NASA Technical Memorandum 110421 =~ USAATCOM Technical Report 96-A-008

-0/
e

A Comparison of Lifting-Line and
CFD Methods with Flight Test Data
from a Research Puma Helicopter

William G. Bousman, Aeroflightdynamics Directorate, U.S. Army Aviation and Troop Command,
Ames Research Center, Moffett Field, California

Colin Young, Defence Research Agency (Aerospace Division), Farnborough, United Kingdom
Francois Toulmay, Eurocopter France, Marignane, France

Neil E. Gilbert, Aeronautical and Maritime Research Laboratory, Melbourne, Australia

Roger C. Strawn, Aeroflightdynamics Directorate, U.S. Army Aviation and Troop Command,
Ames Research Center, Moffett Field, California

Judith V. Miller, Defence Research Agency (Aerospace Division), Farnborough, United Kingdom
Thomas H. Maier, Aeroflightdynamics Directorate, U.S. Army Aviation and Troop Command,
Ames Research Center, Moffett Field, California

Michel Costes and Philippe Beaumier, ONERA, Chitillon, France

October 1996

National Aeronautics and US Army
Space Administration Aviation and Troop Command
Ames Research Center Aeroflightdynamics Directorate

Moffett Field, CA 94035-1000 Moftett Field, CA 94035-1000






NASA Technical Memorandum 110421 USAATCOM Technical Report 96-A-008

A Comparison of Lifting-Line and
CFD Methods with Flight Test Data
from a Research Puma Helicopter

William G. Bousman, Colin Young, Frangois Toulmay, Neil E. Gilbert, Roger C. Strawn,
Judith V. Miller, Thomas H. Maier, Michel Costes, and Philippe Beaumier

October 1996

National Aeronautics and US Army
Space Administration Aviation and Troop Command






FOREWORD

A joint program was undertaken in 1987 by investigators in England, France, Australia, and the
United States to examine the accuracy of computational fluid dynamics (CFD) model predictions of the
flow about a rotor blade on a helicopter in forward flight. The focus of this program was on the accuracy
of the CFD predictions; however, lifting-line methods were also evaluated as they are a necessary
first step in the CFD computation. Three cases were selected from experimental data obtained on an
Aérospatiale Puma with modified swept-tip blades flown at the Royal Aircraft Establishment (RAE) at
Bedford (Riley and Miller, 1983; Riley, 1986) and these were used to assess the CFD model accuracy.
A workshop was held at RAE Farnborough in May 1988 and the results were presented at the European
Rotorcraft Forum in September 1989 (Jones et al., 1990; Strawn et al., 1989; Bousman et al., 1989).

A second phase of correlation using the research Puma flight test data was agreed upon in 1989.
The work was expanded considerably with a stronger focus on the lifting-line methods which must
provide an accurate basis for the CFD calculations. A workshop was held at Ames Research Center in
May 1990 to examine the predictions of the various calculation methods. Participants at this workshop
were Colin Young, Judith Miller, and John Riley from England; Francois Toulmay, Andre Desopper,
and C. T. Tran from France; Neil Gilbert from Australia; and Bill Bousman, Roger Strawn, Tom Maier,
and Francisco Hernandez from the United States. The workshop employed a common graphic interface
and data base for all of the calculations, but even with this aid the workshop participants were able to
examine only half the available data base in the time available. At the end of the workshop, however,
the participants agreed upon an outline for a final report and sections of the report were assigned to
each participant. The result of this collaboration is the present document.

The present report has been a long time in preparation for a variety of reasons. A portion of the
work dealing with the lifting-line methods has already been published (Young et al., 1991), but much of
what is contained here is new material. Not all of the original participants have been able to contribute
fully to this document. C. T. Tran died in 1992, John Riley retired from his job at the Defence Research
Agency (DRA) in Bedford, formerly the RAE, and Andre Desopper and Francisco Hernandez have
changed organizations and no longer have the time to write their sections nor comment on the complete
report. Fortunately, Michel Costes and Philippe Beaumier have been able to author some of the missing
sections even though they did not participate in the original workshop.

Colin Young wrote the section on the RAE/WHL analysis, the vacuum modal calculations, and
all of the sections in Task 1 dealing with blade moments and loads. Tom Maier and Neil Gilbert
wrote the section on the CAMRAD analyses and Robert Toffoletto assisted Gilbert with Appendix C.
Frangois Toulmay wrote the section on the METAR/R85 analysis, the trim and performance sections in
Tasks 1 and 3, the vibratory loads section in Task 1 (with Bill Bousman), and the appendix on power
computation. Roger Strawn wrote the description of FPR, the section on calculated airfoil characteristics
for Task 1, the CFD comparisons for the autorotational case in Task 2, and improvements that can be
expected in coupling methods. Judith Miller wrote the section describing the TSP code plus the CFD
comparisons for the level flight case in Task 2. Michel Costes and Philippe Beaumier wrote two of
the sections describing the blade airloads for Task 1. Finally, Bill Bousman wrote many of the section
introductions, the Task 3 section dealing with airloads and motion (with Neil Gilbert), the Task 3 section
dealing with airfoil characteristics, the flight data descriptions, the recommendations, the summary, and
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the documentation appendix. He also took primary responsibility for editing of the report. All of the
individual authors reviewed a final draft of the report and offered many useful comments which have
been incorporated in the report.
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SUMMARY

A collaborative effort by investigators in the United States, the United Kingdom, France, and
Australia is reported here. The purpose of the collaborative study was to make a detailed assessment
of the accuracy of Computational Fluid Dynamics (CFD) methods for the prediction of the airloads on
a helicopter blade in high-speed flight. As of 1990 the state-of-the-art of CFD analysis was restricted
to cases where the trim condition, blade dynamic and elastic response, and a portion of the inflow must
either be specified as constants or computed by an analysis external to the CFD calculation. Typically
this external computation is obtained with a comprehensive analysis based on lifting-line theory. The
external computation is then coupled to the CFD calculation and a hybrid solution is obtained following
a number of iterations between the two analyses.

The assessment of CFD predictive accuracy was approached by examining not only the accuracy
of the hybrid calculation but also by examining the accuracy of the lifting-line methods in isolation,
that is, outside of the hybrid calculation. In addition, because of the sensitivity of the hybrid calculation
to modeling assumptions in the lifting-line methods, the problem of predictive accuracy was further
investigated by examining the influence of various modeling assumptions on the lifting-line calculation.
These three components, then, (1) the effects of analytical modeling assumptions, (2) the accuracy of
the lifting-line methods in isolation, and (3) the accuracy of the hybrid calculation, comprise the body
of this report.

An Introduction to the present effort is provided as Section 1. Following this, Section 2 briefly
describes the analytical methods used. The four lifting-line methods include two methods in use in the
United States and Australia: CAMRAD/JA and its predecessor CAMRAD; a method developed jointly
by Westland and the RAE (now the DRA) in the United Kingdom which is referred to in this study as
the RAE/WHL analysis; and a method developed by Aérospatiale (now Eurocopter France) which is
referred to here as the METAR/RSS code. The two CFD analyses used are the FPR code, in use in the
United States, and the TSP code, in use in the United Kingdom. The hybrid calculations couple FPR
with CAMRAD/JA and TSP with the RAE/WHL analysis.

Section 3 compares modal and frequency calculations for three of the lifting-line methods and this
comparison indicates that the same structural model has been implemented satisfactorily by each code.

The sensitivity of the lifting-line methods to various modeling assumptions is examined in Section 4
for a single high-speed flight condition. There are no data for this case. This examination is based
on a stepwise approach that starts with a simplified model and builds to the full-complexity or ‘all-
up’ model. The simplified model assumes that the rotor is represented by a rigid, hinged blade and
the aerodynamics are represented by a uniform wake, linear aerodynamics, no unsteady flow, and no
yawed flow corrections. Modeling complexity is increased in a stepwise manner by adding: (1) a
prescribed wake, (2) nonlinear airfoil characteristics (tables), (3) unsteady aerodynamics, (4) radial or
yawed flow effects, (5) elastic bending modes, and (6) elastic torsion modes. Based on this approach it
is observed that the modeling step that has the most significant effect on the blade airloads is the change
from a uniform to a prescribed wake. For the moderate flight condition studied here the influence of
nonlinear aerodynamics is essentially nonexistent on the blade lift but does significantly influence the
blade pitching moment. Unsteady aerodynamics is shown to have little effect on lift but, again, affects



the pitching moment. Radial or yawed flow effects are small, for the most part. The addition of blade
flexibility influences the airloads to a limited degree with similar effects caused by both blade bending
and torsion.

The lifting-line methods in isolation are examined in Section 5 by comparison with flight-test
data obtained on a research Puma with a swept-tip blade under a joint Anglo-French program. The
major focus of the comparison is an airspeed sweep from 0.1 to 0.4 advance ratio and comparisons
are made with the airloads measured near the blade tip, bending and torsion moments, pitch-link loads
and vibratory rotor forces and moments. There is, in general, a good prediction of the blade normal
force at lower advance ratios for the lifting-line methods that include a free wake and for all of the
methods at high speed. However, the prediction of the section pitching moment near the blade tip is
much less satisfactory. The flap bending moments, particularly in the central section of the blade, are
well predicted by most of the analyses, but the chord moments are poorly predicted. The prediction of
the torsion moments and pitch-link loads is only fair and, in general, all of the analyses underpredict
the torsion moments. By inference, these methods will also underpredict the elastic torsional deflection
in the blade as well.

The effect of tip sweep on the predictive ability of the lifting-line methods was a concern in this
study and the approach taken was to examine data obtained on a Puma with the conventional rectangular-
tip blade and use these data as baseline or control case. The lifting-line methods are compared with
these data for a single advance ratio in Section 5.3. It is shown that the primary effect of sweep is on
section pitching moments near the blade tip and, hence, on the torsion moments inboard on the blade.
In general, where lifting-line methods show good predictive capability this holds true for either the
rectangular-tip or swept-tip blade. The converse is also true that when the predictive capability is poor
it is poor regardless of configuration.

Two flight conditions were selected for hybrid calculations, one from the level flight airspeed
sweep discussed in Section 5.1 and one for an autorotational dive condition. The lifting-line method
predictions in isolation for this latter case are discussed in Section 5.4. The prediction of blade airloads
and structural moments is noticeably poorer for this dive condition than for the high-speed level flight
case, but it is unclear to what degree this is related to the higher advance ratio and higher tip Mach
number for this condition.

Finally, Section 5 concludes with an examination of the blade airfoil characteristics in Section 5.5.
Blade profile measurements are compared with the ordinate data that are used by the CFD methods and
good agreement is observed. The modified airfoil at the tip of the Puma blade is similar to an NACA 0012
airfoil section and, based on that similarity, the lifting-line methods have all used airfoil tables or data
based on the NACA 0012 section. The limitations of this assumption are examined by using both a
potential flow and a Navier-Stokes flow solver to obtain two-dimensional airfoil characteristics for a
variety of angles of attack and Mach numbers. This comparison suggests that the tables or equations
used by the lifting-line methods in this section are, for the most part, satisfactory.

Section 6 presents the results of the hybrid calculations for the two flight conditions examined.
The first case is an autorotational dive condition with u = 0.43 and Mgy = 0.92 while the second
case is a high-speed level flight case with 1 = 0.40 and Mgy = 0.83. The airloads predicted by
these hybrid calculations are, in general, no better than those predicted by the lifting-line methods



in isolation and particularly for the section pitching moments the predictions are worse. The hybrid
coupling procedure is examined in more detail in Section 6.5 and although some improvements can be
obtained it is concluded that the present ‘loose-coupled’ procedure does not provide accurate prediction
of the airloads on a helicopter blade at high speed.

Summary sections are included throughout the report and the most important results of the collabo-
rative effort are contained in Section 7, Conclusions, and Section 8, Recommendations. Documentation
of the research Puma rotor and aircraft is contained in Appendix A of this study. Appendix B discusses
various approaches to categorizing rotor power and Appendix C examines details of the near-wake
representation used by CAMRAD and CAMRAD/JA.



1 INTRODUCTION

Computational fluid dynamics (CFD) models have provided great insight in recent years into the
flow over a rotor blade in forward flight, particularly for unsteady transonic flows at high speed and
close blade-vortex interactions at moderate speeds. Present methods, however, compute only the effects
of the blade self-induced flows, that is, the effects of the rotor blade’s own wake. For a lifting rotor
in forward flight it is also necessary to account for the flow induced by the wakes of previous blades
and the effects of structural deformation on angle of attack. It is expected that in the future the entire
calculation will be made using a unified flow method, but for the present such a computation can only
be done by using hybrid methods that combine the CFD analysis with an appropriate comprehensive
analysis based on lifting-line theory (Caradonna, 1990).

The first demonstration of a hybrid approach for rotors in forward flight compared calculations
using a lifting-line method and a finite-difference code with measurements obtained in a wind tunnel
test of a 1/7th-scale model of an AH-1G rotor (Tung et al., 1986). In this calculation the blade angle of
attack was calculated by the lifting-line method in the normal fashion except that the component of the
induced flow resulting from the blade self-induced wake within the CFD method computational domain
was removed. The angle-of-attack values that exclude the blade self-induced flow were referred to as
partial angles of attack and were then used in the finite-difference method to calculate the blade lift. The
finite-difference lift was then transferred to the lifting-line analysis in lieu of table look-up values, and
a relaxation scheme was employed to allow convergence between the two methods. The two methods
then were coupled in lift and it was demonstrated that the convergence process was quite rapid.

In 1987, it was decided to examine the accuracy of these hybrid methods for the prediction of the
flow over a full-scale rotor blade using pressure data obtained on a research Puma in flight (Riley and
Miller, 1983; Riley, 1986). As a first step in a collaborative study, comparisons were made between
three lifting-line methods for the prediction of the partial angles of attack. Then, one set of partial
angles was selected as a baseline, and the blade pressures were computed using three different CFD
methods. In essence, this study examined the first two steps in the hybrid calculation, but did not
examine the coupling of the methods. The results of these calculations were compared in a workshop
at DRA Farnborough in May 1988. Two general conclusions were reached from this workshop (Jones
et al., 1990, Bousman et al., 1989; Strawn et al., 1989). First, the three CFD methods, in general,
showed good agreement with each other, but did not provide a satisfactory prediction of the flight test
measurements. Second, while the lifting-line methods showed fairly good agreement in the prediction
of rotor lift, the calculated partial angles differed substantially.

Following the 1988 workshop, a second collaborative effort was proposed that would focus on the
problems revealed in the first workshop. In particular, it was apparent that much more needed to be
learned about the accuracy of the lifting-line methods before these methods could be coupled with the
CFD calculations. For the second collaboration, then, three tasks were proposed:

Task 1 Compare the predictions of lifting-line methods over a range of airspeeds for the research
Puma and examine, not just the measured pressures, but the blade structural response as well.

Task 2 Compare hybrid predictions for two flight points: a high-speed level flight case and an
autorotational dive case.



Task 3 Examine the modeling assumptions in the lifting-line calculation for one hypothetical flight
condition as these assumptions are varied in a stepwise fashion.

A workshop was held in May 1990 at Ames Research Center to report on the three tasks. This
report is the result of that workshop. The report is organized to first discuss the various analyses used.
Following this, comparisons are made between the lifting-line methods to assess how well the rotor
blade structure was modeled. The three tasks are then discussed, but in the order of Task 3, Task 1,
and Task 2. This re-ordering of the tasks has been done to allow insights gained in the evaluation
of modeling assumptions (Task 3) to be used in evaluating the accuracy of the lifting-line methods
(Task 1). Because of the length of the report intermediate summaries are provided for many of the
individual sections. A conclusions section is provided at the end of the report that assesses the results
from the three tasks from an integrated perspective. This is followed with recommendations for further
work. Appendices are included that provide model property documentation, a derivation of the method
used for power comparisons in Task 3, and an examination of subtle differences in the CAMRAD and
CAMRAD/JA wake models.

The work reported here is, to some extent, dated. The analytical models that were used for these
comparisons have, for the most part, evolved on a more or less continuous basis over the past six
years. This is particularly true for the METAR/R8S analysis, but a number of changes have also been
made to the RAE/WHL analysis as well. The CAMRAD analyses, on the other hand, are relatively
static. Improvements to CAMRAD/JA are to be found in the CAMRAD II software rather than in
CAMRADY/JA. The authors believe, however, that the conclusions in Section 7 are generally valid
today, as are the recommendations of Section 8.



2 ANALYTICAL MODELS

Two types of analytical models were used in the studies reported here: lifting-line models and CFD
models. The lifting-line models used are, in general, comprehensive analyses that iteratively obtain a
complete solution for the equations describing the rotor and the flight vehicle. The solution includes
the effects of blade aerodynamics, the rotor wake, and the blade motions and elastic deformations.

The CFD methods used here compute the blade aerodynamic loads using full potential or small-
disturbance methods and are more adaptable than the lifting-line methods that must use tabulated aero-
dynamic data to determine the loads. This adaptability, however, is compromised to a degree by the
absence of a boundary-layer model that can properly represent viscous effects. The CFD computation
includes the influence of the blade’s own near wake, that is, part of the self-induced flows, but does
not compute the flow induced by the remaining part of the wake, by the wakes of the other blades, or
by the blade motions. For an accurate calculation, therefore, the CFD methods must be coupled to a
lifting-line computation to account for effects outside their computational domain.

This section first discusses the lifting-line methods used and, following this discussion, describes
the CFD models.

2.1 Lifting-Line Models

The lifting-line models used in the present correlation study are briefly described here. Each of
these models iteratively obtains a steady-state solution for the entire rotor that accounts for the blade
aerodynamics, the rotor wake, and the blade motions and elastic deformations.

Sufficient detail is provided in this section to allow a general idea of each of the lifting-line model’s
structure, assumptions, and limits of applicability. A detailed discussion of these models, however, is
beyond the scope of this report and the cited references should be examined.

2.1.1 RAE/WHL Analysis

The RAE/WHL lifting-line analysis was developed jointly by the DRA (formerly the RAE) and
Westland Helicopters Limited (WHL) and was described briefly in Bousman et al. (1989). However,
some changes have been made to the analysis recently and the description of the method is repeated in
this section with increased emphasis on the options used for the Puma calculations.

A modal approach is adopted to represent the elasticity of the blades in the analysis. The method
as developed by S. P. King at WHL is used, which allows a blade of a very general geometry to be
treated. The shear center of the blade consists of a series of straight line segments that can be orientated
in any direction; thus sweep and precone can be introduced anywhere along the blade. Secondary load
paths, consisting of linear and rotational springs to earth, can be attached directly to the blade or may
be positioned at the end of a weightless arm. A linear spring remote from the blade is normally used to
model the control system of the rotor with the geometry of the arm the same as the aircraft pitch horn.
The root end of the blade can be built-in or have up to three mutually perpendicular hinges, with or
without restraint. The modes are normally calculated with steady loads applied, representing the mean



blade lift and drag, so that the displacement of the modes becomes a small perturbation about the steady
state position. The calculated modes are fully coupled in flap, lag and torsion, and a maximum of eight
are normally used in a calculation of the rotor performance. A method for calculating the modes of a
bearingless rotor system also exists.

The forced response equation is derived to a consistent order of accuracy throughout and is fully
compatible with the blade modes. The equation is complicated and is split into five main forcing terms:
the aerodynamic forcing, the Coriolis force, the cyclic inertia force, the nonlinear stiffness forcing, and
the cyclic stiffening force. The aerodynamic, Coriolis and cyclic inertia forcing are always included in
a calculation but the nonlinear stiffness and the cyclic stiffening terms are optional.

The four contributions to the forced response equation arising from the blade dynamics are fairly
easy to calculate as they are composed of functions of the pitch angle and its derivatives, and the modal
displacements, slopes and curvatures. The Coriolis force is an inplane force due to the blade flapping
while the cyclic inertia arises from the azimuthal variation of the blade pitch. The cyclic stiffening is due
also to the pitch variation and is a series of terms to account for the difference between the local blade
pitch and the collective pitch at which the modes are calculated. The nonlinear terms are a collection of
expressions which cannot be included conveniently in any other group. Most calculations made using
the analysis omit the cyclic stiffening and nonlinear stiffness terms as they are of second order and
should not be important. However, some more recent calculations have shown that the inclusion of the
torsion mode terms in the expressions improved the correlation of the predicted torsion moments with
test data. The calculations made for the Puma helicopter therefore include the torsion mode forcing in
the cyclic stiffening and nonlinear stiffness integrals.

The aerodynamic forcing is much more difficult to calculate than the contributions from the blade
dynamics. The features that must be accounted for include the effect of a swept tip, the unsteady
aerodynamics, the rotor wake, the fuselage flow field, and the variation of the airfoil section along the
span of the blade.

The effect of a swept tip and radial flow on the aerodynamics of a rotor blade is one of the more
recent improvements to the analysis since both were neglected in the original model. Blade sweep
is accounted for by resolving the velocities through the local quarter chord sweep into tangential and
normal components. The angle of attack and lift curve slope are factored according to the usual sweep
rules and then the calculated lift, drag and pitching moment coefficients factored similarly. Radial flow
effects are calculated in a similar fashion but for a straight blade. The accounting for the blade sweep
had a large effect on the calculated loads for the Puma but the inclusion of radial flow had only a small
influence on the loads calculated for a standard Puma blade.

The unsteady aerodynamic effects are modeled by Wagner functions for attached flow and there are
two representations of dynamic stall. The first method uses a time delay model (Beddoes, 1975) which
assumes that there are two distinct time constants which determine when the lift and pitching moment
coefficients diverge once the airfoil exceeds the static angle for maximum lift. The second dynamic
stall model uses a leading-edge velocity criterion (Beddoes, 1977), but is only applicable at low Mach
number. A new unsteady aerodynamic model has been developed by Leishman and Beddoes (1986),
and is to be incorporated into the analysis when testing is complete. The calculations presented in this
report use the time delay model for dynamic stall throughout.



The rotor induced velocity can be calculated by one of five methods: uniform downwash based
on momentum theory, a Glauert distribution, the vortex ring model, the vortex ring model with an
interactive near wake, and a spiral vortex model made up of curved elements. The development of the
various methods and the effect on the calculated blade stresses are described in Young (1982). All the
calculations for Task 1 of the workshop were made using the vortex ring model with the interactive
near wake as this option represents the best compromise between accuracy and computer efficiency.

The original vortex ring model was developed by WHL over twenty years ago (Cook, 1970). Two
half vortex rings originate from the root and tip of the reference blade, and a series of complete vortex
rings form the wake from the other blades of the rotor. The strength of the rings takes a prescribed
value related to the rotor thrust and geometry. The center of each ring was initially placed on a line
extending downstream and was uniformly spaced in the vertical direction according to the mean flow
through the rotor disk. The model has undergone some extensive changes since its inception. The rings
are no longer positioned on a straight line downstream but are moved so that the intersection in plan
view in the rotor disk and the tangency to the blade corresponds to a spiral wake. The vertical spacing
of the rings is no longer uniform and the rings are positioned as though they had passed through a
representative induced velocity field, a free-stream velocity component and, optionally, a fuselage flow
field. No physical core size is given to the vortices but they are not allowed to approach the blade
closer than 5% of the blade chord which effectively limits the maximum induced velocity.

The main drawback to the original vortex ring wake model was that the loading on the advancing
side of the disk was too negative at moderate to high advance ratio and the interactive near wake was
developed to improve the correlation with experiment. The interactive near wake replaced the two half
vortex rings with a series of half vortex rings whose strength is related to the radial load distribution on
the blade. The strength does not vary along the length of the half ring; thus the history of the loading
is neglected but the influence of the rings diminishes very rapidly and only the portion of the ring very
near the blade has any measurable effect. Relating the strength of the ring to the loading on the blade
means that the tip vortex changes sign when the loading becomes negative and the predictions at high
advance ratio are improved greatly.

The fuselage flow field can be calculated internally in the analysis using a single source or ex-
ternally to the program using a panel method originally developed for fixed wing aircraft. The panel
method is preferred as a better representation of the fuselage shape is possible. The inclusion of the
fuselage induced velocity distribution can have a considerable influence on the predicted blade loads
and vibrational characteristics of the rotor and are included whenever possible. All the calculation made
for Task 1 include the fuselage flow field calculated by the panel method.

Modern rotor designs generally use a variation of the blade airfoil section in the spanwise sense. A
thin section may be employed at the tip, for example, to reduce noise and alleviate adverse compress-
ibility effects. The analysis can use a maximum of eight airfoil sections. However, multiple airfoils are
not employed for the Puma calculations. The airfoil section does change on the Puma blade because the
increased chord in the swept tip region reduces the thickness/chord ratio but the section characteristics
are not known and the same airfoil is used over the complete span.

The forced response equation was solved using the Z-transform in the original analysis. The
Z-transform is similar to a Laplace transform but uses sampled rather than continuous data. Two hold



circuits can be used: the zero-order hold which assumes that the data do not change between samples
and the first-order hold which assumes that the forcing changes linearly. The calculations made for the
Puma, however, replaced the Z-transform with a modified fourth-order Runge-Kutta technique which
proved more stable for the swept-tip blade.

The rotor was trimmed by matching the measured first harmonic flapping angle and assuming the
thrust was equal to the weight of the aircraft. All the calculations were made using an azimuth increment
of 5°.

2.1.2 CAMRAD Family

CAMRAD (Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics) and
the more recent Johnson Aeronautics version, CAMRAD/JA, are comprehensive codes that allow the
solution of a number of problems for a wide range of rotorcraft configurations in a single, consistent
analysis (Johnson, 1981a; Johnson, 1981b; Johnson, 1986; Johnson, 1988).

The first step in running the CAMRAD family of codes is to obtain a trim solution in which the
control positions and the aircraft orientation are determined for the specified operating condition. The
periodic blade motion is calculated and then the rotor performance, aerodynamic and structural loads,
and rotor noise may be calculated.

The structural model of the rotor is based on engineering beam theory for rotating wings with
large pitch and pretwist. A single load path is assumed and the blade is considered to have a straight,
undeformed elastic axis—a recognized deficiency in modeling a swept tip. The blade motion is described
by rotating flap/lag and nonrotating uncoupled torsion free vibration modes, equivalent to a Galerkin
analysis. The baseline model for the Puma correlation studies reported here used six bending modes with
a pinned boundary condition together with two torsion modes, one for a rigid blade with control system
flexibility and the other for a rigid controls system with spanwise torsional flexibility. The baseline
model was used for all calculations except Task 3, Cases 1-9. For Cases 1-8 of Task 3 the blade
dynamics were represented by a single mode about the flap hinge and with prescribed torsional motion,
but no flexibility. For Case 9 six bending modes were included with a pinned boundary condition and,
again, prescribed torsional motion. Case 10 incorporated the baseline model. Structural moments were
calculated using a modal summation procedure for all the results shown here.

The rotor aerodynamic model is based on lifting-line theory, and uses steady two-dimensional
airfoil characteristics provided in tables of section lift, drag, and pitching moment, defined over a grid
of angle-of-attack and Mach number values. These tables are derived either from analytical expressions
or from experimental data in the form of tables used in the C81 rotorcraft analysis program. The NACA
0012 tabulated values of Davis (1974) have been used here, with the exception of Task 3 which used
formulas based on RAE wind tunnel data.

The rotor aerodynamic model for the Puma includes static stall, a yawed flow correction, and
unsteady aerodynamic forces derived from thin airfoil theory, these forces being set to zero for stalled
flow. For the swept tip, allowance is made for offsets of both the acrodynamic center and the center of
gravity from the straight, undeformed elastic axis. However, the airfoil section is effectively sheared at
discrete radial stations, and the vortices are considered to originate at the elastic axis.



There are three levels of wake model in CAMRAD and CAMRADY/JA: uniform inflow, nonuniform
inflow with a prescribed wake geometry, and nonuniform inflow with a free wake geometry (for forward
flight only). Uniform inflow here refers to an empirical model based on momentum theory that includes,
for forward flight, a linear variation of the inflow over the rotor disk. The usual procedure is to begin by
calculating the trimmed uniform inflow solution and then, as required, calculate the trimmed prescribed
wake solution, followed by the trimmed free wake solution. Finite-length, straight-line vortex elements
are used for the tip vortices, with an azimuth increment of 15°. The inboard wake is divided into near
and far wake regions with the same azimuth increment. In the near wake, which extends azimuthally for
60° directly behind the blade, the inboard vorticity is represented in CAMRAD by 15 panels distributed
along the blade and in CAMRAD/JA by 18 panels, with a greater concentration toward the tip, where
the greater loading variations occur. The multiple panels in the near wake are replaced by a single panel
in the far wake. The far wake regions extend for three revolutions. By collapsing all the wake panels to
finite-strength line segments, a lattice model of the rotor wake is produced. The tip vortex is represented
by a uniform core radius (nondimensionalized by rotor radius) of 0.035 for interactions outboard of 88%
span. The core size is increased to 0.100 for points inboard of 76% of span to reduce the magnitude of
these interactions. The core size transitions linearly between these two span stations. In addition to an
empirically chosen spanwise varying core size, the modeling of blade vortex interaction is improved in
CAMRAD/JA by using second-order lifting-line theory (three-quarter-chord collocation point).

Modeling of the far wake distribution of vorticity in CAMRAD/JA was improved for cases where
negative loading occurs along the tip of the blade in high speed flight. In these cases the circulation
distribution results in a positive inboard maximum and a negative outboard maximum, with the positive
peak being the greater of the two. The CAMRAD model calculates a tip vortex based on the maximum
circulation, resulting in the wrong sign and magnitude. The dual peak model in CAMRAD/JA calculates
a weak tip vortex from the negatively loaded outboard section, and a stronger trailed line vortex from
the inboard positively loaded section.

2.1.3 METAR/RS85 Analysis

R85 is a general purpose rotor code (Allongue and Krysinski, 1990; Arnaud et al., 1991) which
can be used as a submodel of a comprehensive helicopter model or for the simulation of an isolated
rotor. In the present case, the Puma main rotor was modeled as an isolated rotor.

The blades are regarded as flexible beams in the sense of classical engineering beam theory, with
only three degrees of freedom: flapwise bending, chordwise bending, and torsion. Due to convergence
problems, the torsional deflections were not taken into account for the calculations here, but the torsion
loads were calculated by integration of the inertial and aerodynamic forces.

The beam is approximated by a series of rigid linear segments, and elastic deflections are simulated
by finite rotations in pitch, flap and chord at segment junctions with concentrated stiffness replacing the
actual distributed stiffness (Mykelstad’s model). For the calculation of kinetic energy and inertial forces,
each segment is regarded as a rigid body with its own mass, center of gravity, and full inertial tensor.
Unlike previous analyses, R85 rejects the linearized theory of modal response and solves the blade
motion problem using the exact Lagrange equations. The usual set of orthogonal blade modes is thus
replaced by a series of arbitrary generalized deflection functions compatible with hub kinematics. The
spanwise integration of kinetic energy and elastic energy or, more precisely, their derivatives with respect
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to generalized coordinates, is the computational price paid for the elimination of improper assumptions
inherent in modal theory such as the linearization of deflections and overlooking of the azimuthal pitch
variation.

To maximize the computational efficiency, it is necessary to reduce the number of generalized
deflection functions as far as possible. It has been found that choosing modal deflections as generalized
deflections makes it possible to obtain a good accuracy with a very limited number of degrees of
freedom. Therefore, the Puma calculations were performed using seven coupled rotating blade modes
as generalized deflections:

—~ four flapwise modes

— three chordwise modes

The accuracy and convergence of the solution is assessed by comparing two independent calcula-
tions of the blade loads:

— integration of aerodynamic and inertial forces

— elastic forces derived from beam curvature

The flexible blade calculation is initialized by means of a rigid blade calculation. The aerodynamic
model is common to the rigid and flexible calculations and is based on lifting-line theory, the blade
being represented by its quarter-chord line including tip sweep and anhedral. The spanwise distribution
of circulation is approximated by a step function with a trailed vortex emitted at each junction of two
segments, and the timewise variation of circulation is considered as a step function with a shed vortex
released at evenly distributed azimuthal stations. The wake is thus represented by a lattice composed
of quadrilateral cells.

The circulation over a cell is constant and is equal to that of the blade at the station and time of
emission (Kelvin’s theorem of vorticity conservation). The induced velocity is integrated in closed form
using the Biot-Savart law for incompressible flow over linear segments. For high-speed level flight, the
wake can be truncated after three revolutions without appreciable error.

The wake geometry may be prescribed by various models according to the case considered. The
model of Kocurek and Tangler (1977) is used in hover. In forward flight a simplified version of the
model of Egolf and Landgrebe (1984) or a classical, undistorted wake model is used. The latter model,
which is a submodel of R85, is called METAR and has proved sufficient for high-speed cruise conditions.

The airfoil characteristics were obtained from tabulated airfoil polars derived from wind tunne] tests
(Davis, 1974). Compressibility effects are therefore included and power, drag, and pitching moment
outputs can be derived.

The Mach number, angle of attack, and aerodynamic chord are computed in the local reference
frame attached to the quarter-chord line, which may differ from the pitch axis because of sweep or
anhedral.
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Various corrections may be applied to the airfoil data: Reynolds number correction on the drag
coefficient, radial flow correction on the maximum lift coefficient and the radial skin friction, transonic
extrapolation if the tables do not extend to the required Mach number, and linear unsteady effects on
the pitching moment Cp,. The main options and data used are the following:

— 25 spanwise stations

- 36 time steps per turn (10° azimuthal increment)

- 108 wake steps (3 turns)

— prescribed distorted wake

— NACA 0012 tables

- Reynolds number and radial flow corrections

- Unsteady Cpy, including pitch, plunge, and fore/aft motions
- near wake domain: 0° < ¥gge < 50°

Eight harmonics are calculated for the flexible modes. Rigid blade calculations (Task 3) are
performed with five harmonics in flap, no harmonics in lead/lag (that is, static lag only), and one
harmonic in pitch.

To minimize the computational effort, the METAR inflow is calculated in the rigid blade step, and
induced velocities are held constant during the following flexible blade calculation step.

2.1.4 Comparison of Lifting-Line Methods

The four lifting-line methods have some common features but also differ from one another in
several important respects.

The RAE/WHL analysis and the two CAMRAD analyses use modes in the solution of the forced
response equation. The RAE/WHL input modes are fully coupled in flap, lag and torsion whereas
CAMRAD uses input modes that are coupled in flap and lag, but the torsion modes are uncoupled.
Although CAMRAD uses uncoupled input modes the degrees of freedom are fully coupled during the
solution process. The METAR/RS8S5 analysis does not use modes but solves the equations of motion
directly, although the torsional motion is neglected because of convergence problems.

CAMRAD, CAMRADY/JA, and the METAR/RS8S5 analyses have a similar wake model that employs
straight line vortex elements to form a lattice. The CAMRAD analyses can use a free wake model
which is especially useful at low speed but the METAR/R85 wake uses a prescribed geometry. The
RAE/WHL method, however, uses a combination of half and complete vortex rings which are positioned
as though they had passed through a representative velocity field. The strength of the half vortex rings,
which originate from the reference blade, is related to the loading on the blade but the complete vortex
rings take a prescribed strength.

All the analyses model unsteady aerodynamic effects for attached flow. CAMRAD and CAM-
RAD/JA use a method derived from thin airfoil theory, METAR/RS5 treats the problem as a first-order
differential equation, whereas the RAE/WHL method uses Wagner functions. The modeling of dynamic
stall differs widely in the three methods but no stall cases were considered for the Puma correlation.
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Radial flow effects were included in all the analyses but the representation in the RAE/WHL method
was not very refined.

The fuselage flow field is included in the RAE/WHL analysis but not in any of the others. The
main effect of the flow field is to produce an upwash around the front of the disk, which tends to keep
the vortices trailed from the blades nearer to the tip path plane.

There are substantial differences in the analyses used for the collaborative exercise with the Puma
data, and the strengths and merits of each approach will become obvious when making the comparisons.
However, the development of rotor loads prediction methods is an evolutionary process and the results
presented in this report are indicative of the state of the analyses at the time of the 1990 workshop.
Further enhancements have been made to these analyses in the light of ongoing verification against
flight test and model test data.

2.2 CFD Models

The CFD models used in the present correlation study are briefly described here. These models
solve for the rotor flow field using either small-disturbance or full-potential methods and require as
input the partial angle-of-attack angles computed by the lifting line methods.

The descriptions in this section provide a general idea of how each of these methods works.
However, it is necessary to consult the cited references if additional information is required for any of
these analyses.

2.2.1 FPR Code

The Full-Potential Rotor code (FPR) solves the unsteady, three-dimensional, full-potential equation
in strong conservation form. The code employs a finite-difference scheme with first-order backward
differencing in time and second-order central differencing in space. The temporal density derivative is
locally linearized about the old time levels in a manner that preserves the conservative form. Stability
in regions of supersonic flow is obtained by biasing the density calculation in the upwind direction.

A spanwise series of parallel O-grids are used for the basic grid system. Rotor flows are computed
by assigning an appropriate rotational coordinate velocity to each grid point. As a result, the rotor and
the attached finite-difference grid move through still air. On the surface of the blade, a transpiration
velocity condition is used to simulate angle-of-attack conditions (including wake-induced inflow angles).
At the outer radial boundary of the O-grid, a nonreflection boundary condition is used to prevent the
accumulation of numerical disturbances.

Typical grid sizes for the Puma flight-test calculations are 80 points in the chordwise direction, 25
in the spanwise direction, and 25 in the direction normal to the rotor surface. Figure 1 shows a top
view of the FPR grid for the swept-tip Puma blade.

The finite-difference grid extends approximately seven chords inward from the rotor tip and two
chords outward from the tip in the spanwise direction. The outer radial boundary of the O-grid is located
five chords from the surface of the blade. Constant time steps were used corresponding to 0.25° of rotor
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Figure 1. Top view of the FPR grid for the swept-tip Puma blade calculations.

azimuthal angle per time step. Unsteady calculations for a complete 360° of rotor azimuth required
approximately 1200 CPU seconds on a CRAY YMP computer system. A more complete description
of the FPR code can found in (Strawn and Caradonna, 1987: Bridgeman et al., 1982). Significant
improvements to the original differencing algorithm in FPR are detailed in (Bridgeman et al., 1989).

2.2.2 TSP Code
The transonic small perturbation (TSP) code in use at the RAE solves an equation for quasi-steady
three-dimensional flow around the tip region of a helicopter rotor blade at an arbitrary, but specified,

azimuth angle. Separate calculations are performed for each required azimuth station value.

The equation solved by the code is given by
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where z, v, and 2 are coordinates in the rotating blade in the chordwise, spanwise, and vertical directions,
respectively; uq, us are the local velocities in the chordwise and spanwise directions; My is the tip
Mach number due to rotation, y is the advance ratio; ¢ is the azimuth angle (with ¢ = 0 at the back
of the disk); and A is the aspect ratio (R/c).

The differential equation is subject to the surface boundary condition
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The grid on which the equation is solved is obtained by an algebraic transformation which maps
the semi-infinite space around the outer section of the rotor blade onto a rectangular box —1 < X <1,
0<Y <1, —-1< Z <1 with the rotor blade lying in the Z = 0 plane and Y = O being the inboard
station of the rotor tip. In the physical space, the gridlines are swept with the leading and trailing edges
of the tip, and then swept off the tip parallel to each other, asymptotically parallel with the inboard
blade quarter-chord line. For each coordinate direction in turn, the gridlines are clustered around the
blade tip, the blade leading and trailing edges, and the blade surface respectively. A total of 112,545
gridpoints are used: 61 in the chordwise direction, 45 radially and 41 vertically. On the blade itself,
there are typically 33 points along the chord and 35 radially on the swept tip.

The differential equation is discretised with the streamwise components of the derivatives being
switched from central to backward differences (in the sense of the local flow direction) in the supersonic
regions.

The wake is assumed to be a plane vortex sheet skewed in the direction of the resultant free-stream
flow. Jump conditions on the velocity potential are imposed across the vortex sheet. For the far-field
boundary conditions, the pressure is assumed to have recovered to the appropriate free-stream value.

The resulting difference equations are solved by an iterative relaxation technique, with sweeps in
each of the coordinate directions at each iteration step. The calculation starts on a coarse grid with every
alternate gridpoint removed, and uses an initial solution which is zero everywhere. When convergence is
obtained on the coarse grid, the solution is interpolated to the fine grid and further iterations performed.
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The pressure coefficient is calculated from the potential values by the equation
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Further details of the code and early comparison cases performed using it can be found in Grant
(1979) and in the report of the 1988 Workshop (Jones et al., 1990). Refinements to the code since the
1988 Workshop include the facility to calculate consecutively a series of different azimuth cases, using
the solution from the previous case as a starting value in the iterative process. This reduces the number
of iterations needed, especially for the coarse-grid calculation.
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3 MODAL CALCULATIONS IN A VACUUM

The equation of motion for a rotor blade can be solved in several ways but there are two widely
used methods. The first solves the equation by direct integration along the span and around the azimuth.
The second method calculates the natural modes of the blade as an intermediate stage and then uses
the modes in solving the simpler forced response equation. The R85 analysis employs the first method,
while CAMRAD, CAMRAD/JA and the RAE/WHL analysis use modes in one form or another.

The RAE/WHL modes analysis calculates fully coupled modes, i.e, modes that can have flap, lag
and torsional deflections. The modes are orthogonal to one another, an attribute that reduces greatly
the complexity of the forced response equation. CAMRAD and CAMRAD/JA, which have identical
models of the rotor dynamics, both use three different types of modes: coupled flap/lag modes, an
uncoupled elastic control system rigid blade torsion mode, and uncoupled rigid control system elastic
torsion modes. These modes are the degrees of freedom used by the trim and eigenanalysis. The
modal frequencies that are computed by the eigenanalysis are coupled flap/lag/torsion modes. The R85
analysis, which uses direct integration of the blade equations, does not need blade modes and uses
arbitrary shape functions to represent the blade elastic displacements. However experience with the
method has shown that convergence is quicker when the shape functions correspond to the natural mode
shapes although the modal frequencies play no part in the calculation. Modes are used therefore in all
the analyses to some extent and this section compares the modal frequencies and mode shapes calculated
by the three methods.

The modal calculations shown here are for the swept-tip blade of Tasks 1 and 2, not the rectangular
blade of Task 3. The comparison is made in three parts. The first part compares the calculated
frequencies of CAMRAD, the RAE/WHL method, and R85. The second part is a comparison of the
tip deflections calculated by the RAE/WHL and R85 analyses, and the third part is a comparison of the
modal frequencies calculated by CAMRAD and the RAE/WHL method over a range of rotor speeds.

The frequencies calculated by the CAMRAD, RAE/WHL, and R85 analyses are shown in the
second, third, and seventh columns of table 1.

The frequencies calculated by the three methods generally show good agreement, particularly for
the flapping modes. The R85 method computes a 1st lag frequency that is about twice that computed

Table 1. Predicted modal frequencies and shapes

CAMRAD RAE/WHL METAR/R85
Mode w w Tip deflection w Tip deflection

per/rev per/rev  flap lag torsion per rev flap lag torsion
Ist lag 0.2315 0.2372 —-0.0000 1.0000 —0.0000 0.4406 —0.0097 1.0000 —0.0001
1st flap 1.0227 1.0277 1.0000—0.0001 —0.0000 1.0278 1.0000 0.0130 —0.0000
2nd flap 2.8850 2.8974 1.0000-0.0300 —0.0668 2.8899 1.0000-—0.0377 ~0.0292
2nd lag 4.7372 4.7405 0.1620 1.0000 —0.4988 4.8287 0.1780 1.0000 —0.1133
Ist torsion 5.1764 5.0261 —0.0301 0.0170 1.0000 6.5090 0.0250-0.0020 1.0000
3rd flap 5.7354 5.7478 0.5346-0.0654 1.0000 5.6201 1.0000—0.1526 —1.4290
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by the other methods and this is caused by a restraint around the lag hinge that was added to introduce
curvature near the lag damper attachment. In addition, the 1st torsion mode computed by R85 is about
30% higher than the other methods and this is a result of assuming the control system is rigid.

The tip displacements calculated by the RAE/WHL and R85 analyses are compared in columns 4
to 6 and 8 to 10 of table 1. The R85 calculations were made for a rotor speed of 265 rpm compared
to 259.6 rpm for the RAE/WHL calculation. The first flap mode show no lag displacement in the
RAE/WHL calculation and about 1% for the R85 analysis. Similar results are observed for the first
lag mode. The second flap mode, as calculated with the RAE/WHL method, shows about 3% lag tip
deflection which is quite close to that computed by R85. The torsional component, however, —0.07, is
considerably larger than the —0.03 computed by R85. Similarly, for the second lag mode, flap deflections
of 0.16 and 0.18 show good agreement for the RAE/WHL and R85 methods, but the computed torsional
displacement is substantially greater for the RAE/WHL method, —0.50 compared to —0.11 for R85
and this is presumably a consequence of control system flexibility that is present in the RAE/WHL
analysis, but not the R85 calculation. Both methods show a first torsion mode with little flap or lag
content, although, as mentioned above, the R85 frequency is 30% greater. The highest frequency mode
compared, the third flap mode, is highly coupled in flap, lag, and torsion and the two methods are quite
comparable. The RAE/WHL and R85 modal calculation methods therefore show consistency with each
other when the differences in the models are taken into account.

Modal frequencies computed by the RAE/WHL and CAMRAD analyses are compared in figure 2.
There is very close agreement between the two analyses for these modal calculations and this agreement
is seen at all rotor speeds.

The representation of the dynamics of the rotor blade differs considerably in each of the meth-
ods examined—CAMRAD, R85 and RAE/WHL—but the resulting frequencies and mode shapes are
consistent and any differences can be easily explained.
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4 ANALYTICAL MODELING OF LIFTING-LINE METHODS (TASK 3)

4.1 Introduction

The third task defined for the collaborative effort was to compare the predictions of the four lifting-
line methods as modeling sophistication was increased from a simple, baseline model to a full, “all up”
model. Ten levels of sophistication or modeling complexity were specified as shown in table 2. At
the simplest level the analytical models used a uniform wake without sine or cosine variation in the
inflow, linear aerodynamics, no unsteady aerodynamics or radial flow, and the rotor dynamics were
represented by a rigid blade with a single flapping hinge. At the most complex level the analytical
models incorporated all of the features used in the Task 1 and 2 calculations except that a rectangular
blade planform was used instead of the swept-tip planform.

An isolated rotor trim condition was selected to simplify the comparisons as much as possible. For
these calculations the trim was specified as 4 = 0.381, Cp/o = 0.0799, Mgy = 0.863, as = —6.8°,
B1e = 0.392°, and By = —0.074°. This trim condition was arbitrarily selected to match the Case 3
trim from the first collaboration (Bousman et al., 1989), but there are no available flight data for this
case for a Puma with a rectangular blade. Note that by selecting an isolated rotor trim condition external
fuselage forces and moments such as caused by fuselage aerodynamic loads or tail rotor forces are not
included in the trim calculation.

Case 1, or the baseline case, was the simplest condition examined. The blade aerodynamic prop-
erties were defined:

@ = _E)_?__ (4-1)
do \/1- M2

Cdy = 0.01 (4-2)
Cmo =0.0 (4-3)

Table 2. Task 3 modeling complexity

Case Root Wake Airfoil Unsteady Radial Bending Torsion

Cutout Tables Aero Flow Modes Modes
1 0.228 R Uniform Constant No No No No
2 0.40R Uniform Constant No No No No
3 0.228 R Prescribed Constant No No No No
4 0.40R  Prescribed Constant No No No No
5 0.228 R Prescribed NACA 0012 No No No No
6 0.40R  Prescribed NACA 0012 No No No No
7 0.228 R Prescribed NACA 0012 Yes No No No
8 0.228R  Prescribed NACA 0012 Yes Yes No No
9 0.228 R Prescribed NACA 0012 Yes Yes Yes No
10 0.228 R Prescribed NACA 0012 Yes Yes Yes Yes
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without any unsteady aerodynamics in the calculation or any accounting for radial flow or sweep effects.
The blade was assumed to be rigid with a flap hinge located at 0.0386R. The first and second moments
of inertia were obtained from the blade properties in Appendix A. Case 2 was identical to Case 1 except
the root cutout was changed from 0.228 R to 0.40R to eliminate all reverse flow effects.

Each of the analytical methods was able to adapt to the Case 1 and 2 model requirements with the
exception of the METAR/R85 analysis which was required to retain a coincident lag hinge for all of
the rigid blade calculations (Cases 1-8).

Case 3 differs from Case 1 in that a prescribed wake is used instead of the uniform wake. In all
other respects the modeling is unchanged. The prescribed wakes used in the CAMRAD, CAMRAD/JA,
and METAR/RS5 analyses are similar in that they are based on a vortex-lattice model. The RAE/WHL
analysis is quite different, however, in that the wake is represented by a series of partial and full vortex
rings. Case 4 is the same as Case 3 except for the extension of the root cutout to 0.40R.

The modeling change that distinguishes Case 5 from Case 3 is that the linear aerodynamics of
Case 3 are replaced with the nonlinear equations described in Section 4.2. Case 6 is the same as Case 5
except for the 0.40R root cutout.

Case 7 differs from Case 5 in that unsteady aerodynamic terms are incorporated in the analysis.
Case 8 differs from Case 7 in that the radial or yawed flow terms are used in the analyses.

Case 9 adds blade bending flexibility to the analyses although the torsion degree of freedom is
not included. The number of modes used, for those analyses that use bending modes, was a choice
of the analyst. Case 10 adds the torsion degree of freedom to the computation, with the exception of
METAR/R85 which could not achieve convergence for this case.

The comparisons made under Task 3 provide an improved understanding of aspects of the lifting-line
models that are important for airloads prediction. Note, however, that the sequence of modeling steps
used here does affect the conclusions obtained as the problem is nonlinear. The Case 10 results would,
of course, be identical regardless of the order of the steps, but some of the intermediate conclusions
made here could be modified if a different order was used.

The airfoil characteristics used for this task are discussed in Section 4.2. The comparison of the
methods is discussed in Section 4.3 and this is done in two parts: a comparison of the unspecified trim
parameters and power required in Section 4.3.1 and the blade airloads and motions in Section 4.3.2.
Summary comments are provided in Section 4.4.

4.2 Airfoil Characteristics

The blade steady lift, drag, and pitching moment characteristics are represented by linear functions
for Cases 1-4. For Cases 5-10 nonlinear aerodynamics are incorporated in the four models. The
nonlinear aerodynamics in the two CAMRAD analyses and METAR/R85 are normally represented by
look-up tables where the lift, drag, and pitching moment are stored as functions of angle of attack and
Mach number. The implementation in the RAE/WHL analysis is different in that the aerodynamics are
based on empirical functions below stall and equations derived from oscillating airfoil data above stall.
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To reduce confounding effects of using different nonlinear aerodynamic section properties a set
of modified airfoil tables was developed for the CAMRAD analyses so that the blade aerodynamic
properties would match the RAE/WHL functions below stall. Above stall it was necessary to blend
these special tables into the C81 NACA 0012 deck (Davis, 1974). Similarly, the METAR/R85 code was
modified directly to include the RAE/WHL formulas. Thus, below stall, the nonlinear aerodynamics
used by the four methods should obtain identical results. However, above the stall boundary, the
RAE/WHL analysis will compute different results from the other methods.

The RAE/WHL empirical equations are described in the paragraphs below and tables are provided
that provide both the coefficients of the equations as well as the stall boundary that is associated with
the equations. Below stall, the RAE/WHL model for section lift is represented by the equation:

dCr (M
Cr = ——fl((x——)a a<ar (4-4)
The stall angle boundary and the dCp(M)/da values are shown in table 3 as a function of Mach
number. For negative angles of attack the sign of «a is reversed, of course.

Table 3. Lift equation stall boundary and coefficient

Mach number dCy/da ar,

0.30 0.110 14.3
0.35 0.113 13.5
0.40 0.116 12.5
045 0.119 11.2
0.50 0.122 10.0
0.55 0.128 8.7
0.60 0.134 7.5
0.65 0.138 5.8
0.70 0.155 4.2
0.75 0.170 28
0.80 0.220 1.3
0.85 0.300 0.0
0.90 0.380 0.0
0.95 0.380 0.0

The RAE/WHL model for the section drag coefficient is represented by

CD=CD0+KDC12 a<ap (4-5)
CD=CDO+KDa2+KDD(a—aD)2 a>ap (4-6)

The ap boundary and the K and K pp coefficients are shown in table 4. The sign of ap is changed
for negative angles of attack.
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Table 4. Drag equation boundary angle and coefficients

Mach number Cp, Kp Kpp ap
0.30 0.0088 0.000070 0.0019 11.50
0.35 0.0088 0.000055 0.0019 9.75
0.40 0.0088 0.000040 0.0019 8.00
0.45 0.0088 0.000040  0.0019 6.90
0.50 0.0088 0.000040 0.0019 5.80
0.55 0.0088 0.000040 0.00275 5.20
0.60 0.0088 0.000040 0.0036 4.70
0.65 0.0088 0.000040 0.0036 3.35
0.70 0.0088 0.000040 0.0036 3.35
0.75 0.0090 0.000040 0.0040 3.35
0.80 0.0125 0.006250 0.0000 3.35
0.85 0.0270 0.010000 0.0000 3.35
0.90 0.0500 0.015040  0.0000 3.35
0.95 0.0500 0.015040  0.0000 3.35

The RAE/WHL model for the section pitching moment coefficient is represented by

C’M=KMa

CM-——KMCI-FKM]V[(O(—QM)Q a >

(4-7)
(4-8)

This equation applies below the lift stall boundary, ay. The oy boundary and the K; and Kjsps
coefficients are shown in table 5. The signs of o and s are changed for negative angles of attack.

Table 5. Pitching moment equation boundary angle and coefficients

Mach number Ky Kynm Qg
0.30 0.0003 0.00032 5.00
0.35 0.0003 0.00051 5.00
0.40 0.0003 0.00070 5.00
0.45 0.0003 0.00085 4.25
0.50 0.0003 0.00100 3.50
0.55 0.0003 0.00105 2.75
0.60 0.0003 0.00110 2.00
0.65 0.0003 0.00110 1.20
0.70 0.0003 0.00110 0.70
0.75 0.0000 —0.00110 1.00
0.80 —0.0150 0.00000 0.00
0.85 —0.0450 0.00000 0.00
0.90 —0.0450 0.00000 0.00
0.95 —0.0450 0.00000 0.00
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The accuracy of the equations used in the RAE/WHL analysis is assessed by comparing the
predicted section properties to experimental data. Based on McCroskey’s assessment of NACA 0012
data (McCroskey, 1987) the data from Harris (1981) were used for these purposes. Included in this
comparison are the section properties from the C81 deck for the NACA 0012 (Davis, 1974) although
these are only used above the stall boundary for this task. However, the C81 section properties will
be used for all computations in Tasks 1 and 2 for the CAMRAD and METAR/RS835 analyses so their
inclusion here is of interest even for characteristics below the stall angle.

The section lift calculated with the two sets of tables is compared with data from Harris in figure 3
for five Mach numbers. The wind tunnel data are for two Reynolds numbers, 3 x 10% and 9 x 108,
except for the M = 0.3 case (Re = 3 x 108 only). The Puma, for the Task 3 trim condition, has a
Reynolds number at 0.75R that varies around the azimuth from 3.8 x 108 to 8.5 x 105. In general the
section lift computed from the tables agrees fairly well with the Harris data. At low Mach number the
RAE/WHL equations overpredict C;,_ ., but there is good agreement at intermediate Mach numbers. At
M = 0.80 and as angle of attack becomes greater than two degrees the section lift becomes significantly
overpredicted using the table look-up. Note that the table values based on the RAE formulas are valid
only up to the oy, value in table 3. Beyond o the tables revert to the C81 NACA 0012 tables.

The section drag calculated with the NACA 0012 tables and the tables based on the RAE formulas
is compared with data from Harris in figure 4. At the lowest Mach number, M = 0.30, the rise in
drag coefficient with angle of attack is predicted better with the RAE/WHL equations than with the
NACA 0012 tables. For higher Mach numbers both sets of tables show good agreement with the data,
particularly in the contraction of the “drag bucket” with Mach number. The minimum drag coefficient is
predicted to be slightly higher for the C81 tables; however, both predictions lie between the Re = 3 x 105
and Re = 9 x 105 measurements.

The section pitching moment calculated with the standard NACA 0012 tables and the RAE/WHL
model is compared with the data in figure 5. Over the range 0.30 < M < 0.70 the tables based on
the RAE/WHL model show good agreement with measured pitching moments, both in the amount of
positive pitching moment seen below the stall break and the angle of attack of the stall break. The C81
NACA 0012 tables, on the other hand, reflect these characteristics poorly. At M = 0.80 both sets of
tables show reasonable agreement with the slope at low angles of attack, but do not show the reversal
in moment at higher angles that were obtained in the experiment.

The C81 NACA 0012 airfoil characteristics below stall, shown in figures 3-5, are not used for the
Task 3 calculations in this section and, therefore, their accuracy or inaccuracy is of little importance for
the present examination of the effects of modeling assumptions on the lifting-line methods. However,
tables based on the C81 NACA 0012 airfoil characteristics shown here are used in Section 5 and the
poor prediction of the pitching moment below stall for Mach numbers less than 0.70 will significantly
influence the prediction of aerodynamic pitching moment and torsional response.

4.3 Comparison of Analytical Methods

The comparison of the analytical methods for the ten cases is divided into two sections. In
Section 4.3.1 scalar parameters such as power and the collective and cyclic trim values are examined
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while in Section 4.3.2 distributed parameters such as blade airloads and motions are assessed. For the
scalar parameters in Section 4.3.1 it is convenient to examine the behavior of one parameter for all
of the ten cases and in this fashion gain insight into the difference in the methods. However, for the
distributed parameters it is more convenient to compare the methods one case at a time for all of the
parameters.

4.3.1 Trim and Performance
Unprescribed Trim Variables

Four trim parameters were prescribed for the Task 3 cases: rotor thrust, shaft angle of attack, and
the first harmonic cosine and sine flap angles. Other variables, such as blade collective pitch, the cosine
and sine cyclic angles, and the X- and Y-forces are obtained as part of the solution process and, as they
are not prescribed in the trim calculation, they make a good basis for comparison of the models.

Collective Pitch

The collective pitch angles calculated at 0.75R are shown in figure 6 for the Task 3 cases and the
values are tabulated in table 6. Note that the table includes the value for all ten cases, but the figure
excludes the large root cutout cases as, in general, the effect of reverse flow is slight. Cases 1 and 2
provide a sound baseline with only elementary formulas for the induced flow and the airfoil data. All
of the analyses use the same aerodynamics and differ only in the following features:

- geometrical simplification (such as neglecting the flap hinge offset, or linearizing sine and
cosine functions of angles)

— simplification of the inertial tensor
— accuracy of spanwise force integration

— algorithm for trim solution

Case 2 is even more basic than Case 1 because the (.40FR root cutout eliminates the reversed flow
region.

The four analyses give results in close agreement for Cases | and 2. The major difference is the
larger influence of the root cutout for CAMRAD/JA which shows a 0.7° increase in collective pitch
compared to the 0.3° to 0.4° increments seen in the other three analyses.

Introducing nonuniform inflow (Cases 3 and 4) increases the collective pitch for all analyses. This
confirms a well-known shortcoming of the uniform inflow assumption, namely the underestimation of
the average induced velocity. CAMRAD, RAE/WHL, and METAR/RS85 are still in close agreement for
the collective pitch, the discrepancy being not larger than 0.26° for Case 4. This result is not surprising
for CAMRAD and METAR/R85 which use approximately the same vortex-lattice modelization of the
wake, but most encouraging is the fact that RAE/WHL is converging to the same result with a quite
different model based on vortex half rings.
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Figure 6. Calculated collective pitch for the Task 3 cases.

The collective pitch given by CAMRAD/JA appears larger by more than 1° and this increment
is seen consistently with respect to the other analyses for Case 3 and above (except for Case 8 for
the RAE/WHL analysis). The primary difference between CAMRAD/JA and CAMRAD is in the
implementation of second-order lifting-line theory and it seems likely that the difference seen here is
related to this implementation.

Table 6. Calculated collective pitch at 0.75R

Case 0 75p, deg
RAE/WHL CAMRAD CAMRAD/JA METAR/RS85

1 11.44 11.19 11.24 11.28
2 11.82 11.46 11.93 11.61
3 12.08 12.20 13.46 12.45
4 12.68 12.56 14.08 12.82
5 11.69 11.85 13.37 12.12
6 12.27 12.26 14.13 12.45
7 11.49 11.56 12.94 12.12
8 12.42 11.55 12.84 12.06
9 10.69 11.69 12.90 12.17
10 10.56 11.80 13.51 -~




Switching from linear airfoil characteristics to airfoil tables (Cases 5 and 6) does not alter the above
mentioned conclusions. For all methods except CAMRAD/JA, the collective pitch is reduced by 0.4°.
The gap between CAMRAD/JA and the other analyses increases since the collective pitch is reduced
by less than 0.1° in this particular method (Case 5 minus Case 3).

The influence of unsteady aerodynamics on collective pitch can be assessed by comparing Cases 5
and 7. The collective pitch is slightly reduced, by 0.2° to 0.4°, except for METAR/R85, which is
unchanged. The equations of linear unsteady aerodynamics for an airfoil undergoing a pure pitch
oscillation based on the work of Theodorsen and Wagner conserve the static lift for a given static pitch,
but the combination of an unsteady incidence with a time-varying velocity can lead to an augmented
lift, even for a quasi-steady model of the velocity. This explains the reduced collective pitch required
to achieve a constant trimmed lift. Due to the moderate lift and moderate advance ratio, dynamic stall
is not involved in this case.

The impact of yawed or radial flow sweep (Case 8) on collective pitch is very small according to
all the codes except the RAE/WHL analysis. The reason for this exception is not understood.

Introducing the blade bending instead of the rigid blade assumption (Case 9) does not change the
collective pitch significantly except, again, for the RAE/WHL code.

The effect of blade torsion (Case 10) on collective pitch shows a number of differences between
the codes. CAMRAD and CAMRADY/JA both show an increase in the trim collective with this increase
larger for CAMRAD/JA. The RAE/WHL analysis, on the other hand, shows a decrease in trim collective.
Case 10 was not calculated with METAR/R85 due to convergence problems when torsion was included.

Lateral Cyclic Pitch

The lateral cyclic angles calculated by the four analyses are shown in figure 7 for the Task 3 cases
and the values are shown in table 7. The values predicted by RAE/WHL, CAMRAD and CAMRAD/JA
are generally quite consistent.

METAR/R85 gives a higher value for Cases 1 through 8 because of the lead-lag hinge, which is
not removed as for the other codes. The number of calculated harmonics is simply set to zero, but the
static lag angle is still calculated.

Significant differences between codes are observed with respect to unsteady aerodynamics (Case 7)
and, to a lesser degree, with respect to sweep (Case 8).

The change in lateral cyclic pitch observed in Case 9 should not be misinterpreted: it is not due to
blade bending but rather to the lag angle which is introduced at the same time (except for METAR/R85
where static lag is always included). The effective azimuth is retarded with respect to the hub azimuth,
and the pitch control has to compensate by a lead phasing equal to the static lag angle. This effect is
shown in table 8 where the blade cyclic angles are shown in terms of amplitude and phase.
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Figure 7. Calculated lateral cyclic pitch for the Task 3 cases.

On the other hand, the change in 8. observed in Case 10 can only be explained by the blade torsion.
The RAE/WHL, CAMRAD and CAMRAD/JA analyses all show the same effect in the addition of the
torsion degree of freedom.

Table 7. Calculated lateral cyclic pitch

Case 01, deg
RAE/WHL CAMRAD CAMRAD/JA METAR/RS85
1 2.23 2.10 2.12 2.97
2 2.27 2.18 2.18 3.07
3 2.80 2.55 2.68 3.99
4 2.93 253 2.65 3.93
5 2.81 2.54 2.75 4.03
6 2.93 2.54 2.73 3.99
7 2.07 2.87 3.15 4.03
8 2.31 2.86 3.11 4.00
9 4.28 4.61 5.26 4.04
10 3.70 4.12 4.85 -
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Table 8. Calculated cyclic pitch angles in amplitude and phase

Case RAE/WHL CAMRAD CAMRAD/JA METAR/R85
ampl. phase ampl. phase ampl. phase ampl. phase
1 8.56 —75 8.29 —75 8.34 —-75 8.31 —69
3 9.53 -73 9.67 -75 11.01 —76 9.76 —66
5 9.24 —72 9.36 —74 11.11 —76 9.53 —65
7 9.33 =77 9.16 —72 10.75 —73 9.53 —65
8 10.16 =77 9.15 —72 10.62 -73 9.47 —65
9 10.36 —66 9.48 —61 10.96 -61 9.54 —65
10 10.52 —-69 9.03 —63 10.76 —63 - -

Longitudinal Cyclic Pitch

The longitudinal cyclic pitch angles computed by the four analyses are illustrated in figure 8 and
tabulated in table 9. The trends in longitudinal cyclic bear some resemblance to those observed in the
collective pitch and are also connected with results for the lateral cyclic pitch.

Nonuniform inflow increases the magnitude of the longitudinal cyclic (Case 3). This is because the
uniform inflow formula (Case 1) neglects the lateral gradient of inflow while the more realistic vortex
models all produce larger velocities on the retreating blade side and this makes a larger 874 necessary
to trim the rotor.

In the same way as for the collective pitch, CAMRAD/JA gives a much larger negative value than
the other models.

The unsteady models (Case 7) again display contradictory trends due to different lift/pitch transfer
(see table 8). CAMRAD and CAMRAD/JA show a reduced amplitude and a retarded phase, while
RAE/WHL shows an augmented amplitude and anticipated phase.

The effect of radial flow (Case 8) is, again, very small except for RAE/WHL . . . the reason for this
exception is unknown.

The change in longitudinal cyclic observed in Case 9 is again a result of the static lag angle, and
not dependent upon blade bending.

For blade torsion (Case 10), the trends are not consistent. The sine component of blade torsion
may be more difficult to predict than the cosine, possibly because of pitching moment divergence on
the advancing blade side.
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Figure 8. Calculated longitudinal cyclic pitch for the Task 3 cases.

Table 9. Calculated longitudinal cyclic pitch

Case 015, deg
RAE/WHL CAMRAD CAMRAD/JA METAR/RS85
1 —8.26 —8.02 —8.07 —7.76
2 —8.44 —8.16 —8.40 —7.94
3 -9.11 -9.33 —10.68 -8.91
4 —9.39 —9.42 —10.96 -9.04
5 —8.80 -9.01 —10.76 —8.64
6 -9.09 -9.16 —-11.28 —8.76
7 -9.10 —8.70 —10.28 —8.64
8 -9.89 -8.69 —10.15 —8.58
9 —9.43 —8.28 —-9.62 —8.64
10 -9.85 —8.03 —9.61 -
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Longitudinal Force and Lateral Force

The longitudinal and lateral forces calculated by the four analyses are shown in figures 9 and 10
and the tabulated values are given in tables 10 and 11. The longitudinal or X-force is positive forward,
and the lateral or Y-force is positive to the right, that is, to the retreating blade side on the Puma rotor.
The longitudinal and lateral forces are expressed in the shaft axes. The tables and the plots appear to
show large differences between codes. It is noted, however, that a 500 N difference represents only a
0.5° rotation of the thrust vector—the agreement is, in fact, good.

Comparing Case 3 with Case 1 indicates that the thrust vector is more inclined forward and toward
the retreating blade when nonuniform inflow is applied. This result was not expected since the rotor
disk is always trimmed to the same flap angle. The variation in the X-force produced by CAMRAD/JA
is twice as much as that produced by the other codes, thereby confirming the peculiar behavior of its
inflow model.

The thrust vector is tilted somewhat more forward and to the left-hand side as a result of introducing
nonlinear aerodynamics for Case 5, but the codes do not agree on the amplitude of this effect. The
impact of unsteady aerodynamics (Case 7) on inplane forces is small for all of the codes.

The effect of sweep (Case 8) is consistent for all codes except RAE/WHL. The skin friction drag
caused by the radial flow produces a global inplane drag which reduces the propulsive force. Rotor
performance is significantly affected by the radial drag, as discussed below.

Blade bending (Case 9) does not alter the inplane forces according to CAMRAD, CAMRAD/JA,
and METAR/RS85. This confirms the general opinion that the relatively small blade deformations have
little impact on steady and 1/rev components of aerodynamic forces. However, the RAE/WHL analysis
departs from this conclusion with a noticeable impact on both the X- and Y-forces.

Most surprising is the small effect of blade torsion (Case 10) on inplane forces observed with all
the codes. It was assumed above, in the discussion of the trim longitudinal cyclic pitch, that torsion is
compensated by a modified cyclic pitch to obtain a constant flap angle. Apparently this compensation
also works for inplane forces.

Power and Performance

Most analysts accept the breakdown of shaft power into three components: parasite power, induced
power, and profile power. This approach is based on energy conservation expressed in nonrotating
coordinates as discussed in Appendix B. However, the power breakdown used at the RAE recognizes
only two terms, the thrust-dependent power and rotational power, which are calculated in rotating
coordinates (Young, 1989).
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Figure 9. Calculated longitudinal forces for Task 3 cases.
Table 10. Calculated longitudinal forces for Task 3 cases
Case X-force, newtons

RAE/WHL CAMRAD CAMRAD/JA METAR/R85

—_—

OO 0~ NN

41.4 466.1 505.7 —130.0
420.3 797.2 847.8 281.0
4944 831.0 1319.5 307.0
788.1 1189.1 1656.8 739.0
5194 884.0 1569.4 551.0
855.4 1237.3 2060.0 867.0
495.0 897.9 1514.7 551.0
438.8 498.6 949.9 253.0
838.8 610.6 1008.7 249.0
846.8 530.9 964.8 -
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Figure 10. Calculated lateral forces for Task 3 cases.
Table 11. Calculated lateral forces for Task 3 cases
Case Y-force, newtons
RAE/WHL CAMRAD CAMRAD/JA METAR/RS85
1 —1250.4 —1162.4 —1198.7 -979.0
2 —1231.4 —1218.8 -1210.3 —1005.0
3 —-1702.9 —1470.6 —-1696.9 —1329.0
4 —-1693.1 —-1473.1 ~1595.5 —1288.0
5 -~1741.2 —1583.7 —1790.9 —1402.0
6 —1750.1 —1539.9 —-1761.9 —1350.0
7 —1761.4 —1651.5 —1822.3 —1402.0
8 —1399.8 -1630.4 —-1731.2 —1376.0
9 —1683.8 —1557.6 —1583.0 —1378.0
10 —1660.2 —1530.3 —1491.9 -
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Profile Power. The profile power calculated by the analyses is shown in figure 11 for the cases with
the normal root cutout and tabulated values for all cases are shown in table 12. The RAE calculated
rotational power is also included here although it is calculated differently (see Appendix B). As expected,
rotational power is always lower than profile power by some 40 to 50 kw, this difference being interpreted
as the power associated with translation of inplane forces. The agreement between CAMRAD and
CAMRADV/JA is excellent for all cases.

The profile power calculated with METAR/R85 is lower than for the CAMRAD family except for
Cases 1 and 2 where the agreement is very good. The difference in profile power for successive cases is
the same for METAR/R85 and RAE/WHL, except for the effect of sweep: radial drag increases inplane
drag, thus profile power is increased but not the rotational power.

Induced Power. The induced power calculated by the analyses is shown in figure 12 for the cases with
the normal root cutout and the values for all cases are given in table 13. No calculations are shown for
the RAE/WHL code as no equivalent quantity exists. CAMRAD and METAR/RS85 give results in close
agreement but CAMRAD/JA predicts a much higher induced power as soon as the nonuniform inflow 1s
introduced. This is another consequence of the second-order lifting-line theory which produces a larger
inflow than the other methods.

The greater induced power calculated by CAMRAD/JA relative to CAMRAD has been investigated
in detail for Case 3 and the results are provided in Appendix C. Differences remained even when the
modeling capability of CAMRAD/JA was limited to that provided by CAMRAD, as far as it is possible
to control through user input. A stepwise elimination of the remaining differences through coding
changes provide some insight into the different near-wake models used by the two analyses.

Parasite Power. The parasite power calculated by the analyses is shown in figure 13 for the cases
with a normal root cutout and the values for all of the cases are tabulated in table 14. Calculations for
parasite power are not included in the RAE/WHL analysis. It is observed that the shape of curves is
very similar to that of the X-force which 1is expected as parasite power is the scalar product V- T (see
Appendix B). However, the slight offset in X-force between METAR/R85 and CAMRAD as seen in
figure 9 is not readily explained.

Thrust-Dependent Power. For analyses based on the energy method, the sum of induced and parasite
contributions is compared to the thrust-dependent power as defined in Appendix B. The calculated
thrust-dependent power for the cases with the normal root cutout is shown in figure 14 and the values
for all cases are tabulated in table 15. As expected, the RAE/WHL thrust-dependent power is larger
than in CAMRAD and METAR/RSS5, the difference being interpreted as the contribution of the inplane
forces to parasite power. Again, CAMRAD/JA shows much higher induced power than the other codes,
except for Cases 1 and 2.

Shaft Power. Shaft power is the sum of the profile, induced, and parasite powers for CAMRAD,
CAMRAD/JA, and METAR/RS8S5, and the sum of profile (“rotational”) and thrust-dependent power for
the RAE/WHL analysis. The shaft power is shown in figure 15 for the cases with the nominal root
cutout and the values for all cases are tabulated in table 16.
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Figure 11. Calculated profile power for Task 3 cases.

Table 12. Calculated profile power for Task 3 cases

Case Profile power, kw
RAE/WHL*® CAMRAD CAMRAD/JA METAR/RS85

1 188.6 237.8 238.1 235.1
2 184.6 226.2 226.5 223.3
3 190.2 244.0 247.0 234.1
4. 184.8 231.4 236.9 222.3
5 219.7 293.9 302.7 264.8
6 227.8 300.9 319.5 265.2
7 221.7 288.6 292.0 268.2
8 232.1 3223 322.2 287.3
9 235.7 329.1 330.3 -
10 236.6 3277 327.9 -

%Rotational power.
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Figure 12. Calculated induced power for Task 3 cases.

Table 13. Calculated induced power for Task 3 cases

Case Induced power, kw
CAMRAD CAMRAD/JA METAR/R85

1 106.7 108.6 104.5
2 106.6 161.6 107.7
3 216.6 327.0 229.5
4 228.4 370.5 234.1
5 218.7 346.8 231.5
6 234.0 400.0 237.0
7 214.6 331.0 231.5
8 214.2 3233 227.8
9 215.7 316.9 -

10 220.7 314.2 -
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Figure 13. Calculated parasite power for Task 3 cases.

Table 14. Calculated parasite power for Task 3 cases

Case Parasite power, kw
CAMRAD CAMRAD/JA METAR/RS85
1 490.7 498.5 486.4
2 516.3 525.1 518.5
3 518.0 561.6 520.6
4 545.8 587.8 554.3
5 522.1 581.0 539.6
6 549.5 619.0 564.3
7 523.2 576.8 539.6
8 492.2 533.0 516.3
9 500.9 537.6 515.9
10 494 .8 5342 -
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Figure 14. Calculated thrust-dependent power for Task 3 cases.
Table 15. Calculated thrust-dependent power for Task 3 cases
Case Thrust-Dependent power, kw
RAE/WHL CAMRAD? CAMRAD/JA? METAR/R85%
1 654.2 597.4 607.2 590.9
2 674.5 622.9 686.7 626.2
3 7727 734.6 888.6 750.1
4 818.6 774.2 958.2 788.4
5 770.6 740.8 927.8 771.1
6 818.1 783.5 1019.0 801.3
7 765.2 737.8 907.7 771.1
8 801.4 706.4 856.4 744.1
9 810.6 716.6 854.5 -
10 810.5 715.5 848.4 -

4Sum of induced and parasite powers.
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Figure 15. Calculated shaft power for Task 3 cases.
Table 16. Calculated shaft power for Task 3 cases
Case Shaft power, kw
RAE/WHL CAMRAD CAMRAD/JA METAR/R85

1 842.8 835.2 845.2 826.0

2 859.1 849.1 913.2 849.5

3 962.9 978.6 1135.6 984.2

4 1003.4 1005.6 1195.1 1010.7

5 990.3 1034.7 1230.6 1035.9

6 1045.9 1084.4 1338.6 1066.5

7 986.9 1026.4 1199.7 1039.3

8 1033.5 1028.7 1178.5 1031.4

9 1046.3 1045.7 1184.7 1060.4
10 1047.1 1043.2 1176.3 -




The separation of shaft power into constituent parts, that is, into parasite, induced, and profile
powers as calculated by the CAMRAD analyses and METAR/RSS, or into thrust-dependent and rotational
powers as done in the RAE/WHL analysis is valuable only to the degree that it provides insight into
prediction differences observed. In the end the only calculation of importance is the prediction of shaft
power as shown in figure 15. In this regard it is useful to note that the CAMRAD and METAR/R85
analyses are very consistent, with less than 2% difference in all cases. The RAE/WHL predictions
are well matched with the others for Case 1 and 3 and Cases 8 and 9, but differences of about -4 or
5% are observed for Cases 5 and 7. CAMRAD/JA, on the other hand, calculates a shaft power 13%
higher than the other methods and an examination of the power breakdown shows that approximately
9% of the value is in induced power and 4% in parasite power. The differences between CAMRAD
and CAMRAD/JA are related to the wake model as discussed in Appendix C.

4.3.2 Airloads and Motions

Case 1

The Case 1 calculation was the most fundamental case examined and used simplified aerodynamics
for the blade and wake, as well as a simplified representation of the blade dynamic properties. The blade
aerodynamics were represented by linear equations, while unsteady flow, dynamic stall, and yawed flow
were not modeled. The wake was assumed to be uniform, without harmonic variation. No tip loss factor
was used in these calculations. The blade was assumed to be rigid with mass and inertia properties
that matched the Puma rectangular blade. Three of the analyses included a flap hinge for the dynamic
model, but not a lag hinge. The METAR/RS5 analysis, however, required that the lag hinge be retained
in the rotor representation and, in this respect, differed from the other models.

The lift calculated by the four analyses is shown in figure 16 as a surface plot where the independent
variables are blade azimuth and blade radius. The radial grid shown corresponds to the calculated grid
used by each analysis while a 5° step size is used for the azimuth grid. Note that the RAE/WHL analysis
used 36 harmonics in its computation, METAR/R85 used 18 harmonics, and the two CAMRAD analyses
used 12 harmonics. The measure of lift used here, M 2C;., is a nondimensionalization based on the
speed of sound rather than local velocity, that is

2L
M2Cp =

paic

(4-9)

where L is the unit lift on the blade, p is the density, a is the speed of sound, and c is the section chord.
This form of nondimensionalization is useful in that the azimuthal behavior of M?2Cy is the same as
dimensional lift.

Azimuthally, the lift distribution for this simple case is dominated by a reduction in lift near the
end of the first quadrant and, near the blade tip, there is a small region of negative lift. The reduced lift
is a consequence of the need to maintain roll moment balance on the rotor. Radially, the lift increases
towards the blade tip for most azimuths and the absence of a tip loss factor is clearly shown.

The distribution of blade angle of attack that corresponds to figure 16 is shown in figure 17. The
angle of attack is a minimum near 90°, where the local airspeed is highest. It is a maximum at 270°.
Inboard on the blade, in the third and fourth quadrants, the local velocity is quite low and computed
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Figure 16. Normal force distribution as a function of azimuth and blade radius for Case 1; all harmonics.
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angles of attack can be quite large, but these are not shown in the figure which cuts off the plot at the
scale limit. The CAMRAD analyses show an oscillation in angle of attack at the most inboard station
and it is believed that this is related to the solution method. Because the local dynamic pressure is so
low at these inboard stations, small changes in angle of attack do not have a significant influence on the
computed loads. The distribution of higher harmonic airloads, that is, harmonics at 3/rev and above, is
shown in figure 18. These higher harmonic airloads are the source of vibration for the aircraft. As is
seen here, these vibratory airloads are dominated by the third harmonic. It is probably useful to note
that no blade elasticity is included in these computations so that there is no aeroelastic contribution to
the 3/rev loads. The amplitude and phase of these loads is a consequence of the large variation in local
velocity around the rotor disk. In this sense, then, the vibratory loading is induced by the requirements
for trim in forward flight.

The predictions of the four analyses for various parameters are compared in figure 19. In general,
very good agreement is achieved for the four analyses for this simplified case. The METAR/R85
calculation shows a slight phase lag when compared to the other analyses and this is simply a result
of the steady lag deflection that is included in that analysis. However, the difference in blade flapping
observed for the METAR/RS85 analysis is surprising as this difference is primarily in blade coning which
is directly related to blade thrust. The reason for this coning difference is unknown.

Case 2

The distribution of the airloads for Case 2 is shown in figure 20. This case differs from Case | in
that the root cutout is changed from 0.228R to 0.40R. This change in root cutout removes the reverse
flow region from the calculation and, because there is less blade area, slightly increases the lift per unit
span as shown in figure 21 which compares the steady lift calculated in this case with that computed
for Case 1.

Case 3

The uniform wake model of Case 1 was replaced with a prescribed wake model for Case 3, but
no other modeling changes were made. The RAE/WHL analysis uses a series of half vortex rings
attached to the blade and full vortex rings within the wake to represent the wake induced flows. The
other methods are based on a vortex-lattice model. Figure 22 shows the distribution of normal force
for Case 3 for the four analytical models. Substantial differences are seen between these results and
the uniform wake calculations of Case 1. Most noticeable in this figure is the drop-off in blade lift that
occurs at the blade tip for each of the analyses and, particularly for the RAE/WHL and METAR/R85
analyses, indications of vortical loading in the first and fourth quadrants.

The differences between Cases 1 and 3 are more apparent if the higher harmonics of the loading
are examined, as shown in figure 23. The largely 3/rev character observed in Case 1 is now modulated,
particularly towards the blade root. Except for the two CAMRAD analyses, which have essentially the
same wake model, substantial difference are now seen between the various analyses.
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The reduction in blade lift that occurs at the blade tip is a consequence of coupling of the prescribed
wake to the lifting-line analysis. Figure 24 compares the radial distribution of steady normal force as
computed by the four analyses. The inboard prediction of lift is similar for all methods, but the methods
vary in their prediction of the lift drop-off at the blade tip. The lift predicted by CAMRAD/JA starts
to decrease at 0.90R while the lift for CAMRAD is maintained past 0.95R. The difference in the lift
drop-off is believed to be a result of differences in the solution method. CAMRAD/JA is considered
accurate to second order in its lift prediction while CAMRAD is only accurate to first order (Bousman
et al., 1989). The other two methods show a drop off that is approximately halfway between the two
CAMRAD predictions.

The significant changes that occur in the distribution of lift from Case 1 to Case 3 are caused by
the wake model. Some insight into these changes can be obtained by looking at the angle-of-attack
distributions shown in figure 25 and comparing these distributions to Case 1 (figure 17). All of the
analyses show a reduction in angle of attack near the blade tip and the largely 1/rev character noted
in figure 17 now includes higher harmonic effects. This is most noticeable for the RAE/WHL analysis
which shows substantial changes in the angle of attack in the first and fourth quadrants caused by
vorticity in the wake. This is seen in the other analyses as well, but is more subdued. A detailed
comparison between Cases 1 and 3 is shown in figure 26 for the 0.85R radial station. The steady and
first harmonic angle-of-attack variation has been removed in this figure to better illustrate the effects
of the prescribed wake model. Each of the analyses shows a substantial variation in angle of attack
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Figure 24. Comparison of the radial distribution of steady normal force for Case 3.
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Figure 26. Comparison of angle-of-attack distribution as a function of azimuth for Cases 1 and 3;
0.85R, harmonics 2 and above.

on the retreating side of the disk caused by the vorticity from the previous blades. The variation in
angle of attack occurs at about 1 = 300° at this blade radius and appears first as an upwash and then
a downwash. In the case of the RAE/WHL analysis the change in angle of attack is much larger than
is seen with the vortex-lattice methods.

The RAE/WHL analysis also shows the effects of discrete vortex loading on the advancing side
and this is seen as well in the METAR/RS85 prediction, but to a lesser extent. For this radial station
the effects of at least four tip vortices are seen in the first quadrant. The higher frequency, vortical
loading computed with the wake models in the RAE/WHL and METAR/RS85 analyses is partly a result
of the smaller azimuthal stepsize used in the solution: 5° for the RAE/WHL analysis and 10° for the
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METAR/RS5 analysis. However, most of the effects shown here are retained even if only the first 12
harmonics of the angle of attack are plotted.

Case 4

The distribution of the airloads for Case 4 is shown in figure 27. This case differs from Case 3
in that the root cutout is changed from 0.228R to 0.40R. The effect of increasing the root cutout 1S
to slightly increase the steady lift on the blade but, in general, these effects are slight. The differences
between the two 0.40R root cutout cases, Case 2 and Case 4, are essentially the same as seen in
comparing Cases 1 and 3.

Case 5

Case 5 differs from Case 3 in that the aerodynamic forces and moments on the blade are computed
using nonlinear aerodynamics rather that the linear model. Figure 28 shows the distribution of normal
force for Case 5 for the four analytical models. The normal force distributions are essentially unchanged
from Case 3 (see figure 22), indicating that the blade is operating largely in the linear aerodynamic
regime, at least as far as the normal force or lift is concerned. Using a slice of data at 0.85R, the effects
of the modeling change are examined by comparing the Case 5 results with Case 3 in figure 29. Except
for a slight increase in normal force for the CAMRAD/JA calculations the results are the same for the
two cases.

The angle-of-attack distribution is also essentially unchanged from Case 3 as indicated by the
surface plot in figure 30. Comparing the Case 5 results with Case 3, figure 25, slight changes are seen
inboard in the third quadrant for the CAMRAD analyses and METAR/RS85, where the dynamic pressure
is low and the airloads are small. Note that the calculated angles of attack in these plots are not plotted
beyond the scale limits and this results in a squared-off or clipped appearance to the angle-of-attack
distributions. The computed angles of attack at 0.85R are compared in figure 31 where the steady
and first harmonic have been removed to accentuate the effects of higher harmonics. Except for small
differences in the fourth quadrant of the CAMRAD/JA calculation no effect of nonlinear aerodynamics
is seen in the calculation of angle of attack.

The distribution of the section pitching moment is shown in figure 32 for the four analyses. The
largest pitching moments are observed near the blade tip in the first and second quadrants. There are
some surprising differences between the analyses, considering that the computed moments are based
solely on steady airfoil section properties and, for many angles of attack, the same airfoil section
properties were used by the four analyses. The angle of attack, near the blade tip, approaches zero near
90°. where the Mach number is a maximum, but is positive on either side of 90°. The airfoil section
pitching moment behavior in Section 4.2 shows that the pitching moment becomes quite negative for
M > 0.7 at angles of attack greater than zero so the two-humped behavior shown by the CAMRAD
analyses and METAR/R85 appears to result from the compensating effects of the decrease in angle of
attack and the increase in Mach number as the azimuth approaches 90°. It is believed that the positive
moment in RAE/WHL analysis is a result of a coding error.
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Figure 27. Normal force distribution as a function of azimuth and blade radius for Case 4 all harmonics.
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The blade tip pitching moment is examined in greater detail in figure 33 where the angle of attack
and pitching moment are plotted as functions of rotor azimuth at 0.98R. The angle of attack is decreasin g
in the first quadrant and, as the angle nears one degree, there is a rapid decrease in the moment for the
CAMRAD predictions while the RAE/WHL analysis shows a positive moment. These moments reduce
to zero at about 70°, where the angle of attack is zero, and then increase again as the angle of attack
becomes more positive. At about 135° the Mach number has decreased and the moment returns to a
nominal value. The difference in behavior for these analyses looks like an error in the coefficient sign,
but this cannot be true in a global sense as all the analyses show the positive moment that occurs in the
fourth quadrant inboard on the blade in the reverse flow region (see figure 32).

The nonlinear aerodynamic tables used by the CAMRAD analyses and METAR/RS5 are, as men-
tioned before, based on the RAE/WHL equations described in Section 4.2. However, these equations
are only used for angles of attack below the stall boundary defined in table 3. Above the stall boundary
the section coefficient data are based on the C81 NACA 0012 deck that is valid for all angles of attack
(Davis, 1974). Above the stall boundary, each analyst faired or patched the RAE/WHL equations into
the C81 deck and, in some cases, there may be small perturbations in the section properties at these
boundaries. Figure 34 shows the Cp values computed by the four analyses at two radial stations as a
function of the section Mach number. This figure includes an overplot of the angles of attack from the
NACA 0012 deck that provide the equivalent Cy. In addition, the RAE/WHL stall boundary is plotted
on these figures to show the range of applicability of the RAE/WHL equations. Near the blade tip, all
of the analyses predict that the computed angles of attack and Mach number are within the domain of
the RAE/WHL equations and, therefore, the analytical predictions are directly comparable. Inboard, at
0.60R, however, the analyses show that angles of attack are reached on the retreating side that exceed
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Figure 33. Angle-of-attack distribution and section pitching moment as a function of azimuth for Case 5;
0.98R.
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Figure 34. Normal force and Mach number distributions at two radial stations and comparison with
RAE equation stall boundary (heavy dashed line). Two-dimensional section lift at constant angle of
attack shown as dotted lines.

the RAE/WHL stall boundary and, in these cases, differences may occur in predicted results that are a
consequence of differences in the tables (or equations) used.

Case 6

The distribution of the airloads for Case 6 is shown in figure 35. This case differs from Case 5
in that the root cutout is changed from 0.228R to 0.40R. The effect of increasing the root cutout is
to slightly increase the steady lift on the blade but, in general, these effects are slight. The differences
between Cases 4 and 6, due to the addition of nonlinear aerodynamics, are essentially the same as the
differences between Cases 3 and 5.

Case 7

Case 7 differs from Case 5 in that the computation of the aerodynamic forces on the blade includes
unsteady aerodynamic terms in the equations. As with Case 5, the analyses used the same section
coefficient data to compute the steady aerodynamic forces and moments, but the unsteady aerodynamic
computation is different for each analysis. Figure 36 shows the distribution of normal force for Case 7
for the four analytical models. The normal force distributions are essentially unchanged from Case 5 (see
figure 28), indicating that, for these conditions, unsteady aerodynamics do not significantly influence
the blade lift. Again, a slice of data at 0.85R is examined in figure 37 to look in detail at the effects
of adding the unsteady aerodynamics terms. The RAE/WHL and CAMRAD analyses show minor
differences in the lift around the azimuth, and a slight reduction in the lift variation caused by the
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Figure 37. Comparison of normal force distribution as a function of azimuth for Cases 5 and 7; 0.85R,
all harmonics.

tip vorticity of previous blades is apparent in the RAE/WHL analysis. METAR/R85 does not include
unsteady lifting terms in its equations so no difference is seen for this analysis between the two cases.

The angle-of-attack distribution is also essentially unchanged from Case 5 as indicated by the
surface plot in figure 38. Comparing the Case 7 results with Case 5, figure 30, slight changes are seen
inboard in some of the calculations but the dynamic pressure is quite low at these locations and the
effect of angle-of-attack changes is slight. The computed angles of attack at 0.85R are compared in
figure 39 where the steady and first harmonic have been removed to accentuate the effects of higher
harmonics. The RAE/WHL analysis shows a slight reduction in the loading caused by blade tip vorticity
from previous blades while the other analyses show little effect of the modeling change for this radial

station.
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Figure 39. Comparison of angle of attack as a function of azimuth for Cases 5 and 7: 0.85R, harmonics
2 and above.

The distribution of the section pitching moment is shown in figure 40 for the four analyses. The
effects of including unsteady aerodynamics on the section pitching moments are substantial for all of the
analyses; compare with Case 5, figure 32. These changes are interesting considering the absence of any
observed differences in the lift distribution and suggest that the most important effects of unsteadiness
are in the blade pitch rate terms. These changes, which are greatest near the blade tip, are examined
in detail in figure 41. The RAE/WHL analysis shows a reversal in the pitching moment near the
blade tip due to unsteady aerodynamics and this change is quite substantial—larger than the effects of
unsteadiness seen in the other analyses. The CAMRAD analyses and METAR/R85 show similar effects,
with a slight increase in the variation of section moment around the azimuth.
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Figure 41. Comparison of section pitching moment as a function of azimuth for Cases 5 and 7; 0.95R,

all harmonics.

Case 8

Case 8 differs from Case 7 in that the computation of the aerodynamic forces on the blade includes
yawed or radial flow effects. Figure 42 shows the distribution of normal force for Case 8 for the
four analytical models. The normal force distributions show little change from Case 5 (see figure 36),
indicating that, for these conditions, radial or yawed flow does not significantly influence the blade lift.
As before, a slice of data at 0.85R is examined in figure 43 to look in detail at the effects of adding
the yawed flow terms. The RAE/WHL analysis shows a small increment in lift at this station with the
inclusion of the radial flow terms, but the other analyses are not influenced by the modeling changes.
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Figure 42. Normal force distribution as a function of azimuth and blade radius for Case 8; all harmonics.
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Figure 43. Comparison of normal force distribution as a function of azimuth for Cases 7 and 8; 0.35R,
all harmonics.

The angle of attack for Case 8 is compared with Case 7 in figure 44. Small changes in the angle-
of-attack excursions are observed for the RAE/WHL and CAMRAD/JA analyses. The other analyses
show no influence of radial flow on the angle of attack at this radial station.

Radial flow effects show little influence on the section pitching moments for this trim condition.
Figure 45 compares the pitching moment computed for Case 8 with the Case 7 values for the four
analyses. Fairly small changes are seen, particularly near ¢» = 0°, but for the most part these changes
are slight.
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Case 9

Case 9 differs from Case 8 in changes made to the blade structural model. For the computations for
Cases 1 to 8 the blade was modeled as a rigid beam with a hinge at the root to allow flap motion. (The
METAR/R8S analysis was an exception in that it included a lag hinge as well.) For Case 9 a lag hinge
was added to the RAE/WHL and CAMRAD analyses and blade flexibility was represented by multiple
bending modes. Figure 46 shows the distribution of normal force for Case 9 for the four analytical
models. Qualitatively, the distribution is similar to the Case 7 results shown in figure 36 or, for that
matter, the Case 3 results, figure 22. Examining the normal force at 0.85R, as shown in figure 47, it
is apparent that the major effect of adding a lag hinge and blade flexibility is that the normal force is
phase shifted by about 15° or 20°. These results, compared with Case 3, show only small changes in
the normal force for the various changes to the aerodynamic model.

The vibratory loads, that is, harmonics 3 and above, provide a more sensitive assay of the effects
of aerodynamic and aeroelastic modeling changes. Figure 48 shows the distribution of the normal force
for the four analyses with the steady and first two harmonics removed. A comparison with Case 3,
figure 23, is particularly interesting as few changes are evident, even in these higher harmonic loads,
as a consequence of the aerodynamic and aeroelastic modeling changes. A direct comparison of the
vibratory loading, at 0.85R, is shown in figure 49. As noted previously, the RAE/WHL vortex ring wake
shows strong vortex loading on both the advancing and retreating sides of the disk. The aerodynamic
modeling changes made from Case 3 to Case 8 slightly reduce the peak loads, particularly some of the
higher harmonic content of these loads but, in general, these effects are slight. With the addition of
blade flexibility, Case 9, the vortex loading is further reduced although the dominant 3/rev character
remains the same. The calculated section normal force at this radial station is very similar for the two
CAMRAD analyses. Almost no effects of the aerodynamic modeling changes from Case 3 to Case 8
are seen in the predictions. The inclusion of a lag hinge and blade flexibility, Case 9, shows a phase
shift of about 20° and the amplitude of the vibratory loads are reduced by about 10%. A lag hinge
was included in the METAR/RS8S calculations for all of the cases and no phase shift is observed for
these results. Essentially no change is seen in the METAR/RS85 predicted normal force because of
aerodynamic modeling changes and only a small decrease in the normal force on the retreating side of
the rotor is seen when blade flexibility is added to the model.

The angle-of-attack distribution for Case 9 is shown in figure 50 and qualitatively appears much
the same as for the previous cases. (Angle of attack was not computed by METAR/RS8S for this case.)
The Case 9 angle of attack at 0.85R is compared in more detail with Cases 3 and 8 in figure 51. Only
harmonics 2 and above are shown in this comparison to accentuate the differences caused by modeling
changes. As can be seen, the angle-of-attack differences are quite small, whether caused by aerodynamic
modeling changes or by blade flexibility.
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The distribution of the section pitching moment is shown in figure 52 for the four analyses. A
number of changes are noted when comparing these predictions with Case 7, figure 40. The peak section
moment near the tip predicted by the RAE/WHL analysis is reduced considerably with the addition of
blade flexibility; however, the vortex-induced loads on the retreating side are largely unchanged. The
computed values at the two innermost stations are incorrect because of an implementation error in the
model but this has a negligible effect on the blade moment. The CAMRAD analyses and METAR/R85
section moments are similar to the Case 7 values. However, CAMRAD and METAR/R85 show that
the first negative peak is increased in Case 9 and the second negative peak is reduced. The effects of
blade flexibility (and the lag hinge) are examined in more detail in figure 53. At this radial station,
blade bending flexibility reduces the peak section moment for the RAE/WHL and CAMRAD analyses,
while the moments are substantially increased (in the negative sense) for the METAR/RS85 analysis.

Case 10

Case 10 differs from Case 9 in the addition of torsional flexibility. The METAR/RS85 analysis
was unable to obtain a converged solution for this case so no results are shown. Figure 54 shows the
distribution of normal force for Case 10 for the three analytical models. Qualitatively, the distribution
is similar to the Case 9 results shown in figure 46 as well as the Case 3 results, figure 22. Examining
the normal force at 0.85R, as shown in figure 55, it is seen that only slight changes occur for the
RAE/WHL analysis, but that the CAMRAD analyses predict a slight decrease in the normal force on
the advancing side of the rotor.

The vibratory load distribution, harmonics 3 and above, is shown in figure 56. Qualitatively, only
slight changes are seen between this case and Case 9, figure 48. A direct comparison of the vibratory
loading, at 0.85R, is shown in figure 57. The effect of blade bending flexibility was to reduce the
higher harmonic airloads, as noted above. However, the addition of torsion flexibility does not appear
to significantly increase or decrease the vibratory loads for the RAE/WHL analysis. For the CAMRAD
analyses, however, the addition of torsion flexibility substantially increases the vibratory loads. Whereas
the effect of bending flexibility (Case 9) was to reduce the vibratory loads by 10% with respect to the
Case 3 results, the effect of torsion flexibility (Case 10) is to increase the vibratory loads by 10% with
respect to the Case 3 loads.

The angle-of-attack distribution for Case 10 is shown in figure 58 and qualitatively appears much
the same as for the previous cases. The Case 10 angle of attack at 0.85R is compared in more detail with
Cases 3 and 9 in figure 59. Only harmonics 2 and above are shown in this comparison to accentuate the
differences caused by modeling changes. Each of the analyses shows the effects of torsional flexibility
and, in some cases, differences greater than 0.5° are observed.

The distribution of the section pitching moment is shown in figure 60 for the three analyses.
Qualitatively, the calculated section moments are very similar to those shown for Case 9, figure 52. The
effects of torsion flexibility are examined in more detail in figure 61 for a radial station near the blade
tip. Over most of the rotor azimuth, little effect of torsion flexibility is seen on the section moment.
Only in the second quadrant are differences seen and, for the most part, the analyses show a more
positive moment in this region.
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Figure 54. Normal force distribution as a function of azimuth and blade radius for Case 10: all harmonics.
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4.4 Summary of Analytical Modeling Investigation (Task 3)

The four analytical methods examined here show very good agreement for Case 1, which is both
the simplest case examined and a baseline for the rest of the computations. The good agreement is seen
for trim and performance parameters as well as for the radial and azimuthal distribution of lift. This
good agreement provides a useful reference point for all subsequent comparisons.

The harmonics of the airloading at 3/rev and above, those loads that are a source of vibration for
the aircraft, are very similar for the four analyses. The vibratory loading, for this very simple case, is
clearly seen to be a consequence of the rotor trim. In this sense, the prediction of helicopter vibration
at high speed starts from a baseline of trim-induced vibratory loading that will either be increased or
decreased as modeling features are added to the analyses.

Cases 2, 4, and 6 (with respect to Cases 1, 3, and 5 respectively) examine the effect of the reversed
flow region on the computation by increasing the root cutout from the Puma’s dimensional root cutout
at 22.8% radius to 40% to accommodate the reversed flow region which, at this trim condition, extends
to 0.38R. Except for a slight increase in blade unit lift, to account for the reduced blade area, there are
no changes observed as a result of the increased cutout.

The modeling change made in going from Case 1 to Case 3 is the replacement of the uniform
inflow wake with a prescribed wake. The wakes incorporated in each of the four analyses are different
and there was no attempt to “match” the computations beyond the need for each analysis to achieve a
converged solution to the trim values. The CAMRAD analyses and METAR/R85 each model the wake
using a vortex-lattice representation although there are differences in the details of the implementation
for each analysis. The RAE/WHL analysis uses a series of vortex rings and half rings to represent the
wake vorticity. Despite the differences in the wake models the results in terms of trim and performance
are basically equivalent for this flight condition.

The second-order lifting-line method of CAMRAD/JA gives a much greater inflow with larger
gradients in the longitudinal and lateral directions of the rotor disk than the other methods. Using
CAMRAD as the reference for Case 3, the CAMRAD/JA analysis predicts that the induced power is
51% higher, the parasite power 8% higher, the profile power 1% higher and the total shaft power 16%
higher. It cannot be concluded from this code-to-code comparison whether the second-order lifting-line
method is more or less realistic than the other analyses, but it is nevertheless encouraging to observe
that the classical vortex-lattice methods (CAMRAD and METAR/R85) and the vortex-ring method of
RAE/WHL converge to similar results.

The inclusion of concentrated vorticity in the wake models for Case 3 affects the distribution of
the angle of attack, particularly in the first and fourth quadrants where the influence of the tip vortices
from previous blades is greatest. However, it is important to note that the changes in angle of attack
resulting from the prescribed wake models are substantially smaller than the angle-of-attack variation
caused by rotor trim. The largest changes are, for each of the analyses, in the fourth quadrant and these
differences are especially large for the RAE/WHL analysis.

Nonlinear aerodynamic characteristics are included in the models with the change from Case 3
to Case 5. The nonlinear characteristics, at least below stall, are made roughly uniform between the
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analyses by incorporating the equations that are normally used in the RAE/WHL analysis into the other
models. This was done for the CAMRAD analyses by creating a new set of tables for interpolation
based on the RAE/WHL equations and for METAR/R8S by directly modifying the program. A slight
increase in profile power is seen for all of the analyses, as expected, and the four methods predict similar
trim and performance results. Essentially no changes are seen in the distribution of blade lift or the
angle-of-attack distribution and, hence, the inflow angles. However, the pitching moments, based on
static airfoil characteristics are quite different between the RAE/WHL analysis and the other methods
and this is apparently the result of a coding error in the program.

Unsteady aerodynamic effects are incorporated in the analyses in going from Case 5 to Case 7.
However, the METAR/R85 analysis models unsteadiness only in the pitching moment and not the lift.
As the required rotor thrust and the pitch and roll moments are the same for each analysis, the variation
in the collective and cyclic trim angles provides insight into the effects of the unsteady aerodynamic
models. In this respect it is interesting to see that the RAE/WHL and CAMRAD analyses show the
same reduction in collective pitch angle caused by augmented lift, but the phasing of this lift, as reflected
in the cyclic angles, is opposite with the RAE/WHL analysis showing an anticipated response and the
CAMRAD family a retarded response. This reflects the lack of maturity of dynamic lift models, even
in the restricted framework of the unstalled regime. Little effect of unsteady aerodynamics is seen on
the performance, however.

The effects of unsteady aerodynamic modeling in the calculation of the lift distribution is very
slight and the vibratory airloads are unchanged. The calculated blade pitching moments are affected by
the unsteady aerodynamic models, however. At the rear of the rotor disk, where the blade pitch rate
is most negative, all of the analyses show an increase in pitching moment and at the front of the disk
a decrease in pitching moment. Smaller changes are observed where the pitch rate is near zero. The
RAE/WHL analysis, which showed very different static pitching moment characteristics for Case 5,
shows predictions more like the other analyses after the addition of unsteady aerodynamics, although
the variation in pitching moment near the blade tip is greater than is seen for the three other analyses.

Case 8 differs from Case 7 in the addition of yawed or radial flow effects in the analytical models.
In this flight condition, radial flow modifies mainly the X-force with a reduction of propulsive force
and parasite power at a given flap angle. On the other hand, the profile power is augmented by nearly
the same amount so that the total power is almost unchanged. If the rotor was to be trimmed to a given
propulsive force, then the parasite power would recover its initial value and the profile power increment
would remain so that the global rotor efficiency would, in fact, deteriorate. These trends can be clearly
seen with the CAMRAD family and METAR/RS5. For the RAE/WHL analysis, however, the different
power breakdown used makes the differences more difficult to see, but the influence of radial flow is
larger, with an increased shaft power for the same blade flapping. The effects of radial flow on the
airloads are very slight.

Cases 1 through 8 have examined aerodynamic modeling effects, retaining a simple rigid, hinged
blade for the computations. For Case 9, the influence of blade bending modes is examined by adding
flap and chord bending degrees of freedom. The RAE/WHL and CAMRAD analyses also add a lag
hinge; the METAR/R85 analysis has included a lag hinge for all Task 3 calculations. Compared to a
rigid, flapping blade, the difference in performance remains quite small. The cyclic pitch angles exhibit
a change in phase of about 11 or 12 degrees for the RAE/WHL and CAMRAD analyses, but this is a
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result of adding the lag hinge and no phase change is observed for the METAR/R8S5 analysis. All of
the analyses show similar trends for performance and trim.

The blade airloads are changed with the addition of blade flexibility although these changes are
fairly small. The largest change is, of course, the phase shift in the loading caused by the addition of the
lag hinge. The RAE/WHL and CAMRAD analyses show about a 10% reduction in the vibratory blade
lift, while METAR/RS85 shows hardly any effect on lift. The pitching moments are reduced slightly for
the RAE/WHL analysis and unchanged for the CAMRAD analyses, while a negative shift is seen for
the METAR/RS8S analysis.

Case 10 differs from Case 9 in the addition of torsional flexibility. For this case the METAR/R85
analysis would not converge so that the effects of the torsional degree of freedom are assessed using
just the RAE/WHL and CAMRAD analyses.

The torsion degree of freedom does not play a large role in rotor performance for this moderate
velocity and moderate lift flight condition according to the RAE/WHL and the CAMRAD analyses.
However, the collective pitch angle required for this trim condition does vary with the RAE/WHL
analysis showing a decrease and the CAMRAD analyses an increase. The amplitude and phasing of the
cyclic trim angles also change with the RAE/WHL analysis showing an increase in the cyclic trim and
the CAMRAD analyses a decrease.

The blade angles of attack and airloads are changed with the inclusion of the torsion degrees of
freedom and these changes are of the same magnitude as those observed in going from Case 8 to Case 9,
except that the vibratory airloads have increased by about 10% rather than being reduced by 10%. The
blade pitching moments near the tip show some influence as well, particularly on the advancing side
where the RAE/WHL analysis shows a slight reduction in the loads and the CAMRAD analyses a slight
increase.
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5 COMPARISON OF LIFTING-LINE METHODS WITH FLIGHT TEST
DATA (TASK 1)

5.1 Introduction

Three sets of calculations were made with the lifting-line methods for Task 1 of the cooperative
program: a set of calculations based on an airspeed sweep from Flight 525 that were the basis of the
assessment: a set of reference calculations based on one airspeed from Flight 123 for a Puma with
a rectangular-tip blade; and a set of calculations for an autorotational dive condition, Flight 487, that
provided the basis for the CFD solutions reported in Section 6.

The primary purpose of the lifting-line methods assessment was to examine the accuracy of these
methods over a range of forward flight speeds. For this purpose cases were selected from Flight 525
that included data for sixteen advance ratios from p = 0.098 to u = 0.402. Lifting-line predictions were
then made for five of the sixteen advance ratios and comparisons with the flight test data are presented
in Section 5.2. The highest speed case, 1 = 0.402, was also used as a basis for CFD computations and
this is discussed in Section 6.3.

The Flight 123 case that is discussed in Section 5.3 was selected to provide a reference or baseline
case with the standard Puma blade without the swept tip. Prior to the initiation of the cooperative effort
that is reported here it was believed that the effects of the swept tip of the research Puma might confuse
both the interpretation of available flight test data and the calculations. It was concluded, therefore,
that it would be valuable to make calculations for one flight condition from Flight 123 and, through
comparison with Flight 525, examine the effects of tip sweep on both the lifting-line predictions and
the flight test data.

Calculations were also made for the research Puma for an autorotational dive condition on Flight
487 that achieved an advance ratio of y = 0.429 and an advancing tip Mach number of Mgy = 0.922.
These calculations are discussed in Section 5.4 and provide a basis for the CFD computations reported
in Section 6.2.

The standard Puma airfoil section is similar to a NACA 0012 and, as a consequence, NACA 0012
section data are used as airfoil tables in the lifting-line calculations. The modifications that were made to
the research Puma to sweep the tip and increase blade area outboard also influenced the airfoil profile at
the outboard sections. Section 5.5 describes the various airfoil sections and summarizes measurements
that were made of the swept-tip profile and some theoretical, two-dimensional calculations that were
made to assess the swept-tip airfoil modifications.

Finally, some summary comments concerning the predictions for Task 1 are provided in
Section 5.6.

The computed blade airloads and structural loads that are compared with flight test data in this
section were, in general, not obtained for the same radial stations. However, the radial spacing used
by these analyses for the computed loads is quite fine and, when direct comparisons are shown in this
section as a function of the rotor azimuth, linear interpolation has been used with the theoretical data to
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provide a direct comparison with the experimental measurements at the indicated radial station. Errors
introduced by the use of linear interpolation are small in comparison to differences seen between the
analyses and the data. In a number of cases, comparisons are made between experimental measurements
obtained on different rotor configurations and, again, linear interpolation is used for one or the other
data sets. In these cases, the data set for which interpolation was used is indicated.

5.2 Advance Ratio Sweep (Flight 525)
5.2.1 Flight Data

Data were obtained at sixteen advance ratios for Flight 525 with level flight test points from
¢ = 0.098 to 0.402. Five of these cases were chosen for correlation and these are shown in table 17
where "Counter’ refers to the test point or condition. A trim condition was specified equivalent to
isolated rotor trim in a wind tunnel, that is, five trim variables were specified: airspeed, rotor thrust,
Cr/o, shaft angle of attack, s, and the first harmonic flapping angles measured at the blade hinge, 5.
and (1. The flapping angle harmonic coefficients, 51, and i, are defined as a conventional (positive)
Fourier series. Positive (1. represents tilting of the rotor disk forward and positive 3¢ represents
tilting of the rotor disk to the right (clockwise rotation). Although the shaft angle and flapping angles
are directly measured, the rotor thrust is not measured and, instead, is assumed to be the same as the
aircraft weight. The purpose in selecting an isolated rotor trim as a basis for these comparisons was to
simplify the problem as much as possible and remove confounding factors.

Table 17. Flight 525 correlation cases

Counter 3 7 12 17 21
I 0.0978 0.1821 0.3074 0.3619 0.4019
My 0.6481 0.6983 0.7702 0.8026 0.8265
Cr/o 0.0700 0.0694 0.0701 0.0700 0.0699
as, deg —1.10 —-2.70 —5.70 —7.40 —-9.05
B1e. deg —-0.223 —0.732 0.040 0.116 0.437
B1s, deg —0.319 —-0.293 —0.082 0.078 0.222
C’Q /o 0.00409 0.00410 0.00608 0.00846 0.01085
Q, rpm 2549 254.6 2539 254.0 254.]

The blade instrumentation for Flight 525 is shown in figure 62. Flap bending moments were
measured on the strain-gauge blade at eleven radial stations: 0.20R, 0.26R, 0.30R, 0.36R, 0.41R,
0.46R, 0.57R, 0.62R, 0.67R, 0.78R, and 0.83R. The distribution of chord bending moment stations
was more sparse: 0.122R, 0.33R, and 0.55R. Torsion moments were measured at 0.126R, 0.33R,
and 0.55K. Surface pressures were measured on the tip section of the pressure blade as indicated in
figure 62. The radial and chord locations of these transducers are given in table 18. Note that there
were no lower surface measurements at 0.89R.
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Figure 62. Structural and pressure instrumentation installed on the research Puma blade.

Table 18. Pressure transducer locations, x/c

0.89R 0.92R 0.95R 0.978R
U L U L U L U L
0.000c 0.000c¢ 0.000c 0.000c¢
0.002¢ 0.002¢ 0.002¢
0.005¢ 0.005¢ 0.005¢ 0.005¢
0.010c¢ 0.010c 0.010c¢
0.020¢ 0.020c¢ 0.020c 0.020c¢
0.040¢ 0.040c¢ 0.040c¢
0.100c 0.100c¢ 0.100¢ 0.100c¢ 0.100¢ 0.100c 0.100c¢
0.200c¢ 0.200c 0.200c¢ 0.200c 0.200¢ 0.200c¢ 0.200c
0.300c¢ 0.300¢ 0.300c¢ 0.300¢ 0.300c 0.300c¢ 0.300c
0.400c 0.400c 0.400c¢ 0.400c¢ 0.400¢ 0.400c¢ 0.400c¢
0.550c 0.550c¢ 0.550c¢ 0.550¢ 0.550¢ 0.550c¢ 0.550c
0.700c¢ 0.700c¢ 0.700c¢ 0.700c¢
0.850¢ 0.850¢ 0.850c¢ 0.850c¢
1.000c¢ 1.000c 1.000c 1.000c¢




A general notion of the section lift and pitching moment behavior near the blade tip can be obtained
from an examination of these parameters at 0.95R as a function of airspeed. Figure 63 shows the lift
and pitching moment as surface plots as functions of azimuth and advance ratio where the five advance
ratios selected for correlation are emphasized by thickened lines. At low speed the airloads near the
blade tip are dominated by the vorticity in the rotor wake that causes a down-up pulse on the advancing
side of the rotor and an up-down pulse on the retreating side. As the airspeed increases, this vorticity
loading decreases and the pulse-like signatures from this loading are largely gone by © = 0.3. As the
airspeed is further increased an area of reduced section lift is seen on the advancing side of the rotor
and for y > 0.3 this lift becomes negative. The section moment at high speed is characterized by a
large positive moment over the rear of the disk that becomes negative at the beginning of the second
quadrant.

The lift and pitching moment were obtained from the pressure measurements by a trapezoidal
integration in the mapped coordinates \/x_/—c(cp) as a function of V/:z:—/; which is considered more
accurate than the integration of cp as a function of z/c. The blade chord force was not computed.
Strictly speaking, this integration provides the section normal force, not lift, but the two terms are used
interchangeably here. The pitching moment is defined at all radial stations relative to the local quarter
chord. The applied torsional moment seen by the blade at any station will, of course, include the couple
induced by the normal force and the offset (if any) of the the local quarter chord from the blade’s
torsion axis which is assumed to be coincident with the unswept quarter chord. In all cases the data
were obtained from a single rotor revolution.

The Iift and pitching moment are examined in more detail for the low-speed case, 1 = 0.098, in
figure 64. Lift variations on the advancing and retreating sides of the rotor disk induced by vorticity in
the wake are clearly seen in this figure. As expected, the peak loading on the advancing side is seen
at the most outboard station, 0.978R, initially and then moves inboard, while on the retreating side the
peak 1is first encountered at the most inboard station, 0.92R, and then moves outboard. In terms of
the integrated pressures it is unclear whether this vorticity is primarily caused by the tip vortex of the
previous blade or the combined vorticity of intertwined tip vortices as suggested by calculations using
the CAMRAD/JA free wake model (Bousman and Maier, 1992). An examination of the upper surface
pressure time histories is shown in figure 65 where the individual pressure time histories have been
offset and ordered from leading edge to trailing edge on the airfoil. Near the leading edge of the blade
there 1s an indication of a second oscillation in the loading, both on the advancing and retreating sides,
but this secondary oscillation is much smaller than the primary vorticity loading that is seen over the
forward portion of the airfoil.

The section lift and moment for the high speed case, u = 0.402, are shown in figure 66. The
section lift varies greatly on the advancing side to maintain a trimmed flight condition. Less variation
1s seen on the retreating side. At the rear of the disk the lift shows a rapid decrease towards the blade
tip while on the front of the disk there is almost no change seen in moving from 0.92R to 0.978R. A
small change in lift seen at 0.95R just past 315° is believed a result of a minor slip ring malfunction
for the pressure tranducers at this station. The largest pitching moments are seen on the advancing
side of the disk with a maximum in the moment in the first quadrant and a minimum in the second
quadrant. In the first quadrant the pitching moment is observed to increase as the blade tip is approached.
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0.95R. Correlation cases shown by thickend lines.
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The upper surface pressures on the forward portion of the airfoil at 0.95R are shown in figure 67.
Included in this plot is the M = 1 boundary which indicates regions of supercritical flow. For the most
part these supercritical flows occur very near the leading edge of the airfoil at the rear of the disk where
the angle of attack is quite high. Little supercritical flow is observed at the beginning of the second
quadrant, probably because of the sweep in the blade tip.

The flap bending moment variation with airspeed is shown in figure 68. Although not readily visible
in this surface plot the dominant 3/rev loading is greatest at the low- and high-speed extremes and lowest
in the middle range of airspeeds. The extensive flap bending moment instrumentation installed on the
blade provides considerable resolution in the flap bending moment distribution, and the azimuthal and
radial distributions of flap bending moment are shown at the low and high airspeeds in figure 69. The
3/rev character of the loading is seen at both low and high speeds and is the dominant component at
nearly all blade stations. The largest loading is observed near the mid portion of the blade. Excursions
in the measurements at the rear of the disk for the low-speed condition are believed to be related to
instrumentation or slip-ring problems.

The bias or zero setting for all structural measurements were obtained with the aircraft on the ground
and, therefore, included static moments. No corrections have been made for these static moments and,
therefore. the steady or zero harmonic components are not included in these figures nor in any of the
comparisons with calculation.

The bending moment nondimensionalization used here is analogous to a blade aerodynamic loading
coefficient Cr /o, that is,
Cryv . Ms

= ; 5-1
o4 WapV:,ZR:)’ -1

where M is the flap bending moment, o is the rotor solidity, p is the density of air, V is the tip speed,
and R is the blade radius.

The chord bending moment variation with airspeed is shown in figure 70 for a midspan station.
The dominant loading at the center of the blade is 4/rev and this loading increases rapidly with advance
ratio. The chord bending moment was measured at only three stations so that azimuthal/radial plots of
the distribution do not show the richness in detail that was seen for the flap bending moment. Figure 71
shows the chord bending distribution for the low- and high-speed conditions. The amplitude of chord
bending is relatively low for the low-speed case and instrumentation noise at the outer radial station
makes it difficult to interpret the bending moment distribution. At the maximum speed the chord bending
moments are quite pronounced and it is interesting to note that the 4/rev character changes to primarily
a 3/rev loading near the blade root. The chord bending moment nondimensionalization used here is the
same as for the flap bending moment.

The torsion moment variation with airspeed is shown in figure 72 for a blade root location. The
torsion loading is relatively low for the low advance ratio case and increases with airspeed. At the
maximum airspeed a strong positive moment is seen in the first quadrant and this moment becomes
negative at about 90° and there is a peak in the negative torsion moment at about 135°. The mo-
ment then returns to a positive value with a 4/rev oscillation superimposed. The torsion moment on the
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advancing side of the disk is very similar to the aerodynamic moment seen near the blade tip, for
instance figure 63. Torsion moment measurements were obtained at only three radial stations so the
distribution is more difficult to interpret than for the flap bending moment case. Figure 73 shows the
torsion distribution for the low- and high-speed conditions and, as was apparent in figure 72, the torsion
amplitude is quite low at u = 0.098. However, at high speed the torsion loads are quite high and the
advancing side loading is, apparently, a direct consequence of the aerodynamic moment at the blade tip.

The variation in the pitch-link loads with airspeed is shown in figure 74. These loads appear nearly
identical to the root torsion moment shown in figure 72 and, just as in that case, are a consequence of
the aerodynamic loading induced at the blade tip.

The distribution of the blade geometric pitch angle as measured at the blade root and calculated at
0.75R using the built-in twist is shown in figure 75. The pitch angle distribution is relatively smooth
and, as expected, shows an increase in the 1/rev cyclic pitch variation as advance ratio increases. At
high speed the blade pitch angle is near zero on the advancing side because of the dynamic balance
around the flap hinge. As a consequence, compressibility drag is minimized. The collective pitch for
the airspeed sweep is shown in figure 76 and the lateral (cosine) and longitudinal (sine) pitch angles
are shown in figure 77. The collective pitch angle increases with airspeed, particularly above p = 0.2
and, as expected, the lateral cyclic angle varies only slightly over the advance ratio range while the
longitudinal cyclic becomes progressively more negative with airspeed. The measured collective and
cyclic control positions are not used in the analytical efforts to specify the rotor trim and, therefore,
the correlation of analysis with these measurements provides a test of the accuracy of the rotor trim
computation. The reference here to first harmonic cosine and sine components assumes a conventional
Fourier series.

The blade pitch angle was measured at the location of the blade pitch bearing. Some knowledge of
control system flexibility may be obtained by examining this pitch angle measurement after removing the
steady and first harmonic components which are the control angles. Figure 78 shows this measurement
for the maximum airspeed condition and it can be seen that the amount of flexibility in the control
system is fairly small, less than +0.4°, and that the motion in the control system is largely at 3/rev.
The swashplate fixed-system actuators for the Puma are spaced equidistantly around the swashplate and
are located at 60°, 180°, and 300°. These locations coincide fairly closely with the most positive pitch
angles and suggest that most of the flexibility in this control system is in the swashplate.

Blade flapping was measured by a potentiometer at the flapping hinge on three of the four blades.
The distribution of blade flapping with azimuth and advance ratio is shown in figure 79. Particularly
at high speed there is more 2/rev and 3/rev content in the measurement than 1/rev. The first harmonic
flapping is shown in figure 80 as a function of advance ratio. This figure compares the flapping
measurements from all three blades with the trim values specified for the five correlation cases.

The blade lead-lag angle was measured with a potentiometer around the lead-lag hinge. The
distribution of blade lead-lag angle with azimuth and advance ratio is shown in figure 81. There is
little harmonic content in the lead-lag angle measurement and this is undoubtedly a consequence of the
lead-lag damper. The steady lag angle increases with airspeed because of the increasing steady drag on
the blade. However, it appears that the offset is erroneous for these measurements and the steady lag
angle is more like 10° than the 14° or 15° shown here. This will be discussed in Section 5.4.1.
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Figure 76. Collective pitch angle at 0.75R as a function of advance ratio.
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Figure 77. Lateral and longitudinal pitch angles as a function of advance ratio.

1.0

0.8

0.6

0.4

0.2

0.0

PITCH ANGLE, deg
& o o o
[o¢] [o2] > 4]

|
—
[}

T

; N " - ; . q

i I It [ } { 1 §

45 90 135 180 225 270 315 360
BLADE AZIMUTH, deg

o

Figure 78. Pitch angle with control motions removed; 2-32 harmonics.
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Figure 80. First harmonic blade flapping as a function of advance ratio.
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The measured shaft angles for the Flight 525 airspeed sweep are shown in figure 82. Three different
methods were used to measure the shaft angle in flight: a pitch vane mounted on the test boom, a pitch
angle gyro, and a pitch angle measurement based on a pendulum device. The specified trim values used
for the five correlation cases were determined from a shaft-angle schedule based on multiple flight test
cases and, as shown here, agree quite well with the pitch pendulum measurement. The source of the
discrepancy with the pitch vane measurement, which is about 0.43R in front of the aircraft nose, is not
known.

5.2.2 Comparison of Analysis and Experiment

5.2.2.1 Trim and Performance

The specified trim parameters that were used for the analytical computations were airspeed, aircraft
thrust, shaft angle of attack, and first harmonic cosine and sine flapping; see table 17 presented previously.

Pitch Vane
—————————— Pitch Gyro
Pitch Pendulum
® Shaft-Angle Schedule

PITCH ANGLE, deg
|
I

-10 +

0.0 0.1 0.2 0.3 0.4 0.5

Figure 82. Shaft angle as a function of azimuth for three different measurements.
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It was expected that these variables would be achieved exactly by the analyses but discrepancies occurred
in rotor thrust and harmonic flapping and these differences are discussed below.

The trim rotor thrust computed by the four analyses is compared to the measured aircraft weight
in figure 83. The decrease in rotor thrust with advance ratio is a consequence of fuel burnoff during the
test flight. CAMRAD, CAMRAD/JA and RAE/WHL are trimmed with the thrust equal to the calculated
aircraft weight. However, METAR/RSS is trimmed with the rotor lift, that is, the vertical component
of thrust, equal to the weight. As the advance ratio increases, the propulsive force becomes larger and
its effect on rotor thrust is no longer negligible. At high speed, therefore, the trimmed thrust is greater
than the aircraft weight by about 1.5% for this analysis.

The specified and computed first harmonic flapping angles are compared in figure 84. The calculated
first harmonic cosine flapping angle shows generally good agreement with the measured root flapping,
but the sine flapping angle calculated by the RAE/WHL, CAMRAD, and METAR/RS85 analyses is offset
by about half a degree from the measurements. The difference is a consequence of the flapping angle
definition that is used by the analyses. Each of the methods assumes that the input (experimental)
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Figure 83. Computed trim rotor thrust compared to aircraft gross weight as a function of advance ratio.
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ﬂapping angles define 5 tip path Plane; hepce the ﬂapping angle is defineq by a Straight Jipe between
the blade tip and the ﬂapping hinge. This approximatiop neglects elagtic bending of the blade. The
Calculated ﬂapping angles shown in figure g4 are not the angles based on the tip-path—plane definition

Tcosas+L+LS~W:O (5-2)

where 7 i the rotor thrust, Qs 1S the shafy angle of attack, [ ig the fuselage lift, 7, is the Stabilizer
ift, and 1/ IS the aircraft weight. Appendix A provides acrodynamic €quations for the Puma baseq on
vind tunpe] Measurementg (Samonj, 1975) which allows the Calculatiop of the [, and L;. The sum of
he aircrafy weight, the fuselage |if (download), and the Stabilizer Jif (download) is shown ip figure 85.
or Comparison, gp €stimate of T0tor thrust bageq on blade coning s alge shown jp this figure. Based
1 Calculation the effect of fuselage ang Stabilizer download s 1o increase the thrust tha jg required ag
ISpeed increaseg. At the maximum Speed this Incremen; Is approximately 9%. The estimated rotor
rust based op blade coning showsg the same functiona] behavior with airspeed g the sum of aircraft
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Figure g5. Aircraft gross weight, gross weight plus fuselage and stabilizer download, and coning—based
thrust as functions of advance ratio.

weight and download but is offset by about 4000 N. Based on this comparison the specified rotor
thrust used in the trim solution will be increasingly in error at higher speeds and this will influence the
calculated solutions.

The comparisons for the speciﬁed {rim parameters are a first step in the assessment of the 1ifting
line methods. The agreement is, 0 ceneral, quite good and 18 expected- Comparison of the analytica
predictions with measurements of resultant Of unspeciﬁed trim parameters such as the blade contrc
angles provides @ much more rigorous test of these analyses and provides insight into their accuracy.

Figure 86 compares the computed collecuve pitch angle at the blade pitch pearing with {he measur
values for the Flight 525 airspeed SWeEEP: The measured and computed values are compared in table
for the five correlation €ases- At the lowest advance ratio. differences petween the computed collect
pitch and the measurement are as large as 2.1°, but at higher speeds quite good agreement is observ
particuiariy for the RAE/WHL, CAMRAD/IA, and METAR/R85 analyses which are within 0.4° t0 0
It seems likely that the discrepancies at lower speed are related to the wake model.
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Figure 86. Comparison of measured and calculated collective pitch angle at blade pitch bearing as a
function of advance ratio for Flight 525.

Table 19. Measured and calculated collective pitch angles for Flight 525

Counter 7 Flight 525 RAE/WHL CAMRAD CAMRAD/JA METAR/RS85
03 0.098 10.35 10.84 10.84 11.21] 12.32
07 0.182 10.56 10.07 9.70 10.22 10.53
12 0.307 13.09 13.12 12.29 13.04 13.12
17 0.362 15.61 15.17 14.10 15.03 15.02
21 0.402 17.77 17.36 16.09 17.20 17.20

The analytical modeling comparison for a rectangular-tipped blade, discussed in Section 4.3.1,
showed a fairly large divergence in the predicted collective pitch values at 4 = (0.381, approximately
3° between the RAE/WHL and CAMRAD/JA analyses. However, for this swept-tip rotor at u = 0.362
the RAE/WHL, CAMRAD/JA, and METAR/RS5 analyses are all within 0.2° and the reasons for the
closeness in these predictions for the swept tip as compared to the rectangular tip are not clear.

The comparison of the collective pitch measured at the pitch bearing, 0.0573 R, with the collective
pitch determined in the lifting-line methods is not straightforward. At any radial station the pitch angle
is expressed as:

0(r) = 0c + 85 +6;(r) + Be(7) (5-3)
where ¢ is the control angle input at the swashplate actuators; t; is elastic deflection in the swashplate,
pitch link, and pitch horn; 8¢(r) is the built-in twist; and 0e(r) is the elastic twist in the blade. At the
blade pitch bearing, where the pitch angle measurement is made, the only terms that are effective are
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the control angles and any elastic deformation in the control system between the actuators and the pitch

bearing. Thus,
6(0.0573R) = 6¢ + O (5-4)

Within the lifting-line methods, collective and cyclic pitch angles do not include torsional deformation
so as to separate the control input from the response for the trim algorithm used to obtain force and
moment balance. Hence, the calculated collective pitch angle, B 05 15

Ocot = 0C + 6;(0.75R) (5-5)

and, based on equation (5-3), the angle at the pitch bearing is
8(0.0573R) = Bcotl — 0;(0.75R) + 0s (5-6)

where
Gt(0.0573R) = 0.0 (5-7)

For the Puma, the built-in twist between the pitch bearing and 0.75R is —4.16°. The swashplate and
control system deformation, 9. was calculated to vary from —0.07° to 0.15° over the airspeed range
for the RAE/WHL analysis. For CAMRAD and CAMRAD/JA this deformation was estimated from the
calculated elastic deformation and varied between —0.52° and —0.36° for CAMRAD and —0.28° and
—0.21° for CAMRAD/JA. The METAR/RSS5 solutions do not include a torsion mode so this deformation
is zero. These corrections were used in calculating the angles at the pitch bearing that are shown in
figure 86. Although not required for these corrections it is noted that the steady elastic deformation
between the pitch bearing and 0.75R calculated by CAMRAD and CAMRAD/JA is about 0.2°.

The calculated lateral cyclic pitch (cosine harmonic) and longitudinal cyclic pitch (sine harmonic)
are compared with the pitch bearing measurements in figure 87. The calculated and measured values for
the correlation cases are shown in tables 20 and 21. As before, the calculated cyclic angles were corrected
for elastic deformation across the swashplate although these corrections were slight. The calculated
lateral cyclic is generally within a degree of the data while the longitudinal cyclic calculations are quite
close at low advance ratios but larger differences are seen at high speed. The Task 3 calculations,
discussed in Section 4.3.1, provide some insight into these differences. The more negative longitudinal
pitch of RAE/WHL appears to be a result of swept flow corrections and torsion deflection, whereas for
CAMRAD/JA it is caused by the larger inflow gradients.

The measured root coning is compared with values derived from the three analyses in figure 88.
The coning is obtained from the analytical methods using the flap displacement at the most inboard
solution station and assuming that there is no deformation inboard of this station. This approach is quite
accurate for METAR/R85 where the most inboard station is quite close t0 the flapping hinge, but less
so for the CAMRAD analyses where the most inboard station is at 0.264R. In general, the methods
show a decrease in blade coning with advance ratio which is not surprising since the trim thrust was
set to the aircraft weight. METAR/R85 shows a slightly higher value of coning and in part this is a
result of including the effect of propulsive force on the trim thrust. The 0.4° to 0.8° offset between the
measured coning and the derived values is unexplained.
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Figure 87. Comparison of measured and calculated cyclic pitch
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angles at the blade pitch bearing as a

function of advance ratio for Flight 525.

Table 20. Measured and calculated cosine (lateral) cyclic pitch for Flight 525

Counter s Flight 525 RAE/WHL CAMRAD CAMRAD/JA METAR/R85
03 0.098 2.60 3.13 2.87 2.56 441
07 0.182 2.04 2.36 1.84 1.72 2.15
12 0.307 2.03 2.46 2.56 2.29 2.83
17 0.362 2.57 297 3.18 3.03 3.75
21 0.402 3.19 3.67 3.97 3.97 4.60
Table 21. Measured and calculated sine (longitudinal) cyclic pitch for Flight 525
Counter 7 Flight 525 RAE/WHL CAMRAD CAMRAD/JA METAR/RS85
03 0.098 —-1.21 —1.62 —1.22 —1.44 —1.64
07 0.182 —2.14 —2.34 —1.86 —2.34 —2.27
12 0.307 —5.87 —6.43 —5.12 -5.92 —5.49
17 0.362 —8.15 —8.36 -7.19 —7.77 —7.05
21 0.402 —10.58 —10.69 —8.43 -9.70 -9.03
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Figure 88. Comparison of measured and calculated blade coning as a function of advance ratio for
Flight 525.

The calculated steady lag angles are compared with the measured values in figure 89. An off-
set between 3° and 6° is seen between the calculations and the data and, as will be discussed in
Section 5.4.1, it is believed that there is a bias error in the measurements of approximately 4°. Over
most of the speed range the RAE/WHL and CAMRAD analyses are offset from the measured values by
the same amount and are believed correct. The METAR/R85 analysis shows less steady lag deflection
than the other analyses, and this is believed to be a result of lag hinge restraint added to the model to
increase the curvature near the lag hinge (see Section 3). Thus, there is less hinge rotation and the root
deflection is smaller for a given tip deflection in the METAR/R8S5 solution.

The computed cosine and sine first harmonic lead-lag angles are compared with the measurements
in figure 90. The RAE/WHL analysis represents the hydraulic lead-lag damper (see Appendix A) by
incorporating 80% structural damping in the first lead-lag mode. The other analyses represent the
damper as an equivalent linear viscous damper. Despite these modeling differences all of the analyses
show fairly good agreement with the measurements. As before, the METAR/R85 angles are reduced
slightly by the introduced hinge restraint.

The rotor thrust is a specified trim value, as discussed above, but the other steady hub forces and
moments are not specified and provide an additional test of the accuracy of the four analyses. Except
for the shaft torque, however, there are no direct aircraft measurements that can be compared with the
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Figure 89. Comparison of measured and calculated blade steady lag angle as a function of advance
ratio for Flight 525.

analyses and. therefore, the comparisons shown here are largely comparisons between methods rather
than with data.

Figures 91 and 92 compare the computed values of the X-force (positive forward) and Y-force
(positive to the right) in the shaft axes. Both sets of prediction are somewhat similar to the trim
flapping angles which is not surprising as a tilting of the thrust vector by half a degree will result
in approximately 550 N of X- or Y-force. Good agreement is observed between the analyses for the
X-force, but less so for the Y-force where greater differences were observed in the computation of the
sine flapping trim (see figure 84).

The hub pitch and roll moments are compared in figures 93 and 94. These figures also include
roll and pitch moments derived from measured flap bending moments and flapping angles as will be
discussed in Section 5.2.2.4. The analyses show similar trends in the pitch moment variation with
airspeed except for CAMRAD/JA. This variation is similar to the first harmonic cosine flap angle which
suggests that most of the moment is a result of vertical shear at the flap hinge. Reasonably good
agreement is also seen with the derived pitch moment values.
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Figure 90. Comparison of measured and calculated first harmonic lead-lag angles as functions of advance
ratio for Flight 525.

128



RAE/WHL

—————————— CAMRAD
— — - CAMRAD/JA
— METAR/R85

1200

900 +

600 -

300

X—FORCE, N

-300 -

-600 -

-900
0.0

Figure 91. Comparison of calculated X-forces as a function of advance ratio for Flight 525.
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Figure 92. Comparison of calculated Y-forces as a function of advance ratio for Flight 525.
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Figure 93. Comparison of calculated pitch moments with values derived from test data as functions of
advance ratio for Flight 525.
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Figure 94. Comparison of calculated roll moments with values derived from test data as functions of
advance ratio for Flight 525.
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The analyses show the same trend in advance ratio for the roll moment as do the derived values,
but there is considerable offset between the four analyses. This differs from first harmonic sine flap
angle cases where the RAE/WHL, CAMRAD and METAR/R85 analyses were very similar.

The comparison of the analyses with the derived pitch and roll moments provides some confidence
in the accuracy of the predictions. However, these derived values do not result from a direct measure-
ment but instead depend upon accurate blade and hub data and a reliable modal calculation. A direct
measurement using shaft bending gages or a wind tunnel balance is probably essential to demonstrate
which methods achieve the greater accuracy.

The calculated and measured shaft torques for the Flight 525 airspeed sweep are compared in
figure 95. There is generally good agreement between the analyses except at low speed, but all of the
analyses underpredict the measured shaft torque at high speed.

The large error in power prediction cannot be explained solely in terms of the additional thrust
required by download on the fuselage and stabilizer. A 4000 N error in the trim thrust would result in
only, perhaps, a 6000 N-m underestimation of torque, that is, half the difference seen here between the
codes and the measurement. It would take more than a 2° error in disk angle of attack to explain the
other half.

5.2.2.2 Blade Airloads

The section normal force obtained by integrating the measured surface pressures at 0.95R is shown
in figure 96 as a function of azimuth and advance ratio and is compared to the calculations made by the
four lifting-line methods. The measurements are shown for 17 flight test points and the calculations are
shown for five of these advance ratios. At the lowest speed, u = 0.098, the section normal force shows
a rapid down-up change in force in the first quadrant and then an up-down change in the fourth quadrant.
This force variation is caused by rapid changes in the inflow that are the result of the vorticity in the
wake from the previous blades. This vortex loading diminishes as advance ratio increases but remnants
of this loading can be seen out to u ~ 0.3, particularly on the retreating side. Each of the lifting-line
models shows this basic behavior although the first and fourth quadrant loading at low speed is reduced
for the RAE/WHL method which uses a vortex-ring model. Both CAMRAD and CAMRAD/JA use a
free-wake calculation for the two lower speed cases shown here. A careful examination of the lifting-
line predictions for the low-speed condition shows a reduction in lift over the forward part of the disk
where the measurements show little variation.

As advance ratio increases, the basic character of the blade lift near the tip changes from a relatively
steady load with the vortex loading superimposed to a reduction in lift that occurs in the second quadrant
and, at the highest speeds, shows negative lift over a portion of the blade tip. Each of the computational
methods shows this general character although the METAR/RS5 analysis fails to predict negative loading
at this radial station. Qualitatively, all of the lifting-line analyses are quite similar to the measurements
and the correlation is good.

The section pitching moments are compared in the same fashion as the normal force at 0.95R
in figure 97. At low speed the flight data again show evidence of vortex-induced loads on both the
advancing and retreating sides and, as advance ratio increases, these pitching moments are reduced and
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Figure 95. Comparison of measured and calculated shaft torque as a function of advance ratio for Flight
525.

disappear. At high speed, an area of positive pitching moment is observed in the first quadrant and, at
about 90°, this rapidly changes to an area of negative moment in the second quadrant. Then, over the
retreating side of the disk, the pitching moment returns to a positive value.

None of the lifting-line methods predict the vortex loading at low speed and this is not surprising
as these methods model the inflow changes induced by previous blades’ vorticity as an angle of attack
change at 0.25c. The measurements clearly show the effects of this vorticity and it is likely that
the correct modeling of these effects would require a lifting-surface analysis or one based on a CFD
model. At high speed, CAMRAD, CAMRAD/JA, and METAR/R85 show section pitching moments
similar in behavior to the measurements, but much reduced in amplitude. Within these analyses the
positive-negative moment change is caused by both steady and unsteady effects as was discussed in
Section 4.3.2 (see figure 41). The RAE/WHL analysis, on the other hand, shows pitching moment
changes comparable to the flight data, although the most rapid change occurs in the middle of the fourth
quadrant rather than at the beginning of the second. This increased section pitching moment for the
RAE/WHL predictions is caused primarily by modeling of swept-tip effects as will be shown below by
comparison with calculations for the reference rectangular-tip blade in Section 5.3.3.2.
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The underprediction of the section moment at the blade tip is typical of lifting-line analyses and
is related to difficulties in the modeling of three-dimensional flows near the blade tip and the correct
calculation of unsteady effects. The influence of planform is slight as shown by Maier and Bousman
(1992) who compared pitching moment measurements obtained on earlier tests of the Puma using both
a swept tip and a rectangular tip (Riley and Miller, 1983). The reason why the RAE/WHL analysis
shows such a strong effect of the tip planform in comparison to the other methods, however, is not

understood.

A detailed comparison of the predicted and measured section lift at 0.95R is shown in figures 98—
102. Figure 98 shows that the normal force at this radius is dominated by the vortical loading from
the previous blades. The vortex ring model used by the RAE/WHL analysis as well as the prescribed
wake calculation that is included with the CAMRAD/JA prediction do not correctly represent the vortex
wake at this airspeed. The CAMRAD and CAMRAD/JA free wake models provide a fairly accurate
representation of the azimuthal location of the vortical loading although away from these azimuths the
lift is overpredicted, particularly by CAMRAD. The METAR/RSS5 calculation, which uses a prescribed
wake, is also able to capture some of the characteristics of the vortical loading in the first and fourth
quadrants.

At o = 0.182 the vortical loading on the advancing and retreating sides of the rotor disk is still
evident, as can be seen in figure 99, and the RAE/WHL and METAR/R85 computations provide a better
prediction of the loading than was seen for the lower advance ratio case. CAMRAD continues to use the
free wake model, but the advantages of this wake model over the other methods are no longer obvious.
CAMRADY/JA uses both a free wake and a prescribed wake at this advance ratio and achieves similar
results.

There is a reduction of section lift apparent in the second quadrant at p = 0.307 as shown in
figure 100. Each of the analyses shows this reduction in lift and the phase is well predicted by the
RAE/WHL and CAMRAD analyses and less so by CAMRAD/JA and METAR/R85. The slight drop in
lift at about 270° is caused by retreating side vortical loading and is fairly well predicted by all of the
analyses. The apparent impulsive-type load at about 330° is believed the result of a slip-ring failure at
this station (as discussed before in Section 5.2.1).

At g = 0.362, in figure 101, the lift on the advancing side goes to zero at about 105°. The four
lifting-line analyses also show this lift reduction and the CAMRAD analyses, in particular, calculate
the phase and amplitude of the advancing side lift quite well. The RAE/WHL analysis shows a small
phase delay and a greater extent of negative lift while METAR/RS85 indicates an earlier phase in the
minimum, and the lift always remains positive. CAMRAD indicates too much lift over the rear of the
disk, but the other methods show quite good predictions in this region.

Figure 102 compares the measured lift and the calculated values for the highest speed condition.
There is now a substantial area of negative lift in the second quadrant and this is well predicted by
RAE/WHL and CAMRAD/JA. Neither CAMRAD nor METAR/R85 shows the proper extent of the
negative lift region and METAR/R85, as at the other speeds, shows too much lead in the phase. The
RAE/WHL and CAMRADY/JA analyses provide good predictions of the lift over the rest of the azimuth
although the rapid increase in lift in the second quadrant is not well predicted.
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The radial prediction of lift over the blade tip is examined in figure 103 for the high-speed case
at four representative azimuths. At ¥ = 40°, which is near the first quadrant peak in loading, there
is a rapid reduction in lift towards the blade tip that is captured quite well by the RAE/WHL and
CAMRAD/JA analyses. The CAMRAD analysis show no reduction in lift and METAR/R85 shows an
initial reduction followed by an oscillation and then divergence in lift. This divergence is thought to
be caused by the very large sweep angle in the most outboard sections. At these sections the swept
flow correction takes on unrealistic values when the yaw angle approaches or even exceeds 90°. At
» = 110°, which is near the peak of the negative lift region, the RAE/WHL analysis shows the best
agreement and CAMRAD/JA and CAMRAD less so. METAR/RS85 does not calculate any negative lift
in this region. All of the methods are relatively close to the experimental measurements at ¥ = 180°,
which is at the lift maximum that occurs at the end of the second quadrant. On the retreating side of
the disk, at i = 270°, the analyses show zero lift inboard of 0.40R as expected, and all provide a good
prediction of the lift at the blade tip.

The measured and calculated pitching moments at 0.95R are compared over the airspeed range
in figures 104-108. At the lowest speed conditions, as shown in figure 104, the measured section
moments, a result of vortical loading, are simply not predicted by the lifting-line methods shown here.
These methods compute the section moments based on angle-of-attack changes at the quarter chord and
cannot account for angle-of-attack or velocity variations along the chord, as might be induced by near
vortex passage.

At p = 0.182 the vortical loading on the advancing and retreating sides of the rotor disk is still
evident, as can be seen in the pitching moment data in figure 105. The lifting-line methods do not show
any effect of the vortical wake and the predicted moments are caused by the steady and unsteady values
of angle of attack induced by geometric pitch changes.

There is a progressive increase in the oscillatory pitchirig moment at 0.95R as the advance ratio
increases from 0.307 to 0.402, as shown in figures 106-108. The CAMRAD, CAMRAD/JA, and
METAR/R85 analyses show this increase but at all airspeeds predict only about half the amplitude. The
crossover point, from positive to negative pitching moment at the end of the first quadrant, is delayed in
the CAMRAD analyses, but is better predicted by METAR/R85. Unlike the other lifting-line methods,
the RAE/WHL analysis shows an increasing oscillatory moment that is greater than the measurements.
The predicted moment is similar to the measurements on the advancing side of the rotor, but on the
retreating side the rate of change in pitching moment is substantially greater than that observed in flight.

The calculated distributions of pitching moment over the blade tip are compared with the measure-
ments at four azimuths in figure 109. The radial distributions at ¥ = 0 and 40° are representative of the
positive moment loading in the first quadrant. At both azimuths there is a rapid increase in the measured
moment towards the blade tip and this increase is also seen in the RAE/WHL analysis, although in an
exaggerated fashion. The other analyses, however, show hardly any increase in the moment and are
clearly unsatisfactory. Aty = 140°, where the most negative section moments occur, the experimental
results do not clearly distinguish between the various methods. On the retreating side of the blade, at
W = 270°, the moments are quite low and, again, the measurements do not distinguish between the
various calculations.
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It is useful to compare the lifting-line method predictions over the entire blade, to better under-
stand areas of agreement and disagreement, even though there are no measurements inboard of 0.92R.
Figure 110 compares the calculated section normal force at p = 0.098 for the four methods. The
RAE/WHL and CAMRAD/JA analyses show the expected increase in lift moving outboard on the
blade with the peak lift at about 0.80R and then a reduction in lift to the blade tip. The CAMRAD
prediction extends the lift farther outboard which is expected (see figure 24 and the previous discussion
in Section 4.3.2). The METAR/RS85 calculation shows the greatest lift at the most outboard station,
0.991R, and, as discussed above, this appears to be the result of swept flow corrections at the very large
sweep angles near the tip.

The loading from the vortical structures on the advancing and retreating sides extends well inboard
as can be seen in the RAE/WHL, CAMRAD, and CAMRAD/JA analyses. The inboard section of
the blade for the RAE/WHL calculation shows rapid fluctuations in loading that are caused by close
passage of the vortex rings that represent the vorticity in the wake. For the CAMRAD analyses the
vorticity loading is quite smooth on the inboard part of the blade and this is caused, in part, by wake
model changes that expand the tip vortex core inboard of 0.88R. The inboard loading calculated by
METAR/RS35 appears quite chaotic at this advance ratio and the vortex-induced loading is difficult to
identify, particularly on the retreating side.

The calculated section pitching moments are quite small at p = 0.098 over all of the blade as
shown in figure 111. Almost no effect of vortex loading is seen in these calculations.

For the high-speed case, u = 0.402, the comparison of the four methods in figure 112 shows
the reduction in lift in the second quadrant and, for the RAE/WHL and CAMRAD/JA calculations, a
maximum in the radial lift at about 0.80R. The lift is maintained towards the blade tip for the CAMRAD
computation, while for the METAR/R85 analysis the lift abruptly increases near the tip. Comparing
these latter results with the analytical comparisons that were done in Section 4.3.2 for a rectangular tip,
figure 22, it is apparent that neither of these methods is adequately computing the normal force on the
swept tip at its outboard end.

Figure 113 compares the predicted pitching moments for the high-speed case, i = 0.402. CAM-
RAD shows a moderate positive pitching moment in the first quadrant that increases slightly towards
the blade tip. The effects of the reverse flow region are seen at the blade root, as expected, and a
double oscillation is seen on the advancing side at the blade tip which is related to the high Mach
number at this point and the reversal in angle of attack. CAMRAD/JA shows similar behavior although
an oscillation near the blade root is believed a consequence of computational problems and no double
oscillation is seen at the blade tip. METAR/R85 also shows the large pitching moment in the reverse
flow regime and, at the outboard radial location, 0.991R, a surprisingly large pitching moment. The
RAE/WHL analysis shows very large pitching moments at the most outboard blade station. Pitching
moment calculations have been made for a rectangular-tip planform on the Puma and have been shown
above in the section on the analytical modeling task, Section 4.3.2, figure 40; further results will be
shown in the discussion of the reference flight case in Section 5.3.3.2, figure 159. These calculations
do not show the very large moments at the most outboard stations which suggests that the RAE/WHL
and METAR/RS5 analyses do not fully accommodate the swept-tip planform used here.
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Figure 113. Comparison of calculated section pitching moment as a function of azimuth and radial
station at p = 0.402; Flight 525.

155



5.2.2.3 Blade Response, Moments, and Loads

The analyses used to calculate the blade response, moments, and loads for Flight 525 were the
RAE/WHL analysis, CAMRAD and CAMRAD/JA with both prescribed and free wakes, and the
Aérospatiale R85 analysis with the METAR wake. Moments and loads were only computed for the two
highest advance ratios for the METAR/R85 analysis. The free wake in CAMRAD and CAMRAD/JA
is used for the two lowest advance ratio cases and the prescribed wake is used for the higher speeds.

Blade Response

The measured and calculated blade flapping are compared in figure 114 as a function of blade
azimuth and advance ratio. The flight measurements show that blade flapping is primarily 3/rev in
character and, as advance ratio increases, the basic behavior is modified with additional 1/rev and S/rev
components and a shift in phase of these components. Qualitatively, the RAE/WHL, CAMRAD, and
CAMRAD/JA analyses each show this general behavior. CAMRAD and CAMRAD/JA show better
agreement at low speed, a consequence of the free wake model, while the RAE/WHL analysis shows
better agreement at high speed. Although qualitatively similar, the METAR/R85 analysis shows only
fair agreement with the measurements.

A similar comparison of the lead-lag angle measurements and calculations is shown in figure 115.
The measured and calculated angles are quite small and considerable noise is seen in the former. Good
qualitative agreement is seen between the data and the CAMRAD methods. A better match is obtained
with METAR/RS8S5, particularly at high speed. The RAE/WHL calculated values show poorer agreement
which is a result of modeling the viscous damper with structural damping in the first blade mode.

Moments and Loads, Advance Ratio = 0.098

The low advance ratio case provides a severe test for the analyses, particularly with regard to
the modeling of the rotor wake. Comparisons between the analyses and the measurements of the flap
bending moments are made at 0.2012, 0.57R, and 0.78 R. The test data contain a glitch near an azimuth
of 15° which produces a local peak at 0.20R and a trough at 0.78R, but the data at 0.57R appear
unaffected.

The comparison of the measured and calculated flap bending moment at 0.20R is shown in fig-
ure 116. The measured waveform has a predominant 3/rev variation from the forcing in the second
flap mode, with smaller components at 5 and 6/rev arising from the third flap mode and the coupled
flap/torsion mode at calculated frequencies of 5.3 and 5.6/rev respectively.

The RAE/WHL analysis predicts only half the measured value of the third harmonic component and
the correlation with the test data is poor. The level of performance is not surprising as the RAE/WHL
predictions of the blade loading at the tip of the blade, figure 98 in Section 5.2.2.2, were not good.
The effect of the strong vortex interaction on the advancing side of the disk is more diffuse than in
the measurements while the change in the magnitude of the loading is underestimated on the retreating
side. The problem is due to the strength of the tip vortex from the complete vortex rings in the wake
model which takes a smoothly varying prescribed value mappropnate to the type of loading observed
in practice at low advance ratio.
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The bending moment calculated by CAMRAD and CAMRAD/JA with the free wake model is
in better agreement with the measurements than the RAE/WHL analysis. The third, fifth and sixth
harmonics are slightly underestimated but the comparison is better than with the prescribed wake,
particularly with regard to the third harmonic. The free wake model used by these two methods shows
good agreement with the airloads measurements, particularly on the advancing side (see figure 98).

The measured flap bending moments at 0.57R, figure 117, is dominated by the same 3/rev oscillation
seen at the inboard position. The RAE/WHL calculation again underpredicts the magnitude of the third
harmonic component but the level of correlation appears better than at 0.20R. CAMRAD/JA shows
the best correlation with the measurements and accurately predicts the magnitude of the third harmonic
variation.

The azimuthal variation of the measured bending moment changes shape at 0.78R, figure 118,
compared to the inboard positions. As mentioned previously, the trough at about 15° is spurious. The
magnitude of the first and second harmonic components is almost as large as the third and there are
significant contributions at 5, 6, 7 and 8/rev. The correlation between the test data and the RAE/WHL
calculation is fairly good on the advancing side of the disk but the magnitude of the peak on the retreating
side is underestimated. The free wake calculations of CAMRAD and CAMRAD/JA reproduce all of
the features observed in the test data even though the magnitude of the third harmonic component is
too large, particularly for CAMRAD.

The measured and calculated chord bending moments are compared at 0.122R and 0.55R. The
inboard station is near the lag damper attachment point so the stress is strongly influenced by the
forces exerted by the damper. The level of correlation to be expected, therefore, depends on how the
damper is represented and how the analyses calculate the resulting moments. The RAE/WHL analysis
does not model the lag damper physically, but instead includes the damping effect of the damper as
augmentation of the structural damping in the first lag mode. For this reason the predictions of this
analysis are expected to be poor. CAMRAD and CAMRAD/JA represent the damper using a linear
model (see Appendix A), but use modal summation to calculate the stresses. Nonlinearities in the lag
damper and the inability to compute damper effects using a modal summation are both expected to
degrade the predictive capability of these analyses.

The measured chord bending moment at 0.122R, figure 119, has large first and third harmonic
components with smaller contributions at 4 and S/rev. The first and third harmonics arise from the lag
damper which is reacting to the Coriolis forcing and the higher harmonic stresses are probably due to the
response of the second lag mode. The RAE/WHL analysis, as expected, does not predict the stress to
any degree of accuracy with only the fifth harmonic having the correct magnitude. CAMRAD, with its
free wake model, predicts the magnitude of all the harmonics up to the fifth accurately, but the phasing
is incorrect. CAMRADY/JA, however, underpredicts the amplitude of the third harmonic component.

The effect of the lag damper diminishes rapidly away from the attachment point and the measured
chord bending moment at 0.55R, figure 120, changes from largely 3/rev to 4/rev. The Fourier analysis,
figure 121, shows this large 4/rev component with the amplitude of the other components reducing as
the harmonic number increases or decreases away from the fourth harmonic.
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0.55R; p = 0.098, Flight 525.

The harmonic analysis of the stress calculated by the RAE/WHL analysis shows that there are only
significant components up to the fifth, which is also the largest. The correlation between the calculation
and the test data is poor. The low order harmonic components are overestimated by the CAMRAD
analyses, CAMRAD being worse in this respect than CAMRAD/JA, and the comparisons with the test

data are not good.

The major source of forcing in the torsion modes arises from the aerodynamic pitching moment.
Reference to the comparisons between the measured and calculated blade pitching moments presented
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in Section 5.2.2.2 is worthwhile, therefore, before examining the torsional moments and pitch-link loads
here.

The RAE/WHL analysis generally follows the trend of the measured pitching moment at 0.95R,
figure 104, but the sudden changes in the moment due to the vortex interactions are absent. The unsteady
aerodynamic model used for the calculations does not include the impulsive moment required to predict
the vortex loading effects. Although a free-wake model is used by the CAMRAD analyses they also
do not compute the impulsive pitching moments associated with the vortex loading.

The comparisons between the measured and calculated torsion moments are shown at 0.126 R and
0.55R. The pitch-link loads are also considered to see if the dynamics of the control system have an
appreciable effect on the predictions.

The calculated torsion moment at 0.126R is compared with the test data in figure 122. The
largest harmonic contributions to the measured moment are the first, second and fourth, all of which
are underestimated by the RAE/WHL analysis. The CAMRAD prediction has a large 3/rev component
which is absent in the CAMRADY/JA calculation and overall CAMRAD/JA produces the best correlation
with the test data.

The test data at 0.55R, figure 123, have a greater amount of second and third harmonic contributions
than at the inboard position which changes the waveform considerably. The RAE/WHL analysis reflects
the change quite well but the amplitude of the oscillation remains underestimated. The first and third
harmonic components predicted by CAMRAD are much reduced relative to the levels at 0.126 R and
the overall correlation is good, better than with CAMRAD/JA.

The measured pitch-link loads, figure 124, shows azimuthal variation similar to the torsion moment
near the root of the blade although there are some minor differences such as the local peaks in the pitch-
link load at about 35° and 130°. The RAE/WHL analysis underpredicts the magnitude of the pitch-link
load as was the case for the torsion moment at the inboard position but the variation with azimuth for
both the load and the moment are similar. The similarity is to be expected as the control system is
modeled by a linear spring at the end of a rigid rod and the displacement in the rod is directly due to the
torsional deflection. The prediction of the pitch-link load by CAMRAD, however, shows a completely
different azimuthal variation to the torsion moment. The large 3/rev component is absent in the calculated
pitch-link load and the magnitude of the oscillation is underestimated whereas the peak-to-peak moment
is too large in the calculated moment. The way in which the control system is modeled in CAMRAD
differs, therefore, from that in the RAE/WHL analysis. The relation between the blade moment and the
pitch-link load is the same in the CAMRAD/JA predictions giving the better correlation with the test
data although the peak-to-peak blade moment is overestimated while the peak-to-peak pitch-link load
is underestimated.

The similarity in the pitch-link load and the torsion moment at the root in the test data means that
the control system load need not be considered for the other flight cases.

The comparisons between theory and experiment presented in this section show how the analyses
performed in low speed flight conditions. All the analyses have some strengths and weaknesses and
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it is not possible to say that one analysis was consistently better than all the others for all the stress
components.

Moments and Loads, Advance Ratio = 0.182

The second flight test case considered has an advance ratio of 0.182 and the measured normal force
coefficients presented in figure 100 of Section 5.2.2.2 show evidence of two strong vortex interactions,
although these are reduced in strength relative to the low advance ratio case. The modeling of the rotor
wake remains a major factor therefore in the analytical methods.

The measured and calculated flap bending moment is compared at 0.20R and 0.67R in figures 125
and 126 respectively. The test data at both radial stations are dominated by the 3/rev oscillation as at
the lower advance ratio. The RAE/WHL analysis, at 0.20R, predicts the magnitude of the predominant
harmonic well but there are also contributions at the sixth, ninth, and tenth harmonics arising from the
third and fourth flap modes which have calculated frequencies of 5.8 and 9.7/rev. The test data have a
measurable component at 5/rev but the contributions at the higher harmonics are small. CAMRAD and
CAMRADY/JA correlate better with the test data than the RAE/WHL analysis but the peak at the front
of the disk is underestimated.

The test data at 0.67R, figure 126, show that the peak on the retreating side of the disk increases
in magnitude compared to the inboard station. The waveform shows also a reduced amount of higher
harmonic content and the nature of the peaks on the advancing side of the disk changes character.
The RAE/WHL analysis retains the high frequency content that is seen at 0.20R but the magnitude of
the lower order harmonics is underestimated. The overall level of correlation is reasonable, however,
although the peak in the first quadrant and that on the retreating side of the disk occur later in the azimuth
cycle. CAMRAD and CAMRAD/JA do not do as well as the RAE/WHL analysis on the advancing
side of the disk but the position of the peak on the retreating side is positioned more accurately by
CAMRAD/JA.

None of the calculation methods predict the chord bending moment at 0.55R accurately, as shown
in figure 127. The peak-to-peak moment is adequately estimated by the RAE/WHL method but shows
a dominant fifth harmonic contribution instead of the fourth harmonic response seen in the data. The
CAMRAD and CAMRAD/JA calculations, on the other hand, show a large third harmonic component
rather than the fourth harmonic, much as was seen at y = 0.098.

The correlation between the calculated torsion moment at 0.33R and the test data is only fair,
figure 128, reflecting the poor prediction of the aerodynamic pitching moment. The RAE/WHL analysis
underpredicts the magnitude of the oscillation and, as for the flap bending moment, has a higher
harmonic content that is not observed in the measurements. The peak-to-peak level is calculated better
by CAMRAD but only the lower order harmonics are present and overall CAMRAD/JA provides the
most successful prediction of torsion moment.

Generally the analyses calculated the flap bending moment more accurately than at the lower
advance ratio but there is no significant improvement in the prediction of the chord bending moment or
torsion moment at the higher speed.
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Moments and Loads, Advance Ratio = 0.307

The measured and calculated blade moments at an advance ratio of 0.307 are presented as three-
dimensional surface plots showing the moment distribution over the complete span of the blade as a
function of the azimuth angle. The surface plots give a more qualitative comparison between the test
data and the calculations compared to the azimuthal variation at a single radial position used at the two
lower advance ratios. Moreover, some features can be seen better in the surface plots because they
provide a complete picture of the conditions on the rotor.

The measured and calculated radial distribution of the flap bending moment at an advance ratio of
0.307 is shown in figure 129. The predominant 3/rev oscillation is as clearly seen in the surface plot
of the test data as it is at an individual azimuthal plot at one radial station. The magnitude of the 3/rev
component at 0.67R, for example, is slightly lower at this higher advance ratio, 333 N-m, compared
with 374 N-m in obtained for the case at u = 0.182, figure 126, but there is a phase shift of 40°. The
effect of the change in the phase is most readily seen around the front of the disk where the peak is
more sharply defined.

The RAE/WHL analysis predicts the observed phase change with the result that the correlation
with the test data is improved greatly around the front of the disk. The use of the free wake in the
CAMRAD analyses has little effect above an advance ratio of 0.2 and both calculations are made with
the prescribed wake model. The phase change is correctly predicted by CAMRAD and CAMRAD/JA
but the magnitude of the 3/rev contribution remains too low at about 200 N-m.

The correlation of the measured and calculated flap bending moments therefore is improved at
an advance ratio of 0.307 compared to the two lower advance ratios with the RAE/WHL analysis but
both CAMRAD methods show poorer agreement with experiment because of an underprediction of the
magnitude of the dominant harmonic component.

The surface plots of the measured and calculated chord bending moments are shown in figure 130.
None of the analyses correlate well with the test data. The amplitude of the oscillation is underpredicted
by the RAE/WHL analysis while CAMRAD and CAMRAD/JA have a dominant 3/rev variation instead
of 4/rev seen in the measurements.

The RAE/WHL analysis underestimates the torsion moment over the complete blade span, fig-
ure 131, and CAMRAD/JA does little better except close to the blade root. CAMRAD predicts a much
larger moment than CAMRAD/JA but the shape of the waveform is incorrect especially near the blade
root.

The trends in the performance of the analyses at an advance ratio of 0.307 are similar to those at
the lower speeds. The flap bending moment tends to be better predicted as speed increases using the
RAE/WHL analysis. The CAMRAD analyses continue to show good qualitative agreement in the flap
bending moment behavior but the predicted amplitudes are lower than the measurements. None of the
analyses show any improvement in calculating the chord bending or torsional moment.
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Figure 129. Comparison of measured and calculated flap bending moment as a function of azimuth and
blade radius; o = 0.307, Flight 525.
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Moments and Loads, Advance Ratio = 0.362

Surface plots are used to compare the test data with the measurements at an advance ratio of 0.362
as in the previous section at the lower speed. Calculations are available for this case for the Aérospatiale
R85 analysis with the METAR prescribed wake model.

The calculated flap bending moment over the blade span is compared with the test data in figure 132.
The RAE/WHL analysis generally correlates well with the test data even at the most inboard positions
although there is some doubt about the accuracy of the measurement at 0.20R for the advance ratio
under consideration. CAMRAD and CAMRAD/JA predict similar bending moments except close to
the blade root but the level of correlation with the measurements is not as good as the RAE/WHL
prediction because of the underestimate of the 3/rev oscillation. The METAR/R85 analysis shows a
6/rev oscillation at the blade root which decreases in magnitude as the mid-span is approached to be
replaced by a predominantly 3/rev oscillation towards the tip and the level of agreement with the test
data is poor.

The measured and calculated chord bending moments are shown in figure 133. The trends apparent
at the lower forward speeds are still present in that the RAE/WHL analysis fails to predict the magnitude
of the oscillation, while CAMRAD and CAMRAD/JA have a large 3/rev component instead of the large
4frev component visible in the test data. The METAR/RS5 analysis uses force integration to calculate
the chord bending moment and is perhaps the most successful of the analyses but the moment in the
mid-span of the blade is underestimated and there is a significant 6/rev contribution.

The ability of the analyses to predict the torsion moment along the blade does not improve as the
advance ratio increases and the comparisons with the test data made in figure 134 generally show a very
poor level of correlation.

Moments and Loads, Advance Ratio = 0.402

The highest advance ratio in level flight at which comparisons are made of the measured and
calculated blade moment is 0.402, but the Mach number at the tip of the advancing blade is only 0.826
because of the reduced rotor speed of the aircraft.

The measured and calculated oscillatory flap bending moments for this case are shown in figure 135.
The trends observed at the lower advance ratios continue with the increasing 3/rev contribution well
represented in the RAE/WHL calculation. CAMRAD/JA shows better agreement with the test data than
CAMRAD especially towards the tip of the blade. The METAR/RS85 calculation compares poorly with
the test data with almost a complete absence of the dominant vibratory harmonic components.

None of the analyses predict the chord bending moment to any degree of accuracy as is seen in
figure 136. The METAR/R85 calculation shows a S/rev oscillation while CAMRAD and CAMRAD/JA
retain the strong 3/rev oscillation seen at the lower advance ratios although a 4/rev contribution is
visible. The RAE/WHL analysis displays the 5/rev component that is present throughout the range of

speeds.
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Figure 134. Comparison of measured and calculated torsion moment as a function of azimuth and blade
radius; g = 0.362, Flight 525.
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The prediction of the torsion moment also leaves much to be desired. The CAMRAD and CAM-
RAD/JA calculations show large differences between each other and with the test data in figure 137.
The RAE/WHL analysis underestimates the peak value in the first quadrant and the behavior around the
retreating side of the disk differs from the measurements. The METAR/R85 calculation shows a peak
on the advancing side of the disk at a greater azimuth angle than the test data but the magnitude of the
moment is almost invariant with the radial position. The variation around the rest of the disk does not
correlate well with the measurements.

The highest speed flight test case, therefore, confirms the trends that have become apparent as
the advance ratio is increased. The flap bending moment is the most successfully predicted of the
three moments with the RAE/WHL analysis showing good agreement with the test data. CAMRAD
and CAMRAD/JA give acceptable levels of correlation with the flap bending moment but there is an
apparent problem with the METAR/R85 method. None of the theories are very good at predicting the
chord bending or torsional moments for the Puma rotor and further work is needed to improve the
predictive capabilities of the analyses.

5.2.2.4 Vibratory Loads

Calculations of the vibratory fixed-system loads at the hub were made by all of the analyses.
However, for METAR/RS8S, these computations were made only at the two highest advance ratios. No
direct measurements of hub vibratory loads were obtained on the research Puma. However, blade flap
bending moments and blade flapping were used to identify the uncoupled modal flap response of the
rotor and these values were used to estimate the vibratory vertical shears and hub moments. No attempt
was made to use the chord bending measurements in an equivalent approach to estimate the inplane
shears.

The calculated 4/rev X-forces are compared in figure 138. A positive X-force is forward, towards
the nose of the aircraft. Generally good agreement is seen between the four analyses; however, the
RAE/WHL analysis shows a negative sine component at higher speeds, unlike the other analyses. The
X-force amplitude calculated by METAR/RSS5 is lower than the other analyses and this is thought to be
a result of lower response in the flap modes at 3/rev as observed in Section 5.2.2.3.

The lateral or Y-force analytical comparisons are shown in figure 139. A positive force is to the
right of the aircraft. The agreement between the analyses is not as good for the cosine component of
the Y-force as for the X-force, but is better for the sine component. The METAR/R8S5 analysis, for the
two airspeed calculations made, again shows a reduced 4/rev amplitude.

The calculated 4/rev vertical shears are shown in figure 140 and are compared with estimates of
the 4/rev shears based on modal fitting of the flap angle and flap bending moment measurements. The
measured 4/rev vertical shear exhibits a large amplitude in the transition region (advance ratio less than
0.15), a large amplitude at high speed (advance ratio greater than 0.35), and a wide region of relatively
smooth operation between the two regimes. In the low-speed regime each of the analyses shows a
trend of increasing 4/rev shear as the advance ratio is reduced to 0.1 and the prediction of phase is
reasonable as well. However, there is a factor of 3 difference between the analytical predictions and
only the CAMRAD analysis shows good agreement with the derived values.

185



Flight 525 RAE/WHL

i ? ///{//
X S 7 W
¥ e // S s //////// oy
§ g:g /4/// - E lg_g ///////////////
S o / = o v /
i y
~15.,4 / S ~15g -
£
290 9
AZIMU%%I 2:10 380 AZIOMG%?*I 2:10 380
' eg ' eg
CAMRAD/JA
o ,?///////////
g 15 9 /”/,"”//////,.":'v,;"
Q log y, A:/,,:}/,’/
:10.0 W My
159 & §‘

Figure 137. Comparison of measured and calculated torsion moment as a function of azimuth and blade
radius; ¢ = 0.402, Flight 525.
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The transition regime vibratory loading is a consequence of the rapid variation in the airloads near
the blade tip on the advancing and retreating sides, as was discussed in Section 5.2.2.2. At high speed,
however, the vibratory loading is largely a consequence of aircraft trim, as was discussed in Section 4.
Except for CAMRAD/JA, the analyses predict a small or relatively constant 4/rev vertical shear at high
speed and this is contrary to the data that show a substantial increase in the shear (cosine component).
The increase predicted by CAMRAD/JA, although similar in size to the measurements, is opposite in
phase.

The 4/rev vertical shears shown in figure 140 that were derived from flight test data were obtained
by fitting nine flapping modes, calculated in a vacuum, to the measured flap angle and flap bending
moments (Bousman, 1987). The fitting process is based on a least squares approach (Gaukroger and
Hassal, 1978), with the flap angle fit obtained in an iterative fashion. Once the modal amplitudes are
identified the solution of the entire state vector is obtained and the 3, 4, and 5/rev vertical shears at
the hinge point may be used to compute the hub 4/rev vertical shear, pitch moment, and roll moment.
The same process may be used, as in Section 5.2.2.1, for the 1/rev pitch and roll moment as well.
An example of the bending moment fit for the first five harmonics of data at p = 0.402 is shown in
figure 141. Because the modal fit used here is only for the flap degree of freedom, radial and inplane
shears at the hub are not obtained.

The calculations for the 4/rev hub roll moment are compared with values derived from flight test
data in figure 142 and the 4/rev pitch moment calculations and derived values are compared in figure 143.
The 4/rev hub moments are primarily a result of the 3/rev flap bending moments and the comparisons
in these figures are analogous to comparisons that were shown in Section 5.2.2.3. In the low-speed or
transition regime, CAMRAD and CAMRADI/JA, which include a free wake in the model, show better
agreement in amplitude, although not in phase angle. Over the mid-range of advance ratios, where
the vibratory moments are less, all of the analyses show good agreement with the flight test derived
values. At high speed, however, neither the CAMRAD analyses nor METAR/R8S5 shows a satisfactory
calculation of the moment amplitudes, while the RAE/WHL analysis does provide a good estimate of
both the amplitude and phase.

The calculations of the 4/rev component of shaft torque are compared in figure 144. At low speed
the CAMRAD analyses show a higher 4/rev level than the RAE/WHL analysis for the cosine component,
but at higher speeds there is better agreement between these calculations. The METAR/R85 computation
at the two highest advance ratios, however, shows a much greater 4/rev vibration. Considering the poor
calculation of the chord bending moments that has been shown by all of the analyses, good agreement
in the vibratory shaft torque is too much to expect.

The comparisons of calculated hub vibratory loads and values derived from flight test in figures 140,
142, and 143 presume that the fuselage impedance is represented identically for the calculation and the
vibratory load estimate. In fact, the calculations were obtained for an isolated rotor with an infinite hub
impedance while the derived values, although based on isolated rotor vacuum modes, will include any
effects of fuselage or hub flexibility. In this respect, the agreement shown in these figures suggests that
fuselage flexibility is not important for this aircraft for these particular hub vibratory loads.
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Figure 141. Modal fit of blade flap bending moment data using nine calculated modes; p = 0.402.
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Figure 142. Comparison of calculated hub 4/rev roll moment and values derived from blade measure-
ments as a function of advance ratio for Flight 525.

5.2.3 Summary of Advance Ratio Sweep (Flight 525) Comparisons
Trim and Performance

The four lifting-line methods were used to predict the performance, airloads, blade response and
moments, and vibratory loads for advance ratios from 0.098 to 0.402 with the exception that the
METAR/R8S5 analysis computed the airloads and structural response only for the two high-speed cases.

The trim parameters selected for the airspeed sweep were aircraft weight, shaft angle of attack, and
first harmonic blade flapping. The analysts were able to match the specified trim parameters although
there were slight differences. Whereas the RAE/WHL, CAMRAD, and CAMRAD/JA analyses equated
the rotor thrust to the gross weight, the METAR/RS85 analysis set rotor lift to gross weight which differs
by cos s In achieving blade flapping trim each of the analyses defined the flap angles as appropriate
for a rigid blade rather than a flexible one. This had little effect on the longitudinal flapping, 31.. but
caused approximately a half degree out of trim condition for the lateral flapping, 3.

Although the specified trim parameters were achieved by all of the analyses, the assumption that
the rotor thrust (or lift) is the same as aircraft weight was a poor one as it does not account for fuselage
and stabilizer download. At the highest speed condition, based on wind tunnel measurements of the
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Figure 143. Comparison of calculated hub 4/rev pitch moment and values derived from blade measure-
ments as a function of advance ratio for Flight 525.

fuselage characteristics, this represents approximately a 9% underprediction of the true rotor thrust.
Thus, it is expected that the analyses should underpredict the power required at high speed as well as
the airloads and structural response.

The prediction of the unspecified controls, that is, collective and cyclic angles, was fair to good.
At low speed, where the wake modeling is important, differences between measurement and calculation
were as high as 2°. Except for CAMRAD, the analyses showed good agreement in collective at high
speed. The RAE/WHL analysis was able to calculate the cyclic angles to within 0.5° in most cases. The
CAMRAD/JA cyclic angles, in some cases, showed differences up to 1°, while the other two analyses
predicted cyclic angles that differed from the measurements by as much as 2°.

All of the analyses underpredicted the measured main rotor torque, particularly for the highest
speed where the calculated torques were 20 to 26% low. In part it is believed that these differences are
a consequence of underestimating the rotor thrust, but this does not explain all of the difference that is

observed.
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Figure 144. Comparison of calculated 4/rev shaft torque as a function of advance ratio for Flight 525.

Blade Airloads

Each of the four lifting-line methods provided good qualitative predictions of the blade normal
force or lift near the tip where measurements were made. At low speed, the free wake included in the
CAMRAD and CAMRAD/JA analyses provides a good prediction of the vortical loading. At higher
speeds the free wake is no longer important .and the best predictions were obtained by the RAE/WHL
and CAMRAD/JA analyses. Both the CAMRAD and METAR/R8S analyses have difficulties predicting
the lift close to the tip.

The prediction of the section pitching moment near the blade tip is, in general, poor. At low speed
none of the analyses show the influence of vortical loads on pitching moment. At high speed, where
the torsional loading is greatest, the CAMRAD analyses and METAR/R85 underpredict the loading.
The RAE/WHL code predicts oscillatory loads as large as those observed in flight, but the character is
different.

Blade Response and Loads
In general the various methods provide a good qualitative prediction of the flap response as well

as the flap bending moments. The exception to this is that the METAR/R85 code, while providing
a good prediction of the flap response over the speed range, does not predict the 3/rev loads well at
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high speed. This deficiency is believed to be caused by the incorrect modeling of the geometry of
the swept tip within the flexible blade model and the lack of torsion deformation in the calculation.
Substantial improvements in both of these areas have been made subsequent to the workshop (Arnaud
and Beaumier, 1992). Detailed examination of the flap bending moments shows that at low speed the
CAMRAD analyses provide a better prediction of the flap moments and this is clearly a consequence
of the free wake model. At high speed, the RAE/WHL, CAMRAD, and CAMRAD/JA analyses show
the correct 3/rev character of the loading, but the CAMRAD analyses underpredict the magnitude of
the loads while the RAE/WHL analysis provides an accurate computation.

The good prediction of the flap bending moments is in direct contrast to the poor prediction of the
chord bending moments. Although the oscillatory amplitudes are similar to the flight measurements, the
frequencies and phase behavior are substantially different and the computations are unsatisfactory. The
reasons for the poor predictions are not clear and further work is needed to understand the influence
of coupling with flap bending, the chord airloading, the effects of the lag damper at the root, and the
root-end boundary conditions.

The torsional loading, unlike flap and chord, is not dominated by a particular frequency. In general,
all of the analyses underestimate the torsional loads and the predicted characteristics do not show good
agreement with the measurements. The correlation is best described as poor.

Rotor Vibratory Loads

The predicted hub vibratory loads, in general, show good qualitative agreement with each other.
There are no measurements of the aircraft vibratory loads at the hub. However, it is possible to estimate
the hub vertical shears and pitch and roll moments by fitting blade modes to the extensive flap bending
moment measurements. This fit does not account for any motion or stiffness in the hub or aircraft.
Comparison of the calculated 4/rev hub pitch and roll moments with the estimated moments is quite
good and mirrors, to a degree, the comparisons for the flap bending moments. This is not surprising
as these moments are largely due to the 3/rev flap bending moments, although the good agreement
suggests that hub impedance is not important for this aircraft for these loads. The comparison of the
4/rev vertical shears is not as good as for the moments and this is particularly true at high speed. No
attempt was made to estimate the hub inplane shears from blade measurements.

5.3 Reference Case (Flight 123)

5.3.1 Introduction

The Flight 123 case was selected to provide a reference or baseline case with the standard Puma
blade without the swept tip. The use of a reference case is valuable in a number of respects. First, by
comparing swept-tip and rectangular-tip flight test data it is possible to identify conditions in which the
swept tip significantly changes the blade loading. Second, by comparing swept-tip and rectangular-tip
analyses it is possible to identify modeling differences that are affected by the swept-tip. Finally, by
comparing the analytical methods with the experimental data from the reference case it is possible to
identify modeling deficiencies that are unrelated to the swept-tip blade. All of these approaches are
used within this section.
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5.3.2 Flight Data

Five counters were examined from Flight 123 that correspond roughly to the Flight 525 airspeed
sweep; that is, the advance ratio varied from 0.097 to 0.377. One counter from this airspeed sweep,
1 = 0.321, was selected as the reference case and is compared in table 22 with the Flight 525 counter
at u = 0.307 which was one of the correlation cases used in Section 5.2. Although the match is quite
good on the basis of nondimensional thrust (based on aircraft weight), the advance ratio is 4% less for
the Flight 525 case and the rotor speed is 5% less and this provides an 8% drop in the tip Mach number
on the advancing side.

Table 22. Comparison of Flight 123 and 525 counters

Case Flight 123 (Counter 9) Flight 525 (Counter 12)
v 0.321 0.307
Myg 0.837 0.770
Cr/o 0.0695 0.0701
ag, deg —6.00 -5.70
B1c, deg 0.42 0.04
1. deg —-0.14 -0.08
Q, rpm 267.4 253.9

A planform view of the instrumented blade is shown in figure 145. Flap bending moment mea-
surements were obtained at eight radial stations: 0.35R, 0.45R, 0.55R, 0.65R, 0.75R, 0.83R, 0.90R,
and 0.95R. Valid measurements of chord bending moment were obtained at a single station, 0.73R, and
the torsion moment at two stations, 0.33R and 0.73R. Flap, pitch, and lead-lag angles were measured
on one blade, but no measurement of pitch-link loads was obtained.

The same aircraft trim parameters are used for the reference case as were used for the Flight 525
calculations, that is, rotor thrust (aircraft weight), shaft angle of attack, and first harmonic of flap angle.
Figure 146 compares the Flight 123 measured shaft angle of attack with the trim shaft angle-of-attack
schedule used for the Flight 525 analytical models. The agreement between the two flights is quite good,
particularly at the advance ratio of the reference case. The harmonic flapping angles for Flight 123 are
compared with measurements on three blades from Flight 525 in figure 147. The cosine (longitudinal)
flapping is offset by about a half degree between the two flights, but sine (lateral) flapping is similar
for both flights.

A comparison of unspecified rotor trim parameters between flights 123 and 525 is also useful.
The blade collective pitch angle, measured at the pitch bearing, is compared in figure 148 and good
agreement is seen between the two flights. The measurements of the cyclic pitch angle for Flight 123
are compared with Flight 525 in figure 149. The cosine (lateral) cyclic angle agrees well for the two
flights at lower speeds, but an increasing difference is observed at the higher advance ratio. The sine
(longitudinal) cyclic angles, however, show improved agreement at the higher speeds. These differences
are largely differences in phase with the Flight 123 data leading the Flight 525 data by about 40° at
low speed and 15° at high speed.
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Figure 149. Flight 123 cyclic pitch angles compared with Flight 525 values.

The coning angles recorded on Flight 123 are compared with the Flight 525 measurements in
figure 150. The Flight 123 coning is slightly lower than the mean position recorded for Flight 525 and
this is probably a result of the slightly higher rotor speed. The cause of the negative coning jump at
the ¢ = 0.307 point in the Flight 525 data is unknown. Obvious changes in other parameters at this

advance ratio have not been observed in the data.

The lag angle measurements obtained on Flight 123 are compared with the measurements on
Flight 525 in figure 151. As mentioned previously in Section 5.2.1, the Flight 525 measurements appear
to have a bias error of about —4°. Equating the measured shaft torque on Flight 525 to an equivalent lag
angle, however, suggests that the bias error is between —1.5° and —2.0°. These discrepancies remain

unresolved.

Pressure instrumentation was not installed on the standard blade of the Puma for Flight 123 so
there can be no comparison of airloads between the two flights. A comparison of the flap bending
moments measured at midspan is shown in figure 152 as a surface plot where the bending moments
are functions of blade azimuth and advance ratio. A thickened line is used to highlight the comparison
cases. The Flight 525 data contain 16 advance ratio points, and the evolution of flap bending moment
as advance ratio changes is quite smooth. Flight 123 includes only five advance ratio cases and the data
appear less smooth. Nonetheless, the dominant 3/rev character of the flap bending moment 1s apparent

for both flights.

The radial distributions of the measured flap bending moments for the comparison cases are shown
in figure 153. The Flight 525 data extend farther inboard than the Flight 123 data, to 0.20R compared
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to 0.35R, but in general there is good qualitative agreement between the two cases. The flap bending
moment measurements are compared at 0.35R and 0.55R in figure 154. As the flap bending moment
measurements were not obtained at identical radial stations for the two flights the comparisons here
are based on linear interpolation of the Flight 525 data. Good agreement is observed between the two
flights in both the general behavior and in the amplitudes. There does appear to be a phase difference
between the two cases with the Flight 525 data leading the Flight 123 data by about 10° to 15°. It is
unclear whether this phase difference is related to the modified swept tip used on the research Puma,
but it is clear that the aerodynamics of the swept tip have not significantly modified the amplitude or
basic character of the flap bending moments.

The limited data available for the chord bending moments for Flight 123 make surface plot com-
parisons, such as were used for the flap bending moments, impossible. The chord bending moment
measured on Flight 123 at 0.73R can be compared with interpolated values from Flight 525, however,
and this comparison is shown in figure 155. The data from both rotors show the same general character
with a clear 4/rev component observed in the time histories. The amplitudes of the chord bending
moments are similar. As was seen in the case of the flap bending moment comparison in figure 154,
the Flight 525 data lead the Flight 123 data by 10° to 15°.

The most inboard torsion measurement available on Flight 123 i1s at 0.33 R and this measurement is
compared with interpolated data from Flight 525 in figure 156. There are noticeable differences between
the torsion moments on the swept-tip blade flown on Flight 525 and the standard, rectangular-tipped
blade flown on Flight 123. The amplitude of the swept-tip blade is about 40% higher than the amplitude
of the standard blade and the character of the oscillations on the retreating side of the disk is different.
These differences are believed to be largely a result of the increased blade area at the tip rather than an
effect of the swept planform geometry (Maier and Bousman, 1992).

5.3.3 Comparison of Analysis and Experiment

5.3.3.1 Trim and Performance

The analyses were trimmed to the aircraft weight, shaft angle of attack, and first harmonic flapping
angles for Flight 123; the same trim procedure as was used for Flight 525. The unspecified trim
parameters and shaft torque that were computed for Counter 9 of Flight 123 are compared with flight
measurements in table 23. No measurement of the shaft torque was obtained on the flight test aircraft.

The RAE/WHL, CAMRAD, and METAR/R85 analyses all predict a collective pitch value that is
only slightly below the measurement. CAMRAD/JA, on the other hand, predicts a higher value for
collective pitch and this situation is similar to the analytical model calculations (Case 10) discussed in
Section 4.3.1. The predicted cyclic pitch angles are within a degree or a degree and a half of each
other. Much of the difference that is seen between the measured and computed cyclic angles is a phase
difference. The predicted phase of the cyclic pitch angle lags the measured values by 12° to 18°. The
cyclic pitch amplitude predicted by the CAMRAD and METAR/R85 analyses are about 15% below the
measured value, the RAE/WHL analysis is about 2% low, and the CAMRAD/JA prediction is within

1% of the measurement.
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Figure 154. Comparison of measured flap bending moments for flights 525 and 123 at 0.35R and
0.55R; 1 = 0.307 (Flight 525), x = 0.321 (Flight 123).
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Table 23. Unspecified trim parameters and shaft torque for Flight 123, Counter 9

Parameter Flight 123 RAE/WHL CAMRAD CAMRAD/JA METAR/R85
Collective Pitch, deg 12.40 13.26 13.04 14.11 13.05
Cosine Cyclic Pitch, deg 0.88 1.72 2.60 2.31 2.80
Sine Cyclic Pitch, deg —7.16 —6.82 —5.54 —6.76 —5.60
Coning, deg 2.99 3.46 3.46 3.44 3.53
Lag Angle, deg -6.33 —7.02 —7.06 —7.85 —5.80
Shaft Torque, N-m - 28,166 27,845 30,990 -

The calculated coning angles are within 3% of each other but are significantly greater than the
measured coning. A similar disparity was seen in the Flight 525 comparisons shown in figure 88
in Section 5.2.2.1. The calculated lag angles differ by as much as two degrees and, again, similar
differences were seen for Flight 525.

As was seen in the analytical model calculations in Section 4.3.1 and the Flight 525 calculations
in Section 5.2.2.1, the shaft torque computed by CAMRAD/JA is considerably greater than the other
analyses, approximately 10% for this case.

5.3.3.2 Blade Airloads

The RAE/WHL, CAMRAD, CAMRAD/JA and METAR/R85 calculated airloads are compared In
figure 157 for Flight 123 at an advance ratio of 0.321. No experimental data are available for this
case, and only the similarities and differences between the methods can be discussed. The figure shows
three-dimensional surface plots of the section lift evolution versus spanwise station and azimuth. The
general trends are similar for all the methods as well as for the lift computed for the swept-tip blade
discussed previously in Section 5.2.2.2. The major effects seen are a dominant 1 and 2/rev load variation
around the azimuth, with a reduced loading on the advancing blade side at the tip and on the retreating
side at the root, due to the rotor trim conditions.

A close examination of figure 157 reveals a number of differences between the predictions. First,
there is a strong variation in the computed tip loading between the various methods. Ranking the
methods from the lower to the larger tip loading gives CAMRAD/JA, METAR/RS5, RAE/WHL and
CAMRAD. These differences were also seen in the Task 3 analytical modeling comparisons discussed
in Section 4.3.2 and are a consequence of the coupling of the prescribed wake model with the blade
distribution of lift.

A second feature that is noted is that METAR/R8S, and to a lesser extent RAE/WHL, computes
higher harmonic components of the loading, which may be partly a consequence of the fact that CAM-
RAD and CAMRAD/JA include only the first 12 harmonics in the solution, while METAR/R8S uses
18 harmonics and RAE/WHL uses 36.

Figure 158 shows the loads evolution versus the azimuth at 0.95R. The top part of the figure

shows the higher harmonic part of the loads, that is, without the mean value and the first two harmonics
which constitute the main part of the signal, while the lower part of the figure shows the fully computed
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airloads. This figure confirms the comments made above, but they also indicate that, for this blade
section: the CAMRAD calculations give a higher lift for the rear part of the rotor disk; the RAE/WHL
code computes less lift reduction on the advancing blade side; all of the methods show the dominant
3/rev component in the higher harmonic part of the lift; and the peak-to-peak amplitude of the higher
harmonics component is greater in the CAMRAD computations.

Similar comparisons are shown in figures 159 and 160 for the section pitching moments. Fig-
ure 159 shows the surface plots of the section moment evolution versus azimuth and spanwise station.
Qualitatively, all the methods give the same tendencies, with a section moment dominated by a l/rev
component. However, larger differences between the analytical predictions are seen here than were
observed for the section lift. The RAE/WHL code gives a large positive section moment in the first
quadrant, which extends from inboard up to the tip. The two most inboard sections show zero section
moment as the & terms have been switched off to avoid oscillations induced by the reversed flow region.
CAMRAD and CAMRAD/JA compute less positive section moment in magnitude and extent, and a
larger region of negative section moment. Furthermore, the advancing side moment variation decreases
smoothly from blade tip to root and, at the blade root, large moment variations are found for the reversed
flow region, with a strong positive peak around 270° azimuth. METAR/R8S5 gives a different section
moment evolution, with a large part of the rotor disk having negative section moments, especially near
the blade tip and only very small portions of the rotor disk have low positive section moment values.

Figure 160 compares the computed pitching moments at 0.95 R, substantiating the comments made
above. However, this figure shows more clearly that the METAR/R85 calculation is fairly close to
the CAMRAD and CAMRAD/JA results with the exception of the unusual behavior between 90° and
135° azimuth. In this azimuth range small differences in angle of attack will have strong effects on the
moment coefficient due to the occurrence of transonic flow regions on the blade. This is also consistent
with the larger lift value calculated by METAR/R85 for this portion of the rotor disk in figure 158.
The RAE/WHL computed moment is different from the other calculations on the advancing blade side;
this code also computes a large lift value all along the advancing blade side, and it seems difficult to
explain this difference, because negative section moments would be expected in this case. Again, the
METAR/RS8S calculations give larger higher harmonic components, which is consistent with the lift
values.

The computations for this flight condition were originally undertaken to understand computation-
ally the differences between the rectangular-tip blade tested on Flight 123 and the swept-tip blade on
Flight 525. In this respect it is useful to compare the calculations for these two conditions even though
no pressure measurements are available for Flight 123. Figure 161 compares the radial distribution of
lift, computed at » = 0°, for each analysis. The lift distributions are shown in nondimensional form,
M?Cy, and dimensional form. Although the radial distributions are similar inboard for the two flight
conditions, outboard, where the swept-tip blade has a greater chord, there are differences seen in the
nondimensional lift that are, in a sense, an artifact of the nondimensionalization used. The dimensional
lift shows a relatively smooth and continuous distribution of lift near the blade tip while the nondimen-
sional lift shows a lift decrement that coincides with the increased blade chord. Similar effects have
been seen experimentally and computationally on the BERP blade tested as a fixed wing (Duque, 1989).
In this sense comparisons based on dimensional lift are considered more appropriate for this section.
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The lift distribution no longer appears singular at the tip for the METAR/RS85 calculation of the
rectangular-tip blade of Flight 123 compared to the swept-tip blade. As discussed previously in Sec-
tion 5.2.2.2, the swept-tip singularity is related to modeling of the yawed flow at very large sweep
angles and these are only associated with the swept tip.

The calculated section lift distributions at 0.95R are compared in figure 162 for the two flight condi-
tions. The lift distributions calculated by each analysis are quite similar for the swept and rectangular-tip
blades, although there are substantial differences seen between analyses. These comparisons suggest that
tip sweep, at least based on these analyses, has a relatively small effect upon the section lift distribution
of these two rotors.

An examination of the vibratory airloads, for harmonics 3 and above, as shown in figure 163,
accentuates the conclusion relative to the influence of swept-tip effects on section lift. At this radial
station there is very little difference between the two blade tips for any of the analyses. However,
there are significant differences between the analyses, which suggests that modeling problems beyond
tip sweep are the cause of the differences seen.

Figure 164 compares the section pitching moments computed by the four analyses for the two
rotor blade tips. Unlike the calculation of section lift the effect of sweep does have a significant
influence on the pitching moment prediction. The RAE/WHL analysis shows a significant increase in
the section moment in the first and fourth quadrants and the peak-to-peak moment is doubled or tripled
in comparison to the rectangular-tip blade. This provides better agreement with flight test measurements,
see Section 5.2.2.2, but the cause of the increased loading is not understood. The effect of tip sweep
for the CAMRAD analyses and METAR/RS8S is to moderate and delay the negative loading on the
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advancing side. These analyses incorporate the aerodynamics of tip sweep by computing the Mach
number that is normal to the local quarter chord, rather than the Mach number normal to the blade’s
feather axis and it is this local Mach number that is used to determine the section properties from the
two-dimensional look-up tables. The effect of tip sweep, therefore, is to reduce the Mach number in
the first quadrant and increase it slightly in the second. However, the peak-to-peak variation in the
predicted pitching moments is largely unchanged.

5.3.3.3 Blade Moments and Loads

The moments measured on the blade for Flight 123 were the flap bending moment at 0.35R, 0.45R,
0.55R, 0.65R, 0.75R, 0.83R, 0.90R and 0.95R, the chord bending moment at 0.33R and 0.73 R, and the
torsional moment at 0.33R and 0.73R. The chord moment strain-gauge at 0.33 R radius failed, however,
and no useful data were obtained at this position. The steady component of the blade moments has
been removed since the zero readings were taken with the blade resting on the flapping stops of the
helicopter. The analyses used to correlate with the test data are the RAE/WHL analysis, CAMRAD and
CAMRAD/JA.

The measured and predicted flap bending moment at 0.35R is presented in figure 165. The
correlation between the test data and the RAE/WHL analysis is generally good although the harmonic
analysis, figure 166, shows that the third harmonic component is underestimated. The CAMRAD/JA
prediction is slightly better than that of CAMRAD, particularly on the advancing side of the disk but
the azimuthal variation of the moment on the retreating side is not accurate in either calculation.

The flap bending moment for an articulated rotor is a maximum at about 0.75 R radius and figure 167
compares the measured and calculated moments at this station. The peak on the retreating side of the
disk is underestimated by all the analyses but the RAE/WHL method is generally the best on the
advancing side of the disk.

The chord bending moment for an articulated rotor is harder to predict accurately than the flap
bending moment. The Puma rotor has a hydraulic lag damper which cannot be modeled in the calculation
of the blade modes and its effect on the rotor has to be included in the solution of the forced response
equation. A lag damper is not modeled in the RAE/WHL analysis but a linear model is included in
the other methods. The force that the damper exerts near the blade root cannot be calculated if modal
summation is used to calculate the bending moment and recourse must be made to the force integration
method or the unified method of Hansford (1985). The flexibility in the gearbox and other elements of
the transmission system must be accounted for as well although obtaining the relevant data is difficult.

The measured and calculated chord bending moments at 0.73R are compared in figure 168 and
the harmonics are presented in figure 169. The test data have a pronounced 4/rev component and
there are smaller oscillations at 6 and 10/rev. The prediction by the RAE/WHL analysis does not
compare well with the measurements. The first harmonic variation is underestimated and there is a
S/rev oscillation which is consistent with the calculated chord mode frequency of 4.78/rev. CAMRAD
and CAMRAD/JA overestimate the magnitude of the oscillatory bending moment, particularly the
second and third harmonic components for CAMRAD and the first, second and third harmonics for
CAMRAD/JA. The 4/rev oscillation is not predicted by any of the analyses even when the damper is
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included which suggests that the calculated second lag mode frequency is too high and that there 1s
some flexibility in the transmission that detunes the mode.

The prediction of the torsional moment can, like the edgewise moment, present problems for rotor
analysts. Much depends on the relative stiffness of the blade to the control system. A blade that is
fairly flexible coupled to a stiff control system appears to present few problems and difficulties arise as
the control system stiffness is reduced. The control system of the Puma is midway between the two
extremes of low blade stiffness coupled to a high stiffness control system and a high blade stiffness
blade with a soft control system. The RAE/WHL modal calculation shows that about half the torsional
displacement at the blade tip occurs at the feathering bearing with the other half developing along the
blade.

The torsional moment was measured at two radial stations for Flight 123 but only the inboard
position, at 0.33R, is considered as the variation with azimuth is similar farther outboard but of smaller
magnitude. The test data and the calculations are compared in figure 170. The prediction using the
RAE/WHL analysis does not agree with the measurements very well and a Fourier analysis shows that
the first six harmonic components are only about half the experimental values. CAMRAD predicts
the oscillatory torsion moment quite accurately as the first harmonic component is in good agreement
with the test data. The shape of the waveform is wrong, however, since the second to fifth harmonic
components are underpredicted. The CAMRAD/JA predictions are similar to those of the RAE/WHL
analysis.

It is useful to compare the computed moments for the rectangular-tip blade (Counter 9, Flight 123)
with the moments for the swept-tip blade (Counter 12, Flight 525) just as was done for the computed
airloads in Section 5.3.3.2. This comparison is enhanced for the moments as experimental data are
available in this case and can be compared at the same time. Figures 171 and 172 compare the
predictions of the RAE/WHL, CAMRAD, and CAMRAD/JA analyses as well as the measured values
for the flap bending moments at two radial stations. The measured flap bending moments are quite
similar between the two flights and, therefore, the effect of tip sweep is not highly important. At the
more outboard station it appears that there is a slight reduction for the bending moments for Flight 525
although this may be a consequence of the reduced advance ratio. The analytical predictions show fair-
to-good agreement with the data as has been discussed previously in Section 5.2.2.3 and in this section.
The comparison between flight cases, based on the analytical computations, shows only small differences
and it appears that tip sweep has less of an influence on the moments than modeling differences between
the analyses.

A comparison of the chord bending moments at 0.73R for the two flight test cases is shown in
figure 173. None of the analyses predict the chord bending moments well, as has been discussed
previously, and it is clear that tip sweep has little to do with this poor prediction of the chord bending.

The torsion moments at 0.33R are compared for the two flight cases in figure 174. There is an
increase in the torsion moments for Flight 525 for the blade with a swept tip and this is seen in both
the measurements and the calculations. As discussed previously, all of the analyses underpredict the
torsion load amplitudes and the CAMRAD analysis shows a significant phase error as well. It is clear
from this comparison that modeling assumptions used for the swept tip are not a primary contributor
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to the unsatisfactory predictions; rather there are more fundamental problems with the prediction of the
torsional loads.

5.3.4 Summary of Reference Case Investigation

Experimental blade moment data from Flight 123, a test of the standard Puma blade with a rect-
angular tip, were included in the joint study to provide a reference case to better understand the effects
of the swept tip on the airloads and structural loads of the Puma. This reference case has been helpful
in sorting out the influence of the swept tip and where it is important and where it is not.

The comparison of the calculated airloads (there are no measured airloads for Flight 123) suggests
that tip sweep has only a minor effect on the distribution of the section normal force and the differences
between analyses in the prediction of normal force are significantly greater than the differences between
a rectangular or swept tip for any one analysis. This conclusion does not hold, however, for the section
pitching moment. The RAE/WHL analysis shows a significant increase in the oscillatory pitching
moment induced by tip sweep while the other analyses show modification to the pitching moment
distribution because of the lower effective Mach number over the blade tip.

The comparison of blade moments between the swept-tip cases and the reference case is enhanced
over the case of the airloads in that experimental data are compared as well as the analytical predictions.
All of the analyses correlate fairly well with the test data for the flap bending moment and differences that
are observed between the swept tip and the rectangular tip experimentally are, in general, smaller than
differences that are seen between the analytical methods. None of the calculation methods calculated the
chord bending moment accurately. The large fourth harmonic component was absent in the calculations
probably because the frequency of the second lag mode was too high. For these calculations it is clear
that the effect of sweep has little to do with understanding the differences between measurement and
analysis. The RAE/WHL and CAMRAD/JA analyses underpredicted the magnitude of the torsional
moment while CAMRAD, although estimating the magnitude correctly, was unable to predict the shape
of the waveform. The inability of the analyses to calculate the torsion accurately was possibly due to
the lack of an azimuthal variation in the control system stiffness or the use of a collective torsion mode
when coupled rotor modes, that is, collective and cyclic modes, are required instead.

5.4 Autorotational Case (Flight 487)

5.4.1 Flight Data

A single test point was selected from Flight 487 where the aircraft was in an autorotational dive
and the rotor speed was increased to create a high advancing blade tip Mach number. The conditions
for this case, Counter 11, are tabulated in table 24.

A planform view of the instrumented blade is shown in figure 175. The pressure instrumentation is
the same as for Flight 525; however, the number of working strain gauges was considerably reduced for
this flight. Satisfactory measurements of the flap bending moment were obtained at 0.46 R, chord bending
moments at 0.33R and 0.55R, and torsion moment at 0.126R, 0.33R, and 0.55R. The measurements
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Table 24. Trim conditions for Counter 11, Flight 487

Parameter Flight 487 (Counter 11)

7 0.429

Mgg 0.922

Cr/o 0.0731

ag, deg 5.77
Bie» deg —-2.19
O, deg -1.22
2, rpm 273.2

.
—+ : o o

Swept—-Tip Blade (Strain Gauge)

Swept—Tip Blade (Pressure)

O=FLAP
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O = TORSION
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Figure 175. Instrumentation on Flight 487.

of the blade root angles were contaminated by noise and no satisfactory measurements of the pitch-link
loads were obtained.

The collective and cyclic pitch angles were substantially reduced for the Flight 487 autorotational
dive condition and the blade flapping changed relative to level flight so that the disk plane was tilted
back. Figure 176 compares the pitch angle for the Flight 487 autorotational case with Counter 21
of Flight 525, the highest speed condition from that flight. Substantial contamination is seen in the
root pitch angle measurement for Flight 487 but it appears that a representation of the contaminated
signal, using only the steady and first harmonics, provides a reasonable approximation to the root pitch
angle. Based on the Oth and 1st harmonics representation the collective pitch is reduced from 17.77°
for Flight 525 to 5.45° for Flight 487 and the cyclic pitch is reduced from +11.05° to +3.39°. The
blade flapping is changed, as well, as shown in figure 177. Again, substantial contamination is seen
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in the Flight 487 data, but it appears from the approximation based on the zeroth and first harmonics
of the measurement that the flapping is largely 1/rev and the disk is tilted towards the rear of the
aircraft. Defining the disk angle of attack as ag = as — 81, then, the angle of attack for Flight 487 is
7.95° compared to —9.49° for Flight 525. It appears that there is is little 2/rev or 3/rev content in the
Flight 487 blade flapping.

The section normal force and pitching moment at the three outboard stations for the Flight 487
autorotational case are compared in figure 178. The section normal force and the pitching moment
data show large, higher harmonic oscillations, particularly on the advancing side. These oscillations
are more noticeable for the pitching moment and are partly a consequence of the rapid movement of
shocks on the upper and lower surfaces of the blade. In some cases the oscillations observed are partly
an artifact of transducer sparseness. The loading variation that is seen at the rear of the disk, however,
is a result of tip vortex induced loads. In the figures that follow, all of these features are discussed in
detail because of the importance of this case for the CFD calculations in Section 6.

The upper surface pressures, from the leading edge to 0.55¢, are shown as a function of blade
azimuth at 0.95R in figure 179. The sonic line or critical M 2Cp is shown in this figure with a heavy
dashed line. On the advancing side the upper surface pressures forward of 0.10c are subcritical, but aft
of that point the shock passage over the pressure transducers is clearly seen and an area of supercritical
flow exists on the airfoil surface as far back as 0.55¢. Although not shown in this figure, the supercritical
flow does not extend as far back as 0.70c, the next transducer location. On the retreating side the flow
remains subcritical except for a small azimuthal range from about 330° to 360° where the flow is
supercritical over the first 2% of the airfoil. A rapid variation in pressure is seen here and also at about
10° in the first quadrant.

The azimuthal pressure behavior in figure 179 is shown in a different format in figure 180 where
the pressure azimuthal histories are offset and ordered from front to rear on the airfoil. From 0.10c¢ to
0.55¢ a region of supercritical flow develops over the upper surface in the last part of the first quadrant
and the first half of the second quadrant. By 0.20c or 0.30c the passage of the shock over the transducer
is clearly apparent as it first moves aft and, in the second quadrant, moves forward.

Pressure oscillations are also observed at the rear of the disk for this case. Wake calculations,
such as by Egolf and Landgrebe (1983), suggest that these oscillations are related to the tip vortex of
the previous blade that is “pinched off” and appears at the rear of the disk at this advance ratio for a
four-bladed rotor. The first pressure peak, between 350° and 360°, includes a region of supercritical
flow and the azimuthal behavior indicates a convective event and it may be that the previous blade tip
vortex has induced dynamic stall locally on the blade and the shedding of a small dynamic-stall vortex.
The second pressure peak, at about 10°, appears to occur simultaneously along the upper surface and
is induced by the previous blade’s tip vortex. Vortex interactions of this nature were not observed for
Flight 525 (Section 5.2.1), as the rotor disk was tilted forward and the trailed tip vortex wake was
convected well away from the blade.

Vortices from the previous blade are also expected at the end of the first quadrant on the advancing
side (Egolf and Landgrebe, 1983). However, no evidence of vortex intersections is seen in the pressure
data and it seems likely that these vortices have been convected well away from the blade by the rotor
inflow.
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The distribution of the pressure on the lower surface at 0.95R is similar to the upper surface
distribution as shown in the normal azimuthal plot, figure 181, and in an offset plot, figure 182. These
figures show a region of supercritical flow at the end of the first quadrant and the beginning of the
second that is similar to that seen on the upper surface. The effect of the previous blade’s tip vortex
is also apparent at the rear of the rotor disk, although the absence of pressure tranducers forward of
0.10c makes it difficult to determine whether the interaction is more intense on the upper or lower
surface. A careful examination of the supercritical flow regions on both surfaces shows that these
regions move fore and aft nearly simultaneously but slight differences in amplitude and phase between
the two surfaces cause some of the higher harmonic oscillations that are seen on the advancing side in
figure 178. These oscillations are probably accentuated by the lack of resolution in transducer spacing
on the rear of the airfoil although the actual effect of the tranducer discretization is difficult to estimate.
It is clear, however, that the large excursion in pitching moment at 0.92R that is seen in figure 178 on
the advancing side is largely a result of an absence of transducers at 0.70c and 0.85c¢ (see table 18).

The section normal force and pitching moment for the autorotational case in figure 178 are different
from the maximum level flight speed case as can be seen by comparing the two conditions in figure 183
for the data at 0.95R. The largest difference appears to be a reduction in normal force near the blade
tip for the autorotational case and, by inference, a redistribution of the lift inboard. The normal force
at 0.95R is substantially reduced in the first quadrant and is negative over most of the second quadrant.
The change in lift from the first to second quadrants occurs more quickly for this flight case than seen in
Flight 525 and this rapid change in lift is examined in more detail in figures 184 and 185. The chordwise
pressure distributions at ¢ = 78° in figure 184 show extensive regions of supercritical flow and the
normal force is clearly positive at the three outboard stations. The ¢» = 78° azimuth corresponds to
the small peak in the normal force distribution seen in figure 178 just before the lift becomes negative.
Seven degrees later the normal force distribution has changed substantially as shown in figure 185.
The flow is still supercritical over the airfoil, but the normal force changes from positive at 0.92R to
negative at 0.978 R. Within the azimuthal region where large supercritical flows occur, small changes
in angle of attack can result in large changes in normal force and pitching moment and this will clearly
be a challenge for the analytical methods.

The flap bending moment at 0.46 R for Flight 487, Counter 11, is compared with interpolated data
from the high-speed, level flight case in figure 186. The amplitude of the oscillatory loads is similar for
both cases but the 3/rev loading is reduced for the autorotational case. A similar comparison is shown
for the chord bending moment at 0.55R in figure 187 and it can be seen that the oscillatory loading has
been reduced by about 20% with respect to Flight 525, largely because of a reduction in the 4/rev loads.
At the same time the 5/rev loading has increased. The chord bending moment at 0.33R on Flight 487
is quite similar to the moment shown here at 0.55R.

The torsion moment at 0.33R on Flight 487 is compared with the high-speed case from Flight 525
in figure 188. The oscillatory torsion moment for Flight 487 is decreased by about 30% with respect
to the level flight case and, in particular, the large positive loading in the first quadrant is substantially
reduced.
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Figure 187. Comparison of chord bending moments on flights 487 and 525; 0.55R.
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5.4.2 Comparison of Analysis and Experiment

5.4.2.1 Trim and Performance

The analyses were trimmed to the aircraft weight, shaft angle of attack, and first harmonic flapping
angles for Flight 487, Counter 11-the same trim as was used for the Flight 525 conditions. The flight
condition was extreme with a rate of descent exceeding 6000 ft/min. The unspecified trim parameters
and shaft torque for this case are compared with flight measurements in table 25. CAMRAD and
METAR/RS5 calculations were not required for this case and the unspecified trim calculations for the
RAE/WHL analysis are not available.

Table 25. Unspecified trim parameters and shaft torque for Flight 487, Counter 11

Parameter Flight 487 CAMRAD/JA
Collective Pitch, deg 5.45 6.24
Cosine Cyclic Pitch, deg —-0.92 -0.77
Sine Cyclic Pitch, deg -3.27 —2.52
Coning, deg 2.59 3.06
Lag Angle, deg 4.00 1.07
Shaft Torque, N-m —3,838 -5,1589

CAMRAD/JA predicts that the collective pitch angle at the pitch bearing is approximately 0.8°
greater than the measurement and this overprediction is similar to what was seen for flights 525 and
123. There is very good agreement in phase for the cyclic pitch angles between CAMRAD/JA and the
measurements, but the amplitude is underpredicted by about 23%. The calculated coning angle is about
half a degree greater than the measurement and this difference is similar to what was seen on flights 525
and 123. The measured lag angle is positive for this counter and the shaft torque is negative indicating
that the rotor is in a windmill state. The CAMRAD/JA predictions also show a positive lag angle and
negative torque but there are substantial differences with the measurements.

5.4.2.2 Blade Airloads

Only the RAE/WHL and CAMRAD/JA analyses were used to compute the airloads for the
Flight 487 autorotational case and thereby provide the partial inflow angles required for the com-
putations in Section 6.2. Figure 189 compares the section lift computed by the two methods to the
experimental section lift obtained by pressure integration. The data at three radial stations are shown,
0.92R, 0.95R, and 0.978R, and similar behavior is observed at each station. The CAMRAD/JA calcu-
lation shows a minimum in the lift on the advancing blade side that precedes the measured minimum
by about 30°. The RAE/WHL calculation on the other hand, provides a much better prediction of the
azimuth angle for minimum lift. Neither analysis, however, predicts the minimum level that is measured
on the advancing side.

The lift evolution in the first quadrant is not well captured by either of the calculations. The
measurements show a slowly time-varying lift followed by a sudden lift loss at 90°. The calculations,
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Figure 189. Comparison of experiment and calculation section normal force for the Flight 487 condition.
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on the other hand, give a regularly decreasing lift value all along the first quadrant. As discussed
previously in Section 5.4.1 this rapid change in lift is closely associated with changes in angle of attack
with large areas of supercritical flow on each surface of the blade. As the lifting-line methods compute
transonic flow effects only through the use of steady airfoil data it is, perhaps, not surprising that the
methods do not predict these highly unsteady conditions. The positive peak found in the experiment
just before 360° is a consequence of a blade-vortex interaction that is not captured in the calculations.

Figure 190 shows the correlation between measurements and theory for the section moments. Larger
discrepancies are found for this quantity as compared with the section lift. The measured section moment
at 0.92R is probably not trustworthy on the advancing side, as discussed before in Section 5.4.1, but
the section moments at the two outboard locations are considered trustworthy. The measured moments
for these two stations are quite different from the calculations and the correlation is poor. This poor
agreement illustrates the difficulty of computing the section moment, a small quantity, which yet may
have a large influence on the blade torsional dynamics.

5.4.2.3 Blade Moments and Loads

The autorotational flight case was taken from an early series of flight tests with the swept-tip blades
and some of the settings in the data acquisition system were not adjusted correctly. As a consequence
many of the strain-gauge channels show limiting and, therefore, only a few can be used for comparison
with analysis.

The flap bending moment measured at 0.46R is compared with the RAE/WHL and CAMRAD/JA
calculations in figure 191. Both analyses show the largely l/rev character seen in the data and the
RAE/WHL code slightly overpredicts the amplitude levels while CAMRAD/JA underpredicts the loading
level. The accuracy of the flap bending moment calculation is not as good as was seen at high speed
for Flight 525, Section 5.2.2.3, but good correlation is still achieved.

The chord bending moment comparison is shown in figure 192. Neither analysis predicts the general
load behavior or the oscillatory amplitudes that were measured and are, in general, unsatisfactory. The
poor predictive capability here is similar to what was seen in comparing the chord bending moments
with measurements for the Flight 525 airspeed sweep and it is believed that the lack of a good lag
damper model and knowledge of the root boundary conditions contribute to the poor predictions.

The RAE/WHL and CAMRAD/JA analyses underpredict the torsion moment for this case as shown
in figure 193. The Flight 487 torsion data show much the same character as observed in the section
pitching moments at the blade tip (see figure 190). The RAE/WHL prediction, on the other hand, 1s
basically out of phase with the measured values, whereas the CAMRAD/JA analysis, while showing
the correct 1/rev behavior, shows substantial differences for the higher harmonic loading. This poor
prediction of the torsional loading was also seen for the Flight 525 airspeed sweep and it is difficult to
see how the correct torsional deformation can be obtained until an improved calculation of the blade
pitching moment is obtained.
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5.4.3 Summary of Autorotational Flight Case Calculations

The autorotational case, Flight 487, Counter 11, was selected as a test case for CFD calculations (see
Section 6.2) because of the high advance ratio and extensive regions of transonic flow at the blade tip.
The RAE/WHL and CAMRAD/JA analyses were used to determine partial angle-of-attack distributions
for this case to be used by the TSP and FPR codes in a hybrid calculation of the airloads. The
comparisons shown in this section between the lifting-line methods and the experimental measurements
provide some insight into the suitability of the partial angles of attack as a basis for CFD prediction.

The lifting-line predictions of section normal force appear deficient in two respects. First, the
delayed decrease in lift observed in the experimental measurements in the first quadrant, a “plateau-
like” effect, is not observed in the computations. It seems likely that this normal force delay and
rapid decrease in thrust are related to nonlinear and unsteady characteristics of the transonic flow over
the blade and, to a substantial extent, these cannot be correctly computed by the lifting-line methods.
Second, an area of vortical loading is observed at the rear of the rotor disk that is clearly a result of a
close passage of the tip vortex of the previous blade and this is not captured by the lifting-line methods.

The lifting-line prediction of section pitching moment is also unsatisfactory. At 0.95R the predicted
phase of the moment is opposite that of the measurements, while at 0.978 R the RAE/WHL analysis
strongly overpredicts the pitching moment while CAMRAD/JA underpredicts the moment. The incor-
rect prediction of the pitching moment leads to an underprediction of the blade torsional motion and
consequent errors in the partial angles of attack.
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The trim parameters used for the lifting-line calculations for this case may not be as accurate as
used for the Flight 525 cases. For Flight 525 it appears that the actual rotor thrust was greater than the
gross weight of the aircraft because of fuselage and stabilizer download. For the present calculations
the same differences are possible, although the angle of attack of the fuselage with respect to the air
mass is less accurately known. Blade flap angle measurements were obtained on only one blade for
Flight 487 and were contaminated by noise. In this regard the precision of the trim flapping angles 1s
considered to be reduced from the Flight 525 airspeed sweep where good flapping angle measurements
were obtained on three blades.

The deficiencies in the lifting-line methods for this case suggest that the partial angle-of-attack
distributions that are used by the TSP and FPR codes will not be completely satisfactory. However,
when the lifting-line and CFD methods are coupled, that is, the lift calculated by the CFD methods 1s
fed back to the lifting-line calculation, then some of these deficiencies may be eliminated.

5.5 Puma Airfoil
5.5.1 Introduction

The basis for the research Puma rotor was a standard Puma blade with a rectangular planform
and a constant airfoil section similar to a NACA 0012. The blade tip was then modified to add sweep
to the planform in such a way that a section of forward sweep inboard was balanced by a section of
backward sweep outboard so that the blade torsion moments induced by the offset of the center of lift
from the feathering axis were canceled. The modified tip planform of the research Puma is illustrated
in figure 194 and this figure also shows the location of the four pressure measurement stations and the
blade feather axis coincident with the quarter chord of the blade inboard of 0.84R.

The blade chord was extended outboard of 0.84R to provide the additional area at the blade tip.
This was accomplished at each section by translating the airfoil profile along its line of symmetry and
fairing the upper and lower surfaces between the original and translated profiles as shown in figure 195.
This method of construction provides a slightly greater airfoil thickness over the outer 16% of the blade,
but the increase in chord is such that the thickness to chord ratio is reduced from 0.111 to 0.104. This
new section profile is referred to here as the Puma airfoil.

The CFD calculations performed for this rotor and discussed in Section 6 used section profile
and planform geometry derived from a theoretical model of the modified tip. The accuracy of this
geometric model is addressed in Section 5.5.2 by comparing profile measurements made on the research
Puma blade with the theoretical model. Section 5.5.3 examines the adequacy of the NACA 0012
airfoil deck that was used for all of the lifting-line calculations presented in this study, by comparing
airfoil characteristics for the NACA 0012 profile with the Puma airfoil using both inviscid and viscous
two-dimensional calculations. Summary comments are provided in Section 5.5.4.

5.5.2 Puma Airfoil Measurements

Following construction of the modified blades for the research Puma, templates were made for one
blade at each of the four radial stations where pressure measurements were to be obtained. Each of the
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templates was measured by the Inspection Department at RAE Bedford in 1982, gauging the thickness
at 35 points along the airfoil. The measured thickness was reduced by 0.10 mm to compensate for
tape that had been placed on the airfoil during the template construction. Figure 196 compares the
measurements at the four radial stations with the theoretical values used for the CFD calculations. The
agreement between the measurements and the theoretical geometry is quite good, at this scale, for the
two inboard profiles. At 0.95R the measurements show a slight thickening of the profile over the last 10
or 20% of the airfoil, while at 0.978 R the measurements show a thinning of the airfoil near the trailing
edge and the airfoil stops at about 96% of the theoretical chord. The anomalous thickness measurement
at 0.80c for this station is believed to be spurious. The maximum airfoil thickness measured was greater
than the theoretical value for all four sections. The incremental increase at each station in terms of
t/c was 0.0016, 0.0005, 0.0025, and 0.0013 for the radial stations 0.89R,0.92R,0.95R, and 0.978R
respectively. The physical differences ranged from 0.4 mm to 1.7 mm.

As a part of the present collaboration a new mold was made of the blade profile at 0.95R and
measurements of the upper and lower surface thickness were made in 1989 for approximately 100
chordwise stations. The 1982 and 1989 measurements are compared with the theoretical model in
figure 197 for 0.95R. This exploded view shows that the 1982 and 1989 measurements are very similar
and indicate that the actual blade profile was slightly thicker than the the theoretical model.

5.5.3 Airfoil Analysis

The Puma airfoil, as described above, was obtained by translating the inboard profile in the z-
direction and fairing the section in between. The fairing increases the dimensional thickness of the
airfoil, but because of the increased chord the thickness to chord ratio is decreased.

All of the lifting-line calculations for the Puma rotor presented in this report assume that NACA 0012
airfoil data, either as two-dimensional tables or as formulas, can be used to provide realistic section
properties. This has been done because experimental airfoil tables do not exist for the actual airfoils
used, either the standard inboard section or the modified tip. The purpose of the present computational
study is to assess the effects of this approximation on the lifting-line aerodynamics.

The differences between the Puma airfoil sections and the the standard NACA 0012 section are
illustrated in figure 198. Both the standard inboard and the modified tip sections on the Puma are thinner
than the NACA 0012. The inboard section on the Puma has its maximum thickness slightly forward of
the NACA 0012 and the aft portion of the airfoil is thinner by comparison. The modified tip section,
although thinner than the NACA 0012, shows a similar chordwise thickness distribution.

To understand the differences between these airfoil sections calculations were made for the modified
tip section and the NACA 0012 section using two different methods. No calculations were made for
the inboard standard airfoil section. The first method used is an inviscid, nonconservative full-potential
code called FLO 6 (Jameson, 1974). This code has the advantage of being computationally fast and
robust. It can be run many times in order to identify conditions of similarity and dissimilarity between
the two airfoil sections.

255



0.1

0.89R
(3}
= 00
-0.1
01 ¢ o.02R
B B o i Sy M W
SoTO Mﬂ$3f
o ; 1
$ 00} %D%%@
o M
“HOooo—g oo TIT
-0.1
01,
0.95R
-~ %HM
-0.1
0.1
0.978R
% ]
‘\;. 0.0t —
i !
i P -
-0 oo o000 oo
-0.1
-0.2 0.0 0.2 0.4 0.6 0.8 1.0
x/c
Figure 196. Comparison of theoretical profiles and 1982 measurements for four stations. Vertical scale

1.7 X horizontal scale.

256



0.06

0.05
o X9 —"
e XV
£ 0.03
0.02
0.01
0.00 } ¢ } } {
0.00 0.05 0.10 0.15 0.20 0.25
x/c

Figure 197. Comparison of theoretical profile with 1982 and 1989 measurements; 0.95R. Vertical scale
2.4 X horizontal scale.

0.08

0.06

0.04

0.02

0.00

ylc

-0.02

-0.04

-0.06

-0.08

NACA 0012 Puma Inboard Section

-0.10 0.10 0.30 0.50 0.70 0.90 1.10

x/c

Figure 198. Comparison plot of the Puma airfoil sections and the NACA 0012 section. Vertical scale
3.8 X horizontal scale.

257



The second computer code used in this investigation is ARC2D (Steger, 1978), developed at NASA
Ames Research Center by Pulliam and Steger. ARC2D solves the compressible, time-averaged, thin-
layer Navier-Stokes equations in two dimensions. It has been used by McCroskey et al. (1985) to
compute airfoil characteristics for high tip-speed rotor applications. It uses an algebraic turbulence
model and requires significantly more computer resources to run than the inviscid code (~5 minutes
CPU time on a CRAY YMP). Reynolds numbers were chosen to correspond to the Puma flight tests.

Results from all of the calculations are summarized in table 26. The inviscid calculations were used
to identify areas where the greatest differences existed between the two airfoils. Viscous calculations
were then performed for three cases that are representative of the differences between the two airfoils
in different transonic flow conditions.

All of the results show that for subcritical flow conditions, there is very little difference between the
two airfoils. This is because they both behave according to thin airfoil theory until there is significant
transonic flow. Since both airfoils are symmetric, the pitching moments are very small unless strong
shocks are present. Both viscous and inviscid calculations were performed for two of the transonic
cases. In both cases, results from the two methods show substantial differences. These differences are
most likely the result of viscous effects on the shock location.

Table 26. Summary of airfoil comparison cases

« My Re? Puma airfoil NACA 0012
C Cy Cm C Cy Cm

0.0 0.2 - 0.0000 —0.000012  0.00001 0.0000 —0.000013  0.00001
5.0 0.2 - 0.6108 —0.000007 —0.00621 0.6167 —0.000008 —0.00664
0.0 0.4 - 0.0000  0.000000  0.00000 0.0000  0.000000  0.00000
2.0 0.4 - 0.2638 —0.000065 —0.00276 0.2667 —0.000063 —0.00291
4.0 0.4 - 0.5281 —0.000099 —0.00506 0.5339 —0.000093 —0.00538
6.0 0.4 - 0.7936 —0.000232 —0.00632 0.8023 —0.000191 —0.00691
8.0 0.4 - 1.0638  0.001763 —0.00525 1.0738 0.000178 —0.00653
5.0 0.55 - 0.7502  0.002257 -0.00197 0.7599  0.000998 —0.00237
7.0 0.55 - 1.0636  0.026982  0.00240 1.0803  0.020683  0.00299
0.0 0.6 - 0.0000 —0.000101  0.00000 0.0000 —0.000010  0.00000
2.0 0.6 - 0.3135 —0.000143 —0.00268 0.3187 —0.000136 —0.00267
4.0 0.6 - 0.6358 0.000181 —0.00148 0.6462  0.000944 —0.00155
6.0 0.6 - 0.9683 0.026649  0.00151 0.9889  0.021917  0.00280
6.0 0.6 10 x 108 0.7840  0.023489  0.02904 0.8244  0.023330 0.02612
0.0 0.8 - 0.0000 0.001274  0.00000 0.0000 0.009191  0.00000
2.0 0.8 - 0.4989  0.024035 —0.04254 0.4780  0.033514 —0.05527
2.0 0.8 6 x 108 04599 0.030222 -0.02514 0.4379  0.040470 —0.03931
0.0 0.825 - 0.0000 0.006088  0.00000 0.0000 0.020498  0.00000
1.0 0.825 - 02723 0.014627 —0.03382 02474  0.026801 —0.04250

0.5 0.84 6 x 106 0.1469  0.022219 —0.02649 0.1175 0.042160 —0.02706
@ ARC2D computations.
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For transonic cases, the difference in thickness between the two airfoils causes differences in the
lift, drag and moment. Three representative flow conditions were computed by the ARC2D code and
the results are shown in figures 199-201. Figure 199 shows a transonic condition with a high angle of
attack, o = 6°, and a low Mach number, My = 0.6. Here, the lift of the Puma airfoil is about 5%
lower than the NACA 0012 value. The drag for both airfoils is almost equal and the moments are also
very close. This is because the shock is located close to the leading edge of both airfoils, where the
two profiles are very similar.

Figure 200 shows a case where the shock is located farther aft on the Puma airfoil in the faired
region. Here, the thickness difference between the two airfoils is more important. The angle of attack
is 2° for this case and the Mach number is 0.8. The lift for the two airfoils is similar, but both the drag
and the moment are much higher for the NACA 0012 airfoil.

Figure 201 shows a higher Mach number case with a lower angle of attack, Moo = 0.84, ¢ = 0.5°.
Here, the Puma airfoil shows about 25% more lift than the NACA 0012. The transonic drag for the
Puma airfoil is about half that of the NACA 0012. The moment values between the two are similar.
The rapid rise in drag for the thicker NACA 0012 airfoil shows the difference in the drag divergence
Mach number for the two airfoils: the thinner Puma airfoil has better drag divergence characteristics.

5.5.4 Puma Airfoil Summary

The comparison of measured and theoretical aerodynamic profiles in Section 5.5.2 shows, for the
most part, only slight differences between the physical blade and the theoretical model. However,
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Figure 199. Viscous calculation results; My = 0.60, o = 6.0°. NACA 0012: C; = 0.8244,
Cy = 0.02333, Cp, = 0.02612; Puma airfoil: C; = 0.7840, Cy = 0.02349, Crp = 0.02904.
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Figure 200. Viscous calculation results; Moo = 0.80, a =; Puma airfoil: C; = 0.4599, Cy = 0.03022,
Cm = —0.02514.
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Figure 201. Viscous calculation results; My, = 0.84, a = 0.5°. NACA 0012: C; = 0.1175,
Cq = 0.04216, Cpp, = —0.02706; Puma airfoil: C; = 0.1469, C; = 0.02222, Cp, = —0.02649.
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the measurements indicate that the blade thickness at the measurement stations is 1-3% greater than
the theoretical model, but the effect of this thickness difference is expected to be slight, based on the
analysis presented in Section 5.5.3. The measurements at the most outboard station, 0.978F, show
some thinning of the measured contour near the blade trailing edge and a reduction in chord length as
compared to the theoretical ordinates.

The comparison of the 12% thick NACA 0012 and the 10.4% thick Puma airfoil in Section 5.5.3
shows very similar behavior for all subsonic cases. The transonic performance can be very different
depending on the particular combination of Mach number and angle of attack that are present. The three
test cases in the first Puma correlation workshop had limited transonic flow on the rotor blades and,
for those conditions, there should be little effect of using NACA 0012 airfoil tables for the predictions.
For the higher speed cases examined in the present study, however, the choice of airfoil tables, plus the
accuracy of these tables in the nonlinear flow regions, will have a greater effect on the overall results.
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6 COMPARISON OF HYBRID METHODS WITH FLIGHT TEST DATA
(TASK 2)

6.1 Introduction

Typically, aerodynamic models for comprehensive rotor codes are based on lifting-line methods.
Nonlinear sectional lift, moment, and drag are based on two-dimensional experimental airfoil data and
are incorporated in the lifting-line methods in a straightforward manner. Approximate methods are used
to correct for unsteady aerodynamics and three-dimensional effects near the blade tip. The rotor wake
is modeled with discrete vortex segments that are tracked in a Lagrangian framework. Wake-induced
inflow to the rotor disk is computed with a Biot-Savart integration. The rotor-wake, aerodynamics, and
dynamics solutions are coupled together in an iterative trim solution in order to balance the forces for
the entire helicopter. The four comprehensive codes described in Section 2.1 of this report are examples
of this type of analysis.

Alternatives to lifting-line models for blade aerodynamics are computational fluid dynamics (CFD)
schemes that compute the full three-dimensional transonic flow around rotor blades. These methods typ-
ically solve the Navier-Stokes, Euler, or potential flow equations. CFD methods have an advantage over
other methods because they are designed to model accurately the three-dimensionality and the transonic
flow nonlinearities that are associated with high-speed advancing rotors. However, the disadvantage of
these methods is that their computational speed and storage requirements are too great to allow for a
large number of iterative CFD computations in the trim loop of the comprehensive code. In addition,
the complexities of resolving the rotor wake system with adequate grid resolution are typically beyond
the capabilities of current CFD codes.

To surmount these problems, computationally efficient hybrid schemes have been developed that
replace the lifting-line aerodynamic models in helicopter comprehensive codes with aerodynamic loads
that are computed with CFD. The major difficulty with such schemes is how to integrate the CFD-
computed airloads efficiently into the trim loop of the comprehensive code. The first successful hybrid
approach of this type was developed by Tung et al. (1986) who iteratively coupled the CFD-computed
lift from a small-disturbance potential code to the CAMRAD comprehensive analysis (Johnson, 1981a;
Johnson, 1981b). The CFD solution was placed outside the CAMRAD trim loop, and the CFD-computed
lift was gradually introduced into the calculation with a clever relaxation algorithm.

Figure 202 illustrates the basic Tung et al. (1986) coupling method for the CAMRAD/JA com-
prehensive code and the FPR CFD code. Note that the two-dimensional airfoil lift values in the
CAMRAD/JA trim solution eventually go to zero and that only the CFD-computed lift is used once
convergence has been reached. The main point is that the computationally-intensive CFD simulation
sits outside of the CAMRAD/JA trim loop, thereby allowing rapid trim solutions at each iteration of the
comprehensive code. Typical trimmed calculations using the scheme in figure 202 require approximately
three runs each of the CFD solver and the CAMRAD/JA code.

The basic Tung et al. (1986) coupling methodology has been used with a number of different CFD

methods and comprehensive rotorcraft codes (Strawn and Tung, 1987; Yamauchi et al., 1988; Chan
and Tung, 1985; Kim et al., 1991; Tran and Desopper, 1988). Typically, these efforts have focused on
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Figure 202. Schematic of the combined rotor airloads prediction scheme of Tung et al. (1986).

the development of the CFD methods rather than the details of the comprehensive analyses and CFD
coupling scheme.

The advantage of this type of hybrid analysis is that the CFD-computed aerodynamic loads should
model unsteady transonic effects and blade three-dimensionality more accurately. These schemes are
not without their problems, however. Their major drawback is that an approximate boundary condition
is used to couple the CFD airloads to the comprehensive code. The blade motion and wake inflow
are modeled in the CFD solver as radially varying angle-of-attack boundary conditions. This procedure
ignores some important unsteady effects that influence the rotor airloads. In addition, the fact that the
CFD code sits outside the trim loop in the comprehensive code means that the two codes are “loosely
coupled.” This loose coupling can lead to stability and convergence problems for the overall scheme.
This is particularly true when CFD-computed moments and drag are introduced into the comprehensive
code. Note that all of the hybrid efforts cited above use only the CFD-computed lift in the comprehensive
analyses.

This section of the report presents results from the CFD analyses after coupling with their com-
prehensive code counterparts. The two hybrid analyses combine the Full-Potential Rotor code (FPR)
with CAMRAD/JA, and the Transonic Small Perturbation code (TSP) with the RAE/WHL code. Results
from the Transonic Small Disturbance code (TSD) coupled to the ONERA comprehensive analysis were
not available for the workshop. The two hybrid analyses are compared with the measurements obtained
in the autorotational dive condition of Flight 487 in Section 6.2. The advancing tip Mach number in
this case is approximately 0.92 and the ability of CFD methods to compute unsteady, transonic flows
in this case should offer advantages. The two analyses are compared with experimental data for the
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high-speed flight condition from Flight 525 in Section 6.3. Although the tip Mach number in this case
is only 0.83, the impressed airfoil pitch rate (cyclic pitch angle) has increased from the Flight 487 value
of £3.4° to £11.0° and this will force greater unsteadiness in pitching motion. In Section 6.4, the
hybrid analyses are compared with the predictions of the lifting-line methods alone for the two cases to
assess the advantages and disadvantages of these hybrid methods. Section 6.5 discusses modifications
to the CFD lifting-line coupling methods that offer some improvement in prediction accuracy. Finally,
summary remarks are provided in Section 6.6.

It should be noted in the comparisons shown in Sections 6.2 to 6.4 that the hybridization or coupling
of FPR and CAMRADY/JA represents a relatively mature approach that has evolved from the work of
Tung et al. (1986). The hybridization between the TSP method and the RAE/WHL analysis, however,
has not been done before and the work reported here is the first attempt at linking the methods, and no
modifications or improvements have been performed. The effect is, in all cases, a degradation of the
comparison of the calculated results with flight data, even though a convergence in the hybrid scheme
has been obtained.

6.2 Autorotational Case (Flight 487, Counter 11)

A comparison of the CFD hybrid prediction methods with experimental measurements was made
for the high-speed, autorotational case from Flight 487. This case was chosen because it has significant
three-dimensional and transonic flow on the advancing side of the rotor disk. The expectation was that
the CFD methods should provide a better model for the transonic unsteadiness in the aerodynamic forces
than two-dimensional airfoil tables in the lifting-line analyses.

6.2.1 Azimuthal Histories of Section Lift

Figure 203 shows azimuthal histories of section lift at three radial locations on the blade. All
sectional lift values are scaled by the square of the local Mach number to remove the dependence on
local dynamic pressure from the comparisons.

The experimental data at the three radial locations show a large negative lift in the second quadrant
on the advancing side of the rotor disk as discussed in Section 5.4.1. This negative lift is accompanied
by strong shocks on both the upper and lower surfaces of the rotor. The strong transonic effects pose
a challenge for the CFD codes and also for the weak boundary condition that couples the CFD codes
to the comprehensive analyses. Recall that the entire effect of the unsteady blade motion and wake is
modeled with a radially varying angle-of-attack boundary condition on the rotor blade.

The TSP-RAE/WHL and the FPR-CAMRAD/JA results show large differences in their computed
lift predictions. The FPR-CAMRAD/JA results show higher lift near 0° azimuth than TSP-RAE/WHL
except at the most outboard radial station. The experimental data tend to split the two predictions at this
aft edge of the rotor disk. In the third and fourth quadrants the experimental data show better agreement
with FPR-CAMRAD/JA predictions.

The two predictions do not show good agreement with the experimental data in the negative lift
region of the second quadrant. Here, the FPR-CAMRADY/JA prediction shows more negative lift than
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Figure 203. Comparison of hybrid CFD analyses with experiment for section lift; Flight 487.



the TSP-RAE/WHL result although neither shows good agreement with the data. It is not surprising that
the TSP-RAE/WHL and the FPR-CAMRAD/JA predictions are different in this region as the FPR code
computes a time-accurate solution for the rotor blades while the TSP code uses a quasi-steady analysis.
One would expect that the FPR code would provide a better prediction in the second quadrant where
unsteady shock motion is important. The fact that neither CFD prediction shows good agreement with
the experimental data here means that other factors, not modeled well by either analysis, are important
in this region.

Trying to isolate the causes for discrepancies between the predictions and the experimental data is
very difficult for this case. This is because the CFD results are iteratively coupled into the trim of the
comprehensive codes. Differences in computed results reflect the specifics of the comprehensive codes,
the specifics of the CFD analyses, and the specifics of the hybrid coupling algorithms. It is not possible
to separate these effects in a meaningful way without additional calculations.

6.2.2 Azimuthal Histories of Section Moment

Figure 204 shows computed and experimental values of sectional moment at the three radial stations.
As was the case for the lift comparisons, the moment values are scaled by the local free-stream Mach
numbers to remove the dependence on local dynamic pressure. Although the computed moment values
from the two CFD codes are plotted in this figure, these values were not part of the coupling process
with the comprehensive codes. The aerodynamic moment values in the comprehensive codes were
obtained from 2-D airfoil tables, modified to account for unsteady effects. Thus the computed moment
values in this figure have no effect on the rotor trim.

The data at 0.92R are not considered trustworthy on the advancing side because of the absence of
pressure transducers towards the rear of the airfoil (see Section 5.4.1). The two hybrid calculations are
substantially different between 60° and 180°, although because of limitations of the pressure integration
it is not possible to state which provides better accuracy. On the retreating side, however, the TSP-
RAE/WHL predictions show better agreement with the data.

Both of the CFD predictions show poor agreement with the experimental data at 0.95R and 0.978 K.
The TSP-RAE/WHL predictions follow the trend of the data on the advancing side but the magnitude
of the predicted moment is underestimated at 0.978R. The FPR-CAMRAD/JA method does not predict
the negative moment in the second quadrant, but the trend of the predictions improves after about
200° azimuth. Such discrepancies between experiment and computation are not surprising for these
cases since it is much more difficult to predict aerodynamic moment than aerodynamic lift with a
CFD code. This is because aerodynamic moment is much more sensitive to the accurate treatment of
the leading and trailing edge regions as well as the effects of transonic shocks. Both the FPR and
TSP CFD codes are inviscid and will not give good predictions near the trailing edge of the rotor
blade. This affects the aerodynamic moment much more than it affects the aerodynamic lift. Accurate
prediction of aerodynamic moment is extremely difficult, even with a CFD code that includes viscous
effects. Furthermore, accurate CFD computation of blade moments requires realistic blade-motion
boundary conditions. In the present calculations, blade-motion effects were modeled with an inflow
angle boundary condition which does not give the correct results for unsteady moments, even with a
perfect CFD code.
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Figure 204. Comparison of hybrid CFD analyses with experiment for section moment; Flight 487.
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6.2.3 Chordwise Pressure Distributions

Figure 205 compares the experimental and computed chordwise pressure distributions at four radial
locations for an azimuth of 30°. The Cj, values are scaled by the square of the local free-stream
Mach number. For this azimuth in the first quadrant of the rotor the flow is mostly subsonic and
significant differences are observed between the CFD predictions and the experimental data. The FPR-
CAMRADY/JA predictions generally show better agreement with the data and it appears that most of the
difference could be corrected with inflow angle changes to the surface boundary conditions. However,
this is not the case with the TSP predictions. As an example, at 0.92R, the TSP-RAE/WHL prediction
shows good agreement with the lower surface pressures, but the prediction of the upper surface pressure
is substantially in error. An inflow-angle boundary condition change to the TSP code will not improve
this situation.

Figures 206 and 207 compare the CFD hybrid predictions with the experimental data in the transonic
region on the advancing side of the rotor disk. The two computations show reasonable agreement with
each other at 90°, particularly for the three inboard radial stations. The computed shocks have similar
locations and both codes show reasonably good agreement with the experimental data. At 120°, however,
the TSP-RAE/WHL code does not show a strong shock at the three inboard radial stations. Both the
experimental data and the FPR-CAMRAD/JA result show a shock in this region. The explanation for
this is that the TSP code does not include unsteady terms within its solution and therefore cannot properly
model transonic flow-field unsteadiness. The FPR code solves the unsteady full-potential equation and
is able to capture the unsteady motion of the transonic shock. At 0.978 R and 120° azimuth, both CFD
hybrid predictions show poor agreement with the experimental data. It does not appear that this poor
agreement would be remedied by changes to the inflow-angle boundary conditions in either CFD code.

Comparison of the hybrid CFD calculations and the measurements shows similar trends at all
azimuths on the retreating side of the disk. Figure 208 shows the comparison at 270°. The FPR-
CAMRAD/JA computations show good agreement with the experimental data, with a slight underpre-
diction of the leading edge suction peak at the outboard stations. The TSP-RAE/WHL predictions,
however, show worse agreement with experiment. The lower surface pressures are predicted fairly well,
but the leading edge suction peaks are significantly underpredicted at all radial stations. This deficiency
is typical of CFD predictions based on the transonic small disturbance equation. When the sectional
inflow angles are high, the suction peaks on the leading edge are underpredicted. This problem cannot
be corrected with changes to the inflow-angle boundary conditions provided by the comprehensive code.
The fact that these leading edge suction peaks are underpredicted will then affect the final trim that is
obtained in the TSP-RAE/WHL computation.

6.3 High-Speed Level Flight Case (Flight 525, Counter 21)

A comparison of the CFD hybrid prediction methods with experimental measurements was made
for the high-speed level flight case from Flight 525. This case was chosen because it has significant
three-dimensional and unsteady flows due to pitch rate in comparison to the autorotational case of
Section 6.2. However, the advancing blade tip Mach number is reduced from 0.92 to 0.83 and the
influence of transonic flow is correspondingly diminished.
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6.3.1 Azimuthal Histories of Section Lift

In figure 209 plots of section lift, M2C7, are shown against azimuth for the three radial stations at
which flight measurements were obtained: 0.92R, 0.95R, and 0.978 R. The FPR-CAMRAD/JA results
show a reasonably good comparison with the flight data, with lift maxima and minima occurring with
slight discrepancies in azimuth angle. The position of the minimum lift at the beginning of the second
quadrant is predicted most accurately, while the first maximum near 30° appears slightly early and the
second maximum, in the second quadrant, is predicted late. The actual values of lift are closest around
the advancing side, with over- and under-predictions at the rear and front of the disk respectively. The
TSP-RAE/WHL results show much less variation in lift values. The minimum at 90° is more obvious
than the maxima at about 30° and 180°. Interestingly, the TSP-RAE/WHL results do show a feature
at 340° to 355° which reflects the shape of the flight data, albeit at a displaced value of section lift,
which the FPR-CAMRAD/JA results do not demonstrate at all. The TSP-RAE/WHL predictions do not
vary much across the three radial stations, whereas for FPR-CAMRAD/JA, the maximum at the rear of
the disk decreases substantially with increasing radius, following the flight data, and the maximum at
the front of the disk increases a little, improving the comparison with flight data at the most outboard
station.

6.3.2 Azimuthal Histories of Section Moment

The section moment is plotted against azimuth in figure 210, for the same stations as before.
The TSP-RAE/WHL results show a trend which is similar to the flight data, but without matching
their magnitudes at the maxima and minima. The FPR-CAMRAD/JA results behave similarly over the
second half of the azimuth range, and are particularly good in this region at 0.978 R. On the advancing
side of the rotor, however, the predicted moments at each radial station have a local maximum where
the flight data show a minimum. The section moment values are not easily compared with flight data
for these CFD codes, because of the absence of any viscous modeling. Also, the inflow-angle boundary
conditions to the CFD codes neglect unsteady effects caused by blade motion. These unsteady effects
are very important for accurate moment calculations.

6.3.3 Chordwise Pressure Distributions

The calculated chordwise pressure distributions from the hybrid calculations are compared with the
measured pressures at ¢ = 30° in figure 211. The figures on each plot show the pressure distributions at
the four flight data measurement stations: 0.89R, 0.92R, 0.95R, and 0.978R. With the poor prediction
of lift distribution shown by the TSP-RAE/WHL method previously, it is to be expected that the related
pressure distributions do not compare favorably with the flight data and this is indeed the case. The
FPR-CAMRAD/JA results, on the other hand, are much nearer the flight data, and the corresponding
pressure distributions should show better agreement. The full-potential formulation should also show a
better prediction of the suction peaks near the leading edge than the TSP method.

These expectations are certainly demonstrated in the pressure distributions at 30°. At 0.89R and
0.92R the FPR-CAMRAD/JA results slightly underpredict the upper surface pressures, while at 0.95R
and 0.978R the pressure is well predicted over most of the chord, with the minimum pressure at the
~ leading edge not quite achieved. The TSP-RAE/WHL results, however, are not very good for either the
upper or lower surface values, except for the lower surface at the radial station nearest the tip.
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" Figure 209. Comparison of hybrid CFD analyses with experiment for section lift; Flight 525.
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At ¢ = 120°, as shown in figure 212, the lift is negative for both the flight data and FPR-
CAMRAD/JA, while the TSP-RAE/WHL results are at positive lift. This azimuth position corresponds
to the point where the FPR-CAMRAD/JA results move from slightly overpredicting the lift to slightly
underpredicting the lift, so the lift prediction is good at this point, but this is also where the comparison
of section moment was at its worst. The reason can now be seen—for the flight data the suction surface
appears to cross from the lower surface to the upper surface around mid-chord, thus creating the peak
negative moment, but the calculations do not follow this pattern.

At 150° azimuth, figure 213, the lift is again positive everywhere, but this is one of the regions
with the greatest discrepancy of section lift between the calculations and the flight data. The predicted
lower surface pressures from both codes improve with increasing radius-but otherwise the comparison
is poor.

The comparison of the hybrid CFD predictions and measured pressures changes little over the
retreating side of the disk; an example at ¢ = 270° is shown in figure 214. The FPR-CAMRAD/JA
analysis predicts the pressure distributions well on the retreating side of the disk, only missing the tip of
the suction peak near the leading edge. Although TSP-RAE/WHL predicts the lower surface pressure
correctly, it fails to predict the upper surface pressure and, in particular, only poorly predicts the leading
edge suction peak.

6.4 Comparison of Hybrid CFD Methods with Lifting-Line Calculations

Hybrid CFD calculations have been compared with two sets of experimental flight data in Sec-
tions 6.2 and 6.3 and the accuracy of these methods has been assessed. In the present section these
comparisons are extended to include the lifting-line predictions as well and in this fashion assess to
what degree the coupling of the CFD methods improves predictive capability.

Figure 215 compares the CAMRAD/JA and FPR-CAMRADYJA predictions of the section normal
force and pitching moment at two radial stations with the experimental results for the high-speed,
autorotational case. Neither method predicts the “plateau-like” effect of the normal force in the first
quadrant, the extent of the negative lift region in the second quadrant, nor the vortex-induced flows
at the rear of the disk. However, the FPR-CAMRAD/JA calculation does show a phase shift in the
negative lift region that is an improvement over that predicted by CAMRAD/JA alone. Neither method
predicts the section moments adequately.

The CAMRAD/JA and FPR-CAMRAD/JA calculations for the level flight case, Flight 525,
Counter 21, are compared with the data in figure 216 for the two radial stations shown previously.
For this level-flight case, the lift predictions show much better agreement with the flight data than was
seen for the autorotational dive case. There are azimuths for both radial stations where the hybrid CFD
computation shows better agreement with the data than the lifting-line method, just as there are azimuths
where the converse is true. It is not obvious that the hybrid CFD computation is an improvement over
the lifting-line method based on these comparisons with the section lift. Neither method provides a
good prediction of the pitching moments although the character of the lifting-line computation is more
like the measured behavior, particularly on the advancing side.
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Figure 212. Chordwise pressure comparison of experimental measurements and CFD hybrid predictions
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The RAE/WHL and TSP-RAE/WHL calculations are compared with measurements for the high-
speed autorotational case in figure 217. The lifting-line prediction is better than the hybrid method in
the prediction of the section lift and also shows a slight improvement in the phase of the negative lift
region compared to figure 215. The hybrid calculation shows less lift variation around the azimuth than
the lifting-line analysis it is coupled to and is clearly less accurate. The pitching moment predictions are
not good, but are better for the CFD calculation than the lifting-line computation, with the general trend
being much better predicted even though the magnitudes are not correct. The lifting-line computation
shows sizeable excursions in the pitching moment that are substantially different from the measurements
and these excursions become more extreme closer to the blade tip.

Comparing the RAE/WHL and TSP-RAE/WHL predictions with the high-speed, level flight case,
Flight 525, Counter 21, in figure 218 shows that the lifting-line prediction of the section lift is relatively
good, much like was seen in figure 216 for CAMRAD/JA. However, the hybrid calculation shows
only about half the section lift and is clearly unsatisfactory. The predicted pitching moments, however,
show a better trend for the hybrid calculation than for the lifting-line one, with the extreme excursions
in moment near the blade tip predicted by the lifting-line computation being replaced by much more
moderate behavior which anticipates the positive and negative regions of the moment correctly. The
predicted size of the moment is however too small.

The lack of clear improvement in the hybrid calculations for the cases shown here, particularly for
the section moments, is not too surprising. The lifting-line methods in the comprehensive codes use
two-dimensional data that include viscous effects while the CFD methods do not include the effects of
viscosity and this is especially important for the moment calculations. The lifting-line methods employ
unsteady correction terms to accommodate unsteady blade motions while these effects are approximated
by the inflow-angle boundary condition in the CFD methods. Neither approach provides a superior
prediction of the lift and moment behavior and the limiting effects of the various assumptions is not
clearly understood.

6.5 Coupling Method Improvements (Flight 488, Counter 9)

As a follow-up to the results presented above, a second study was initiated to evaluate the iterative
coupling process between the comprehensive and CFD codes. The results of this study have been
published (Strawn and Bridgeman, 1991) and are briefly summarized below.

One of the problems with the Tung et al. (1986) coupling technique shown in figure 202 is that all of
the blade motion and wake effects are represented as an inflow angle-of-attack boundary condition at the
blade surface. This simplified boundary condition does not model many important unsteady aerodynamic
effects that are present for real helicopter blades. A second problem is that previous efforts using the
Tung et al. (1986) scheme only make use of the CFD-computed lift in the comprehensive code solution.
The computed aerodynamic moment has not been used.

Strawn and Bridgeman (1991) developed improved aerodynamic boundary conditions that more
rigorously represent the effects of unsteady rotor blade motion. Just as for the present work, the FPR
and CAMRADY/JA codes were used for these studies. The modified analysis was used to compute one of
the Puma flight-test cases from the first Puma workshop (Strawn et al, 1989). The effects of unsteady
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pitch were described as a chordwise-varying inflow angle at each spanwise section of the rotor blade.
Also, the effects of unsteady lead and lag were directly introduced into the prescribed blade motion for
the FPR code. These boundary condition changes resulted in improved correlations with experimental
data for both aerodynamic lift and moment. This was particularly the case near 90° azimuth where
there is a significant amount of negative lift near the blade tip. The computed moment values were also
improved when the unsteady blade motion terms were included in the calculation.

The major drawback with these unsteady boundary conditions was that they led to convergence
problems between the CAMRAD/JA and FPR codes. This is because the CFD and comprehensive codes
are loosely coupled in the Tung et al. (1986) iteration scheme. The coupling works well as long as the
CFD results are not too different from those in the lifting-line aerodynamic tables. Since the lifting-line
2-D tables do not contain any blade unsteady effects, they are most similar to the CFD results when the
simplified inflow-angle boundary conditions are used. The nonlinear effects from the unsteady boundary
conditions cause convergence problems with the overall scheme.

In addition to the effects of flow-field unsteadiness on the aerodynamic lift, the unsteadiness has an
even larger effect on CFD-computed moment values. Moment forces from the FPR code were included
in the CAMRAD/JA analysis with the same Tung et al. (1986) coupling scheme that had previously
been used only for aerodynamic lift. Once again, the iterative coupling procedure failed to converge.

Several conclusions can be drawn from the Strawn and Bridgeman (1991) study. First, the effects of
aerodynamic unsteadiness play a large role in the aerodynamic forces for the Puma flight test cases and
this unsteadiness is not accurately modeled in the hybrid CFD calculations for the workshop. Second,
it is extremely difficult to improve the boundary conditions for the iterative coupling between the CFD
and comprehensive code. Any attempt to improve the modeling of nonlinear unsteady aerodynamic
effects degrades the iterative convergence of the “loose” coupling between the two codes.

A new coupling scheme must be developed if these effects are to be accurately modeled. One such
scheme 1s to compute both the aerodynamics and dynamics solutions in the time domain. Time steps
would alternate between the aerodynamics and dynamics codes. The dynamics code would provide the
complete blade motion to the CFD code, and the CFD code would provide the complete aerodynamic
forces and moments to the dynamics code. These boundary conditions would be lagged one time step
in each code. This procedure gives a more tightly coupled solution between the aerodynamics and
dynamics than the Tung et al. (1986) method. It should be stable at all times, but it is unknown whether
the rotor blade forces could be trimmed within a reasonable amount of computer time. Other coupling
techniques may be possible and these should be explored in further research efforts.

6.6 Summary of Hybrid CFD Calculations

CFD and lifting-line methods were combined in a hybrid scheme (Tung et al., 1986) and compared
to two flight cases: a high-speed, autorotational case with Mgy = 0.92 and a level flight case with
Mgp = 0.83. The coupling of the FPR and CAMRAD/JA analyses is an evolutionary development
from the original work of Tung et al. (1986), but the coupling of the TSP and RAE/WHL analyses was
done for the first time as part of this correlation effort.
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The FPR-CAMRAD/JA hybrid analysis, in general, shows predictions of the section lift that are
as good as, and in some cases better than, that predicted by the conventional lifting-line approach. The
prediction of the section pitching moment, however, is unsatisfactory as is the lifting-line prediction.
The TSP-RAE/WHL predicted lift is considered poor for all cases, but the moment, although not strong
enough, shows improvement over that predicted by the lifting-line calculation.

The hybrid scheme used to couple the CFD and lifting-line methods is based on an iteration method
where the lift computed by the CFD code is used as a replacement of the 2-D tables that are integral to the
lifting-line methods. Details of the coupling still require refinement, as discussed in Section 6.5, and it
has been shown (Strawn and Bridgeman, 1991) that these improvements will provide lift predictions that
are as good as the best from a lifting-line prediction. However, this iteration approach does not converge
when unsteady blade-motion effects are added to the CFD analysis nor when the CFD-computed pitching
moment is coupled to the comprehensive code using the same scheme as used with the blade lift.

The largest pitching moments are observed to occur near the blade tip and it is in this region,
within a blade chord or two of the tip, that the lifting-line methods become inaccurate in the calculation
of moment (Bousman et al., 1989). It is difficult to accurately compute the blade pitching moments in
this region with a CFD code. In addition, even if accurate CFD pitching moments were computed, it
does not appear that they could be iteratively coupled to the comprehensive analyses using the method
of this study (see figure 202).



7 CONCLUSIONS

Conventional lifting-line methods and hybrid lifting-line/CFD analyses have been used to predict
the airloads and structural loads on a research Puma in forward flight and have been compared with
measurements obtained on that aircraft. Under Task 1 of the collaboration the predictive accuracy of
the lifting-line methods has been assessed by comparing calculations with airload measurements, blade
bending moments, pitch-link loads, and aircraft trim measurements for a range of advance ratios from
0.098 to 0.402. These comparisons provide a general assessment of the lifting-line methods over a
range of flight speeds. In Task 2, two flight conditions have been selected for detailed comparisons
of the predictive accuracy of the hybrid lifting-line/CFD methods, including the prediction of pressure
distributions on the blade under transonic flow conditions.

In addition to the comparisons of analysis and measurement in the two primary tasks a third
task, Task 3, was designed to examine the lifting-line method predictions as modeling complexity was
increased in a stepwise manner. In this way it was possible to conclude, in examining the predictions
of Task 1, the source of differences between the analysis and the measurements. Task 3, as discussed in
Section 4, was augmented by a number of other investigations that addressed particular modeling issues
or questions. These investigations included a comparison of modal frequency predictions as a means
of comparing the structural models in the lifting-line analyses (Section 3), a comparison of the airfoil
tables used in the lifting-line calculations with wind tunnel measurements (Section 4.2) and calculation
(Section 5.2.2), calculations and measurements on a rectangular-tip blade to provide insight into the
swept-tip blade behavior (Section 5.3), and measurements of the blade profile and comparison with the
theoretical blade ordinates used in the CFD calculations (Section 5.5.1).

This conclusion section will focus on the most significant results obtained from the collaboration
and will not, in general, repeat all of the summary material in Sections 4.4, 5.2.3, 5.3.4, 5.4.3, 5.5.4, and
6.6. In presenting these conclusions, the section will integrate results obtained in all of the collaborative
tasks.

Normal Force

Qualitatively, the lifting-line methods provide a good prediction of the normal force on the blade
near the blade tip. It is clear from the modeling investigations for Task 3 (Section 4) that the rotor wake
and the coupling of the wake with the lifting-line analysis is by far the most important aspect of these
calculations. At low speeds the wake vorticity must be correctly modeled to obtain a good calculation
of the normal force and this was achieved by the methods that include a free wake model. At higher
speeds the use of a prescribed wake model is suitable for all of the calculations.

The detailed comparisons for normal force show that, in most of the flight conditions examined
here, the best of the lifting-line methods are able to provide an accurate prediction of the normal force.
The worst case is the autorotational dive condition (Section 5.4) and although part of the difficulty these
methods encounter is related to the unsteady transonic loads at this high Mach number condition it
appears that most of the difficulty is related to the inability of these methods to calculate the torsional
response of the rotor blades properly.
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The prediction of the normal force with the best hybrid lifting-line/CFD calculation is neither better
nor worse than the lifting-line prediction alone. The hybrid calculation does, of course, provide details
of the blade pressure distribution and in many cases these results show quite good agreement with
measurements and provide confidence that these analytical tools can correctly model the transonic flow
behavior.

The analytical modeling investigation in Section 4 shows that the correct calculation of normal
force at the speed and thrust conditions examined in this task is largely a consequence of the correct
modeling of the rotor wake and, to a substantially lesser degree, the blade aeroelastic behavior. Nonlinear
aerodynamics, as represented by blade stall or transonic effects beyond the Prandtl-Glauert corrections,
are not important for these conditions nor are unsteady aerodynamics.

Section Pitching Moment

Qualitatively, the prediction of section pitching moment at the blade tip by the lifting-line methods
is poor. At low speed, as was seen in the case of the normal force, the dominant effect is vorticity
in the rotor wake, while at high speed, the dominant effects appear to be related to unsteadiness and
three-dimensionality. The poor low-speed predictions are a consequence of the single lifting line of the
analytical methods. The rapid inflow change induced by vorticity from previous blades is applied at
only a single point and, hence, there is little effect on the section moment. Thus the physics of the
rotor flow are absent in the calculation, but as these section moments are relatively small and of high
frequency the torsional loading is not strongly affected.

The largest section moments are seen at high speed. This is also true for the torsional loading and
there is a direct correspondence between the measured section moments and the torsional response. The
analytical modeling calculations in Section 4 show that these loads are a consequence of both steady
effects incorporated in the nonlinear aerodynamic look-up tables and unsteady effects that are derived
theoretically. The data for the swept-tip rotor clearly show an increase in these section moments towards
the blade tip and only the RAE/WHL analysis shows a comparable increase. The other lifting-line meth-
ods substantially underpredict this loading. A comparable moment is not obtained by the RAE/WHL
analysis for a rectangular blade calculation (Section 5.3.2.2) and hence the moment calculation is sen-
sitive to tip planform, an effect that is contrary to experimental measurements previously obtained on
the Puma with a mixed-bladed rotor (Maier and Bousman, 1992).

A part of the discrepancy in pitching moments at high speed appears to be related to inadequacies in
the section pitching moment tables used by the CAMRAD analyses and METAR/R85. The comparison
of these tables in Section 4.2 with experimental data and the equations used by the RAE, which are based
on an independent set of data, show that the section moments are positive and nonzero for M < 0.70.
Calculations show that these nonzero values do have a significant effect upon the prediction of the blade
pitching moments. However, the difference in section pitching moment tables, although important for
the inboard portion of the blade where two-dimensional flow is dominant, does not appear to influence
the discrepancy in moments near the blade tip.

The hybrid TSP-RAE/WHL method shows an improvement in the prediction of the section moments
at the blade tip, although the results are still not good, but the FPR-CAMRAD/JA hybrid calculation
does not show any substantial improvement. These methods should be able to model accurately both
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three-dimensional and unsteady effects and the cause of their poor performance is unknown. Comparison
of a full-potential method and a thin-layer Navier-Stokes calculation for the prediction of steady, two-
dimensional pitching moment in Section 5.5.3 shows the necessity of some sort of boundary-layer model
for the prediction of steady moments and the lack of a viscous model is clearly part of the problem.
Another deficiency is the fact that the unsteady effects due to rotor blade motion are not adequately
represented in the boundary conditions for the CFD codes. Finally, the method of weak coupling of the
lifting-line and CFD methods through the section normal force calculation is unlikely to allow improved
moment calculations to be fed back into the lifting-line computation.

Performance

The rotor was trimmed to aircraft gross weight and the prime measure of performance was the
main rotor shaft torque. The four lifting-line methods, in general, show good agreement with each other,
but underpredict the measured values. This underprediction is greatest at high speed and, undoubtedly,
some of the discrepancy is related to the fact that the effect of fuselage and stabilizer download is
not included in specifying the rotor thrust. However, it does not appear that the incorrect download
modeling can explain more than half the discrepancy and the cause of the rest of this difference is
unknown. The drag coefficient data used in the airfoil tables compare quite well with wind tunnel
measurements, as shown in Section 4.2, and it seems unlikely that the incorrect calculation of profile
drag can explain the discrepancy in main rotor torque. The ordinates of the modified tip used on the
research Puma have been measured (Section 5.5.1) and two-dimensional CFD calculations using these
ordinates (Section 5.5.2) are close to the values used in the lifting-line analyses’ look-up tables and
equations. Analytical modeling investigations (Section 4) indicate that the blade is largely unstalled for
these conditions.

Blade Flap Moment

The blade flap bending moments, computed by the lifting-line methods, are qualitatively quite
good. This is particularly true in the midspan section of the blade and at high speed where the loading
is dominated by the first and second flap bending modes. In the root section of the blade the influence of
higher blade modes is observed and the calculations are less accurate. The accuracy of the flap bending
moment amplitudes is closely related to the accuracy observed in the calculation of normal force. Thus,
at low speed, where the wake vorticity influences the inflow angles, the CAMRAD analyses, using a
free wake model, show better predictions of the flap bending moments. At high speed, the RAE/WHL
code provides a more accurate prediction of the blade bending moments.

Modal frequency and shape information is provided in Section 3 for some of the lifting-line
methods and these results indicate that the structural models implemented in these analyses are essentially
identical. Thus, observed differences in the lifting-line predictions are likely to be a result of aerodynamic
modeling difficulties or other aspects rather than structural modeling problems.

Blade Chord Moment

The lifting-line calculations of chord bending moment are uniformly poor. The peak-to-peak load-
ings that are calculated are similar to the flight measurements, but the frequency content is substantially
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different and it is clear that the present models are inadequate for the prediction of chord bending
moments, deformations, or shears.

It is useful to note, for a high-speed condition, that the best of the lifting-line methods are predicting
the phase of the 3/rev flap bending moments to within a few degrees and the moment amplitudes are
predicted nearly exactly by the RAE/WHL analysis although they are underpredicted by the other
methods. Yet for the identical condition and radial station the chord bending moment calculations
and measurements show entirely different frequency content and behavior. Comparing the two sets of
predictions, for flap bending and chord bending, it is difficult to believe that they are in any way related.

The calculation of the chord bending moments is sensitive to both the normal and chord airloads
and the structural response may be caused as much by coupling with the flap degree of freedom as
by direct response to the chord airloads which are much smaller than the normal airloads. In addition
the response calculation must include the effects of the blade root-end fixity in terms of the boundary
conditions. In this respect both the drive train (or rotor shaft impedance) and the lag damper may be
important. The modal comparisons in Section 3 do not consider either the effect of the shaft impedance
or the lag damper and are, therefore, not useful in understanding the poor chord bending moment
prediction. Clearly a great deal of work remains to be done to understand the correct modeling of the
chord bending degree of freedom.

Blade Torsion Moment

The blade torsion moments, particularly at high speed, are underpredicted by all of the analyses
except CAMRAD. However, an examination of the azimuthal time histories suggests that the CAMRAD
predictions are largely spurious as they bear little relation to the data. On the other hand, the general
character of the RAE/WHL and CAMRAD/JA analyses is similar to the data, but with an oscillatory
amplitude only half what is measured in flight. The METAR/RS5 analysis shows similar amplitudes,
but the frequency content and phase of the computation is degraded from that of the other analyses,
most likely because of the lack of blade torsion deflection in the analysis.

The underprediction of the torsional moments leads to an underprediction of the torsional defor-
mation as well. From the experimental data, it is estimated that the elastic deformation at the blade tip
at high speed is approximately +3° and this suggests that the underprediction in the torsional moment
calculation will lead to errors of up to one and a half degrees in angle of attack at the tip.

Hub Vibratory Loads

Predictions were made of the hub 4/rev vibratory loads by each of the lifting-line methods assuming
that the rotor was mounted to a hub of infinite stiffness. No direct measurements of the hub vibratory
loads were obtained in the test program, but the 4/rev vertical shears, pitch moments, and roll moments
have been estimated from flap bending moment and angle measurements using calculated in-vacuum
modes to fit the data. The lifting-line methods show reasonable agreement with the vibratory pitch
and roll moments and this agreement roughly parallels the agreement seen in the prediction of the flap
bending moments. The prediction of the 4/rev shears is less satisfactory, particularly at high speed, and
this is a result of the poorer prediction of the 4/rev flap bending moments.
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No attempt was made to estimate the inplane shears based on the limited chord bending moment
measurements so it is not possible to assess the predictive capability of the methods for these loads.
However, the poor calculation of the chord bending moments discussed above probably applies also to
the calculation of the 4/rev inplane shears.

Although hub vibratory loads were not computed as a part of the analytical modeling effort in
Section 4, that section is useful in clearly demonstrating that at high speed, the source of the 3/rev and
4/rev vibratory loads in the rotor is aircraft trim. These loads may be decreased slightly or increased
slightly through aeroelastic effects, but the high-speed vibration is trim-induced and is a fundamental
part of a conventional helicopter’s existence.

Puma Airfoil Characteristics

A number of separate efforts were undertaken as a part of this collaboration to assess both the
modified and unmodified Puma airfoil characteristics. Measurements were made of the modified airfoil
ordinates at the time of the original flight tests and, with greater resolution, as a part of the collaboration.
The results in Section 5.5.2 indicate that the swept tip as flown is quite close to the theoretical ordinates
used for the CFD calculations. It appears that the actual airfoil is slightly thicker but this is not
expected to affect any of the results. At the most outboard measurement station, 0.978 R, there is a
slight shortening of the actual airfoil and the effect of this change is unclear.

Two-dimensional calculations have been made in Section 5.5.3, both with an inviscid model and, for
a few extreme cases, with a viscous model and the results compared with a standard NACA 0012 profile
(the lifting-line methods have used the section aerodynamics of the NACA 0012 for all calculations).
Although some effects are seen on pitching moment and drag at high Mach numbers and angles of attack,
these are relatively slight and should not significantly affect the calculated results. More important is
the comparison of the aerodynamic tables with experimental measurements in Section 4.2 which shows
that the section moments for M < 0.70 are too small in the tables used by the CAMRAD analyses
and METAR/R8S. The equations in the RAE/WHL model show good agreement with the wind tunnel
data.



8 RECOMMENDATIONS

CFD Modeling

The hybrid lifting-line/CFD method results presented in this collaboration are feasible only because
of the relatively rapid solution of the trim problem by the lifting-line calculation and the provision of
this information to the CFD analysis. At least for the research Puma, the prediction of normal force
by the lifting-line methods appears relatively satisfactory and the hybrid methods used here did not
show a clear improvement over their lifting-line counterparts. However, the weak coupling scheme
and simplified inflow-angle boundary conditions used with the hybrid methods are a major cause of
inaccuracy in the CFD methods. The coupling scheme of Tung et al. (1986) will most likely have to
be abandoned to make more effective use of the CFD results. Unfortunately, any improved coupling
scheme will probably require that the CFD codes be coupled directly into the rotor trim analysis, with
resulting high computational cost. This may also require that the integration and convergence schemes
in the comprehensive codes be restructured to accommodate the computational overhead of the CFD
analysis.

Aerodynamic Moments

The failure of the lifting-line methods to predict the aerodynamic pitching moments near the blade
tip is not surprising as the accuracy of these methods should decrease as the tip is approached. There
may be a number of analytical approaches that can extend or modify the lifting-line approach without
going to the computational burden that CFD analyses currently require and these should be pursued. It
is also clear that when CFD analyses are used for airloads computations they must include some viscous
representation to properly represent the aerodynamic pitching moments. Improving the accuracy of CFD
methods for the prediction of aerodynamic pitching moments must remain a primary focus in their future
development.

Torsional Deformation

The elastic deformation of the blade in torsion is the single most important aeroelastic problem in the
calculation of aerodynamic loading and performance. Depending upon the fuselage and control system
design more or less of this deformation will take place on the blade or in the fixed system. These
effects are largely unquantified and experimental efforts should be advanced that can use extensive
measurements of torsion moments and loading to accurately estimate the torsional deformation at all
radial stations. Methods exist today to accomplish this task, but little work has been published that
clearly shows the accuracy of these methods. Future experiments with aeroelastic rotors in wind tunnels
and flight should consider the “measurement” of the torsional deformation as an essential part of any
test.

Chord Bending Moment Calculation

The poor chord bending moment predictions shown here may have their basis in a number of areas.
It is possible that an improved understanding of some of these areas can be obtained through careful
experimentation in flight, but a better approach, perhaps, would be to examine a simplified model-scale
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rotor where the root-end boundary conditions could be carefully controlled and quantified and chord
bending moment measurements could be used as a basis of correlation and improved understanding.

Articulated Rotors and Bending-Torsion Coupling

The hinges of articulated rotors were added in the early development of helicopters to relieve the
blades of the high moments that will occur in trimmed level flight for a hingeless rotor. With the
improvement in materials it is now possible to design and operate hingeless rotors where the primary
loading is caused by rotor trim. For these rotors the blade loading includes a 1/rev trim load and, because
of bending-torsion coupling, this large 1/rev load is seen in the chord bending and torsion moments as
well. These large 1/rev loads can obscure many of the higher harmonic loads seen on articulated rotors
that have been the focus of this study. With proper structural modeling of a hingeless rotor it is possible
to calculate the I/rev trim loads quite accurately and, in doing so, lose sight of the higher harmonic
loading and its importance to vibration. To the degree that the 1/rev loads on a hingeless rotor obscure
its higher harmonic loading, an articulated rotor is a more sensitive assay of analytical methods and
remains an important test in the further improvement of these methods.

Rotor Thrust in Flight

The equating of rotor lift or thrust to vehicle weight is a convenient way of defining trim, but is
counterproductive when differences between the rotor thrust and weight are of the same order as the
predictive accuracy of the methods. In this case the inaccuracy in the trim specification will confound
the assessment of the accuracy of the predictions of other rotor properties. Future computation of
forward flight conditions needs to focus more clearly on the exact determination of rotor thrust.
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APPENDIX A
RESEARCH PUMA DOCUMENTATION

William G. Bousman

Puma Research Aircraft Configurations

The data used in this study were obtained from measurements on two rotor configurations tested on
the research Puma at RAE Bedford. The first configuration was a Puma (AS 330) rotor with unmodified
production blades while the second configuration used blades that were modified to provide a swept
planform at the blade tip. The planforms of these two configurations are compared in figure A-1.

The standard (unmodified) Puma blade includes a tether or tie-down ring at its tip and this tether
ring is also used for tracking of the blades in hover. The swept-tip blades did not require a tether ring
and, therefore, were made slightly larger in radius so that the blade plus a small tab would match the
standard blade during mixed-blade rotor tests (Riley and Miller, 1983). Very little of the outer spar of the
blade was removed in building the swept-tip blade and the only properties changed by the modification
were the blade mass distribution, center of gravity (c.g.) offset, torsional stiffness, and torsional inertia.

The structural changes required for the swept-tip blades were made by Aérospatiale while the
final tip planform and contour was built at the RAE using balsa wood and a fiberglass skin (Riley
and Miller, 1983). One of the four blades that was built was extensively instrumented with pressure
transducers on four chord lines near the blade tip. In addition, the outermost tracking tab was removed

for the swept-tip blade.

Standard Blade

/

Swept—Tip Blade

R, meters

Figure A-1. Comparison of standard Puma blade and modified swept-tip blade.
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Except for some details of the swept-tip construction all of the rotor properties were determined
by Aérospatiale and provided to RAE under the original AFARP agreement (Young et al., 1991).
Blade properties in the format used in the RAE/WHL analysis were provided to the US and Australian
collaborators prior to the workshop. Miscellaneous details about the Puma rotor were also provided
by the workshop collaborators at RAE Bedford. In a number of instances the analysts used slightly
different values for rotor properties and, where known, these differences are noted below. None of these
differences are considered significant for the comparisons shown in this report.

Rotor Geometry

The basic geometry of the two rotor configurations is described in table A-1. There is some
ambiguity in the definition of the root cutout and the tabulated value was used in the CAMRAD analyses
while 1.72 m was used in the RAE/WHL analysis and 1.757 m in the METAR/RS85 calculations. The
radius of the standard Puma blade without the tether ring (shown in figure A-1) is the value given in
table A-1. However, the radial dimension used in METAR/RSS is 7.536 m, which includes the tether
ring. The solidity is calculated on the basis of the inboard or root chord for both rotors and, therefore,
makes no allowance for the increased blade area at the tip of the swept-tip blade. The feather axis is
coincident with the airfoil quarter chord.

Table A-1. Puma blade geometry

Parameter Unmodified Swept tip
Root Cutout, m 2.080 2.080
Chord, m 0.537 0.537
Radius, m 7.490 7.536
Solidity 0.09129 0.09073

Geometric parameters describing hinge locations, pitch-link attachments and so forth are shown in
table A-2. Hub drawings show that the pitch sleeve extends from 0.432 m to 0.528 m and the inner edge
of the sleeve was used as the location of the pitch bearing in the CAMRAD analyses. The METAR/R85
analysis used a value of 0.59 m. The pitch-link attaches to the pitch horn on the leading edge of the
blade. The attachment point distance from the quarter chord used by the RAE/WHL and CAMRAD
analyses is 0.181 m while a value of 0.165 m is used by METAR/R85. The pitch link is mounted
vertically so that the lower rod end has the same span and chord location as the upper rod end when
the blade pitch is set to zero.
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Table A-2. Puma hub/blade geometry

Parameter Radial Location

m (r/R)u (r/R)s
Lag Hinge Axis 0.269 0.0359 0.0357
Flap Hinge Axis 0.289 0.0386 0.0383
Pitch Link 0.289 0.0386 0.0383
Pitch Bearing 0.432 0.0577 0.0573
Root Cutout 2.080 0.2777 0.2760
Radius (unmodified) 7.490 1.0000 -
Radius (swept tip) 7.536 - 1.0000

The twist distribution for the two blades is shown in figure A-2 and the values are tabulated in
table A-3. The unmodified Puma blade was designed to have a nominal —8° linear twist from centerline
to tip. The twist departs from a linear distribution outboard of the root cutout and the structure inboard
of the cutout is untwisted. The swept-tip blade modification extended the linear twist as is shown in
table A-3. The twist at the outboard end of the standard blade, as modeled by the RAE/WHL and
CAMRAD analyses, also follows the linear twist characteristic. However, METAR/RS85 treats the blade
as untwisted outboard of 7.34 m (0.98R) based on Aérospatiale documentation. The twist change from
0.75R to the pitch bearing where the pitch angle is measured is —4.11° for the standard blade and
—4.16° for the swept-tip blade.

Structural Properties

Figures A-3 and A-4 show respectively the blade mass distributions and the c.g. location. The
tabulated data are shown in tables A-4 and A-5. For the swept-tip blade the mass is increased over the
standard blade outboard of 0.89R and initially the c.g. of the swept-tip blade is forward of the quarter
chord and then moves aft of the quarter-chord location (the reference point for the c.g.).

The extensional stiffness or EA distribution is shown in figure A-5 and the data are tabulated in
table A-6. The flap and chord stiffnesses are shown in figures A-6 and A-7 and the data are in table A-7.
The flap and chord stiffnesses are identical for the unmodified and swept-tip blades as shown here. The
structural modifications required to install the fiberglass skins for the swept-tip blade may have changed
the section stiffnesses slightly at the tip, but it is assumed that these changes can be neglected and do
not affect the blade response.

The torsional stiffness or GJ distributions are shown in figure A-8 and the torsional inertias are
shown in figure A-9. The data are tabulated in tables A-8 and A-9. The shell of the swept-tip blade has
increased the torsional stiffness significantly on the outer portion of the blade as well as increasing the
torsional inertia (relative to the section shear center). From 1.11 m to 1.26 m the METAR/R85 analysis
used a value of 0.039 for the torsional inertia while the other analyses used the tabulated value.
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Figure A-2. Standard and swept-tip blade twist distribution.
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Table A-3. Blade twist distribution

Radial location Twist
T (r/R)y (r/R)s 6y 0
m deg deg

0.000 0.000 0.000 0.000 0.000
0.760 0.101 0.101 0.000 0.000
1.757 0.235 0.233 -0.000 0.000
2.007 0.268 0.266 —0.100 -0.100
2.257 0.301 0.299 —-0.300 —-0.300
2.507 0.335 0.333 -0.617 —0.617
2.757 0.368 0.366 —0.983 —0.983
3.007 0.401 0.399 —1.283  —1.283
3.257 0.435 0.432 —1.600 -1.600
3.507 0.468 0.465 —-1.867 —1.867
6.257 0.835 0.830 —4.800 —4.800
6.296 - 0.835 - —4.838
6.360 - 0.844 - —-4.906
6.467 - 0.858 - —5.021
6.531 - 0.867 - —5.089
6.574 - 0.872 - -5.137
6.629 - 0.880 - —5.191
6.682 - 0.887 - —5.252
6.736 - 0.894 - —5.307
6.779 - 0.900 - -5.354
6.843 - 0.908 - —5.422
6.897 - 0915 - —5.476
6.950 - 0.922 - —5.537
7.005 - 0.930 - —5.592
7.058 - 0.937 - —5.653
7.112 - 0.944 - —5.707
7.165 - 0.951 - —5.768
7.182 - 0.953 - —5.776
7.219 - 0.958 - —-5.823
7.273 - 0.965 - —5.884
7.326 - 0.972 - -5.938
7.380 - 0.979 - -5.998
7.434 - 0.986 - —6.053
7.488 - 0.994 - —6.108
7.490 1.000 - -6.117 -

7.514 - 0.997 - —6.138
7.536 - 1.000 - —6.159
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Table A-4. Mass distribution

Radial location

Running mass

T (r/R)u (r/R)s My ms

m kg/m kg/m
0.280 0.037 0.037 58.400 58.400
0.610 0.081 0.081 58.400 58.400
0.610 0.081 0.081 50.000 50.000
0.730 0.097 0.097 50.000 50.000
0.730 0.097 0.097 16.175 16.175
0.754 0.101 0.100 16.175 16.175
0.754 0.101 0.100 53.333 53.333
0.760 0.101 0.101 53.333 53.333
0.760 0.101 0.101 24.949 24.949
0.800 0.107 0.106 24.949 24.949
0.800 0.107 0.106 33.100 33.100
0.840 0.112 0.111 33.100 33.100
0.840 0.112 0.111 22.400 22.400
1.040 0.139 0.138 22.400 22.400
1.040 0.139 0.138 17.110 17.110
1.110 0.148 0.147 17.110 17.110
1.110 0.148 0.147 11.225 11.225
1.260 0.168 0.167 11.225 11.225
1.260 0.168 0.167 7.150 7.150
1.770 0.236 0.235 7.150 7.150
1.770 0.236 0.235 7.150 7.150
1.887 0.252 0.250 8.929 8.929
5.546 0.740 0.736 8.929 8.929
6.707 - 0.890 - 8.929
6.707 - 0.890 - 13.429
6.758 - 0.897 - 13.429
6.758 - 0.897 - 23.429
7.000 - 0.929 - 23.429
7.000 - 0.929 - 46.079
7.020 - 0.932 - 46.079
7.020 - 0.932 - 13.429
7.070 0.944 0.938 8.929 13.429
7.070 0.944 0.938 12.754 19.253
7.196 - 0.955 - 19.253
7.196 - 0.955 - 38.429
7.216 - 0.958 - 38.429
7.216 - 0.958 - 13.429
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Table A-4. Concluded.

Radial location Running mass
T (r/R)y (r/R)s My Mg
m kg/m kg/m
7.390 0.987 - 12.754 -
7.390 0.987 - 34.600 -
7.402 0.988 0.982 34.600 13.429
7.402 0.988 0.982 6.930 11.430
7.490 1.000 — 6.930 -
7.499 - 0.995 - 11.430
7.499 - 0.995 - 4.500
7.536 - 1.000 - 4.500
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Figure A-4. Standard and swept-tip blade c.g distribution with respect to root quarter chord.
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Table A-5. Blade c.g. offset

Radial location C.g. offset®

r (r/R)u  (r/R)s /)y (x/c)s

m
0.280 0.037 0.037 0.000 0.000
1.887 0.252 0.250 0.000 0.000
1.887 0.252 0.250 —0.010 —0.010
6.707 - 0.890 - —0.010
6.758 - 0.897 - —-0.022
6.758 - 0.897 - 0.135
7.000 - 0.929 - 0.100
7.000 - 0.929 - 0.194
7.020 - 0.932 - 0.194
7.020 - 0.932 - —0.084
7.070 0.944 0.938 -0.010 —0.105
7.070 0.944 0.938 0.030 0.029
7.196 - 0.955 - 0.013
7.196 - 0.955 - -0.167
7.216 - 0.958 - -0.167
7.216 - 0.958 - ~-0.136
7.390 0.987 — 0.030 -
7.390 0.987 - 0.147 -
7.402 0.988 0.982 0.147 —0.182
7.402 0.988 0.982 0.000 -0.211
7.490 1.000 - 0.000 -
7.499 - 0.995 - —0.247
7.499 - 0.995 - —-0.615
7.536 - 1.000 - ~0.646

%With respect to root quarter-chord, positive forward.

303



304

¥10°

6
r — —  UNMODIFIED BLADE
Y I i SWEPT-TIP BLADE

EA, Newtons
W
T

2 r i
L
L il
L
1 +
0 | 1 1 | i | | _
0.0 1.0 2.0 3.0 4.0 50 6.0 7.0 8.0

RADIUS, m

Figure A-5. Standard and swept-tip blade EA distribution.



Table A-6. Extensional stiffness distribution

Radial location

Extensional stiffness

T (r/R)y  (r/R)s (EA)y (EA)s
m 108 N 108 N

0.280 0.037 0.037 5.69 5.69
0.760 0.101 0.101 5.69 5.69
0.760 0.101 0.101 5.63 5.63
0.820 0.109 0.109 5.63 5.63
0.820 0.109 0.109 3.77 3.77
0.873 0.117 0.116 3.77 3.77
0.873 0.117 0.116 5.69 5.69
0.965 0.129 0.128 5.69 5.69
0.965 0.129 0.128 5.50 5.50
1.040 0.139 0.138 5.50 5.50
1.040 0.139 0.138 474 474
1.111 0.148 0.147 474 474
1.111 0.148 0.147 3.74 3.74
1.260 0.168 0.167 3.74 3.74
1.260 0.168 0.167 1.70 1.70
1.697 0.227 0.225 1.69 1.69
1.757 0.235 0.233 1.65 1.65
1.880 0.251 0.249 1.71 1.71
2.128 0.284 0.282 1.70 1.70
2.278 0.304 0.302 1.51 151
5.250 0.701 0.697 1.45 1.45
5.800 0.774 0.770 1.44 1.44
6.110 0.816 0.811 1.43 1.43
7.350 0.981 0.975 1.43 1.43
7.350 0.981 0.975 1.61 1.61
7.382 0.986 0.980 1.61 1.61
7.382 0.986 0.980 1.16 1.16
7.490 1.000 ~ 1.16 -

7.536 -~ 1.000 - 1.16
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Figure A-6. Standard and swept-tip blade flap stiffness distribution.
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Table A-7. Flap and chord stiffness distribution
Radial location Flap stiffness Chord stiffness
r (r/R)u (r/R)s (EIf)u (EIf)s (Ele)u (Elc)s
m 10 N-m?  10*N-m?  10*N-m?>  10* N-m®
0.280 0.037 0.037 178.00 178.00 178.00 178.00
0.600 0.080 0.080 178.00 178.00 178.00 178.00
0.610 0.081 0.081 137.00 137.00 137.00 137.00
0.800 0.107 0.106 137.00 137.00 137.00 137.00
0.810 0.108 0.107 41.20 41.20 178.00 178.00
1.240 0.166 0.165 41.00 41.00 178.00 178.00
1.250 0.167 0.166 8.10 8.10 153.00 153.00
7.300 0.975 0.969 8.10 8.10 144.00 144.00
7.310 0.976 0.970 8.20 8.20 71.50 71.50
7.490 1.000 - 8.20 - 71.50 -
7.536 - 1.000 - 8.20 - 71.50

307



GJ N—-m”

308

2500000

2000000

1500000

1000000

500000

B UNMODIFIED BLADE
------- SWEPT-TIP BLADE
| i 1 1 ! I - ! |
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
RADIUS, m

Figure A-8. Standard and swept-tip blade torsional stiffness distribution.

Table A-8. Torsional stiffness distribution

Radial location Torsional stiffness
r (r/R)u (r/R)s (GJ)u (GJ)s
m 104 N-m? 104 N-m?
0.280 0.037 0.037 84.00 84.00
0.725 0.097 0.096 84.00 84.00
0.725 0.097 0.096 226.00 226.00
0.828 0.111 0.110 226.00 226.00
0.828 0.111 0.110 50.50 50.50
1.017 0.136 0.135 50.50 50.50
1.017 0.136 0.135 8.50 8.50
6.330 - 0.840 - 8.50
6.858 - 0.910 - 18.50
7.196 - 0.955 -~ 18.50
7.241 0.967 - 8.50 -
7.241 0.967 - 8.70 -
7.490 1.000 - 8.70 -
7.536 - 1.000 - 5.00
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Figure A-9. Standard and swept-tip blade torsional inertia with respect to section shear center.
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Table A-9. Torsional inertia distribution

Radial location

Torsional inertia

r (r/R)u (r/R)s (g)u (Ig)s

m kg-m kg-m
0.280 0.037 0.037 0.000 0.000
0.604 0.081 0.080 0.000 0.000
0.604 0.081 0.080 0.192 0.192
0.610 0.081 0.081 0.192 0.192
0.610 0.081 0.081 0.164 0.164
0.730 0.097 0.097 0.178 0.178
0.730 0.097 0.097 0.116 0.116
0.754 0.101 0.100 0.130 0.130
0.754 0.101 0.100 0.427 0.427
0.760 0.101 0.101 0.438 0.438
0.760 0.101 0.101 0.205 0.205
0.800 0.107 0.106 0.240 0.240
0.800 0.107 0.106 0.318 0.318
0.836 0.112 0.111 0.359 0.359
0.837 0.112 0.111 0.120 0.120
0.840 0.112 0.111 0.121 0.121
0.840 0.112 0.111 0.082 0.082
1.017 0.136 0.135 0.121 0.121
1.040 0.139 0.138 0.098 0.098
1.040 0.139 0.138 0.075 0.075
1.085 0.145 0.144 0.040 0.040
1.110 0.148 0.147 0.040 0.040
1.110 0.148 0.147 0.026 0.026
1.260 0.168 0.167 0.026 0.026
1.260 0.168 0.167 0.017 0.017
1.770 0.236 0.235 0.037 0.037
1.770 0.236 0.235 0.087 0.087
1.887 0.252 0.250 0.109 0.109
5.546 - 0.736 - 0.109
6.302 - 0.836 - 0.109
6.707 - 0.890 - 0.063
6.707 - 0.890 - 0.094
6.758 - 0.897 - 0.085
6.758 - 0.897 - 0.309
7.000 - 0.929 - 0.437
7.000 - 0.929 - 0.444
7.020 - 0.932 - 0.444




Table A-9. Concluded.

Radial location

Torsional inertia

T (r/R)u (r/R)s (Zg)u (Ig)s

m kg-m kg-m
7.020 - 0.932 - 0.130
7.070 0.944 0.938 0.109 0.159
7.070 0.944 0.938 0.156 0.222
7.196 - 0.955 - 0.288
7.196 - 0.955 - 0.022
7.216 - 0.958 - 0.022
7.216 - 0.958 - 0.230
7.390 0.987 - 0.156 -
7.390 0.987 - 0.337 -
7.402 0.988 0.982 0.067 0.336
7.402 0.988 0.982 0.067 0.292
7.434 0.993 - 0.067 -
7.434 0.993 - 0.118 -
7.490 1.000 - 0.118 -
7.499 - 0.995 - 0.364
7.499 - 0.995 - 0.492
7.536 - 1.000 - 0.542
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Lag Damper

The damper on the Puma is a hydraulic damper where damping is obtained by forcing hydraulic
fluid through an orifice. At displacement rates above approximately 16 mm/sec a spring-loaded bleed
valve opens and the damping is reduced. Bench measurements have been made on used dampers at
the 1/rev frequency (4.5 Hz). Results are shown in figure A-10 for the measured force as a function of
displacement where the excitation is

z(t) = X coswt (A-1

and the response is
f(t) = F(X) cosfwt — 6(X)] (A-2)

where both the force and phase angle are functions of the displacement X. The change in the damping
force and phase between 0.4 and 0.9 mm is a result of the bleed valve opening. A linear approximation
to the force characteristics is shown on this figure by the dashed line, where the resulting damping
coefficient is 7000 N-m/rad/sec.

Control System

The fixed system swashplate actuators are located at 60, 180, and 300° around the azimuth. A
torsional natural frequency of 5.62/rev was observed in flight tests where the blade was undergoing
dynamic stall-induced oscillations. The control stiffness was derived from this value by computing
the blade modal frequencies as the root-end spring stiffness was varied until the first torsion mode
frequency matched the in-flight value. For the RAE/WHL analysis the root-end stiffness was 33,032
N-m/rad while for CAMRAD/JA the derived value was 33,032 N-m/rad. In the case of METAR/RSS,
however, no solutions were obtained with the torsional degree of freedom.

Fuselage Aerodynamic Force and Moments

Fuselage coefficient data are from the simulation program HELISTAB in use at the DRA Bedford,
and are from a wind tunnel test reported by Samoni (1975). The drag force is

7TR2 2 3
D= q(m) (11.0402 — 0.00765c + 0.0027402 + 0.00087 ) (A-3)

where ¢ is the dynamic pressure, R is the rotor radius, and « is the fuselage angle of attack in degrees.
The drag is positive to the rear of the aircraft. The side force is

nR?
Y = q(m—> (—2.00643) (A-4)

where 3 is the sideslip angle in degrees and is positive nose right. The side force is positive to the left
of the aircraft (advancing side). The fuselage lift is

2
_ _q(ﬂ'R

m) (—0.4512 — 0.37873a + 0.00623a2 — 0.00021a3) (A-5)
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Figure A-10. Hydraulic damper force response characteristics from bench tests.

313



and is positive up. The pitching moment is

TR3 2 3
My = g{1555) (—1-3984 + 0.20043a + 0.00499” — 0.000070°) (A-6)

and is positive nose up. The roll moment is zero. The yawing moment is

My = q(%) (—0.556245 + 0.000683° ) (A-7)

and is positive in the clockwise direction.

Forces are also calculated for the horizontal stabilizer and vertical fin. The center of pressure of
the stabilizer is at X = 9.0075 m, ¥ = 0.0 m, and Z = 1.5 m in a system where the rotor hub is at
X =Y =0.0m and Z = 2.157 m. The stabilizer area, Ay, is 1.3395 m? and the lift is

Ls = qAs(0.064575(a + 1.5) + 7.709X 10> (o + 1.5)%) (A-8)

and is positive up. The stabilizer angle for zero lift is —1.5°. The center of pressure of the vertical fin
isat X =90m, Y =0.0m, and Z = 1.005 m. The vertical fin area, Ay, 1s 1.3943 m? and the side
force is

Y5 = —qAf(2.07347X1074(8 + 1.0)% - 4.8584X1079(5 + 1.0)°) (A-9)

and the force is positive to the left. The zero lift angle for the fin is —1.0°.
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APPENDIX B
POWER BREAKDOWN USING THE ENERGY METHOD

Frangois Toulmay

The material system considered for the analysis is the rotor, that is, the hub and the blades. The
rotor exchanges energy with the external world, that is, the air surrounding the blades and the helicopter
body through the shaft. Only steady operation of the rotor is considered and it is assumed that structural
dissipation (for example power dissipated by the lag damper) is negligible compared to exchanged
energy. Thus there is neither production nor accumulation of energy in the rotor system, and the
conservation of mechanical energy can be written:

"Vaero + wfbody - 0 (B_l)

To develop the expression of Waero and Wy, consider cartesian coordinates in reference axes moving
with the air mass upstream of the rotor (ground based coordinates for a helicopter flying in a calm
atmosphere). The air velocity with respect to this reference frame is called the induced velocity V;.
The induced velocity may be large in the vicinity of the blades and in the wake, but vanishes at some
distance upstream.

The mean power transferred from blades to the air during one revolution is:

4y L o
Waero = b / e / / V- d2F B-2
aero azimuth 27 Jspan Jchord m A ( )

where b is the number of blades, Vj, is the velocity of a point at the blade surface, and dQFA is the
force applied by the air onto the surface for an elementary area.

Call C the reference point at any blade station (generally chosen at the quarter chord where airfoil
2-D performance is known). Then,

Vi = Vo + Q0 x CM (B-3)

where VC and ﬁc are constant for a given station and can be factored out of the chordwise integral.
The elementary power integrated over the chord now becomes

AW, = -V / 2F, -6 / O x d°F
A ¢ chord A ¢ chord A
= Vg dFy — Q¢ - dMy (B-4)

The second term, which combines the pitching motion with the aerodynamic pitching moment, Cr, 1s
usually small compared to the first term for slender rotor blades (typically 0.2%). It can, nevertheless,
be calculated.

For the term —VEv . df’A, two situations must be considered. First, if dF‘A is obtained by means of
a 3-D calculation, then the induced velocity has to match some boundary condition around the airfoil
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contour. This term is varying continuously in the fluid domain and the concept of an “induced velocity
at station C” has no meaning. As a consequence, the breakdown of power cannot be further detailed.
Second, if dFA is obtained using the lifting-line theory (matched asymptotic expansion of the 3-D
problem), the inner problem consists of an airfoil in 2-D conditions moving in air with the relative
velocity

Vr=Vc -V, (B-5)
where V; is the induced velocity at station C, supposedly uniform in the inner field. I—/‘Z is obtained by
solving the outer problem, that is, by integrating blade-induced and wake-induced 3-D effects.

Considering the second case, that of lifting-line theory, then the aerodynamic force can be broken
down into lift and drag, where lift is defined as the component normal to Vg and located in the airfoil
plane (that is, not contributing to power in 2-D),

dFy =dL +dD (B-6)
where VR -dL = 0. The elementary aerodynamic power can be written
AWy = ~Vg-dD ~V; - (dL + dD) — (¢ - dN 4 (B-7)

Coming back to equation (B-1), the power transferred from the rotor to the body can be expressed at
any convenient point which is generally chosen as the rotor center:

dv

azimuth 27

—

I’Vbody: [‘7 f( ¥) + Q- Q( v)] (B-8)

where T is the thrust and Q is the torque. As V and C? are constant, they can be factored out:

Wiody =V -T+0-Q (B-9)
Bringing all terms of equation (B-1) together, we obtain:
= = o = d¥ ~ - d¥ ~ = -
3. :V-T+b/ ——/ —Vg-dD+b —/ ~V(dL + dD
@ azimuth 27 Jspan R * azimuth 27 Jspan 2( + )
+b v / Oc - di, (B-10)
azimuth 27 Jspan c &

The left-hand side of equation (B-10) is called shaft power:
Wg=-0-Q (B-11)

The first term on the right-hand side could be called thrust power or propulsive power. It is traditionally
called parasite power because, in the case of level flight, the propulsive force balances the fuselage
parasite drag. Note:

Wr=V.-T (B-12)
The second term on the right-hand side is called profile power:
d¥ L
Wp=b —/ —Vg-dD B-13
P azimuth 27 Jspan R ( )
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The third term on the right-hand side is called induced power:

av

azimuth 27

W, = +b / _Vi(dL + dD) (B-14)
span

The fourth term on the right-hand side can be called feathering power:

d¥ - -
Wr=b[ = [ —Qc-di B-15
F azimuth 2@ Jspan QC a4 ( )

Since it is quite small, most analysts simply neglect it, or lump it implicitly with another term.

The connection between the power breakdown terms in equation (B-10) and those obtained in
rotating coordinates by the RAE is developed here. The balance of forces on the rotor system can be
written:

. AU - -
T=b / a / dl +dD _16
azimuth 2T span( + ) (B-16)
Thus:
dv — - -
Wr =5 — V- (dL +dD) (B-17)

azimuth 2T Jspan
Substituting in equation (B-10), we obtain:

av

We=1b
S azimuth 2T

/ (V' = Vp) - (dL + dD) + Wp (B-18)
span

The expression for Vi is
Vo=V +Ax0C+Vp (B-19)

where ffm is the contribution of the blades modes to the airfoil motion. Then:

V- Vo =-0x0C - Vp (B-20)
dv N :
Wg = b/ | —f ~0.[0C x (dL + dD)] = Vin - (dL + dD) + Wr (B-21)
azimuth 27 Jspan
The term
4 L. .
b / - “ / V- (dL + dD) (B-22)
azimuth 27 Jspan

is power transferred from the air to the blade modes averaged over one revolution. Since the modes are
conservative, that is, structural dissipation is neglected, this term has to vanish (although the instanta-
neous power at a given azimuth may be quite large because of rigid flap motion).

The power breakdown in rotating coordinates is given by:
We=Wr+Wp+Wp (B-23)
with

av

azimuth 27 Jspan

wyp=-0-b OC x dL (B-24)
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and

- d L.
Wp=-0. b/ W I Gt db (B-25)

azimuth 2m Jspan

W1 is referred to as the thrust-dependent power and W, as the rotational power at the RAE. These
components can be expressed in terms of the more classical parasite, induced and profile powers as

Wr=Wp—-V.D=W,/ (B-26)
Wp=-V.D+Wp+W/ (B-27)
where

p=spf / db (B-28)

azimuth 27 Jspan
L=b[ —/ dl =T - D (B-29)

azimuth 27 Jspan

dv -

wa=p[ = / _V..dD (B-30)

azimuth 27 Jspan

L and D can be regarded as the breakdown of thrust 7" in out-of-plane and in-plane components
respectively although this is only an approximation. W)’ is an auxiliary induced power which is
generally quite small since V; and dD are both small and nearly orthogonal in usual situations.

It is not possible, however, to neglect V . D. This power is always negative and represents the
contribution of in-plane drag to power. As a consequence, the rotational power is smaller than the
profile power, and the thrust-dependent power is larger than the sum of parasite and induced powers:

I’VD < Wp (B-31)
Wi > Wp+ W, (B-32)
W +Wp=Wr+Wp+W, =~Wg (B-33)
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APPENDIX C
DIFFERENCES BETWEEN CAMRAD AND CAMRAD/JA ROTOR WAKE
MODELS

R. Toffoletto and N. E. Gilbert

In comparing the predictions made by CAMRAD with those of CAMRAD/JA for Case 3 in
Section 4, significant differences were observed for section lift in the azimuthal range from 90° to
270° and the induced power calculated by CAMRAD was about 70 hp less than that computed by
CAMRAD/JA. These differences remained even when the modeling capability of CAMRAD/JA was
limited to that provided by CAMRAD, as far as it was possible to do so through user input. The uniform
inflow solutions given by each code were found to be almost identical. For the prescribed wake model,
the rolling-up and the far wake influence coefficients were almost identical, but there were differences
in the near-wake influence coefficients. The purpose of this appendix is to examine these differences.

The general layout of the near-wake geometry is similar in both models as is shown in figure C-1.
The near-wake is made up of vortex sheet panels, with the side edges coinciding with the mid-points of
the aerodynamic panels defined on the blade. Both codes represent these near-wake panels with single
trailed and shed vortex line segments. The position and core size of these line segments differ in a
number of significant ways. In CAMRAD, a standard vortex sheet model is used, which consists of line
segments passing through the mid-point of the panel. The core sizes are set to cover the entire panel. In
CAMRADY/JA, the trailed line segments are positioned in-line with the edge of the aerodynamic panels,
and the shed wake is moved to the rear by a quarter chord. The trailed line segments will have the same
location in both codes for panels of uniform size, but will be offset when adjacent panels differ in width.
The CAMRAD/JA shed vortex line segment will always be a quarter chord behind the CAMRAD line
segment. The core sizes of the CAMRAD/JA vortex segments are set to one fifth the width of the

ith aerodynamic panel Aerodynamic radial station
{mid-point of panel)
Edge of aerodynamic panel, T 7Y

Root cut-out

—

Quarter chord
line

Near wake panel, i /

Figure C-1. General representation of near wake geometry.
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wake panel. The differences between the two near wake panel models are illustrated in figure C-2. The
blade tip and root edge panels are treated in the same way as the other panels in CAMRAD, but in
CAMRAD/JA the trailing wake is located at the edge of the blade for these edge panels (the tip of the
blade for the tip panel, and the root cut-out for the root panel). In addition to these near-wake panel
differences, CAMRAD originates the tip vortex from the blade, whereas in CAMRAD/JA the tip vortex
starts at the end of the near wake.

The various steps undertaken to reduce the differences between the two near-wake models are
shown in table C-1. The only change made in going from Case 3 to Case 3a is that the near-wake shed
vortex element in CAMRAD/JA is located at L/2 instead of L/2 + c¢/4. The aerodynamic segments

CAMRAD CAMRAD/JA

d,
%
y
)
€4
d, =L2 ¢, =L2 d,=L/2+C/4 €, =02(rai-TALq)
d, = W2 Cy = Wi2 d,="i-ra Cy =0.2(ra;- TAL¢)
C = Chord of aerodynamic panel i ¢; = Core radius of shed vortex line segment
L = Length of vortex panel i ¢, = Core radius of trailed vortex line segment
W = Width of vortex panel i ry; = Aerodynamic radial station i
d; = Position of shed vortex line segment ri = Edge of aerodynamic panel i
d, = Position of trailed vortex line segment

Figure C-2. CAMRAD and CAMRAD/JA representation of near-wake panel.
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Table C-1. Modifications to reduce differences between CAMRAD and CAMRAD/JA near-wake models

Case dy c] co Aero segments
CAMRAD JA CAMRAD JA CAMRAD JA CAMRAD JA
3 L/2 L/2+c/4 L/2 L/5 L/2 L/5  variable  variable
3a L/2 L/2 L/2 L/5 - L/2 L/5  variable variable
3b L/2 L/2 R/20 R/20 L/2 L/5  variable  variable
3c L/2 L/2 R/20  R/20 R/20  R/20 variable variable
3d L/2 L/2 R/20 R/20 R/20  R/20 constant constant

are reduced in length as the tip is approached, as shown in table C-2 for Cases 3 to 3c. For Case 3d,
however, the aero segments are of constant length (12/20). In both codes, the core radius of the shed
vortex, ci, is set in Case 3b to R/20, and the core radius of the trailed vortex, co, is similarly set to
R/20 in Case 3c. Finally, in Case 3d, the aero segments are made identical so that the trailed vortices
are at the same radial location for all segments. In this final case the only remaining differences are the
treatment of the tip vortex and the edge panels, as discussed above.

The near-wake geometry representation is directly related to the near-wake influence coefficients.
These coefficients, together with the circulation strength, are used to calculate the induced velocity,
which then affects the induced power. The relationship between induced velocity and power may be
masked if any circulation or motion iterations are performed. Therefore, to determine the effect of the
wake geometry differences, it is useful to compare the induced power for each model when they are run
with no circulation or motion iterations for given control inputs (table C-3). The full number of decimal

Table C-2. Aerodynamic segment boundaries for CAMRAD and CAMRAD/JA models

/R
Cases 3-3c Case 3d

0.228 0.25
0.36 0.30
0.46 0.35
0.56 0.40
0.64 0.45
0.72 0.50
0.78 0.55
0.82 0.60
0.86 0.65
0.88 0.70
0.90 0.75
0.92 0.80
0.94 0.85
0.96 0.90
0.98 0.95

1.00 1.00
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Table C-3. Effect of near-wake model changes on induced and total power for forward flight with
circulation and motion iterations excluded

Power, hp
Case CAMRAD CAMRAD/JA
Induced Total Induced Total
3 36.508 1225.131 71.118 1248.956
3a 36.508 1225.131 71.752 1249.493
3b 36.943 1225.481 71.492 1249.295
3¢ 39.065 1227.982 43,491 1230.876

3d 39.416 1223.526 42.584 1225.578

places are given so that round-off effects can be distinguished. As can be seen, changing the trailed core
size (Case 3c) has a major effect on the induced power calculated by CAMRAD/JA (induced power
reduces from 71.492 hp in Case 3b to 43.491 hp in Case 3c) and a significant effect on that calculated
by CAMRAD (induced power increases from 36.943 hp in Case 3b to 39.065 hp in Case 3c), with an
overall reduction in the differences between the two codes (from 34.549 hp in Case 3b to 4.426 hp in
Case 3c¢).

When circulation and motion iterations are included to obtain a trimmed solution for a given control
input, the variables directly affected are the circulation distribution and the flap and lag angles (blade
motion). To determine the effect of these iterations, all five cases were rerun with full circulation and
motion trim, but without trimming the controls (table C-4). Although the induced power values are
much larger, the same effects are seen, i.e., the induced power difference reduces from 71.886 hp in
Case 3b to 17.060 hp in Case 3c. The difference in flap angles is also reduced.

Table C-4. Effect of near-wake model changes on induced and flap angles for forward flight with
circulation and motion iterations included

Case CAMRAD CAMRAD/JA
Induced Flap angles, deg Induced Flap angles, deg
power [ Bic Bis power [ Bic Bis

3 219.705 4.2317 —0.5643 1.8533 290.325 3.3658 —0.7941 2.8058
3a 219.705 4.2317 —0.5643 1.8533 290.985 3.3627 -0.7919 2.8100
3b 220911 4.2301 -0.5653 1.8578 292797 33606 —0.8042 2.8303
3¢ 245997 4.1814 —-0.6221 1.9302 263.057 4.0806 —0.6734 2.0160
3d 247.210 4.1605 -0.6129 1.9688 264.384 4.0784 —0.6554 2.0606




Because there is no circulation variation with azimuth in hover, the influence of the shed wake
is eliminated. Therefore, the only differences in the models will be due to the differences in trailed
wake representation. For this reason, the models were compared in hover and the results are given in
table C-5. In Case 3d the difference in induced power is almost eliminated (less than 2 hp in about

1360 hp).

Table C-5. Effect of near-wake model changes on induced power and coning angle for hover with
circulation and motion iterations included

CAMRAD CAMRAD/JA
Case Induced power Coning angle, 3y Induced power Coning angle, G
hp deg hp deg
3 1371.807 6.0000 1307.299 5.5998
3a 1371.807 6.0000 1307.299 5.5998
3b 1371.807 6.0000 1307.299 5.5998
3c 1369.131 5.6777 1360.968 5.4852
3d 1358.401 6.0714 1356.644 5.9231

It has been established that there are differences between CAMRAD and CAMRAD/JA in the
near-wake representation which cannot be eliminated through user input. The progressive elimination
of most of these differences through changes to the codes has shown that the differences in predictions
can be significantly reduced. It is assumed that the two model differences which could not be removed,
i.e., the treatment of the tip vortex and edge panels, are responsible for the residual differences in

predictions.
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