16) now becomes 

(18) ( )
1/4c

2 2c/4
M

dM 1 V c C
dr 2

§ ·= ρ¨ ¸
© ¹

 

and the airfoil pitching moment coefficient (
1/4cMC ) is not necessarily zero. 

 
 Thin airfoil theory gives relatively straightforward equations to calculate a cambered 
airfoil’s angle of zero lift (in radians) and pitching moment coefficient about the 1/4-chord 
point. These integral equations are, for angle of zero lift (Į0L), 

(19) 
( ) ( )

1

0L
0

1 y dx
1 x x 1 x

α = −
π − −
´
µ
¶

 

and for the pitching moment coefficient, 

(20) 
( )

( ) ( )1/4c

1 2

M

0

y 4x 6x 3 2
C dx

1 x x 1 x

− +
=

− −

´
µµ
¶

 

                                                 
6 Ira H. Abbott and Albert E. von Doenhoff, Theory of Wing Sections, Dover Publications, Inc., New York, 1959. 
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where the abscissa is a fraction of the chord; that is, x = X/c and the ordinate is y = Y/c. A key 
to performing the integration is to define the camber as y = (1-x)F(x), which cancels the 
quantity (1-x) in the denominator and avoids a discontinuity at the trailing edge where x = 1. 
Since the mean line starts at X = 0, Y = 0, the function F(x) must be zero at x = 0 to avoid a 
discontinuity at the leading edge. One general construction of the mean line could be 

(21) ( ) ( ) 2 3
(x) 1 2 3y 1 x F 1 x C x C x C xª º= − = − + + +¬ ¼"" . 

 
 One of the earliest mean lines constructed assumed a general shape of  

(22) ( ) ( ) ( ) ( )(x) 1 2y 1 x F 1 x C x C x= − = − −ª º¬ ¼ . 

When this shape is used in Eqs. (19) and (20), the angle of zero lift and the pitching moment 
coefficient become simply, for angle of zero lift (Į0L) in radians, 

(23) ( )1
0L 2

C 4C 3
8

α = − −  

and for the pitching moment coefficient, 

(24) ( )
1/4c

1
M 2

CC 8C 7
32
π= − − . 

 
 A practical example should help illustrate the properties of the cambered airfoil. You 
will recall from Section 2.6, which dealt with longitudinal trim, that Cierva used a cambered 
airfoil for the rotor blade of his model C.30 Autogiro. Symmetrical airfoils had been used on 
all his previous models, but he sought an improvement in performance by using the German 
Göttingen 606. The pitching moment coefficient of this airfoil was 

1/4cMC  = –0.052 (see table 
on page 56), and the result was severe blade twisting at high speeds. Of lesser concern was the 
experimental finding that the angle of zero lift was Į0L = –2.58 degrees or –0.04503 radians 
(see table on page 56).  
 
 Having the answers to Eqs. (23) and (24) means that a rational guess of the Göttingen  
606 mean line shape can be made. Thus,  

(25) ( ) ( ) ( )y 1 x 0.190812x 1.22198 x= − −ª º¬ ¼ . 

The Göttingen 606 was quoted by Cierva as having a thickness ratio of t/c = 0.17. Therefore, 
it seems reasonable (to me) to approximate the Göttingen 606 airfoil final shape with the 
NACA 0017 thickness7 added to the mean line given by Eq. (25). This may be an adequate 
approximation to airfoil selection during the autogyro era. The result of this possibility is 
shown in Fig. B-5.  

                                                 
7 From Theory of Wing Sections by Abbott and von Doenhoff (pg. 113), the symmetrical NACA 0017 thickness 
distribution is ( )2 3 4

t
ty 0.2969 x 0.12600x 0.35160x 0.28430x 0.10150x

0.20
± = − − + . 
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 Note that a cambered airfoil having a zero pitching moment coefficient is quite 
possible. Referring to Eq. (24), you can see that if C2 = 7/8, then 

1/4cMC 0= . This mean line 
does not, however, mean that the angle of zero lift is zero, since, from Eq. (23), you have  

(26) 1 1
0L

C C74 3
8 8 16
§ ·α = − − = −¨ ¸
© ¹

. 

Maintaining the Göttingen 606 value of C1 = 0.190812 leads to a reduction in angle of zero 
lift from –2.58 degrees to –0.683 degrees. A NACA 0017 airfoil thickness distribution added 
to a mean line shape of 

(27) ( ) ( )( )y 1 x 0.190812x 7 8 x= − −ª º¬ ¼  

leads to the airfoil shown in Fig. B-6 as the dashed line, in contrast to the Göttingen 606 
shown as the solid line. Notice that a slight curling-up near the trailing edge was sufficient to 
reduce pitching moment to zero. 
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Fig. B-5. An estimate of the Göttingen 606 airfoil shape. 

 
 

-0.1

-0.05

0

0.05

0.1

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Chord 
Line

Gottingen 606 (estimated)
Mean line for Zero CM0.25c

 
Fig. B-6. A revision of the Göttingen 606 airfoil shape to obtain zero pitching moment 

about the 1/4-chord point. Both shapes use a NACA 0017 airfoil thickness 
distribution. 
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 As a final note, recall that Kellett also used the Göttingen 606 airfoil for their KD-1 
rotor blades. Richard Prewitt, the chief engineer at Kellett, noted8 that:  
 

“Shortly after the first flight of this autogiro [the KD-1 on December, 1934], we found it to be 
longitudinally unstable above eighty m.p.h. We developed a theory of this instability, based on 
the assumption that the slightly unstable blade sections caused a negative pitching moment 
when operating on the advancing side of the rotor where the velocities are high. This theory 
proved to be correct when small turned-up trailing edge tabs were attached at the tips of the 
blades. In fact the pitching moment coefficient of the blade section was over corrected to the 
extent that the pilot reported it required a heavy forward load on the stick at high speed. This 
over-correction was rectified by successively cutting off the inboard end of the tab section until 
a desired longitudinal stability was obtained. Fortunately, the lateral stability was improved 
with the correction in longitudinal stability.” 

 
Thin, Uncambered Airfoil in Unsteady Flow 
 
 Even before the autogyro era began, fixed-wing aircraft quite frequently experienced a 
phenomena called flutter.9 The flutter phenomena can be likened to a stop sign mounted on a 
torsionally soft pole where the stop sign can often be seen twisting back and forth in the wind. 
An aircraft wing can easily be twisted off the fuselage at high speed should flutter be 
encountered. An airplane wing lift and pitching moment can combine with inadequate 
structure in an adverse way, and the aeroelastic response can be quite catastrophic. The 
primary blame for flutter was traced to aerodynamic forces and moments that occurred during 
a wing’s structural deflections. This structural deflection created an unsteady aerodynamic 
environment, which altered airfoil lift and pitching moment properties from those known at 
the time. In 1929, Glauert10 published perhaps the first theory of airfoil lift and pitching 
moment during unsteady motion. Theodorsen11 provided a more complete theory in 1935, and 
a very comprehensive book—truly a bible—about fixed-wing aeroelasticity was published in 
1955.12  
 
 During the autogyro era, little effort was made to transpose fixed-wing unsteady airfoil 
aerodynamics to the rotary wing problem. In fact, it took the demonstration of the helicopter 
to motivate a few researchers and mathematicians to seriously examine the unsteady flow 
experienced by an airfoil located somewhere along a rotor blade. Airfoils in a rotary wing 
environment experience an oscillating velocity, a varying pitching motion and, with flapping, 
a vertical rising and falling. Including all these unsteady motions seriously complicated even 
the relatively simple problem that Glauert solved in 1929. Several key reports, papers, and 
                                                 
8 R. H. Prewitt, The Autogiro, Proceedings of the First Rotating Wing Aircraft Mtg., The Franklin Institute, 
Philadelphia, Pa., Oct. 28–29, 1938. 
9 A. R. Collar, Aeroelasticity—Retrospect and Prospect, J. of the Royal Aeronautical Society, vol. 63, no. 577, 
Jan. 1959. 
10 H. Glauert, The Force and Moment on an Oscillating Aerofoil, Aeronautical Research Committee R&M 1242, 
1929. 
11 T. Theodorsen, General Theory of Aerodynamic Instability and the Mechanism of Flutter, NACA Report 
No. 496, 1935.  
12 Raymond L. Bisplinghoff, Holt Ashley, and Robert L. Halfman, Aeroelasticity, Addison-Wesley, Reading, 
Mass., 1955. 
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rotary wing books,13,14,15,16,17 deal with the lift and pitching moment of an airfoil in a rotary 
wing environment. 
 
 There is no question that unsteady aerodynamics is a complicated subject. The 
theoretical derivation of equations that estimate just lift and moment of a flat plate requires 
advanced mathematical skills. The classical theoretical results leave the equations in a world 
mixed with complex, imaginary, and real numbers. Furthermore, the theoreticians derive 
results using an axis system centered at the half chord point, so that the airfoil leading edge is 
placed at (–b) and the trailing edge is at (+b). These notations and number mixing easily put 
off the practicing engineer. Therefore, what follows is a translation of rather advanced math to 
practical engineering equations for one example.  
 
 For this appendix, “useable” equations have been obtained. I have chosen Johnson’s 
April 1980 one-page technical note18 as the starting point for one simple example. 
 
 Suppose the airfoil is a thin, flat plate as shown in Fig. B-7. The airfoil has a chord (c) 
in feet. The chordwise dimension (x) in feet is measured positive aft starting from the leading 
edge. Now suppose the airstream (V) in feet per second is not constant, but is varying in a 
sinusoidal manner with time. This would be the case of an airfoil somewhere along a rotating 
rotor blade operating in forward flight. Furthermore, suppose the airfoil is oscillating in pitch 
(Į) in radians about some chordwise point (xp) in a sinusoidal manner. This pitch angle is 
measured in radians. Assume for this example that the airfoil is not rising and falling (h), but 
stays in the same plane. This example assumes that the airfoil is one of many in a wing that 
has an infinitely long span, which is to say this example deals with two-dimensional, unsteady 
aerodynamics. Finally, assume that the sinusoidal motion of the airstream and the airfoil pitch 
oscillation are occurring at the same frequency (Ȧ) in radians per second. Since the airfoil 
oscillates through one cycle in a time of t = 2ʌ/Ȧ, it is common to note that ȥ = Ȧt. Thus, one 
oscillating cycle occurs as ȥ goes from 0 to 2ʌ radians, or, in degrees, ȥ goes from 0 to 
360 degrees.  
 
 Together, the preceding statements say, let:  
 

                                                 
13 Wayne Johnson, Helicopter Theory, Princeton University Press, New Jersey, 1980. 
14 Rufus Isaacs, Airfoil Theory for Flows of Variable Velocity, J. of the Aeronautical Sciences, vol. 12, no. 1, Jan. 
1945, pp. 113–118.  
15 J. Mayo Greenberg, Airfoil in Sinusoidal Motion in a Pulsating Stream, NACA TN No. 1326, June 1947. 
16 Arun I. Jose, et al., Unsteady Aerodynamic Modeling with Time-Varying Free-Stream Mach Numbers, J. of the 
American Helicopter Society, vol. 51, no. 4, Oct. 2006. 
17 J. Gordon Leishman, Principles of Helicopter Aerodynamics, Cambridge University Press, Cambridge, United 
Kingdom, 2000. 
18 Wayne Johnson, Application of Unsteady Airfoil Theory to Rotary Wings, AIAA J. of Aircraft, vol. 17, no. 4, 
April 1980. 
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Fig. B-7. Geometry of a thin airfoil operating in unsteady flow. 

 

(28) 

( ) ( ) ( )

( ) ( ) ( )

2
2
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2
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2

dV d VV V V sin t V cos t V sin t
dt dt
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dt dt
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= + ω → = ω ω → = −ω ω

α αα = α + α ω → = ωα ω → = −ω α ω

= → = → =

. 

The general pitching moment and lift equations offered by Johnson are (after taking some 
poetic license) for an element of pitching moment about the chordwise point (xp) 

(29) 

2 2 2 2
p 2

p p p2 2

p k p

xdM c c d h d dV c d 9c dx V V cx x
dr 4 2 dt dt dt 4 dt 32 dt

c c dh 3c dx V C V x
2 4 dt 4 dt

ª º§ · § ·πρ α α α§ ·= − + + α − − − +« »¨ ¸ ¨ ¸¨ ¸
© ¹© ¹ © ¹¬ ¼

 ½ª α º§ · § ·+πρ − + α + −® ¾¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼¯ ¿

 

where the moment is positive nose-up. For an element of lift acting positive up at the point 
(xp) on the flat plate, 

(30) 

2 2 2
p

p2 2

k p

xdL c d h d dV c dV x
dr 4 dt dt dt 2 dt

dh 3c dc V C V x
dt 4 dt

ª ºπρ α α§ ·= + + α + −¨ ¸« »© ¹¬ ¼
 ½ª α º§ ·+π ρ + α + −® ¾¨ ¸« »© ¹¬ ¼¯ ¿

. 

dL/dr 
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dMXP/dr 

c
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 Now, say the airfoil is pitching about the 1/4-chord point (i.e., xp = ¼c) and that the 
airfoil neither rises nor falls with time. These assumptions reduce the general equations 
somewhat so that you now have, for the elemental pitching moment in foot-pounds per foot 
acting positive nose-up at the 1/4-chord point, 

(31) 
1

4

3 2
c

2

dM c 3c d d dV2V
dr 16 8 dt dt dt

ª ºπρ α α= − − − α« »
¬ ¼

 

and, for an element of lift in pounds per foot acting positive up at the 1/4-chord point on the 
flat plate, 

(32) 
1

4

2 2
c

K2

dL c d dV c d c dV c V C V
dr 4 dt dt 4 dt 2 dt

ª ºπρ α α  α ½ª º= + α + + π ρ α +® ¾« » « »¬ ¼¯ ¿¬ ¼
. 

 Finally, consider converting these pitching moment and lift equations into practical 
engineering equations that can be evaluated with any calculating tool (even a slide rule). 
Converting the {  } term in the dL/dr expression, Eq. (32), will be discussed—just for the sake 
of completeness—after the results are given. The conversion is made by substituting the 
assumptions given by Eq. (28) into the moment and lift equations and then collecting the 
various sine and cosine terms. The process is tedious, but simple, with the result that, for the 
elemental pitching moment about the 1/4-chord point,  

(33) ( ) ( ) ( ) ( )1
4

3
c 2

1 0 1 1 0 1 1

dM c 3c 3sin t 2 V V cos t V sin 2 t
dr 16 8 2

πρ ª º§ · § ·= − ω α ω − ω α + ω α ω − ω α ω¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼
 

and for the elemental lift, the more lengthy result is 

(34) 

( ) ( ) ( )
( ) ( )

( )( )
( ) ( )

( ) ( )

( ) ( )

22
1 0 1 1 0

1 1

0 0 1 1 1

0 1 1 0 1 1 1

0 1

1 1 0 1 1 0 1

1 1 2 1 1 2

c sin t V V cos tdL c 4
dr 4 V sin 2 t

1V V F
2

cV V F G sin t
2

c V V sin t
c F V V G cos t
2
1 1V G sin 2 t V F cos 2 t
2 2

ª º− ω α ω + ωα + ωα ωπρ « »= « »
+ ωα ω« »¬ ¼

§ ·α + α¨ ¸
© ¹

ωª º+ α + α − α ω« »¬ ¼+π ρ + ω ®
ª º+ ωα + α + α ω« »¬ ¼
§ · § ·+ α ω − α ω¨ ¸ ¨ ¸
© ¹ © ¹

½
° °
° °
° °
° °
° °

¾
° °
° °
° °
° °
° °¯ ¿

. 

 
The constants F1, G1, F2, and G2 are obtained accurately enough for engineering purposes from  

(35) 
31

2 2

2 3

2

F 1.0  1.88601019K  3.15193950 K 1.95792310K

G  0.54533433K  0.72434519 K  3.21608597 K 2.15588120 K   

= − + −
= − − + −
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using the parameter (K) for F1 and G1 as K1 = cȦ/2V0, and for F2 and G2, K2 = 2K1. Equation 
(35) is satisfactory for calculating F and G constants as long as K is less than 0.60. 
 
 To illustrate this example, assume some parameters approximating the Cierva C.30 
Autogiro such as 
 

Parameter Symbol Unit Value 
Chord c feet 1.0 
Density ȡ slug/ft3 0.0023769 
Steady velocity V0 ft/sec 475 
Oscillating velocity V1 ft/sec 190 
Steady angle of attack α0 radians 5(ʌ/180) = 0.0872665 
Oscillating angle of attack α1 radians –4.5(ʌ/180) = –0.0785398 
Frequency Ȧ rad/sec 25.5 

 
The input of values from this table into Eqs. (33) and (34) returns the results that, for 
elemental pitching moment 

(36) ( ) ( ) ( )1
4cdM

0.008938sin t 0.690637 cos t 0.266389sin 2 t
dr

= + ω + ω + ω  

and for elemental lift 

(37) ( ) ( ) ( )1
4cdL

100.668 29.186sin t 3.401cos t 3.507sin 2 t 38.077 cos(2 t)
dr

4.804sin(3 t) 0.696cos(3 t)

= − ω + ω + ω + ω

+ ω − ω
. 

These results are illustrated graphically in Fig. B-8 for pitching moment and Fig. B-9 for lift. 
The moment and lift are plotted versus azimuth angle (ȥ = Ȧt) rather than time since only one 
cyclic is needed. With respect to moment, Fig. B-8, you can see that the first harmonic cosine 
and the second harmonic sine dominate the waveform in this example. Note that if the 
oscillating frequency were zero, Eq. (33) states that the moment would be zero throughout the 
cycle, which is consistent with the known fact that a thin, flat plate has zero pitching moment 
about the 1/4-chord point, regardless of angle of attack. 
 
 The elemental lift versus azimuth, the solid line in Fig. B-9, shows that elemental lift 
is dominated by a steady lift, a first harmonic sine, and second harmonic cosine in this 
example. Throughout the autogyro era and on up to the late 1960s, unsteady aerodynamics 
was not included in rotary wing calculations. The assumption was that the oscillations in 
velocity and angle of attack were at a very low frequency. That is, everything went on in slow 
motion. Thus, Ȧt could be replaced by ȥ and then Ȧ could be set to zero. Under this nearly 
static situation K1 and K2 are zero, F1 and F2 equal 1.0, and G1 and G2 equal zero. These 
assumptions reduce Eq. (34) to  
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Fig. B-8. Elemental pitching moment for a thin, uncambered airfoil oscillating in angle 

of attack while the free stream is varying. 
 
   

(38) [ ] ( )
( ) ( )

[ ] ( ) ( )

0 0 1 1 0 1 1 02

0 1

1 1

1V V V V sin
2dL c 0 c V V sin

dr 4 10 cos t V cos 2 t
2

 ½§ ·α + α + α + α ψª º¨ ¸° °¬ ¼πρ °© ¹ °= + π ρ + ψ ® ¾
§ ·° °+ ω − α ω¨ ¸° °© ¹¯ ¿

 

which is easily expanded with sine and cosine terms collected to yield 

(39) 
( ) ( )

2 2 2 2
0 0 0 1 1 1 0 1 0 0 1 0 1 1

2 2
0 1 1 0 1 1 1

1 3V V V V V 2V V V sin
2 4dL c

dr 1 1V V V cos 2 V sin 3
2 4

ª º§ · § ·α + α + α + α + α + α ψ¨ ¸ ¨ ¸« »© ¹ © ¹« »= π ρ
« »§ · § ·− α + α ψ − α ψ« »¨ ¸ ¨ ¸
© ¹ © ¹¬ ¼

. 

Thus, for the numerical values of this example 

(40) ( )1
4cdL

105.859 30.581sin t 41.167 cos(2 t) 5.293sin(3 t)
dr

= − ω + ω + ω  

which is the dashed line shown in Fig. B-9. 
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Fig. B-9. Elemental lift of a thin, uncambered airfoil oscillating in angle of attack while 

the free stream is varying. 
 
 The dimensional results shown in Figs. B-8 and B-9 are frequently seen in modern 
technical literature in some familiar coefficient form. The question is, “What do two-
dimensional airfoil coefficients,

1/4cMC and CA , versus angle of attack look like?” The issue 
depends on how dynamic pressure (q) is defined. One possible approach (using this example) 
is to say that dynamic pressure is ( )21

2 0 1q V V sin= ρ + ψ  from which it follows from classical 
definitions that 

(41) 
( ) ( )1 4c

1 4c
M2 2 21 1

2 20 1 0 1

dM drdL / dr dL / drC and C
qc V V sin c V V sin c

= = =
ª º ª ºρ + ψ ρ + ψ¬ ¼ ¬ ¼

A . 

These two coefficients are shown as they vary with angle of attack in Fig. B-10. The 
immediate effect of including unsteady aerodynamics for an oscillating airfoil is to reduce the 
steady flow, aerodynamic, lift curve slope (2ʌ) of the flat plate and create a small angle of 
zero lift much like a cambered plate. There is clearly a sliver of loops in the lift coefficient 
result, but one can argue that these “hysteresis” loops are of rather secondary importance. 
 
 What is not of minor importance is the magnitude of the pitching moment coefficient 
shown with the dashed line in Fig. B-10. Recall that the angle of attack is varying as 
Į0 +Į1sin(Ȧt), and the first derivative with respect to time is dĮ/dt = ȦĮ1cos(Ȧt). The moment 
coefficient appears to behave as 
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Fig. B-10. Lift and pitching moment coefficients of a thin, uncambered airfoil oscillating 

in angle of attack while the free stream is varying. Coefficients based on 
( )21

2 0 1q V V sin= ρ + ψ . 

  

(42) ( )
1 4cM 1C K cos t≈ − ωα ωª º¬ ¼  

in that the maximum and minimum moment coefficient occur at ȥ = Ȧt = 0 degrees and 
180 degrees respectively.  
 
 Now, for the sake of completeness, let me outline how the {  } term in Eq. (34) was 
obtained from 

(43) K
c dC V
2 dt

 α ½ª ºα +® ¾« »¬ ¼¯ ¿
. 

To begin with, it would be a serious mistake for you to imagine that on my own I was able to 
transpose Eq. (43) from the world of imaginary and complex numbers to the practical 
engineering world. Having little residual math knowledge in this regard, I took advantage of 
Wayne Johnson’s expertise and patience. Wayne continuously guided me as I worked with 
pencil, paper, and MathCad 6.0. Thanks to his help, I can write the following: 
 

1. The first thing to know is that imaginary numbers are identified by the letter (i). 
The magnitude of “ i ” is i 1= − , and therefore 2i 1= − .  
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2. A combination of real and imaginary numbers is written as a + ib, or, say, 10 + 4i. 
This is a complex number. The letter i can be placed in front of the letter b or 
conversely with little resulting confusion. In fact, a complex number gives quite 
specific directions. A very simple interpretation of 10 + 4i would be: walk 10 
miles East, stop, and then walk 4 miles North.  

 
3. The transposing from imaginary numbers to real numbers depends on using 

Euler’s relation, which is  

     i ie cos isin and e cos isinθ − θ= θ+ θ = θ − θ . 

4. Using Euler’s relation, both the familiar trigonometric sine and cosine can be 
written in complex number form as 

  
( ) ( )
( )

i i i i

i i

1 isin e e e e
2i 2
1cos e e
2

θ − θ θ − θ

θ − θ

θ = − = − −

θ = +
. 

5. The coefficient (CK) refers to Theodorson’s function and is classically given as  

     K K KC F iG= + . 

6. The way the coefficient (CK) is actually used is by knowing that 

     
( )
( )

i i
K K K

i i
K K K

C e F iG e

C e F iG e

θ θ

− θ − θ

= +

= −
. 

7. It follows from points 4 and 6 that 

     K K K

K K K

C sin F sin G cos
C cos F cos G sin

θ = θ + θ
θ = θ − θ

. 

8. Alternately,  

     
( )
( )

2 2 1
K K K K K K K

2 2 1
K K K K K K K

C sin F G sin tan G / F F sin G cos

C cos F G cos tan G / F F cos G sin

−

−

θ = + θ + = θ + θ

θ = + θ + = θ − θ
. 

9. There is a distinction and assumption about the shed wake created by an oscillating 
airfoil. If, for example, ș = Ȧt then K = cȦ/2V0, which implies ( )1 0K 1 c / 2V= ω . 
In this situation FK = F1 and GK = G1. When ș = 2Ȧt then K = 2(cȦ/2V0), which 
means using FK = F2 and GK = G2. 

 
10. After all multiplications are done, then throw away any imaginary numbers and 

use just real numbers! 
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 The preceding ten points are enough to transpose K
c dC V
2 dt

 α ½ª ºα +® ¾« »¬ ¼¯ ¿
 into what you 

see within the {  } of Eq. (34). First make the substitutions for (V), (Į), and (dĮ/dt) from 
Eq. (28) to obtain 

(44) ( )( ) ( )( ) ( )( )K K 0 1 0 1 1
c d cC V C V V sin t sin t cos t
2 dt 2

 α ½ª º ª ºα + = + ω α + α ω + ωα ω® ¾« » « »¬ ¼ ¬ ¼¯ ¿
. 

Next, expand the trigonometry within the [  ] of Eq. (44) to get 

(45) ( ) ( ) ( )

( )

0 0 1 1

1
K K 0 1 1 0

1 1

1V V
2

cc dC V C V V sin t cos t
2 dt 2

1 V cos 2 t
2

ª º§ ·α + α¨ ¸« »© ¹« »
« »ωα α ½ § ·ª ºα + = + α + α ω + ω® ¾ « »¨ ¸« »¬ ¼ © ¹¯ ¿ « »
« »§ ·− α ω« »¨ ¸
© ¹¬ ¼

. 

Now take the multiplication one term at a time.  
 
The first term is 

(46) ( )K 0 0 1 1 0 0 1 1 0 0 1 1 1
1 1 1C V V F iG V V V V F
2 2 2

ª º§ · § · § ·α + α = + α + α = α + α¨ ¸ ¨ ¸ ¨ ¸« »© ¹ © ¹ © ¹¬ ¼
 

which is a case where the imaginary term is discarded. 
 
The second term is written directly using point 7 or 8 

(47) ( ) ( ) ( ) ( ) ( )K 0 1 1 0 0 1 1 0 1 1C V V sin t V V G cos t F sin tα + α ω = α + α ω + ωª º ª º¬ ¼ ¬ ¼ . 

The third term is written directly using point 7 or 8 

(48) ( ) ( ) ( )1 1
K 1 1

c cC cos t F cos t G sin t
2 2

ª ωα º ωα§ · § ·ω = ω − ωª º¨ ¸ ¨ ¸« » ¬ ¼© ¹ © ¹¬ ¼
, 

and the fourth term is written directly using points 7 or 8 and 9; but note that with the 
frequency being at 2Ȧ, K = K2 so F and G must be subscripted by 2. Therefore 

(49) ( ) ( ) ( )K 1 1 1 1 2 2
1 1C V cos 2 t V F cos 2 t G sin 2 t
2 2

ª º§ · § ·− α ω = − α ω − ωª º¨ ¸ ¨ ¸« » ¬ ¼© ¹ © ¹¬ ¼
. 

 
 When the four terms are added together and arranged in the conventional Fourier 
series format you obtain the {  } term provided by Eq. (34). Note that this 

term, K
c dC V
2 dt

 α ½ª ºα +® ¾« »¬ ¼¯ ¿
, not only appears in the elemental lift equation (30), but also in the 
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pitching moment equation (29) and would be included if the airfoil oscillated about any point 
other than the 1/4-chord point.  
 
Thin, Cambered Airfoil in Unsteady Flow  
 
 The elemental lift and pitching moment for the thin, cambered airfoil in unsteady flow 
can be obtained by superposition and accounting for the angle of attack for zero lift. Thus, Į0 
in Eqs. (33) and (34) is replaced by ĮC – Į0L . Then the elemental pitching moment about the 
1/4-chord point is simply 

(50) 
( ) ( )( ) ( ) ( )

( )

1
4

1/4c

3
c 2

1 0 1 1 C 0L 1 1

2
2

0 1 M

dM c 3c 3sin t 2 V V cos t V sin 2 t
dr 16 8 2

c V V sin( t) C
2

πρ ª º§ · § ·= ω α ω − ω α + ω α − α ω − ω α ω¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼
ρ+ + ω

 

and the elemental lift becomes 

(51) 
( ) ( )

( ) ( ) ( )

2 2 2 2
0 0 0 1 1 1 C 0L 1 0 0 1 C 0L 1 1

2 2
0 1 1 C 0L 1 1 1

1 3V V V V V 2V V V sin
2 4dL c

dr 1 1V V V cos 2 V sin 3
2 4

ª º§ · § ·α + α + α − α + α + α − α + α ψ¨ ¸ ¨ ¸« »© ¹ © ¹« »= π ρ
« »§ · § ·− α + α − α ψ − α ψ« »¨ ¸ ¨ ¸
© ¹ © ¹¬ ¼

. 

 

Results Using Modern Computational Fluid Dynamics (CFD)  
 
 This short discussion about airfoil lift and pitching moment would be incomplete 
without some very modern theoretical results compared to the thin airfoil, unsteady 
aerodynamics, discussed above. The modern theory I am referring to is called computational 
fluid dynamics and is simply referred to as CFD by the current generation of practicing 
aerodynamists. With the enormous help of the digital computer, this generation has succeeded 
in solving two fundamental fluid dynamic equations that were derived more than 100 years 
ago. The second and most definitive equation accounted for viscous fluid forces and became 
known as the Navier–Stokes equation. Prandtl and Tietjens (see footnote 1) note on page 259 
of Fundamentals of Hydro-and Aeromechanics that “The equation was first found by Navier 
in 1827 and Poisson in 1831. Their derivation was based on certain theories of intermolecular 
forces. Without using hypotheses of this kind, St. Venant in 1843 and Stokes in 1845 found 
the same equation on the assumptions that the normal and shear stresses are linear functions 
of the deformation velocities... .” These four men finished the derivation of the fluid dynamic 
equation for a fluid having no viscosity that was obtained by Leonhard Euler and published in 
1752, 1753, an 1755.19 It took another two centuries for experts in fluid mechanics and 
applied mathematics to first solve the Euler equation, and still longer to solve the Navier–
Stokes equation. 

                                                 
19 John D. Anderson, A History of Aerodynamics, Cambridge University Press, Cambridge, United Kingdom, 
1997. 
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 In contrast to the incompressible thin airfoil theory developed by Ludwig Prandtl 
during World War I—which you are now familiar with—the Euler theory from the mid-1750s 
accounted for practical airfoils that are thick (e.g., a Göttingen 606) and for compressibility 
associated with Mach numbers greater than zero. However, the Euler theory assumes that the 
fluid has no viscosity. The Navier–Stokes equation, which came 90 years later, improved 
upon the Euler equation because fluid viscosity effects were included. To obtain practical 
results from the Navier–Stokes equation required very advanced digital computer technology 
coupled with very creative numerical integration methodology. 
 
 Today, Euler and Navier–Stokes equations are solved using any one of several 
numerical integration schemes called computer codes. One of these codes is called 
OVERFLOW 2.20,21 Two people that are experts in using this particular computer code are 
Marilyn Smith (a Professor at the Georgia Institute of Technology in Atlanta, Georgia) and 
Mark Potsdam (a member of the U.S. Army Aeroflightdynamics Directorate located at NASA 
Ames Research Center). I was extremely fortunate to have these two individuals collaborate 
on the CFD results presented herein. The question I posed to them was, “What does CFD 
think about my elemental lift and pitching moment curves shown in Figs. B-8 and B-9 using 
the following input?”  

• The airfoil is a NACA 0012 with a 1-foot chord. 
• The pitch axis is located at the 1/4 chord. 
• Temperature and density are for sea level on a standard day. 
• Angle of attack varies as 5.0 –4.5 sin (Ȧt) in degrees. 
• Free-stream velocity varies as 475 +190 sin (Ȧt) in feet per second. 
• The oscillation frequency (Ȧ) is 25.5 in radians per second. 

 

 This input is representative of a rotor blade element located at the 3/4 radius station of 
a rotor traveling at 190 feet per second (112 knots) with a tip speed of 633 feet per second, 
which would be an advance ratio (µ) of 0.40. The Reynolds number varies between 1.82 
million and 4.25 million, and the Mach number varies between 0.255 and 0.596, which 
correspond to the retreating blade azimuth (ȥ = Ȧt = 270 degrees) and the advancing blade 
azimuth (ȥ = Ȧt = 90 degrees), respectively.  
 
 A comparison of predictions by thin airfoil theory, Euler theory, and Navier–Stokes 
theory for how elemental lift (dL/dr) varies with azimuth is shown in Fig. B-11. It is clear 
from this figure that all three theories capture the elemental lift, unsteady aerodynamic 
behavior for this example. The primary difference is the change of the average elemental lift 
over the cycle. To explain the differences is relatively simple. In the thin airfoil case, the 
average elemental lift has been computed with a basic airfoil steady lift curve slope of a = 2ʌ 
per radian and independent of Mach number, but reflecting Theodorsen F and G functions. 
The average elemental lift is 100.9 pounds per foot.  

                                                 
20 Robert H. Nichols and Pieter G. Buning, User’s Manual for OVERFLOW 2.1–version 2.1t, Aug. 4, 2008. 
21 Pieter G. Buning, et al., CFD Approaches for Simulation of Wing-Body Stage Separation, AIAA-2004-4838, 
AIAA 22nd Applied Aerodynamics Conference, Providence, R.I., Aug. 2004. 



APPENDIX B 

326 

 The solution of the Euler equation with the example input leads to the upper curve on 
Fig. B-11, which has an average elemental lift of 129.1 pounds per foot. The Euler solution 
always returns a lift curve slope that depends on Mach number as 22 1 Mπ −  in steady 
aerodynamics up to Mach numbers where the flow is Mach 1 somewhere along the upper 
surface of the airfoil.22 The average Mach number over the oscillation is 0.425, which means 
the thin airfoil average elemental lift (of 100.9 pounds per foot) should increase by no less 
than 21 1 0.425 1.1− = . The Euler equation, when solved with CFD, more accurately 
accounts for the shed wake, which is equivalent to more accurate F and G functions during the 
oscillation. 
 
 The unsteady aerodynamic results using the CFD solution to the Navier–Stokes 
equation is the middle line on Fig. B-11. The average elemental lift is 115.1 pounds per foot. 
The Navier–Stokes equation includes fluid viscosity and accurately predicts the typical airfoil 
lift curve slope of 5.73 per radian versus the Euler theory result of 2ʌ per radian. Both 
compressibility and shed wake influences are accounted for in the Navier–Stokes and Euler 
theories. Therefore the Euler solution for average elemental lift of 129.1 pounds per foot 
should be reduced by approximately 5.73/2ʌ = 0.91, which is about the reduction that  
Fig. B-11 shows (i.e., 115.1/129.1 = 0.89).  
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Fig. B-11. Thin airfoil theory versus CFD predictions for elemental lift. 

                                                 
22 Hermann Glauert, The Effects of Compressibility on the Lift of an Airfoil, R&M no. 1135, 1927. 
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 Now consider the elemental pitching moment comparison provided in Fig. B-12. With 
thin airfoil theory, the moment at the 1/4-chord point does not vary with lift in steady flow. 
This result, however, is not supported by experimental data.23 For the NACA 0012 airfoil, the 
center of pressure moves forward from the 1/4-chord point as airfoil lift increases. In steady 
flow, the movement is not great but sufficient enough that the pitching moment about the  
1/4-chord point is approximately  

(52) ( ) ( )
1/4c

2
M L LC 0.0065 C 0.0014 C= +  

which says that the center of pressure is only at the 1/4-chord point when the airfoil lift is 
zero. To a first approximation then, the average elemental pitching moment about the  
1/4-chord point should increase approximately as 

(53) ( )1/4c

avgavg

dM dL0.0065 c
dr dr

§ · § ·≈ ¨ ¸¨ ¸
© ¹© ¹

. 

The average elemental pitching moment for the Navier–Stokes result in Fig. B-12 is 0.832 
foot-pounds per foot, and the average elemental lift is 115.1 pounds per foot. Recall that a  
1-foot chord was chosen for this example. Therefore, the computation of dM1/4c/dL as 
0.832/115.1 = 0.00723 adequately explains the fact that the Navier–Stokes result lays above 
the thin airfoil curve in Fig. B-12.  
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Fig. B-12. Thin airfoil theory versus CFD predictions for elemental moment. 

                                                 
23 Charles D. Harris, Two-Dimensional Aerodynamic Characteristics of the NACA 0012 Airfoil in the Langley  
8-Foot Transonic Pressure Tunnel, NASA TM 81927, April 1981. 
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 What is not so easily explained is the approximately 30-degree azimuthal shift in the 
maximum and minimum peaks of the elemental moment that the Navier–Stokes equation 
reveals when compared to thin airfoil theory. I know of no comparable wind tunnel 
experimental data where the free-stream velocity is varied, so a comparison of theory to test 
cannot be made as yet. The problem I posed falls in the category of rotor airload 
measurements. A definitive rotorcraft experiment in this regard had to wait for wide use of the 
helicopter.  
 
 A benefit of solving the Navier–Stokes equation by the OVERFLOW 2 code has been 
the prediction of elemental drag, which is shown for my example problem in Fig. B-13.  
 
 The results presented in Figs. B-11, B-12, and B-13 are completely dimensional for 
the example I chose. The more interesting graphs are seen when the loads and moment are 
presented in coefficient form. The coefficients are based on the local dynamic pressure 
computed as ( )21

2 0 1q V V sin= ρ + ψ .  
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Fig. B-13. Only Navier–Stokes theory predicts elemental airfoil drag. 
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 Figure B-14 shows that both the elemental lift coefficient and the elemental pitching 
moment coefficient generally follow the oscillating angle of attack, which was given as  
Į = 5.0 – 4.5 sin(ψ) in degrees. Note the enlarged scale used for the moment coefficient 
because a pitching moment coefficient of 0.01 is rather large in the rotorcraft world. Rotor 
blades are long with narrow chord and quite torsionally limber, which means that the airloads 
can easily twist them. 
 
 Another way to examine the Navier–Stokes results frequently used by rotorcraft 
engineers is shown in Figs. B-15, B-16, and B-17. The conventional lift coefficient versus 
angle of attack is provide in Fig. B-15. The slight hysteresis loops caused by unsteady 
aerodynamics are clearly comparable to thin airfoil theory as Fig. B-10 shows. I have added a 
reference quasi-steady lift coefficient versus angle of attack accounting for an average Mach 
number of 0.425 and lift curve slope of 5.73 per radian (0.1 per degree).  
 
 The unsteady aerodynamic effects on pitching moment coefficient become clearer 
when plotted against lift coefficient as Fig. B-16 illustrates. The center of pressure moves 
forward of the 1/4-chord point with a CFD theory that includes fluid viscosity. 
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Fig. B-14. Solution results according to the Navier–Stokes equation for the 

example chosen. 
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Fig. B-15. Hysteresis loops in lift coefficient versus angle of attack due to unsteady 

aerodynamics according to the Navier–Stokes equation for the example chosen. 
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Fig. B-16. Hysteresis loops in moment coefficient versus lift coefficient due to unsteady 

aerodynamics according to the Navier–Stokes equation.
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Fig. B-17. Hysteresis loops in drag coefficient versus lift coefficient due to unsteady 

aerodynamics according to the Navier–Stokes equation for the example chosen. 
 
 
 The influence of unsteady motion on elemental drag is quite substantial as Fig. B-17 
shows. Not only are the hysteresis loops large, but the average drag coefficient for one 
oscillation cycle is greater than what a quasi-steady airfoil experiences. This is a factor in 
computing profile power of rotor systems.  
 
Closing Remarks 
 
 An understanding of airfoil aerodynamics began in the 1750s when Euler developed a 
very basic fluid dynamics equation; since then numerous outstanding individuals—more than 
one can imagine—have contributed to this process. In addition, the CFD solutions of the 
Navier–Stokes equation have reduced a dependency on wind tunnel testing. Nevertheless, the 
fundamentals provided in this appendix should be beneficial to the uninitiated.  
 
Another purpose of this appendix is to provide a basis for calculating blade elastic twisting, 
which is the subject of Appendix D. 
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APPENDIX C 
 

BASIC DYNAMICS AND GROUND RESONANCE 
 

 
 The purpose of this appendix is to provide an analytical sense of ground resonance. 
This was the phenomena that destroyed a Kellett XR-2 autogyro (see Fig. 2-11) and became a 
serious consideration when the lead-lag hinge was introduced.  
 
 Without some basic understanding of dynamics, a ground resonance analysis is not 
one of the easier engineering problems to explain, derive the dynamic equations for, or obtain 
solutions to the equations once they are written.1 However, George Townson, in his excellent 
book containing both history and engineering features of autogyros,2 presents the clearest 
illustration of the ground resonance phenomena that I have ever seen. His illustration (from 
page 149 of his book) was reproduce in this volume on page 33. In Fig. C-1 of this appendix, 
I have included the first three parts of Townson’s illustration as a starting point for the 
discussion that follows. 
 
 Ground resonance is basically a multi-degree-of-freedom vibration problem with 
damping included. Two degrees of freedom are the rotorcraft rocking and pitching on its 
landing gear. Since springs and shock absorbers were standard equipment for all autogyros 
just for hard landings, these two degrees of freedom were well damped. The other degrees of 
freedom come from blade lead-lag motion. One degree of freedom is written for each blade. 
The motions of rotorcraft rocking and pitching, with the addition of each blade leading and 
lagging, have the potential to couple together such that one motion can feed all the other 
degrees of freedom. The pioneers found out that blade motion definitely needed additional 
mechanical damping. Without damping in all degrees of freedom, there can be real problems. 
Fortunately the theory to predict stability boundaries for ground resonance was in place when 
practical helicopters began to evolve.3  
 
 

BASIC DYNAMICS 
 

Introduction 
 
 A shortcut in analyzing ground resonance can be taken as Fig. C-2 suggests. It is the 
translation of the rotor hub that is the dominate aircraft coordinate in most basic studies. How 
the translation occurs is rather secondary. The actual rocking motion (which could be describe 
by an angle) and all of the dimensions and masses implied by Fig. C-2 only lead to a natural 
rocking frequency (Ȧac) of the aircraft while sitting on the ground. This frequency has the 
units of radians per second. 
                                                 
1 I learned dynamics from J. P. Den Hartog’s Mechanical Vibrations, McGraw-Hill Book Co., Inc., New York, 
4th Ed., 1956. His explanations and solutions are the easiest to understand that I have found.  
2 G. Townson, AUTOGIRO—The Story of the Windmill Plane, Aero Publishers, Inc., Fallbrook, Calif., 1985. 
3 Robert Coleman and Arnold Feingold, Theory of Self-Excited Mechanical Oscillations of Helicopter Rotors 
with Hinged Blades, NACA Report No. 1351, 1958. 
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 It should be obvious that an autogyro landing gear leg uses both a spring and damper 
just like car suspensions use springs and shock absorbers. These components allow the 
aircraft to rock when a force is applied at the hub. Fig. C-2 shows a simple schematic of what 
could be the Kellett XR-2 autogyro rolled to starboard because of a lateral force applied at the 
hub. In rolling to starboard, the hub translates along the Y-axis until the landing gear spring 
forces and dampers provide a countering force. 
 
Static Calibration 
 
 The complete aircraft could be statically calibrated with a tabulation of deflection (y) 
for successively larger force (F). This data would be plotted as a curve of F versus y. The 
slope of this F versus y curve defines the spring constant of the autogyro. This spring constant 
is denoted by the letter (k), which is defined as k = F/y and is expressed in pounds per foot.  

 
Fig. C-1. De-patterned blades in the lead-lag plane create a potentially destructive force 

that can lead to ground resonance. 
 

 
Fig. C-2. Autogyro rocking leads to hub translation.
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Dynamic Calibration 
 
 Since the landing gear assembly includes a shock absorber (i.e., a damper), the aircraft 
has a damping coefficient denoted here by the letter (c). The landing gear damping creates a 
force proportional to velocity, and therefore the damping constant has the units of pounds per 
foot per second. The complete autogyro damping constant can also be found by experiment. 
Suppose the hub force (F) in Fig. C-2 rocks the autogyro so that the hub is deflected an 
amount (yo), and then the force is suddenly released. The expected result is that the autogyro 
would rock over to the port side, then back to starboard, and then stop in the upright position. 
This is the exact parallel of standing on a car bumper and then jumping off—a test to see if 
the shock absorbers are still good because the car does not continue to bounce up and down. 
 
Basic Theory of Dynamics 
 
 Both the static and dynamic experiments suggested above can be summed up with one 
mathematical equation. This very fundamental differential equation is: 

(1) 
2 2

2 2

d y dy d y dym F c ky or m c ky F
dt dt dt dt

= − − + + = . 

The first experiment calibrates the aircraft on its landing gear by slowly increasing the force 
(F) and recording values of (y). Since the calibration is a static experiment, there is no 
velocity (dy/dt = 0) or acceleration (d2y/dt2 = 0), and so it follows that the autogyro spring 
constant is k = F/y.  
 
 The second experiment is not static because the force is suddenly released, and the 
resulting oscillation is recorded by some instrument. This instrument would record the 
deflection (y) and time (t). Since this second experiment occurs with the force (F) being zero, 
the fundamental equation is rewritten as 

(2) 
2

2

d y dym c ky 0
dt dt

+ + = , 

which is a second order, ordinary, differential equation. The experiment begins at time (t) 
equal zero with an initial deflection of y(t = 0) = y0 and zero velocity (i.e., dy/dt = 0), and has 
the solution 

(3) ( ) ( ) ( )
2

(t ) 0 02

c c
2m 2mt tk cy y e cos t y e cos t

m 4m
− −ª º§ ·

« »= − = ωª º¨ ¸ ¬ ¼¨ ¸« »© ¹¬ ¼
. 

 
Theory Application—Case 1 
 
 Now imagine this experiment where only autogyro lateral rocking is of concern. That 
is, there can be no autogyro pitching because the machine is locked in such a way that the hub 
cannot move along the X-axis in Fig. C-2. Assume the static experiment has established that 
an 8,000-pound force acting at the hub (say 13 feet above the ground) will tilt the autogyro so 
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that the hub moves one-half foot to starboard along the Y-axis. This means that the system has 
a spring constant of k = F/y = 16,000 pounds per foot. For illustration purposes, assume that 
the weight of the autogyro acts as an apparent mass at the hub so that m = 1,470/32.17 slugs.  
 
 Suppose this experiment is conducted in two parts. For the first part of this vibration 
experiment, disconnect the shock absorbers so that there is no damping, which means the 
damping constant (c) is zero. Next, apply an 8,000-pound force at the hub in the positive  
Y-axis direction so that the hub is set at an initial deflection (y0) of y0 = 0.5 feet. Now, 
abruptly release the 8,000 pounds. The autogyro will rock from starboard to port and back 
again such that the hub translates, following Eq. (3), as 

(4) ( )(t )
16,000y 0.5 cos t 32.17 0.5cos 18.71t
1, 470

ª º§ ·§ ·« »= =¨ ¸¨ ¸¨ ¸« »© ¹© ¹¬ ¼
. 

This result, graphed in Fig. C-3 as the light dashed line, implies that the vibration will 
continue indefinitely. In fact, some slight amount of damping will exist in the real world, and 
the vibration will, of course, eventually die out.  
 
 For the second part of this vibration experiment, reconnect the shock absorbers, 
which, I will assume, create a damping coefficient (c) at the hub of about 228 pounds per foot 
per second.4 With these values (i.e., k = 16,000 lbs/ft, m = 45.695 slugs, c = 228.47 lbs/fps, 
and y0 = 0.5 ft), Eq. (3) becomes 

(5) ( ) ( )(t )
2.5 ty 0.5 e cos 18.5445 t−= . 

This result, graphed in Fig. C-3 as the heavy solid line, implies that the vibration will decrease 
in amplitude with increasing oscillation time. This experimental data, recorded for example 
by an oscillograph, can be used to obtain two key properties about the aircraft.  
 
 The first property is the damped natural frequency, which is, from Eq. (3),  

(6) 
2

2

k c
m 4m

ω = − . 

Notice in Fig. C-3 that the points A, B, and C occur as a vibration cycle is completed. That is, 
cos (Ȧt) starts at zero time where the cosine is unity and finishes 360 degrees (or 2ʌ radians) 
later when Ȧt = 2ʌ and the cosine again equals unity. This is one cycle and amounts to one 
revolution. The time to complete a cycle is called a period (T). In this example, Fig. C-3 
shows that the period is about T = 0.34 seconds. That is, the time between points B and A is 
0.34 seconds and the time between points C and B is 0.34 seconds. The rule is that ȦT = 2ʌ, 
which means from Eq.(6), that  

                                                 
4 The value of c = 228.47 lbs per ft/sec chosen for this example is perhaps 2 to 5 times lower than practice would 
dictate. A more general estimate would be that c mk= .  
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Fig. C-3. Autogyro rocking leads to hub translation. 

 

(7) 
2

2

k c 2
m 4m T

πω = − = . 

An oscillograph trace (such as shown in Fig. C-3, particularly when stretched out) can give a 
very accurate value of the period (T) when care is taken. This, in turn, means that 

( )2k m c 2m− is known because 

(8) 
22

2

k c 2
m 4m T

π§ ·− = ¨ ¸
© ¹

. 

 

 The second property is the successive reduction in amplitude you see in the waveform 
in Fig. C-3 as you follow the heavy solid line. This amplitude reduction of point B over point 
A and point C over B yields the parameter (c/2m). This is done from experimental data by 
measuring the amplitudes at the beginning and end of a cycle. Consider the ratio of 
amplitudes at points A and B. At point A, t = 0, and at point B, t = T. At both points, the 
cosine in Eq. (5) is 1.0. Therefore, you have  

(9) 
( ) c

2m

c
2m

0 TB

A 0

Ty ey e
y y

−

−

= =  
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and, by taking the natural logarithm of both sides, the property (c/2m) is immediately 
obtained as 

(10) CB

A B

yyc 1 1ln ln
2m T y T y

= − = − . 

Having the experimental values of period (T) and (c/2m), it follows from Eq. (8) that 

(11) 
2 2k 2 c

m T 2m
π§ · § ·= +¨ ¸ ¨ ¸

© ¹ © ¹
. 

Recall now that the static test established the system spring constant (k) so that the apparent 
mass (m) and damping constant (c) are found directly as 

(12) ( )
k cm and c 2m

k m 2m
§ ·= = ¨ ¸
© ¹

. 

 
Theory Application—Case 2, Constant Rotor Speed 
 
 The experiments of Case 1 were conducted with the hub not turning, but now consider 
a case where the hub is turning. Imagine an experiment where a weight is added to the hub. A 
weight of mass (mw) is attached to the end of a weightless rod that is (e) feet long, the other 
end being solidly bolted to the hub. As the hub begins to rotate, an unbalance will occur. This 
unbalance will rock the autogyro, and the hub will translate along the Y-axis. Keep in mind 
that there will be no autogyro pitching because the machine is locked in such a way that the 
hub cannot move along the X-axis. This experimental situation is shown in Fig. C-4, which 
constitutes a top view of Fig. C-2.  
 
 Equation (1) can now be used to describe the vibration of the system with an 
unbalance weight. Thus, 

(13) 
22

wh h
h h w2 2

d yd y dym c ky F m
dt dt dt

+ + = = − . 

At time (t) equals zero, let the hub be at rest (yh = 0), and let the weightless rod (e) and added 
mass (mw) be aligned with the X-axis as Fig. C-4 shows. Now assume some time has passed; 
the weightless rod has rotated through the angle (ȥ), the hub has translated to y(t) = yh, and the 
added mass has moved to  

(14) ( )w hy y esin= + ψ . 

Equation (13) requires the second derivative of displacement with respect to time. Velocity, 
the first derivative, is 
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Fig. C-4. A top-view of Fig. C-2. 
 

(15) ( )w hdy dy decos
dt dt dt

ψª º= + ψ « »¬ ¼
, 

and acceleration, the second derivative of displacement, is  

(16) ( ) ( )
22 2 2

w h
2 2 2

d y d y d decos esin
dt dt dt dt

ª ºψ ψª º= + ψ − ψ« » « »¬ ¼¬ ¼
. 

 The basic dynamics equation that I intend to examine in this appendix is obtained by 
substituting Eq. (16) into Eq. (13), which yields 

(17) ( ) ( ) ( )
22 2

h h
h w h w w2 2

d y dy d dm m c ky m esin m ecos
dt dt dt dt

ª ºψ ψª º+ + + = ψ − ψ « »« »¬ ¼ ¬ ¼
. 

Notice that no restriction has been placed on the rotational angle (ȥ), which for rotorcraft 
problems is generally referred to as the azimuth angle. 
 
 Typically, the most common problem examined in textbooks on dynamics is the case 
where the rotational speed (a frequency in strict dynamic terms) is constant. That is, dȥ/dt is 
constant, and therefore azimuth (ȥ) equals a constant times time. For purposes of this 
appendix, I have chosen a rotorcraft notation where if dȥ/dt is constant, then dȥ/dt = ȍ and 
d2ȥ/dt2 = dȍ/dt = 0. The rotational speed (ȍ) has the units of radians per second, and 
therefore the rotational angle can be written as ȥ = ȍt. With this basic understanding in mind, 
consider the behavior of the weight and hub shown in Fig. C-4 when the rotor speed is 
constant. 

 

•

•

•
•

Y 

X 

Hub 

yh 

Weightless Rod 

+ F 

2
w

w 2

d ym
dt

 
e

ȍt

yw 

Weight 

ψ 



APPENDIX C 

340 

 When the rotor speed (ȍ) is constant and letting m = mh + mw, then Eq. (17) becomes 

(18) ( )
2

2h h
h w2

d y dym c ky m e sin t IF = constant
dt dt

+ + = Ω Ω Ω  

which is solved quite easily. Using classical theory, you immediately have  

(19) 
( )

( ) ( )
( ) ( )

2
w 2

h 2 22

m e
y k m sin( t) c cos( t)

k m c

Ω
ª º= − Ω Ω − Ω Ω¬ ¼− Ω + Ω

 

or, when using a phase angle form, which can be used to illuminate the vibration amplitude 

(20) 
( )

( ) ( )

2
w

h 22 22

m e cy sin t arctan
k mk m c

Ω  ½ª Ω º§ ·= Ω −® ¾¨ ¸« »− Ω© ¹¬ ¼¯ ¿− Ω + Ω
. 

From this solution for displacement, you immediately have the hub acceleration, a very 
important result in most practical engineering experiences  

(21) 
( )

( ) ( )
( )

22
w 2h

2 22 22

m ed y csin t arctan
dt k mk m c

ª ºΩ  ½ª Ω º§ ·« »= −Ω Ω −® ¾¨ ¸« »« » − Ω© ¹¬ ¼¯ ¿− Ω + Ω« »¬ ¼

. 

 

 These results can be used in a very practical way. Think of starting up an autogyro 
rotor with the prespin gearing used on late model Cierva, Pitcairn, and Kellett machines, 
which were designed for jump takeoff. Assume from the preceding discussion that the 
autogyro with the added weight on the end of the weightless rod is described as shown in 
Table C-1. 
 
 Using Eq. (19) and the configuration from Table C-1, the result of this rotor startup 
calculation is the hub motion time history shown in Fig. C-5. This calculation treated the 
constant rotor speed problem as a sequence of quasi-steady conditions to give the graphical 
appearance of an infinitely slow rotor startup. You will notice immediately that before 
reaching the operating rotor speed of 25 radians per second (about 240 rpm), the hub 
translation experiences a resonance at a rotor speed of about 19 radians per second. If 25 
radians per second is taken as 100-percent rotor speed, then the worst of the resonance occurs 
at about 76 percent of design rotor speed.  
 
 

Table C-1. Assumed Autogyro Configuration 
Parameter Symbol Unit Value 
Mass m = mh + mw slug 45.695 
Damping coefficient c lbs/fps 228.47 
Spring stiffness coefficient k lbs/ft 16,000 
Added mass mw slug 5.2844 
Weightless rod length e ft 2.5 
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Fig. C-5. Possible resonance vibration during a rotor startup. 

 
 The heavy line in Fig. C-5 represents the maximum hub displacement if the spring 
force was the only force resisting the unbalance weight applied force. That is, from Eq. (18), 
the maximum hub displacement would be  

(22) 
2

w
h

m ey sin IF = constant
k 2

Ω π§ ·= Ω¨ ¸
© ¹

. 

Notice that up to a rotor speed of about 26 radians per second, the dynamic system amplifies 
the applied unbalance rotating force. However, beyond 26 radians per second rotor speed, the 
dynamic system attenuates the response. 
 
 The fact that a resonance is possible should come as no surprise. Equation (20) 
presents the fact quite clearly. The question is simply, “What rotor speed will cause the 
maximum value of hub deflection (yh)?” To begin with, no matter what the time (t) is in 
Eq. (20), the maximum hub displacement will occur when 

( )2

ct arctan / 2 sin / 2 1.0
k m

ª Ω º§ ·Ω − = ± π → ± π = ±¨ ¸« »− Ω© ¹¬ ¼
. 

Therefore, the question becomes, “What value of rotor speed (ȍ) makes the lead coefficient in 
Eq. (20) a maximum?” The usual mathematical steps to find the maximum of a function show 
that when  
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(23) 
2

2 k
2m k c

Ω =
−

 

the largest vibratory amplitude of hub displacement will occur. With values for this example 
from Table C-1, ȍ = 19 radians per second. The magnitude of this hub deflection will be 

(24) w
h 2

2m e kMaximum y
c 4m k c

= ±
−

. 

Notice immediately that this result says that if there is no damping (i.e., c = 0), then the hub 
motion will be ± ∞ . Fortunately, with values for this example, maximum yh = ± 1.092 feet.  
 
 This example leads to very severe vibration. You can see this by calculating an 
approximated hub maximum acceleration (d2yh/dt2) from Eqs. (23) and (24) as 

(25) 
( )

32
2w wh

2 2 2 2

2 m e k 4 m e kd yMaximum
dt c 4m k c c 2m k c 4m k c

= ± Ω = ±
− − −

. 

 In this example, the maximum hub acceleration is 396 feet-per-second squared, which 
is slightly over 12 times the acceleration of gravity (g = 32.17 ft/sec2). While the hub in this 
example is some 13 feet above the ground, the pilot is perhaps 7 feet above the ground, so he 
would be feeling on the order of 7/13 times 12 g’s or about 6.6 g’s. The pilot would find this 
vibration level—to put it mildly—beyond intolerable.  
 
 Using such an extreme example makes three points. The first is that you now have 
some appreciation of dynamic technology. The second point is to always be on the lookout for 
resonance possibilities. The third point is that simple vibrations of the sort discussed above 
should never create more that 0.005 g’s at any rotor speed. Pilots and passengers, radios, and 
other electronics, etc., are very sensitive to vibration.  
 
Theory Application—Case 3, Varying Rotor Speed 
 
 In the rotorcraft world of dynamics, there is considerable danger in assuming that rotor 
speed is constant. This is particularly apparent for the situation when a pilot is bringing a rotor 
up to speed. To begin with, after the engine is started, a rotor clutch may be used to start the 
rotor turning, which could introduce a “jerk” into the system. After that, the rotor may well be 
brought up to speed in some nonlinear fashion. For this example then, I will assume a 
reasonable rotor startup where the instantaneous rotor speed is 

(26) 
2 6

f
d 3 t 1 t
dt 2 T 2 T

ª ºψ § · § ·= Ω −« »¨ ¸ ¨ ¸
© ¹ © ¹« »¬ ¼

 

where (ȍf) is the final, constant rotor speed to be obtained in a time of (T) seconds. Since the 
rotor hub azimuth angle (ȥ) is the integral of rotor speed, it follows from Eq. (26) that 
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(27) 
3 7t

f
0

d 1 t 1 tdt T
dt 2 T 14 T

ª ºψ § · § ·ψ = = Ω −« »¨ ¸ ¨ ¸
© ¹ © ¹« »¬ ¼

µ́
¶

 

and the acceleration is simply the second derivative with respect to time, so that 

(28) 
52

f
2

d t t3 3
dt T T T

ª ºΩψ § · § ·= −« »¨ ¸ ¨ ¸
© ¹ © ¹« »¬ ¼

. 

Notice that I have carefully selected an approximation so that at time (t) equals zero, the 
instantaneous rotor speed is zero; and when time (t) equals the final time (T), the rotor speed 
equals the final rotor speed (ȍf). 
 
 In the following study, I have assumed the rotor will reach a final rotor speed of  
RPMf = 230 rpm (ȍf = 24 radians per second) in 60 seconds (T = 60 seconds). This input 
numerically defines ȥ, dȥ/dt, and d2ȥ/dt2 using Eqs. (27), (26), and (28) respectively. The 
basic differential equation (Eq. 17) repeated here for convenience, as 

(29) ( ) ( ) ( )
22 2

h h
h w h w w2 2

d y dy d dm m c ky m esin m ecos
dt dt dt dt

ª ºψ ψª º+ + + = ψ − ψ « »« »¬ ¼ ¬ ¼
 

can now be solved using the configuration defined by Table C-1. 
 
 The solution of Eq. (29) is not easily obtained in simple closed form as in the case 
where a constant rotor speed was assumed. Therefore, I must interrupt this discussion to show 
one way of solving Eq. (29) given ȥ, dȥ/dt, and d2ȥ/dt2 from Eqs. (27), (26), and (28) 
respectively, with ȍf = 24 radians per second and T = 60 seconds.  
 
 Dynamists, by profession, are superb applied mathematicians. When faced with a 
problem like Eq. (29), they seem to intuitively know that a solution in terms of elementary 
functions5 is likely to be quite involved and of doubtful practical use. They most frequently 
turn instead to some numerical integration scheme. Today, applied mathematics software such 
as Mathematica and MathCad have tools quite capable of solving Eq. (29) in the blink of an 
eye. But in “the old days” (before digital computers), I depended on some applied 
mathematics book6 to construct a tailored numerical integration scheme that few of us—
working together as human calculators—would solve with slide rules, pencils, and paper. 
 
 In 1991 Dewey Hodges, a professor at the Georgia Institute of Technology in Atlanta, 
Georgia, sent me a numerical integration approach that I have found very useful over the last 
20 years. His method (a) is quite simple, (b) is very accurate, (c) minimizes numerically 
introduced damping, (d) is well suited to programming with spreadsheet tools like Microsoft® 
Excel®, and (e) allows time-varying damper and spring terms. It goes like this: 

                                                 
5 Things like sin(x) and ln(x) are rather common, and I would call them elementary functions. 
6 William Milne, Numerical Solution of Differential Equations, John Wiley & Sons, Inc., New York, 1953. 
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(30) 

( )
( )

( )
( )

( )

( )
( )

( )

22 2

2 2 N2 2
N 1 N

(t ) (t ) ( t )22
N

1 t 2 tdy dy y
dt dt1 t 2 1 t 2

t m dyF c k y
dt1 t 2

+

ª º ª º− ω ∆ ω ∆§ · § ·= −« » « »¨ ¸ ¨ ¸
© ¹ © ¹+ ω ∆ + ω ∆« » « »¬ ¼ ¬ ¼

ª º∆  ½§ ·+ − −« » ® ¾¨ ¸
© ¹+ ω ∆ ¯ ¿« »¬ ¼

 

and 

(31) 

( )
( )

( )
( )

( )

( )
( )

( )

22

2 2N 1 N2 2
N

2

(t ) (t ) ( t )22
N

1 t 2t dyy y
dt1 t 2 1 t 2

t 2m dyF c k y
dt1 t 2

+

ª º ª º− ω ∆∆ § ·= +« » « »¨ ¸
© ¹+ ω ∆ + ω ∆« » « »¬ ¼ ¬ ¼

ª º∆  ½§ ·+ − −« » ® ¾¨ ¸
© ¹+ ω ∆ ¯ ¿« »¬ ¼

. 

Initially Dewey suggested that k(t) should be of the form ko + k(t) so that 0k / mω = . In 
recent discussions, Dewey could think of no reason that the frequency could not vary with 
time. This is an important point when studying rotor blade lead-lag motion, where Ȧȟ equals a 
constant times rotor speed (ȍ).  
 
 As applied to Eq. (29), where the mass, damper, and spring coefficients are constant, 
the numerical integration proceeds as follows: 

(32) 
( )

( ) ( )

1 2 3 (t )N
N 1 N N

4 5 6 (t )N 1 N
N N

dy dy dyA A y A F c
dt dt dt

dy dyy A A y A F c
dt dt

+

+

 ½§ · § · § ·= − + −® ¾¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹¯ ¿

 ½§ · § ·= + + −® ¾¨ ¸ ¨ ¸
© ¹ © ¹¯ ¿

 

where the constants (i.e., A1 through A6) are as observed in Eqs. (30) and (31) and calculated 
using Table C-1, which gives 0k / mω =  or Ȧ = 18.71228633449010 radians per second and 
the damping constant c = 228.47 pounds per foot per second. The constants A1 through A6 in 
Eq. (32) are immediately at hand as provided by Table C-2.   
 
The force is, of course, from Eq. (29)  

(33) ( ) ( )
2 2

(t ) w w 2

d dF m esin m ecos
dt dt

ª ºψ ψª º= ψ − ψ « »« »¬ ¼ ¬ ¼
 

where 

(34) 
2

3 7 2 6 5f f f f f f
2 6 2 6 2 2 6

3 3 3d dt t , t t , t t
2T 14T dt 2T 2T dt T T
Ω Ω Ω Ω Ω Ωψ ψ§ · § · § · § · § · § ·ψ = − = − = −¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸

© ¹ © ¹ © ¹ © ¹ © ¹ © ¹
. 

  
Table C-2. Constants A1 Through A6 

A1 +0.99982494049432500000  A4 +0.00099991247024716200000 
A2 –0.35011901135076100000  A5 +0.99982494049432500000000 
A3 +0.00002188243820942260  A6 +0.00000001094217687074830 
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 To set up Hodges’ numerical integration, I will use the configuration described in 
Table C-1 and a time increment (ǻt) of 0.001 seconds. The solution begins by stating the 
initial conditions at time equals zero, which corresponds to N = 0. That is, 

( )N 0 N 0
y input and dy dt input= == = . 
 
 A simple calculator (like a Microsoft® Excel® spreadsheet) makes short work of this 
computation using Eqs. (32), (33), and (34), and advancing time in very small steps. Given a 
column of tN+1 = tN + ǻt, and a second column of acceleration as d2ȥ/dt2 radians-per-second 
squared, the third column calculates the instantaneous rotor speed as (dȥ/dt)N. The fourth 
column calculates the time-varying azimuth angle as 2

N N0.2tψ = , and a few more columns 
give a time history of hub motion (yh) as the rotor comes up to speed.  
 
 The hub motion obtained by numerical integration during rotor startup with the 
unbalanced weight configuration of Fig. C-4 is shown in Fig. C-6. With increasing rotor 
speed, the resonance appears at a time (t) of about 48 seconds. At this moment in time, the 
instantaneous rotor speed is just under 20 radians per second or about 190 revolutions per 
minute. The final rotor speed (24 radians per second) is reached in 60 seconds. There is little 
practical difference between this result and the quasi-steady result shown in Fig. C-5. 
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Fig. C-6. Hub motion during rotor startup with an unbalanced weight. 
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Closing Remarks 
 
 The preceding paragraphs may well be considered “old hat” to many readers. On the 
other hand, those without an intimate daily use of these dynamics fundamentals may well find 
them useful. The Dewey Hodges’ numerical integration scheme should be of considerable 
value to anyone wanting to obtain differential equation solutions using spreadsheet calculating 
tools. At any rate, the first half of Appendix C provides (in my view) a minimum discussion 
about vibration and the mathematics of dynamics that are required to examine ground 
resonance. 
 
 Now let me continue with a discussion of the ground resonance phenomena that 
destroyed the Kellett XR-2 autogyro in nearly the blink of an eye. 
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GROUND RESONANCE 
 
Introduction 
 
 Technical literature tackles the ground resonance problem from many aspects. The 
basic objective has been to define stability and instability boundaries. These boundaries are 
quite different for a two-bladed rotor and rotors with three or more blades, all configurations 
having a lead-lag hinge or behaving as if they have a lag hinge. Occasionally one hears the 
statement that multi-bladed rotors behave differently than two-bladed rotors.7 All of the 
results I am aware of assume that rotor speed is constant. Therefore, let me first show you the 
analysis with a series of constant rotor speeds (ȍ) and then with a normal rotor startup.  
 
Basic Theory 
 
 The basics of ground resonance can be examined rather simply by adding one blade to 
the hub and using the weight from Fig. C-4 as a counterweight. This configuration is shown in 
Fig. C-7. The blade is attached to the lead-lag hinge, and a viscous damper bridges across the 
hinge. The lead-lag hinge is located outward from the hub a distance (e). The blade has 
uniform mass distribution so the blade center of gravity is located a distance (rcg) from the 
lead-lag hinge. Therefore, the blade center of gravity is located a distance (e + rcg) from the 
centerline of rotation when the lead-lag angle (ȟ) is zero. The counterweight is mounted to 
what could be a lead-lag hinge for a second blade and, therefore, at the same distance (e) from 
the centerline of rotation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. C-7. A counterbalanced one-bladed rotor system. 

                                                 
7 I have always thought that the classification multi included a two-bladed rotor.  
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 The equations of motion for this case, guided by Fig. C-7, require first adding the 
blade mass (mb) times its acceleration (d2yb/dt2) to Eq. (13) which gives  

(35) 
2 22

w bh h
h h w b2 2 2

d y d yd y dym c ky F m m
dt dt dt dt

+ + = = − − . 

However, in addition to this hub vibration equation, the blade lead-lag motion must also be 
taken into account. The equation from which lead-lag motion (ȟ) is obtained comes by solving 

(36) ( )
22

2 h
b b b b b cg2 2

d yd dI c I m r cos
dt dt dt

§ ·ξ ξ+ + ω ξ = − ψ + ξ¨ ¸
© ¹

 

where (Ib) is the second moment of inertia of the blade in slug-feet squared, and (cb) is a 
viscous lag damper constant in foot-pounds per radians per second. The inplane natural 
frequency (Ȧb) of the blade in radians per second is frequently approximated as  

(37) b
3 e
2 R e
§ ·ω = Ω ¨ ¸−© ¹

. 

 Notice immediately in Eq. (36) that the lead-lag motion is dependent on the hub 
acceleration (d2yh/dt2). However, the hub motion is dependent on the lead-lag angular 
displacement (ȟ) itself. The interaction (more precisely, the coupling) between the two 
motions occurs because 

(38) ( ) ( )
( ) ( )

o
w h h

b h cg

y y esin 180 y esin

y y esin r sin

= + ψ + = − ψ

= + ψ + ψ + ξ
. 

It is the second derivative of these two displacements (yw and yb) with respect to time that is 
required. Thus, for the counterbalance weight, the acceleration required by Eq. (35) is 

(39) ( ) ( )
22 2 2

w h
2 2 2

d y d y d desin e cos
dt dt dt dt

ª ºψ ψª º= + ψ − ψ « »« »¬ ¼ ¬ ¼
. 

The blade acceleration (d2yb/dt2) required by Eq. (35)—while a somewhat longer expression 
because of the lead-lag terms—is simply 

(40) 
( ) ( )

( ) ( ) ( ) ( )

22 2 2
b h

2 2 2

2 2

cg cg 2

d y d y d desin ecos
dt dt dt dt

d d
r sin r cos

dt dt

ª ºψ ψª º= − ψ + ψ « »« »¬ ¼ ¬ ¼

ª ºψ + ξ ψ + ξª º
− ψ + ξ + ψ + ξ « »« »

¬ ¼ ¬ ¼

. 

 

Case 1.  One Blade, Counterbalanced, at Several Rotor Speeds  
 
 Imagine the pilot starting the rotor up with the blade in the lead position shown in  
Fig. C-7, and suppose neither the pilot nor the ground crew are aware (for whatever reason) 
that the blade-lag damper has locked up and is holding the blade in the lead position. Finally, 
assume that at some rotor speed the lag damper breaks free and lead-lag motion is allowed in 
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the normal operating manner. The small question is, “Will the pilot sense a vibration due to 
the locked-up blade, get worried, and shut the engine down?” The bigger question is, “If he 
accepts the warning vibration, stops increasing rotor speed (dȥ/dt becomes constant at dȥ/dt = 
ȍ) to investigate, and then the lag damper breaks free, what are the resulting blade lead-lag 
and hub motions?” 
 
 Let me answer the small question first. Consider a normal startup with the blade in a 
locked position with a lead angle (ȟ0) of, say, 0.01 radian, which is just over one-half degree. 
With a fixed lead angle, no angular velocity or acceleration can occur, which means that dξ/dt 
= 0 and d2ξ/dt2 = 0. Now I will again assume a quasi-steady increase in rotor speed so that at 
each rotor speed where data might be taken, d2ȥ/dt2 = 0. Finally, let me also assume that the 
lead-lag angle is small for this case, so that 

(41) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

sin( t ) sin t cos cos t sin sin t cos t

cos( t ) cos t cos sin t sin cos t sin t

Ω + ξ = Ω ξ + Ω ξ ≈ Ω + ξ Ω
Ω + ξ = Ω ξ − Ω ξ ≈ Ω − ξ Ω

. 

 
 Now comes the four steps where considerable care must be taken. First, substitute the 
weight and blade acceleration equations [Eqs. (39) and (40) respectively] into the hub motion 
equation, Eq. (35). Second, simplify this result using the small angle assumption given by  
Eq. (41), and set dȥ/dt = ȍ and d2ȥ/dt2 = 0. Third, rearrange the results of step two to see 
what further simplification can be made. Fourth, make the further simplifications. 
 
 To proceed then, from the first step you have:  

(42) 

( ) ( )

( ) ( )

( )

( )

22 2 2
h h h

h h w2 2 2

22 2
h

2 2

2

b cg

2 2

cg 2 2

d y dy d y d dm c ky m esin ecos
dt dt dt dt dt

d y d desin ecos
dt dt dt

d dm r sin
dt dt

d dr cos
dt dt

 ½ª ºψ ψ° °ª º+ + = − + ψ − ψ® ¾« »« »¬ ¼ ¬ ¼° °¯ ¿
 ½ª ºψ ψª º− ψ + ψ° °« »« »¬ ¼ ¬ ¼° °
° °ψ ξ° °ª º− − ψ + ξ +® ¾« »¬ ¼° °
° °ª ºψ ξ° °+ ψ + ξ +« »
° °¬ ¼¯ ¿

. 

Then from the second step (i.e., simplification with assumptions), you obtain 

(43) 

( )[ ]

( )[ ]

( ) ( ) [ ]

2 2
2h h h

h h w2 2

2
2h

2
b

2
cg

d y dy d ym c ky m esin
dt dt dt

d y esin
dtm
r sin cos

 ½+ + = − + ψ Ω® ¾
¯ ¿
 ½− ψ Ω° °

− ® ¾
° °− ψ + ξ ψ Ωª º¬ ¼¯ ¿

. 
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The third step is taken because you see that some rearrangement can be made. So  

(44) ( ) ( )

( ) ( ) ( )

2 2
2h h h

h h w b w2 2

2 2
b cg b cg

d y dy d ym c ky m m m e sin
dt dt dt

m e r sin m r cos

+ + = − + − Ω ψ

+ + Ω ψ + ξΩ ψ

. 

Now you can see that both the counterbalance mass and blade mass times the hub acceleration 
should be moved to the left side of Eq. (44). Furthermore, since the centrifugal force of the 
counterbalance weight equals the centrifugal force of the blade, these two forces cancel out. 
That is, ( ) ( ) ( )2 2

w b cgm e sin m e r sin 0ª º− Ω ψ + + Ω ψ =¬ ¼ . Finally, because the blade is locked at a 

lead angle, ȟ must be replaced with ȟ0. With these finishing touches, you see that the hub is 
shaken by the relatively small unbalance caused by the blade being locked in the lead position 
(ȟ0). Therefore, the hub motion of the locked-blade system is described quite familiarly as 

(45) ( ) ( ) ( )
2

2h h
h w b h b cg 02

d y dym m m c ky m r cos
dt dt

+ + + + = ξ Ω ψ . 

Now define mh + mw + mb = m and recognize that with a constant rotor speed (ȥ = ȍt), the 
solution to Eq. (45) is 

(46) 
( )

( ) ( )
( ) ( )

2
b cg 0 2

h 2 22

m r
y k m cos( t) c sin( t)

k m c

ξ Ω
ª º= − Ω Ω + Ω Ω¬ ¼− Ω + Ω

, 

or in phase angle form, which illuminates the vibration’s amplitude, you have 

(47) 
( )

( ) ( )

2
b cg 0

h 22 22

m r cy cos t arctan
k mk m c

ξ Ω  ½ª Ω º§ ·= Ω −® ¾¨ ¸« »− Ω© ¹¬ ¼¯ ¿− Ω + Ω
. 

 As the pilot brings the rotor slowly up to speed, the unbalance will begin to vibrate the 
hub, rock the machine, and shake the pilot. The maximum amplitude of hub acceleration will 
vary with rotor speed as you learned from Basic Dynamics. That is, 

(48) 
( )

( ) ( )

22
b cg 0 2h

2 2 22

m rd yMax.
dt k m c

ª ºξ Ω« »= ± Ω« »
− Ω + Ω« »¬ ¼

. 

 To numerically study the situation, use the physical properties of the system provided 
in Table C-3 and, since this is a practical problem under discussion, let me express rotor speed 
(ȍ) not in radians per second, but in revolutions per minute (RPM = 30ȍ/ʌ). Furthermore, I 
will measure hub acceleration not in feet-per-second squared, but in g’s, which means 
dividing d2yh/dt2 by 32.17 ft/sec2.  
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Table C-3. Physical Properties 
Autogyro Properties Symbol Value Units 
Aircraft weight GW 1,900 lbs 
Blade radius  R 21.25 ft 
Hub height above the ground  Hhub 13.0 ft 
Pilot height above the ground Hpilot 7.0 ft 
Landing gear spread  xlg 12.0 ft 
Apparent autogyro spring stiffness at the hub  k 16,000.0 lbs/ft 
Apparent autogyro weight at hub  Wh 1,300.0 lbs 
Apparent autogyro mass at the hub  mh 40.410320 slugs 
Apparent damping coefficient of the autogyro  c 228.470 lbs/fps 
Blade Properties    
Weight  wb 40.0 lbs 
Mass  mb 1.2433945 slugs 
Spanwise center of gravity rcg 9.3750 ft 
Centrifugal force  CFb 9,228.3 lbs 
Lead-lag hinge location  e 2.50 ft 
Lag frequency per rev  ωξ/Ω 0.20000 per rev 
Running mass (mb) outboard of lag hinge ǻmb/ǻr 0.066314372 slugs/ft 
Lag moment of inertia  Iξ 211.7656201 slug-ft2 
Lag damper coefficient cξ 15.00 ft-lbs per rad/sec 
Counterweight Properties    
Weight Ww 190.0 lbs 
Mass mw 5.9061237 slugs 
Radial location e 2.50 ft 
Counterweight centrifugal force CFw 9,228.3 lbs 
 
 The maximum acceleration of the hub (and what the pilot feels sitting well below the 
rotor) varies with RPM as shown in Fig. C-8 when the blade-lag damper remains locked up at 
the lead angle (ȟ0) of 0.01 radians, which is only 0.57 degrees. Because the aircraft is assumed 
to be rocking about a point on the ground (see Fig. C-2), pilot acceleration equals 7/13 times 
hub acceleration.  
 
 The smaller question was, “Will the pilot sense a vibration due to the locked-up blade, 
get worried, and shut the engine down?” I would suggest, based on Fig. C-8, that autogyro 
engineers and pilots in this pioneering era would have accepted this maximum vibration level 
at the cockpit and would not have been unduly alarmed.   
 
Now consider the bigger question, “If the pilot accepts the warning vibration, but stops 
increasing rotor speed to investigate (i.e., ȍ becomes a constant), and then the locked-up 
blade breaks free, what are the resulting blade lead-lag and hub motions?” To answer this 
question, imagine that during the Kellett XR-2 test (of over-speeding the rotor for jump 
takeoff), ground resonance was encountered with this sequence of events:  

a. The rotor speed for jump takeoff has been determined to be 230 rpm.  
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Fig. C-8. Vibration caused by a blade not being exactly counterbalanced. 

 

b. The engineers and the pilot agree to run the rotor up from 0 to 230 rpm, taking data 
in 5-rpm steps. 

c. Data taken at each step shows cockpit accelerations that follow Fig. C-8. 

d. Everyone has become comfortable because whatever was causing the vibration to 
increase up to 0.06 g’s at 190 rpm has stopped and, at higher RPM points, the 
vibration even appears to be decreasing.  

d. When the test objective of 230 rpm is reached and the pilot is holding at a constant 
230 rpm, the lag damper, for one reason or another, unlocks and completely fails to 
provide damping.  

e. Lead-lag motion begins—with a zero value for the blade damping constant (cb = 0).  

f. And, in well under 15 seconds, the Kellett XR-2 is destroyed. 
 
The blade lead-lag motion precipitating the destruction is shown in Fig. C-9 and the resulting 
hub acceleration in Fig. C-10. The reason I show destruction within 15 seconds is because the 
hub force is so great that the autogyro structure that supports the rotor is likely to be ripped 
off the top of the fuselage. The maximum magnitude of this force is   

(49) ( )
2 2 2

h w b h h
h w b2

W W W d y d y dtMax. F ma W W W
g dt g

§ ·§ ·+ += = = + + ¨ ¸¨ ¸
© ¹ © ¹

. 
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Fig. C-9. Rapid divergence of blade motion during ground resonance.  
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Fig. C-10. Rapid buildup in hub vibration during ground resonance. 
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From Table C-3, the total weight being vibrated is 1,530 pounds, and if the maximum 
acceleration is 10 g's, the vibratory force has an amplitude of ±15,300 pounds. It is not hard to 
argue that the machine came apart in under 11 seconds because of 1,530 pounds of force. 
 
 Now, let me explain how the time histories displayed in Fig. C-9 and Fig. C-10 were 
obtained. I started the time history assuming that at time (t) equals zero the rotor speed was 
constant at 230 rpm, so dȥ/dt = ȍ = 24.086 radians per second, d2ȥ/dt2 = 0, and ȥ = ȍt. 
Making no small angle assumptions, the general hub motion equation, Eq. (42), and lead-lag 
equation, Eq. (36), become  

(50) 
( ) ( ) ( )

( ) ( )

2
2 2h h

h w b h w b2

2 2

b cg b cg 2

d y dym m m c ky m e sin t m e sin t
dt dt

d dm r sin t m r cos t
dt dt

+ + + + = − Ω Ω + Ω Ω

ª ºξ ξª º+ Ω + Ω + ξ − Ω + ξ« »« »¬ ¼ ¬ ¼

 

and 

(51) ( )
22

2 h
b b b b b cg2 2

d yd dI c I m r cos t
dt dt dt

§ ·ξ ξ+ + ω ξ = − Ω + ξ¨ ¸
© ¹

. 

The calculation was rather simple using the previously discussed Dewey Hodges’ numerical 
integrator to solve the two equations. The Hodges’ solver was set up using a Microsoft® 
Excel® spreadsheet. The initial conditions came from the locked-blade solution so that at zero 
time (t), the blade lead-lag angle was at ȟ0 = 0.01 radians, and the hub displacement (yh) was 
zero. The hub velocity (dyh/dt = –0.18 ft/sec) and acceleration (d2yh/dt2 = 0.00562 ft/sec2) 
corresponded to the beginning of a cycle when yh = 0 at 230 rpm. The first spreadsheet row 
set the initial conditions. The second and following rows computed lead-lag angle first, and 
then hub displacement, velocity, and acceleration. 
 
 The preceding example leads to a very important question dealing with the amount of 
lead-lag damping required for at least neutral stability. Neutral stability means the oscillation 
will continue indefinitely, neither growing in amplitude nor subsiding. For the results shown 
in Fig. C-9 and Fig. C-10, I selected a rotor speed of 230 rpm and assumed that the lag 
damper completely failed. In reality, the blade might have unlocked at any rotor speed. 
Therefore, the amount of damping required to avoid autogyro destruction at all rotor speeds is 
of considerable interest. Figure C-11 shows the amount of damping required to ensure at least 
neutral stability as a function of rotor speed. These results were calculated using the 
configuration data from Table C-3.  
 
 There is a somewhat general rule of thumb as to what rotor speed will definitely cause 
ground resonance if the system is under damped. The basis for this rule is well explained by 
Bramwell.8 In equation form, the rule is that when:  
(52) b h h bΩ − ω = ω → Ω = ω + ω  

there is the potential for ground resonance. That is, if the sum of aircraft natural frequency 
(Ȧh) and blade lead-lag frequency (Ȧb) equals the rotor speed (ȍ), then there is an ensured 
 
                                                 
8 A.R.S. Bramwell, Helicopter Dynamics, John Wiley & Sons, New York, 1976, pp. 379–382. 
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Fig. C-11. Lag damping required for neutral stability of ground resonance. 
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Fig. C-12. Two branches of the coupled blade-hub vibration problem. 
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potential for ground resonance. As Fig. C-12 shows, this rule is approximately correct, but 
should be considered rather optimistic. The potential for ground resonance actually begins at a 
lower rotor speed than Eq. (52) suggests. Only a very thorough dynamic analysis offers some 
assurance that a rotorcraft design will be safe from the destruction that will occur if ground 
resonance is encountered. Lastly, as you will note in Fig. C-12, there is a second branch of 
lead-lag motion that can occur. This second branch involves lead-lag motion at a frequency of 
ȍ + Ȧb, and this blade motion can coalesce with the hub natural frequency. That is, there is 
potential for a forced vibration resonance when 

(53) b h h bΩ + ω = ω → Ω = ω − ω . 

Advanced dynamics study has determined that a ground resonance situation cannot occur in 
this branch of the blade-hub vibration problem.  
 
Case 2.  One Blade, Counterbalanced, with Rotor Speed Acceleration 
 
 The preceding paragraphs examined just the ground resonance branch (i.e., the ȍ – Ȧb 
line) shown in Fig. C-12. This solution branch is associated with the vibration mode 
controlled by the blade lead-lag motion, which can create such large forces that the whole 
machine can be shaken to bits in a matter of seconds—if there is insufficient damping. There 
is, in fact, a second solution branch (i.e., the ȍ + Ȧb line) shown in Fig. C-12 where the 
vibration is controlled by the hub motion, and the blade lead-lag motion is a simple forcing 
function akin to the problem examined in Fig. C-4. In both solution branches there is the 
possibility of a resonance, but it is only the ȍ – Ȧb branch that is of real concern. I have used 
a rotor startup example so you can see both solution branches and associated potential 
resonances.  
 
 For this case, I will again assume that the pilot starts the rotor up following Eq. (34), 
which is repeated here as 

(34) 
2

3 7 2 6 5f f f f f f
2 6 2 6 2 2 6

3 3 3d dt t , t t , t t
2T 14T dt 2T 2T dt T T
Ω Ω Ω Ω Ω Ωψ ψ§ · § · § · § · § · § ·ψ = − = − = −¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸

© ¹ © ¹ © ¹ © ¹ © ¹ © ¹
. 

With a final rotor speed (ȍf) of 230 rpm (times ʌ/30 to get radians per second) reached in T = 
50 seconds, the displacement (ȥ), velocity (dȥ/dt), and acceleration (d2ȥ/dt2) describe a 
reasonable rotor startup model for the solution of the hub motion equation given earlier as 

(54) 

( ) ( ) ( )

( ) ( )

( )

( )

22 2
h h

h w b h w w2 2

2 2

b b 2

2

b cg

2 2

b cg 2 2

d y dy d dm m m c ky m ecos m esin
dt dt dt dt

d dm esin m ecos
dt dt

d dm r sin
dt dt

d dm r cos
dt dt

 ½ª ºψ ψ° °ª º+ + + + = ψ − ψ® ¾« » « »¬ ¼¬ ¼° °¯ ¿
 ½ª ºψ ψª ºψ − ψ° °« »« »¬ ¼ ¬ ¼° °
° °ψ ξ° °ª º+ ψ + ξ +® ¾« »¬ ¼° °
° °ª ºψ ξ° °− ψ + ξ +« »
° °¬ ¼¯ ¿

. 
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Of course, the blade lead-lag equation does not change, so, to repeat, 

(55) ( )
22

2 h
b b b b b cg2 2

d yd dI c I m r cos
dt dt dt

§ ·ξ ξ+ + ω ξ = − ψ + ξ¨ ¸
© ¹

. 

 Again, the actual calculation was rather simple using the previously discussed 
Hodges’ numerical integrator to solve the two coupled equations, (54) and (55). The solver 
was set up using a Microsoft® Excel® spreadsheet. The initial conditions required by the two 
equations were simply that the blade was against the lead stop (i.e., ȟ0 = +5 degrees) and the 
rotor was at rest (yh = dyh/dt = d2yh/dt2 = 0). Of course, time (t) began at zero. The 
configuration again followed Table C-3, and I set the blade-lag damper (cb) to a nominal 
value of 60 foot-pounds per radian per second. This is enough damping to bring the rotor 
blade to nearly a straight-out position at relatively low rotor speed; but not enough damping to 
avoid ground resonance. The results of this calculation are shown in Fig. C-13 and Fig. C-14.  
 
 As you can see from Fig. C-13, the blade started from a lead stop position of 
5 degrees, which can often be a quite normal position after shutting down from the previous 
flight. The lag damper value of 60 foot-pounds per radian per second is sufficient to damp the 
oscillating blade motion to a straight-out position (ȟ = 0 degrees) in about 35 seconds. (In 
reality, a more realistic value of lag damping would be about 200 to 250 foot-pounds per 
radian per second in which case the lead-lag position becomes zero in about 20 seconds. 
However, with a higher blade-lag damping constant, the time histories show no deflections in 
blade or hub motion after 15 seconds, and my example would be less interesting.)  
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Fig. C-13. Blade motion during rotor startup. 



APPENDIX C 

358 

 Notice that the blade motion is virtually zero at 35 seconds. In fact, there is a very 
small vibratory amplitude of under ±0.01 degree between 25 and 35 seconds that is sufficient 
to excite hub motion at the Ȧh frequency intersection with the lead-lag motion frequency of 
ȍ + Ȧb shown in Fig. C-12. The resulting forced hub vibration is visible in Fig. C-14. 
Obviously, the ordinate scale in Fig. C-13 obscures this information. This residual lead-lag 
motion serves as enough excitation to create the beginnings of ground resonance around 
50 seconds into the rotor startup where the final rotor speed of 230 rpm is reached. (From  
Fig. C-11, at least 130 foot-pounds per radian per second of lag damping is required just for 
neutral stability of blade lead-lag motion, so my choice of cb equal to 60 foot-pounds per 
radian per second has ensured that ground resonance will occur.)  
 
 It is the hub vibration time history during this rotor startup example that shows both 
solution branches (i.e., ȍ + Ȧb and ȍ – Ȧb) of this dynamics problem. Figure C-14 shows the 
time history of hub acceleration in units of gravity. You can immediately see that a damped 
resonance is passed through in the 25- to 35-second period after rotor startup is begun. This 
is associated with the Ȧh frequency intersection with the lead-lag, ȍ + Ȧb frequency in  
Fig. C-12. However, with the small amount of lag damping and the landing gear shock 
absorber damping, the hub acceleration is not greater than ± 0.2 g’s. The pilot, located well 
below the hub, would probably feel only about ± 0.1 g’s and not be unduly alarmed. He 
would quite naturally be satisfied that the final rotor speed of 230 rpm had been achieved 
without incident. By 60 seconds into the startup, I would think the test pilot would become 
aware of a new and growing vibration, but by then—without prior experience—it would be 
too late. The destruction of the machine would be inevitable.  
 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Hub 
Acceleration 

(g's)

Time (sec)

Associated with the ωh 

intersection with Ω  +ωb  

in Fig. C-12 

Associated with the ωh 

intersection with Ω  - ωb  

in Fig. C-12 

 
Fig. C-14. Hub vibration during rotor startup. 
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Case 3.  Three Blades at Several Rotor Speeds 
 
 As a concluding example to this discussion about ground resonance, I have chosen a 
classic ground resonance problem. In this case, the rotor system has three absolutely identical 
blades, which are described in Table C-3. The rotor speed is fixed at a constant RPM. The 
objective is to establish the amount of damping required for neutral stability at each of several 
RPMs in order to make a comparison with Fig. C-11.  
 
 Before presenting the results of this case, it is very important to appreciate that as 
more blades are added, each blade will have its own dynamic equation. Thus, the degrees of 
freedom increase from the two degrees (yh and ȟ) suggested by Fig. C-5. Some mathematical 
simplification is obtained by assuming that all blades, regardless of the number, are absolutely 
identical. However, in real life, this perfection has yet to be achieved. It is common 
manufacturing practice to balance all blades against a master blade. This practice yields 
blades of equal weight and gives some assurance that the spanwise center of gravity is within 
tolerance. However, I am not aware of any production process that checks a blade’s second 

moment of inertia ( )R 2
b e

I r dm= ³  against a master blade. And finally, in the field operation, 

blade deterioration does not occur equally. Perhaps the worst that can happen is that blade-lag 
dampers and landing gear shock absorbers degrade, and even fail, which is an extremely 
dangerous matter.  
 
 The equations of motion for this case, guided by Fig. C-7, require replacing the 
counterbalance weight with two blades. This yields a rotor system where blade one becomes 
the master blade, which is indexed in azimuth to ȥ1 = ȍt since rotor speed (ȍ) is assumed 
constant. Blade two is placed 120 degrees ahead of master blade one, and blade three is 
placed 240 degrees ahead of the master blade. Thus, each blade has its individual 
displacement of 

(56) 

( ) ( )b1 h 1 cg1 1

b2 h 2 cg2 2

b3 h 3 cg3 3

y y e sin t r sin t

2 2y y e sin t r sin t
3 3

4 4y y e sin t r sin t
3 3

= + Ω + Ω + ξ

π π§ · § ·= + Ω + + Ω + + ξ¨ ¸ ¨ ¸
© ¹ © ¹

π π§ · § ·= + Ω + + Ω + + ξ¨ ¸ ¨ ¸
© ¹ © ¹

. 

Now the hub equation accounting for all three blades is  

(57) ( )
2

h h
h b1 b2 b3 h b1 b2 b32

d y dym m m m c ky F F F
dt dt

+ + + + + = + +  

where the force is computed individually for each blade (should they not be absolutely 
identical) from 
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(58) 
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 ½ξ ξ° °ª º= Ω Ω − Ω − Ω Ω +® ¾« »¬ ¼° °¯ ¿
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. 

 As noted above, each blade must have its own dynamics equation. I have purposely 
written the three blade lead-lag equations so that ground resonance with dissimilar blades 
might be studied at some later date. However, for this introduction, all blades are absolutely 
identical. Thus 

(59) 

( )
2 2

21 1 h
b1 b1 b1 b1 1 b1 cg1 12 2

2 2
22 2 h

b2 b2 b2 b2 2 b2 cg2 22 2

2 2
23 3 h

b3 b3 b3 b3 3 b3 cg3 32 2

d d d yI c I m r cos t
dt dt dt

d d d y 2I c I m r cos t
dt dt dt 3

d d d y 4I c I m r cos t
dt dt dt 3

§ ·ξ ξ+ + ω ξ = − Ω + ξ¨ ¸
© ¹
§ ·ξ ξ π§ ·+ + ω ξ = − Ω + + ξ¨ ¸ ¨ ¸

© ¹© ¹
§ ·ξ ξ π§ ·+ + ω ξ = − Ω + + ξ¨ ¸ ¨ ¸

© ¹© ¹

. 

The calculation was rather simple using the previously discussed Dewey Hodges’ numerical 
integrator to solve the four equations: The Hodges’ solver was set up using a Microsoft® 
Excel® spreadsheet, which now, admittedly, required many columns. The initial conditions 
came from the earlier locked-blade solution for one blade so that at zero time (t), the initial 
blade lead-lag angle for all three blades was at ȟ0 = 0.05 radians, and the hub displacement 
(yh) was zero. The hub velocity (dyh/dt = –0.18 ft/sec) and acceleration (d2yh/dt2 = 0.00562 
ft/sec2) corresponded to the beginning of a cycle when yh = 0 at 230 rpm.   
 
 Figures C-15 and C-16 summarize the neutral stability boundaries for ground 
resonance of a three-bladed autogyro with lead-lag hinges and lead-lag dampers. The example 
is, perhaps, what might have been seen by the Kellett engineering department before testing 
began on the XR-2 autogyro—if the theory had been developed. Unfortunately for the XR-2, 
a problem was not foreseen as the pioneers focused on rotor over-speed for jump takeoff and, 
just as unfortunately, no theory was available.  
 
 A comparison of Fig. C-15 to Fig. C-11 shows a very similar trend. The big difference 
is that each blade in the three-bladed set now needs more than four times the lag damper value 
required by just one blade that is counterbalanced. 
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Fig. C-15. Damping required for neutral stability of ground resonance with a  

three-bladed rotor.  
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Fig. C-16. Required combinations of hub- and blade-lag damping to ensure neutral 

stability of ground resonance with a three-bladed rotor. 
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 Figure C-16 is particularly informative. Two points are immediately apparent. First, 
there are unique sets of damping coefficients (i.e., blade and landing gear) at any given rotor 
speed that define a neutral stability boundary. Second, there is a very small range in rotor 
speed that captures the very maximum of lag and hub damping required for neutral stability; 
about 220 to 230 rpm for this configuration defined in Table C-3. This general trend exhibited 
in Fig. C-16 means that serious design attention must be given to landing gear design details 
and blade-root-end configuration details to say nothing about the rotor speed operating range.  
 
 Finally, I have added a most practical design criteria (labeled Deutsch Criteria) to both 
Figs. C-16 and C-17. Mr. M. L. Deutsch published some of his work in the Journal of the 
Aeronautical Sciences, Volume 13, Number 5, in May 1946.9 At that time, he was a member 
of the Engineering Division of the Army Air Force Air Technical Service Command located 
at Wright Field in Dayton, Ohio. Deutsch’s ground resonance criteria, now rather well known, 
is simplicity itself. The approximation for the maximum required lag damping for any given 
hub damping, so that at least neutral stability is obtained, is calculated from 

(60) 
( ) ( ) ( )

2
22

h

1b Ȧ Blade first moment of inertia
4

Lag damping constant
Hub damping constant

ξ

ξ

ª º− ω Ω
« »

ω Ω« »
¬ ¼=  

where (b) is the number of blades (being three or more). The hub natural frequency (Ȧh) in 
radians per second is equal to k / m , and the blade inplane natural frequency ratio (Ȧȟ/ȍ) on 

a per-rev basis can be approximated as 3 e
2 R e
§ ·
¨ ¸−© ¹

, which is unitless. The blade first moment 

of inertia is calculated as 
R

b

e

dmr dr
dr

§ ·
¨ ¸
© ¹

´
µ
¶

, which, for a blade having a uniform mass 

distribution as in my example, becomes (mb rcg ) in slug-feet. 
 

Closing Remarks 
 
 The first point to make in conclusion is that good engineering practice requires that 
more system damping than the minimum required for neutral stability, is mandatory. Suppose, 
for example, that one of two landing gear shock absorbers fails. Or what about the case of 
operating from ice—the list of “what ifs” is nearly endless. 
 
  

                                                 
9 Wayne Johnson (NASA Ames Research Center), who patiently watched over me on parts of this appendix, 
brought Deutsch’s work to my attention. Wayne sent me a PDF copy of Deutsch’s paper. I had my memory 
jogged when I saw the paper. It was a copy of the Journal paper that Robert (Bob) Lowey (then Chief of 
Dynamics at Vertol Aircraft Corp.) gave me to read in 1957 in response to my asking if he would tell me all 
about ground resonance, a new term in my apprenticeship.  
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 Secondly, it seems that this particular incidence of the Kellett XR-2 destruction due to 
ground resonance10 opened a door to comprehensive rotorcraft dynamics. The question of a 
similar type of instability with the aircraft flying was asked. Then, as ever-improved 
helicopters came on the scene, questions about drive-system coupled to rotor-system behavior 
arose. Then blade flapping-motion coupling to blade lead-lag-motion was studied in 
considerable detail.  
 
 Both the autogyro in its era and now the helicopter are multi-degree-of-freedom 
machines. By multi, I mean between two and at least one hundred. The odds of some 
previously unknown instability striking current and future rotorcraft without warning are, in 
my opinion, very high. I do, however, expect that prominent dynamic engineers will debate 
me on this somewhat pessimistic view.  

                                                 
10 Mr. Deutsch writes in his Memorandum Report MLD:fb1:51 dated January 23, 1943, titled Theory of 
Mechanical Instability of Rotors that: “Ground resonance has been one of the major problems retarding the 
development of rotary wing aircraft. Several aircraft have been either destroyed or seriously damaged on the 
ground during rev-up (e.g. the XR-2). It was believed, at first, that this phenomena might be a result of coupled 
aerodynamic and mechanical forces affected by the proximity of the ground. However, it has been understood 
for some time that a purely mechanical system can exhibit – to a very high degree of approximation – the type of 
instabilities observed in actual rotary wing aircraft.” 



 

364 

 



365 

APPENDIX D 
 

CONTROL LOADS 
 
 
 By the end of the autogyro era, our pioneers had learned a great deal about blade 
twisting and control loads. In this appendix, I want to discuss control loads in the three parts 
that I consider to be of particular importance.  
 
Control Loads: Part I—The Basics 
 
 In my opinion, the 1932 blade feathering system of E. Burke Wilford (see Fig. 2-35) 
and the addition of the pitch change mechanism by Raoul Hafner in 1937 (see Figs. 2-39,  
2-40, 2-41, and 2-43) were major steps toward developing today’s rotor systems. A schematic 
drawing of what may be considered today’s control system is repeated here as Fig. D-1. This 
configuration is a quite adequate schematic from which several key points about control loads 
can be made. 
 
 To begin with, all of the torsional moments (MT) that the blade can produce are 
resisted by a pitch link force (PLL) acting at a moment arm provided by the pitch arm. This 
moment arm is of length (d). That is, 

(1) ( ) T
T

MPLL d M or PLL
d

= =  

where the blade torsional moment is in units of foot-pounds, the moment arm is in units of 
feet, and the pitch link load is in units of pounds.  

 
Fig. D-1. Blade feathering and a modern swashplate gave the pilot complete control. The 

assembly, including swashplate actuators, is frequently referred to as the upper 
controls; cockpit controls are the lower controls. 
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 To help in this discussion, consider a line drawing in top view of the control system as 
shown in Fig. D-2. The blade feathers about an axis positioned at the azimuth angle (ȥ), 
which is measured from the X-axis. The X-axis forms the fore and aft plane of the machine. 
The pitch arm ends (point D) in a ball joint. A pitch link connects point D to the rotating ring 
below in a nearly vertical line going into the paper. The bottom end of the pitch link ties to a 
ball joint that is solidly attached to the rotating ring. The rotating ring has a radius (rPL), so the 
moment arm (d) is approximately equal to rPL times the sine of the angle (ǻ). 
 
 The rotating assembly is held in space by the nonrotating ring. This is the swashplate 
assembly, which is basically a ball bearing. The nonrotating ring is attached to a slider with a 
centering ball. Control of the swashplate is obtained through three actuators located at points 
A, B, and C. The tilt of the swashplate in space depends on the individual lengths of the 
actuators. The bottom of the actuators are attached to some part of the airframe, commonly 
the transmission in a helicopter. Both ends of each actuator end in ball joints. I have 
positioned the swashplate actuators (points A, B, and C) in a quite arbitrary way; that is, they 
need not be inside the pitch link radius (point D) nor located at the azithmuths shown.  

 

 
Fig. D-2. Schematic of the upper controls.
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 Now with the mechanical design layout of Fig. D-2, think about calculating the load in 
a pitch link and the three swashplate control actuators. Assume that the torsional moment at 
the root (MTȥ) of one blade can be represented by a Fourier series of the form 

(2) T 0 1S 1C 2S 2CM M M sin M cos M sin 2 M cos 2 etc.ψ = + ψ + ψ + ψ + ψ +  

where a leading-edge-up pitching moment is a positive moment with the units of foot-pounds. 
Then the associated pitch link load is  

(3) ( )T
0 1S 1C 2S 2C

M 1PLL M M sin M cos M sin 2 M cos 2 etc.
d d

ψ
ψ = = + ψ + ψ + ψ + ψ + . 

Since the pitch link is shown at an advanced angle (ǻ) relative to the blade feathering axis, the 
pitch link will be in tension (which I will assume is the positive sign convention) when the 
torsional moment is positive (i.e., nose up). Now the pitch link load creates a moment about 
the nonrotating X-axis and Y-axis system. For the moment about the Y-axis, this is a nose-
down moment in the amount of  

(4) ( )Y PLM PLL r cosψ= − ψ + ∆ª º¬ ¼  

and the moment about the X-axis is  

(5) ( )X PLM PLL r sinψ= − ψ + ∆ª º¬ ¼ . 

 Let me interject here that there is an important characteristic of rotary wing 
trigonometry that you should be aware of. The pitch link load of Eq. (3) is transferred from 
the rotating system to the nonrotating system by multiplying by a cosine function or a sine 
function as Eqs. (4) and (5) respectively require. Furthermore, to get the total contribution to 
MY and MX of two, three, or four or more blades, additional trigonometry is involved. It is 
possible to complete the trigonometry in longhand as was done in the autogyro era. So let me 
refer you to Gessow and Myers1 who include, near the end of their book, some very handy 
tables that show some quite simple results.  
 
 To continue then, these two moments (MY and MX) in the fixed system are reacted by 
the approximately vertical forces (i.e., in or out of the paper) at actuator points A, B, and C, 
which are at a radius (ract). Figure D-2 shows these actuator points in the simplest geometric 
positions. That is, the moment about the Y-axis must be resisted by an upward force at point 
A and a downward force at point C. This puts the actuator at point A in compression and the 
actuator at point C in tension. A sign convention for actuator loads must now be chosen. Let 
me choose tension as the positive sign convention for all actuator loads. Together these two 
actuators (A and C) produce a couple (i.e., FA = –FC) having the moment 

(6) ( ) ( )A C act C act Y PLF F r 2F r M PLL r cosψ− = − = = − ψ + ∆ª º¬ ¼ . 

In like manner, the moment about the X-axis puts the actuator at point C in compression, 
which is negative load, so you have 
                                                 
1 Alfred Gessow and Garry Myers, Aerodynamics of the Helicopter, Frederick Ungar Publishing Co., New York, 
3rd Printing, 1952, pp. 316–319. 
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(7) ( )B act X PLF r M PLL r sinψ= = − ψ + ∆ª º¬ ¼ . 

 The preceding discussion accounts for fixed-system actuator loads from one blade and 
can be summarized as 

(8) 
( )

( )

PL
C A

act

PL
B PL

act

rF PLL cos F
2r

rF PLL r sin
r

ψ

ψ

§ ·
= ψ + ∆ = −ª º¨ ¸ ¬ ¼
© ¹
§ ·

= − ψ + ∆ª º¨ ¸ ¬ ¼
© ¹

. 

I will show you the actuator loading for three blades after quantifying three important 
torsional moments.  
 
Control Loads: Part II—Three Important Torsional Moments 
 
 In the discussion of control loads for the Raoul Hafner autogyro (see paragraph 2.7.5) 
you have read that he designed the blades so that two key assumptions could be made. These 
assumptions, in his words, were that:   

“The blades produce no [torsional] moments about their longitudinal [spanwise] or pitch change axes 
due to  
(a) aerodynamic forces, because the blades are fitted with aerofoil sections, the centre of pressures of 

which lie always on a straight line coinciding with the pitch change axis; and 
(b) weight and centrifugal forces, because the centre of gravity of each blade lies also in this [pitch 

change] axis.”  

(Hafner made an implied assumption that the line of shear centers of every blade element also 
is coincident with the pitch change axis.2) Following those assumptions here means that blade 
feathering causes a torsional moment. The second torsional moment will come from the 
pitching moment coefficient (CM¼c). The third torsional moment comes from unsteady 
aerodynamics, which was discussed in Appendix B. Let me consider these three moments in 
order and later offer numerical results using the Hafner A.R. III autogyro as an example. 
 
Blade Feathering. Suppose that the blade pitch angle (ș), at any radius station (x = r/R) and 
azimuth position (ȥ), is described simply as  

(9) x, o t 1C 1Cx B sin A cosψθ = θ + θ − ψ − ψ  

then a pitch link is loaded by a moment associated with the blade retention components and 
by the feathering inertia of the blade. That is,  
                                                 
2 The shear center is a point about which a section of a beam twists. It can be found experimentally by applying a 
perpendicular force at successive chordwise points and finding the point where the force only bends the beam 
and does not twist the beam at all. The test would be done by hanging a blade by a clamped root end and 
applying the force at several span and chordwise points. Early rotor blades were built up on a main spar that was 
circular. To the first approximation, the center of the circular spar was the shear center. For a main spar that is a 
C-section to which the rest of the airfoil is attached, it is quite likely that the shear center is, in fact, very near the 
leading edge of the airfoil. Thus, a blade might feather about the pitch change axis, but twist elastically about a 
different axis. 
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(10) ( )
R 2

2
T o 1C 1C 2

r

M K B sin A cos I I dr
tψ θ θ θ

§ ·∂ θ= − θ − ψ − ψ + − − Ω θ¨ ¸∂© ¹

´
µ
¶

. 

The first moment in Eq. (10) comes from the tie rod that Hafner used. In modern designs, 
such a component is called a tension-torsion (T-T) strap assembly. The blade is retained 
against centrifugal force, but the T-T strap assembly has a relatively low torsional rigidity (GJ 
in pound-feet2) and is relatively easy to twist. The second moment in Eq. (10) is due to the 
blade’s resistance to being feathered in a once-per-revolution manner (i.e., 1/rev).  
 
 The second moment in Eq. (10) deserves some discussion. To begin with, the moment 
of inertia in pitch is denoted as (Iș) and has the units of slug-feet2 per foot. This moment can 
be rearranged by assuming that rotor speed times time is azimuth (ȥ = ȍt) and defining (dr = 
Rdx). Thus, the total blade length can create a root torsional moment (Minertia in foot-pounds) 
amounting to  

(11) 
1R 22

x,2 2 2
inertia x,2 2

r 0 0

M I I dr I I Rdx
t

ψ
θ θ θ θ ψ

=

§ ·∂ θ§ ·∂ θ= − − Ω θ = − Ω − Ω θ¨ ¸¨ ¸ ¨ ¸∂ ∂ψ© ¹ © ¹

´´
µµ

¶ ¶
. 

Now make the assumption that the blade has a very high torsional rigidity (GJ) so that no 
elastic twisting (șe) need be accounted for. Furthermore, assume that the pitch moment of 
inertia (Iș) is constant from the blade root to its tip. Then Eq. (9) and its second derivative can 
be substituted into Eq. (11) with the result that  

(12) ( ) ( )

( )

1 2
x,2

inertia x,2
0

12
1C 1C o t 1C 1C0

12
o t0

2
o t

M I R dx

I R B sin A cos x B sin A cos dx

I R x dx

1I R
2

ψ
θ ψ

θ

θ

θ

§ ·∂ θ
= − Ω + θ¨ ¸¨ ¸∂ψ© ¹

= − Ω ψ + ψ + θ + θ − ψ − ψª º¬ ¼

= − Ω θ + θ

§ ·= − Ω θ + θ¨ ¸
© ¹

´
µ
¶

³
³

. 

 Notice immediately from this result that it takes no root-end moment to feather the 
blade at once-per-revolution, which is to say that the torsional natural frequency of the blade 
is exactly 1/rev. Secondly, if the blade has a built-in twist (șt) that is negative (i.e., washout) 
then there is some root-end pitch angle (șo) that leads to a zero root moment, and no pitch link 
force is needed for this equilibrium position.3  
 
 The proceeding discussion leads to the root torsional moment from one blade that a 
pitch link must resist. To summarize then, the first root torsional moment is  

(13) ( ) 2
T o 1C 1C o t

1M K B sin A cos I R
2ψ θ θ

§ ·= − θ − ψ − ψ − Ω θ + θ¨ ¸
© ¹

. 

                                                 
3 Wayne Johnson gives a complete discussion of the blade torsion problem in his book Helicopter Theory, 
Princeton University Press, Princeton, N.J., 1980, pp. 403–408. 
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 A subtlety—not immediately apparent in Eq. (13) or Hafner’s design shown in  
Fig. 2-43—is that the end fittings of a tension-torsion strap can be designed so that the steady 
value of the root torsion moment is zero. Thus, an untwisted T-T strap can place the blade at 
the nominal root-collective-pitch angle (șo) best suited for cruise flight. This can, for an 
unboosted (i.e., no power steering) actuator system, reduce pilot workload.  
 
Airfoil Steady Pitching Moment. You will recall that Cierva sought to improve Autogiro 
performance by using a cambered airfoil. Hafner chose a symmetrical airfoil, which, 
theoretically, has a zero-airfoil pitching moment coefficient. However, in the rotorcraft world, 
there can be a significant difference between theory and a manufactured blade. This real-life 
possibility must admit to a nonzero moment coefficient (CM ¼ c). Therefore, a blade element 
torsional moment can exist of magnitude 

(14) ( )22 2
t M1 4c

dM 1 V x sin c C
dr 2

§ ·= ρ + µ ψ¨ ¸
© ¹

 

and the integration of this moment over the blade length (r = 0 to r = R) gives 

(15) ( )
2 2

2 2
T t M1 4c

1 1M V c RC sin cos 2
2 3 2 2ψ

§ ·µ µ§ ·= ρ + + µ ψ − ψ¨ ¸¨ ¸
© ¹ © ¹

. 

 
Airfoil Unsteady Pitching Moment. When an airfoil is oscillating in angle of attack about 
the 1/4-chord point in an unsteady relative wind, there arises an unsteady pitching moment. 
When this airfoil is one of many in a rotor blade that is rigid and can only flap and feather, 
Johnson4 points out that care must be taken in bookkeeping flapping and feathering. From 
Johnson’s Engineering Note,4 he recommends that the pitching motion about the 1/4-chord 
point of the airfoil (b = c/2 and a = –1/2 ) be calculated as  

(16) 

( )T P T
2

p
2 2

x

c 1 d 1 c dU U U
2 2 dt 2 2 dtdM c

dr 4 c 1 1 d d
2 8 2 dt dt

 θ ½§ ·§ · ª º § · § ·− θ + − + Ωβ¨ ¸¨ ¸ ¨ ¸ ¨ ¸° °« »© ¹© ¹ ¬ ¼ © ¹ © ¹πρ ° °= ® ¾ª º ª θ º§ · § · § ·° °− + − + Ωβ« »¨ ¸ ¨ ¸ ¨ ¸« »° °© ¹ © ¹ © ¹¬ ¼« »¬ ¼¯ ¿

. 

Given that the rotor blade is rotating at constant RPM, derivatives with respect to time can be 
replaced with ȍ d()/dȥ, and then Eq. (16) can be factored and simplified to read as 

(17) ( )
3

p
T P T

xdM c d d 3c d dU U U
dr 16 d d 8 d d

 ½ª ºª º § · § ·πρ Ω θ Ω θ° °= − θ + + + β + + β® ¾« »¨ ¸ ¨ ¸« »ψ ψ ψ ψ¬ ¼ © ¹ © ¹° °¬ ¼¯ ¿
 

from which it follows from the derivatives that 

(18) 
3 2

p T P
T T 2

xdM dU dUc d 3c d d2U U
dr 16 d d d 8 d d

 ½§ ·πρ Ω θ Ω θ β° °= − θ + + + β + +® ¾¨ ¸ψ ψ ψ ψ ψ° °© ¹¯ ¿
 

                                                 
4 Wayne Johnson, Application of Unsteady Airfoil Theory to Rotary Wings, AIAA J. of Aircraft, vol. 17, no. 4, 
April 1980. 
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where 

(19) 

( ) T
T

0 t 1C 1C 1C 1C

2

1C 1C2

2
P

P hp 2

0 1S 1S 1S 1S

dUU R x sin R cos
d
dx B sin A cos B cos A sin
d

d B sin A cos
d

dUd d dU R x cos R x sin cos
d d d d

da cos b sin a sin b co
d

= Ω + µ ψ → = Ω µ ψ
ψ
θθ = θ + θ − ψ − ψ → = − ψ + ψ
ψ

θ = ψ + ψ
ψ

§ ·§ ·β β β= Ω λ − − µβ ψ → = Ω − + µβ ψ − µ ψ¨ ¸¨ ¸ψ ψ ψ ψ© ¹ © ¹

ββ = β − ψ − ψ → = ψ −
ψ

2

1S 1S2

s

d a cos b sin
d

ψ

β = ψ + ψ
ψ

 

 
 The blade-root-end pitching moment is obtained by substituting Eq. (19) into Eq. (18) 
and then integrating over the blade length from r = 0 to r = R. The results are that the root-
blade pitching moment (Mȥ) in foot-pounds varies with blade azimuth as 

(20) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1S 1C 0 1S 1C 0 1S 1C

3 2
t

1S 1C 1S 1C 0 t

1S 1C 1S 1C

1
2

1 3cb A b A 2 a B sin
2 2 8R

c V 3cM a B b A cos
16 8R

3 3a B sin 2 b A cos 2
2 2

ψ

µ ½ª º− − β + − − µβ − + ψ° °« »¬ ¼° °
° °πρ ª º= + + + − − µ θ + θ ψ® ¾« »¬ ¼° °
° °µ µ+ + ψ − − ψ° °
¯ ¿

 

 
 In applying Eq. (16) to the rotor problem, the rotor tip-path-plane coordinate system 
must be used. In the tip-path-plane coordinate system, the fundamental thrust and feathering 
equations, as given by Harris5 for uniform induced velocity, are  

(21) ( )
2 2 3 2 4 3

T
tpp 0 t 1C 1S

2C 1 1 4 1 B a
a 2 4 3 2 9 4 4 32 2 8

§ · § · § · § ·µ µ µ µ µ µ µ= + λ + + − θ + + − θ − + +¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸σ π© ¹ © ¹ © ¹ © ¹
, 

                                                 
5 F. D. Harris, Rotary Wing Aerodynamics–Historical Perspective and Important Issues, National Specialist's 
Meeting on Aerodynamic and Aeroacoustics sponsored by the American Helicopter Society Southwest Region, 
Arlington, Tex., 1987. 
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(22) � �

3 4 5

tpp 0 t

1C 1S 2 4

8 322 2
2 3 45 12

B a
3 51

2 24

§ · § · § ·P P P P
P � O � � T � P � T¨ ¸ ¨ ¸ ¨ ¸S© ¹ © ¹ © ¹�  

P P
� �

, 

(23) � �

3

0

1S 1C 2 4

4 41
3 15

b A
1

2 24

§ ·P P
� E¨ ¸S© ¹�  
P P

� �
. 

 
Control Loads: Part III—A Numerical Example 
 
 A review of Part II shows that blade-root torsional moments include—as a 
minimum—steady terms, once-per-revolution terms (i.e., sin ȥ and cos ȥ), and two-per-
revolution terms (i.e., sin 2ȥ and cos 2ȥ). Let me use the Hafner A.R. III autogyro (see 
sections 2.7.4 and 2.75) as a configuration to obtain some numerical and graphical results. 
Table D-1 provides the necessary configuration data. Given these aircraft properties, the three 
root torsional moments for one blade are: 
 

1. Blade feathering 

 � �M 3.529 1.497 3.676sin 2.110cos\  � � � \ � \ . 

2. Airfoil steady pitching moment, CM 1/4c = – 0.005 (as manufactured) 

 M 1.350 1.150sin 0.095cos 2\  � � \ � \ . 

3. Airfoil unsteady pitching moment 

 M 0.2779 0.1603sin 0.3243cos 0.2337sin 2 0.1341cos 2\  � � \ � \ � \ � \ . 

The total of these three contributors to root torsional moments for one blade is: 

(24) TTotal M 6.6539 2.3657sin 1.7857 cos 0.2337sin 2 0.2291cos 2\  � � \ � \ � \ � \ . 

Then, using Eq. (1) with a pitch link offset (d) of 0.75 feet, the results of the pitch link load of 
one blade is shown in Fig. D-3. 
 

 Now consider a three-blade rotor system where each blade has the root torsional 
moment given by Eq. (24), which sets values in Eq. (2) for M0, M1S, M1C, M2S, and M2C. Let 
the blades be numbered 1, 2, and 3 with an azimuthal spacing of 120 degrees, and let blade 1 
be the master blade. Then blade 2 is located at an azimuthal angle of ȥ + 2ʌ/3, and blade 3 is 
located at ȥ + 4ʌ/3. The pitch link load for blade 1 will be 

(25) > @0 1S 1C 2S 2C
1Blade 1 PLL M M sin M cos M sin 2 M cos 2
d\  � \ � \ � \ � \ . 
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Fig. D-3. Steady, 1/rev, 2/rev, etc., torsional moments create pitch link loads. 

 
In a similar manner, the pitch link load of blade 2 is keyed to the azimuth angle of the master 
blade by replacing ȥ with ȥ + 2ʌ/3 so that 

(26) 
( ) ( )

( ) ( )
0 1S 1C

2S 2C

M M sin 2 3 M cos 2 31Blade 2 PLL
d M sin 2 2 3 M cos 2 2 3ψ

+ ψ + π + ψ + πª º
= « »

+ ψ + π + ψ + π« »¬ ¼
 

and for blade 3 

(27) 
( ) ( )

( ) ( )
0 1S 1C

2S 2C

M M sin 4 3 M cos 4 31Blade 3 PLL
d M sin 2 4 3 M cos 2 4 3ψ

+ ψ + π + ψ + πª º
= « »

+ ψ + π + ψ + π« »¬ ¼
. 

 The three pitch link loads, which are in the rotating system, transfer their loads to the 
nonrotating system as moments about the Y-axis and X-axis according to Eqs. (4) and (5). 
Thus, 

(28) 
( ) ( )
( )

Y PL PL

PL

M Blade 1 PLL r cos Blade 2 PLL r cos 2 / 3

Blade 3 PLL r cos 4 / 3
ψ ψ

ψ

= − ψ + ∆ − ψ + π + ∆ª º ª º¬ ¼ ¬ ¼
− ψ + π + ∆ª º¬ ¼

 

and the moment about the X-axis is  

(29) 
( ) ( )
( )

X PL PL

PL

M Blade 1 PLL r sin Blade 2 PLL r sin 2 / 3

Blade 3 PLL r sin 4 / 3
ψ ψ

ψ

= − ψ + ∆ − ψ + π + ∆ª º ª º¬ ¼ ¬ ¼
− ψ + π + ∆ª º¬ ¼

. 

and the results are shown in Fig. D-4.  
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Fig. D-4. For a three-bladed rotor, once-per-rev pitch link loads become a steady 
moment in the fixed system. Two-per-rev loads become three-per-rev moments. 

 
Table D-1. Approximate Hafner A.R. III Autogyro Properties 

Parameter Symbol Value Units Comments 
Flight speed V 153 ft/sec 115 mph 
Density ȡ 0.002378 slug/ft3 Sea level standard 
Tip speed Vt 464 ft/sec 270 rpm 
Thrust T 900 lbs Gross weight 
Radius R 16.41 ft A = 846 ft2 
Chord c 0.4071 ft  
No. of blades b 3 nd  
Solidity ı 0.02369 nd  
Advance ratio µtpp 0.3305 nd Tip-path plane 
Inflow ratio Ȝtpp +0.032 nd Tip-path plane 
Collective pitch ș0 0.06671 rad  
Blade twist șt 0.00 rad  
Longitudinal flapping a1S 0.00 rad Zero pitching moment 
Lateral flapping b1S 0.00 rad Zero rolling moment 
T-T strap stiffness Kș 52.9 ft-lbs/rad Hafner data 
Torsional 2nd inertia Iș 0.00171 slug-ft2 Harris estimate 
Pitch link moment arm d 0.65 ft Fig. 2-41 
Pitch link lead angle ǻ 60 deg Fig. 2-41 
Pitch link radius rPL 0.75 ft Fig. 2-41 
Actuator radius ract 0.75 ft Fig. 2-41 
Actuator locations    Fig. D-2 
Airfoil properties     

Lift-curve slope a 5.73 per radian  
Pitching moment CM 1/4c    0.00 nd Symmetrical airfoil 
Pitching moment CM 1/4c –0.005 nd As manufactured 

Calculations     
Thrust coefficient CT 0.002078 nd Eq. (21), T = 900 lbs 

Longitudinal feathering a1S + B1C 0.06949 rad Eq. (22) 
Lateral feathering b1S –A1C 0.03988 rad Eq. (23), ȕo = 5.45 deg 
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 Notice in Fig. D-4 that there are very little vibratory moments in the swashplate 
nonrotating system. What little there is comes from the 2/rev unsteady pitching moment and 
from any 2/rev caused by manufactured blades not having perfectly “symmetrical” airfoils. In 
Hafner’s rotor control system, the pilot had direct control of the swashplate (he called it a 
spider) with a rather long control stick. The mechanical advantage offered by the long control 
stick would have reduced pilot workload to the bare minimum.  
 
 Recall that Hafner told the Royal Aeronautical Society members that “the variation of 
incidence is achieved by a separate control linkage which enables the rotor to be controlled by 
light loads on the control column, which, as is shown in the mathematical analysis of control 
and as has been proved in flight, is free from all parasite loads and vibrations.” I suggest—
based on Fig. D-4—that Hafner was absolutely correct in his description. 
 
 The final step, from the swashplate moments of Fig. D-4 to the actuator loads at points 
A, B, and C shown on Fig. D-2, is rather simple. By following Eqs. (6) and (7) you have the 
loads as shown in Fig. D-5. 
 
 It is, of course, incomplete to neglect the steady actuator loads that arise because of the 
steady pitch link loads. These steady pitch link loads appear in Eqs. (25), (26), and (27) as 

(30) [ ]0
1Steady PLL M
d

= . 
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Fig. D-5. Actuator loads for a Hafner-type three-bladed rotor system. 
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Since there are three blades, the steady pitch link loads act together to try and raise or depress 
the swashplate assembly up or down the rotor shaft (see Fig. D-1). (Because the pitch links 
are spaced in 120-degree-azimuth increments, their steady forces create no moment about 
either the nonrotating X-axis or Y-axis.) Any swashplate movement up or down the rotor 
shaft is resisted by the collective force of the three actuators. Therefore, there is a total 
vertical force (FV) with three blades of  

(31) [ ]V 0
3F M
d

= −  

which is shared among the three actuators. Fig. D-2 shows that the vertical force would be 
split between actuators at points A and C. The actuator at point B would support none of the 
vertical force (FV)—with the particular actuator locations I chose.  
 
 You will recall that Hafner gave the pilot a “lift lever” to collectively set the blades to 
a desired pitch angle (ș0) and resist the vertical force (FV). That lever became the collective 
pitch control in modern helicopters.  
 
Closing Remarks 
 
 In Hafner’s paper about his gyroplane (see reference 74), he does not address the more 
general problem of blade element torsional moments that, when summed over the  length of 
the blade, can create pitch link loads at all harmonics. To alert you to how complicated the 
blade torsion problem can be, consider Fig. D-6, which contains only a few of the multitude 
of terms to be included.  
 
 Because the blade is flexible, airfoil forces and moments that might be reasonably 
located at the 1/4-chord point of a blade element are, in fact, displaced from the feathering 
axis both vertically (Z) and inplane (X) because of blade flapping, lead lagging, and bending, 
both inplane and out of plane. Furthermore, the blade element center of gravity can contribute 
torsional moments due to mass times acceleration forces. To top it off, the shear center of a 
blade element is most likely not located at the blade element center of gravity. Unfortunately, 
it is not within the scope of this volume to quantify all the terms that contribute to pitch link 
and actuator loads. However, Fig. D-6 offers a hint as to the complexity inherent in the blade 
torsion problem.  
 
 When you compare Fig. D-6 to Hafner’s assumptions, which were, to repeat,  
 

“The blades produce no [torsional] moments about their longitudinal [spanwise] or pitch change axes 
due to  

(a) aerodynamic forces, because the blades are fitted with aerofoil sections, the centre of pressures of 
which lie always on a straight line coinciding with the pitch change axis; and 

(b) weight and centrifugal forces, because the centre of gravity of each blade lies also in this [pitch 
change] axis.” 
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Fig. D-6. A few force and moment terms that must be included to accurately account for 

elastic torsional deflection, blade element pitch angle, blade-root-end moments, 
pitch link loads, and actuator loads.  

 
 
you can appreciate that he made every effort to minimize moments assuming a blade did not 
bend flapwise (Z) or chordwise (X). Furthermore, he chose a symmetrical airfoil so that 
aerodynamic pitching moment (dM/dr) could be assumed zero.  
 
 Analyses that could capture all of the aerodynamics, dynamics, and mechanical 
features that contribute to accurate prediction of control loads throughout the flight envelope 
of any rotorcraft only began to emerge in the 21st century as I will discuss in Volume II—
Helicopters. This capability has come some 70 years after Raoul Hafner’s A.R. III was 
publically demonstrated at the Royal Aeronautical Society garden party on May 9th, 1937. 
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APPENDIX E 
 

AUTOGYRO ERA ROTOR TRIM AND PERFORMANCE EQUATIONS 
 
 
 All through the 1930s, the theory of how to calculate rotor trim and performance 
steadily improved. By 1937, Wheatley, at the N.A.C.A. in the United States, had published 
his last rotorcraft contribution, and Lock, Beavan, Owen, and others in Great Britain had the 
prospect of World War II to face. Their ground-breaking work was carried on by a translation 
of work by G. Sissingh,1 and by F. J. Bailey, Jr. who worked at the N.A.C.A Langley 
Research Center.2,3 Bailey’s NACA Report No. 716 is particularly interesting because he 
includes a sentence in the introduction stating:  

“The form in which these expressions have been presented is unsatisfactory for practical 
engineering calculations, chiefly because the expressions have not been reduced to terms of the 
two basic parameters: inflow velocity and blade pitch.” 

The “expressions” Bailey was referring to were those that Wheatley had published in NACA 
Reports No. 487 and 591. As to being “unsatisfactory,” I would have to agree because several 
times early in my apprenticeship, I made all the computations Wheatley required with a slide 
rule, pencil, and paper. One could not be sure of the answers without a parallel check by a 
fellow sitting close by.  
 
 In early 2007, Dr. William Warmbrodt, Chief of the Aeromechanics Branch at NASA 
Ames Research Center, put me to work studying rotor performance at high advance ratio (at 
least up to µ = 1). That work, published as NASA/CR–2008-215370, dealt with a correlation 
of the most advanced rotor trim and performance theories with available experimental data. 
During that effort, I began to wonder if we were—today—really doing any better than what 
Wheatley, Bailey, and others had done in their era. To pursue that evaluation, I carefully re-
derived all of the pioneer’s equations using MathCad software and then performed a check by 
creating an EXCEL® spreadsheet to batch process any group of inputs corresponding to 
experimental data. Of course, I compared my developed equations to all the earlier work and 
found, not surprisingly, some differences.4 These differences were primarily in how higher 
harmonic flapping terms are computed and in my including all powers of advance ratio.  
 

                                                 
1 G. Sissingh, Contribution to the Aerodynamics of Rotating-Wing Aircraft, NACA Report No. 921, 1937. 
2 F. J. Bailey Jr., A Study of the Torque Equilibrium of an Autogiro Rotor, NACA Report No. 623, 1938. 
3 F. J. Bailey Jr., A Simplified Theoretical Method of Determining the Characteristics of a Lifting Rotor in For-
ward Flight, NACA Report No. 716, March 17, 1941. 
4 In 2006, Ray Prouty told me this story that John Wheatley told to him about NACA Report No. 487. Both Ray 
and John worked at Lockheed then. As the story goes, somebody at the Bureau of Standards had derived some of 
Wheatley’s equations and found an “error.” (As Ray tells it, the error was a numerical coefficient buried deep 
within one equation and that John thought the fellow had too much time on his hands). When this somebody 
brought the matter to Wheatley’s attention by letter, John replied that he had re-derived that portion of his work 
twice and got different values of the coefficient himself. So he, John, was quite prepared to leave the published 
work untouched particularly since it was in widespread use. 
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 To provide some progress after seven decades, I included elastic twisting and a simple 
nonuniform induced velocity function attributable to Glauert (see R&M 1111). The basic 
assumptions, parameter, symbols, and equations I used parallel Wheatley and Bailey. My 
definitions and symbols are:   

      θ θo .x θt .B1c sin( )ψ .A1c cos ( )ψ ..x θe1s sin( )ψ ..x θe1c cos ( )ψ  

     β βo .a1s cos ( )ψ .b1s sin( )ψ .a2s cos ( ).2 ψ .b2s sin( ).2 ψ  
 UT x .µ sin( )ψ  

 UP λs ..λ1 x cos( )ψ .x dβdψ ..µ β cos ( )ψ  

There are a few key points in the above definitions worth noting.  
 
 First, in the blade angle (ș) equation, all of the elastic blade twisting is included as a 
linear variation between the root and tip and based on the tip deflections (șe1s) and (șe1c), 
which only accounts for once-per-revolution twisting motion. The second harmonic elastic 
twisting is not negligible, but I was not prepared to carry the derivations to that level. The 
steady elastic twist can be included as part of the geometric twist (șt).  
 
 Second, in the blade flapping (ȕ) equation, the expressions for the higher harmonic 
flapping coefficients (a2s and b2s) I used differ substantially from what our pioneers used. 
Lock and Wheatley, for example, assumed a Fourier-series solution to the blade flapping 
equation. This approach leads to inner harmonic coupling, which requires a solution matrix of 
some magnitude. I, instead, took a page each out of books by Bramwell5 and Johnson6 that 
say the net work over a cycle must be zero. Adhering to this principle allows all higher 
harmonic flapping to be directly expressed in the primary parameters.  
 
 Third, in the out-of-plane velocity (UP) equation, I included a triangular inflow 
distribution of induced velocity (Ȝ1) in the fore and aft plane.  
 
 Finally, I followed Bailey’s approach of collecting intermediate steps and output 
parameters in terms of the inflow ratio (Ȝs). This approach leads to a quadratic equation in 
inflow ratio, which, when solved, defines the rotor system angle of attack for autorotation. 
This is particularly handy for autogyro performance as Bailey suggested. 
 
 The equations and numerical example which follow should allow you to create any 
computer code you like—then you can take the same trip back in time that I did. I have laid 
out what follows in four parts, which are: 
 
 Part I. The fundamental equations that have been integrated 
 
 Part II. The input parameters (including values for the sample case) 
 
 Part III. The order in which parameters are calculated, which serves as an outline 
 
 Part IV. The several pages of equations that perform the calculations 
                                                 
5 A. R. S. Bramwell, Helicopter Dynamics, John Wiley & Sons, New York, 1976. 
6 Wayne Johnson, Helicopter Theory, Princeton University Press, New Jersey, 1980. 
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Part I. The fundamental equations that have been integrated 
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Part IV. The several pages of equations that perform the calculations 
 
 These equations have been copied directly from MathCad and pasted in this document. 
This has, I hope, avoided any typographical errors that might have occurred were I to have 
entered the equations in some equation editor software. MathCad uses := for equations to be 
calculated and entry values. It uses a conventional =  for computed values of an equation. A 
number of intermediate calculations are made before the final parameter is calculated as you 
can see from the calculation of (b2s) below. The final calculation of a parameter is in large 
type, as you see for (b2s) below. 
 
1. Calculate βo, a1s, b1s, a2s, and b2s to use in all calculations 
 
M0 .B4 .1

6
µ4 B4 ..1

2
B2 µ2 .7

24
µ4 ...2

3
B3 µ .88

.315 π
µ4 ..2

3
B3 µ .64

.45 π
µ4  

=M0 0.542330515448621  
 
M1 ..8

.15 π
µ3 B4 ..1

2
B2 µ2 .7

24
µ4 ...2

3
B3 µ .88

.315 π
µ4 ..2 B2 µ .1

2
µ3  

=M1 0.421327574886569  
 
M2 ...1

2
B2 µ2 .1

12
µ4 B4 ..1

2
B2 µ2 .7

24
µ4 ...2

3
B3 µ .88

.315 π
µ4 ..8

3
B3 µ .32

.45 π
µ4  

=M2 0.558644204651302  
 
M3 ...1

3
B3 µ2 .32

.315 π
µ5 B4 ..1

2
B2 µ2 .7

24
µ4 ...2

3
B3 µ .88

.315 π
µ4 ..2 B4 µ .1

12
µ5  

=M3 0.402978977618712  
 
M4 ...2

3
B3 µ .88

.315 π
µ4 B4 ..3

2
B2 µ2 .5

24
µ4 ...2

3
B3 µ .16

.63 π
µ4 B4 ..1

2
B2 µ2 .7

24
µ4  

=M4 0.294929302420598  
 
M5 .B4 ..1

2
B2 µ2 .7

24
µ4 ..1

2
B4 µ .1

32
µ5 ...2

3
B3 µ .88

.315 π
µ4 .4

5
B5 .B3 µ2 .128

.525 π
µ5  

=M5 0.22518921202764  
 
c1 M1

M0     
=c1 0.776883400223281  

k1
.M2 θo .M3 θt .M4 B1c .M5 θe1s

M0      
=k1 0.032925890146846  

 
  

b2s .c1 λs k1 =b2s 0.043025374349748 
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c2

..2 B2 µ .1
2

µ3 ...2
3

B3 µ .64
.45 π

µ4 c1

B4 ..1
2

B2 µ2 .7
24

µ4
 

=c2 1.920804850449535  
 

k2
+

......8
3

B3 µ .32
.45 π

µ4 θo ...2 B4 µ .1
12

µ5 θt .B4 ..3
2

B2 µ2 .5
24

µ4 B1c ...2
3

B3 µ .64
.45 π

µ4 k1

..4
5

B5 .B3 µ2 .128
.525 π

µ5 θe1s

B4 ..1
2

B2 µ2 .7
24

µ4
 

=k2 0.111195718630495  
 

 a1s .c2 λs k2  =a1s 0.136166181686339 

 c3 .γ
2

.B3 .2
.3 π

µ3 1
3

...B2 µ2 .1
2

µ4 1
8

c1 ..2
.15 π

µ4 c2  

=c3 3.02348303009608  
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2
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8

µ4 θo
4
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6
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8

k1 ..B3 µ .4
.15 π

µ4 B1c
3

..2
.15 π

µ4 k2 ...1
4

B4 µ .1
96

µ5 θe1s

 

=k3 0.108608361537353  
 

 βo .c3 λs k3  =βo 0.147913640928602  
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3
B3 µ .32

.315 π
µ4 .4

5
B5 ..1

3
B3 µ2 .64

.1575 π
µ5  

=N3 0.017063134116859  
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c4
.N1 c3

N0
 

=c4 0.541845641162371  
 
k4

.N1 ( )k3 .( )N2 λ1 .( )N3 θe1c
N0

 

=k4 0.020524325285051  
 

 a2s .c4 λs k4  =a2s 0.027568318620162 
 

c5

...4
3

B3 µ .16
.45 π

µ4 c3 ...2
3

B3 µ .16
.45 π

µ4 c4

B4 ..1
2

B2 µ2 .1
24

µ4
 

=c5 2.59873326749403  
 

k5
+

......4
3

B3 µ .16
.45 π

µ4 k3 .B4 .1
24

µ4 λ1 .B4 ..1
2

B2 µ2 .1
24

µ4 A1c

...2
3

B3 µ .16
.45 π

µ4 k4 ..4
5

B5 ..1
3

B3 µ2 .64
.1575 π

µ5 θe1c

B4 ..1
2

B2 µ2 .1
24

µ4
 

=k5 0.103925113983945  
 

 b1s .c5 λs k5 =b1s 0.137708646461368  
 
 
2. Calculate Thrust Coefficient, CT 
 
T1 .1

2
B2 .1

4
µ2 ...1

4
B µ2 .8

.15 π
µ3 c1 ..1

8
µ3 c2 

=T1 0.628228860960388  
 
T2

+

.....1
3

B3 ..1
2

B µ2 .4
.9 π

µ3 θo ..1
4

B4 ..1
4

B2 µ2 .1
32

µ4 θt ...1
2

B2 µ .1
8

µ3 B1c

...1
4

B µ2 .8
.15 π

µ3 k1 ..1
8

µ3 k2 ...1
3

B3 µ .4
.45 π

µ4 θe1s

 

=T2 0.022545430221145  

 

CT ..σ a
2

( ).T1 λs T2
 

=CT 0.008587925651381  
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3. Calculate Accelerating Torque, CQa  
 
A1 .1

2
B2 .1

4
µ2 ...1

2
B2 µ .3

8
µ3 c2 ..8

.5 π
µ3 c1 

=A1 0.597723756350029  
 
A2

+

.....1
3

B3 .2
.9 π

µ3 θo ..1
4

B4 .1
32

µ4 θt ...1
2

B2 µ .3
8

µ3 k2

..8
.5 π

µ3 k1 ...1
4

B2 µ .1
16

µ3 B1c ...1
6

B3 µ .4
.45 π

µ4 θe1s

 

=A2 0.026722839863594  
 
A3 ....1

8
B2 µ2 .1

16
µ4 c1 θo ...2

.15 π
µ4 c2 θo 

=A3 0.000449019030451  
 
A4 ....1

8
B2 µ2 .1

16
µ4 k1 θo ...2

.15 π
µ4 k2 θo 

=A4 0.000008964376402  
 
A5 ....1

12
B3 µ2 .32

.315 π
µ5 c1 θt ...1

48
µ5 c2 θt 

=A5 0.000314241300393  
 
A6 ....1

12
B3 µ2 .32

.315 π
µ5 k1 θt ...1

48
µ5 k2 θt 

=A6 0.000011497770935  
 
A7 ..1

8
B4 ..3

16
B2 µ2 .29

192
µ4 c22 ....1

6
B3 µ .56

.45 π
µ4 c1 c2 

=A7 0.29260799957433  
 
A8

+

......1
4

B4 ..3
8

B2 µ2 .29
96

µ4 c2 k2 ...1
8

B4 ..1
16

B2 µ2 .7
192

µ4 B1c c2

...1
6

B3 µ .56
.45 π

µ4 ( ).c1 k2 .k1 c2 ...1
10

B5 ..1
24

B3 µ2 .92
.1575 π

µ5 θe1s c2

 

=A8 0.034827654259352  
 
A9

+

.....1
8

B4 ..3
16

B2 µ2 .29
192

µ4 k22 ...1
8

B4 ..1
16

B2 µ2 .7
192

µ4 B1c k2

....1
6

B3 µ .56
.45 π

µ4 k1 k2 ...1
10

B5 ..1
24

B3 µ2 .92
.1575 π

µ5 θe1s k2

 

=A9 0.001035569893085  
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A10 ..1
8

B4 ..1
16

B2 µ2 .1
192

µ4 c52 ....1
3

B3 µ .4
.45 π

µ4 c3 c5 ....1
6

B3 µ .4
.45 π

µ4 c4 c5 

=A10 0.933498451064171  
 
A11

+

...+

......1
4

B4 ..1
8

B2 µ2 .1
96

µ4 c5 k5 ...1
3

B3 µ .4
.45 π

µ4 ( ).c3 k5 .k3 c5

0 ...1
6

B3 µ .4
.45 π

µ4 ( ).c4 k5 .k4 c5 ...1
4

B4 .1
96

µ4 λ1 c5

0 ...1
8

B4 ..1
16

B2 µ2 .1
192

µ4 A1c c5 ...1
10

B5 ..1
24

B3 µ2 .8
.1575 π

µ5 θe1c c5

 

=A11 0.073120778920482  
 
A12

+

...+

.....1
8

B4 ..1
16

B2 µ2 .1
192

µ4 k52 ....1
3

B3 µ .4
.45 π

µ4 k3 k5 ....1
6

B3 µ .4
.45 π

µ4 k4 k5

...1
4

B4 .1
96

µ4 λ1 k5 ...1
8

B4 ..1
16

B2 µ2 .1
192

µ4 A1c k5

...1
10

B5 ..1
24

B3 µ2 .8
.1575 π

µ5 θe1c k5

 

=A12 0.001431248082753  
 
A13 ...1

4
B2 µ2 .1

16
µ4 c32 ....1

4
B2 µ2 .1

6
µ4 c4 c3 

=A13 0.793198255860955  
 
A14

+

.......1
2

B2 µ2 .1
8

µ4 c3 k3 ...1
4

B2 µ2 .1
6

µ4 ( ).c4 k3 .k4 c3

....1
6

B3 µ .2
.45 π

µ4 A1c c3 ....1
3

B3 µ .8
.45 π

µ4 λ1 c3 ....1
8

B4 µ .1
192

µ5 θe1c c3

 

=A14 0.062801733980362  
 
A15

+

......1
4

B2 µ2 .1
16

µ4 k32 ....1
4

B2 µ2 .1
6

µ4 k4 k3

....1
6

B3 µ .2
.45 π

µ4 A1c k3 ....1
3

B3 µ .8
.45 π

µ4 λ1 k3 ....1
8

B4 µ .1
192

µ5 θe1c k3

 

=A15 0.00123242642384  
 
A16 ....1

6
B3 µ .88

.315 π
µ4 λ1 c4

      
=A16 0.00033614537052  

 
A17

+

.....1
8

B4 .1
64

µ4 λ12 ...1
8

B4 .1
192

µ4 A1c λ1 ....1
6

B3 µ .88
.315 π

µ4 λ1 k4

...1
10

B5 .4
.525 π

µ5 θe1c λ1

 

=A17 0.000003794843514  
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A18 ..1
2

B4 ..1
8

B2 µ2 .25
192

µ4 c42 

=A18 0.137700818005821  
 
A19 ..B4 ..1

4
B2 µ2 .25

96
µ4 c4 k4 ....1

12
B3 µ .2

.45 π
µ4 A1c c4 ....1

16
B4 µ .5

768
µ5 θe1c c4 

=A19 0.010547237964583  
 
A20 ..1

2
B4 ..1

8
B2 µ2 .25

192
µ4 k42 ....1

12
B3 µ .2

.45 π
µ4 A1c k4 ....1

16
B4 µ .5

768
µ5 θe1c k4 

=A20 0.000201943073982  
 
A2S .A18 λs2 .A19 λs A20     =A2S 0.000362328605764  
A21 ..1

2
B4 ..1

8
B2 µ2 .59

192
µ4 c12 

=A21 0.257410609783993  
 
A22 ..B4 ..1

4
B2 µ2 .59

96
µ4 c1 k1 ....1

12
B3 µ .8

.45 π
µ4 B1c c1 ....1

16
B4 µ .23

768
µ5 θe1s c1 

=A22 0.022437551769387  
 
A23 ..1

2
B4 ..1

8
B2 µ2 .59

192
µ4 k12 ....1

12
B3 µ .8

.45 π
µ4 B1c k1 ....1

16
B4 µ .23

768
µ5 θe1s k1 

=A23 0.00048857866363  
 
A24 A13 A1 A7 A21 A18 A10                             =A24 1.145142988510958  
 
A25 A3 A14 A11 A8 A5 A22 A2 A16 A19     =A25 0.083745315816218  
 
A26 A9 A15 A20 A4 A17 A6 A12 A23             =A26 0.001526008522803  
 

 
CQa ..1

.σ a
2

.A24 λs2 .A25 λs A26
 

 
=CQa 0.000785247608898  

 
4. Calculate Decelerating Torque, CQd (per Bailey NACA TR 716)  
 
D0 1 µ2 .1

8
µ4

     
=D0 1.4599875  

 
CQCdo ..σ Cdo

8
( )D0

   
=CQCdo 0.00021374217  
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D1 1
3

..1
8

µ2 c1
     

=D1 0.285749225069657  

D2 .1
4

.1
4

µ2 θo .1
5

.1
6

µ2 θt ..1
8

µ2 k1 ..1
3

µ B1c ..1
4

µ θe1s
     

=D2 0.010510389934695  

 
CQδ1 ..σ δ1

2
( ).D1 λs D2

  
=CQδ1 0.000014994424883  

 
D3 1

2
.1

4
µ2 ..1

2
µ .3

8
µ3 c2 ..8

.5 π
µ3 c1 

=D3 0.667005604681578  
 
D4

+

....2
3

.4
.9 π

µ3 θo ..1
2

µ .3
8

µ3 k2 .1
2

.1
16

µ4 θt ..8
.5 π

µ3 k1 ..1
2

µ .1
8

µ3 B1c

..1
3

µ .8
.45 π

µ4 θe1s

 

=D4 0.040477649727351  
 
D5 ...4

.15 π
µ4 c2 θo ...1

4
µ2 .1

8
µ4 c1 θo 

=D5 0.001084551607357  
 
D6

+

....1
4

.1
4

µ2 .1
32

µ4 θo2 ...1
4

µ2 .1
8

µ4 k1 θo ...2
3

µ .8
.45 π

µ4 B1c θo

..2
5

.1
3

µ2 .16
.225 π

µ5 θt θo ...4
.15 π

µ4 k2 θo ...1
2

µ .1
48

µ5 θe1s θo

 

=D6 0.000403020328445  
 
D7 ...1

6
µ2 .64

.315 π
µ5 c1 θt ...1

24
µ5 c2 θt 

=D7 0.000725182624363  
 
D8

+

....1
6

.1
8

µ2 .1
192

µ6 θt2 ...1
6

µ2 .64
.315 π

µ5 k1 θt ...1
24

µ5 k2 θt

0 ...1
2

µ .1
48

µ5 B1c θt ...2
5

µ .16
.525 π

µ6 θe1s θt

 

=D8 0.000033390251961  
 
D9 ...1

6
µ .56

.45 π
µ4 c1 c2 .1

8
.3

16
µ2 .29

192
µ4 c22 

=D9 0.350339463220244  
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D10

+

.....1
4

.3
8

µ2 .29
96

µ4 k2 c2 ...1
6

µ .56
.45 π

µ4 k1 c2 ...1
6

µ .56
.45 π

µ4 c1 k2

..1
4

.1
8

µ2 .7
96

µ4 B1c c2 ..1
5

.1
12

µ2 .184
.1575 π

µ5 θe1s c2

 

=D10 0.037179490667527  
 
D11

+

....1
8

.3
16

µ2 .29
192

µ4 k22 ..1
4

.1
8

µ2 .7
96

µ4 B1c k2

...1
6

µ .56
.45 π

µ4 k1 k2 ..1
5

.1
12

µ2 .184
.1575 π

µ5 θe1s k2

 

=D11 0.000978244279056  
 
D12 .1

8
.1

16
µ2 .1

192
µ4 c52 ...1

6
µ .4

.45 π
µ4 c4 c5 ...1

3
µ .4

.45 π
µ4 c3 c5 

=D12 0.998889293401722  
 
D13

+

...+

.....1
4

.1
8

µ2 .1
96

µ4 k5 c5 ...1
6

µ .4
.45 π

µ4 k4 c5 ...1
6

µ .4
.45 π

µ4 c4 k5

..1
4

.1
96

µ4 λ1 c5 ..1
4

.1
8

µ2 .1
96

µ4 A1c c5 ..µ
3

.4
.45 π

µ4 k3 c5

0 ..µ
3

.4
.45 π

µ4 c3 k5 ..1
5

.1
12

µ2 .16
.1575 π

µ5 θe1c c5

 

=D13 0.079775516833123  
 
D14

+

....1
8

.1
16

µ2 .1
192

µ4 k52 ..1
4

.1
96

µ4 λ1 k5 ...1
3

µ .4
.45 π

µ4 k3 k5 ...1
6

µ .4
.45 π

µ4 k4 k5

0 ..1
4

.1
8

µ2 .1
96

µ4 A1c k5 ..1
5

.1
12

µ2 .16
.1575 π

µ5 θe1c k5

 

=D14 0.001592798981  
 
D15 ..1

4
µ2 .1

16
µ4 c32 ...1

4
µ2 .1

6
µ4 c4 c3 

=D15 0.847519465037623  
 
D16

+

......1
2

µ2 .1
8

µ4 k3 c3 ...1
3

µ .8
.45 π

µ4 λ1 c3 ...1
3

µ .4
.45 π

µ4 A1c c3

0 ...1
4

µ2 .1
6

µ4 k4 c3 ...1
4

µ2 .1
6

µ4 c4 k3 ...1
4

µ .1
96

µ5 θe1c c3

 

=D16 0.068810250513425  
 
D17

+

.....1
4

µ2 .1
16

µ4 k32 ..µ
3

.4
.45 π

µ4 A1c k3 ...1
4

µ2 .1
6

µ4 k4 k3

0 ..µ
3

.8
.45 π

µ4 λ1 k3 ...1
4

µ .1
96

µ5 θe1c k3

 

=D17 0.001378167972134  
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D18 .1
2

.1
8

µ2 .25
192

µ4 c42 

=D18 0.155602427515047  
 
D19

+

......1
6

µ .88
.315 π

µ4 λ1 c4 ...1
6

µ .4
.45 π

µ4 A1c c4

..1 .1
4

µ2 .25
96

µ4 k4 c4 ...1
8

µ .5
384

µ5 θe1c c4

 

=D19 0.011643891219549  
 

D20

+

....1
2

.1
8

µ2 .25
192

µ4 k42 ...1
6

µ .88
.315 π

µ4 λ1 k4

...1
6

µ .4
.45 π

µ4 A1c k4 ...1
8

µ .5
384

µ5 θe1c k4

 

=D20 0.000217797757309  
 
D21 .1

2
.1

8
µ2 .59

192
µ4 c12 

=D21 0.294211014530486  
 
D22 ...1

6
µ .16

.45 π
µ4 B1c c1 ..1 .1

4
µ2 .59

96
µ4 k1 c1 ...1

8
µ .23

384
µ5 θe1s c1 

=D22 0.026315483963901  
 
D23 .1

2
.1

8
µ2 .59

192
µ4 k12 ...1

6
µ .16

.45 π
µ4 B1c k1 ...1

8
µ .23

384
µ5 θe1s k1 

=D23 0.000586831067933  
 
D24 .1

8
.1

16
µ2 .1

192
µ4 A1c2 ..1

4
.1

96
µ4 λ1 A1c ..1

5
.1

12
µ2 .16

.1575 π
µ5 θe1c A1c 

=D24 0.000005944658361  
 
D25 .1

8
.3

16
µ2 .5

192
µ4 B1c2 ..1

5
.1

4
µ2 .32

.525 π
µ5 θe1s B1c 

=D25 0.000062145391563  
 
D26

+

....1
8

.1
64

µ4 λ12 ..1
5

.8
.525 π

µ5 θe1c λ1

.1
12

.1
32

µ2 .1
1536

µ6 θe1c2 .1
12

.3
32

µ2 .7
1536

µ6 θe1s2

 

=D26 0.00005013802977  
 
D27 D21 D18 D15 D3 D12 D9          =D27 1.315788681583257  
 
D28 D5 D16 D22 D19 D4 D13 D10 D7          =D28 0.104291880275636  
 
D29 D20 D17 D26 D6 D11 D8 D23 D25 D14 D24        =D29 0.00205610025161  
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CQδ2 ..σ δ2

2
.D27 λs2 .D28 λs D29

 
=CQδ2 0.000070940813416  

 
D30 ..σ δ2

2
D27

     
=D30 0.025684195064505  

D31 ..σ δ1
2

D1 ...1
2

σ δ2 D28
     

=D31 0.001734574959819  

D32 ..σ Cdo
8

D0 ..σ δ1
2

D2 ..σ δ2
2

D29
     

=D32 0.000242798455089  

 

 CQd .D30 λs2 .D31 λs D32  
 

 =CQd 0.000269688558533  
 
 
5. Calculate Total Torque, CQ  
 

 
CQ .D30 ..σ a

2
A24 λs2 .D31 ..σ a

2
A25 λs D32 ..σ a

2
A26  

 =CQ 0.000515559050365  
 
 
6. Calculate Inflow for Autorotation (may be applicable) 
F D30 ...1

2
σ a A24

     
=F 0.294525267954883  

D D31 ...1
2

σ a A25
     

=D 0.021682625229975  

H D32 ...1
2

σ a A26
     

=H 0.000183910152091  

 
CheckCQ .F λs2 .D λs H     =CheckCQ 0.000515559050365  
 

λsRootONE .1
.2 F

D D2 ..4 F H
     

=λsRootONE 0.063837329578679  

 

λsRootTWO .1
.2 F

D D2 ..4 F H
     

=λsRootTWO 0.009781566961283  
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7. Calculate Accelerating H-Force, CHa  
 
H1

+

.....1
2

µ λs2 ....1
2

B µ .2
.3 π

µ2 θo λs ....1
4

B2 µ .1
16

µ3 θt λs ...1
4

B2 .3
16

µ2 B1c λs

...3
4

B2 .9
16

µ2 a1s λs ....1
4

B µ .12
.5 π

µ2 b2s λs ...1
6

B3 .8
.45 π

µ3 θe1s λs

 

=H1 0.000409126548125  
 

H2 ...1
3

B3 .2
.9 π

µ3 a1s θo ....3
8

B2 µ .5
48

µ3 b2s θo 

=H2 0.001181845724661  
 

H3 ...1
4

B4 .1
32

µ4 a1s θt ....1
4

B3 µ .16
105

µ4

π
b2s θt 

=H3 0.000432624523905  
 

H4

+

......1
4

B2 µ .3
16

µ3 a1s2 ....1
4

B2 µ .1
16

µ3 B1c a1s ...1
4

B3 .164
105

µ3

π
b2s a1s

....1
6

B3 µ .4
45

µ4

π
θe1s a1s

 

=H4 0.002642035801963  
 

H5 ...1
4

B3 .2
21

µ3

π
a2s b1s ...1

6
B3 .2

45
µ3

π
βo b1s ....1

16
B2 µ .1

96
µ3 λ1 b1s 

=H5 0.002253792891716  
 

H6

+

......1
4

B2 µ .1
16

µ3 βo2 ...1
6

B3 .2
45

µ3

π
A1c βo ...1

6
B3 .2

9
µ3

π
λ1 βo

0 ....1
2

B2 µ .5
24

µ3 a2s βo ...1
8

B4 .1
192

µ4 θe1c βo

 

=H6 0.002336080274585  
 

H7 ...1
8

B2 µ .11
64

µ3 a2s2 ...1
4

B3 .2
21

µ3

π
A1c a2s ...3

16
B4 .3

256
µ4 θe1c a2s 

=H7 0.000015799961115  
 

H8 ...1
8

B2 µ .25
64

µ3 b2s2 ...1
4

B3 .32
105

µ3

π
b2s B1c ...3

16
B4 .35

768
µ4 b2s θe1s 

=H8 0.000355409798295  
 

H9 ....1
16

B2 µ .1
96

µ3 A1c λ1 ...5
12

B3 .118
315

µ3

π
a2s λ1 ....1

24
B3 µ .4

315
µ4

π
θe1c λ1 ..1

48
µ3 λ12 

=H9 0.000070081855597  
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CHa ..σ a
2

( )H1 H2 H3 H4 H5 H6 H7 H8 H9
 

=CHa 0.000962292250614  
 

8. Derive CHa due to C1 and inflow from      CHa
.1 ( ).CT λs CQa

µ
 

CHaCheck
.1 ( ).CT λs CQa

µ       
=CHaCheck 0.000962292250614  

Double Check       =.µ CHa ( ).CT λs CQa 0  
 
 
9. Calculate CHd due to Cd 
 
CHCdo ..σ Cdo

8
.2 µ .1

2
µ3

     
=CHCdo 0.0002300676  

 
CHδ1 ..σ δ1

+

.....1
4

µ λs ..1
4

µ θo ..1
6

µ θt ..3
16

µ2 B1c

..1
16

µ2 a1s ..1
16

µ b2s .1
12

B1c .1
12

a1s .1
16

.3
32

µ2 θe1s

 

=CHδ1 0.000010478826666  
 
H10

+

.....1
2

µ λs2 ..1
2

.5
8

µ2 a1s λs ...1
2

µ .1
8

µ3 θt λs ..µ .4
.3 π

µ2 θo λs

...1
2

µ .8
.3 π

µ2 b2s λs ..1
2

.3
8

µ2 B1c λs ..1
3

.16
.45 π

µ3 θe1s λs

 

=H10 0.000121323401491  
 

H11

+

.....1
2

µ .1
8

µ3 θo2 ...2
3

µ .8
.45 π

µ4 θt θo ..1
3

.1
4

µ2 .28
.45 π

µ3 a1s θo

0 ...1
4

µ .7
24

µ3 b2s θo ..1
3

.3
4

µ2 .32
.45 π

µ3 B1c θo ..1
4

.5
96

µ4 .3
8

µ2 θe1s θo

 

=H11 0.00052016543129  
 

H12

+

.....1
4

µ .1
96

µ5 θt2 ..1
4

.1
8

µ2 .7
96

µ4 a1s θt ...1
6

µ .16
.45 π

µ4 b2s θt

0 ..1
4

.3
8

µ2 .5
96

µ4 B1c θt ..1
5

.1
4

µ2 .32
.525 π

µ5 θe1s θt

 

=H12 0.000317427243898  
 



APPENDIX E 

396 

H13

+

.....1
8

µ3 βo2 ...1
2

µ .1
4

µ3 a2s βo ...1
4

µ2 .4
.15 π

µ3 b1s βo

...1
4

µ2 .4
.15 π

µ3 A1c βo ...4
.15 π

µ3 λ1 βo ...1
48

µ4 .1
8

µ2 θe1c βo

 

=H13 0.000240672049834  
 

H14

+

.....1
3

.1
4

µ2 .584
.315 π

µ3 b2s a1s ..1
8

µ .11
48

µ3 a1s2

...1
4

µ .1
6

µ3 B1c a1s ...1
6

µ .64
.315 π

µ4 θe1s a1s

 

=H14 0.001969318014698  
 

H15

+

.....1
8

µ .1
48

µ3 b1s2 ..1
3

.52
.315 π

µ3 a2s b1s ...1
8

µ .1
48

µ3 λ1 b1s ...1
4

µ .1
24

µ3 A1c b1s

...1
6

µ .8
.315 π

µ4 θe1c b1s

 

=H15 0.000210416370366  
 

H16 ..43
96

µ3 b2s2 ..17
96

µ3 a2s2 

=H16 0.000330570070475  
 

H17

+

.....3
8

µ .5
48

µ3 B1c2 ..1
3

.1
4

µ2 .256
.315 π

µ3 b2s B1c

..1
8

µ .1
48

µ3 A1c2 ..1
3

.52
.315 π

µ3 a2s A1c

 

=H17 0.001011177876538  
 

H18 ..1
48

µ3 λ12 ..1
3

.116
.315 π

µ3 a2s λ1 ...1
8

µ .1
48

µ3 A1c λ1 

=H18 0.000069490620782  
 

H19

+

...+

......1
12

µ .8
.315 π

µ4 θe1c λ1 ...1
6

µ .8
.315 π

µ4 θe1c A1c ...16
.105 π

µ4 .1
2

µ θe1s B1c

..3
16

µ .7
768

µ5 θe1s2 ..1
16

µ .1
768

µ5 θe1c2

0 ..1
4

.1
8

µ2 .5
48

µ4 θe1s b2s ..1
4

.1
48

µ4 θe1c a2s

 

=H19 0.00049300484576  
 

CHδ2 ..σ δ2
2

( )H10 H11 H12 H13 H14 H15 H16 H17 H18 H19  

=CHδ2 0.000013301136051  
 

 
CHd CHCdo CHδ1 CHδ2 

 =CHd 0.000206287637283  
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10. Calculate Total CH 
 

 CH CHa CHd   =CH 0.001168579887897  
 
 
11. Calculate CYa due to CL (Y-force positive to ψ = 90 deg) 
 
Y1

+

......3
4

B2 .5
16

µ2 b1s λs ....3
2

B µ .2
π

µ2 βo λs ....1
4

B µ .14
.15 π

µ2 a2s λs

...1
2

B2 .1
8

µ2 λ1 λs ...1
4

B2 .1
16

µ2 A1c λs ...1
6

B3 .2
.45 π

µ3 θe1c λs

 

=Y1 0.000124005711733  
 

Y2

+

......1
3

B3 ..1
2

B µ2 .4
.9 π

µ3 b1s θo ....3
4

B2 µ .3
16

µ3 βo θo

0 ....3
8

B2 µ .1
24

µ3 a2s θo ...1
6

B3 .2
.45 π

µ3 λ1 θo

 

=Y2 0.000762255150436  
 

Y3

+

......1
4

B4 ..1
4

B2 µ2 .1
32

µ4 b1s θt ....1
2

B3 µ .2
.15 π

µ4 βo θt

0 ....1
4

B3 µ .2
.105 π

µ4 a2s θt ...1
8

B4 .1
192

µ4 λ1 θt

 

=Y3 0.00015180487599  
 

Y4

+

......1
6

B3 .B µ2 .68
.45 π

µ3 a1s βo ....1
2

B2 µ .11
24

µ3 b2s βo

...1
6

B3 ..1
2

B µ2 .22
.45 π

µ3 B1c βo ...1
8

B4 ..1
4

B2 µ2 .7
192

µ4 θe1s βo

 

=Y4 0.001266285819158  
 

Y5

+

.......1
4

B2 µ .3
16

µ3 a1s b1s ...1
4

B3 ..1
2

B µ2 .116
.105 π

µ3 a2s a1s

....7
16

B2 µ .11
96

µ3 λ1 a1s ....1
4

B2 µ .1
16

µ3 A1c a1s ....1
6

B3 µ .2
.45 π

µ4 θe1c a1s

 

=Y5 0.005161236802228  
 

Y6 ...1
4

B3 ..1
2

B µ2 .16
.21 π

µ3 b2s b1s ....1
2

B2 µ .1
8

µ3 B1c b1s ....1
3

B3 µ .4
.45 π

µ4 θe1s b1s 

=Y6 0.001006158164124  
 

Y7 ...7
32

µ3 b2s a2s ...1
4

B3 ..1
4

B µ2 .6
.35 π

µ3 B1c a2s ...3
16

B4 ..1
8

B2 µ2 .7
768

µ4 θe1s a2s 

=Y7 0.000298358384238  
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Y8

+

......5
12

B3 .104
.315 π

µ3 λ1 b2s ...1
4

B3 ..1
4

B µ2 .8
.35 π

µ3 A1c b2s

...3
16

B4 ..1
8

B2 µ2 .13
768

µ4 θe1c b2s

 

=Y8 0.000207494277531  
 

Y9 ....1
24

B3 µ .4
.315 π

µ4 θe1s λ1 ....1
16

µ B2 .1
96

µ3 B1c λ1 

=Y9 0.000006300274309  
 

 

CYa ..σ a
2

( )Y1 Y4 Y2 Y3 Y5 Y6 Y7 Y8 Y9  

 =CYa 0.000644584735924  
 
 
12. Calculate CYd due to Cd 
 
CYCdo 0 
 
CYδ1 ..σ δ1

2
.1

6
.1

8
µ2 A1c .1

6
.1

8
µ2 b1s .1

8
.1

16
µ2 θe1c ..1

4
µ βo ..1

8
µ a2s .1

6
λ1  

=CYδ1 0.000000645796793  
 
Y10

+

.....1
2

.1
8

µ2 b1s λs ..µ .4
.3 π

µ2 βo λs ...1
2

µ .4
.3 π

µ2 a2s λs ..1
2

.1
16

µ2 A1c λs

..1
2

.1
8

µ2 λ1 λs ..1
3

.2
.45 π

µ3 θe1c λs

 

=Y10 0.000024304101028  
 

Y11

+

.....1
3

.1
4

µ2 .4
.45 π

µ3 θo b1s ...1
2

µ .1
16

µ3 θo βo ...1
4

µ .1
24

µ3 θo a2s

0 ..1
3

.1
4

µ2 .8
.45 π

µ3 θo A1c ..1
3

.2
.45 π

µ3 θo λ1 ..1
4

.1
8

µ2 .1
96

µ4 θo θe1c

 

=Y11 0.00008715682354  

Y12

+

.....1
4

.1
8

µ2 .1
192

µ4 θt b1s ...1
3

µ .2
.45 π

µ4 θt βo ...1
6

µ .2
.45 π

µ4 θt a2s

0 ..1
4

.1
8

µ2 .1
96

µ4 θt A1c ..1
4

.1
192

µ4 θt λ1 ..1
5

.1
12

µ2 .16
.1575 π

µ5 θt θe1c

 

=Y12 0.000026625155014  
 

Y13 ...1
4

µ2 .2
.15 π

µ3 βo B1c ...3
4

µ2 .16
.15 π

µ3 βo a1s ...1
2

µ .1
4

µ3 βo b2s ...1
8

µ2 .1
96

µ4 θe1s βo 

=Y13 0.002688705597424  
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Y14

+

......1
4

µ .1
12

µ3 a1s b1s ..1
3

.1
2

µ2 .368
.315 π

µ3 a1s a2s ...1
4

µ .1
24

µ3 a1s A1c

...3
8

µ .5
48

µ3 a1s λ1 ...1
6

µ .2
.63 π

µ4 a1s θe1c

 

=Y14 0.005117767180249  
 

Y15 ..1
3

.1
4

µ2 .16
.63 π

µ3 b1s b2s ...1
4

µ .1
48

µ3 b1s B1c ...1
6

µ .4
.315 π

µ4 b1s θe1s 

=Y15 0.001943681093466  
 

Y16 ..1
3

.26
.315 π

µ3 a2s B1c ..1
4

.1
96

µ4 a2s θe1s ...13
48

µ3 b2s a2s 

=Y16 0.000318138388903  
 

Y17 ..1
3

.88
.315 π

µ3 b2s λ1 ..1
3

.1
4

µ2 .8
.63 π

µ3 b2s A1c ..1
4

.1
8

µ2 .1
96

µ4 b2s θe1c 

=Y17 0.000214119551942  
 

Y18 ...1
12

µ .4
.315 π

µ4 λ1 θe1s ...1
8

µ .1
96

µ3 λ1 B1c 

=Y18 0.000014053554352  
 

Y19

+

......1
4

µ .1
24

µ3 A1c B1c ...1
6

µ .8
.315 π

µ4 A1c θe1s ...1
6

µ .8
.315 π

µ4 B1c θe1c

...1
8

µ .1
384

µ5 θe1s θe1c

 

=Y19 0.000033720559476  
 

CYδ2 ..1
.σ δ2
2

( )Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19  

=CYδ2 0.000004765020584  
 
 

 CYd CYCdo CYδ1 CYδ2 

 =CYd 0.000004119223791  
 
 
13. Calculate Total CY 
 

 CY CYa CYd  =CY 0.000640465512133  
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14. Calculate Shaft Angle of Attack (radians) 
 

αs atan λs
µ

.1
2

CT

.µ µ2 λs2
     

=αs 0.027326303405535  

 
 
15. Repeat Input (angles now in degrees) 

=µ 0.7      =λs 0.013      =λ1 0.007287534590767      =γ 19.2      =B 0.97      =σ 0.0976      
=a 5.73  

 
=.θo 180

π
1.9

 
=.θt 180

π
1

 
=.B1c 180

π
2

 
=.A1c 180

π
1

 
=.θe1s 180

π
1

 
=.θe1c 180

π
1  

 
=Cdo 0.012  =δ1 0.0216  =δ2 0.4  

 
 
16. Summarize Output 
 

=.βo 180
π

8.474827357622401
      

=.a1s 180
π

7.801747523038808
     

=.b1s 180
π

7.890124244695535  

              
=.a2s 180

π
1.579548305207202

     
=.b2s 180

π
2.465172362211013  

 
=CT 0.008587925651381      =CH 0.001168579887897      =CY 0.000640465512133  

 
=CQ 0.000515559050365  

 
=.αs 180

π
1.565681854831141  

RotorCL .CT cos ( )αs .CH sin( )αs   =RotorCL 0.008552790439016  
 
RotorCD .CT sin( )αs .CH cos ( )αs   =RotorCD 0.001402790666605  
 
RotorCY CY     =RotorCY 0.000640465512133  
 
AirplaneCL .2

µ2
( )RotorCL

   
=AirplaneCL 0.034909348730678  

AirplaneCD .2

µ2
( )RotorCD

   
=AirplaneCD 0.005725676190225  

AirplaneCY .2 CY

µ2
    

=AirplaneCY 0.002614144947481  
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APPENDIX F 
 

EXCERPTS FROM PROCEEDINGS OF [FIRST] ROTATING 
WING MEETING 
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APPENDIX G 
 

NORMAL MODES AND FREQUENCIES 
 
 
 In the late 1950s, while working at the Vertol Aircraft Company located in Morton, 
Pennsylvania, I was told to get familiar with the flapwise bending moment equation for a 
rotating blade.1 I became entranced with Fig. G-1, bowled over by Eq. (1), and quite doubtful 
that I could find a solution. My apprenticeship up to then only included the “facts” that blades 
were rigid and flapped, and that I could calculate all the rotor performance with just these 
ground rules. The book Aeroelasticity,2 and specifically pages 95 through 98 that  show how 
to solve Eq. (1), became a bible for the rest of my career.  
 
 

Radius Station, r

Blade Out 
Of Plane

(Flapwise) 
Deflection,

zr

R0
0

( ) dLd L dr
dr

=

( ) ( ) 2d CF m dr r= Ω

( ) ( ) ( )
2

r ,t
2

Z
d I m dr

t

∂
=

∂

( )r,tZ

( )tip,tZ

Z(η ,t)

η

FMr,t

r

 
Fig. G-1.  Flapwise forces and bending moment on a rotating rotor blade.

                                                 
1 I thought of myself as an aerodynamics engineer and was bent on learning my trade. My boss then was Joe 
Mallen and he said, “Go to the library, check out Bisplinghoff’s book on Aeroelasticity, and learn the first 100 
pages.” Joe was my first mentor and later became Boeing Helicopter Division manager. I owe him a great deal; 
certainly more than I can thank him for.   
2 Raymond L. Bisplinghoff, Holt Ashley, and Robert L. Halfman, Aeroelasticity, 2nd Ed., Addison–Wesley 
Publishing Co., Reading, Mass., 1955. 
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(1) 
( )

( ) ( ) ( ) ( ) ( ) ( )

2
r,t

r ,t flap 2r

R R R

,t ,t r ,t ,t ,tr r r

Z
Flapwise M EI

r

r d L Z Z d CF r d Iη η η η

§ ·∂
= ¨ ¸¨ ¸∂© ¹

= η − − − − η −³ ³ ³
 

  
 The solution to Eq. (1) begins by differentiating it twice with respect to radius (r). For 
a uniform mass and stiffness beam (i.e., m is constant from root to tip in the units slugs per 
foot, and ELflap is constant in units of pounds-feet2), the result is  

(2) ( ) ( ) ( ) ( ) ( )4 22
r,t r,t r,t r,t2 2
4 2

Z Z Z LmEI R r m
r 2 r r t r

∂  ∂ ½ ∂ ∂ª ºΩ ∂° °− − + =« »® ¾∂ ∂ ∂ ∂ ∂« »° °¬ ¼¯ ¿
. 

This is a fourth-order partial differential equation, which can be separated into two, ordinary 
differential equations. One equation accounts for the radial deflection of the blade, and the 
other accounts for blade behavior with time. The separation is done by first 
nondimensionalizing by radius (R) so x = r/R and defining the rotational azimuth of the blade 
as ȥ = ȍt, where the rotational speed (ȍ) is constant. Next, the assumption is made that an 
infinite series of the following form is reasonable:  

(3) 

tip
r,t m,x

m 1 m,t

tip tip tip
x x x

t t tm 1 m 2 m 3

Z
Z R z

R

Z Z Z
R z z z

R R R

∞

=

= = =

§ ·= ¨ ¸
© ¹

 ½ª º ª º ª º§ · § · § ·° °= + + +« » « » « »® ¾¨ ¸ ¨ ¸ ¨ ¸
« » « » « »© ¹ © ¹ © ¹° °¬ ¼ ¬ ¼ ¬ ¼¯ ¿

¦

""
. 

Substituting Eq. (3) into Eq. (2) results in a radial deflection (zx) equation and a blade-tip 
deflection (Ztip/R) equation that is time dependent. Both equations are dimensionless because 
of the substitutions that x = r/R and ȥ = ȍt. The summation operator in Eq. (3) says that the 
result depends on an infinite sum of radial times time functions. The two equations that must 
be solved for each vibration mode (m) in the summation are, for the radial behavior 

(4) ( )
4 2 2 42 4

(x) (x)2 n
(x)4

d z d z m R1 m R d 1 x z 0
d x 2 EI dx d x EI

 ½ª º § ·§ · ωΩ ° °− − − =« »® ¾ ¨ ¸¨ ¸
« »© ¹ © ¹° °¬ ¼¯ ¿

 

and, for the time behavior 

(5) 
( )

( )
2 2 1

tip tip (x, )n
(x )12 22 2 0(x)0

d Z R Z dL1 z dx
d R dxmR z dx

ψ§ ·ω§ ·+ =¨ ¸¨ ¸ψ Ω© ¹ © ¹ Ω
´
µ
¶³

. 

Notice that radial deflection must be obtained first from Eq. (4) before the time equation can 
be solved. This is because the right-hand side of Eq. (5) contains integrals of the deflection. 
The solution of Eq. (4) gives the normal modes (i.e., radial deflections) and associated 
frequencies for the rotating uniform beam—the blade. It is customary to scale the mode 
shapes so that, at the blade tip where x = 1, the deflected shape (zx) gives zx=1 exactly to unity.
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 The mode shape equation, Eq. (4), requires boundary conditions. A blade with a 
flapping hinge is classified as a pin-free beam. This means that the root boundary conditions 
(i.e., the pinned end where the flapping hinge is located) are that at x = 0, 
z(x) = 0, and d2z(x)/dx2 = 0. The free end of the beam is the blade tip at which x = 1, and both 
moment (d2z(x)/dx2) and shear (d3z(x)/dx3) are zero. Autogyro blades fall in this classification. 
 
 This appendix gives the solution to Eq. (4), which I have used in this volume about 
autogyros. I chose to recast this normal modes and associated frequencies equation to 
illuminate two key parameters upon which the solution depends. That is, I defined  

2 42 4
nm Rm Rg and f

EI EI
ωΩ= =  

so that the normal modes and frequencies equation to be solved becomes 

(6) ( ) ( ) ( )
4 2

(x) (x)2
(x)4

d z d z1 dg 1 x f z 0
d x 2 dx d x

 ½ª º° °− − − =« »® ¾
« »° °¬ ¼¯ ¿

. 

Both g and f have no units, so Eq. (6) is completely nondimensional. 
 
 I took the simple Frobenius solution approach, which is a power series method. The 
assumption is that  

(7) n n
(x) 1 n 3 n

n 1 n 1
z A K x A M x

∞ ∞

= =
= +¦ ¦ . 

First, the three derivatives are easily obtained and substituted into Eq. (6). Next, the expansion 
is collected in a K series and an M series. Then the coefficients of each xm are set to zero. 
Finally, the recursion formulas for the K and M series are created. The result for the K series 
is  

(8) ( )( ) ( )( )( ) ( ) ( ) ( )n n 4 n 2
g 1 g 1K f n 4 n 3 K K
2 n n 1 n 2 n 3 2 n n 1− −

ª º ª ºª º= − − − +« » « »« » − − − −¬ ¼ ¬ ¼ ¬ ¼
 

where n proceeds as n = 5, 7, 9, etc., and K1 = 1 and K3 = 0. Similarly, for the M series, the 
result is 

(9) ( )( ) ( )( )( ) ( ) ( ) ( )n n 4 n 2
g 1 g 1M f n 4 n 3 M M
2 n n 1 n 2 n 3 2 n n 1− −

ª º ª ºª º= − − − +« » « »« » − − − −¬ ¼ ¬ ¼ ¬ ¼
 

where n proceeds as n = 5, 7, 9, etc., and M1 = 0 and M3 = 1/6. Notice that both series have 
exactly the same mathematical form. The difference between the two is the first coefficient 
values, K1, K3 and M1, M3. Both series behave as hyperbolic sine functions.  
 
 The coefficients A1 and A3 required by Eq. (7) are given by 
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(10) 
( )

( ) ( )

N

n
n 1

1 N N N N

n n n n
n 1 n 1 n 1 n 1

n n 1 M
A

K n n 1 M M n n 1 K

=

= = = =

−
=

− − −

¦

¦ ¦ ¦ ¦
 

and 

(11) 
( )

( ) ( )

N

n
n 1

3 N N N N

n n n n
n 1 n 1 n 1 n 1

1 n n 1 K
A

K n n 1 M M n n 1 K

=

= = = =

− −
=

− − −

¦

¦ ¦ ¦ ¦
. 

 
 The final key to the solution is the transcendental equation, which says that for any 

value of 
2 4m Rg

EI
Ω=  there is a corresponding value of 

2 4
nm Rf

EI
ω=  such that 

(12) ( )( ) ( ) ( ) ( ) ( ) ( )
N N N N

n n n n
n 1 n 1 n 1 n 1

n 1 n 2 K n n 1 n 2 M n n 1 n 2 K n n 1 M 0
= = = =

− − − − − − − − =¦ ¦ ¦ ¦ . 

 
 The computational process is quite straightforward and can be carried out using a 
spreadsheet program such as Microsoft® Excel®. For a given value of g, various values of f 
must be selected. With each value of f, the K and M series are constructed using Eqs. (8) and 
(9). Then the transcendental equation is tested for a value of f that gives zero. The value of f 
that makes Eq. (12) zero leads to the natural frequency for that particular mode. This step 
defines the exact values of Kn and Mn for that mode. Finally, the lead coefficients, A1 and A3, 
are calculated with Eqs. (10) and (11).  
 
 I set the whole problem up in Excel® and used the goal seeking tool to find the f value 
for any selected g value that made the transcendental equation zero. One example of the 
behavior of the transcendental equation is shown in Fig. G-2, which was obtained with  
g = 600. Notice that the transcendental equation crosses zero at successive values of the 
parameter (f). Each crossing of zero defines a mode frequency and, therefore, a solution to  
Eq. (6). For this result, I obtained satisfactory convergence of the mode shapes and 
frequencies using K and M series created as n = 5, 7, 9, on up to n = 139.  
 



APPENDIX G 

413 

-4,000,000

-2,000,000
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6,000,000

8,000,000

10,000,000

12,000,000

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

Transcendental
Equation

First Mode
f = 600

Second Mode
f = 3,923.289

Third Mode
f = 12,585.661

2 4m Rf
EI
ω=

2 4m Rg 600
EI
Ω= =

Eq. (12)

 
 

Fig. G-2. Transcendental equation. 
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APPENDIX H 
 

FLAP BENDING MOMENT EQUATION SOLVED BY FINITE 
DIFFERENCE METHOD 

 
 
 This appendix shows one way to solve the rotating beam out-of-plane response to 
simple blade-element lift. The solution approach is one that could have been done in the 
autogyro era—if the pioneers had decided to spend the resources. I have include this appendix 
because it is a special piece of work that was just plain fun. But first, a little background. 
 
 While at Bell Helicopter Textron,1 I sent a memo, dated August 24, 1987, to the 
technology department and computer support staff that said, in part: 
 

 On Enclosures A, B and C I have written out the simple equation for flap 
bending. I would like to see this equation solved without using normal modes. Hopefully, 
there is a “canned” partial differential equation solver that can be used. 
 
 As you know, I believe future rotor analysis will become finite element based 
rather than normal mode based. This does not mean I see the Myklestad/C-81 analysis 
disappearing because knowledge of blade natural frequencies, for example, will always be 
important. However, when I read a paper such as the one included at the end of this 
memo,2 I begin to think the structural representation of the blade by "simple modal 
equations" may not be worth the trouble. And, therefore, a more direct approach of 
feeding the rotor design group’s tabulated blade properties into a finite element 
analysis could easily yield more correct results. The big question to me is one of 
absolute accuracy as a function of total turn-around time.  
 
 Please make sure the staff understands that I am not advocating 
discarding C-81. What I want is to lay the foundation to a new, finite element 
approach that will grow as computer power grows and that can incorporate CFD 
progress. Perhaps in ten years the C-81/COPTER approach will be used in 
preliminary design of rotor systems and the finite element approach will be used for 
detailed design. 
 

 
On October 15, 1987 I received a memo back from Mark Dreier (then a Senior Computing 
Project Engineer working in the Scientific Systems department) that showed a finite 
difference solution that worked like a charm.3 It was a beautiful piece of work that I hold in 
high regard  
                                                 
1 At that time I reported to Bob Lynn, Senior Vice President for Engineering, as the Deputy for Technology and  
Advanced Development. 
2 K. B. Subrahmanyam, et al., Nonlinear Vibration and Stability of Rotating, Pretwisted, Preconed Blades 
Including Coriolis Effects, AIAA J. of Aircraft, vol. 24, no. 5, 1987, pp. 342 –352. 
3 My first encounter with numerical solutions in rotorcraft problems came when we began using the N.A.C.A. 
method in the late 1950s. This groundbreaking analysis was developed by Alfred Gessow and Almer Crim and 
published in January 1955. The report, NACA TN 3366, is titled A Method for Studying the Transient Blade-
Flapping Behavior of Lifting Rotors at Extreme Operating Conditions. The method numerically solved the rigid 
blade-flapping, ordinary differential equation with real airfoil properties. Mark Dreier’s extension allowed flap 
bending to occur with the fourth order, partial differential equation.  
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 After retiring from Bell in January of 1991, I decided in 1992–1993 to “program” 
Mark’s solution method in Microsoft® Excel® as part of my research about autogyros that has 
culminated in this volume. It took about a month of very enjoyable spare time. The solution 
approach that follows is Mark’s memo in my words and nomenclature.  
 
 From Appendix G, you learned about the flap bending equation, which is 

(1) 
( )

( ) ( ) ( ) ( ) ( ) ( )

2
r,t

r,t flap 2r

R R R

,t ,t r,t ,t ,tr r r

Z
Flapwise M EI

r

r d L Z Z d CF r d Iη η η η

§ ·∂
= ¨ ¸¨ ¸∂© ¹

= η − − − − η −³ ³ ³
. 

This solution to Eq. (1) begins by differentiating it twice with respect to radius (r).4,5 For a 
uniform mass and stiffness beam (i.e., m is constant from root to tip in the units slugs per foot 
and ELflap is constant in units of pounds-feet2). The second step is done by 
nondimensionalizing by radius (R) so x = r/R and defining the rotational azimuth of the blade 
as ȥ = ȍt, where the rotational speed (ȍ) is constant. The last step is to scale out-of-plane 
deflection by rotor radius (R) so that z = Z/R. The results of these steps is the partial 
differential equation:  

(2) ( ) ( ) ( ) ( ) ( ) ( )4 2 22
x, x, x, x, x,

2 4 4 2 2 2 2

z z z z1 x LEI 1x
m R x 2 x x m R x

ψ ψ ψ ψ ψ∂ ∂ ∂ ∂− ∂
− + + =

Ω ∂ ∂ ∂ ∂ ψ Ω ∂
. 

This equation is fourth order in space (x = r/R) and second order in azimuth (ȥ) (i.e., time). 
Again, the equation applies to a blade with uniform mass and stiffness, and rotating at a 
constant tip speed of Vt = ȍR.  
 
 The airload—the right-hand side of Eq. (2)—is expanded with a very simple 
representation as 

(3) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
o t 1C 1C hp

x,
2 2 x, x,

x sin x B sin A cos x sin
L1

z zm R x 6 x sin cos x sin
x

ψ

ψ ψ

 ½+ µ ψ θ + θ − ψ − ψ + + µ ψ λ∂ ° °γ= ∂ ∂® ¾Ω ∂ − + µ ψ − µ ψ + µ ψ° °∂ ψ ∂¯ ¿

. 

 
 
 
which follows previous models and symbols discussed in this volume. The Lock number (Ȗ) is 
defined as ȡacR4/Ib.  
                                                 
4 It is entirely feasible to solve this differential-integral equation directly. This was demonstrated by Joe Stuart in 
his paper titled A Tabular Method of Propeller Blade Stress Analysis. This paper was presented at the Power 
Plants and Propeller Session of the Eleventh Annual Meeting of the Institute of the Aeronautical Sciences, New 
York,  Jan.  25–29, 1943. The work was later published in the J. of the Aeronautical Sciences, vol. 10, no. 4, 
pp. 115–118, April 1943. This approach easily accommodates nonuniform blade geometry and structural 
properties. 
5 The paper The Bending of Rotor Blades by Al Flax published in the J. of the Aeronautical Sciences, vol. 14, 
no. 1, Jan. 1947 provides a rather comprehensive review of several solution approaches. 

Damping Term Spring Term 
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 My Excel® solution approach begins by assigning columns to blade segments that go 
from i = –2, i = – 1, i = 0, i = +1, etc, on up to imax = tip, imax+1 imax+2 . I used a segment length 
of ǻx = 0.05. This means that 21 columns are used for the blade, 2 more columns are used for 
root boundary conditions and 2 more are used for the tip boundary conditions, which makes a 
total of 25 columns. Then 25 rows were used to construct 25 equations (shown shortly) in 25 
unknowns. Each equation, constructed based on the current azimuth (n), is used to predict the 
deflection at the next azimuth (n+1). This gives the time marching portion of the solution. 
This is a relatively simple matrix algebra game.  
 
 The 25 equations in 25 radial points are created using finite difference approximations 
for all derivatives of the deflection. The approximations must be tagged with a space counter 
(i) and an azimuth counter (n). I have made the space counter a subscript and the azimuth 
counter a superscript. On this basis, any one of the 25 equations is found from: 

(4) ( ) ( ) ( ) ( ) ( )n 1 n 1 n 1 n 1 n 1
4 i 2 7 i 1 6 1 i 5 i 1 4 i 2K z K z K K z K z K z RHS+ + + + +

− − + +− + + − + =  

where the right-hand side (RHS) is 

(5) ( ) ( ) ( ) ( ) ( )n n n n n n n 1
i 4 i 2 5 i 1 6 2 i 7 i 1 4 i 2 3 iRHS F K z K z K K z K z K z K z −

+ + − −= − + + − + − − . 

The coefficients (K1 through K8) are obtained from the input data, the radial station (xi), and 
azimuth (ȥn) with which Eq. (4) is identified. Thus, 
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Note that actually only K2 and K4 are constants; K1, K3, K4, K5, K6, and K7 all depend on the 
radial station counter (i) and azimuth counter (n) under calculation. The forcing function ( n

iF ) 
required by Eq. (5) is calculated as 

(7) ( ) ( ) ( ){ }n2n
i o t 1C 1C hp

i
F x sin x B sin A cos x sin

6
γ= + µ ψ θ + θ − ψ − ψ + + µ ψ λ . 
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 The solution of 25 equations in 25 unknowns (i.e., xi-2 through ximax+2) was 
accomplished in Excel®

6 by creating a K matrix. A sample of this matrix in Excel® form is 
shown in Table H-1. The calculations at azimuth counter (n) are used to calculate the radial 
deflection at azimuth counter (n+1). In matrix algebra shorthand notation, the operation is 
written as 

(8) ( )1 nn 1 n
i i

Z K RHS
−+ ª º= ¬ ¼ . 

In Excel® this operation is performed by creating (from the Insert menu) the function named 
MMULT(MINVERSE(C60:AA84),AC60:AC84). The MINVERSE function inverts the Kn 
matrix to give [Kn]-1, and the MMULT function does the multiplication that Eq. (8) requires. 
As I set the problem up, the K matrix occupied the cells from column C, row 60, to column 
AA, row 84. The RHS occupied the cells in column AC, row 60 to row 84. I put the results 
for deflection at azimuth n+1 in cells occupying column AF, row 60 to row 84.  
 
 The solution of Eq. (4) at the 25 radial stations required a Macro to advance azimuth 
in steps of ǻȥ = 2 degrees starting at ȥ = 0. The initial deflection was set to zero (i.e., a 
straight line from root to tip). The slope, curvature, and azimuth derivatives were all zero. The 
analysis then proceeds to march around the azimuth solving 25 equations in 25 unknowns at 
each azimuth using trailing azimuth data to calculate deflection at the new azimuth. Both 
deflection at azimuth counters (n-1) and (n) are saved, but progressively overwritten in 
preparation for the next time step. The blade motion converges quite rapidly because of the 
damping, and I found that the fourth revolution repeated results from the third revolution 
within engineering accuracy.  
 
 Given the deflection at every blade radial station and any given azimuth, the following 
important derivatives were calculated as 
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6 The whole problem can, of course, be solved using a FORTRAN code or any one of a number of mathematical 
software applications on the market.  
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Table H-1. The K Matrix 
 

 
Note: The sum K6 + K1 forms the diagonal of this matrix. Even though K4 and –K7 and –K5 and K4 are placed in adjoining cells on the same row, all 
coefficients are calculate using the same radial station (i.e., xi) as the K6 + K1 sum.  

Radial Station (r/R) -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.05 1.1 

Radial Counter i = -2 i = -1 i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13 i = 14 i = 15 i = 16 i = 17 i = 18 i = 19 i = 20 i = 21 i = 22 
Eq.1 ( i = -2) 1 – 4 6 – 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eq. 2 (i = -1) 0 1 – 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eq. 3 (i = 0) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eq. 4 (i = 1) 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eq. 5 (i = 2) 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eq. 6 (i = 3) 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eq. 7 (i = 4) 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eq. 8 (i = 5) 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eq. 9 (i = 6) 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eq. 10 (i = 7) 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eq. 11 (i = 8) 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 0 0 0 0 0 

Eq. 12 ( i = 9) 0 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 0 0 0 0 

Eq.13 ( i = 10) 0 0 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 0 0 0 

Eq. 14 (i = 11) 0 0 0 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 0 0 

Eq. 15 (i = 12) 0 0 0 0 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 0 

Eq. 16 (i = 13) 0 0 0 0 0 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 0 

Eq.17 ( i = 14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 0 

Eq. 18 (i = 15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 0 

Eq. 19 (i = 16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 0 

Eq. 20 ( i = 17) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 0 

Eq. 21 (i = 18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 0 

Eq. 22 (i = 19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 0 

Eq.23 ( i = 20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K4 – K7 K6+K1 – K5 K4 

Eq. 24 (i = 21) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 – 2 1 0 

Eq. 25 ( i = 22) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 – 1 2 0 – 2 1 
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Sample Case 1. Analysis Versus CH-34 Wind Tunnel Test 
 
 Mark and I had a check case for the analysis he created. The check case was for a 
Sikorsky CH-34 rotor. This rotor was tested in the NASA Ames 40- by 80-foot wind tunnel in 
September 1964. The primary data became available when Jack Rabbott (et al.) published A 
Presentation of Measured and Calculated Full-Scale Rotor Blade Aerodynamic and 
Structural Loads in July 1966 as USAAVLBS TR 66-31.7 The 56-foot-diameter rotor had one 
of its 4 blades heavily instrumented (for the time). This blade had strain gages for loads and 
pressure taps for airfoil data. The full-span trailing-edge tab on the instrumented blade had 
zero deflection for spanwise stations r/R = 0.25, 0.40, 0.55, 0.75, and 0.95; the trim tab was 
deflected upward 4 degrees over stations r/R = 0.85 and 0.90. Two-dimensional airfoil data 
was available.8 The flapping and lagging hinges were coincident and offset from the center of 
rotation by one foot. The check case had the input provided here in Table H-2, and note that 
the flapping hinge offset was zero.  
 

Table H-2. Input for Sample Case 1 (V = 110 kts, ĮS = –5 deg, thrust = 8,250 lbs)  
Configuration and Test 

Parameters Symbol Value Units 
Radius R 28.0 ft 
Chord c 1.366666 ft 
Root cutout xc 0.20 nd 
Blades b 4 nd 
Tip speed Vt 650 ft/sec 
Blade flap inertia Ib 1,360 slug-ft2 
Flap hinge offset rȕ 0.0 ft 
Density ȡ 0.002378 slug/ft3 
Hub plane angle of attack Įhp –5.0 deg (nose down) 
Forward speed V 110 knots 
Blade running weight wb 0.50 lb/in. 
Blade flap stiffness EIf 15,000,000.0 lb-in.2 
Collective pitch θ0 14.0(ʌ/180) radians 
Twist θt –8.0(ʌ/180) radians 
Longitudinal cyclic B1C 6.0(ʌ/180) radians 
Lateral cyclic A1C 2.4(ʌ/180) radians 

Calculated Input 
Parameters Symbol Value Units 

Advance ratio µhp  0.2847431 nd 
Inflow ratio Ȝhp –0.03153197 nd 
Lock number (x = 0 to 0.20) Ȗc 0.0 nd 
Lock number (x = 0.2 to 1.0) Ȗ 8.417 nd 
EIf/mbȍ2R4 none 0.001687682 nd 

                                                 
7 The rotor was first tested in flight; data from that experiment was published by James Scheiman and titled 
Tabulation of Helicopter Rotor-Blade Differential Pressures, Stresses, and Motions as Measured in Flight, as 
NASA/TM–X-952 in March 1964. 
8 Anon.: Two-Dimensional Wind-Tunnel Tests of an H-34 Main Rotor Airfoil Section. TREC Tech. Rep. 60-53 
(Contract DA 44-177-TC-657), U.S. Army Transportation Research Command (Fort Eustis, Va.), Sept. 1960. 
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Table H-3. Fourier Flapwise Stress Coefficients  
(V = 110 kts, ĮS = –5 deg, T = 8,250 lbs) 

 x = 0.375   x = 0.45   x = 0.65   x = 0.80  
N Cosine Sine  Cosine Sine  Cosine Sine  Cosine Sine 
0 –243   –395   –881   –1555  
1 –811 942  –899 1060  –1105 1297  –470 701 
2 124 –571  191 –565  586 –459  590 –266 
3 –140 –204  –133 –259  94 –474  181 –515 
4 –39 –72  –12 –51  171 –1  325 –27 
5 67 –38  60 –55  –14 37  –68 119 
6 –11 –25  15 2  30 66  –71 23 
7 29 –6  –9 2  –51 17  13 4 
8 30 19  28 7  –21 –24  –13 11 
9 4 30  –16 28  0 –27  27 26 

10 –7 1  –22 8  17 –4  0 3 
 

 The test data used in the comparison between the finite difference analysis and test 
came from reconstituted flapwise stress waveforms from Fourier coefficients provided by 
Rabbott as Table XXVIIIa on page 126 of USAAVLBS TR 66-31. This table of experimental 
data reduced to Fourier coefficients is shown here as Table H-3. 
 
The finite difference solution provided the nondimensional curvature derivative 
( )2 2

x,z xψ∂ ∂ . This derivative was converted to CH-34 flapwise bending stress in pounds per 
square inch according to  

(10) 
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2R x 2 336 x

ψ
ψ

ψ

ψ ψ

§ · § ·
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× −§ · § ·∂ ∂
= =¨ ¸ ¨ ¸¨ ¸ ¨ ¸∂ ∂© ¹ © ¹

 

in order to show the waveform comparisons in Figs. H-1 through H-4.  
 
 The comparisons, a “correlation” if you prefer, is what I imagine could have been 
produced in the autogyro era. In fact, the actual waveforms probably would have been of 
secondary interest to Cierva. What he wanted was some confidence that the vibratory 
magnitude9 of the flapwise bending stress was approximately correct. This vibratory 
magnitude comparison, shown in Fig. H-5, indicates that this simple finite difference analysis 
with a simple airload overpredicts the actual measured flapwise stresses by a safe margin. It is 
worth noting that a jump in airloads due to the absence of an airfoil (i.e., a root cutout) causes 
a distortion in the radial flapwise vibratory stress distribution. 

                                                 
9 The vibratory magnitude is frequently referred to as (1) peak-to-peak divided by two, or (2) one-half peak-to-
peak. In either case, the steady stress is often of little interest.  
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Fig. H-1. Prediction of flapwise stress at x = 0.375 R versus CH-34 test. 
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Fig. H-2. Prediction of flapwise stress at x = 0.45 R versus CH-34 test. 
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Fig. H-3. Prediction of flapwise stress at x = 0.65 R versus CH-34 test. 
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Fig. H-4. Prediction of flapwise stress at x = 0.80 R versus CH-34 test. 
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Fig. H-5. Vibratory flapwise stress prediction by finite difference using simple airloads 

appears conservative in this comparison (CH-34 at V = 110 kts, ĮS = –5 deg, and 
T = 8,250 lbs). 

 
Sample Case 2. Finite Difference Analysis Versus Exact Result 
 
 The comparison shown in Figs. H-1 through H-4 points out a significant difference in 
phase angle as well as waveform shape. The differences are, based on knowledge today, 
caused by an inaccurate airload. In short, Eq. (7) is quite inadequate. These differences will be 
discussed further in Volume II, Helicopters.   
 
 The question can be asked, of course, if the waveform differences between test and 
analysis might not be caused by the finite difference solution being inaccurate. Fortunately, 
there was an exact solution to Eq. (2) available with which to test the accuracy of the finite 
difference method.10 This test case was constructed in an inverse manner; in a problem that 
requires solving for acceleration given mass and force (i.e., a = F/m), it is sometimes more 
informative to specify the acceleration desired and solve for the force and mass required to 
produce the desired acceleration.11  

                                                 
10 Franklin D. Harris, The Rotor Blade Flap Bending Problem—An Analytical Test Case, J. of the American 
Helicopter Society, vol. 37, no. 4, pp. 64–67, Oct. 1992. 
11 A.R.S. Bramwell provides a very good example of specifying a helicopter hovering maneuver that is desired 
and then solving backward for the control motion that the pilot must provide. He is discussing the influence of 
hinge offset on roll control. See Helicopter Dynamics, John Wiley & Sons, New York, 1976, p. 243. 
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The application of this inverse thinking in this appendix goes like this: 
 
From Eqs. (2), (3), and (7), the spring and damper terms in the elemental lift can be moved to 
the structural side of the equation. This exposes the basic forcing function (F). The result of 
this rearrangement is 
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Now constants of EI/mȍ2R4 = 1/600, Ȗ = 8, and µ = 2/7 can be selected and a specified 
deflection can be defined such as 
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Then derivatives can be taken and the force (F) required by Eq. (11) is obtained by careful use 
of algebra (which I did using MathCad symbolic software). This is the essence of the AHS 
Journal paper referenced in footnote 10 of this appendix. 
 
 The resulting expression from the preceding arithmetic created a forcing function (F) 
that I used in place of the CH-34 example, Eq. (7), and then the finite difference analysis was 
rerun. The resulting comparisons to exact values (of the finite difference predictions of root 
slope, tip slope, tip deflection, and curvature at the 0.65R radial station) are shown in  
Figs. H-6, H-7, and H-8. Note that finite difference results are shown as symbols at 2-degree 
azimuth increments while the exact results are shown as a continuous line. It is more than an 
aside to say that the blade flapping angle (Fig. H-6), which is generally measured at the root, 
is not representative of actual blade motion outboard of the root and certainly not 
representative of tip motion.  
 
 These comparative results confirm that the structural response to an airload can be 
accurately predicted even with a quite simple structural analysis that solves the fourth order, 
partial differential equation. The problem the pioneers faced was that predicted airloads—
available during and well beyond the autogyro era—were totally incorrect. This situation was 
not—in my opinion—corrected until the 21st century began as you will learn in Volume II, 
Helicopters.  

Damping Term Spring Term 
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Fig. H-6. Accurate blade slopes can be predicted given accurate airloads. 
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Fig. H-7. Accurate blade-tip deflection can be predicted given accurate airloads. 



APPENDIX H 

427 

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0 30 60 90 120 150 180 210 240 270 300 330 360

Non-
dimensional
Curvature
Derivative

(r/R = 0.65)

( )
2

x,
2

z

x
ψ∂

∂ Azimuth 

Exact
Finite Difference

 
 

Fig. H-8. Accurate blade loads can be predicted given accurate airloads. 
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APPENDIX I 
 

INDUCED VELOCITY IN PARTIAL-POWER DESCENT 
 
 

 During and well beyond the autogyro era, the rotorcraft industry used the Glauert 
assumption to calculate the uniform induced velocity (v or vi or vGlauert) created by the wake of 
a lifting rotor. This hypothesis took the form of a quartic equation as shown in Eqs. (2.258) 
through (2.260), which resulted in 

(2.261)        
4 3 2 2

FP FP
tpp

h h h h h

V Vv v v2 sin 1 0
v v v v v

§ · ª º § · § · § ·
− α + − =¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸« »

© ¹ ¬ ¼ © ¹ © ¹ © ¹
. 

Figure I-1 repeats the graphical form that results from solving the Glauert equation.  
 
 There was little the industry could do to theoretically challenge the Glauert 
assumption until the digital computer came along. Experimentally, however, Walter Castles 
and Robin Gray obtained data1 leading to empirical results for vertical descent. This 
comparison was shown in Fig. 2-101, which indicated a significant difference between test 
results and the Glauert theory.  
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Fig. I-1. The Glauert assumption for rotor-induced velocity.

                                                 
1 Walter Castles and Robin Gray, Empirical Relation Between Induced Velocity, Thrust, and Rate of Descent of a 
Helicopter Rotor as Determined by Wind-Tunnel Tests of Four Model Rotors, NACA TN No. 2474, Oct. 1951. 
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 Over the years, two things have bothered me about Fig. I-1. The first bothersome thing 
is that I never really stopped to solve the quartic equation for the useful root. The second 
bothersome thing is that no testing comparable to the vertical descent experiment by Castles 
and Gray has been published for partial-power descents at tip-path plane angles of attack 
between 0 and 90 degrees.2 This appendix—to some extent—removes these two bothersome 
things.  
 
Solution of the Glauert Quartic 
 
 The ratio of induced velocity (v) to ideal hover-induced velocity (vh) depends on the 
ratio of the flight path velocity (VFP) to ideal hover-induced velocity, and the tip-path plane 
angle of attack (Įtpp in radians). Suppose, for shorthand purposes, that  

( )
FP

h 2
h h

Vv Tv , V and v
v v 2 R

= = =
ρ π

 

then Eq. (2.261) becomes ( ) ( )4 3 2 2
tppv 2sin V v V v 1 0− α + − = , and the applicable root is 

computed as follows: 
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= ¨ ¸¨ ¸

© ¹

=
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Note that when the tip-path plane angle of attack equals exactly 90 degrees, the induced 
velocity ratio is calculated more directly with the equations shown in Fig. I-1. A straight, 
vertical line connects the two solution branches at VFP/vh = 2.0.  
                                                 
2 That is not to say an effort has not been made. See for example: 

a. Washizu, K. et al., Experiments on a Model Helicopter Rotor Operating in the Vortex Ring State, J. of 
Aircraft, vol. 3, no. 3, May–June 1966, pp. 225–230. 

b. Washizu, K. et al., Experimental Study on the Unsteady Aerodynamics of a Tandem Rotor Operating in the 
Vortex Ring State, Proceedings of the 22nd Annual National Forum, American Helicopter Society, May 
1966, pp. 215–220. 

c. McLemore, H. C. and Canon, M. D., Aerodynamic Investigation of a Four-Bladed Propeller Operating 
Through an Angle-of-Attack Range From 0o to 180o, NACA TN No. 3228, 1954. 

d. Sheridan, P. F. et al., Math Modeling for Helicopter Simulation of Low Speed, Low Altitude, and Steeply 
Descending Flight, NASA CR 166385, July 1982. 
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Application of the Glauert Assumption in Partial-Power-Descent Angles 
 
 Castles and Gray reported their experimental results in NACA TN 2474. These tests 
dealt solely with vertical descent. The experimental data was provided in both tabulated and 
graphical forms. One of the rotor sets tested was a 6-foot-diameter rotor with constant chord, 
untwisted blades. Two graphs for this model are reproduced here as Figs. I-2 and I-3. From 
these data, Castles and Gray solved the simple thrust equation 

(1) T FP
0.75R

t t

2C V1 v 1
a 2 V V 3

§ ·
= − + θ¨ ¸σ © ¹

 

backwards for induced velocity (v) using the experimental data for blade loading (CT/ı), 
collective pitch at the ¾-radius station (ș0.75R) in radians, vertical descent velocity (VFP) in 
feet per second, and tip speed (Vt) in feet per second. In solving backwards for the induced 
velocity, they calculated (for the NACA 0015 airfoil per Table VIII of their report) that the 
 

 
Figure 4.- Blade angles for 6-foot-diameter rotor with constant-chord, 

untwisted blades. 

 

Fig. I-2. Experimental data establishing the vortex ring and windmill brake states  
for a rotor operating in vertical descent. 

Vortex 
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airfoil lift-curve slope (dCL/dĮ = a) was a = 5.95 per radian for testing conducted at 1,200 rpm 
(RN0.75R = 256,000, Vt = 377 ft/sec2) and a = 6.07 per radian for the rotor speed of 1,600 rpm 
(RN0.75R = 341,000, Vt = 502 ft/sec2).3 Castles and Gray determined that torsional moments 
would twist the blade so that root collective-pitch measurements would not be representative 
of blade angle at the ¾-radius station. The correction they applied for the 6-foot-diameter 
rotor with constant chord, untwisted blades were 

   ș0.75R = 0.820 (șroot ) at 1,600 rpm 
   ș0.75R = 0.890 (șroot ) at 1,200 rpm. 
 
From the experimental data they obtained and the engineering calculations (i.e., a and ș0.75R) 
they made, they obtained comparative results to the assumption made by Glauert. This 
comparison is shown in Fig. 2-101 of this volume.  

 
Figure 8.- Variation of torque coefficient for 6-foot-diameter rotor  

with constant-chord, untwisted blades. 

 

Fig. I-3. Behavior of rotor power in vertical descent. 

                                                 
3 These lift-curve slopes correspond to the incompressible slope (a = 5.73 per radian) corrected for Mach number 
at the ¾-radius station using Prandtl–Glauert theory ( )2a 5.73 / 1 M= − . 
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 There is a very important observation made by Castles and Gray in the middle of page 
10 of their NACA TN 2474 report. They wrote: 

At the larger rates of power-on descent the thrust and torque fluctuated in an 
irregular manner. An attempt was made in each such case to read the average 
values.[My italics] 

This is the key characteristic of what is known today as the vortex ring state. It is, therefore, to 
be expected that mean values of thrust and torque may be found that somewhat follow the 
theory Glauert assumed. However, the magnitude of force and moment fluctuations about the 
mean values are of much more practical importance to the control and stability of all 
rotorcraft in partial-power descent.  
 
 Given this background, the question I raise is this, “What are the mean and fluctuating 
values of forces and moments for an isolated rotor at descent angles less than vertical?” 
Suppose, for example, the Castles and Gray 6-foot-diameter rotor with constant chord, 
untwisted blades had been tested at other tip-path plane angles of attack, such as 0, 30, 45, and 
60 degrees. In my opinion, a real gap in rotorcraft technology results from a very controlled 
experiment that has not been carefully documented in the six decades since Castles and Gray 
published NACA TN 2474.4  
 
 This appendix can, however, take a small step towards answering the preceding 
question. A prediction of mean thrust and torque at several partial-power-descent angles of 
attack is made using the Glauert theory and following the Castles and Gray test procedure. 
This prediction, using the Glauert assumption according to Eq. (2.261) with an empirical 
correction, and the geometry provided in Table I-1, is shown in Figs. I-4 and I-5.  
 

Table I-1. Model Rotor Configuration for Partial-Power-Descent Study 
Parameter Symbol Value Unit Comments 

Blade number b 3 nd  
Radius R 36.0 inches  
Chord c 1.884955592 inches Constant 
Solidity ı 0.05 nd  
Twist șt 0.00 degrees Untwisted 
Root cutout xc 0.135 of R  
Flapping hinge offset eȕ 0.0 of R Blade straight out 
Lagging hinge offset eȟ 0.0 of R Blade straight out 
Stiffnesses EI, GJ Rigid na No elastic deflections 
Lock number Ȗ Infinite nd No coning 
Aifoil lift-curve slope a 6.05 per radian No stall, Mach no. corrected
Airfoil minimum drag coefficient į0 0.013 nd Author’s guess 
Airfoil drag rise with (ĮBE)2 į2 1.25 per radian2 No stall 
Tip speed  502.6548246 fps  
Density  0.0023769 slug/ft3 Sea level standard 

                                                 
4 It can be argued, of course, that so many experimental and production helicopters have flown throughout this 
region with only minor troubles (other than mapping out the “dead man’s” regions and understanding power 
settling or settling with power) that there is no reason to bother with further study.  
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 The predictions assume a propeller-type model rotor hub with three, very stiff blades. 
A control system provides collective pitch, as well as lateral and longitudinal cyclic pitch, so 
that mean rotor hub moments can be brought to zero at each test point.  
 
 A prediction of collective pitch at the ¾-radius station for a mean CT/ı = 0.08 thrust 
coefficient ( 2

T tC T AV= ρ ) is given in Fig. I-4. This prediction was made using Eqs. (2.47) 
and (2.49) to solve for collective pitch at the ¾-radius station and several flight path velocities 
(VFP) holding descent angle of attack (Įhp) constant. That is, from Eq. (2.49) you have 

(2) 2T
hp hp o hp 1C

2C 1 1 3 11 B
a 2 3 2 2

§ ·= λ + + µ θ − µ¨ ¸σ © ¹
 

and, from Eq. (2.47) with zero longitudinal flapping (a1S)—so hub pitching moment is zero—
you have 

(3) 
hp hp hp o

1C
2
hp

82
3B 31

2

µ λ + µ θ
=

+ µ
. 

Then substituting (B1C) from Eq. (3) into Eq. (2) yields 

(4)       2 2i GlauertT FP
0.75R hp hp hp

2 4 t t
hp hp

K v6C V1 3 3 11 sin 1
9 a 2 2 V V 21
4

ª º§ ·§ · § ·θ = + µ − α − − µ« »¨ ¸¨ ¸ ¨ ¸σ§ · © ¹ © ¹© ¹¬ ¼− µ + µ¨ ¸
© ¹

. 

Notice in this result that the inflow ratio (Ȝhp) now contains an empirical factor (Ki) times the 
Glauert induced velocity. I have used this factor to make the ¾-radius-station collective-pitch 
angle agree with the Castles and Gray value at hover where VFP/Vt = 0. This factor then 
remains constant for all descent points. 
 
 A prediction of the rotor torque (i.e., power) coefficient ( 2

Q tC Q AV R= ρ ) less the 
profile torque coefficient ( )2

0 hp1 8σδ + µ  is shown in Fig. I-5. This prediction was made 
following Eq. (2.48) as 

(5) 

( )20
Q Q hp

2 2 2 2 2
2 hp hp hp hp 0.75R hp 0.75R

2
hp o hp hp hp 1C

C C 1
8
1 5 2 8 1 41
2 4 3 3 4 36

a 2 1 B
4 3 2

σδ∆ = − + µ

ª º§ · § · § ·= σδ + µ λ + + µ λ θ + + µ θ¨ ¸ ¨ ¸ ¨ ¸« »© ¹ © ¹ © ¹¬ ¼
σ ª º− λ + θ λ − µ λ« »¬ ¼

, 

which assumes there can be no rolling moment if lateral flapping (a1C) is zero. Furthermore, if 
coning (ȕo) is zero, no lateral cyclic (A1C) is required according to Eq. (2.46). Both of these 
assumptions only apply if the induced velocity is uniform over the rotor disc. 
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Fig. I-4. Prediction of blade angle to maintain constant thrust for descent angles  

other than vertical.  
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Fig. I-5. Prediction of ǻCQ to maintain constant thrust for descent angles  

other than vertical. 
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Closing Remarks 
 
 In looking closely at the preceding figures, it is important to note that the vortex ring 
state extends from near-zero rates of descent up to the point where an abrupt change in the 
data trends occur. This change varies with the rotor blade loading coefficient (CT/ı) as  
Figs. I-2 and I-3 show for vertical descent. What is not so clear is where the vortex ring region 
is for tip-path-plane angle of attacks less than 90 degrees. Furthermore, it is by no means clear 
what definition(s) might be used for the vortex ring state.  
 
 The one report that provides at least some thrust data (but only in graphical form and 
with no corresponding power data) at several descent angles came when Paul Yaggy and 
Ken Mort published Wind Tunnel Tests of Two VTOL Propellers in Descent as NASA/TN–D-
1766 in 1963. I suggest that, as a minimum, the advanced theories today be compared to this 
1960s-era data. 
 
 Finally, keep in mind that autogyros never flew (or fly today) in the vortex ring region. 
By definition, the autogyro rotor is always operating at a zero-torque coefficient, which is 
autorotation. This requires the rotor to operate beyond a VFP/vh of 2.0 following the Glauert 
theory. This region is commonly called the windmill brake state. Fig. I-5 shows that—
ignoring the minimum torque coefficient—the flight path velocity ratioed to tip speed of at 
least 0.08 in vertical descent is required to obtain ǻCQ = 0. Accounting for a minimum torque 
coefficient for this model rotor of approximately 0.0001 means that autorotative vertical 
descent would occur at VFP/Vt = 0.09, and VFP/Vt could reach 0.14 for a descent angle of 
30 degrees—if the Glauert assumption were correct.  
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APPENDIX J 
 

MINIMUM PROFILE POWER, H-FORCE, TORQUE, Y-FORCE, 
AND THRUST 

 
 
 The airfoil at any given blade element of a rotor blade has a minimum drag coefficient 
(Cdo). At the very least, this airfoil drag coefficient must equate to a skin friction drag. 
However, there is also some form drag (i.e., pressure drag). This blade element drag is 
classically resolved in a specified direction, summed over the rotor blade span, and then 
averaged over a blade revolution to give a force at the hub. Based on this integration using a 
value of Cdo that is constant over the whole rotor disc, minimum values of profile power 
coefficient (CPo), H-force coefficient (CHo), Y-force coefficient (CYo), torque coefficient 
(CQo), and thrust coefficient (CTo) can be defined and calculated. The fundamental 
relationship that connects four of these coefficients is 

(1) ( ) ( )o o o oP Q V cos H Vsin T= Ω + α + α . 

To avoid any confusion about the sign convention of angle of attack (Į) in this appendix, I 
have used the absolute value of angle of attack as you will notice in Eq. (1).  
 
 In rotor coefficient notation [i.e., divide Eq. (1) through by 3

tAVρ ] you have 

(2) 
o o o oP Q H TC C C C= + µ + λ  

where advance ratio (µ) is defined as tV cos Vα , and inflow ratio (Ȝ) is taken as 

tV sin Vα . Airspeed (V) is the reference forward flight speed, and the rotor tip speed is  
(Vt = ΩR). The angle of attack (α) is frequently referenced to the rotor shaft, which is perhaps 
more correctly the angle between the plane perpendicular to the shaft and the airspeed. Thus, 
when angle of attack is zero, the rotor is in edgewise flight. When 90α =  degrees, the rotor 
is in axial flight and is generally called a propeller. 
 
 The following paragraphs summarize the classical theory for the five coefficients. 
 
 
Profile Power 
 
 As you know, Cierva and then Glauert (R&M 1111) were the first to state that (in my 
notation)
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(3) 

( )

( ) ( ) ( )

do
Po ,

3/22 1 2 2 2
, 00

3/22 1 2 2 2

0 0

CC P
8

1where P 4 x sin cos dx d
2
1 4 x 2x sin dx d

2

µ λ

π

µ λ

π

σ=

ª º= + µ ψ + µ ψ + λ ψ¬ ¼π

ª º= + µ ψ + µ + λ ψ¬ ¼π

´
¶ ³

³ ³

. 

The assumptions associated with this fundamental problem are (1) the blades are constant 
chord, untwisted, and have no root cutout, and (2) the blade element drag coefficient is 
constant over the disc.  
 
I found it convenient to let JJ = µ2 + Ȝ2 = (V/Vt)2 in all of the equations that follow. 
 
 The integration of Eq. (3) falls in the elliptic integral world, but less exact and simpler 
approximations are available. Using the software called MathCad, I found that integrating 
with respect to radius first (which is exact) and then approximating the azimuthal averaging 
gives  

(4) 
( ) ( ) ( )

2 4
2

, 2

4 2 2 4

5 3 4 7JJ 4JJ 9P 1 JJ 1 JJ
2 8 16 1 JJ1 JJ

3 3 9 1 1 JJln
2 2 16 JJ

µ λ

ª º+ + µ= + + + µ −« »
++« »¬ ¼

§ ·+ +§ ·+ λ + λ µ + µ ¨ ¸¨ ¸ ¨ ¸© ¹ © ¹

. 

In the special case where Ȝ = 0 and µ < 0.4, the proceeding lengthy expression reduces to 

(5) ( )
2 4 6 2

0.4, 0
9 3 2 35 9P 1 5 3ln 1
2 16 64 2µ< λ=

ª º§ ·= + µ + µ + + µ ≈ + µ« »¨ ¸µ© ¹¬ ¼
 

which confirms the approximations that both Cierva and Glauert obtained. 
 
 When the rotor is in edgewise flight (Ȝ = 0) at high advance ratios on the order of µ > 
1.5 on up to µ = ∞ , Eq. (4) has the very useful and quite adequate approximation that  

(6) ( )
3

1.5, 0P 3 4µ> λ= = µ + µ . 

In fact, Eq. (6) is the asymptotic behavior of the profile power function ( ), 0P µ λ= . 
 
 The propeller case is defined by Į = – 90 degrees (or + 90 degrees) so µ = 0 and the 
flow ratio (Ȝ) becomes V/Vt because I have used the absolute value of angle of attack. For the 
propeller case, Eq. (3) has the exact solution of 

(7) ( )

2
2 2 4

0,
5 3 1 1P 1 1 ln
2 2µ= λ

ª º+ + λ§ ·= + λ + λ + λ « »¨ ¸ λ© ¹ « »¬ ¼
.
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 At high propeller advance ratio on the order of Ȝ > 1.5 up to Ȝ = ∞ , Eq. (7) has the 
quite adequate approximation for engineering purposes of  

(8) ( )
3

0, 1.5
3P 2 4

10µ= λ> = + λ + λ
λ

, 

which has the identical asymptotic behavior of the rotor profile power function. That is, both 
Eqs. (6) and (8) behave as 4(V/Vt)3 in the final limit where tip speed goes to zero.  
 
 The reason for this equality is rather easy to understand. In the limit where either rotor 
advance ratio or propeller inflow ratio is infinite, the shaft rotational speed (ȍ) is zero. In 
either case the profile power is, from Eq. (1), either VHo or VTo. In either case the force  
(i.e., Ho or To) is total blade area times drag coefficient times dynamic pressure. The rotor 
case represents a stopped rotor. The propeller case represents a set of feathered blades. 
 
 
H–Force 
 
 In the general rotor case, there is an H-force acting perpendicular to the shaft and in 
the downwind direction. This force in rotor notation is 

(9) 

( )

( )

( )

do
Ho ,

2 1 2 2 2
, 0 0

2 1 2 2 2

0 0

CC H
8

1where H 4 x 2x sin sin( )dx d
2
1 4 x 2x sin sin cos cos sin dx d

2

µ λ

π

µ λ

π

σ=

ª º= + µ ψ + µ + λ ψ + Λ ψ¬ ¼π

ª º= + µ ψ + µ + λ ψ Λ + ψ Λ ψ¬ ¼π

³ ³

³ ³

. 

Now the sine and cosine of the sweep angle (Λ) are simply 

(10) 
2 2 2 2 2 2

cos x sinsin cos
x 2x sin x 2x sin

µ ψ + µ ψΛ = Λ =
+ µ ψ + µ + λ + µ ψ + µ + λ

 

so that 

(11) ( ) [ ]2 1 1/ 22 2 2
, 0 0

1H 4 x 2x sin x sin dx d
2

π

µ λ ª º= + µ ψ + µ + λ ψ + µ ψ¬ ¼π ³ ³  

and the approximation to the H-force integral is 

(12) ( ) ( )
3 2 3

, 2
1 JJ 1 3 1 1 JJH 1 JJ 3 ln
4 4 JJ1 JJµ λ

ª º § ·− + +§ ·= + µ + µ + µλ + µ« » ¨ ¸¨ ¸ ¨ ¸© ¹+« » © ¹¬ ¼
. 

In the special case where Ȝ = 0 and µ < 0.4, this lengthy expression reduces to 

(13) ( )
3 5

0.4, 0
1 2 7H 3 5 3ln
4 16µ< λ=

ª º§ ·= µ + µ + + µ« »¨ ¸µ© ¹¬ ¼
. 
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 Another interesting case occurs when Ȝ = 0 and µ approaches infinity. In this case, the 
rotor approaches a stopped rotor in edgewise flight. The H-force in this case is the drag of 
nonrotating blades, and at high advance ratios on the order of µ > 1.5 on up to µ = ∞ , 
Eq. (12) has the very useful approximation that  

(14) ( )
2

1.5, 0H 1 4µ> λ= = + µ . 

In fact Eq. (14) is the asymptotic behavior of the H-force function, ( ), 0H µ λ= . 
 
 This minimum H-force component of rotor drag can be expressed in the form of drag 
(D) divided by dynamic pressure (q). Since  

(15) ( ) ( )
2 2 do

o t 1.5, 0
CD H R V H
8 µ> λ=

σ= = ρ π  

it follows that the equivalent parasite drag (fe = D/q) is 

(16) 

( )
( )

( ) ( ) ( )

2 2
to do

1.5, 02 21
2

1.5, 0
do do2 2

R VH CD bcR H
q q V R 8

H 1bcR C bcR C 1
4 4

µ> λ=

µ> λ=

ρ π § ·= = ¨ ¸ρ π© ¹

§ ·= = +¨ ¸µ µ© ¹

. 

Keep in mind that some sort of propulsive device must be used to drag the edgewise rotor 
through the air. This 100-percent-efficient device requires power equal to VD. 
 
In the special case where µ = 0, which is the propeller case, the exact solution of Eq. (11) is 

(17) ( )0,H 0µ= λ ≡ . 
 
 
Y–Force 
 
 In the general rotor case, there is a Y-force acting perpendicular to the shaft and 
perpendicular to the free-stream velocity. This Y-force is positive towards the right wing tip 
when the rotor rotation is counterclockwise as viewed from above. This force in rotor notation 
is 

(18) 

( )

( )

[ ]

do
Yo ,

2 1 2 2 2
, 0 0

2 1 2 2 2

0 0

CC Y
8

1where Y 4 x 2x sin cos( )dx d
2
1 4 x 2x sin cos cos sin sin dx d

2

µ λ

π

µ λ

π

σ=

ª º= + µ ψ + µ + λ ψ + Λ ψ¬ ¼π

ª º= + µ ψ + µ + λ ψ Λ − ψ Λ ψ¬ ¼π

³ ³

³ ³

. 

Substituting the sine and cosine of the sweep angle (Λ) relationships from Eq. (10) yields 
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(19) ( ) [ ]2 1 1/ 22 2 2
, 0 0

1Y 4 x 2x sin x cos dx d
2

π

µ λ ª º= + µ ψ + µ + λ ψ ψ¬ ¼π ³ ³  

from which it follows that for all advance ratios and all inflow ratios, 

(20) ( ),Y 0µ λ ≡ . 
 
 
Torque 
 
 In the general rotor case, a torque must be applied to the shaft to maintain rotor speed. 
This torque might be obtained from an engine if the rotor is not in autorotation (or the 
propeller is not windmilling). The required torque in rotor notation is 

(21) 
( )

( ) ( )

do
Qo ,

1/22 1 2 2 2
, 0 0

CC Q
8

1where Q 4 x 2x sin x sin xdx d
2

µ λ

π

µ λ

σ=

ª º= + µ ψ + µ + λ + µ ψ ψ¬ ¼π ³ ³
 

and the approximation to this torque integral is 

(22) 
( ) ( ) ( )

2 4
2

, 2

4 2 2 4

1 1 4 JJ 4JJ 3Q 1 JJ 1 JJ
2 8 16 1 JJ1 JJ

1 1 3 1 1 JJln
2 2 16 JJ

µ λ

ª º+ − µ= + + + µ +« »
++« »¬ ¼

§ ·+ +§ ·− λ + λ µ + µ ¨ ¸¨ ¸ ¨ ¸© ¹ © ¹

. 

In the special case where Ȝ = 0 and µ < 0.4, this lengthy expression reduces to 

(23) ( )
2 4 6

0.4, 0
3 1 2 7Q 1 5 3ln
2 16 64µ< λ=

ª º§ ·= + µ − µ + + µ« »¨ ¸µ© ¹¬ ¼
. 

 

 In the special helicopter rotor case where Ȝ = 0 and advance ratio approaches infinity 

(24) ( )1.5, 0Q 2µ> λ= → µ . 

Note that CQo goes to infinity as advance ratio approaches infinity, but, in fact, the actual 
torque goes to zero for the stopped rotor or propeller. You can see this by writing 

(25) ( ) ( ) ( )2 2 do t
o t do1.5, 0

C VVQ R V R Q bcR RC
8 4µ> λ=

σ§ · § ·= ρ π = ρ¨ ¸ ¨ ¸
© ¹ © ¹

. 

This last result applies equally well to a feathered propeller because, as the tip speed goes to 
zero, the torque goes to zero. 
 
 In the special case where µ = 0, which is the propeller, the exact solution to Eq. (21) is 
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(26) ( ) ( )
2

2 2 4
0,

1 1 1 1Q 2 1 ln
2 2µ= λ

§ ·+ + λ= + λ + λ − λ ¨ ¸¨ ¸λ© ¹
. 

 At high propeller advance ratio on the order of Ȝ > 1.5 on up to Ȝ = ∞ , Eq. (26) has 
the very useful and quite adequate approximation of  

(27) ( )0, 1.5
2 4Q

5 3µ= λ> = + λ
λ

. 

 
 
Thrust 
 
 In the general rotor case, when there is an inflow (i.e., Ȝ is not zero), there is a 
component of minimum blade element drag in the shaft axial direction. This force is a 
negative thrust (a drag if you prefer) and is given by 

(28) ( ) ( )

1/22 1 2 2 2do
To , , 0 0

CC T where T 4 x 2x sin dx d
8 2

π

µ λ µ λ
σ λ ª º= = + µ ψ + µ + λ ψ¬ ¼π ³ ³  

and the approximation to the thrust integral is 

(29) ( ) ( ) ( )2 2 2
, 2

1 1 2JJ 1 1 JJT 1 JJ 2 2 ln
2 JJ1 JJµ λ

ª º § ·+ + += λ + + µ + λ λ + µ« » ¨ ¸¨ ¸+« » © ¹¬ ¼
. 

Obviously, if inflow is zero then CTo is zero. But, in the special case when µ = 0, which 
corresponds to a propeller, then the exact solution to Eq. (28) is 

(30) ( )

2
2 3

0,
1 1T 2 1 2 lnµ= λ

§ ·+ + λ= λ + λ + λ ¨ ¸¨ ¸λ© ¹
. 

 At high propeller advance ratio on the order of Ȝ > 1.5 up to Ȝ = ∞ , Eq. (7) has the 
approximation that  

(31) ( )
2

0, 1.5 2

2 1T 4
3 10µ= λ> = − + λ

λ
 

It is of interest to see how the drag of the feathered propeller is approached as the shaft 
rotational speed approaches zero. In this progression towards the limit, the equivalent parasite 
drag (fe) form is 

(32) 
( )

( ) ( )
2 2

to do
do0,2 2 2 41

2

R VT CD bcR 1 1T bcR C 1
q q V R 8 6 40µ= λ→∞

ρ π § · § ·= = = + −¨ ¸ ¨ ¸ρ π λ λ© ¹© ¹
. 
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Equivalent Drag in Edgewise Flight 
 
 It can be very helpful to express the minimum profile power from Eq. (3) as an 
equivalent parasite drag area (i.e., D/q) parameter. That is 

(33) ( ) ( ) ( )0,3
do

0

do

P
4
1

CbcR
qVP

CbcR
qD

=λµµ
== . 

This form shows that in the limit of infinite advance ratio when the rotor is stopped, the 
minimum drag area parameter is  

(34) ( ) 1
CbcR
qD

do

= . 

The variation of this equivalent drag area parameter with advance ratio is illustrated with 
Fig. J-1 and, in an enlarged view, with Fig. J-2.  
 
 

1
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Fig. J-1. Equivalent drag decreases with advance ratio. The limit is the drag of 

stopped blades. 
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Fig. J-2. There is relatively clear indication of diminishing return to high advance ratio. 

 
 
A Proof 
 
 The preceding results are connected by the fundamental, total energy per unit time 
equation, which is 

(35) ( ) ( )o o o oP Q V cos H Vsin T= Ω + α + α , 

and in rotor coefficient notation (i.e., after dividing through by 3
tAVρ ) you have 

(36) 
o o o oP Q H TC C C C= + µ + λ . 

A simple “proof” of the above relationship can be seen by using the approximation equations 
for the edgewise flying rotor, Eqs. (23) and (13), which are the series expansions from the 
preceding paragraphs. Thus, when Ȝ = 0 and µ < 0.4,  
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(37) 

( ) ( )o o o

do do
P Q H , 0 , 0

2 4 6 3 5do do

2 4do

C CC C C Q H
8 8

C C3 1 2 7 1 2 71 5 3ln 3 5 3ln
8 2 16 64 8 4 16

C 3 1 1 21 3 5 3ln
8 2 16 4

µ λ= µ λ=
σ σ= + µ = + µ

 ½ ½ ª ºª º ª ºσ § · σ § ·° ° ° °= + µ − µ + + µ + µ µ + µ + + µ« »® ¾ ® ¾« » « »¨ ¸ ¨ ¸µ µ« »© ¹ © ¹° °¬ ¼ ¬ ¼° °¯ ¿ ¬ ¼¯ ¿

ª ºσ § ·§ · § ·= + + µ + − + µ +«¨ ¸ ¨ ¸ ¨ ¸µ© ¹ © ¹ © ¹¬
6

2 4 6do

7 7
64 16

C 9 3 2 351 5 3ln
8 2 16 64

 ½° °§ ·+ + µ® ¾» ¨ ¸
© ¹° °¼¯ ¿

 ½ª ºσ § ·° °= + µ + µ + + µ® ¾« »¨ ¸µ© ¹° °¬ ¼¯ ¿

, 

and you can see by inspection that Eq. (5) has been reproduced.  
 
 
Azimuth Integrals 
 
 For the sake of completeness, the azimuthal averaging approximations I used were 

(38) 
( )

2 2
3/ 20

1 1 1I0 1 2 sin JJ d 1 JJ
2 2 2 1 JJ

π ª º
= + µ ψ + ψ ≈ + − µ « »

π +« »¬ ¼
³  

(39) 2

0

1 1 1I1 sin 1 2 sin JJ d
2 2 1 JJ

π ª º= ψ + µ ψ + ψ ≈ µ « »π +¬ ¼³  

(40) ( )2 2

0

1 1I2 sin 1 2 sin JJ d 1 JJ
2 2

π
= ψ + µ ψ + ψ ≈ +

π ³  

(41) ( )2 3

0

1 3 1I3 sin 1 2 sin JJ d
2 8 1 JJ

π ª º= ψ + µ ψ + ψ ≈ µ « »π +¬ ¼³  

(42) ( )2 4

0

1 3I4 sin 1 2 sin JJ d 1 JJ
2 8

π
= ψ + µ ψ + ψ ≈ +

π ³  

(43) 
2

0

1 2 sin JJ 1 sin1 1 JJ 1L0 ln d ln
2 JJ sin JJ

π
§ · § ·+ µ ψ + + + µ ψ + += ψ ≈¨ ¸ ¨ ¸¨ ¸¨ ¸π + µ ψ © ¹© ¹

´
µ
¶

 

(44) ( )
2

2

0

1 2 sin JJ 1 sin1 1 1 JJ 1L2 sin ln d ln
2 2JJ sin JJ

π
§ · § ·+ µ ψ + + + µ ψ + += ψ ψ ≈¨ ¸ ¨ ¸¨ ¸¨ ¸π + µ ψ © ¹© ¹

´
µ
¶

 

(45) ( )
2

4

0

1 2 sin JJ 1 sin1 3 1 JJ 1L4 sin ln d ln
2 8JJ sin JJ

π
§ · § ·+ µ ψ + + + µ ψ + += ψ ψ ≈¨ ¸ ¨ ¸¨ ¸¨ ¸π + µ ψ © ¹© ¹

´
µ
¶

 

 
The use of these approximations leads to numerical results that are, at most, 1.1 percent in 
error with the MathCad numerical integrations. The greatest error is when µ = Ȝ = 1.0. 
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APPENDIX K 
 

AIR MINISTRY MANUALS FOR THE ROTA GYROPLANE 
 
 
 This appendix provides a few key publications by the Air Ministry of Great Britain 
applicable to the Royal Air Force fleet (RAF) of Cierva C.30 Autogiros. To the RAF, the 
Cierva C.30 was designated as the ROTA Gyroplane and was powered by the CIVET I 
reciprocating piston engine. The civil version of this engine was the Genet Major MK. IA. I 
have included these manuals because they are, in my view, of great historical significance and 
have resided in the RAF Museum Library for far too long. The rotorcraft industry (myself 
included) must express our most grateful appreciation to Miss Mary Jane Millare, Office 
Administrator of the Department of Research and Information Services at the Royal Air Force 
Museum in London. At my request, she tracked down the original manuals and got me a copy.  
 
 The manuals captured in this appendix are organized in four publications. The first 
publication (pages 448 to 490) provides a general description of the aircraft with quite 
detailed dimensions in several areas. The document is a First Edition and is dated December 
1934. Chapter IX, which begins on page 475, gives some special flying notes that are of 
particular interest. 
 
 The second publication (pages 491 to 512) provides quite specific maintenance 
procedures to be followed in order to keep a ROTA in safe flying condition. This document is 
also dated December 1934. I have added two amendments (pages 513 to 517) to the 
maintenance manual dated June 1936 and May 1938 respectively. 
 
 The third publication (pages 518 to 529) is a flight training manual for the ROTA. 
This document is titled “Notes on the Handling of the ROTA Gyroplane in the Air and Upon 
the Ground.” The few pages are packed with very clear instructions. The weight statement on 
page 527 gives the weight empty of a ROTA as 1,228 pounds and the maximum all-up weight 
as 1,800 pounds.  
 
 The fourth publication (pages 530 to 561)  is a collection of modifications that the Air 
Ministry published. The airspeed restriction of 130 mph (because of the inability to recover 
from a dive at higher speeds) was removed July 20, 1935 (see page 542). Blade life was set at 
75 hours by modification A.P. 1490/P.5 as seen on page 549. 
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AIR PUBLICATION 1490 (VOLUME II), PART 2 
Maintenance Amendment List 1  June 1936 
Maintenance Amendment List 2  May 1938 
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518 

 FOR OFFICIAL USE ONLY 
 
 
 

 
AIR MINISTRY AIR PUBLICATION 1568 
 
 July 1936 
 
 
 
 
 
 
 
 

NOTES ON THE HANDLING OF 

THE ROTA GYROPLANE IN THE 

AIR AND UPON THE GROUND 
 
 
 

 These notes should be read in conjunction with A.P.  
1490, Vol. I. They are intended to amplify that publication, 
for the guidance of pilots of the C.30 Autogiro. 
 The contents are arranged in normal sequence of training. 
 For ease of reference, certain parts of A.P. 1490, Vol. I, 
have been included with alterations to suit the context. 

 
 
 
 
 
 
                           Promulgated for the information and guidance of all concerned. 

                                                                    By Command of the Air Council,          

          DONALD BANKS. 
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