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PREFACE 



This introduction to rotorcraft and then-
technology begins with a broad review of 
several types of rotorcraft. The evolution of 
these unique aircraft, from autogyros to 
helicopters to high-speed configurations, has 
spawned a major industry and an associated 
technology. The history of rotorcraft, 
beginning with very early concepts and 
modelhelicopters, has been well recorded in the 
popular literature. On the other hand, the 
evolutionofthe technology resides in literally 
thousands of technical publications. 

I have tried to bring together the 
popular history of rotorcraft evolution and the 
parallel, major technical steps made by its 
pioneers. Tying the engineering explanations 
andanalyses to configuration evolution 
provides the reader with two foundations. 
The firstfoundation is a more complete 
appreciation of what has been accomplished in 



creating therotorcraft industry. The second 
foundation is a clear and simple introduction to 
(1) physicaland mechanical aspects, (2) 
basic nomenclature, (3) engineering 
symbols, and(4) fundamental equations . As 
you will see, the early pioneers encountered 
and solved a number of problems simply by 
cut-and-try methods. More often than not, the 
dynamics, aerodynamics, structural, and other 
associated analytical technologies actually 
followed successful demonstration that the 
problem had been understood and solved. 

In bringing these two branches of 
history and technology together, I have found 
the occasional use of first-person pronouns to be 
a more natural and comfortable style to adopt. 
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1 OVERVIEW 

Rotorcraft, both low- and high-speed 
classes, enjoy a unique position in the field of 
transportation. Today, the helicopter is the 
most well-known example of a low-speed 
rotorcraft, but during the 1920s to the early 
1940s the autogyro was the dominant rotorcraft 
in production. The autogyro, however, was not 
designed to hover. When the helicopter proved 
feasible in the late 1930s, further 
development of the autogyro was curtailed. 
Industry capitalized on the efficient hovering 
ability of the helicopter by incorporating the 
evolution of the gas turbine engine in the 
mid- 1950s . Together, these two features 



resulted in the most favorable ratio of 
horsepower to gross weight of any vertical 
takeoff and landing aircraft in widespread use as 
the preface figure clearly shows [1]. 

If the helicopter has inherent 
shortcomings, it now appears to be in 
providing high forward speed and range 
commensurate with its hovering ability. This 
impression, created by comparisons such as the 
preface figure, shows the helicopter to be about 
100 to 300 miles per hour slower than other 
aircraft in its power-to-weight-ratio class. On 
the horizon you can now see at least one 
high-speed rotorcraft, the tiltrotor. This 
configuration has demonstrated efficient 
hovering, the transition from helicopter to 
airplane flight, and efficient forward flight to 
300 knots. It is this latest evolution that has 
been the goal of virtually every rotorcraft 
inventor since the industry began. 



There are no less than four very clear 
milestones for an industry that began, perhaps 
you could say, as early as 1785 with a 
rudimentary helicopter model . There are, of 
course, any number of "firsts" in any industry 
that grows. For the rotorcraft industry, I have 
selected the four that seem to me to have the 
broadest and most far reaching effects. 

The first milestone was reached by 
Juan de la Cierva with his successful 
demonstration of the autogyro. This first 
successful rotorcraft was developed through a 
series of trials and errors that began with 
an idea in 1919 [2] . After trying three 
distinct configurations, Cierva succeeded, as he 
relates in references [3-5] with his Type 4 
autogyro shown in Fig. 1-1 . This rotorcraft 
"was ready to be used in real flight, and on 
17th January 1923, it flew [piloted by Cavalry 
Lieutenant Alejandro Gomez Spencer] right 



across the aerodrome at Getafe [Spain] at a 
height of several meters." 

The Type 4 underwent considerable 
modifications and evolved into the Model 
C.6A. In October 1925, Cierva concluded 3 
weeks of flight demonstrations of his Model 
C.6A at Farnborough, England, with a 
resounding success. This rudimentary rotorcraft 
required a total of 32 different experimental 
steps as Cierva struggled with the technical 
fundamentals of rotor system design, but with 
his strong engineering background, he was able 
to lay the theoretical foundation for the 
rotorcraft industry today. 
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1. OVERVIEW 

Cierva, with help from co-author Don 



Rose, wrote a more popular narrative of his 
work entitled Wings of Tomorrow [6], which 
was published in 193 1. This book is fascinating 
from two points of view. First, it explains the 
more technical side of his aircraft in laymen 
terms, and second, it is clearly marketing the 
product. The capabilities to invent, develop, 
produce, and sell are not often found in one 
person. You can appreciate the contributions 
Cierva made even further by reading an 
up-to-date, detailed, and well-researched history 
such as Cierva Autogiros—The Development 
of Rotary-Wing Flight written by Peter Brooks 
[7]. 

Autogyro development flourished not 
only in England but also in the Umted States, 
principally around the Philadelphia, 
Pennsylvania area, which became a veritable 
hot bed of rotorcraft activity. In early 1929, 
Harold F. Pitcairn acquired the U.S. rights to 
the Cierva Autogiro and became president of 



the Pitcairn-Cierva Autogiro Company of 
America, Inc. The Kellert Aircraft Corporation 
acquired a license from Pitcairn in 1931 and 
autogyro development really took off. Even 
with Cierva's untimely death on December 9, 
1936, the success of the rotorcraft industry was 
ensured. 

-~-

Fig. 1-1. On January 17,1923, the Cierva Autegiro Type 4 laid the foundation for the 

rotorcraft industry today [3]. 
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The second milestone I would 
suggest is the demonstration of a truly 
practical helicopter. E . H. Henrich Focke 
accomplished this milestone with his model F. 
61. His side- by-side configuration is shown in 
Fig. 1-2. The F. 61 astounded the world with 
its stability, control, and performance just 
prior to the beginning of World War II. The 
pilot, Ewald Rohlfs, made the first flight of 28 
seconds on June 26, 1936. Focke, in relating his 
story [8, 9] set the number-one design 
requirement to provide the "possibility of a 
forced landing in case of engine failure." He 
records [10] that "on 10th May 1937 he [E. 
Rohlfs] performed the very first auto-rotational 
landing, with engine off; a perfect 3-point, 
tail-down landing." Focke set five additional 
design criteria "in the order of their importance": 

• Controllability and stability 
• General safety in operation 



• Simplicity of the piloting maneuvers • 
Acceptable performance 
• Reasonable servicing 

These design criteria were just as important to 
Cierva and remain a top priority today 

Fig. 1-2. The Focke F. 61 helicopter 



astounded the world in June 1936 and 
ushered in 

the first growth step of the industry [9]. 
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One statement Focke makes in giving 
the Fifth Cierva Memorial Lecture [10] is 
particularly interesting. He writes that 

"The licence agreement with Cierva did not give the 
author's firm the right to theoretical information, so that 
a copy of Cierva's Engineering Theory of the Autogiro 
was not made available to my company. It was asserted 
by some that to make a helicopter it was necessary only to 
modify slightly an Autogiro. In reality, with the help of 
the Reports and Memoranda of Glauert and Lock it was 
necessary to reconstruct again all the technical 
knowledge concerning the blades, the rotor-head, the 
controls, and further, during 1932 to 1936, to make special 
application of all this knowledge to the helicopter." 



The copy of Cierva's Engineering Theory of 
the Autogiro [11] that Focke refers to does not 
appear to have been widely circulated. 
However, the two notebooks were edited by Dr. 
James A. J. Bennett, and a copy came into the 
hands of Dr. Richard Carlson in the 
mid-1970s. Dr. Carlson made three copies, 
forwarded one to the American Helicopter 
Society, and gave me one . The engineering 
theory is in one volume and the Theory of 
Stresses on Autogiro Rotor Blades [12] is in the 
second volume . Even a quick review of 
Cierva's notes shows just how advanced his 
engineering analysis was as he developed his 
Autogiro.1 

Focke also refers to the Reports and 
Memoranda ofGlauert's first study [13] 
published in November 1926, which was 
followed quickly by Lock's report [14] 
published in March 1927 . Together, these 



reports set the formative standards for technical 
work that exist even to this day. The R&Ms 
were, and still are, published by the 
Aeronautical Research Committee of Great 
Britain. These early theoretical reports, along 
with the extensive licensing arrangements that 
Cierva entered into, spread autogyro technology 
around the world. 

The Henrich Focke helicopter 
development program was accompanied by 
"more than 2,000 wind tunnel measurements," 
testing of "a free flight flying model with a 
small engine of 0.7 hp and an all-up weight of 9 
pounds," and lengthy whirl stand testing on a 
special ground test rig. "A 
50-hours-of-endurance test was made, and 
after disassembly, inspection, and reassembly, 
10 more hours were run." Focke thus added to 
the theoretical foundation. Just as importantly, 
he set the precedent for what constitutes a 
satisfactory supporting test program for 



rotorcraft development within the industry. He 
seems to offhandedly pass all this work off (in 
his Cierva Lecture) with the thought that: "By 
and by, the whole theoretical foundation of the 
behaviour of the rotor was established." 

The 2,100-pound-gross-weight F. 61 
went on to establish record levels 
of performance on June 26th and 27th of 1937. 
Test pilot Ewald Rohlfs demonstrated a 
62-mile flight at an average speed of 77 miles 
per hour. He took the rotorcraft to 7,800 feet, 
which was some 7,300 feet above the previous 
record. As you will read later, the German 
government placed production orders for the 
follow-on design, the much larger Model Fa 223 
with a takeoff gross weight over 8,000 pounds. 



1 Peter Brooks [7] states in note 2, pg. 357, that the 
word Autogiro was a Cierva Company trademark, to be 
spelled with a capital A and with the "i." He further says 
the generic term is autogyro, spelled with a lowercase "a" 
and a "y." Others have noted that autogiro is Spanish for 
autogyro in some dictionaries. 
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The history of the helicopter has been 
told (and retold) many times with new and 
marvelous stories still coming to light. A history 
I found particularly satisfying was published in 
1982 by Jean Boulet in his History of the 
Helicopter as Told by its Pioneers [15]. From 
this history, it becomes even clearer that the 
Focke success inspired companies in both 
England and the United States. In England, 
Gand J. Weir, Ltd carried on with two 
rotorcraft based on the Focke design. This step 
ultimately led to today's Westland Helicopters 



Ltd. In the U.S.A., the Platt-LePage Aircraft 
Company was formed. This company won the 
first U.S . Army Air Corps helicopter design 
competition on April 15, 1940, with a 
configuration patterned after the Focke F. 61. 
The Army assigned this rotorcraft the model 
number XR-1. This step ultimately led to the 
Piasecki Helicopter Corporation2 and to 
today's Helicopter Division of the Boeing 
Company, which produces the modern tandem 
rotor helicopter. 

The third milestone I have selected 
was accomplished by Igor Sikorsky with his 
Model VS-300. He pioneered the single main 
rotor (with anti-torque and directional control 
provided by a tail rotor) configuration shown in 
Fig. 1-3. Sikorsky's interest in the helicopter is 
frequently traced back to his first unsuccessful 
attempts to build a coaxial helicopter in Russia 
in the early 1900s . However, it is the 
progressive development of the more modern, 



single main rotor configuration over the period 
from late 1938 to the end of December 1941 
that stands out. Sikorsky, supported by United 
Aircraft, achieved a 10-second first flight with 
the initial VS-300 on September 14, 1939. The 
rotorcraft was nearly uncontrollable because the 
pilot's (Igor Sikorsky himself) stick was about 
60 degrees out of phase with the necessary rotor 
motion. This caused a normal fore and aft 
stick movement to produce more helicopter roll 
motion than the desired pitch motion. I found 
this initial effort by Sikorsky somewhat 
surprising in view of the theory and data 
available at the time, but, in retrospect, history 
does not show that lessons learned are always 
readily interchanged and heeded. This initial 
VS-300 crashed on December 9, 1939, and the 
direct control system of the main rotor with 
collective and cyclic pitch was abandoned for 
two years. During those two years, a number of 
small tail rotors were added to control pitch, 
roll, and yaw. As control was improved, these 



additional tail rotors were selectively removed. 
Finally, on December 8, 1941, the prototype 
of what most people accept as the modern 
day, single-rotor helicopter was successfully 
flown. Sikorsky had returned to direct control of 
the main rotor (with correct phasing), and only 
one tail rotor, used for anti-torque and yaw 
control, was needed. Along the way, Sikorsky 
captured the world endurance record with a 
1 -hour, 32-minute (and 26. 1-second) hover 
flight. The VS-300 continued flight research 
until it was retired in October 1943 . These 
efforts supported development of the XR-4 
that was to become the first production 
helicopter obtained in quantity by the U.S. 
Army Air Corps. (The XR-2 and XR-3 were 
assigned to the Kellett Autogiro Corp.) 

2 In 1955, at the start of my senior year at Rensselear 
Polytechnic Institute, I interviewed for any "job" with the 
Piasecki Aircraft Corp. When I actually hired on (June 
1956), the company had become the Vertol Aircraft 
Corporation, and I missed the opportunity to work for 



(well, at least in the same building with) Frank Piasecki 
himself. That is my only regret about my career with an 
industry that has given me so much downright fun and to 
which I owe so much. 
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Fig. 1-3. The Sikorsky VS-300 established the modern helicopter, single main rotor 

configuration in December 1941 
(photo from author's collection). 



You can follow the development of the 
VS-300 in Sikorsky's own words. His reports of 
the 1941 and 1942 period [1 6-21 ] are 
fascinating. A nephew of Igor Sikorsky wrote 
a somewhat more technical overview of the 
development of the VS-300 [22] . In 1998 
William Hunt wrote an excellent, very 
technically oriented story [23] . The book 
written by Sikorsky's chief test pilot, Charles 
Morris [24], and the one by Col. Franklin 
Gregory [25] bring the story home with the most 
important view—the user. You will also find 
excellent accounts of rotary wing history 
recorded by the Air Corps [26, 27]. 

In selecting just two 
helicopter-related milestones for this 
overview, I have not intended to dismiss the 
enormous efforts that came before or after. 
Rather, I have brought many of these 
accomplishments to light in Volume 



II—Helicopters. The number of books available 
about the helicopter (its history, the many 
companies that have come and gone, and the 
several "family trees" of production 
helicopters today) will let you peruse the past 
as thoroughly as you like. I have always 
enjoyed each new view that has been 
published and continue to learn a great deal. 

Before going on to discuss the fourth 
rotorcraft milestone I have selected, a little more 
must be said about the helicopter and its rotor 
system. 
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The helicopter rotor system is 
fundamental to its hovering efficiency. The rotor 
system is also the reason for the slower speed 



of the helicopter relative to fixed-wing 
aircraft, as shown in the preface figure. As the 
primary lifting and propelling device, the rotor 
system permits installation of a minimum 
horsepower engine for hovering, but with 
power available set by hovering requirements, 
airplane-like speeds have yet to be commonly 
achieved. Finally, the rotor system blades and 
hub aerodynamic drag at high speed is, today, 
two to three times that of the equivalent 
fixed-wing airplane. 

Helicopter development and rotor 
system technology is still in its infancy. 
Chronologically, airplane or fixed-wing 
development leads rotorcraft by 30 to 40 
years. To illustrate this point, the principles 
of helicopter flight and control were 
convincingly demonstrated by 1940 in contrast 
to the accomplishments of the Wright brothers 
and others in the fixed-wing industry by 1910. 
As another example, the rotorcraft industry 



adopted the retractable landing gear for 
helicopters in the late 1970s, but this feature 
was incorporated on airplanes in the mid-1930s. 
Higher cruising speed made the reduced drag 
worthwhile despite the extra weight and 
mechanical complications. On balance, 
however, the helicopter is well suited to a 
diverse group of tasks because of its broad range 
in operating speeds. However, the helicopter 
breakthrough that parallels the swept-wing and 
gas turbine engine combination of the airplane 
is still awaiting full-rate production. Since 
Cierva's Autogiro burst on the scene, there has 
been a continual search for a high-speed 
rotorcraft to compliment the helicopter. 

This brings me to the fourth 
milestone I have selected for this 
introduction to rotorcraft. Today, the search for 
a configuration that combines both helicopter 
and airplane capabilities has yielded the 
tiltrotor. This vertical takeoff and landing 



aircraft (VTOL) is illustrated in Fig. 1-4. The 
Bell-Boeing V-22 tiltrotor is in production for 
the U.S. Marines. The V-22 was preceded by 
the Bell XV-15, the first practical tiltrotor, 
which reached 300 knots at 16,000-feet altitude 
on June 17, 1980. While perhaps not as familiar 
to you as the helicopter, the tiltrotor has already 
demonstrated speeds above 300 knots at over 
15,000-feet altitude, and with its large diameter 
rotors, the hovering efficiency of the tiltrotor 
approaches that of the helicopter. 

This most recent step, as impressive as it 
is, is not the fourth milestone I have in mind. 
Milestone number four is, in fact, not a 
product. Rather it is the outgrowth from a 
technical meeting held in the United States at 
Philadelphia, Pennsylvania, on December 9, 
1949. The occasion was the First Convertible 
Aircraft Congress. This meeting was 
sponsored by the Philadelphia Sections of the 
American Helicopter Society (a relatively new 



group founded in 1943 by a small group of 
Sikorsky Aircraft employees) and the Institute 
of the Aeronautical Sciences (now the AIAA). 
The chairman for the 1-day meeting was E. 
Burke Wilford and proceedings were published 
[28]. The morning session had five papers and 
was chaired by Richard H. Prewitt, by then 
president of his own company. Laurence 
LePage chaired the afternoon session and six 
papers were presented. Over 200 pioneers 
attended this "Congress."'1 

3 This first Convertible Aircraft Congress was followed 
by a second in Dec. 1952 [29], a third in Nov. 1955 [30], 
and a fourth in Dec. 1958 [31]. 

7 

1. OVERVIEW 



Airplane Mode 

Transitioning to 

i 
forward flight 

Hovering Mode 

Fig. 1-4. The Bell-Boeing V-22 is the first 



practical tiltrotor to reach production 
(photo courtesy of Bell Helicopter Textron). 

At that time, late 1949, there was only 
one demonstrated suggestion of a convertible 
aircraft. This rotorcraft, the HV-2A4 shown in 
Fig. 1-5, was championed by Gerard P. Herrick. 
The HV-2A was patterned after the autogyro, 
however the top "wing" could be started and 
stopped in flight. Its predecessor, the HV-1 
that began fixed-wing flying on November 6, 
193 1, was destroyed when a blade struck the 
vertical stabilizer during a rotor start-up from 
the fixed, biplane mode. 

The HV-2A, piloted by George 
Townson, completed the first of about 
100 "conversions" from fixed to rotary wing 
towards the end of July 1937 . A very 
interesting article [32] appeared in early 1991 
that provides more detail of this first 
successful step towards a practical VTOL. 



Gerard Herrick presented the first paper in the 
afternoon session of the First Convertible 
Aircraft Congress. He showed a movie of past 
efforts and then discussed his newest design, the 
HC-6D. 

The foreword to the proceedings of the 
First Convertible Aircraft Congress is a proper 
conclusion to this discussion of milestone four. 
The words that appear over the signature of 
Chairman Wilford read as follows: 

4 The H stood for Herrick, of course, and the V stood 
for Vertoplane. All manner of names for a "convertible 
aircraft" can be found in the literature. We seem to have 
settled today on VTOL, short for Vertical Takeoff and 
Landing, to capture the capability still being sought. 
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Fig. 1-5. The Herrick, HV-2A stoppatile rotor autogyro completed 100 conversions from 

fixed to rotating wing in the 1939-1940 
period (photo from author's collection). 

"Eleven years have passed since the First Rotary Wing 
Aircraft Congress at [The] Franklin Institute paved the 
way for the modern conception of the Helicopter. At that 
time Sikorsky had not flown his famous test ship, Arthur 
Young was working on his models in his barn at Paoli 
[Penn.], and Frank Piasecki was just finishing his 
course in aeronautical engineering under Dr. Klemin, 
Pitcairn, Kellett, Dr. Myers, Herrick and others had spent 
large sums of money and better than a decade of their 
lives to lay the foundation for Rotary Wing and 
Convertible Aircraft. 



History often repeats. The proceedings of this 
[First Convertible Aircraft] Congress will be read and will 
attract many new minds and hearts to the final solution 
of useful flight for humanity. We want to thank the 
members of the general committee and the 
Philadelphia Section of the Institute of the Aeronautical 
Sciences for their help. We all hope that something 
of great use to the U.S.A. and the citizens of the world 
will come to pass. 

The work is only begun. Let us all remember 
that saying of Dr. Johnson of London in the 18th century: 

'The Power of Invention is conferred by nature 
upon the few, but the labor of working out the Science 
of an Invention is more than can be easily endured.' " 

Shortly after this milestone meeting, the 
search for a VTOL aircraft began in earnest. 
This intense period started in the United States 
with a U.S . Army- and Air Force-sponsored 
research program that led to the McDonnell 
Aircraft Corp. XV-1 Convertiplane and the 
Bell Helicopter XV-3 tiltrotor of the mid-1950s. 



The intense period seems destined to continue 
as successful high-speed rotorcraft such as 
the XV-15 and its larger derivative, the 
V-22 (currently in low-rate production), are 
demonstrated. Koch [33], Schneider [34], and 
more recently Rogers [35] report nearly 50 
configurations that have been built and flown 
to date, and the search continues. How 
influential this meeting—this First 
Convertible Aircraft Congress—was in 
initiating the VTOL era is, of course, open to 
conjecture. To me, it was a milestone of the first 
order. 
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1. OVERVIEW 

To summarize this overview, consider 
the progress made in this industry by just the 
sheer numbers of rotorcraft developed. Fig. 1-6 
gives a thumbnail sketch of this progress. In its 



growth from the early 1900s, the rotorcraft 
industry has seen basic technology evolve first 
with the creation, development, and 
production of nearly 500 autogyros . Many 
lessons learned from this relatively low-speed 
rotorcraft were then applied to achieve 
successful prototypes of modern helicopters in 
the late 1930s and early 1940s. The helicopter 
quickly replaced the autogyro and, by 1950, 
formed the production base for the industry 
that exists today. The number of helicopters 
produced is in the tens of thousands. So far, a 
seven-decade search has yielded the tiltrotor as 
the most promising configuration with which to 
expand the industry a third time. 

This overview, concluding with Fig. 
1-6, provides a background to discuss the 
rotorcraft industry and the associated evolution 
of technology that made the industry possible. 
Consider first Volume I—Autogyros; second, 
Volume II—Helicopters; and then other vertical 



and short takeoff and landing (V/STOL) aircraft, 
Volume III. 
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Fig. 1-6. V/STOL aircraft development has 
been continuous over the past nine decades. 
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2 AUTOGYROS 

The autogyro was conceived by Juan 
de la Cierva [3], a Spaniard, in 1919, and his 
concept was patented in Spain, November 15, 
1922 (No. 81,406) . The initial developments 
borrowed heavily from existing biplane aircraft 
in that the upper wing was replaced by a free-
wheeling "horizontal airscrew." The fuselage, 
lower wing, engine, and forward thrusting 
propeller, etc., were more or less retained. 
Brooks [7] provides an excellent historical 
summary of Cierva's rotary wing flight 
development. Brooks is able to trace the 
concept of a gliding windmill (to coin a term) 
or—more precisely—an autorotating rotary 
wing back to the Middle Ages. Be that as it 
may, Cierva's jump from idea to formal 
demonstrations outside Spain took 5 years. His 
early work did not go unnoticed [36] . In 
October 1925 he concluded 3 weeks of flight 



demonstrations and tests [37] of his Model —. 
6A in Farnborough, England with a paper 
presented to the Royal Aeronautical Society 
[3] . He ended this lecture with the words: 
"Type 6 has been completely remodeled 
twice, which gives a total number of 32 
distinct machines built and tested in order to 
arrive at the results demonstrated earlier in this 
week before many of those present tonight." 

The door that Cierva opened up was 
perceived by members of the Society to be 
"one of the most wonderful inventions since 
the original invention of the aeroplane itself." 
As Fig. 1-6 shows, the number of experimental 
and developmental autogyros grew rapidly as 
the aeronautical community around the world 
became familiar with the technology 
breakthrough Cierva had made. By 1933 Cierva 
had developed the Model C.30, and this 
configuration was the production leader. Brooks 
[7] estimates that out of the roughly 500 



autogyros made by 1945, about 180 were the 
Model C.30 illustrated in Fig. 2-1. 

• 

Fig. 2-1. Over 180 Model C.30 Cierva Autogiros were produced by 1945. 
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2. AUTOGYROS 

Cierva described [3] the fundamental 
rotor system problem inherent to his concept as 
follows: "The chief difficulty was now the 
asymmetry of lift on the [rotary] wings, for 



the wings rotating against and with the relative 
wind would have their average velocities 
through the air respectively increased or 
decreased, with a corresponding asymmetry 
of lift and a displacement of their resultant lift 
from the vertical, leading to a sideways 
movement and ending probably in a sideslip." 
He was obviously quite certain that "a lifting 
windmill" would turn "provided the axis [about 
which the blades rotated] was slightly inclined 
backwards from the vertical." It was the rolling 
moment caused by asymmetrical lift between 
the advancing blade side of the rotor disc and the 
retreating blade side of the disc that had to be 
reduced. 

His first approach to overcoming this 
fundamental problem was to stack two rotors 
coaxially. The top rotor was set to turn 
clockwise, and the lower rotor was set to 
turn counterclockwise. After several taxi tests, 
this first solution proved unsatisfactory and 



was abandoned because the lower rotor 
autorotated at two-thirds the RPM of the top 
rotor. Using "the blade element theory of 
airscrews," he designed his second 
configuration with a single rotor system "with 
the cantilever blades capable of being set at 
varying incidence by the pilot, who could thus 
displace the resultant lift to right or left at 
will." This second autogyro was "reconstructed 
nine times." But, after identifying "[in]sufficient 
torsional rigidity to withstand twist and 
consequent change of effective incidence [of 
the blades] caused by a shift of the [airfoil] 
centre of pressure," the second approach was 
abandoned. His third approach "had a lifting 
windmill of five rigid blades, [with] lateral 
[rolling moment] control being obtained by the 
differential effect of a large elevator divided 
into two parts, right and left. The fuselage was 
designed to take the resulting torsional 
couple." This third autogyro "was damaged 
and rebuilt four times in the course of these 



experiments." This third approach was 
finally abandoned as well. 

It was with his fourth design that 
Cierva finally achieved success by 
incorporating what is referred to today as a 
flapping hinge into his rotor system. Appendix 
A provides the patent Cierva obtained first in 
Spain on April 18, 1922, and then in the 
United Kingdom on June 30, 1924. The patent 
illustrates the early approaches and explains the 
flapping hinge with patent figure 4. 
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2.1 ROLLING MOMENT 

The first, second, and third Cierva 
prototypes used rotor blades virtually 
cantilevered from the hub and with additional 
wire bracing. These aircraft were not successful 



although the rotors did begin to windmill as 
forward speed was built up. Cierva does not 
say how many times the prototypes rolled over 
on takeoff, but one can imagine a number of 
near flights before the rotor blades began to 
create a show-stopping problem. By then he 
must have fully understood the inherent root 
cause of the rolling moment problem. 

Understanding the rolling moment 
problem Cierva encountered, and how he 
solved it, is fundamental to understanding 
rotorcraft. 

Cierva traced the rolling moment 
problem to the cantilevered "wings" which 
were rotating against, and with, the relative 
wind as illustrated in Fig. 2-2. In this figure, 
the rotor blades are shown at the instant 
of rotation when one blade is advancing with 
the aircraft while its pair is retreating. In 
rotorcraft terminology, rotation is measured 



with an azimuth angle denoted by the Greek 
letter psi (\|/). The common reference for \|/ = 0 
is when the master blade is trailing downwind, 
which generally places the master blade over 
the rotorcraft fuselage and pointing toward the 
tail. In Fig. 2-2, the master blade is shown after 
a quarter of a revolution so that \|/ = 90 degrees. 
The blades are rotating at a speed of (œ) so the 
peripheral speed at the blade tip is Vt = £∆, the 
blade radius being denoted by (R). The tip of 
the advancing blade experiences the maximum 
relative velocity of Vt + V while the tip of the 
retreating blade sees the least relative velocity 
of Vt - V In fact, the relative velocity at any 
radial station (r), measured outwardly along the 
blade from the center of rotation and with the 
master blade at any azimuth point (\|/), is 
described by 

(2.1) V r v =Qr+Vsin\ |/ . 

This is the most fundamental equation in rotor 



system technology. 

Advancing Side 

„̂ = 0 deg 
Û = 90 deg 

v,+v 

Flight 
Path 

y = 180 deg 

V=270deg V,-V 

Retreating Side 

Fig. 2-2. Forward speed creates a lateral 
velocity asymmetry across the rotor disc. 
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dLr,,| 

a 

Fig. 2-3. Blade element aerodynamics. 

Cierva related the radius and azimuth varying 
relative velocity to an asymmetry in lift using 
"the blade element theory of airscrews." The 
concept of a blade element is also fundamental 
to rotor technology. A blade element is a 
small-cross section of the blade located at any 
given blade radius station (r) as shown in Fig. 
2-3 . A blade element has a planform area 
defined as chord times elemental radius (c dr). 
Its cross-sectional shape is that of an airfoil. 



The blade element can carry an element of lift 
(dL) as shown in Fig. 2-3, and this elemental 
lift can be calculated with simple aerodynamics 
(see Appendix B) as 

(2.2) 

dLr,v = 2 P ( " r + v s i n ¥)2(a„ar 4 , )(c dr). 

In Eq. (2.2), p is the density of air (0.002378 
slugs/ft3 at sea level), cCriV is the airfoil angle of 
attack, and a«, is the lift-curve slope of the 
airfoil (nominally 0.1 per degree of angle of 
attack). 

Calculation of rotor lift for Cierva 
aircraft is rather simple and illustrates some 
additional basics of rotor system technology. 
The first step is to obtain the total blade lift 
when the blade is at any given azimuth angle 



(\\f). Mathematically this is done by integrating 
over the blade radius assuming that (1) the 
blade element angle of attack is the geometric 
pitch angle ( ), and (2) both the blade chord 
and the geometric pitch are constant over the 
span. The results are: 

4 =I0
R˘P(Q r + V s m^)2(a«ar> v)(cdr) 

(2.3) 

= p - b ^ ^ û R ) 2
+ 3 ( Û R ) V s i n i | i + 3 V 2 s i n 2 \ | f 

pa„cR9 (QR)2+-V2 + 3(QR)Vsin\|/--V2cos2\|/ 
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Now the total lift of one blade is seen to vary 
around the azimuth. It is the average or steady 
value of this azimuth-varying lift over one 
revolution that defines the force called rotor 
lift. The averaging mathematics is quite straight 
forward, as follows: 

Rotor Lift = b ¿f Mv 

(2.4) 

~2%)0 6 
(Í1R)2 + - V 2 +3(OR) Vsin\ | / --V2 cos2\|i dy. 

= b £ ^ W ) 2
+ ! v 2 

6 2 
= ¸ pa„cRV, 1+1 

2 

√ À 

◊Û 

In Eq. (2.4), the lift from all blades (b) is 



introduced to give the total rotor system 
capability. Remember that Vt = OR. 

Cierva was quite satisfied that his rotor 
would windmill up to some tip speed (Vt) once 
the aircraft gained forward speed (V) . But it 
was the sum of all the blade element lifts 
(dL)— acting at a moment arm (r sin \|/) 
about the longitudinal aircraft axis—that 
created a substantial rolling moment on early 
Cierva aircraft. In his early configurations, the 
blades were cantilevered from the hub and 
could, therefore, introduce an elemental rolling 
moment of 

(2.5) Elemental Rolling Moment = dMRr = 
-(rsin\(/)dLr4,. 

The same integrations that calculated rotor lift 
show immediately that the magnitude of the 
rolling moment about the longitudinal axis 
of the aircraft is 



(2.6) 

Rolling Moment = - b ^ ^ [ ( Q R ) V ] 9 = - b p a " C R 2 V l 2 

In Eqs. (2.5) and (2.6), the minus sign says 
that the rolling moment raises the "starboard 
wing" if the rotor is rotating counterclockwise 
when viewed from above. 

As Cierva noted, the asymmetry in 
blade element velocity leads to "a 
corresponding asymmetry of lift and a 
displacement of their resultant lift from the 
vertical [centerline of rotation]." The amount 
of displacement of the lift from the shaft is 
obtained by substituting Eq. (2.4) into Eq. (2.6), 
which shows that 
(2.7) 



Rolling Moment = -
V/Vt 

i+!(W 
R (Rotor Lift). 
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Since V/Vt had to be about 0.2 for the rotor 
system to generate enough lift for takeoff, the 
effect was that the lift, equal to the gross 
weight of the aircraft, was, approximately, 
acting 0.2R to the starboard side of the 
aircraft. Even large ailerons would have a 
tough time counteracting a rolling moment of 
this magnitude at such low speed! Cierva's 
successful autogyros cruised at V/Vt from 0.4 
to 0.6, so things might have gotten even 
worse had the aircraft taken off and the flight 
path speed increased. 



It is very interesting to note that 
Cierva designed his second configuration with 
a single rotor system "with the cantilever blades 
capable of being set at varying incidence by the 
pilot, who could thus displace the resultant lift 
to right or left at will." Cierva appears to have 
introduced the capability to vary the blade pitch 
angle ( ) (or warp the blade twist) as the blade 
was turning. If this is the case, then the lift of 
the advancing blade could be reduced while 
the lift of the retreating blade could be 
increased, which could reduce the rolling 
moment to zero . A number of mechanisms 
could be designed which would vary blade 
pitch angle in a sinusoidal matter such that 

(2.8) 0 v =0 o -B l c s in i | / 

where 0o is a mean or average blade pitch 
angle common to all blades and Bic is the 
amplitude of the oscillating or cyclic pitch 



angle. Cierva suggests that the pilot could 
control Bic in some fashion. Both the 
preceding rotor lift and rolling moment 
expressions can be rederived assuming the 
varying blade pitch angle of Eq. (2.8) with the 
results that 

(2.9) 

RotorLift = b ^ Ä j 
6 1 + -

2 
' V v 
vXy 

3 V 
0 - - — ‚ 
0 2 V. 

1— 

and 

(2.10) Rolling Moment = - b 
pa.cR2V,2 | V 

^ °" ≥ -ira 

Suppose now that that rolling moment must 
always be zero. Then Eq. (2.10) can be used to 
find what cyclic pitch angle (BiC) must be 
applied to zero-out rolling moment. With this 
requirement, the pilot would be making a cyclic 
pitch control input of 



a 
3 V 

(2.11) B , c = ! „ for Rolling Momei)t = 0. 

4ft] 
Cierva rebuilt this second prototype nine times. Ultimately he identified "[insufficient 

torsional rigidity to withstand twist and 
consequent change of effective incidence [of 
the blades] caused by a shift of the [airfoil] 
centre of pressure" as a significant impediment. 
This observation suggests that blade element 
airfoil aerodynamics were twisting the 
torsionally limber blade in a very 
counterproductive way. 
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The second prototype was abandoned 
and, with his third prototype, Cierva tried to 
control rolling moment from five rigid blades 
"by the differential effect of a large elevator 



divided into two parts, right and left. The 
fuselage was designed to take the resulting 
torsional couple." This third autogyro "was 
damaged and rebuilt four times in the course 
of these experiments." This third approach was 
finally abandoned as well . The fourth Cierva 
prototype was successful because he stopped 
trying to overcome the powerful rolling 
moment of cantilevered rotor blades with 
weak, fixed-wing aerodynamics. Instead he 
inserted a hinge near the blade-root end so that 
all integrated blade loads were forced to act at 
a very small moment arm. This hinge was called 
a flapping hinge. 
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2.2 FLAPPING HINGE 

The Cierva flapping hinge solution to 
asymmetrical rotor system lift and associated 



rolling moment is shown in Fig. 2-4, which 
is reproduced from the late-1924 paper, An 
Introduction to the Helicopter [38] by 
Alexander Klemin. Professor Klemin's paper 
laid a strong foundation for rotorcraft and was 
later published as NACA TM 340. The 
Cierva flapping hinge approach centered the 
centrifugal force of the blade above the 
hinge. His objective for this vertical offset 
appears to ensure that the rotor would track in a 
plane nearly normal to the shaft. That is, the 
centrifugal force moment about the hinge would 
tend to droop the blade-tip down and this would 
oppose the tip-up moment created by blade lift. 
This design was applied to the Cierva C.4 
Autogiro, shown in Fig. 2-5, which 
demonstrated success on January 17, 1923. 



e 
¿ 

Flapping 
Hinge 

FIG. 6 PRINCIPLE OF LA CISRVA'B 
AUTOGIRO 



(The wings are fixed to a piece b, by means 
of binges e, so that they are free to move as 
shown in the diagram. The piece ‹ turns freely 
about the axis ƒ. 5 are elastic shock absorbers 
limiting the downward motion of the wings.) 

Fig. 2-4. Cierva patented his flapping hinge in 
Spain in late 1922 (see Appendix A). 
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Fig. 2-5. The Cierva C.4—the first truly 



successful rotorcraft [7]. 

(Gross weight 1,200 lbs, weight empty 925 lbs, 
diameter 26 ft 3 in., rotor speed 140 rpm, 

LeRone 9C 80 hp, speed range 35 to 55 mph.) 

The success with the C.4 led to the C.5, 
a two seater with a 3-bladed, nearly 38-foot-
diameter rotor, more than a 10-foot increase in 
diameter relative to the C.4. Unfortunately, a 
blade fatigue failure stopped development of the 
C.5. Cierva then designed the —6, which had a 
4-bladed rotor and diameter of just under 33 
feet. The C.6, with additional development, was 
so successful that Cierva took the rotorcraft 
to England for a 3-week demonstration during 
October 1925 . Following the demonstration, 
and at the invitation of the Royal 
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Aeronautical Society, Cierva gave a lecture 
explaining much of what led up to the — 6. 
This lecture was later published in the Journal 
of the Royal Aeronautical Society [3]. 

As has been pointed out many times, 
the concept of a flapping hinge was first 
suggested by Charles Renard in 1904 and 
patented in 1908 by Louis Bréguet who then 
used the idea for his own helicopters.5 An 
excellent photo of a vintage 1909, 3-bladed 
propeller with flapping hinges is provided by 
Rosen [41] on page 25 of his history of the 
propeller. Otto and Richard Baumgärtel also 
patented the use of hinges to reduce rotor 
system loads in Germany in March 1908. Their 
configuration, as applied to a propeller (Fig. 
2-6), included a hinge that allowed inplane 
lead-lag motion as well as out-of-plane flapping 
motion. Attaching the blade with, in effect, a 
universal joint was a step that Cierva later took, 



and I will discuss shortly. It is generally 
believed that Cierva developed his flapping 
hinge solution without knowledge of Renard or 
Baumgärtel patents. 

To grasp the importance of the flapping 
hinge and rotorcraft technology at any level, 
Fig. 2-7 must be fully understood at the onset. 
The rotor blade shown in this figure (when the 
system is viewed from the top) is rotating 
counterclockwise at an angular velocity (Q), 
which is normally expressed in radians per 
second. The blade, one of a set, is attached to the 
hub arm by the flapping hinge. All of the blade 
lift is concentrated at the hinge point. By 
keeping the hinge point as close to the center of 
rotation as structurally possible, the moment 
introduced from any given blade is reduced to 
the blade lift (Lb) times the hinge offset 
distance (rp). The 



F * , i 

a 
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e 

Fig. 2-6. The 1908 Baumgärtel patent for 
blade attachment with articulation. 

5 Bréguet's fame in the world of aeronautics is well 
known. He describes his helicopter work in references 
[39] and [40]. His 1935 coaxial helicopter was the world 
leader at the time Focke came forward with his F.61. 
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early hinge assemblies were made up of ball 
bearings and a hinge pin, and were grease 
lubricated. Modern configurations remain 
similar. The attachment is designed primarily 
by centrifugal force, which varies between 
10,000 and 100,000 pounds depending on the 
size of the rotorcraft. 

The hub and shaft assembly shown in 
Fig. 2-7 is inclined slightly aft of vertical and 
gliding with a flight path velocity (VFP). Thus, 
the hub and its arms trace out a plane that is at a 
slight positive angle of attack denoted as (0thp). 
The up-flow through the rotor (VFp sin othp ) is 
the velocity component that acts on the blades 
to turn the rotor system and create lift. If the hub 
plane angle of attack were 90 degrees, the 
rotorcraft would be in vertical descent and 
might well be called a windmill. In fact, 
most autogyros rarely descended at more 
than 45-degrees angle of attack until the last 10 



to 15 feet of altitude. 

A standard rotor reference axis system 
has evolved over the years, which defines the 
blade position during rotation by the azimuth 
angle (\|/). The azimuth angle can be expressed 
in time as \|/ = £2 t or in radians or degrees from 
some zero reference angle. The zero angle for 
blade azimuth is most commonly set by 
when the reference blade is trailing aft over 
the fuselage or is aligned downwind. In Fig. 2-7, 
the reference blade is shown having completed 
about three-quarters of a revolution so (\|/) is 
approximately 270 degrees. The second key 
reference angle is the blade incidence or pitch 
angle ( ) . This angle defines the inclination of 
an airfoil to the hub plane. In Cierva's time the 
reference airfoil was taken at the two-thirds 
radius station (i.e., about two-thirds of the 
distance from the center of rotation to the tip 
of the blade). Since the airfoils in favor during 
the early 1920s had flat bottom surfaces, 



attaching the blade to the hub arm at the 
"optimum" fixed-pitch angle of 2 or 3 degrees 
was a relatively simple matter. 

The Flapping 
Hinge Line 

Flight Path 

Fig. 2-7. The modern schematic of the 
flapping hinge (drawing by Rick Peyran). 
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The third key reference angle is the 
flapping angle (ß). This angle is one measure 
of the rotation of the blade or deflection out of 
the plane of rotation. The flapping angle is not 
constant in the general case. The blade rises 
and falls in a well-behaved manner as it 
completes each revolution. Now consider the 
Cierva Model C.30 as an example. This 
autogyro had a 37-foot-diameter rotor that 
turned at about 190 to 210 rpm (say 20 
rad/sec) when flying at a normal cruise speed of 
85 to 90 mph (130 ft/sec). Thus, the blade tip 
had a peripheral or tip speed (Vt) on the order 
of OR = 20x37/2 = 370 ft/sec. One revolution 
was completed in roughly one-third of a 
second. When the blade advanced from \|f = 0 
to \|/ =90 degrees, the apparent or resultant 
velocity (VR) at the blade tip increased from 
VR = Vt = 370 ft/sec at \\t = 0 degrees to a 
maximum of VR = V, + V = 500 ft/sec at \if = 
90 degrees. When the blade reached an upwind 



azimuth of \|/ = 180 degrees, the resultant tip 
velocity dropped back to VR = Vt = 370 ft/sec, 
identical to the downwind or \|/ = 0-degree 
azimuth position. Then, as the blade reached 
\|/ = 270 degrees on the retreating portion 
of its revolution, the resultant velocity was 
reduced to VR = V, - V = 240 ft/sec. This 
resultant velocity pattern is, of course, 
periodic or harmonic in character and 
described simply by VR = Vt+V sin \|/ for the 
blade tip. The more general description for all 
radial distances (r) along the blade, including the 
tip where r = R, is conventionally written as 

(2.1) Vr>v= r Q + Vsin\|/ 

where the subscripts to V, (r) and (\|/), are used 
to reinforce the physical point that the resultant 
velocity varies with both radius station along 
the blade and blade azimuth (and thus with time 
since \i/ = Q t). 



The flapping motion of the blade (ßv) 
and the physics behind the motion are quite 
simple to understand if the overall 
requirement for rolling moment equilibrium is 
kept in mind, as Cierva did. With the freedom 
to flap, a blade has the inherent capability to 
self- correct its lift distribution due to the 
varying resultant blade element velocity (Vw) 
it sees in forward flight. The self-correcting 
velocity that does this is an angular flapping 
velocity, which takes the assumed form (actually 
an educated guess) of 

(2.12) dß/dt = Q(a l s s in \ j / - blscos\i/). 

The coefficient (ais) in Eq. (2.12) is referred 
to as the first harmonic, longitudinal flapping 
coefficient. The coefficient (bis) is the first 
harmonic lateral flapping coefficient. In the 
first harmonic, the subscript 1 implies a 
Fourier series and refers the coefficients to 



sin l\if or cos 1\|/ as opposed to, say, sin 2y or 
some higher harmonic. The subscript S keys the 
motion to the shaft, hub plane, or the axis about 
which the blades rotate. 

A linear velocity all along the blade is 
created by the flapping motion. This velocity— 
out of the rotational plane—varies linearly from 
blade root to tip and is simply 

(2.13) rdß/dt = r[£2 (al ssin\ | /- blscos\j/)]. 
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dLR,9o 



R dß/dt 

Vt + V 
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Vt-V 

R dß/dt 



Fig. 2-8. The blade element environment is 
quite different between 90- and 

270-degree azimuths. 

Since the resultant velocity is 
symmetrical when the blade is at \|/ = 0 degrees 
and at \i/ = 180 degrees (i.e., Vr0 = Vr>180 = r Q), 
the lift distribution along the blade radius from 
root to tip is symmetrical between these two 
azimuths. In this fore and aft situation, the 
blade sees no cause to do any flapping. 
Therefore, the flapping velocity is zero (i.e., 
dß/dt is zero and thus b l s is zero to the first 
approximation). However, when the blade is 
at \|/ = 90 and 270 degrees, the blade element 
sees two very different resultant velocity 
distributions and potentially two very 
different lift distributions . A simple 
illustration of this velocity distribution 
laterally across the rotor disc was shown in Fig. 



2-2. The blade, with its flapping degree of 
freedom to create another velocity (r d ß/dt ), 
nearly equalizes the lift between advancing 
and retreating portions of the revolution. The 
near equalizing of lift between \|/ = 90 and 270 
degrees becomes clearer by looking at Fig. 2-8. 
The blade tip is shown here as an airfoil in 
cross-section. The velocities, angles, and lift 
forces acting on the blade tip at both azimuth 
positions are also shown. 

The lift at a blade tip is found from the 
simplest aerodynamic theory for an airfoil. This 
basic, linear, aerodynamic theory states that an 
element of lift (dL) depends on an element of 
blade area, the dynamic pressure at the blade 
element, the angle of attack of the blade 
element, and the lift-curve slope of the airfoil. 
Thus, 

(2.14) dLR>y = ( c d r ) ( 0 . 5 P V ¿ v ) ( a „ a R J 



where (Ò) is the chord or local width of the 
blade, (dr) is the element of blade span, (p) is 
the density of air, (VR,¥) is the local velocity, 
and ((XR,V) is the airfoil angle of attack. In 
linear aerodynamic theory, the airfoil lift 
coefficient is given as Q = a a where the 
lift-curve slope is denoted by (a or a„), as 
discussed in Appendix B. From Fig. 2-8 you 
can see, on the advancing side of the disc 
where \\f =90 degrees, that the blade-tip lift 
becomes 
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(2.15) dLR90 = 0.5paap(cdr)V¿9OaRi90 = 
K(Vt + )2 ocR 90 and, because Rdß/dt = 
-R (Qals ) in accordance with Eq. (2.13), it 



follows that (2.16) ccR 90 = - Q R al s/( Vt + 

v). 
Similarly, on the retreating side of the disc 

where \|/ = 270 degrees, (2.17) dLR 2 7 0 =   (Vt 

— V) otR 2 7 0 

where 

(2.18) ocR;270= 0+ Q R a l s / ( V t - V). 

The first order magnitude of the 
flapping velocity (al s) can easily be found 
by balancing advancing and retreating blade-tip 
lifts. This is the first approximation to balancing 
the rotor system in rolling moment. Thus, you 
let 

(2.19) d L R 9 0 = d L R 2 7 0 

and therefore 
(2.20) K(Vt + V)2 [0-QRa l s / (V t + V)] 

= K(Vt -V) 2 [0 + QRa l s /(V t - V)] . With a 



little algebra, you find that 
(2.21) a l s=29V/Vt . 
This approximation for (aiS) can be substituted 
into Eq. (2.12) to give 
(2.22) dß/dt = Q, als sin y = 2 Q. V sin y/V, . 
Integrating the flapping angular velocity of 
Eq. (2.22) once with respect to time, while 
including the lateral flapping velocity term 
(big c o s V)5 gives the flapping deflection more 
generally as 
(2.23) ßy = constant- als cos\|/- bls sin\|/ 
= ß 0 - ais c o s y - bls sin\|/. The integration 
constant, (ß0) in Eq. (2.23), is generally referred 
to as the blade coning angle. This angle is 
physically the steady deflected slope of the 
blade and represents the balance between total 
blade lift (÷) and total blade centrifugal force 
(Fc). To the first order, (2.24) ß0 = Lb /Fc . 



The lift of one blade (Lb) is, of course, 
nothing more then the total rotor lift divided by 
the number of blades (b). To a first 
approximation, blade lift would be the 
rotorcraft gross weight (W) divided by (b). The 
centrifugal force (Fc) is on the order of ten 
times the aircraft weight divided by the number 
of blades or roughly 10,000 to 100,000 
pounds. The steady coning angle is generally 
about 4 to 6 degrees or 0.1 radian. 
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The solution to the rolling moment 
problem that Cierva achieved with the 
flapping hinge is described by Eq. (2.23). 
Physically, the reasoning is quite simple. 



Whenever the blade element dynamic pressure ( 
0.5pVr^, ) is large, the blade flaps to lower the 
local blade element angle of attack (oc,iV). This 
blade response, primarily in the first harmonic 
of blade motion (i.e., at sin y and out of the 
rotational plane), provides the dominate 
velocity to control blade element angle of attack 
and equalize blade element lift. While you may 
not see the velocity at work, you can definitely 
see the resulting flap angle displacement given 
by Eq. (2.23). 

The flapping motion or slope given by 
Eq. (2.23) is seen more clearly by looking in at 
the rotor system from the y = 270-degree side 
view. As shown in Fig. 2-9, this view lets you 
think of the autorotating or gliding rotor as a 
lifting wing. The rotor shaft is inclined slightly 
aft of vertical to obtain autorotation as Cierva 
stated. A blade in the downwind position has a 
flap angle of (ß0 - a,s) since y = 0 degrees. 
When the blade rotates to the upwind azimuth 



of y = 180 degrees, the flap angle increases to 
a maximum of (ß0 + als). The longitudinal line 
joining the blade tips in this side view defines 
the tip path plane (tpp). The angle between the 
tip path plane and the forward velocity is then 
defined as the tip-path-plane angle of attack 
(OCPP)-

With the introduction of the flapping 
hinge, Cierva reduced the steady hub moments 
that the rotor could apply to his autogyro. To a 
first approximation, the pitching moment (MP), 
acting about the aircraft lateral axis, became 
simply 

Fr rR b 
(2.25) M P = - ^ L a l s . 



Hub 
»ÏÈ√ 'P^+ais 

---.'œ 
-J»th 

+"hp 

Fig. 2-9. The tip path plane (tpp) has an angle 
of attack much like a fixed wing. 

Thus, cc^ = ‡„ + a l s . 
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This pitching moment was small enough that 
the normal-size horizontal elevator provided 
quite adequate longitudinal stability and 
control . Cierva did find, however, that a 



residual rolling moment (MR) still remained. 
This moment was caused by a small amount 
of lateral flapping (biS) and was of magnitude 

Fr rR b 
(2.26) M R = - ^ L b l s . 

To balance this rolling moment, Cierva 
inclined the rotor shaft to one side. Early 
autogyros then flew with a slight list that 
varied from 1 to 3 degrees depending on 
flight condition. Small, auxiliary wings were 
also retained until a more direct control of the 
rotor hub plane was achieved. 

It is worth taking time out for a 
moment to define two key nondimensional 
rotorcraft parameters that have stood the test 
of time. These two very important velocity 
ratios were created from Fig. 2-9. The first is 
advance ratio defined as 



VFp cos ah n 

(2.27) tthp=
 FP h p . 

v t 

This velocity ratio establishes the flow 
condition parallel to the hub plane or 
perpendicular to the rotor shaft. The second 
parameter is the inflow velocity ratio defined as 

VppSin och - y 
(2.28) fl‹= v

h p ' . 

This parameter measures the flow through the 
rotor and parallel to the shaft. Throughout 
technical literature you will find a mix in sign 
convention for the inflow ratio (Xhp). About half 
of the investigators have chosen inflow down 
through the rotor as positive; the other half have 
chosen flow up as positive . Since the lifting 
rotor creates a wake just like a lifting fixed 
wing, there is an averaged induced velocity (v¡) 
that also must be accounted for in the first 



order definition of the inflow ratio. The rotor 
wake for positive rotor lift induces a downward 
flow, which I chose as negative inflow. Both 
advance ratio and inflow ratios can be related to 
the tip path plane (tpp) as well. In that case you 
have 

Vpp cos a ^ 
(2.29) ^¯ FP a and 

VFP sin q - y 

  Û • 
v l 

These two velocity ratios are in very common 
use today.6 In some studies you will find the 
subscripts vary. For example, ils and À,s may 
appear as a reference to the shaft axis system. 
The shaft axis system and the hub plane really 
are the same when you think about it. 



6As you can see from Eq. (2.28), I have chosen ahp to be 
positive when the rotor shaft is inclined aft in the sense of 
a conventional lifting wing. This quite arbitrary 
selection makes the component of flight path speed (V) 
parallel to the shaft, that is (V sin ahp), positive for 
upflow. 
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The Cierva Model C.6A was so well 
received in England that Cierva moved his 
activities there. With enormous help from 
James G. Weir, the Cierva Autogyro Company 
Ltd. was established on March 24, 1926, with 
Weir as chairman and Cierva as technical 
director. An order for one C.6A to be built by 
A.V. Roe & Co. Ltd. was received from the 
British Air Ministry, and Cierva ordered 
one additional rotorcraft for test flying 
and further demonstrations. 
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With Frank Courtney [42] as the pilot, 
Model C.6A development continued, without 
catastrophic incident, until February 7, 1927. 
On that day, Cierva had to deal with a very 
serious metal fatigue failure when a rotor blade 
simply snapped off near the root on his Model 
C.6C . The aircraft fell to the ground from 
about 250 feet, and at around 1 5 feet above 
the ground another blade came off. The 
aircraft was destroyed, but Courtney escaped 
serious injury. The British Air Ministry 
immediately grounded their autogyro. 

Solving the structural fatigue problem 
Cierva encountered was akin to finding out how 
many times you can bend and unbend a paper 
clip before it breaks. On the Model C.6C, the 



blade was cycling back and forth in the plane 
of rotation. There was no hinge to accommodate 
this motion, which induced one cycle of 
bending for every revolution of the blade. 
Considering a rotor speed of about 1 90 rpm 
and perhaps 25 hours of flight time, this would 
mean that only 300,000 bending cycles 
had occurred before the fatigue failure. By 
comparison, rotorcraft industry design standards 
today demand at least 2,000 to 10,000 hours of 
safe life, which is more on the order of 
10-million fatigue cycles. 

A degree of freedom that allowed the 
blade to lead and lag in the plane of rotation 
was the design improvement that Cierva 
incorporated on his Model C.6C, and this led 
to the Model C.6D . This additional hinge, 
shown in Fig. 2-10, was initially referred to 
as a drag hinge but is called a lead-lag hinge or 
just a lag hinge today. The inplane blade 



motion this hinge allows is defined by the 
angle (£). The lag hinge is centered about a 
vertical pin in contrast to the flapping hinge, 
which can be thought of as a horizontal pin 
joint. Together, the two hinges act very much 
like a universal joint or like the 
ball-and-socket shoulder-to-arm joint of a 
human. The lag hinge was placed just outboard 
of the flapping hinge on the Cierva Model C.6D 
at a distance from the centerline of rotation (and 
toward the blade tip) defined as (r^). The lag 
hinge relieved the substantial inplane bending 
moments that were, in fact, created by the 
flapping motion. But remember, the rotor 
needed flapping in the first place to avoid 
rolling moment, and it was rolling moment that 
caused Cierva so much trouble with his first 
three prototypes . Fixing one problem while 
creating two new ones is not an uncommon 
occurrence in the development of rotorcraft. 

Lead-lag motion occurs primarily at 



once per revolution and, as for the flapping 
motion, can be described most conveniently 
by a Fourier series because the motion is 
harmonic. Physically, the cause of the lead-lag 
motion is quite easy to understand. Whenever 
the rotor blade flaps away from its steady 
coning angle position (ß0), each blade 
element moves slightly closer to (or further 
from) the centerline of rotation. To conserve 
angular momentum, the blade must accelerate 
(or decelerate) relative to the rotor shaft 
steady rotational speed (Q). Thus, the flapping 
motion creates a Coriolis force on each element 
of the blade. The sum of the elemental forces 
leads to a moment about the lag hinge . The 
moment is reacted by both inertia and 
centrifugal force terms. As you will see later, 
this is a relatively 
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Fig. 2-10. The lead-lag hinge relieved 
blade-root inplane bending loads 

(drawing by Rick Peyran). 

simple dynamics problem that shows the 
inplane lead-lag motion is out of phase with 
the flapping motion by 90 degrees . Cierva 
solved this engineering problem7 (and many 
others), and today the lag motion is described to 



the lead-lag first order as 

(2.30) Çv = Ç0 -

ß o ( a i s s i n ¥ - blscos\|/). ' 3 3 À 
1 — b - - √ Â 

The steady lead-lag angle (Ç0) for a given rotor 
system depends primarily on how much power 
(P) the system is absorbing. This angle is 
approximated by 

(2.3.) Ç.- ™£. 

In the early Cierva autogyros, the rotor system 
was unpowered and therefore the steady lead-
lag angle was nominally zero. However, a 
power takeoff from the main engine was added 
to later autogyro models, which I will discuss 



shortly. This power takeoff was first used to 
pre- spin the rotor up to near flight RPM so that 
taxi and takeoff distance could be reduced. 
Later, the pre-spin was fast enough for jump 
takeoffs. This gave the autogyro nearly vertical 
takeoff and landing capability. 

7 Brooks notes on pages 100 and 101 of Cierva 
Autogiros—The Development of Rotary Wing Flight that 
Cierva prepared two design analysis documents, but that 
they were never formally published. Fortunately, they 
have been preserved. Dr. J. A. J. Bennett undertook the 
task of editing the two volumes . Copies of the draft 
volumes were entrusted by Dr. Bennett to Dr. Richard M. 
Carlson who, in turn, made a copy for the American 
Helicopter Society library (and a copy for this author who 
is most grateful). The first volume is titled Engineering 
Theory of the Autogiro and dates from 1929. The second 
volume is titled Theory of Stresses on Autogiro Rotor 
Blades dating from 1934. Both volumes were originally 
provided courtesy of the Cierva Autogiro Co. Ltd. 
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The addition of the lead-lag hinge 
solved one of the major blade 
structural-fatigue problems, but, as often 
happened, the solution created a new 
problem. This new problem became known as 
ground resonance and, as Brooks [7] (pages 
235 to 237) notes, "recurred repeatedly 
throughout the development of rotor-wing 
aircraft." The culmination of incidents 
associated with the unexplained phenomena 
of ground resonance came in 1941 with the 
absolutely total destruction of the Kellert XR-2 
autogyro "in less than five seconds." Brooks 
(page 235) records that the catastrophe 
occurred "during one of the first tests of a 
jump takeoff" and that the vibration "built up 
so rapidly that the aircraft broke up before 
anything could be done to stop it." The 
photograph Brooks shows on page 235 



(reproduced here as Fig. 2-11) confirms what 
potential for disaster the lag hinge introduced. 

The hardware fix for this potential 
mechanical instability was the lead-lag 
damper shown in Fig. 2-10 . At the Kellett 
Autogiro Company, Richard Prewitt, the chief 
engineer, developed what became the modern oil 
damper. He notes [43] that: 

"We had diverged from the standard form of friction 
dampers on this model [the KD-1] and experienced 
considerable difficulty in making our self-centering oil 
dampers function properly. The difficulty proved to be 
one of obtaining proper arrangement and adjustment of 
the self- centering cam and of obtaining proper dampening 
in the oil plunger unit. This unit was finally corrected, 
when a unique orifice arrangement made the units 
self-filling. Their maintenance requirements are now 
substantially nil." [See Fig. 2-12.] 

The standard form of friction damper, 
Fig. 2-13, that Prewitt refers to is the type both 
Cierva and Pitcairn used on their Autogiros. 



This damper development at Pitcairn is 
describe in detail by Joseph Pecker [44], a 
mechanical engineer who consulted with the 
Pitcairn Autogiro Company on many of their 
hardware programs . Neither the Kellett oil 
damper nor the Pitcairn/Cierva friction type 
of lead-lag damper is readily apparent in 
any autogyro photographs I have seen because 
it was buried inside the spar and the lead-lag 
hinge, but a damper of some form was 
incorporated on all very successful autogyros. 

The theory that explains ground 
resonance was, as is frequently the case, 
developed after the XR-2 disintegrated. Brooks 
[7] (page 237) notes that "Bob Wagner of 
Kellett and Robert Coleman of the National 
Advisory Committee on Aeronautics 
(N.A.C.A.) came up independently with 
mathematical solutions for the proper 
configuration and for damping to prevent 
ground resonance. This was a major step in the 



development of rotary-wing aircraft. Paul 
Stanley of the Autogiro Company of America 
had also arrived at mathematical and 
engineering solutions to the problem with the 
result that Pitcairn Autogiros are claimed to 
have largely avoided ground resonance." 
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Fig. 2-11. The KeUett XR-2 autogyro 
before and after ground resonance in 1941 
171-
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Fig. 2-12. The Kellett KD-1 oil piston lead-lag damper (figure courtesy of W. Wiesner). 
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Fig, 2-13. The Cierva- and Pitcairn-style friction lead-lag damper [44]. 
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The ground resonance dynamics analysis 
is not one of the easier engineering problems to 
solve as you can see from Appendix C. 
However, George Townson, in his excellent 
book containing both history and engineering 
features of autogyros [45], has the clearest 
illustration of the ground resonance situation I 
have ever seen. His illustration from page 149 
of his book is reproduced here as Fig. 2-14. The 
problem is basically a two-degrees-of-freedom 
vibration problem with damping included. One 
degree of freedom is the rotorcraft rocking 
on its landing gear. Since shock absorbers were 
standard equipment for all autogyros just for 
hard landings, this first degree of freedom was 
well damped. The second degree of freedom is 
the blade lead-lag motion, which, the 
inventors found out, definitely needed 
additional mechanical damping. The two 
motions of rotorcraft rocking and blade 
lead-lagging have the potential to couple 



together such that one motion can feed the 
other. Without damping in both degrees of 
freedom, there can be real problems. 
Fortunately, theory to predict ground 
resonance was in place when practical 
helicopters began to evolve [46]. 
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Fig. 2-14. De-patterned blades in the lead-lag 
plane create a potentially destructive 



force that can lead to ground resonance [45]. 
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Cierva was invited to present a second 
paper to the Royal Aeronautical Society on 
February 13, 1930. This lecture [4] gave him a 
chance to update his audience after 5 years of 
progress. By this time, his development efforts 
had taken him from the C.6, the autogyro they 
had first seen fly, up to the Cierva —. 19 Mk. 
Ill, the first true production rotorcraft. He 
mentions the lead-lag hinge, points out 
improved blades and their smooth skin 
construction, hints about his vortex theory for 
vertical descent, and spends considerable time 
discussing his autogyro versus a comparable 
fixed-wing aircraft. Judging from the audience 
remarks [4], they were generally pleased with 
Cierva's progress, although they commented 



that there was a lack of quantitative data in his 
presentation. 

Audience members believed that the 
autogyro was safer than an airplane by virtue 
of its near vertical landing capability. Indeed, 
demonstrations continued to show vertical speed 
at touchdown in the 13- to 16-feet-per-second 
range with less than a 4-yard ground run. 
These rates of descent, equivalent to a free fall 
from 3 to 4 feet, are less than are found with 
a parachute whose diameter equals the rotor 
diameter. 

The next problem that needed to be 
solved completely—according to remarks from 
the audience [4]—was to dramatically reduce 
the takeoff distance of the autogyro. Initially, 
the early autogyros used a rope or wire wound 
around pegs under the blades that was pulled by 
several men (or a horse or even a car) to 
pre-spin the rotor up to 30 to 50 rpm, Then, by 



taxiing around the generally rough airfield at 20 
to 30 miles per hour, rotor speed increased to the 
required takeoff of 130 to 150 rpm. Cierva 
quickly learned that taxiing alone did the trick, 
although several minutes were required. In 
short, the autogyro takeoff distance and 
takeoff time were considerably longer than those 
of an airplane. 

The Cierva —. 19 Mk. II, similar to Fig. 
2-15, but with a 30-foot-diameter rotor, was 
flight tested at the Royal Aircraft Establishment 
in early 1930. Their report [47] showed that the 
"scorpion tail" (a name coined by Mr. 
Wimperis, the Director of Scientific Research at 
the British Air Ministry [4]) brought the 
"windmill speed" up to 90 rpm or about 50% 
of normal flight speed. At 50% rotor speed, 
"the run to unstick Gyroplane C.19" was 
200 yards. Additional testing at 68% pre-spin 
reduced the lift-off distance to 150 yards, and 
at 95% pre- spin, the C.19 could get off the 



ground in 1 10 yards. This performance was 
obtained with a takeoff gross weight of 1,400 
pounds. 

Cierva considered a power takeoff 
from the engine with shafting and gearing to 
the rotor, but thought that this approach added 
too much complexity and weight (165 
pounds) . Instead, he took an aerodynamic 
approach that used the propeller slipstream. 
The biplane horizontal stabilizer was enlarged 
and included a pilot-selected, large, 
trailing-edges-up angle to turn the slipstream up 
through the aft portion of the rotor disc. The 
stabilizer took a nearly closed, venetian blind 
position for rotor startup as shown in Fig. 
2-16. Cierva notes [4] that "sixty to seventy 
percent of the flying revolutions are obtained 
in no wind by this means." 
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¯ I 
... 

msr-fi9z 
Fig. 2-15. The first production autogyro was the Cierva C.19 [7]. 

With the pre-spin, which took 45 to 60 
seconds, the takeoff run was on the order of 
100 to 200 feet. This solution was incorporated 
on the C.19. (Frankly, it looks rather ungainly 
to me, but the two large rudders mask the 
stabilizer in most photos.) However, the 
"turned-up tail was considered the most 
promising of several approaches," one of 
which was rockets on the blade tips. Mr. 
Wimperis went on to say that he hoped the 



up-turned tail would "reduce the length of the 
[takeoff] run to something that they were 
accustomed to with normal types of aircraft." 

As it turned out, a satisfactory engine 
drive for rotor mechanical spin-up evolved quite 
quickly because Harold Pitcairn became 
convinced that autogyros were the safe aircraft 
he envisioned. 

Harold Pitcairn was an aviation 
pioneer [48] . He built an airplane 
manufacturing company specializing in mail 
carrying airplanes in Bryn Athyn, a town 
just outside of Philadelphia, Pennsylvania, 
and, with the award of airmail delivery routes 
during the late 1920s, his company grew into 
Eastern Airlines . Pitcairn was a very strong 
advocate of safe airplanes. His chief engineer 
was Agnew Larsen, a close friend, who 
provided enormous talent in bringing 
autogyros to a budding industry. A more 



technical story of autogyro development 
written by Larsen was included in the 
first-issued Journal of the American Helicopter 
Society [49]. When Pitcairn became aware of 
the success Cierva had in England, he and 
Larsen visited Cierva, bought a C.8, and 
brought it back to the United States. The C.8 
was the first truly successful rotorcraft to fly in 
the U. S. In the spring of 1929, Pitcairn flew the 
C.8 to Langley Field, Virginia. Additional 
demonstrations followed with overwhelming 
press coverage and public interest. 

36 

2.4 ROTOR STARTUP 



/ 
\ 

ELEVATOR 

) 

I 
', 

\ 
\ 

NOT LESS THAN 4 
ADJUSTABL 

ENDS 

\ 

/ 

I 

»« • 

Fig. 2-16. The horizontal tail of the C.19 
could be pilot-adjusted to deflect propeller 
slipstream up into the rotor for pre-spin [50]. 

In February 1929, after three 



unsuccessful negotiating efforts, Pitcairn 
obtained the exclusive U.S. rights to inventions 
and patents from the Cierva Autogyro 
Company, Ltd. Almost immediately, he 
renamed Pitcairn Aeronautics, Inc . to the 
Autogiro Company of America, Inc., and a 
virtual partnership with Cierva in England was 
cemented. The Autogiro Company of America 
operated along the lines shown in Fig. 2-17. It 
became the licensing, technical, and business 
center for autogyro development in the United 
States . The company itself granted 
manufacturing licenses and did research, 
development, and engineering for its first 
licensee, the Pitcairn Autogiro Company. The 
second manufacturing license was granted to 
Wallace Kellett and the third to Lawrence Buhl. 

When a fire destroyed his factory in 
mid-November 1929, Pitcairn moved his 
operations from Bryn Athyn to Willow Grove, 
Pennsylvania, and then bought additional land, 



which became Pitcairn Field. (This facility 
was later taken over by the government 
during World War II and became Willow 
Grove Naval Air Station.) Then, in 
December 1929, Pitcairn bought a Cierva C.19 
Mk. II with a "scorpion tail" pre-spin 
configuration. He and his engineering team (lead 
by Agnew Larsen) were not satisfied with the 
Cierva up-turned tail for rotor pre-spin. They got 
busy designing a unique clutch and gear train 
that was incorporated into the PCA-2. At the 
end of March 1930, his design team had the 
first PCA-2 flying. The PCA-2, Fig. 2-18, was 
created from PCA-1, -1A, and -IB 
developments during 1929 and 1930, and was 
the first autogyro sold in the United States. It 
received its Approved Type Certificate (¿“— 
No. 410) on April 2,193 1, and became 
commercially successful. 
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Fig. 2-17. Harold Pitcairn laid the 
foundation for the rotorcraft industry in the 
U.S. 



Fig. 2-18. The first production autogyro 
certified in the United States was the 

Pitcairn PCA-2. This one was 
sold to the N.A.C.A. in 1931 [53]. 

The story of this mechanical rotor 
starter is well told by Agnew Larsen [49]. By 
way of background, he writes early in his 
paper (in studying the Cierva C.8 and 
applying the knowledge gained to the PCA-1) 
that: 
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"The engineering personnel of the Pitcairn Aviation 
Company were essentially all airplane designers, with 
limited or no experience in mechanical engineering 
design and therefore not capable of refining the large and 
bulky rotor hub on the Cierva C-8 autogyro, or reducing 
its weight from 200 pounds to the 75 pounds that was 
considered a rational allocation for it. Consequently, the 



services of the Machine and Tool Designing Company 
were called in soon after the completed negotiations with 
the Cierva Company to carry on this phase of the work. 
The first designs of rotor hubs as incorporated in the two 
original American autogiros [PCA-1 and -2], were marvels 
of light weight with great strength. This was 
accomplished through the employment of alloy steels, 
heat-treated to high physical properties. During this 
phase of the pioneering work, the highest authorities, 
such as metallurgists from Bethlehem Steel and the 
International Nickel Co., ball bearing experts from SKF, 
Norma—Hoffman, Fafhir and others were always 
consulted and followed. In this way, serious mishaps in 
the very early embryonic stages of our efforts were 
avoided while we learned and progressed." 

Larsen next writes about setting specifications 
for a mechanical starter that "were liberalized in 
RPM's desired, but much stricter in weight 
allowance" and then recounts: 

"The Machine and Tool Designing Company produced 
a beautiful, light weight, twin disc starting clutch and 
gear reduction unit, weighing only 48 lbs. This 
transmission was capable of delivering 15 to 20 



horsepower, which was the maximum allowed by Wright 
Aeronautical, for delivery by the rear accessory drive 
shaft on their Whirlwind engine. This was sufficient to 
turn the 42 foot rotor at about 80 or 90 rpm, permitting 
stabilization of rotor speed in about 30 to 40 seconds and 
requiring only a short forward run for takeoff. Starting 
from this humble, light weight beginning, this very same 
design of rotor starter was gradually developed in the 
next three years up to an ultimate 55 horsepower, 
delivering 125 rpm on a large 50-foot diameter rotor." 

Agnew Larsen, in telling this story of a major 
autogyro improvement, quietly omits his own 
leadership role in engineering the rotor 
startup assembly. Joseph Pecker [44] notes 
that "through the extensive research work 
conducted, under the supervision of Mr. 
Larsen, by Mr. Stanley, the writer [Pecker], 
and others of the Pitcairn Engineering Staff, 
a basically sound engineering foundation, 
dealing with hubs and starters, was established." 
All the details of the starting system and the 
hub are described with excellent engineering 
drawings in the patent awarded to Pecker [51]. 



Pecker applied for this patent in June of 1932, 
and he assigned the patent to the Autogiro 
Company of America when it was awarded on 
April 14, 1936. 

Cierva incorporated the Pitcairn 
pre-spin drive system into his Mk. IV upgrade 
of the C.19 .It was a feature in all future 
autogyros, including the best-selling Cierva 
C.30. The C.30 mechanical starter is shown in 
Fig. 2-19. 

Starting the rotor up in preparation 
for takeoff required some caution when the 
prevailing wind was blowing at more than 20 
to 25 miles per hour. Autogyros were started 
facing downwind or with the wind on either 
the port or starboard sides. For example, Brie 
[52] notes that the C.30 Autogiro was 
certificated in Britain for operation in winds 
up to 30 miles per hour. He teaches that the 
rotorcraft should be started with the wind 



coming on the starboard side (because the C.30 
rotor rotated clockwise when viewed from the 
top). The rotor starter is engaged and the rotor is 
brought up to 100 rpm. Then the autogyro is 
taxied to an into-the-wind position. The rotor is 
then brought up to 185 rpm. At that point the 
takeoff is begun. 

39 

2.4 ROTOR STARTUP 

The piloting technique addressed 
concern for flapping, which could become 
quite erratic in the 0- to 100-rpm range because 
centrifugal force was too low relative to blade 
lift. The possibility of blade-fuselage contact 
was real. You can see the situation from Eq. 
(2.21), which is repeated here for convenience as 
(2.21) a l s=20V/Vt . 
At 100 rpm, the 37-foot-diameter C.30 rotor 



had a tip speed of 194 ft/sec. The blade pitch 
angle ( ) of all blades, accounting for the 
airfoil angle of zero lift of -A degrees, was 
6.75 degrees . At 30 mph, 44 ft/sec, the 
flapping would be a reasonable 3 degrees. 
However, the flapping would behave inversely 
with RPM as 

V 
(2.32) al t ¡=10.2—— in degrees. 1S RPM & 
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Fig. 2-19. The C.30 
mechanical starter [52]. 
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The C.30 did have limiting stops to 
flapping motion. The down-flapping stop was 
set to —4 degrees and the up-flapping stop 
was set at 30 degrees [52] . These angles 
were referenced to the hub plane. Roughly 
speaking then, a blade might contact the down 
stop at any RPM below 75 when the wind was 
30 mph. (Banging the down stop created 
excessive blade-root-end stresses.) Since it took 
from 30 to 45 seconds for the mechanical 
starter to bring the rotor up to speed, the pilot 
had to take considerable care by following the 
advice from Brie [52] . By starting with the 
wind against the starboard side, the 
potentially large flapping would be high on 
the upwind, starboard side, and low on the 
port side. This minimized the chance of a 
blade striking the aft end of the fuselage 
(i.e., the vertical stabilizer). 

By the end of 1931, over 100 autogyros 



had been built and sold. Having started their 
own companies, Wallace Kellett and Lawrence 
Buhl were exercising their license from the 
Pitcairn Autogiro Company of America. The 
Kellett K-2 was certificated with ¿“— No. 437 
on July 17, 193 1. The Buhl Autogiro, the first 
autogyro with a pusher engine and propeller, 
made its first flight on December 15, 1931, and 
both Cierva —. 19s and Pitcairn PAC-2s were 
performing well in the field. The next deficiency 
to overcome was control at low speed. 
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In these early autogyros, the rotor hub 
spun on bearings attached to a short shaft fixed 
to the airframe. The assembly was called a 
spindle, and the shaft was frequently referred to 
as the axle. Control was simply the normal 



airplane ailerons, rudder, and elevator. These 
surfaces were virtually useless at speeds below 
25 miles per hour and in descent. Fortunately, 
the basic autogyro was stable enough in 
these flight regions, so landings—in calm 
wind—were generally successfully made by 
low-time or even first-time pilots . But, 
everyone, including 
experienced pilots, was having trouble on 
windy days. As might be guessed, Cierva was 
already conceiving a way to give the pilot 
direct control of the rotor thrust vector. 

Invited by Pitcairn, Cierva made his 
third visit to the United States, arriving just 
before Christmas 1931. It was to be a working 
vacation. Cierva presented his ideas for direct 
control to Pitcairn and a small group during 
January and early February 1932 at Pitcairn's 
Bryn Athyn, Pennsylvania home. The concept 
was quite simple as the schematic, provided 



by Brie [52] for the Cierva C.30, shows (see 
Fig. 2-20). The spindle assembly would be 
mounted on a universal joint attached at the 
lower side to the airframe structure (i.e., the 
pylon struts). A control stick would hang down 
from the spindle into the cockpit. The pilot 
could pull aft on the stick handle, which, 
through an intermediate lever, tilted the 
spindle nose up and inclined rotor thrust 
rearward. Moving the stick handle right tilted 
the spindle to the right, which inclined the 
rotor thrust to starboard. Smith, in telling the 
Harold Pitcairn story [48], says that "Cierva's 
presentation, couched in mild bland tones, had 
a stunning effect [on the group] as he 
proceeded with a novel theory that he had 
developed in England." Smith writes later that 
"as he [Cierva] proceeded in an almost 
pedantic manner, the enormous significance of 
his thinking overwhelmed his audience." 
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Fig. 2-20. The direct control system of 
the C.30 [52]. 
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Brooks [7] notes that "Cierva achieved 
a workable system of direct control in Britain in 
March 1932. Later that spring, the C.19 Mk V 



with this improvement incorporated was 
demonstrated to Harold Pitcairn, Jim Ray 
[Pitcairn's chief pilot] and Agnew Larsen of 
the American Autogiro Company who had 
come to England specially to study this 
new development. Pitcairn and Ray later flew 
the C.19 Mk V. In April 1933, Cierva 
publicly demonstrated the direct control C.30 
prototype. Early in 1934 the direct control 
Avrò [A.V. Roe & Company, Cierva's 
manufacturer] C.30A entered full production 
in Manchester and deliveries stared in July 
[1934]." 

The universal joint Cierva 
incorporated allowed the pilot direct control 
of the longitudinal incidence angle (ihp) of the 
hub, relative to an aircraft station line. To 
define the hub angle of attack (ÓÒ̧ ) then 
required the sum of the autogyro waterline 
angle of attack (ocwi) and (0ChP). The hub could 
also be tilted left and right by an angle (≥Ù). 



These variable hub angles relative to the 
autogyro, (ihp) and (≥Ù), were governed by the 
kinematics of the pilot stick and linkage as Fig. 
2-20 shows. Direct control gave pitch and roll 
control independent of flight path velocity and 
was a major improvement. Wings and ailerons 
came off, and rudder and elevator became 
fixed-stabilizer surfaces. 

Pitcairn, Ray, and Larsen rushed home 
and immediately built a small prototype, the 
PA-22. Unfortunately, this autogyro experienced 
several development problems and took until 
mid-1933 before direct control was working 
satisfactorily. The PA-22 then became a test 
bed for many advanced concepts . In fact, 
Pitcairn did not produce a production direct 
control autogyro until 1941 (this was the 
Pitcairn PA-39). Efforts by Kellett were more 
successful, and they went into production with 
their KD-1, Fig. 2-21, which received its ¿“— 
(No. 712) in January 1935, with first delivery 



in early 1935 . Kellett used a conventional 
"joy stick" mounted to the cockpit floor rather 
than the hanging stick used by Cierva and 
Pitcairn. 

Unfortunately, direct control of the 
hub plane with a hanging stick did not 
appear feasible as larger-sized autogyros were 
studied. Experience up to the mid-1930s had 
shown that any appreciable dissimilarity in 
manufactured blades caused extreme feedback 
to the pilot's handle. These and other vibratory 
loads came on top of the normal steady loads 
created by rotor blade flapping. The 
magnitude of just the minimal loads at the 
pilot's handle is relatively easy to see because 
these minimal loads come primarily from hub 
moment due to flapping. Thus, the steady-hub 
pitching moment is 

Fr rR b 
(2.25) M p = ^ f - a l s . 



Now, using Fig. 2-20 and data from the Theory 
of Stresses on the Autogiro Rotor Blades by 
Cierva [12], consider the three-bladed (b = 3) 
Cierva C.30 as an example. Cierva says "the 
blade can be assumed to be an 18.5-feet-long 
uniform beam weighing 41 pounds." This gives 
a running weight (w ) of 2.22 pounds per foot 
and, therefore, a running mass (in) of 0.0689 
slugs per foot based on a gravitational constant 
of 32.17 feet-per-second squared. At 210 rpm 
for normal flight, rotor speed is 22 radians 
per second, and the centrifugal force (Fc) is 
calculated as 

44 

2.5 DIRECT CONTROL 



i 

Fig. 2-21. The first production direct control autogyro in the U.S. was the Kellett KD-1. 

The control stick was in the cockpit 
with control mechanization run up through 

the rotor support structure (photo 
courtesy of Jean-Pierre Harrison). 

(2.33) 

Í
R , fR - m£l2R2 

rQ2dm = J rQ2mdr = = 5,700 lbs. 



The flapping hinge offset (rp) was located 
1.75 inches from the rotor centerline, so rp 
= 1.75 inches . Therefore, the rotor system 
could generate, following Eq. (2.25), roughly 
15,000 inch-pounds of moment per radian of 
flapping, which translates into 260 inch-pounds 
per degree of flapping. With Fig. 2-20 as a 
guide, the first reaction to this moment is the 
end of "control lever fixed to rotor hub," which 
was about 11 inches long. Thus, the force on 
the "ball joint" would be about 24 pounds per 
degree of longitudinal flapping. The distance 
from the "ball joint" to the "universal joint and 
fixing of control lever" is approximately 3 
inches; from "universal joint" to the pilot's grip 
is about 49 inches. These approximate 
dimensions, following Fig. 2-20, suggest the 
pilot had a 16-to-l mechanical advantage, 
which would mean a longitudinal stick force of, 
say, 1.5 pounds per degree of longitudinal 
flapping (ais). (Note that these dimensions also 



give about 3 inches of stick travel in an arc 
per 1 degree of hub plane tilt, or spindle tilt, 
if you prefer.) 
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Fig. 2-22. Details of the Cierva C.30 upper 
control system [5]. 

A stick force of 1.5 pounds per degree 
of flapping might be acceptable if that was all 
the C.30 needed for trim, but, in fact, flapping 
could easily be 5 degrees at certain high-speed 
flight and center-of-gravity conditions. On the 
other hand, in low-speed flight, the rotor tip 
path plane remained virtually parallel to the 
hub plane, so the pilot was simply tilting the 
thrust vector without creating flapping. 
Therefore, Cierva added "bias springs" in the 
upper control system so the pilot had 
adjustments to bring his (or her) stick force to 
zero in high speed and to provide a force feel in 
low-speed flight. Details of the upper control 
bias spring system are shown in Fig. 2-22. 

The book by Reginald Brie [52] on how 
to fly the Cierva C.30 explains, in Chapter VI, 



several other facets of the "machine," which 
give considerable insight. I quote as follows: 

The main number of control movements essential in 
any aircraft are three — longitudinal, lateral, and 
directional, and, whereas these are normally obtained 
on the aeroplane by the coordinated movement of the 
control column, rudder and throttle, for the first time 
they are obtained with the "direct control" method 
employed on the modern Autogiro by the movement of 
the control column and throttle only. Whilst these 
two controls are independent in themselves they are 
not independent in their action, as an analysis of their 
functioning will show -

(a) A movement of the control column 
laterally results in DIRECTIONAL control. In other 
words, although the machine tilts as it turns, it is 
actually turning because of the tilt produced by this 
lateral movement, rather than tilting as a result of the 
turn. An analogy is provided by the man who steers his 
bicycle "hands off' through the movements of his body 
only. 
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(b) A movement of the control column fore and 
aft results in SPEED control. Within the limits of 
minimum and maximum speeds in horizontal flight, and 
with a constant throttle setting, if the control column is 
eased forward there will be an increase in speed and 
if backward, a decrease. 

(c) A movement of the throttle results in 
ALTITUDE control. Assuming the machine to be flying 
level at 60 m.p.h., if the throttle is opened there will be an 
increase in height, and if closed then a loss in height will 
result. It will thus be observed that there is a close 
relationship between (b) and (c), and it is necessary to 
appreciate how dependent each is for cause and effect 
upon the other, for once the minimum horizontal 
speed with full throttle stage is reached, there is a 
reversal in the results indicated in (b), as the control 
column then becomes the ALTITUDE control, and in 
order to gain height it must be eased FORWARD. The 
result of easing the control column backward at this 
stage (approximately 15-20 m.p.h.) would be to lose 
height, a situation fraught with an element of risk if 
practised at a low height with obstacles ahead, although 



the machine itself is under perfect control. 

Two examples will help to explain this 

1 . The most economical throttle setting for 
slow level flying is not that for the slowest minimum 
horizontal speed. For an indicated air speed of, say, 40 
m.p.h, in the first case the throttle will be about 
two-thirds open, whereas in the latter case at 15 m.p.h. 
full throttle is required. 

2. At full throttle one can achieve either 
maximum or minimum horizontal speeds in level flight. 

In order that these facts may be fully appreciated an 
analysis of the "drag" [drag that propeller thrust 
overcomes] on the Autogiro gives the following 
approximate results 

(a) Power [required by propeller to provide 
thrust that overcomes] losses due to friction [profile 
drag] on the rotor system which, owing to the 
continuous and uniform rotational speed within narrow 
limits of the rotor, are practically constant at all speeds. 



(b) Power [required by propeller to provide 
thrust that overcomes] losses due to the displacement of 
air to ensure adequate lift [induced drag]. These losses 
are at a minimum at high speeds and at a maximum at 
slow speeds, due to the difference in the amount of air 
encountered by the rotor per second, which is dependent 
on the machine's speed. 

(c) Power [required by propeller to provide 
thrust that overcomes] losses due to the resistance offered 
to a smooth air-flow by the fuselage and structure. The 
increase in drag from these sources alone being 
proportional to the square of the speed of the machine 
[parasite drag]. 

At high speeds, therefore, although the power losses on 
the rotor are less owing to the greater amount of air-flow 
dealt with per second by the disc, the drag from the 
fuselage, undercarriage, etc., considerably increases. 

Conversely, at slow speeds a point is reached where 
the rotor ceases to act at its optimum efficiency for 
ensuring minimum horizontal flight with full throttle, 
and where the machine will definitely lose height. 
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This, as stated previously, is at an indicated air speed of 
15 to 20 m.p.h., and in order to climb the control column 
must be eased forward, the best climbing speed being 
at approximately 65 m.p.h. 

Control Characteristics 

The main essential of flight is motion, for 
without it there can be no lift. On the Autogiro this 
motion is obtained by the automatic self-rotation of the 
blades during flight, which provides all the necessary lift 
independently of any forward movement of the machine 
as a whole. In addition, as all normal control surfaces, 
such as ailerons, elevators and rudder are suppressed, all 
necessary control is obtained by tilting the rotor disc 
in any desired direction about the horizontal; the further 
practical result is that stability and control are also 
independent of any forward speed of the machine. 
The rotor being a stable surface, the directional and 
longitudinal stability of the Autogiro under all conditions 



of flight is ensured by means of the fixed vertical and 
horizontal fins at the rear. 

The lift on all blades being equal, the machine 
flies on an even keel, and the resultant lift force on the 
rotor is located in close proximity to the centre of rotation 
of the blades, and in a direction that is normal under all 
conditions to the plane of the disc. In consequence, any 
tilting of the rotor disc from a normal position by 
means of the control column results in a displacement 
of the total rotor lift force relative to the centre of gravity 
position, which in turn causes an immediate change in the 
attitude of the machine. In other words, the backward 
tilting of the rotor disc by the easing back of the control 
column causes the line of the lift force to advance in 
relation to the centre of gravity of the machine, and the 
nose to rise. 

Conversely, the easing forward of the control 
column will result in the raising of the tail. 

A movement of the control column to left or 
right will cause the machine to bank, and at the same 
time to turn, the latter additional change in direction 
occurring as a result of the sideslip produced by the bank, 
the resultant wind action produced on the inner side of 



the machine acting on the fairly large fixed tail 
surface in much the same way as on a weathercock. 

It is of importance that the reaction of the 
machine to any given movement of the hanging control 
column should be thoroughly understood, as the first 
impression might be that the result would be the reverse 
of normal practice. This is not so, as a link is provided 
between the control column and rotor head, and if a 
movement is made to left or right the machine will turn in 
that direction. It is impossible, however, to sideslip or yaw 
independently of a turn. 

Very positive directional control of the machine 
on the ground is provided by means of a steerable tail 
wheel operated by conventional rudder bar. There 
being no rudder, the secondary sphere of usefulness of 
this control is as a "pilot's comforter" to those 
accustomed to conventional aircraft, who, through 
force of habit, would otherwise feel lost without 
something to do with their feet. 

With the method of control employed on the 
"direct control" Autogiro there is normally no 
corresponding increase in the load felt on the control 
column with an increase in movement as experienced on a 



fixed wing machine with ailerons and elevators; so, in 
order to give the pilot a corresponding "feel," a load or 
resistance is provided by artificial means, which consists 
of a bias gear in the form of coil springs attached to the 
top end of the control column. 
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In addition to making control more flexible 
the bias tends to make the machine automatically stable 
in all directions, as by the method of adjustment provided 
the machine can be trimmed for high- or low-speed 
conditions of flight, and also for variations in load; a 
further feature being that the control column has not only 
a tendency to remain in the normal flying position, but 
also to return to it if deflected, as, for instance, by an air 
disturbance. 

The discussion by Brie [52] is, of 
course, aimed at the general pilot and laymen. 
The overall tone is that the thrust vector is 
directed in space and the "machine" just 



follows. He does not hint, rightly so, at hub 
moment or other forces involved in the direct 
control of a modern autogyro. Fortunately, an 
entirely different view of flying the Cierva C.30 
is obtained from the comments of flight test 
pilots . This group of pilots has the 
responsibility to point out deficiencies and 
shortcomings in an aircraft, and they can be 
counted on to do so. In the C.30 investigation 
by the Air Ministry, a view from a test pilot 
is recorded in Appendix I of Reference [54]. 
The pilot, Squadron Leader H . P . Fraser, 
reports a number of shortcomings and at least 
one major deficiency (in my mind) that 
deserved notice. Some of them, which I have 
paraphrased, follow: 

1. The hand moves in the same way as in an aeroplane, 
but the control column tilts in the opposite direction. 

2. On takeoff and landing, the steering bar controls 
the tail wheel, which leads to an overwhelming desire 
to correct for drift by the steering bar rather than the 



control column. 

3. In the normal speed range the autogiro is very simple to 
handle, but 

a. there is a good deal of lag in the fore and 
aft control, though practically none in 

the lateral control, 
b. the control is rather heavy, especially in turns, 
Ò banking beyond 45 degrees can lead to a 

spiral dive of increasing speed with 
recovery possible only by leveling out the 

aircraft first, 
d. with aft control column movement, the 

autogiro swings to the right as the nose 
rises; pushing forward, the autogiro swings to 

the left as the nose falls, 
e. suddenly closing the throttle causes a nose 

left yaw, the reverse occurring when 
power is pulled, 

f. even in still air the autogiro cannot be flown 
hands-off for any length of time, and 

in average bumps it is definitely unstable; 
but departures from a given attitude 

occur slowly so control corrections can be 
made in a leisurely fashion. 



4. In flight above and below the normal speed range, the 
autogiro is not so easy to handle as might at first be 
expected, and 

a. up to 115 mph, the nose has to beforced 
down, but beyond that speed the autogiro 

becomes nose heavy. Beyond a certain 
speed it becomes very difficult, if not 

impossible, to recover from a dive. [My italics 
because it is a major deficiency.] 

b. in slow-speed flying there is a large time lag 
in the fore and aft control. 

Ò in slow-speed flying the control column 
cannot be pushed forward too quickly to 

increase speed or the autogiro will sink 
bodily onto the ground before it has had 

time to get the nose down and pick up speed. 
d. the safe height for slow flying at full 

throttle in smooth air over level ground is 
above 5 feet, while in bumpy air, stay above 

15 to 20 feet. 
e. descents at glide angles below 45 degrees, 

with or without engine, present no 
peculiar difficulty, 
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f. descents at gliding angles approaching 70 degrees 
are only possible by vigorous 

and skilful use of the controls, and the aircraft pitches 
and rolls considerably and is 

quite uncontrollable directionally. 

5. The takeoff is accomplished in three stages: 
a. Starting the rotor with the autogiro stationary. 
b. Accelerating the whole aircraft with the 

rotor disc at minimum incidence (stick 
forward), 

Ò Establishing autorotation by increasing disc 
incidence, thus accelerating blades to 

the speed of rotation necessary to lift the 
autogiro off the ground. 

6. Landing with the engine off necessitates two things: 
a. Having a minimum gliding speed of 40 

mph just before flattening out. 
b. Having no drift when touching down. 

7. Bad view downwards and ahead. 



8. If it became necessary to make a parachute descent 
from a direct control autogiro, the present form of 
hanging control column would probably hinder the pilot 
from getting out of the cockpit. On one occasion, small 
splits developed in the trailing edges of two blades during 
flight, causing the control column to vibrate through an 
amplitude of about 12 inches at high and 6 inches at low 
speed. 

9. Laterally, the autogiro rolls immediately [when] the 
control is applied, but there is a definite time lag before 
sideslip, which follows, has caused sufficient yaw to turn 
the aircraft. 

10. The lack of a rudder is considered a serious 
drawback, particularly for correcting drift when landing. 

11. It would be advantageous if [there were] some means 
of increasing control power to get the autogiro out of a 
dive. An elevator is suggested. 

12. The simplicity of the direct control should make the 
autogiro an easy craft to fly in clouds and conditions of 
bad visibility, but the possibility of getting into a 



dangerous dive makes blind flying definitely unsafe. 

This partial list oftest pilot observations 
did not keep the Cierva C.30 from receiving a 
commercial certification in Britain in 
December of 1933 . However, by United 
States helicopter standards created in 1952 [55], 
modified in 1962 [56], and used through 1995, 
the flying qualities of this aircraft would not be 
acceptable. Flying quality considerations such 
as aircraft trim, with associated control position 
and stick force, are key subjects that receive 
considerable attention by aircraft engineers. 
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Understanding how a direct control 
autogyro trims out aircraft pitching moment, 
and how the stick position influences this trim, 



is a very important subject. It was brought to 
Cierva's attention with a quite unfortunate, fatal 
accident caused by a change in airfoils while 
designing the C.30 . Prior to the C.30, all 
rotorcraft used airfoils having virtually zero 
pitching moment (see Appendix B) . For the 
C.30, Cierva chose to use a highly cambered 
airfoil, the Göttingen 606, which was 
developed in Germany. The intention was to 
improve rotor performance . This airfoil may, 
indeed, have raised performance, but the blades 
responded to the airfoil pitching moment with 
several degrees of periodic elastic twisting, 
which took trim control away from the pilot at 
high speed. The outcome was that at high speed, 
the C.30 could not be recovered from a 
high-speed dive. This led to the first fatal 
autogyro accident in Britain on January 21, 
1935. The Air Ministry grounded their C.30s 
and initiated efforts by the National Physical 
Laboratory and the Royal Aircraft 
Establishment that were reported in references 



[54] and [57]. The maximum speed of the C.30 
was placarded at 1.5 times 85 miles per hour 
(i.e., 127 mph) by the Air Ministry until a fix 
was found. Brooks provides many more details 
about the situation in reference [7], pages 192 to 
194. 

The trim situation and how periodic 
elastic twisting could cause a very serious, if 
not catastrophic, problem was examined by 
Cierva [12] who passed his notes to J. A. 
Beavan and — N. H. Lock. They analyzed the 
C.30 situation in depth, reported their findings 
[57] (in what I consider a classic piece of 
engineering), and showed that airfoil pitching 
moment easily explained the C.30 accident. In 
the United States, Kellett also used the 
Göttingen 606 airfoil in developing their KD-1 
Autogiro (Fig. 2-21), and ran into the same 
adverse longitudinal trim situation as the Cierva 
C.30. Richard Prewitt, the chief engineer at 
Kellett, along with his staff, developed a 



short-term fix for the problem. Prewitt wrote 
[43]: 

"Shortly after the first flight of this autogiro [the KD-1 on 
December, 1934], we found it to be longitudinally unstable 
above eighty m.p.h. We developed a theory of this 
instability, based on the assumption that the slightly 
unstable blade sections caused a negative pitching 
moment when operating on the advancing side of the 
rotor where the velocities are high. This theory proved to 
be correct when small turned-up trailing edge tabs were 
attached at the tips of the blades. In fact the pitching 
moment coefficient of the blade section was over 
corrected to the extent that the pilot reported it required a 
heavy forward load on the stick at high speed. This 
over-correction was rectified by successively cutting 
off the inboard end of the tab section until a desired 
longitudinal stability was obtained. Fortunately, the 
lateral stability was improved with the correction in 
longitudinal stability." 

Later, the flying qualities of the Kellett 
KD-Is were studied at the N.A.C. A. in 
Langley, Virginia. John Wheatley, another 
pioneer in autogyro rotor technology, wrote a 
number of exceptional reports that I will 



discuss later. References [58] and [59] deal 
with blade elastic twisting. He used data from 
the N.A.C.A. flight testing of the KD-1 to 
show how influential airfoil pitching moment 
characteristics were on the longitudinal trim 
of the direct control autogyro. Work from 
Lock, Beavan, and Wheatley led to the 
Göttingen 606 airfoil being replaced by the 
NACA 23012 airfoil. 
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2.6.1 Fundamentals 

Studying longitudinal trim, as Beavan 
and Lock did in reference [57], requires only 
the simplest force and moment diagram, which 
is provided in Fig. 2-23. 



Beavan and Lock wrote only one 
longitudinal trim equation to analyze the 
C.30 accident as you can see in Appendix II 
of their report [57]. Their equation, Eq. (2.34) 
in more up-to-date symbols, was an aircraft 
pitching-moment equation written in the 
body axis system. The body axis system 
follows the conventional aircraft waterline 
and station line references used by draftsmen to 
layout, for example, the side view shown in Fig. 
2-23 . Station lines are vertical lines that 
conventionally move from nose to tail. 
Station lines are perpendicular to water lines, 
which set vertical dimensions in the aircraft. 
The body axis reference system always rotates 
with the body, so that in Fig. 2-23, where the 
C.30 is shown landing nose up at the angle 
( ), this angle is measured between the 
gravity vector and a station line (or between 
the horizon and a waterline) . The aircraft 
angle of attack (‡‰Â) is measured between the 
flight path velocity (VFUght Path= VFP) and a 



waterline. 

(2.34) J ] Moments about e.g. = 0 « Mp + (TJ 

ip+HiJa-ThpC-Ltb (+Noseup). 

M 

H 

v\ 
w 

Fig. 2-23. The force and moment longitudinal 
trim diagram for the Cierva C.30 [52]. 
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Beavan and Lock, in writing Eq. 
(2.34), accepted a number of assumptions in 
their aircraft pitching-moment trim analysis, 
including: 

1. The C.30 was in level flight or only in a 
slight descent, so angles would be small, 

making sine of an angle equal to the 
angle (in radians) and cosine of an angle 

would be unity. 
2. The propeller thrust acts as a force passing 
through the aircraft center of gravity 

(e.g.), and the propeller normal force and 
pitching moment would be zero. 3. The drag 
and lift forces of the fuselage (includes wheels, 
rotor support, etc.) act at 4. 
the e.g. 
The fuselage pitching moment without the horizontal stabilizer lift (Lt) would be 

zero. 



5. The tail drag and pitching moment would be 
zero. 
6. The rotor would induce a velocity on the 
horizontal tail. 

Because of these assumptions, they did not 
worry about the force trim equations . They 
simply said that the propeller would provide 
thrust to overcome the drag of the 
C.30—whatever that might be—and they were 
satisfied with rotor thrust approximating the 
weight of the autogyro. However, for 
completeness here, the two force equations, 
written in the flight path velocity coordinate 
system, with many fewer assumptions, are 

Parallel to the flight path velocity (positive is forward) 

= 0 = WsmY+T m ,cos(a 4 c + i ] , I , ) -H„s i i i (o J l c 



+ iprop ) - Dfusdage ( 2 - 3 5 ) " T h p » ÿ a h p 

- Hh p cos ah p - L ^ sin ( aA C + itail - <xinterference ) 

- D,a i l cos ( aA C + itail - ‡€Â„≥ÂÍÔÒÂ ) 

Perpendicular to the flight path velocity (positive is down) 

£ Fz = 0 = W cos Û - Tprop sin (a A C 

+ iprop ) - H p r o p cos ( a A C + i p r o p ) - L ^ , ^ (2.36) 

- T h P

 C 0 S « h p + H h p S Ì n «hp - L«ail C 0 S ( «AC 

+ ^ i l — «interference J - *À‡≥≤ S l n (.«AC + 1tail — «interference J 

While most of the symbols used in 
Eqs. (2.34), (2.35), and (2.36) are defined in 
Fig. 2-23, some additional information is 
needed. First of all, the propeller thrust 
(Tprop), which is not shown in Fig. 2-23 for 
clarity, acts perpendicular to the face of the 
propeller. The normal force of the propeller 



(Hprop), also not shown, acts perpendicular to 
propeller thrust and is positive upwards. In 
addition, a propeller operating at angle of 
attack has a pitching moment (Mpr0p), also not 
shown, which is positive nose up. The face 
of the propeller need not be perpendicular to the 
aircraft waterline . In Fig. 2-23, I have shown 
the rotational axis of the propeller (ipr0p) at a 
negative incidence because the C.30 propeller 
incidence was set to a nose- down angle of ≥√Œ 
= -5 degrees. 
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The fuselage lift (LfuSeiage), drag 
(Dfuseiage), and pitching moment (Milage) are 
not shown in Fig. 2-23 for the sake of clarity. 
These are conventional aerodynamic loads 
that generally are assumed to act at the 
aircraft center of gravity. These fuselage loads 



follow conventional aircraft aerodynamics as 
described in any number of textbooks, for 
example, reference [60] . The horizontal 
stabilizer lift (Ltaii) is shown in Fig. 2-23 
because it is a major contributor to aircraft 
pitching moment, but neither stabilizer drag 
(Dtaii) nor pitching moment (Mtaii) is shown 
because they are generally small contributors to 
aircraft pitching moment. The horizontal 
stabilizer may not be installed parallel to a 
waterline. It can have some small angle of 
incidence (itaii), which, in the case of the 
C.30, was itaii = 2.0 degrees leading edge up. 
Loads from the vertical stabilizers are 
ignored completely in this study of the 
C.30 longitudinal trim. 

The lifting rotor induces a downwash 
velocity (Kv) on the horizontal stabilizer. This 
interference velocity is not small. The 
immediate effect of this interference is to 
reduce the angle of attack of the stabilizer by 



the angle («interference), which Beavan and 
Lock [57] calculated "on the assumption that 
the rotor is equivalent to a monoplane aerofoil 
[wing] of the same lift and span with elliptical 
distribution of lift." This assumption defines the 
induced velocity (v)—in rotorcraft aerodynamic 
terms—as 

(2.37) v = — ^ - r . 
2p(nR2)VFP 

Actually, if Beavan and Lock had wanted to 
make calculations that included very low-speed 
flight including vertical descent, they had 
available the classical rotorcraft assumption 
from Glauert given in reference [13], which was 

(2.38) 



v = 
T 

However, in their calculation of the interference 
angle («interference), Beavan and Lock accepted (1) 
small angle assumptions; (2) simple wing 
theory applicable to reasonable flight path 
velocities; and (3) a value   = 1.76. They thus 
arrived at 

Kv 
(2.39) tan o ^ ^ = ai n t n f t n ! n a i = — = 1.76 

2.6.2 Blade Twisting Effect 

Now let me return to the specific 
problem of why the Cierva C.30 Autogiro 
could not be pulled out of a high-speed dive. 
Beavan and Lock saw from their very simple 
aircraft pitching moment equation, Eq. (2.34), 

2p(7rR2)V1 



that the rotor hub incidence (ip) [and therefore 
the pilot longitudinal stick position (Ô)] was 
explicitly given as 

T,„ Ò - Hh„ a + L,b - M„ 
(2.40) L = ^ ^ * ! L. 

Thpa 
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The solution task only required calculating rotor 
thrust (Thp), rotor H-force (Hnp), hub pitching 
moment (Mp), and stabilizer lift (Ltaü). Beavan 
and Lock calculated thrust, H-force, and hub 
moment using the simple equations Lock 
originally gave in reference [14], but with 
their addition of steady and cyclic elastic 
twisting. (Since the original work by Lock, 
several authors have revamped, extended, 



changed notation, and otherwise adapted the 
equations as needed.) 

Beavan and Lock did not bother to 
express their results in longitudinal stick 
position. Rather, the adverse C.30 longitudinal 
trim situation was clear enough once they had 
the hub incidence angle (ip). However, for 
my purposes here, I will express the 
situation in longitudinal stick position (ÔYong.)-
The C.30 longitudinal stick position was 
kinematically related to hub plane incidence (see 
discussion surrounding Fig. 2-20) as 

(2.41) ô^g =(3-in. long, stick per deg. hub 
incidence )ip . 

The effect of the Göttingen 606 airfoil pitching 
moment coefficient (Cm =-0.052) must have 
been a real eye opener to these two engineers 
when they had their version of Fig. 2-24 in front 



of them. What should have been a positive stick 
gradient requiring the pilot to move the stick 
forward to increase speed became dangerously 
adverse above 80 to 100 miles per hour. Their 
prediction of flight test data when blade elastic 
twist was included is impressive. 

Longitudinal 
St ick 

Posit ion, » 

Flight Path Velocity (mph) 

Wiik Ehilic 

/ " -C k r v n C J I 
FUfhtTcal 

(KAM 1727) 

Fig. 2-24. Blade elastic twisting due to airfoil 



pitching moment adversely affected the 
C.30 longitudinal trim. 
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Beavan and Lock satisfactorily traced 
the inability of a pilot to recover from a high-
speed dive to longitudinal flapping (ais). What 
was happening was that the requirement for 
zero rotor rolling moment was being met by a 
combination of blade feathering, according to 
Eq. (2.1 1), and by flapping, according to Eq. 
(2.21). They found that, as speed increased with 
initial forward stick, elastic twisting tilted the 
rotor forward more than was required for trim, 
so the pilot was required to pull aft on the stick 
to bring the rotor tilt back. Unfortunately, the 
pilot ran out of aft stick margin, and from then 
on the autogyro began an outside loop! Brooks 



recounts on pages 193 and 194 of reference [7] 
that a test pilot, Alan Marsh, flying a float-
equipped military C.30, did recover from an 
outside loop situation by switching off the 
engine. Marsh landed on the water, restarted 
the engine, and taxied to shore. I can imagine 
Marsh wondering just who was flying the 
machine! 

In analyzing the rotor behavior, Beavan 
and Lock improved the equations Lock gave in 
reference [14] with the addition of elastic 
twisting. First they derived a very reasonable 
equation estimating blade elastic twisting (see 
Appendix D), which they wrote (with a little of 
my rearranging) as 

(2.42) 

Elastic ,„=≈ , (4x-x4)+M(3x_x')+Ì^L+|ì(2x-x! 



+ ^ L ( 3 x - x 3 ) s i n Y - ^ ( 2 x - x 2 ) c o s 2 v | / 

where the constants A, B, and — are 

A _ p c 2 R 4 Q 2

c B = m x c g R 3 Q 2 

2GJ m GJ 

C = 3 — * a n d x = r / R . 
GJ 

They conveniently provided the needed C.30 
rotor characteristics and operating conditions 
tabulated here: 



Torsional stillness, GJ 
Chord, Ò 
Radius. R 
Mess of blade per unit length, m 
Flapping hinge offset, √̂  
Spar axis behind airfoil leading edge 
Distance airfoil e.g. behind spar asis, x,.,. 
Geometrical pitch a! root, „^ 
Weight moment, Mp. 
Flappinp. inertia, 1œÚ 

Air density, p 
Advance ratio. | l h n 

Rotor speed, Q 
Gravitational constant, g 
Airfoil angle of zero lift, a„ 
Blade coning angle, ß„ 
Airfoil pitching moment, Cm 

17,720 foot-pounds/radian per loot run of blade 
0,917 feet 
18.5 feet 
0.0615 slug per foot 
1.75 inch (O.0O78SR) 
0.21091 feet (0.23 c) 
0.06 font 
0.0465 radians (2.664 degrees) 
338.6 foot-pounds 
129.8 slugs per square foot 
0.002378 slugs per cubic foot 
0.4 (Flight path velocity of 129 mph) 
25_65 rad/sec (245 rpm and dp speed of 474,6 fps.) 
32.17 fee t-p er-sec on d squared 
-2_58 degrees (-Û.045Û3 radians) 
5.32 degrees (0.09285 radians) 
-0.052 (nose down is negative! 
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Fig. 2-25. C.30 blade elastic twisting due to 
airfoil pitching moment at high speed. 

With the above information in hand, 
Beavan and Lock calculated blade elastic twist 
at four azimuth positions (\j/) for this high-speed 
point. They added the elastic twist to the blade-



root geometric pitch angle (6r0ot) of 2.664 
degrees . Their results, presented here as Fig. 
2-25, show that at the blade tip (r = R) the 
cyclic elastic twist amounted to nearly ±3.5 
degrees about a steady blade angle of 0.5 
degrees. This newly found feathering angle 
behavior needed to be added into the rotor blade 
flapping equation. 

In contrast to their rather accurate 
calculation of elastic twist, Beavan and Lock 
incorporated this elastic twisting into the 
rotor's contribution to longitudinal trim with 
a surprisingly crude approximation. They wrote 
that "In the first draft of the report [57] the 
approximate formula = 0 + ≥ siny was 
adopted, the values of 0 and ≥ being chosen 
to make coincide as nearly as possible with 
its value at 0.7R from the root, as given by 
the exact expression. This position was taken 
since, owing to the higher velocity there, the 
outer portions of the blades are much the most 



important." Their revised equations for 
calculating rotor thrust (Thp), rotor H-force 
(Hhp), hub pitching moment (Mp), and 
stabilizer lift (Ltaü) were then rederived based on 

(2.43) 

  = ¯Ó, -a„ + [0.21 «¿ + 0.293 ßoB + 0.228Au£,+0.455C] 
+ 0.586A|Xhp sirn|f-0.228Auhp cos2\|í 
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The six rotor equations describing rotor 
behavior that Beavan and Lock wrote formed a 
classical foundation to rotorcraft rotor system 
technology.8 In modern notation then, they first 
used advance ratio and inflow ratio as defined 



earlier with Eq. (2.29), which is repeated here 
for convenience as 

(2.29) IV = 
VFPcosahp 

V. 
and 

_VFPsincxhp-v 

They ignored powers of advance ratio greater 
than squared and proceeded to assume simple 
first harmonic flapping (ß) and first harmonic 
pitch angle ( ) of the form 

ß v = ß o - a i s c o s V - b l s s i n \ | / 
(2.44) 

0 v =0 o -B l c s in \ ( / 

where they set B1C =-0.586 V
2R4fì2^ 

2GJ ^mM-hp 

Then, in the order needed for calculation, they 



wrote (2.45) 

M.. ‚ - P a c R 4 

21 
Á ◊ + 4 ( 1 + ^  ) Ó - Á ^  ¬ ≥ Ò - J « Q.1 

f l a p " 

(Historically, it is worth noting that Lock 
introduced the notation y= pacR 4 /I f l a p in Part 
II of his March 1927 report, R&M 1127 [14]. 
At that time airfoil lift-curve slope (a) was 
taken as one-half of our modern lift-curve slope 
associated with Cf = aa where ‡ ~ 2n. Thus, in 
1927, when Lock wrote Û = (‡ in 1927) Ò R4 / 
Iflap , he numerically meant our modern 
definition. Beavan and Lock adopted the modern 
definition for airfoil lift-curve slope in their 
April 1936 report [57], although they had a 
typographical error in their equation 11.) 



8 fi 
„Ã-hpßo 

(2.46) bls=^- + A 1— -

l + 2 ^ p 

2 M h P + ^rihpÖo-B,ci1 + |M-hp 
(2-47) a l s= 1 

'-ivi. 
They knew that the torque equation should 
reduce to zero for the autogyro autorotating 
rotor, so they wrote this key equation (updated to 
the modern form) as: 

8 The most elementary rotorcraft aerodynamic theory that 
derives six classical equations formulated by Lock is (in 
my mind) quite well explained in the book by Alfred 
Gessow and Garry Myers, Aerodynamics of the 
Helicopter [61]. This is a time-honored reference book 
that is still available and should be found in the library of 



anyone interested in accumulating rotorcraft knowledge. 
Only the effect of blade elastic twisting ( Â) in response to 
airfoil pitching moment (— )̆ needs to be included, which I 
have done in Appendix E. 
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(2.48) 
2 1 1 2 

From just these first four equations, 
Beavan and Lock defined the autorotating 
rotor situation. They, with slide rale, pencil, 
and paper (or you, with a spreadsheet software 
like Microsoft® Excel®) first set values of rotor 
characteristics and operating conditions . This 

pbcRV,zR 8 ¥ ( I + M ˘ ) - : 



gave them p, a, xcg, c, R, Mw , Iflap, y, Oroot, oc0 
,VFP,rpm} |Xhp ~ VFP /Vt . They knew many of 
the blade input values "from measurements on 
the full scale blades made at the R.A.E." The 
Göttingen 606 airfoil characteristics, such as 
lift-curve slope (a), angle of zero lift (eco), 
and pitching moment coefficient (Cm), were 
obtain from wind tunnel tests. Operating values, 
such as rotor speed (rpm), came from C.30 
flight test data. All they had to do then was 
vary (Xhp), recalculating all four equations until 
the torque equation became zero . They were 
searching for a positive inflow ratio, since 
only the positive root of the quadratic in Eq. 
(2.48) is applicable for an autorotating rotor. 
Now having the inflow ratio they could 
calculate rotor thrust (ThP), H-Force (HhP), and 
hub pitching moment (Mp)9 from 

(2.49) 



pbcRV,-
hp _ _ a 

2 2 \  +ji1+f^ ] Ó -̂ ÿ¬≥Ò 

(2.50) -Ó„-
˚ÁÍÛ,2 Ú»Ë>Ò*.+-. 

(2.51) Ã = 
E, r„b _ *Ò *ß 

Ms 

The final steps were to calculate the hub 
plane angle of attack (fXhP) and, from the 
aircraft pitching moment equation, the hub plane 
incidence (ip) using 

A,ho ThD/p7tR2Vt
2 

(2.52) t a n c x h p = ^ + ̂ ^ = and 
W 2ithp>/it2

p+X2 4 



T h n c - H k a + L b - M „ 
(2.40) i p = ^ * ! p-

9 I have purposely left out a portion of the pitching 
moment caused by lateral flapping that arises when the 
flapping hinge is not at the center of rotation. Beavan 
and Lock correctly included the term even though it is 
quite small for the C.30 study they were doing. I will 
introduce the missing lateral flapping term later. 
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In Eqs. (2.49), (2.50), and (2.48), the 
thrust, H-Force, and torque coefficients are 
more commonly found today in coefficient form 
using a definition of solidity as the ratio of 
actual total blade area (bcR) to disc area 

,2 (7tR )—assuming a rectangular blade. Thus 



Vi f* T? 

Solidity = 0 = Y s o b c R = 7iR2G 
7tR 

(2.53) 

and therefore T p = ——r-, Hhp = -—-r, and 
G pbcRV,2 o pbcRV2 

CQ Q 
a pbcRVt

zR 

There is more to be learned from the 
Beavan and Lock report [57] as Fig. 2-26 
shows. The first computation these two 
engineers made was with a fixed 
collective pitch ( = 9root -a«, = 5.54 deg) and no 
elastic twist. Their trim solution showed that 
thrust exceeded the C.30 flight test weight of 



about 1,900 pounds, particularly at the higher 
speeds. This result is the top line in Fig. 2-26, 
where their calculated rotor thrust (Thp) is 
shown next to the open- circle data points . I 
confirmed their longitudinal trim analysis 
results with simple spreadsheet software; then I 
recomputed the trim adjusting collective pitch 
so rotor thrust equaled weight AND aircraft 
pitching moment was zero. 

Longitudinal 

Stick 
Position. 
(inche») 

Wilmut Fil . . 
I M 

iì.,,, - i s , =5.Mdeg, 

Flight Path velocity (mph) 

Predicted WMi Chuy Steady Elastic Twlsl 
enD,-a. vaifrd a* Thp = W= 1,«S lb. 

„,-Í.IWHi </y Predici«! With 
Elastic Twist 

T- = W=l,≥*≥lb î .]3 i fc i 

Ü è I Y A C J O 
Flislit Tc»! 

(RAM 1ÎÎ71 



Fig. 2-26. C.30 longitudinal trim analysis. 
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My additional result is shown in Fig. 
2-26 with the x symbols and a light dashed line. 
The collective pitch required is tabulated next 
to each x symbol. Clearly, elastic twisting, 
which reduces the mean collective pitch—the 
bracketed term in Eq. (2.43)—only accounts for 
about one-third of the C.30 adverse stick 
position characteristic . I suspect that if the 
flight- test-measured stick position trend with 
speed were no worse than my light dashed 
line, the C.30 would have been considered 
satisfactory. However, the periodic or cyclic 
elastic twisting created the dangerous 
characteristic of this Autogiro. 



Beavan and Lock ended their report 
[57] with conclusions and "Further develop-
ments." Their opening sentence to conclusions 
was: 

"The blades are found to twist to the extent of several 
degrees, in the sense that the mean pitch angle (at any 
radius) round the circle is decreased and that 
superimposed on this is a periodic variation." 

They ended their conclusions with: 

"[By] applying the results to the motion of a complete 
machine, much better agreement is now found with the 
experimental values obtained for incidence and stick 
position in gliding tests at the R.A.E., Farnborough. In 
particular, the somewhat anomalous reversal of stick 
position at the higher speeds is predicted." 

Their recommendations for follow-on work 
have occupied the careers of more rotor 
system technology engineers than I could 



possibly list. In April 1936, Beavan and Lock 
wrote: 

"An attempt should be made on the more complex 
problem of the bending of the blades, where the inertia is 
not negligible as is the torsional moment of inertia of the 
[blade element] section. 

In addition, further consideration may be needed with 
regard to the questions of tip loss and varying induced 
now over the disc. 

Wind tunnel measurements of the fuselage drag and 
rotor downwash on the tail are very desirable in order to 
make a more complete comparison of performance. 

The question of longitudinal and lateral stability can 
also be attacked from the theoretical side." 
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2.6.3 Flapping and Feathering 
Interchangeabilité 

The effect of cyclic torsional twisting 
was not the only key point Beavan and Lock 
made in their report [57]. They used C.30 
experimental data to confirm the interchange 
between first harmonic pitch change (Bic) and 
first harmonic longitudinal flapping (ais). They 
acknowledged, on page 1 3, "Cierva's 
conclusion that the [elastic] twist to some 
extent takes the place of [longitudinal] 
flapping." Further on they write that "this is in 
agreement with the theory of R & M 1127, Part 
I [14], where a non-twisting flapping rotor and 
a non-flapping blade whose pitch angle is varied 
sinusodially around the circle are compared." 

The fact that either (Bic) or (ais) can 
satisfy the zero rolling moment requirement was 
pointed out earlier with Eqs . (2.1 1) and 



(2.21). The exact interchange as affected by 
longitudinal trim became clear with the Beavan 
and Lock analysis. A key point from their trim 
study is shown in Fig. 2-27. This figure points 
out that the rotor angle of attack as measured 
between the flight path velocity and the tip path 
plane (see Fig. 2-28) AND the aircraft angle of 
attack as measured between the flight path 
velocity and a waterline (see Fig. 2-23) are 
nearly independent of how the rotor zero 
rolling moment requirement is met—provided 
the thrust equals weight in both cases. Beavan 
and Lock proved this very important and 
useful point mathematically. 

The proof that longitudinal flapping (ais) 
and cyclic pitch (Bic) are interchangeable on a 
one-for-one basis starts with the assumption that 
flapping is a small angle and the statements that 

(2.54) cxhp = ‡Ò,,, - a l s and therefore fl‹ = ’^ 

" [ ¿ À m d ^=ÿ' 



Then the hub plane inflow (Í¸) can be 
replaced in the Beavan and Lock equation 
for flapping, Eq. (2.47), so that 

8 ( 3 
2^hp ( 4 P -iVais ) + À 6 . " B i c [1 + «Vb 

(2.55) als = 2 ^ - ^ ~ 
1--HÎ 

2 Hi» 
Now collecting terms gives 

(2.56) 

‡≥8(≥-≤Ã≤)+‡≥8(2ˆË = ‡ ‚ [ ≥+|<] = 2Ï.|,1(◊≥.+|Ã.-‚≥Ò[≥+|<] 

and therefore, since the functions of advance 
ratio are the same for both longitudinal flapping 
(ais) and cyclic pitch (Bic), you have 



(2.57) a l s + B l c = 
«„÷◊ + Á*1*0«-

1 + 2 ^ p 
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Fig. 2-27. Trimming with cyclic pitch or 



longitudinal flapping result in nearly 
equal angles. 
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Fig. 2-28. The tip-path-plane angle of attack 
is the sum of the hub-plane angle of attack 

and the first harmonic 
longitudinal flapping, or Ó÷ = ah p + a)S. 
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The longitudinal pitching moment trim 



is nearly independent of whether the tip path 
finds its place in space with flapping (ais) or 
with cyclic pitch (Bic). The reason nearly is 
italicized is because the hub pitching 
moment (Mp) depends directly on flapping 
(ais) according to 

Fr r, b 
(2.51) M P = - ^ - a I S 

Therefore, if flapping is adjusted to zero with 
cyclic pitch according to 

(2.58) a , s= r - 2 BIC 

then the hub pitching moment will go to zero, and this will cause a change in the aircraft 

pitching moment solution. The change is very 
small in the case of the Cierva C.30 and hardly 
perceptible in Fig. 2-27. The reason for the 
small effect with the C.30 is that the flapping 
hinge offset (rp) is only 1 .75 inches or 
0.00788R. Thus, the aircraft pitching moment 
solution is driven much more by the rotor forces 



(Thp and Hhp) times their moment arms to the 
aircraft center of gravity, than by the hub 
pitching moment (Mp). 

One other contribution Glauert [1 3], 
Lock [14], and Beavan and Lock [57] made 
must be mentioned before closing this 
discussion of longitudinal trim. They 
provided a much simpler way to solve for the 
torque (or power) that a rotor required to 
produce lift. Their original calculations were 
based on Eq. (2.48), repeated here for 
convenience as 

(2.48) 

  * J ‚-  +H„ Vi s - J ^¸¿¬≥Ò + J M Ÿ A " JMJA*1,., 

Through a number of substitutions (plus 

Q _ _ = i i . f i + U = i _ i 
pbcRV,2R 8 V ^ " ' 4 



pencil, paper, and elbow grease), they proved 
that this cumbersome torque equation was 
nothing more than 

(2.59) 

In fact, when the coefficient form was stripped 
away, things got even simpler because 

(2.60) 

PowCT = QQ = T h p v-(T l l p 5 in« l 4 ,+H b p C o S a h p )V F P +-^ '- (1+3M£) 

and furthermore Í Thp sin ah p + Hhp cos ah p J 

is just rotor drag. 
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2.6.4 Stick Vibration 

The addition of mechanical rotor startup 
and direct control, the removal of the wing, the 
installation of more power per pound of gross 
weight, and the correction of elastic twist 
effects on trim plus other improvements led 
the military of several countries to seriously 
consider autogyros for field evaluation. 
Problems with stick vibration [62] with direct 
control rotors, however, began to be openly 
talked about. In fact, Captain Franklin H. 
Gregory, who was championing rotary wing 
aircraft in the U.S. Army [25], commented about 
the stick shake shortcoming at the banquet 
following the Second Annual Rotating Wing 
Aircraft Meeting. This was the evening of 
December 1, 1939. The banquet toastmaster, 
Laurence Le Page, invited Captain Gregory to 



say a few words, which were transcribed into 
the end of the meeting proceedings. After a 
pleasant joke, Gregory closed with two 
thoughts: 

"The rotary winged aircraft, the present 
rotary winged aircraft, does land in a surprisingly 
small amount of space, and every time I fly one across 
the country—particularly with a head-wind, I get 
discouraged because you don't go fast, but, on the other 
hand, I always fly low because the head-winds are also 
smaller down low and I think it is great because if the 
engine stops any of those fields down below are possible 
landing spaces. That is a fact. 

But, again, getting out on arriving at my 
destination I say 'Hello, Joe, how are you. ' (Making 
motion of hand quivering) Those of us that know 
anything of the present rotary winged aircraft know that 
the stick is directly connected to the rotor and there 
are certain vibrations transmitted to the stick and the 
stick does assume a periodic motion in the cockpit and, 
after flying a few hours you forget you haven't got that 
stick. So, to you engineers, I say, remove that shake and 
you have increased your popularity with the pilots 
tremendously." 



Shortly thereafter, the Army Air Corps lent 
the N.A.C.A. a YG-1B (a military version of 
the Kellett KD-1 pictured in Fig. 2-21) to 
specifically investigate control stick vibration. 
F. J. Bailey reported the investigation results in 
reference [63] in June of 1940. 

Bailey, who presented a paper at the 
Second Rotating Wing Aircraft Meeting (and 
presumably went to the banquet), begins his 
report introduction with: 

"Conventional three-bladed direct-control autogiros of 
the tilting-hub type are generally regarded as 
unsuitable for extended cross-country flights, largely 
because of severe vibration of the control stick that 
appears at airspeeds above 80 miles per hour. The 
importance of the problem of stick vibration has been 
recognized by designers and several solutions have been 
proposed." 

In the report summary, Bailey wrote that: 

"The most important component of the variation in stick 



force was found to have a frequency of three times the 
rotor speed and an amplitude that rose from negligible 
values at tip-speed ratios [VFp/Vt] below 0.20 to ± 5.2 
pounds longitudinal and ± 3.2 pounds lateral at 
tip-speed ratios of 0.35 . Variations in stick force at all 
other frequencies were small in comparison with those at 
three times the rotor speed." 

65 

2.6 LONGITUDINAL TRIM 



« tí 

#4 i._* 

0 

S' 

1 
Vert ical p in 

ijrt» of l a t e r a l - ' 
control trunnion 

i f AJCìB of longl tudinal -
; / o a n t r o l trunnion 

..ti Í 

Fig. 2-29. The Kellett YG-1B rotor system 163]. 

The report Bailey presented contained 
a sketch of the Kellett YG-IB rotor system, 
Fig. 2-29, which was 40 feet in diameter and 



rotated counterclockwise when viewed from 
above. The blade chord was 12 inches, but he 
noted that "over the outboard portion of the 
blades, between 72 and 93 percent of the 
radius, the chord was extended 1 inch by a 
trailing- edge tab. The tab was reflexed [bent up] 
approximately 10° to counteract the unstable 
center- of-pressure travel of the Göttingen 606 
[airfoil] section." The sketch Bailey included 
shows that the hub pitched fore and aft about an 
axis 1-5/8 inches ahead of the rotor rotational 
axle; the hub rolled left and right about an axis 
7/16 inches to port of the rotor rotational axle. 
Both of these "trunnions" were located in a 
plane 2-3/4 inches below the plane of the 
flapping hinges. 

A "control-force recording stick" was 
calibrated by loads acting about 1.9 feet above 
"a flexible, elastic section located near its 
lower end" that allowed deflection to be 
recorded on film. The calibration expressed 



moments about the trunnions in terms of stick 
force. The 
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calibration figures given were: 7.3 foot-pounds 
of longitudinal trunnion moment per 1 pound of 
longitudinal stick force, and 10 foot-pounds 
of lateral trunnion moment per 1 pound of 
longitudinal stick force. Bailey gave no other 
information about the control system. 

Bailey gives representative example 
waveforms of the "control-force recording 
stick" marked on the film. A tick mark on the 
film was made by a once-per-revolution 
counter, so that zero azimuth could be 
defined. The waveform, a Y versus azimuth 
trace, was then measured every 10 degrees by 



ruler to obtain a tabulated set of longitudinal 
and lateral moments versus azimuth. Then a 
12-harmonic Fourier series was calculated that 
best fit the waveform. The "control-force 
recording stick" had a natural frequency of 3 
1 cycles per second, so each harmonic of the 
recorded data was corrected for the 
instrument's dynamic amplification. The 
resulting waveform was so dominated by three 
cycles per rotor revolution and six cycles per 
rotor revolution, that Bailey used just the 
following simple Fourier series to present the 
final results: 

(2.61) ƒÃ¥ =A3cos3\|/+B3sin3\|/+A6cos 
6\|/ + B6sin6\ii. 

He removed the steady moment and 
tabulated the coefficients A3 through ¬· for 
both longitudinal and lateral moments at the 
nine speeds where measurements were 
obtained. His reasoning for not including the 



steady was that the steady only "indicated 
failure to trim out the average stick forces [to 
zero] with the bungee." 

Longitudinal moment about the hub 
pitch axis, Fig. 2-30, and lateral moment 
about the hub roll axis, Fig. 2-31, illustrate the 
3-per-rev character of the control loads at 97 
miles per hour. In these 2 figures, I have 
shown the Bailey 12-harmonic Fourier series 
fit to the recorded data, which are shown with 
the symbols. The waveform after correction 
for the dynamic response is also shown. This 
corrected moment waveform, when expressed as 
a stick shake in pounds, is described 
mathematically as 

(2.62) Long. Stick Force = 1.712 cos 3\|/ + 
3.740 sin 3\|/+ 0.014 cos 6\|/+0.904 sin 6\|/ 

(2.63) Lateral Stick Force = -2.50cos3\i/ +1 
.50 sin 3\|/ - 0.45 cos 6\\f -1.30 sin 6\\f. 



A very informative view of stick shake 
is shown in Fig. 2-32. Rather than waveforms 
plotted versus azimuth, the vibratory 
longitudinal stick force, Eq. (2.62), is plotted 
versus the vibratory lateral stick force, Eq. 
(2.63), in Fig. 2-32. As you look at this graph, 
keep in mind that your hand is being shaken 
three times per revolution and in a somewhat 
diagonal sense. You would feel a vibration at 
roughly 10 cycles per second, which is a very 
fast pounding. Bailey noted that stick vibration 
at low speed was "negligible." This would 
correspond to the flight path speed of 62 miles 
per hour, which is the smallest ellipse shown 
on the figure . He also noted in his report's 
introduction that "severe vibration of the 
control stick appears at air speeds above 80 
miles per hour." That vibration level is the one 
next to the smallest ellipse on Fig. 2-32. One can 
only guess about the comments from the pilot 
regarding stick shake at the 108-miles-per-hour 



test point! 
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Fig. 2-30. Longitudinal moment at the hub 
pitch trunnion at 97 mph [63]. 
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Fig. 2-31. Lateral moment at the 
hub roll trunnion at 97 mph [63]. 
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Calculating control loads and stick 
forces—even in the year 2010 with the best 
of theories and computers—is "iffy" at best. 
The problem can be addressed, but without 



including blade bending (over and above 
flapping), twisting, and lead-lagging, no 
meaningful estimates can be made . Even 
Cierva [12] was just beginning to scratch the 
surface of the problem in the early 1930s. 

There is, however, something to be 
learned without knowing all the details of the 
problem. Consider this question arising from 
the Bailey report: Why were the stick forces 
dominated by the three-per-rev waveform and, 
to a lesser extent, six-per-rev harmonics? The 
answer begins with the simplest view given in 
Fig. 2-33 . Suppose only one force, a vertical 
force, is acting at the flapping hinge . Assume 
there is no flapping moment at the hinge. This is 
not correct because the hinge uses bearings and 
the friction from a bearing creates a moment, 
which Pecker [44] shows is not insignificant. 
Now, thinking of the Bailey planform view, 
Fig. 2-29, the vertical force (FBiade i) creates 
a nose-down moment about the longitudinal 



control trunnion located a distance (a = 1-5/8 
inches) ahead of the rotor axis. The moment arm 
of this vertical force must include the flapping 
hinge offset rp = 1.781 inches . Therefore, the 
moment contribution from Blade 1 is 
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Fig. 2-33. The YG-IB longitudinal hub plane 



tilting geometry. The hub is in the rotating 
system and the blade is shown at \i/ 

= 0 degrees. The nonrotating longitudinal 
control trunnion is 1-5/8 inches 

forward of the rotor huh axle. 

(2.64) Blade 1 Moment = - ( a + rp cosy)FB l a d e l . 
Blade 2, following Bailey's sketch, Fig. 2-29, 

trails behind Blade 1 by 120 degrees, so it puts 
in a nose-down moment of 
(2.65) 
Blade 2 Moment = - √‡ + rp cos (u/ -120° )] FB l a d e 2 . 
Blade 3, following Bailey's sketch, trails 

Blade 1 by 240 degrees, so it puts in a 
nose-up moment about the trunnion of 

(2.66) 
Blade 3 Moment = - [ a + rp cos(\|/- 240° ) FB ] a d e 3. 
Now think about the total moment created by 
the sum of each blades' contribution. 



The three blade moments, when added 
together (and after a little trigonometry is 
applied), give a pitching moment about the 
longitudinal control trunnion of (2.67) 

Trunnion Moment = -a(F,+F2+F3)+—rp(Fj-Fi)siiH|;-i—^(F,+F2-2F|)cos\|;. 
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Now imagine that the vertical force of blade 1 
varies periodically with azimuth and can be 
approximated by a Fourier series of the form 

(2.68) F1=F0 + Flssin\|i + Flccos\|/+F2S 

sin 2\|/ + F2C cos 2\|/ + F3S sin 3\i/ + etc. 

If the other two blades are a perfect match with 



blade 1, then their vertical force becomes 

(2.69) F2=F0 
+Flssin(\)f-l^)+F,coos(\(/-120f)+F2Ssin2(\(f-l^)+FÍccos2(\|f-l^)+etc. 

(2.70) F 3 = F o + F l s s i n ( V - 2 4 0 ° ) + Fl c 

cos (\|/ - 240° ) + F2S sin 2 (\L/ - 240° )+etc. 

It is a simple matter to make the 
substitutions ofthe force equations (2.68), 
(2.69), and (2.70) into the trunnion moment 
Eq. (2.67). After you do the substitution and 
tackle the trigonometry, you get 

Trurmion 

Moment = -a[(3F0 ) + (3F3S ) sin3\|/+(3F3C ) cos3\|/] 

(2.71) 



-|{(3Iìc)+[(3F2S)+(3F4S)]sm3¥+[(3F2C)+(3F4C)]cos3v}' 

There are three things you should notice about 
this result: 

1. All the force harmonics that appear in Eq. 
(2.71) have been multiplied by 3, which 

is the number of blades (b). 

2. The force sum (Fi+F2+F3) acting at the arm 
(a) only has a steady component (3F0) 

and the three-per-rev components (3F3s) 
and (3F3C). This shows the other 

harmonics have cancelled out in going 
from the rotating system (i.e., the hub) to 

the nonrotating system (i.e., the trunnion). 
The next harmonic in the pattern would 

be a six per rev. Note that (3F0) is the rotor 
thrust (Thp). 

3 . The hub moment terms, those containing 



the hinge offset (rp), involve the force 
harmonics that are one less than the blade 

number (b) and one more than the blade 
number (b). This means moments translate 

from the rotating to the nonrotating 
system at harmonic frequencies of (b -1) 

and (b+1). The next harmonics in the 
pattern would be at six per rev and involve 

(F5) and (F7). 

The reason Bailey saw control load waveforms 
that were dominated by three per rev and, to a 
much less extent, six per rev, was because the 
Kellett YG-IB Autogiro had three blades— that 
were nearly perfectly matched. If the blades 
had been mismatched to any greater extent, the 
canceling of certain force harmonics would not 
occur, and the control load required to balance 
the trunnion moment would have severely 
shaken the pilot stick even more. 

Gessow and Myers [61] provide a short 



chapter at the end of their classic book that will 
introduce you to other vibration problems. 
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While Cierva and Pitcairn continued to 
equip their Autogiros with direct control rotors 
into the early 1 930s, others (notably Raoul 
Hafiier and David Kay in England, and E. 
Burke Wilford and Richard Prewitt at Kellett in 
the United States) made a practical design for 
the pilot to directly control the blade incidence 
or pitch angle ( ) shown fixed in Fig. 2-7 and 
Fig. 2-10. The Wilford design is particularly 
noteworthy. He successfully developed what he 
referred to as a "gyroplane," Fig. 2-34, that first 
flew in August 193 1. He intended to compete 
directly with Cierva, Pitcairn, and Kellett, 
using a very different rotor system and 



control system. The Wilford rotor system, about 
40 years ahead of its time, had neither flap nor 
lead- lag hinges, and, in terminology used 
today, was clearly a "hingeless" rotor system. 
You should recall that Cierva apparently tried 
some form of this control system on his 
second prototype as noted earlier in the rolling 
moment discussion, Section 2.1 . Wilford 
incorporated a blade incidence control system, 
Fig. 2-35, that made use of Eq. (2.57). He based 
his design, in part, on the inventions patented, 
and the prototype built, by Rieseler and 
Kreiser in Germany in 1926 [64-66] . The 
successful application by Wilford, Kay, 
Hafner, and Kellett was to become the key 
element in helicopter control and stability. 



-

Flg. 2-34. The first E. Burke Wilford "gyroplane" after some modifications 

on August 5,1932 (photo courtesy of Wayne 
Wiesner). 

D = 32, A = 804, bcR = 72, Chord = 1.125 feet = 13.5 
inches, RPM = 170, Sw = 100, Vcr= 85 mph, Vtand = 

26 mph, GW = 1800, Jacobs = 160 hp, DL = 2.24. 
First flight without wing on October 1,1932. 
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Fig. 2-35. The Wilford rotor system had neither flapping nor lead-lag hinges. Instead, 

blade feathering followed Eq. (2.57) to 
zero the rolling moment (photo courtesy of 

Wayne Wiesner). 

2.7.1 The E. Burke Wilford Rotor 
System 



The details of the Wilford rotor system 
are shown in Fig. 2-35 and, in my very rough 
sketch, Fig. 2-36, which follows shortly. There 
were neither flapping nor lead-lag hinges. The 
centrifugal force of one blade was exactly 
counteracted by its pair, which is a very light 
structural arrangement for blade retention. The 
four blades, grouped in counteracting pairs, 
were all fixed at the same root collective pitch 
angle (0o). Each blade pair could change pitch 
cyclically (that is, they followed ¥ = 0 - B1C 
sin\|/-Alccos\|/) because of the feathering 

bearings located just inboard of where the blade 
airfoil contour ends. Each blade in a pair had its 
cyclic pitch controlled by a pitch link. The 
bottom end of each pitch link was controlled by 
one arm of a "spider," an early version of 
what is called a swashplate today. The 
four-arm spider rotated with the blades about its 
own ball bearing. The inner race of the spider 
bearing was attached to a nonrotating rod and 



ball assembly that could tilt the spider about 
the ball just below the spider. Thus, the plane 
of the four-arm spider could be inclined 
relative to the rotational axis of the blades. This 
created up and down travel of the bottom of 
each pitch link, which changed the blade pair 
incidence in a sinusoidal manner as the 
blades rotated. In essence, these upper controls 
acted like a simple, variable-amplitude cam, 
which the pilot could control. 
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In contrast to the Cierva C.30 with its 
tightly packed, 1.75-inch flapping hinge offset 
(rp = 0.00788R) retaining 3 blades of 1 
8.5-feet radius, Wilford blade spars flexed 
about a point some 15 inches from the rotor 
centerline, and the blades were only 16-foot 



radius (rp = 0.078R). Therefore, according to 
Eq. (2.5 1), the Wilford rotor system was 
capable of generating very large hub pitching 
and rolling moments (about 10 times the hub 
moment of the C.30) to trim his "gyroplane" in 
flight. 

E. Burke Wilford, who was very well 
known, liked, and respected in the rotorcraft 
industry, told his story [67] about the 
development of "feathering control" at what 
became the first Rotating Wing Aircraft Meeting. 
This historic meeting was held at The Franklin 
Institute in Philadelphia, Pennsylvania, on Friday 
and Saturday, October 28 and 29, 1938 . The 
meeting was sponsored by the Philadelphia 
Chapter of the Institute of the Aeronautical 
Sciences, later to become the A.I.A.A. All the 
papers presented were made available in a 
bound volume; I have included the index to 
the volume in Appendix F. E. Burke Wilford, 
president of the Pennsylvania Aircraft 



Syndicate Ltd., was the I.A.S Philadelphia 
chapter president and general chairman of what 
we call today, an annual American Helicopter 
Society Forum. The meeting began with 
Wilford welcoming the large group of 
rotorcraft enthusiasts10 and thanking the 
committee of very prominent figures in the field 
who helped put the four-session event together: 

Mr. Agnew E. Larsen, chief engineer of the Pitcairn 
Autogiro Company 
Mr. Wynn Laurence LePage, educator, editor, columnist, 
and prominent rotary wing aircraft engineer Mr. Richard H. 
Prewitt, chief engineer at Kellett Autogiro Corporation 
Mr. James G Ray, chiefpilotforthe Pitcairn Autogiro 
Company 
Mr. Ralph H. McClarren, director of the Aeronautics 
section at The Franklin Institute 

He then went on, saying: 

"As this is probably the first rotary wing aircraft 
conference occurring in the world, we hope to make a little 
history here, and the only way that we can do that is for 
everyone to say what he thinks. Don't be afraid of 



hurting anybody's feelings, or departing from 
conventional procedure. That's what this meeting is for, 
and we hope that it will be the start of a real boom in the 
rotary wing aircraft industry. We hope to see that within 
the next ten years, there will be at least 10,000 men 
working in this industry. To all you young men that are 
here, why, this is the line to work in, because it is going 
places." 

Dr. Alexander Kiemin1 x of the 
Guggenheim School of Aeronautics at New 
York University was the chairman of the first 
session. Burke Wilford's paper [67] was the last 
paper presented in the first session. In his 
lecture, Wilford first showed a 7-minute film 
of the "development of feathering control, 
which I [Wilford] believe was the first rotor 
control which was ever flown in the 
world—the rigid blade adaptation to a rotor 
that flew without hinges, which Cierva said 
was impossible." He further notes that "ground 
resonance is still unsolved in all other types of 
rotary wing aircraft, this one doesn't seem to 



have it. But it is only fair, also, to say that this 
one hasn't had much flying, and it is now in 
the hands of the 

10 In Appendix I of the proceedings, Ralph McClarren, 
the meeting secretary, notes that 242 people registered at 
this first Rotating Wing Aircraft Meeting (1938), but no 
list of attendees is included. 
11 Dr. Klemin gave a special lecture titled Principles 
of Rotary Aircraft [68] at the regular meeting of the 
Franklin Institute at 8:15 p.m. on Thursday, October 27th, 
the night before the forum started. 
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N.A.C.A., and I hope they will give it a lot of 
flying." A portion of the film appears to have 
dealt with Cierva activities in 1928 in England, 
which made Wilford "realize that rotor control 
was an absolute necessity; to that end I 
[Wilford] got [Walter] Rieseler and [Walter] 



Kreiser, who were two men who started in 
Germany without knowledge of Cierva, to 
come to America; and in Professor Klemin's 
wind tunnel we made the first wind tunnel tests 
on rotor [blade feathering] control." 

The wind tunnel tests of rotor control 
plus early flights of the first Wilford gyroplane 
[69] on August 5, 1 93 1 , with subsequent 
modifications over the following year 
(including wings off), led to a quite 
acceptable autogyro, Fig. 2-34. In discussing 
the configuration development in his paper, 
Wilford makes a very significant technical point. 
He says: 

"I think one of the most interesting things which Elliott 
Daland [engineer] and Paul Hovgård [pilot and engineer] 
contributed in this particular year was the leading of the 
control to offset gyroscopic couple. Many people thought, 
may I say, semi-rigid blades were impossible, due to 
gyroscopic torque, but he [Daland, I think] led the 
control by the system of cut and try by 40 degrees. I 
believe Bleeker had done the same thing in his 



helicopter, and it appears necessary in any kind of 
feathering control. I think they also use it [lead the 
control] in the Hafner type, where they have hinges. You 
will notice the little ball stick in the middle. That was 
the cam [spider or swashplate upper control, see Fig. 
2-35], and it was effective for both longitudinal and 
lateral control. The angles of movement are exceptionally 
small—I think only a degree and a half on the blades." 

Wilford was highlighting the control geometry 
between the spider (i.e., swashplate) and the 
rotor response so that fore and aft pilot stick 
motion gave the aircraft pure longitudinal pitch 
displacement; and lateral stick movement only 
produced roll response. He also passes on the 
information that the cyclic pitch amplitude was 
on the order of "only a degree and a half on the 
blades." Wilford pointed out several times 
during the forum that his blades were definitely 
not rigid and, in fact, the behavior of his rotor 
system was not caused by gyroscopic forces. At 
one moment in the forum he questioned 
whether a truly rigid, propeller-like rotor blade 
could be made. 



It is relatively easy to understand 
how the "feathering, semi-rigid" rotor blades 
Wilford designed were able to control his 
"gyroplane" given (a) further discussion and 
expansion of basic equations already 
introduced, and (b) review of Fig. 2-36. To 
get orientated, reconsider the two equations for 
first harmonic flapping and feathering 

(2-72) ß y =ß 0 -a l s cos \ | / -b l s s in \ | / 

(2.73) = 0 - B 1 C sin\|/-A1C cos\|/. 

The sign convention and symbols used in Eqs. 
(2.72) and (2.73) have persisted for decades. 
They have been used by virtually all authors 
until the arrival, beginning in the 1980s, of 
advanced technical papers and newer text 
books, such as references [70] and [71], 
which assume the flapping and feathering 



motions are represented by more 
mathematically familiar positive Fourier series. 
The original equations grew out of autogyro 
analyses and were guided by some physical 
intuition about rotor system behavior. As you 
learned from the earlier discussion about 
flapping in Section 2.2, a rotor blade 
responds to an airload roughly 90 degrees 
later in azimuth. Thus, a reduction in pitch 
angle at \|/ = 90 degrees (i.e., a positive 
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control input of + B1C) leads to a nose-down 
input to the aircraft and an increase in aircraft 
speed, which is positive. The logic sequence is: 

a. the pilot pushes forward on the cyclic stick, 
which is positive (+5iong) b. the swashplate tilts 



to produce only a (+ Bt c) and no (Aie) 
Ò the blade element angle of attack at 
90-degrees azimuth is reduced d. the blade lift 
at 90-degrees azimuth, say at the tip, is reduced 
e. the blade gets a negative flap velocity, 
(dß/dt = Qalssin\|/) because (ais) is 

negative 
f. the flapping velocity integrates to ( ß = ß0 -
alscosx|/), which gives the 90-degree 

later response that some might call a 
gyroscopic response 
g. the rotor flaps down at 180-degrees 
azimuth to (ß0-a l s )and up at 0-degrees 

azimuth to (ß0 + als ) 
h. the rotor tip path plane tilts forward from 
trim by (ais) and the rotorcraft pitches 

nose down 
i. the rotor thrust vector is tilted forward 
j . an increment of positive propulsive force, 
[-T(-als)]5 is created k. the rotorcraft is 
accelerated forward which is positive 



speed stability 
(+AVFP/+A8long). 

2.7.2 Pitch-Roll Coupling With the 
Wilford System 

The Wilford rotor system introduced 
the equivalent of a flapping hinge far removed 
from the centerline of rotation. As noted above, 
the Cierva C.30 physical flapping hinge was 
offset to rp =0.00788R; Wilford blade spars 
flexed with rp = 0.078R. This difference caused 
a significant change in the rotor flapping 
response. The altered flapping behavior 
changed how pure stick movements must be 
coupled to blade feathering. 

Flapping hinge offset (rp) causes cross 
coupling between (ais) and (bis) • The basic 
equations defining the hub pitching moment 
(Mp) and rolling moment (MR) do not change, 



of course, which is to say 

(2.74) M p = ^ _ a l s and (2.75) 

Fr r. b 
M R = - ^ - b l s 

but the first harmonic longitudinal flapping 
(ais) and lateral flapping (bis) expressions— 
including the influence of flapping hinge 
offset—now become 

[^◊+|Ã.-(1+|ÏÙÒ] + Ÿ 
Y(R-'P) 

b* 

1 2 hip 
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M. 12% 

(277) bls = 
ï (R-

To see the coupling introduced by flapping hinge offset, consider a simplification 

where the advance ratio is low enough to 
ignore (i.e., \i2

hv «0 ) . Then Eqs. (2.76) and 
(2.77) can easily be solved simultaneously for the 
flapping coefficients to obtain 

(2.78) als = 

(2.79) bls = 

Then it follows that the hub moments are reduced to 



Fr r„ b 
(2.80) M p = ^—-

for pitch, and for roll, 

12r„ 

Y ( R - r p ) 

-B 1 C + 
12¸ 

y(R-%) 

(2.S1) M„ = 
F, r.b 

•◊ 
y{*-'f) 

TiA,c + 
12b 

ï ( R -%) 

Remember that (7) is the number Lock used in his equation where ( = –‡Ò -4/≥|‹–)
 ¯ 

discussed on page 58. 
From Eqs. (2.80) and (2.8 1) you can 

see that in order to obtain a pure, uncoupled 
pitching moment (MP), a forward 
longitudinal stick movement must introduce 
both longitudinal cyclic (Bic) and lateral 
cyclic (Aie). The proportions must be such 
that the rolling moment comes out zero; and, 
from Eq. (2.81), that means the term 



A 1 C + 
12r0 

r ( R " r
ß ) 

¬ 1— 
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must be zero. Therefore, if the forward stick 
motion (say 1 inch) produces 1 degree of 
longitudinal cyclic (i.e., Bic = 1 deg), then 
the same 1 inch of forward stick motion must 
produce a lateral cyclic amounting to 

\c -
12rß 

Y(R-%) 
¬ 

ic • 

Accept, for the sake of discussion, that the 
Wilford gyroplane had an "equivalent flapping 
hinge" of rp = 0.078R and a Lock number of Û 



= 5. Then Aie would need to be -0.2 degrees 
for every 1 degree of Bic- This represents a 
phase angle shift in azimuth of 11.6 degrees 
where the maximum resultant cyclic occurs. 

Now, with the preceding equations in 
mind, take a look at Fig. 2-36 where I have 
taken a schematic guess about how the 
feathering control and hingeless rotor system 
that Wilford designed worked. For the sake of 
simplicity, the master blade, blade 1, is shown at 
the 90-degree azimuth position, which, 
according to Eq. (2.73), is the azimuth 
position for maximum longitudinal cyclic (Bic). 
The blades are numbered in the direction of 
rotation, so blade 4 is at the 0-azimuth position 
on Fig. 2-36 . This orientation helps in the 
discussion of pitching moment. Wilford wrote 
in his paper that Elliott Daland and Paul 
Hovgård "led the control by the system of cut 
and try [my italics] by 40 degrees." 
Frankly, while I do understand "cut and try," 



I do not quite understand the words "led 
the control" or the magnitude of "40 
degrees." But, with modern knowledge, we 
know what Daland and Hovgård were doing. 
Their objective was to get the fore and aft stick 
motion from the pilot to give a pure 
longitudinal pitching response without some 
lateral response, such as aircraft rolling. The 
same uncoupling statement applies to lateral 
stick movement. 

Based on Fig. 2-35 and Fig. 2-36, the 
"system of cut and try" appears to have begun 
with a rotating, four-arm spider (or 
swashplate, if you prefer) placed below the 
blade spar feathering axis. I assume the spider is 
mounted at the top end of a nonrotating control 
rod with a bearing. This control rod, I imagine, 
extends from the fuselage interior, up the rotor 
pylon support, through the centering ball, and 
ends at the inner race of the bearing holding 
the spider. The lower end of the control rod can 



be moved to the right by the pilot pushing on 
his stick (or moved left by the pilot pulling on 
his stick), given the simple linkage shown in 
Fig. 2-36. 

The outboard end of each spider arm is 
attached with a rod end bearing, somewhere 
along the length of a pitch control lever. One 
end of the pitch control lever is fixed to the 
rotating blade support arms . The other end 
of the pitch control lever connects to the lower 
end of a pitch link. The upper end of the pitch 
link connects to the outboard end of the pitch 
arm. The inboard end of the pitch arm is rigidly 
attached to the blade spar. 
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Now suppose the bottom of the control 



rod is pulled to the right by the pilot pushing 
forward on his stick, which would be a positive 
stick displacement (+Siong) . The spider plane 
would tilt to the left about its longitudinal 
axis by an angle (%) . The 
spider-arm-to-blade-1 pitch control lever would 
rise an amount (h = %c). Because the pitch 
control lever pivots about its pinned end, the 
bottom of the pitch link would rise a distance 
[blade 1 H = (d+e)(h/e)] . Upward movement 
of the pitch link would feather the blade nose 
down because of the trailing pitch arm. This 
would be a positive longitudinal cyclic in the 
amount (+Bic -H/b), but this is not all that 
would be going on. Because of the 
longitudinal cyclic input, an increment of 
forward (negative) longitudinal flapping 
given by Eq. (2.76) would be created. 
This longitudinal flapping would give rise to an 
increment of rotor hub rolling moment. 

Now you can see that the pilot, with just 



forward stick motion, would be creating both 
pitching and rolling moments . With the 
control system coupled both mechanically 
and aerodynamically (do not forget ais and 
bis in the previous two equations), we can 
fully appreciate the acknowledgement by E. 
Burke Wilford of the lengthy trial and error 
search by Daland and Hovgård—and admire 
their success in obtaining uncoupled 
"gyroplane" response. 

It is impossible to conclude this 
discussion about the E . Burke Wilford 
"gyroplane" and its hingeless rotor controlled 
by feathering without recognizing John Brooks 
Wheatley. John ¬ . Wheatley was the first of a 
number of outstanding engineers at the 
N.A.C.A. to tackle rotorcraft problems head on. 
He, along with Glauert, Lock, Beavan, and 
others in England, single-handedly laid the 
foundation for a practical aerodynamic theory 
of rotors. In support of the "gyroplane" 



approach Wilford was offering, Wheatley 
published [72] an aerodynamic analysis 
showing that "the aerodynamic principles of 
the gyroplane are sound, and further research 
on this wing system is justified." The 
N.A.C.A. management clearly supported 
Wheatley's view because a 10-foot-diameter, 
4-bladed model rotor was built and tested in the 
N.A.C.A. Langley 20-foot wind tunnel. 
Wheatley reported the 4-bladed results [73] 
and included 2-bladed results as well. The 
primary results covered an advance ratio range 
from 0 to 0.8 and hub plane angles of attack 
from 0 to 90 degrees. He also provided data 
for the "idling rotor" case (he suggests an 
advance ratio of 1.5) covering angles of attack 
from 0 to 5 degrees at several collective pitch 
settings . As you read on, the name John 
Wheatley comes up quite frequently, and you 
will gain an appreciation of what he, his 
cohorts, and those who followed—supported by 
the N.A.C.A. (and later NASA) 



management—did for the rotorcraft industry. 

The demonstration by E . Burke 
Wilford that a nonflapping, feathering rotor 
system was quite feasible opened the door to 
our modern swashplate configuration. The 
first one through this door was Raoul Hafner. 
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Fig. 2-36. One possible schematic of the 

Wilford feathering rotor. 

2.7.3 The Raoul Hafner Rotor 
System—Part I 

Raoul Hafner [74], who immigrated 
from Austria to England in 1932, used his 



early efforts with helicopters as an "opportunity 
to discover many of the peculiarities of rotors." 
He quickly found that rotor control, not rotor 
lift and drag, was where he should focus his 
engineering attention. In 1934-1935 he 
completed design of the A.R. Ill gyroplane12 

which then "made its first flight at Heston in 
September, 1935, piloted by Captain V. H. 
Baker. Further development work was carried 
out during the following year, and in its final 
form the machine [see Fig 2-37 and Fig. 2-38], 
to which we give the type No. A.R. œ≤, had 
its first public demonstration when Flying 
Officer A. E. Clouston, R.A.F.O., flew it at the 
Society's garden party on May 9th of this year 
[1937]." 

1 2 Hafner notes that he used the word gyroplane for his 
A.R. Ill because it was "the official British class-name for 
a windmill plane." 
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Hafner read a lecture before the Royal 
Aeronautical Society on October 14, 1937. His 
excellent lecture, along with the very 
interesting discussion that followed, were 
published in the February 1938 issue of the 
Royal Aeronautical Society Journal [74] . The 
published paper is 35 pages long and the 
discussion that followed occupies another 16 
pages. Hafiier went into great design detail 
about his A.R. Ill and then continued with a 
detailed theoretical rotor analysis. He concluded 
the paper with an excellent control load 
analysis of what was to be a prototype of the 
modern swashplate control system. 

The description of the A.R. III 
autogyro by Raoul Hafner is accompanied by 
rather poor engineering photos but excellent 



drawings. In his introduction of the aircraft, 
he mentions that his two early machines 
(helicopters R. I and R. II) had neither flapping 
nor lag hinges and used only feathering for 
control. In this regard, Hafner started down the 
Wilford path at about the same time, but Hafiier 
soon gave up because the rotor shaft of the R. 
II was too rigid and the blades created 
"unpleasant forces" which proved to be 
"unsurmountable." He was thus led "to the 
adoption of freely hinged rotor blades." The 
Hafiier A.R. HI demonstrator was more than 
comparable to the Cierva C.30 or both 
Pitcairn and Kellett autogyros in the United 
States. For example, the A.R. Ill featured: 

a. a conventional welded tubular 
fuselage 

b. a cambered elevator arranged to 
counteract engine torque (flat surface to 
starboard, 



cambered surface to port) 
Ò pilot trimable elevator positions over 

a very wide incidence angle 
d. a cocked rudder hinge (forward at 

the top) so it was effective in descent 
e. airplane-like cockpit controls, albeit 

with a hanging stick 
f. pedal control of rudder and tail 

wheel 
g. pedal operated brakes 
h. a collective pitch lever mounted on 

the left-hand-side of the pilot 
i. a rotor startup drive and an 

overriding clutch 
j . a rotor brake 
k. flapping hinges on the rotor 

centerline (rp = 0) with three blades 
1. lead-lag hinges with friction dampers 
m. blade retention with a long tie rod 

(i.e., tension-torsion assembly) plus fail-safe 



secondary retention 
n. the lowest solidity rotor of the era for 

performance (a = 0.0237) 
o. zero pitching moment airfoil for 

blade sections 
p. high-inertia blades 

On top of this impressive list, Hafner 
successfully incorporated jump takeoff 
capability (discussed in the next section), which 
Cierva, Pitcairn, and Kellett were still 
perfecting. 
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Flg. 2-37. Raoul Hafner publicly demonstrated the prototype of our modern swashplate 

control system with his A.R. III on May 9, 
1937 [74]. 
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Fig. 2-38. The Hafner autogyro had a 
33-foot-diameter rotor, an 84-hp Pobjoy 
engine, 

and a takeoff gross weight of 890 
pounds. Rotor solidity was 0.0237 [74]. 

83 

2.7 SWASHPLATE CONTROL 



The upper control system of the 
Hafner A.R. œ≤ is quite clearly conveyed with 
two figures he included in his paper. I have 
reproduced them here as Fig. 2-39 and Fig. 
2-40. The key to the system is the upper end of 
the pilot "joystick" which passes through the 
spherical bearing located at the point Hafiier 
refers to as the "focus point." This long 
nonrotating control tube houses a rod that 
carries the inner races of the two tapered 
bearings. The outer races of the two bearings 
support the three-arm spider. The three arms of 
the spider are bent downward at their outer 
ends so as to lay in the flapping hinge 
plane for the nominal collective pitch setting. 
The cyclic stick input from the pilot tilts the 
upper control shaft about the focus point, which 
tilts the spider (i.e., swashplate plane). The ends 
of the spider arms are ball jointed to the pitch 
arm of each blade. The pitch arms, unlike the 
approach Wilford took with trailing pitch arms 



shown in Fig. 2-35, are leading the blade spar 
axis. 

The collective pitch input to the 
Hafiier control system was quite simple. The 
rod, sliding within the spider control tube, 
simply raised and lowered the two tapered 
bearings and spider assembly. This up and 
down travel of the rod was controlled by the 
pilot "lift" lever. Today the "lift" lever is referred 
to as the collective pitch control. 

The planform view of the Hafiier A.R. 
Ill rotor head, shown in Fig. 2-41, indicates that 
the blades rotate clockwise when viewed from 
above. The flapping hinges for all blades are at 
the centerline of rotation. The ball joint 
connection between the tip of the spider arm 
and the free end of the pitch arm does not lie on 
the flapping hinge line. If it did, the pitch arm 
would be considerably longer and the 3-arm 
spider would be indexed roughly another 30 



degrees in the direction of blade rotation. If you 
say that blade 1 is the master blade and that this 
blade is at the 0-degree azimuth position, the 
spider arm is advanced from the blade 1 span 
axis by approximately 60 degrees. 

Fig. 2-39. The Raoul Hafner A.R. ÿ rotor head in 1937 [74]. 
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Focal point for napping 
hinges and spider tilting 

Fig. 2-40. Layout details of the Hafner A.R. Ill rotor head [74]. 
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Fig. 2-41. The Hafher spider control system 
introduced coupling between flapping and 

feathering because of the 
control advance angle, A [74]. 
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The identification of flapping and 
feathering coupling with the pitch arm 
extending ahead (or behind) in azimuth of the 
blade span axis is quite significant to rotor 
system behavior. The primary influence is on 
pilot control and the secondary influence is on 
aircraft stability and gust response. Hafiier 
determined the amount of pitch ( ) coupling 
with flap (ß) using "the control advance angle" 
(A). He measured (A) as a positive angle when it 
was ahead of the blade in azimuth as shown in 
Fig. 2-41 . Were the pitch arms trailing the 
blade, that would be a negative (A). You can 
see from Fig. 2-41 that if, in the Hafiier design, 
the spider arm stays perpendicular to the rotor 
shaft (i.e., in the plane of the paper) then the 
ball joint at the end of the pitch arm must stay 
in the spider control plane . But now, if the 
blade flaps up (i.e., comes out of the paper) its 



feathering or pitch angle will be reduced. Just 
folding a rectangular piece of paper on a 
diagonal illustrates the flap-up/feather-down 
kinematics. The universally accepted sign 
convention for this flap-up/feather-down 
coupling is negative coupling. The coupling, as 
Hafiier used it, is defined as 

¿ 
(2.82) — =-cotangent A 

Aß 

and with the Hafner design, (ƒ = 60 degrees), 
which means that ¿ /ß = -0.5773. Of course, if 
the pitch arm/spider arm ball joint 
extended around to the flapping hinge 
line (A = 90 degrees), there would be no 
pitch-flap coupling.13 

The influence of pitch-flap coupling 
through the "the control advance angle" can be 
very large. While the fundamental flapping 



equation, Eq. (2.72), remains unchanged, the 
blade pitch definition from Eq. (2.73) must 
now contain a term reflecting the coupling. 
That is, the flapping equation remains 

(2-72) ß ¥ = ß 0 - a l s c o s \ | / - b l s s i n y 

but the feathering equation becomes 

(2.83) 

ƒ 
= 0 - ¬ 1 — sin y - A l c c o s y + — ß ¥ . 

A general solution approach, such as 
Wheatley provided [75],14 to solve for the 
thrust (2—Û/ÒÚ‡), the coning (ß0), the longitudinal 
flapping (ais), and the lateral flapping (bis) 
yields 

(2.84) 



2CT 1, (I 1 » - 1 „ [Yl 1 , V 1 . ƒ 
Aß 

13 The modern angle notation for this pitch-flap coupling 
is 83 which is equal to 90° - A. The modern definition is 
therefore ƒ /Aß = - tan 53. 
14 The John Wheatley classic 1934 NACA technical 
report [75] provides the simplest derivation of the blade 
flapping motions, rotor forces, and rotor moments I could 
recommend. Many authors have extended his original 
work, but no one, in my opinion, has improved upon his 
clarity. 
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(2.85) ß„ = 

ƒ , !˜+^(1+Ë≤) .-}Ã≥Ò-}¯*^˙‚ 

i+ 
«„„ ‰ 

2(R-rp) 8 ^ 1 + ÷ ^ ƒ  

Mw 



(2.86) a„ ^ ^ ^ . - ( • ^ • • Ÿ J ^ H ^ - ^ H ) ! ] ^ ^ ^ ! ^ 

i-¡K 

„Ã . 
(2.87) bl s -+A,c 

1 + 2 ^ , 

I have written these four equations in their coupled form so that the effect of flapping 

hinge offset (rp) and the pitch-flap coupling 
(ƒ /Aß) are clear. These equations are, of 
course, four linear equations. A simultaneous 
solution of the three blade motion equations 
(ß0, ais, and bis) is required before the flapping 
and blade pitch waveforms can be seen and the 
thrust can be calculated. 

Pilot control is the fundamental design 
aspect affected by pitch-flap coupling. To see 
the potentially adverse control situation, simply 
think of the Hafner A.R. Ill in vertical descent 
where advance ratio ([XhP) is, for practical 



purposes, zero. Because the Hafner rotor hub 
and blades were designed with the flapping 
hinge at the centerline of rotation (rp = 0), 
the 
preceding blade motion equations reduce, with UhP= 0, to 

(2.88) ß 0 =^= 
Á ◊ + 4 Ò 

1-
Û¿ 
8 Aß 
‰Ó 

(2.89) al s = - B l c - — b l s 

Aß 
‰Ó 

(2.90) b l s = A l c + — a l s 

Aß 

for rp = 0 and uhp = 0 

for ij, = 0 and uhp = 0 

for rp = 0 and uhp = 0. 

The first harmonic flapping coefficients, found by 
simultaneously, are 

solving Eqs. (2.89) and (2.90) 
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Note here that pitch-flap coupling is squared in the denominator, which means that coupling 

of either sign reduces flapping motion—for a 
rotor in axial flight. This is not true for a rotor 
in edgewise flight. 

Now consider how the pilot's stick 
motion affects longitudinal and lateral 
flapping. Suppose the pilot pushes the grip of the 
hanging "joystick" directly forward 3 or 4 
inches, say a distance (S]0ng). This will (with the 
reversing linkage Hafiier mentions) cause the 
spindle to tilt nose down an angle (cp) in the 
autogyro plane of symmetry. The amount of 
forward spindle tilt is dependent on the 
mechanical gear ratio between the stick 
movement and the spindle . Hafiier gives 
virtually zero information about this gear ratio 
(ƒÙ/Aõiong), but I would estimate, from Fig. 2-38 



and Fig. 2-40, that 1 inch of grip travel gave 
1.5 degrees of spindle tilt. Therefore let Ù = 
(A<p/A5iong)öiong. Now, with a tilted spindle, the 
spider will travel in a plane inclined to the rotor 
hub axis. Therefore, the ball joint at the 
pitch-arm-to-spider-arm junction will travel up 
and down a height (h bail joint) relative to its mean 
position. This height is simply 

(2.92) hbal]joint=( spider arm 
length ) [<p cos ( \|f+A)]. 

Keep in mind that the azimuth angle (\|f) is 
keyed to the master blade, which, in Fig. 2-41, 
I have taken as zero degrees. Now, the master 
blade feathering angle (or more commonly, the 
pitch angle) will be, assuming small angles, 

(2.93) 



¸˚≥≥.≥¯ _ √ spider arm length 
4 pitch arm length ^ pitch arm length 

From Fig. 2-38 (and with thanks to the 5-foot 
scale Hafiier included), the spider arm length 
(s.a.1) measures 7.5 inches. That is, s.a.l. = 
7.5. Furthermore, the ball joint is 6.625 inches 
measured perpendicular to the blade span axis, 
which defines the pitch arm length as p.a.l. = 
6.625. Note that knowing the individual spider 
arm and pitch arm lengths (s.a.l. and p.a.l. 
respectively) really does not matter according 
to Eq. (2.93). All that counts is the ratio of the 
lengths, which, in the Hafiier design, is 
quite adequately measured from Fig. 2-41 
as 2.15/1.86 =1.155 .In fact, the ratio 
(s.a.l./p.a.l.) is identical to 1/sin A with the 
Hafiier spider control system. 

ƒ Ù 

À 5 1 Ã 8

 , ‡ ˜ 

‹¸˘—Œ&(Û+¿) 

The master blade pitch angle, Eq. 
(2.93), takes a more familiar form by 



expanding its cosine function to give 
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s.a.l. ¿1ƒ‘ s J s.a.l. . 1 A(p 
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 s m¥ sinA jASlonfi

 ,,M8 [sinA jAÔlong 

¿ ƒÙ c ƒÙ ? 
= H — r—z—ol n n„ cosw — i L sinw 
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 ,ong V ƒÓ1ÓÔ‚

 lonê 

because — =-cotangent A 



You can immediately see that the forward 
movement of the pilot "joystick" grip 
introduces both longitudinal and lateral 
cyclic pitch to the blades. That is, 
because = -A1C cos\|f-Bl c sin\i/, the pilot 
forward longitudinal stick input with the 
Hafiier spider 

control system is really giving the rotor 

A ¿ * _ Ÿ _ and 
AßjA8l0„g 

1— ‰ 5 long • 
long 

These kinematics can be substituted into Eq. 
(2.91), and the A.R. Ill blade flapping motion 
responds to a longitudinal stick input in vertical 



descent as 

(2.96) a l s = - ^ ô l o n g b l s = 0 
long 

This is really a beautiful result. 
Of course, this result might have been deduced 
directly from Eq. (2.91) because if lateral 
flapping is to be zero (i.e., bis = 0), then Eq. 
(2.91) says lateral feathering (¿˛) must equal 
pitch-flap coupling (ƒ /Aß) times longitudinal 
feathering (B]C) . Therefore, longitudinal 
flapping (ais) will equal negative longitudinal 
feathering . The Hafher control system design 
yielded uncoupled response to a fore and aft 
longitudinal stick motion in a vertical descent, 
and the same is true for lateral stick motion. 
Furthermore, the coupling was minimized in 
steady-level flight. Of course, if the flapping 
hinge offset were other than zero, then there 
would have been some coupling. The Hafner 



paper [74] has a lengthy section dealing with 
the theory of the rotor. The control system 
design plus engineering analysis shows that he 
knew exactly what he was doing. 

2.7.4 Gust Response With Hafner Rotor 
System 

As I stated earlier, pilot control is the 
fundamental design aspect affected by pitch-flap 
coupling. Hafiier clearly ensured that the pilot 
would have no surprises in this regard. The 
second most important aspect is aircraft 
response due to a disturbance. A good example 
of a disturbance is a gust. 

Imagine that the A.R. Ill, while flying 
in trim at 115 miles per hour, encounters a 
20-foot-per-second updraft. The pilot takes no 
corrective action so his control-inputs to blade-
feathering remain fixed. Assume the autogyro 



is trimmed with zero longitudinal and lateral 
flapping before the updraft is encountered. 
The question is: What does the rotor do? This 
question is answered by comparing the two 
columns in Table 2-1, which were calculated 
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using Eqs. (2.84), (2.85), (2.86), and (2.87).15 

The first column shows the trim conditions 
prior to the gust. The second column of Table 
2-1 shows that the 20-foot-per-second gust 
immediately increases rotor thrust by nearly 60 
percent. This is an increase in load factor from 1 
g to 1.56 g and a very noticeable bump to 
the pilot. Additionally, the rotor flaps aft 0.94 
degrees from its 0-degree trimmed state. This 
causes the autogyro to pitch nose up, since the 
rotor thrust vector is now inclined aft of its 
trimmed orientation. The rotor also flaps 



laterally 0.45 degrees. This tilts the thrust 
vector slightly, which introduces a rolling 
moment to port because Hafner chose 
clockwise rotor rotation when viewed from 
above. Fig. 2-42 shows the calculated 
waveforms. 

You can see that the Hafner control 
system design for his A.R. Ill gave the pilot 
uncoupled control and minimized aircraft 
response to disturbances . His control system 
was easily on par with modern standards. 

Table 2-1. The Hafner A.R. III Response to a 
20-fps Vertical Gust With Control 

Advance Angle of Positive 60 
Degrees, ¿ /Aß = -0.578 



Input Parameter 
Flight Speed, V (mph) 
Rotor Speed (rpm) 
Hub Plane Angle of Attack, ahp (deg) 
Advance Ratio, php 
Induced Velocity, v (fps) 
Inflow Ratio, i*,, 
Pilot Input to Blade Pitch 

Collective Pitch, 0 (deg) 
Longitudinal Cyclic, Bl c (deg) 
Lateral Cyclic, A,c (deg) 

Results 
Rotor Thrust, Thp (lbs) 
Coning, ß„ (deg) 
Longitudinal Flapping, aiS (deg) 
Lateral Flapping, bis (deg) 
Flapping Amplitude (deg) 

Trimmed 
115 
270 
+5.5 
0.36 
1.33 

+0.0320 

+5.19 
+3.29 
-1.95 

900 
+5.45 

0 
0 
0 

20-fps Gust 
Same 
Same 
+12.3 
Same 
Same 

+0.0751 

Same 
Same 
Same 

1,300 
+7.64 
+0.94 
+0.45 
+1.04 

15 Hairier provides virtually no A.R. III dimensional data 
in his Society lecture [74]. He does give the rotor area as 
846 square feet from which the diameter is 32.82 feet. 
The three blades are quoted as having an area of 20.04 
square feet, which makes solidity 0.02369 and an 
average blade chord of 0.4071 feet. Fortunately, his 
Flight magazine article [76] is more helpful . This 
article gives a flight weight of 900 pounds and a 



blade centrifugal force of 3,400 pounds. I guessed a 
normal rotor speed of 270 rpm and, therefore, a uniform 
blade 
section mass of 0,031 slugs-pcr-foot to give 3,400 pounds of centrifugal force. The flapping second moment of 
inertia calculates as 45.66 slug-fr and, therefore, the Lock number comes out at 8,8. The flight path speed of 

1 15 miles per hour plus an estimated hub plane trim 
angle of 5.5 degrees nose-up seemed to give reasonable 
results. Brooks [7] provides some information about gross 
weight and speed. 
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Flg. 2-42. Rotor trim upset due to a 20-fps 
vertical gust at 115 mph. 

An appropriate question to ask about the 
Hafner control system design decision at this 
point is "Why not have a trailing pitch arm 
where the control advance angle would be A = 



-60 degrees? Or, for that matter, why not have 
zero pitch-flap coupling (i.e., ƒ = 9 0 
degrees)? After all, Eq. (2.96) shows that the 
pilot inputs would be uncoupled." This 
question is answered with Table 2-2. Clearly, 
the flapping response is reduced as long as 
ƒ /Aß is negative. Conversely, positive ƒ /Aß 
values where flap up increases pitch are 
clearly to be avoided. Excessive lateral flapping 
alone would create a dangerous aircraft. 

Table 2-2. Response to a 20-fps Vertical 
Gust With Various Values of ¿ /Aß 

Pitch-Flap Couplings 

Parameter 
Hafner Control Advance Angle, A (deg) 
Delta 3,S> (deg) 
Rotor Thrust. Th„ (lbs) 
Coning, (k (deg) 
Longitudinal Flap, ais(deg) 
Laienil Flap. b]H (deg) 
Flap Amplitude (deg) 

Trim 

Variable 
900 
5.4S 

0 
0 
0 

À≤≤/À(≤ 
0 

90 

0 

1,535 

9.07 

1.91 

1.64 

2.52 

À≤≤/À|≤ 
-0.578 

60 

30 

1.300 

7.64 

0 9 4 

0.4S 

1.04 

ÀŒ/À» 
-1.0 
45 

45 

1,214 

7.12 

0.51 

0.25 

0.56 

Ali À |! 

-1.732 
30 

00 

1,138 

6.66 

0.20 

0.20 

0.28 

AO/Aß 
1.0 
-*5 
135 

5,960 
36.70 

7.04 
21.19 
22.33 

ƒŒ.'Î 
0.578 
-60 

150 

2,151 

12.92 

2.71 

4.95 

5.64 
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You should take careful notice of the 
last two columns in Table 2-2. These results 
suggest that the more positive ƒ /Aß becomes, 
the greater the gust response. In fact, there is a 
value of positive ƒ /Aß where flapping 
motion is completely divergent. In simple 
mathematical terms, this means that there is no 
simultaneous solution to Eqs. (2.85), (2.86), and 
(2.87). Therefore, longitudinal flapping (ais), 
lateral flapping (bis), and coning (ß0) are 
indefinable. In terms of the dynamic equation 
of flapping motion as explained by Johnson, 
starting on page 602 of reference [70], the flap 
frequency is reduced from once per revolution to 
zero. A simple equation estimating this critical 
pitch-flap coupling to absolutely avoid is 



(2.97) ¿ 
Aß 

1+-

1- ' Œ 
(1+1.803(4+2.5940 

2.7.5 The Raoul Hafner Rotor 
System—Part II 

Hafiier [74] summarizes the control 
system noting that "it is in fact due to the 
smoothness and precision of this control that 
the pilot is able to carry out the various flying 
manceuvers with accuracy and confidence, of 
which the aviation correspondent of a leading 
London newspaper, when describing the 
demonstration at this Society's Garden Party, 
stated that 'No flying machine ever built is so 
manoeuvrable as the Hafner gyroplane,16 for in 
effect the whole of the sustaining member 
[the rotor] is also a control surface, 
infinitely and instantly responsive.'" To 



substantiate his claim, Hafiier tells the Royal 
Aeronautical Society members that "the 
fundamental difference between the two 
rotors [other autogyro control systems like the 
Cierva C.30 tilting hub direct control and his 
design] lies in the fact that the hub of the Hafner 
rotor rotates about a rigid axle through which all 
the flying loads are carried direct to the 
fuselage, which the variation of incidence is 
achieved by a separate control linkage which 
enables the rotor to be controlled by light loads 
on the control column, which, as is shown in 
the mathematical analysis of control and as has 
been proved in flight, is free from all parasite 
loads and vibrations." Recalling the earlier 
discussion (Section 2.6.4) of vibratory control 
loads measured by Wheatley [62] from the 
N.A.C.A. with the Pitcairn YG-2, and Bailey 
[63] with the Kellett YG-IB, the words 
Hafiier spoke would have been music to the 
ears of Captain Frank Gregory. 



Hafiier included his control load 
analysis near the end of his lecture . He 
reminded the audience that the blade was 
retained to the hub with a long tie rod, which I 
have shown here in Fig. 2-43. One feathering 
bearing is clearly shown just outboard of the 
lag hinge in his drawing. He states that: 

"The blades produce no [torsional] moments about 
their longitudinal [spanwise] or pitch change axes due to 

16 When I read that the "aviation correspondent of a 
leading London newspaper" wrote that in his column, I 
believe the fixed-wing community would have hotly 
disputed the claim. Certainly, the Cierva Autogiro 
Company was quick to take issue as you will read shortly. 
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(a) aerodynamic forces, because the blades 



are fitted with aerofoil sections, the centre of 
pressures of which lie always on a straight 

line coinciding with the pitch change axis; and 

(b) weight and centrifugal forces, because the 
centre of gravity of each blade hes also in this 

[pitch change] axis." 
This frees him to first calculate control loads 
only due to twisting the tie rods. He assumes 
that the feathering motion is periodic as given 
by Eqs. (2.83) and (2.72) combined so that 

ƒ 
» = 0-¬1 — sin \r '-Alcrosv+—(ß0-alsrosy-bls siny) 

(2-98) , N , I , 
L ƒ9… W_ ‰ . Ì . (. ‰Â 

= „+—-ß„ - ¬,√Õ b., sinw- ¿,„+—a,- cos\if 
l, • AßK oJ [ ,c Aß ISJ V I, lc Aß 1SJ ” 

Tic.-rod a i tac ft. m cul 

in roloi hltulc. 



faà ! i... i... ËÊ&˚ı‰Ï‡Ò¯ˇ 
k v m w A v / j l I í 

¡su -lå « : •J¿X;;A 

È Ë ‰ ≥ Ï „ Ú-Õ i , jjjjujjj /““À .:•>". i'.. .••.. { 
tyr»:;:' 

Fig. 2-43. Each A.R. ÿ blade was retained by 
a tie rod [74]. 
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The control loads depend on the 
forces required to twist the tie rods under 
a centrifugal force. Assume a tie rod was made 
of spring steel. Perhaps Hafner used classical 



torsion theory of the era, provided, for 
example, by the second edition of 
Mechanical Engineer's Handbook [77] by 
Marks. In this 1925 handbook, the torsional 
stiffness of the tie rod (in modern notation) is 

Q 
(2.99) Torsion Moment = G J - . 

Hafiier does not give the tie rod dimensions in 
his Society lecture [74], but in a later Flight 
magazine article [76] he states that 91.4 
inch-pounds of moment twists the assembly 
5.5 degrees. This information says that the 
torsional spring constant, (GJ/L) in Eq. 
(2.99), equals 635 inch-pounds per radian. Fig. 
2-38 shows that the tie rod was about 50 inches 
long, and from the Marks handbook, Section 5, 
spring steel has a sheer modulus of elasticity 
(G) of 12,000,000 pounds per square inch. 
These estimates suggest the tie rod polar 
moment of inertia (J = rcd4/32) was 0.002644 
inches,4 and therefore the tie rod diameter 



was about 0.40 inch. Hafner notes that his 
preliminary stress analysis was favorable, and 
then goes on to say: 

"but in view of the importance of this member one 
of these rods was given a very thorough test for possible 
fatigue effects due to the torsional oscillation. A tensile 
load four times the normal operating load was applied to 
one end through a large roller bearing, the other end 
being rigidly held. A torsional oscillation was applied to 
the free end with an amplitude more than twice the 
maximum possible in the aircraft, and with a frequency 
approximately four times that occurring in flight. The 
tie-rod underwent about three million reversals 
(equivalent to about 300 flying hours) without showing 
any sign of fatigue or strain, although one bearing failed 
in the course of the test." 

Hafiier appears satisfied that the tie rods can 
be designed based only on centrifugal force 
considerations saying "the proportions of the 
tie-rods are such that from a stressing point of 
view, the twisting causes only a very small 
increase in the stress intensity due to the 
centrifugal load...." 



In fact, the tie rod was rather highly 
stressed and was, therefore, probably made of 
nickel chromium steel with a Brinell 
hardness over 250. Assuming it had an 
0.40-inch diameter, the tie rod area was 0.1289 
square inches. Hafiier writes that he tested it in 
torsional oscillations with "a tensile load four 
times the normal operating load." He gives the 
normal centrifugal force as 3,400 pounds [76], 
which means the tie rod was being tested at a 
tensile stress (Stensiie = 4 CF/A) of about 106,000 
pounds per square inch. The Marks 1925 
handbook suggests, on pages 480/481, that the 
tie rod probably would not have yielded (i.e., 
take a permanent set) until the stress reached 
20 to 50 percent higher depending on the 
exact composition of steel—and any 
manufacturing defects. I suspect that the 
threaded lengths of the tie rod, even though 
of larger diameter as shown by Fig. 2-43, 
was of much greater concern. 



One thing seems clearly apparent about 
the tie rod design. Hafher made sure that the 
rotor could be over-sped by at least a factor 
of 1.5 for jump takeoff and, perhaps, even to 
twice normal rotor speed. Secondly, he refers 
to his concept [76] as "the torsionally flexible 
member described in my patents Nos. 
418,212 and 418,698 published in October 
1934." Presumably these are British patents. 
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Now, having some rough idea about 
the tie rod properties, let me go on to the pilot 
control loads. The blade is feathered by twisting 
the tie rod. The tie rod is twisted nose-up by a 
force acting up at the spider-arm-to-pitch-arm 
ball joint (Fbaii joint) as Fig. 2-40 shows. The 
pitch arm length (p.a.l.) was taken earlier as 



6.625 inches, which means that the ball joint 
force is 360 pounds per radian of pitch or about 
6.3 pounds per degree of feathering ( ¥ ) . This 
force for one blade, say the master blade, is 
resolved into the spider nonrotating spindle roll 
and pitch axis system by the spider arm length 
(s.a.l.) simply as 
(2.100) 

Spindle Roll Moment = RM imlle • 
GJ 

L(p.a.L) 
[(s.a.l.)sin(l|i+A)] 

and 
(2.101) 

Spindle Pitch Moment = PM GJ 
L(P.a.l.) * 

[(s.a.l.) cos (\|√+ƒ)1. 

As noted earlier, the ratio of spider arm and 
pitch arm lengths is (s.a.l./p.a.l. = 1/sin A). 
Then, substituting the periodic feathering, Eq. 
(2.98), into the spindle moment equations 



gives the blade 1 contribution to the spindle 
moments as 
(2.102) 

and 
(2.103) 
¬ÿÂ1–Ã^=≤^[( .+^.)-[‚,Ò+^‹,≥)‡≥„ ≥-(¿Í +^.‚)»» ,][»,8( ,+ƒ)]. 

Of course, the contributions from blade 2 
and blade 3 must be added. This is done by 
repeating Eqs . (2.102) and (2.103), but with a 
blade 2 azimuth of ˘ = Vi + 120° and a blade 3 
azimuth of |/Á = \|/i + 240°. The trigonometry is 
somewhat tedious, but the result is simplicity 
itself. 

The resulting spindle roll and pitch 

moments for the Hafiier three-bladed rotor are 

only steady moments—there are no vibratory 

components—given by 



(2.104) 

RM 
spindle 

_ 3 / G J 
2U A l c + - a l s j + ̂ B l c + - b l s J cot À 

and 
(2.105) 

PM spindle 
= 3(GJ' 

Aß Bic+T^^is 
¿ 

,c Aß 1SJ cot À 

There is, of course, a vertical spindle load that 
the pilot must apply with the "lift" lever to 
increase the collective pitch of the three blades 
simultaneously. This load amounts to (2.106) 

Spider Lift Foice=3^¥eo+^po-‡— )+3(VfR)U.+|g|0 
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The second vertical load in Eq. (2.106) comes 
from operating the blade at any pitch angle 
(other than zero) in a centrifugal force field. 
This force is somewhat akin to sitting on a 
swing, twisting the swing, then letting go and 
the swing untwisting. The force depends on the 
polar moment of inertia (≤ ) of the airfoil-shaped 
blade section. However, if the blade section 
were cylindrical, this force would be zero. With 
respect to this vertical force, Hafner installed 
the tie rods at the angle expected for flight 
(Oinstaii) to give the tie rods a centering position 
and reduce the "lift" lever load to near zero in 
flight. Note that the 3 in the preceding 
equations denotes the three blades, so the 
equations can be used for any number of blades 
(b) by simply replacing the 3. 

To get the pilot forces at the "joystick" 
grip, Hafher gives the information [76] that the 



resultant spindle moment 

| R M ! p y i e ) 2 r ( P M s p a J 2 for 5.5 degrees 
of feathering "and 

including friction on the pitch change bearing 
and ball joint due to control loads =91.4 lb. in." 
Additional friction in the "control mechanism" 
adds 2.27 inch-pounds so that together the 
"total moment, 94.12 inch-pounds [there must 
be a little more somewhere] gives a stick load 
of 2.51 pounds." This information implies an 
equivalent mechanical gear ratio of 37.5 to 1. 

From the little sketch below, the pilot 
grip force (P) is related to the nonrotating 
spindle moment as 

(2.107) P =—(Spindle Moment). 
ac 

Fig. 2-39 indicates the lengths (a) and (b) are about equal, which 
makes Ò = 37.5 inches for the Hafiier A.R. III. 

.Spindle 
Moment 

«À 



b 
Hamer closes his analysis of control loads [74] by addressing 

Pivot r4 

/ "Control Load Due to Moment of Inertia 
of Blade about Pitch Change 7 Axis." 
The half page derivation is ill advised, in my 
opinion, because / he leaves a 
distinctly wrong impression. However, in his 
"Summary of P ^ j Mathematical Analysis" 
he says "The analysis further shows that if the 
plane of rotation of the rotor [i.e., the tip path 
plane, Fig. 2-9] coincides with that of the hub 
[giving zero flapping], which arrangement is 
to be preferred, then the inertia of the blades 
with respect to the pitch change axis acts 
exactly in the opposite sense to the action of the 
tie- rods, thus very fortunately, reducing still 
more the loads in the joystick." His 
statement, written as a single degree of freedom 
vibration problem in modern notation, becomes 



(2.108) 

Torsion Moment = L — ^ 
dt 2 

d2e„, fGJ À 
+ I»fi , L v 

Since the feathering motion is simple 
harmonic, d 2 9 v /dt 2 = - Q 2 ( , - 0 ) , the 
inertial once-
per-revolution torsional moment about the 
pitch change axis is cancelled, which reduces 
the torsion moment equation to the static 
problem Hafher solved. In effect, the blade is 
near resonance when feathered at once per 
revolution, and the torsion moment depends 
primarily on the tie rod spring constant (GJ/L). 
It is precisely this fact that makes the Hafiier 
control 
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system design so attractive—and so feasible, 
particularly for larger machines—a point that 
Hafher drives home in his Flight magazine 
article [76]. 

Before leaving the Hafher story of 
swashplate control development, there was 
some very interesting discussion that followed 
his Royal Aeronautical Society lecture [74]. 
The chairman, Lieutenant Colonel J. “. C. 
Moore-Brabazon, a past president of the 
Society, opened the discussion by immediately 
saying that in a hundred years' time people 
would be saying "What wonderful engineers 
they had in those days, what marvelous 
machines they designed, but what poor 
photographs they took of them." Brabazon 



took Hafner to task and suggested "to the young 
workers present who were trying out new 
things that they would do well to be really 
careful about their first photographs." Hafher, 
in his turn, apologized and added that the film 
"represented the first effort of an amateur." 

Chairman Moore-Brabazon then asked 
Captain Frank Courtney [42] to say a few 
words. Courtney reminded the group that even 
though he had been in America the past few 
years, he had stayed close to "rotative-wing 
aircraft and still believed these rotating wings 
were the solution of the problem of safety in 
flight." He did include the statement that 
because the autogyro "had not leapt suddenly 
into tremendous success right at the start, 
people had regarded it as being, while very 
interesting, neat, and even beautiful, not 
particularly reliable." 

Dr. A. P. Thurston was asked to 



speak next and he began by saying that "it 
was difficult for him to realise that when he first 
met Herr Hafher he could hardly speak a word 
of English, but he had delivered his lecture 
that evening as one who was perfect in the 
language." Thurston went on to remind the 
audience that Major Jack Coats' [late of the 
RAF] generosity helped Hafiier through the 
"development and building of the present 
machine and its forerunner." Major Coats first 
met Hafiier in Vienna in 1930 and was so 
impressed he agreed to "set aside a certain sum 
of money for the building of machines [these 
were probably the R. I and R. II helicopters] 
and their further development." Hafiier 
responded that he was grateful for the reference 
Dr. Thurston made to Major Coats, because to 
him "is due a great deal of credit for anything I 
have been able to achieve." 

The third audience member to speak 
was another pilot, Reginald Brie [52] who 



wanted to keep his remarks short so that "as 
much time as possible should be allowed to the 
unconverted." Brie noted that he had known 
Herr Hafiier since 1932 and thought that he 
"was imbued with an infectious enthusiasm 
such as seemed to grip all those associated 
with rotative-wing flying." 

Dr. H .— . H . Townend, the next 
audience member to speak, apparently had 
absorbed all of the Hafher engineering analysis, 
had seen the Garden Party flight 
demonstration, and chose to raise a very 
significant point. He was puzzled about "the 
difference in performance, particularly in 
controllability between the de la Cierva 
autogiro and the Hafiier aircraft." Townend 
saw that rotor control by tilting the hub or by 
swashplate was aerodynamically the same and 
that it therefore "seemed to him inadequate 
to account for the difference in controllability 
[between the two control systems]." Hafher, in 



his response, said, "There is very little 
difference aerodynamically between the Cierva 
autogiro and the Hafher gyroplane. 
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The extra controllability of the latter [spider 
control] is mainly due to the fact that the 
control is free from parasitic loads, and 
together with a low gear ratio to the 
joystick, which is possible in such a case, 
enables the pilot to carry out the various flying 
manceuvers quickly, effortlessly, accurately and 
with confidence." 

The next several audience members 
who spoke touched on several subjects which 
I will briefly summarize as follows: 

Dr. Watts: Now that lifting and controllability are 



demonstrated, what about performance? 

Mr. Reder: As a member of the Cierva Autogiro 
Company he thought it was too soon to make any 
comparison with different types of rotative-wing aircraft 
and that he hoped "they all got what they wanted to see, 
which was a machine that could carry out taxi flights 
from house to house." 

Mr. Forman: From his experience of the work in 
America, he thought "they [Pitcairn and Kellett] were 
having about the same amount of success over there as 
was attained in Europe by Herr Hafher and Senior de la 
Cierva." He said that "when high speeds were achieved he 
thought the whole problem would be solved." 

Mr. Kronfeld: "Why had Herr Hafher given up—he 
hoped only for the time being—the idea of going up into 
the sky absolutely vertically?" 

Mr. Norman: The machines were coming along he could 
see, but what about "places from which such aircraft could 
be operated, in the centre of cities, and that would 
involve the question of flying in air much more turbulent 
than that experienced on the aerodromes where tests 
were at present carried out." 

Mr. Radcliffe: "Up to the present, gyroplanes have not 



shown a very good ratio of gross weight to tare weight 
[weight empty] and could Herr Hafher indicate what this 
ratio might be when the all-up weight [takeoff gross 
weight] is 9,000 pounds." 

The discussion part of the paper 
Hafher published [74] ends with a 
6-1/2-page communication from Dr. J. A. J. 
Bennett. Keep in mind that at the time of the 
Hafiier lecture (October 1937), Dr. Bennett had 
stepped forward to fill Cierva's position as 
technical director of the Cierva Autogiro 
Company because of Cierva's death on 
December 9, 1936 . One can imagine that 
Bennett was disappointed in not attending the 
lecture—or, if he was there, he chose not to 
speak, preferring a written discussion. At any 
rate, Bennett's 6-1/2 pages gave Herr Hafher a 
thorough lesson sprinkled with some very 
pointed remarks. 

Apparently a "controversy," as stated 



by Hafner, was in full roar. The chronology of 
the situation seems to have begun when (if not 
before) the Hafiier A.R. Ill performed at the 
Royal Aeronautical Society Garden Party on 
May 9, 1937. Clearly the press gave the 
demonstration, which included jump takeoffs, a 
glowing report as did the many people who saw 
the "gyroplane" fly. That event led to Hafher 
giving his lecture to the Society on October 14, 
1937 . Then Bennett wrote an article about 
Hafiier's lecture for Flight magazine [78], 
which was published on October 28, 1937, 
just two weeks after the lecture. The article 
Bennett wrote set the mood of the Cierva 
Autogiro Company. Hafher replied in detail to 
the article by Bennett in the November 1 1, 
1937, issue of Flight [76]. At this point the 
Flight magazine editor intervened with: 
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"The arguments pro and con could obviously go on 
indefinitely. While Flight has been very pleased to give 
the hospitality of its columns to Dr. Bennett and Mr. 
Hafher we do suggest that the discussion should now be 
continued in the Journal of the R.Ae.S-Ed." 

After that exchange, the Hafher lecture was 
published in the February 1938 issue of the 
Royal Aeronautical Society Journal. It included 
the communication by Bennett, which, as 
Hafher saw it (and as I thought when I read 
both), was "on the whole a repetition of an 
article published by him [Bennett] in Flight 
of October 28th 1937, where he opened a 
controversy on my paper." 

An opening facet of the "controversy" 
was that Bennett continually referred to the 
Hafher hub and control system as a "false 
hub." Hafner, in his published paper, really 
took issue with that description saying, "Dr. 
Bennett considers the general use of the phrase 



'direct feathering' to describe the A.R. Ill 
control as misleading terminology, since bodily 
tilting of the hub also produces feathering, and 
moreover he prefers to describe the former 
[Hauler's system] as a 'false hub' control. I 
cannot agree with this nomenclature which 
confuses means with ends." Bennett, after a 
couple of engineering pages, does equate the 
spider plane to "the false hub." Fortunately, both 
Hafiier and Bennett were at least in agreement 
that both systems achieved control by tilting 
the rotor thrust vector relative to the aircraft 
center of gravity. However, they both went to 
enormous mathematical length to state that 
flapping and feathering were equivalent, [see 
Eq. (2.57)], when the objective was to reorient 
the tip path plane. 

Bennett, in his communications, does 
congratulate Hafher "on designing such a neat 
and spectacular machine " But very 
pointedly refers to several Cierva British 



Patent Specifications that covered every 
important aspect of the Hafher design. 
Specifically, Bennett refers to 

• B.P.S. No. 410532—November 1932, Spider • 
B.P.S. No. 264753—November 1925, Delta-3 • 
B.P.S. No. 393976—December 1931, Benefit 
of focus point 

Furthermore, Bennett made sure everyone 
knew that "the word Autogiro is the 
registered trade mark of the Cierva Autogiro 
Co." To me, many parts of the Bennett 
communication sound as if the Cierva Autogiro 
Company was preparing to take Hafher to 
court. And yet, Peter Brooks, on page 21 
of reference [7], suggests that "Hafher is 
believed to have made use of several Cierva 
patents with Cierva's knowledge and 
permission." Of course, by the time of this 
"controversy" Cierva had, unfortunately, been 
dead nearly a year. 



However, I think the real heart of the 
"controversy" was twofold. First, the Hafher 
swashplate design plus tie rod blade 
retention reduced control loads, both steady 
and vibratory, in comparison to the Cierva C.30. 
Bennett acknowledged this point, but blamed 
the characteristics of the C.30 on the cambered 
airfoil. Secondly, the jump takeoff capability 
of the A.R. Ill was enhanced by the pilot 
having a "lift" lever, which Bennett said 
Cierva felt was an unwanted cockpit control 
because the "consistent use of the control in 
the most effective manner is probably beyond 
the capacity even of an expert pilot." (I doubt 
the pilots took that comment to heart!) It took 
Bennett and Otto Reder completing the C.40 
(under development at the time Cierva died) 
before the Cierva Autogiro Company had, by 
August 
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1938, an Autogiro that compared to what the 
Hafher A.R. Ill gyroplane demonstrated a year 
earlier. I will return to this "controversy" 
again when the subject of jump takeoff is 
addressed.17 

While all this progress (and 
controversy) was going on in England, the 
swashplate control efforts of Raoul Hafner were 
carried forward by Richard Prewitt, chief 
engineer at the Kellett Autogiro Company in the 
United States. The Prewitt design came closest 
to what we think of today as the modern 
swashplate control system. 

2.7.6 Closing Remarks 

The modern version of a blade pitch 



contiol system is shown schematically in Fig. 
2-44 . The swashplate, really a large ball 
bearing as Fig. 2-44 suggests, is the bridge 
between the nonrotating environment of the 
pilot and the rotating world of a blade . The 
inner ring of the swashplate is nonrotating and 
is ball-mounted to a slider. The slider permits 
the swashplate to travel up and down the rotor 
shaft a short distance of only several inches. 
The ball allows the swashplate to tilt left or 
right, and fore or aft, in response to pilot 
input. Maximum angles of swashplate tilt 
today are on the order of 15 to 25 degrees. 
The pilot dictates the swashplate rise and fall 
(i.e., the linear travel of the swashplate along 
the rotor shaft) with a "collective stick." He 
or she (or even some form of autopilot) 
controls the swashplate tilt in any direction with 
a "cyclic stick." 

The physical connections between the 
collective and cyclic sticks used by the pilot, 



and the nonrotating ring of the swashplate, 
have been made in any number of ways as 
new technology evolved. The Hafher hanging 
stick gave way to cables, pulleys, tubes, and 
bell cranks such as Kellett used in their XR-3 
and XR-60. Today, hydraulic actuators 
combined with electronics and computers 
provide extremely reliable control for modern 
rotorcraft. 

The ball bearing feature of the 
swashplate bridges the gap from nonrotating to 
rotating systems . The rotating ring of the 
swashplate is forced to rotate with the shaft by 
a "scissors" assembly (not shown), which allows 
swashplate tilting. Pitch links then make the 
connection from the swashplate rotating ring to 
each blade pitch arm. The pitch arm is rigidly 
attached to the blade-root end. 

17 The Raoul Hafher paper [74] contains even more 
worthwhile material than I have touched on here. One 



thing is for sure, the discussions following a lecture to the 
Royal Aeronautical Society were very well recorded. 
They make reading historically significant engineering 
absolutely fascinating for me. 
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Fig. 2-44. Blade feathering and a modern 



swashplate gave the pilot complete control 
(drawing by Rick Peyran). 

The blade-root end is generally of 
circular shape and is attached to the hub with 
two feathering bearings and a "tension-torsion 
strap," which, in the Hafher blade retention 
assembly, was a long tie rod. The two 
feathering bearings react flap and lead-lag 
bending moments created by all blade loads. 
The tension-torsion strap restrains the blade 
against centrifugal force, but is designed to be 
quite easy to twist. Very little centrifugal 
force is loaded onto the two bearings. The 
total control system—from the pilot stick to 
blade-root end—requires only a small pilot force 
to vary blade pitch when the rotor system is at 
rest. The stick forces, without some power 
assist or force-balancing springs, can, for large 
rotorcraft, become very large in flight as you will 
see later. 



The mathematical description of the 
control system, shown in Fig. 2-44, needs one 
other term added to what you have read so 
far. The term accounts for pitch ( ) - lag (ƒ) 
coupling so that the blade feathering equation 
now appears as 

(2.109) 

% = % -Bic s i n y AIC cos\|/ + — ß v + ̂ v • 
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The step that added collective pitch to what 
began as the Wilford "feathering blade" rotor 
system was made by Raoul Hafher with his A.R. 
Ill and David Kay18 with his Kay Gyroplane in 



England, and by Kellett and his chief 
engineer, Richard Prewitt, with the XR-3 in 
the United States in 1941.19 The objective in the 
1930s and early 1940s was to produce a 
machine that could do a jump takeoff. 

18 Unfortunately, I have yet to find much detail about the 
Kay hub and control system. The 1938 Jane's All The 
World's Aircraft [79] volume states on page (53c) that 
he had a patented hub, "in which blades are hinged on 
bushes are keyed to eccentrically mounted Z spindles. By 
rocking the Z spindles, the bushes are rotated and also 
oscillated about a transverse axis. This gives control over 
8 degrees of the rotor blade incidence in the air. The 
same motion is used to tilt the rotor head for lateral 
control." 
19 Brooks notes on page 237 of reference [7] that "the 
rotor hub in the XR-3 was of completely new design, 
having a fixed spindle [hub] with collective and cyclic 
pitch control instead of the tilting direct-control head. 
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By the end of 1933 the autogyro 
industry had begun serious research and 
development of ways to give their aircraft 
jump takeoff capability. At that time the 
industry had (1) a configuration that could land 
in a very small area, (2) a rotor system that 
could be pre-spun up to near takeoff rotor speed, 
and (3) direct control of the aircraft throughout 
its flight envelope. But the true coming of the 
helicopter could already be seen because Louis 
Bréguet, assisted by René Dorand, was only 
2-1/2 years away from first flight [39].20 The 
view of the autogyro advocate was that if their 
rotorcraft could takeoff from the same small 
area in which it landed, then the autogyro had 
every benefit of the helicopter—except true 
hover—with considerably less complexity. 

The autogyro pioneers all tackled the 
problem from the same starting point. Because 
the mechanical drive for rotor startup worked 



well, that drive, with strengthening, could be 
used to over speed the rotor to 125 to 175 
percent of normal flight RPM while the 
autogyro was on the ground. Any anti-torque 
the aircraft required would come from 
wheel-to-ground contact. The rotor would be 
over-sped at virtual zero collective pitch and, 
presumably, near zero thrust, so the full weight 
of the autogyro would be on the wheels. The 
rotor would store up an excess of kinetic 
energy. To release this energy, the pilot would 
declutch the startup drive and something would 
increase collective pitch from zero to the 
flight setting of 4 to 6 degrees. The autogyro 
would get an initial burst of thrust far in excess 
of its weight, and the leap upward would begin. 
The trajectory was not necessarily straight up 
because the propeller thrust would already be 
accelerating the autogyro up to speed so 
normal slow-speed forward flight would be 
obtained quite quickly. The flight could then be 
continued as if from a normal takeoff. 



Each band of engineers appears to have 
agreed on the physics of how to do a jump 
takeoff. The differences were in just what 
would be the mechanical something that 
would raise collective pitch from zero to the 
flight setting. It is not clear if the height to 
which the autogyro should jump was initially 
a design objective. The early efforts appear 
to have resulted in 0 (i.e., failure) to 15 feet. 
With improvements over an 8-year period, 
jump heights ranged from 25 to 35 feet, 
depending on the prevailing wind. But then 
U.S. Army Air Force Captain Gregory [25] 
cleared things up in the United States by 
stating that the military requirement was to 
clear a 50-foot obstacle with no forward speed, 
whether landing or taking off.21 

20 As it turned out, the helicopter also arrived in the 
United States (the Platt-LePage XR-1 and the Sikorsky 
XR-4) and the autogyro advocates were virtually out of 



business by 1943 or, like Kellett, had converted their 
configuration to the helicopter, 
21 I believe this one requirement said that only a 
helicopter would satisfy the U.S. Army. In my opinion, 
this statement by Gregory spelled doom for the autogyro. 
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The fact that jump takeoff was not fully 
developed until the very early 1940s should not 
diminish technical interest in the engineering 
approach to moving collective pitch from zero 
degrees to 4 to 6 degrees with a flick of the 
pilot's wrist. Cierva, Pitcairn Kellett, and 
Hafher each made their mechanical system 
work. Some details are a little sketchy, but let 
me describe each approach in turn. 

2.8.1 Cierva's Approach 



Cierva began efforts in August 1933 
when, according to Brooks [7], "the first jump 
takeoffs had been achieved with the 
C.30 prototype, G-ACFI [British 
registration designation], fitted with a special 
rotor head." Apparently the early efforts were 
kept out of the public eye because Cierva 
did not announce the successful 
development of "direct takeoff" until his 
lecture before the Royal Aeronautical Society 
on March 15, 1935 [5]. Even then, he was quite 
tentative because he said, 

"I want to make perfectly clear that the results 
obtained, only a few feet high jump, while absolutely 
conclusive are still experimental, and prudence forces 
me to refrain from making any forecast as to how soon 
they will be obtainable in a practical way. The eighteen 
months of development have given us a thorough insight 
into the theoretical aerodynamics of the new effect, 
together with a considerable experience of its practical 
side." 

Then, Cierva goes on with 



"All our conclusions will be incorporated in a new 
experimental machine [this was to be the C.40], which 
not only should show a very improved performance but 
which ought to be free from the secondary imperfections 
of the first one [ground resonance tendency and 
vibration]. Until the new machine has been thoroughly 
tested, nothing more can be said about this 
development. I will only mention that the mechanism 
used for the pitch change involves no addition 
whatsoever to the existing element of normal direct 
control autogiros, consisting substantially in a tilt of the 
drag hinge in a vertical plane containing the axis of the 
blade, and that it operates automatically by the mere 
application of the starting torque in the usual way [my 
italics] . Also, the actual manœuvre from the pilot's 
point of view is a very simple one, easier and more 
pleasant than an ordinary takeoff." 

The details were described in depth by Dr. 
James A. J. Bennett. Dr. Bennett met Cierva 
in 1930, became a leading member of the 
autogyro community, and carried on as 
technical director at the Cierva Autogiro 
Company after Cierva died.22 In 1960, the 
Royal Aeronautical Society established the 



Cierva Memorial Lecture series when the 
Helicopter Association of Great Britain merged 
with the Society. Dr. Bennett had the enormous 
honor of giving the first lecture [80]23 . His 
recollections about working with Cierva 
provide insight into Cierva—both the man and 
the engineer. By custom, there was no 
discussion at a Memorial Lecture, but Wing 
Commander Reginald Brie [52] was asked to 
say a few words about Cierva, which give 

22 Señor Juan de la Cierva Codorníu was killed on 
December 9, 1936, when the DC—2 he was on crashed. 
Brooks describes the unfortunate circumstances 
surrounding the accident on page 248 of his book [7]. 
23 In January 1939, Harold F. Pitcairn published a 
wonderful, unsurpassed tribute to Cierva [81] . A 
long-time friend, Wayne Wiesner, gave me his copy of the 
tribute. A Cierva Memorial Fellowship was started at New 
York University and Brooks [7] notes that there were 45 
sponsors . Wallace Kellett became chairman of the 
Fellowship Committee. In the spring of 1940, Wayne 
Wiesner was one of the first recipients of the Cierva 
Fellowship. 
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even more insight into the man himself. The 
evening ended by Brie saying that "there was 
nobody better qualified [than Bennett] to 
present an appreciation of Cierva's life and 
work." Brie closed by proposing "a hearty vote 
of thanks to Professor Bennett for delivering this 
First Cierva Memorial Lecture." 

In his lecture, Bennett includes a rather 
detailed discussion of the Cierva method to 
mechanically adjust collective pitch from 0 to 
the 4-to-6 degrees needed for a burst of thrust 
that initiates jump takeoff. He describes "a tilt 
of the drag hinge in a vertical plane containing 
the axis of the blade" and how "it operates 
automatically by the mere application of the 



starting torque." The figure Bennett uses to 
illustrate the hinge geometry is shown here as 
Fig. 2-45. 

The technical aspects of Cierva's idea 
are rather interesting when you think about it. 
He tried the approach with the C.30 prototype 
and the aircraft jumped up "a few feet." The 
flight rotor speed of the C.30 was nominally 
245 rpm (25.65 radians per second or a tip 
speed of 475 feet per second for the C.30 
blade radius of 18.5 feet), so the over-speed 
at zero collective pitch might have been, I 
will guess for this example, equal to 125 
percent (32.06 radians per second) . Because 
thrust is zero and advance ratio is zero, the 
horsepower and torque at this condition is easily 
estimated from Eq. (2.60) as 

(2.110) 

p(7iR;)v,3oCj0 _ 0.002378(1075)(1.25x475)3(0.047)(0.01) 
ower-Q - g -



which works out to about 31,500 foot-pounds 
per second (57 hp) and a torque of 980 foot-
pounds. A simple first question to answer is 
this: How long does it take for the rotor to 
slow down from 32.06 to 25.65 radians per 
second if the collective pitch stays at 0 
degrees? The answer to this question gives some 
idea about how long the aircraft can take to get 
up to flight speed. 

To answer the question I have posed 
only requires the angular deceleration equation, 
which is 

(2.111) 

l ¿ = I—= Q = pAVt
2RCQ =[P(TCR˝)R3CQ]Q2 = -0.954Q2. 

Note that while power is being drawn from the 
engine, the torque coefficient (CQ) is positive. 



However when declutched, the torque 
coefficient goes immediately from positive to 
negative (CQ = - oCdo/8) and the rotor 
draws energy from the over-sped RPM. 
Now integrate, assuming that the torque 
coefficient is constant over the integration 
interval, and that at time equals zero, rotor 
speed equals the initial 125 percent value (Q0 = 
32.06 radians per second). The result is that rotor 
speed bleeds off as 
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FIGURE 16. Path of machine during 
direct take-off. 

Fig. 2-45. The inclined lead-lag hinge Cierva 
used to decrease blade pitch during rotor 

over-speeding prior to a jump 
(i.e., direct) takeoff [80]. 
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Keep in mind that I arrived at Eq. (2.112) by assuming that the torque coefficient (CQ) was 

constant over the integration interval and that 
(CQ = - oCdo/8). This result, applied to the C.30 
Autogiro where the polar moment of inertia 
(I) for all blades is (I = 3x128.8 slug-feet2), 
shows that after 3.2 seconds the rotor speed will 
have dropped from 32.06 to 25.65 radians per 



second, the normal rotor speed. 

Looking at the problem from an energy 
point of view is also interesting. The exchange 
of energy behaves as 

(2.113) 

áa Kinetic Energy per unit of time = I Q — = power= p(nRz)R3Cp Í2 
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which, upon integrating with a constant 
power coefficient (Cp) and decaying rotor 
speed defined by Eq. (2.112), gives 

(2.114) 
l(n;-í4) = j;[p()IR!)R>C1.]n'dt = p(ítRí)R'Cf|T[T^TJdt 

= 1 [ P K ) R ' C F ] 
(1-…)' 

ß,. where k = 



The kinetic energy given up to slowing the rotor down from 32.06 to 25.65 radians per second 

is 72,000 foot-pounds at zero thrust. If this 
same amount of kinetic energy were, instead, 
all applied to lifting the 1,450 pound C.30, the 
Autogiro would have jumped 50 feet above the 
ground instead of the "only a few feet high 
jump" which Cierva obtained in his first trials. 
The difference, of course, is that when the 
collective pitch goes from 0 to 4-to-6 degrees, 
the burst of thrust is accompanied by a very large 
increase in power required, which dissipates the 
kinetic energy even more quickly than the 
example above suggests. 

Now consider the blade motion coupling 
Cierva used to make jump takeoff work. The 
application of 57 horsepower to the prototype 
C.30 yielding a 125-percent over-speed creates a 
steady lag angle (^0) as Eq. (2.3 1) shows. This 
lag angle, under power with zero blade pitch, 
amounts to 



(2-31) C„ = 

= —;—-—„Ú-ÚÚ -̂ „ = 0.063 radians = 3.6 degrees. 
r ^ F c 3 (32.06) (1) (5,200) 

Then, when the engine is declutched, the blade 
returns to a straight-out position and the flight 
collective pitch increases to about 6 degrees as 
Bennett suggests in Fig. 2-45 . This pitch-lag 
coupling is determined quite simply by 

(2.115) A9 = A£tanoc1 so that 

' ¿ ^ 
ot, = arc tan 

* ) 

where (oti) is the lead-lag hinge inclination 
from vertical.24 For the C.30 prototype, this 
inclination is roughly 60 degrees, which is 
somewhat more than Bennett suggests in Fig. 



2-45. 

While the basic approach worked on 
the three-bladed C.30, the lead-lag dampers 
impeded the return of the blade to straight out 
from the 3.6-degree lag position at the over-
sped rpm condition. The lag damping was 
reduced but then ground resonance became 
an issue. As Brooks [7] relates the story, 

24 Bennett [80] provides an excellent discussion of some 
1 5 flapping and lead-lag hinge geometries that were 
tested on the Cierva C.30 Autogyro. In his figures 18, 
19, and 20 in reference [80], he shows the mechanical 
layout of each one. With figure 17, he explains hinge 
angles such as delta-3 . Furthermore, he notes that the 
lead- lag hinge, when inclined fore and aft from vertical, 
couples flapping to lead-lag motion, which provides 
enough damping in the lead-lag motion that lag dampers 
can be removed. His nomenclature has been handed 
down through the decades. This makes the First Cierva 
Memorial Lecture absolutely required reading. 
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"The main drawback to this elegantly simple system lay 
in the fact that unrestricted movement of the blades in the 
drag plane, required for the jump, meant that it was not 
possible to provide adequate drag hinge damping to 
prevent ground resonance. Because of this, the system 
was found to be only practical [at that moment] for 
two-blade rotors and, even then, vibration levels were 
high. Even with two blades, to avoid resonance, it was 
found that the blades had to be held in flat pitch against the 
forward stops, instead of being simply allowed to lag 
during the spin-up. This design was a feature of the 
Autodynamic rotor which first publicly demonstrated 
jump takeoffs [to over 20 feet] on June 23, 1936." 

An account by Bennett [80] is also very 
interesting. He writes that, 

"only a two-bladed rotor having been free from 
'ground resonance' when Cierva's inclined drag hinges 
were operated without dampers, and the two-bladed 
rotor having had inherent vibration of twice rotor 
frequency and of unpleasant amplitude throughout the 



entire speed range, it was necessary to find a solution to 
this difficulty before the jump takeoff technique 
developed by Cierva could be applied to an aircraft 
suitable for production. The three-bladed rotor system of 
the C.40 was relatively free from vibration and the 
'ground resonance' difficulty was overcome by the 
provision of drag dampers which damped the motion 
of the blades with respect to each other but which 
allowed the symmetrical oscillation of the three blades 
with respect to the hub to remain undamped [my 
italics] . This configuration, which proved to be most 
successful, brought the Autogiro once more to the 
production stage." 

The Cierva C.40 (Fig. 2-46) jumped to about 
12 feet in height by over-speeding the rotor to 
285 rpm versus its normal flight rotor speed of 1 
80 Ù ‡ which is an over-speed of 58 percent. 

As it turned out, the C.40 was the last 
of the Cierva Autogiros. Bennett writes that "a 
batch of five C.40 Autogiros was supplied to 
the Royal Air Force shortly before the Second 
World War and they were used by the British 
Expeditionary Force in France in 1940." 



2.8.2 Pitcairn's Approach 

Pitcairn engineers demonstrated a 
collective pitch mechanism for jump takeoff 
with their P-22 research aircraft. Rather than try 
to accomplish the change from flat pitch to 4 
to 6 degrees through hinge geometry, they 
used the excessive centrifugal force in a 
much different way. The details are a little 
sketchy, but Agnew Larsen, chief engineer at 
Pitcairn, writes [49] 

"While Cierva initiated this important new 
development in England by employing large inclinations 
of the lead-lag hinge in the rotor blade span axis, the 
approach in this country was different. The mechanical 
principle employed by the Autogiro Company of 
America was to permit the blades to increase their pitch 
by a four or five degree rotation on a steep pitch 
multithreaded shank in the blade root. The source of 
energy to effect this was the powerful centrifugal pull on 
the blades, causing them to momentarily move outward, 
away from the hub center. This motion was minute and 



was, of course, confined between positive stops, one for 
minimum pitch and one for maximum. The means of 
control was hydraulic pressure which held the blades in 
the position of minimum pitch and, upon the sudden 
release of pressure, simultaneously with the declutching 
of the power torque, the blades were all equally free to 
shift outward and upward to the aerostational pitch 
[flight setting] of approximately 4-3/4 degrees where 
they remained throughout the entire flight regime. There 
could be no flutter of the blades, because the pitch on the 
sextuple thread was so steep that the powerful centrifugal 
pull on that angle virtually locked it there. This system 
was first tried out on the PA-22 flying mock-up, and later 
it was thoroughly applied in the more advanced PA-36 
all-metal cabin, 
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jump-takeoff, and roadable autogiro, and later in the 
PA-39 conversions of the older PA-18 autogiros under 
contract for the British Air Ministry. The system worked 
very well and proved eminently successful in every way. 
It was remarkably free from any bugs, its automatic 



functioning being virtually fool-proof; smooth, sure and 
positive." 

Thus, with the Pitcairn approach, the blades 
were drawn inward, by a hydraulic cylinder, to 
a minutely smaller radius, and the blade was 
then in flat pitch. The rotor was then over-sped. 
At the pilot's command, engine power to the 
rotor was removed, hydraulic pressure was 
released, and centrifugal force took over. As 
soon as the hydraulic pressure was turned off, 
the blades slid outward along a very course 
thread, which increased pitch to 4.75 degrees. I 
like the part where Larsen says: "It was 
remarkably free from any bugs, its automatic 
functioning being virtually fool-proof; smooth, 
sure and positive." 

The Pitcairn P-22 (which led to the P-36, 
in its ninth research configuration) over-sped the 
rotor to about 150 percent and, as Townson 
[45] states, "When the meteorological 



conditions were right a vertical jump to 
eight to ten feet was not unusual." The 
P-36 (Fig. 2-47) did better, reaching some 
35-foot-high jumps. 

2.8.3 Hafner and Kellett's Approach 

Both Hafiier, with his A.R. Ill, and 
Kellett, with their XR-3, used a swashplate 
configuration, as I have already discussed. This 
gave the pilot control of collective pitch for the 
jump takeoff maneuver and was independent 
of centrifugal force. 

Each chief engineer, as you can see, 
found a way to nearly instantaneously change 
blade collective pitch from flat pitch to flight 
setting by a flick of the pilot's wrist. The Cierva 
and Bennett approach required no additional 
hardware to the direct control rotor system. 
Larsen, at Pitcairn, added hydraulics to the 



aircraft systems and kept the Cierva direct 
control system. Hafiier, in England, and Prewitt, 
at Kellett, introduced the modern swashplate 
control system, which reduced control loads 
and vibration—and gave the pilot complete 
control of the jump takeoff maneuver. 

Now let me return to the Raoul 
Hafher lecture [74] and its "controversy" for 
a moment. Giving a pilot (even an "expert 
pilot") control of rotor system collective pitch 
with a "lift" lever was not something that either 
Cierva or Bennett favored, as you will recall 
reading in Section 2.7. On top of this, Hafner 
created discord with Bennett and the Cierva 
Autogiro Company regarding the jump takeoff 
maneuver. In his lecture, Hafner showed a 
comparison between two jump takeoff 
trajectories. He used a diagram, reproduced 
here as Fig. 2-48, to say that his gyroplane 
could perform a "towering" jump takeoff and 
implied that all other autogyros were taking 



off along the "jumping" path. The film that 
he showed during his lecture must have 
included both trajectories because he 
answered a question from Dr. Townend by 
saying: 
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Fig. 2-46. The Cierva C.40 performing a jump takeoff not too long after first flight 
In February 1938 (photo courtesy of Gordon Leishman). 

' 

• 

PITCAIRNAUIOGIRO 

Fig. 2-47. The Pitcairn F-36 publicly demonstrated jump takeoffs in July 1940 [45]. 
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"The diagram which Dr. Townend mentioned showing 
the contrast between jumping and towering takeoffs 
of the A.R. Ill was obtained from film records [the 
numbers are actual times in seconds] and is in agreement 
with calculations. It was drawn to scale. In both cases 
wind conditions and initial rotor revolutions were 
identical, and it serves, therefore, as a good 
comparison. The towering takeoff in question was 
shown later in the film. On one or two occasions when 
an extreme jump takeoff was carried out the aircraft in 
the subsequent sink actually touched the ground." 

Hafiier suggests that the "towering" takeoff is 
preferable and is only possible because of the 
superior controllability provided by his A.R. Ill 
spider control system. Of course, Bennett [78] 
immediately took issue with this outlook saying: 

"the kinetic energy is most efficiently converted into 
potential energy the more sudden the change in pitch, 
and in the type of jump takeoff demonstrated last year 
by the 'Autogiro' and filmed by Flight the machine 
'towered' right from the top of the jump. That the change 
of pitch is effected automatically does not necessarily 
mean that the change of pitch is sudden. In fact, de la 



Cierva intended that the rate of change of pitch should be 
controlled so that any quality of direct takeoff from 
'towering' to pure vertical 'jumping' could be achieved 
and he patented suitable means for obtaining this result in 
January, 1935 . It is considered that multiplication of 
manual controls is a retrograde step and that a manual 
control for effecting pitch change for takeoffs is 
undesirable, as consistent use of the control in the 
most effective manner is probably beyond the capacity 
even of an expert pilot." 

^TOWERING 

JUMPING 

START 

Fig. 2-48. The Hafner view of the benefits to a 
pilot-controlled jump takeoff [74]. 
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Hafiier immediately took advantage of Flight 
magazine, which was "pleased to give the 
hospitality of its columns" to pros and 
cons—up to a point. Regarding jump starts, 
Hafher wrote [76] that, yes, 

"de la Cierva patented various elaborate mechanisms in 
order to delay the rate of change [of pitch] and obtain 
takeoffs varying from the direct jump. The lift lever of the 
A.R. Ill is a simple mechanism, and its use during a 
direct takeoff is in effect analogous to the 
fore-and-aft movement of the joystick in an orthodox 
aircraft during a running takeoff, and anyone who can be 
trusted with a joystick is safe to handle it, since the worst 
misuse of it would be a very crude jerk, which would 
produce a jump takeoff." 

A little further on Hafiier says, "I fail to see 
how any automatic device could improve on 



the performance of even a mediocre pilot." 

Personally, I doubt that Hafher was 
particularly concerned about (1) Bennett's 
criticism of the A.R. Ill spider swashplate, (2) 
his criticism of giving a pilot the "lift" lever, 
(3) his view of jump takeoff trajectories, or 
even (4) about what to call autogyros. I believe 
Hafner was ready to return to designing 
helicopters. The helicopter, I think he knew, 
was going to require his control system. 

2.8.4 Kellett's Predictions 

The jump takeoff maneuver, applicable 
to both autogyros and helicopters, is a very 
interesting problem in F = ma and energy 
use. Before discussing the 1934 theoretical 
and model experimental study by John 
Wheatley of the N.A.C.A. [82], let me first 
discuss the simpler, 1938 Richard Prewitt 



analysis of the problem [83], which used the 
energy method. 

Richard Prewitt, chief engineer of the 
Kellett Autogiro Corporation, presented a paper 
at the Rotary Wing Session during the Sixth 
Annual Meeting of the Institute of Aeronautical 
Sciences (later to become the A.I.A.A.). This 
meeting was held on January 25, 1938, and the 
paper by Prewitt was titled Possibilities of the 
Jump-Off Autogiro . At that time, Kellett was 
responding to U.S. Army Air Force field use 
of its YG-1/1 A/1 ¬ autogyro, which had direct 
control—not swashplate contiol—and no jump 
takeoff capability. He also was in the midst of 
developing the XR-2 with the jump takeoff 
feature when it encountered ground resonance 
(see Fig. 2-11). 

In his paper, Prewitt [83] first 
answers the question about how much 
power is "required for sustentation [hovering]" 



as a reference point. He develops a "simple 
plot of power loading vs . disc loading" 
based on the 1920 view by E. P. Warner 
[84] of the "theoretical optimum values of 
horsepower required based on rotor diameter, 
rotor r.p.m., power loading, and disc 
loading." Prewitt confirms the view held 
by Warner with experimental data from eight 
helicopters provided by R. N. Liptrot [85] 
during an April 1930 lecture to the Royal 
Aeronautical Society. This historically 
significant graph is reproduced here as Fig. 
2-49. The solid line that Prewitt chose to 
represent the hovering power required by an 
"actual helicopter" was computed as 
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Fig. 2-49. The Prewitt view of hovering 
helicopter performance in January 1938 [83]. 

where (W) is weight in pounds, (HP) is the brake horsepower of the reciprocating engine, (p) 

is the density of air, and the rotor, or rotors as 
the case may be, have an area (A). The constant 
(FM) is referred to today as Figure of Merit. 
Were the helicopters 100 percent efficient, their 
Figure of Merit would be 1.0. The line Prewitt 
shows in Fig. 2-49 assumes the Figure of Merit 
is 0.7. Thus, his opinion was that the helicopter 
rotor would produce 30 percent less thrust per 
horsepower than what should be expected from 
the ideal rotor. 

Prewitt gave the very simplest 



approach to analyzing the jump takeoff by 
extending the energy approach described in 
Eq. (2.113) to include potential energy. 
Following his thought, but with modern 
notation, he wrote 

(2.117) K Æ = P + W ^ . v ' dt dt 

This equation can be easily integrated, assuming 
power is constant, to give 
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(2.118) -(fì;;-£2f) = (550HP)t + Wh 

and this result can be solved for the jump 
takeoff height (h), which is simply (2.119) 



h = - i - ( n ; - ß ? ) — ÷ - t . 
2WV ; W/HP 

This result can be used to approximate 
the jump height for an autogyro, say the Cierva 
C.30. Suppose the initial rotor speed (Q0) is 
75 percent higher than the C.30's normal low 
rotor speed of 180 revolutions per second (i.e., ilo = 1.75x19 radians per second). The C.30 
rotor system polar moment of inertia (I) is 390 slug-feet, its takeoff gross weight is about 

1,900 pounds, and its rotor diameter is 37 feet, 
which is an area of 1,075 square feet. From Eq. 
(2.1 16), with the C.30 disc loading (W/A) of 
1.77 pounds per square foot, and assuming a 
sea-level density (p) of 0.002378 slugs per 
cubic foot, the power loading (W/HP) comes 
out 20 pounds per horsepower. Now, assume 
the jump takeoff is completed within 1.75 
seconds (see Fig. 2-48) and that the rotor 
speed decays to (Qt =1.75 = 19 radians per 
second) or 180 revolutions per second. From Eq. 
(2.119), the jump height is 27 feet. This is, of 
course, an optimistic result. 



There is one major reason the 
preceding example yields the optimistic 
result of 27 feet. If the rotor thrust only equals 
the autogyro weight then there is no excess 
rotor thrust to climb, and the autogyro would 
simply be "hovering" for 1.75 seconds with its 
wheels just off the ground. Prewitt recognized 
the introductory nature of Eq. (2.1 19) and 
offered several realistic engineering equations 
(and a step-by-step solution method using the 
equations) to obtain a more realistic jump 
height. The equations and method Prewitt 
used, which parallel the more exact method 
given by Wheatley [82] that I will discuss next, 
yielded results for four cases that he tabulated as 
follows: 

Table 2-3. The Prewitt View of 
Possible Jump Takeoff Performance 



Ship 
1 
2 
3 
4 

Propeller 
Type 

Fixed 
Fixed 
Controllable 
Controllable 

Rotor 
Blade Angle, 

deB 

0 io 5 
O i o 15 
Oto 20 
Oto 30 

Jump Height, 
feet 

Normal lakeoff 
40 
75 

225 

Horizontal 
Distance, 

feet 

25 
34 
55 

Time, 
sec 

2.5 
3.8 
4.2 

Initial 
Acceleration, 

ftísec' 

35 
40 
60 

Along with this table, Prewitt gives the jump 
takeoff paths shown here as Fig. 2-50 and offers 
two conclusions: 

"(1) It appears that all-purpose autogiros can be built to 
'jump-off' up to 100 feet and that for special purposes, 
autogiros can be made to 'jump-off 200 feet. In the 
former case, the gross weight of the ships will be 
increased less than 5 per cent to account for the increase 
in blade weight and extra mechanism involved and in the 
latter case, the gross weight will be increased less than 15 
per cent for the same items. 

(2) The available kinetic energy in the rotor system for 
'jump-ofF is directly proportional to the weight of the 
blades and to the square of the rotational speed of the 
rotor. Thus, with a 
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Fig. 2-50. The Prewitt calculated jump 
takeoff trajectories [83]. 

given autogiro having the weight of blades fixed, the 
height of 'jump-off' is dependent upon the horsepower 
available for accelerating the rotor. This in turn, is 
dependent upon the pitch setting of the propeller which, 
for relatively high jumps, would have to be of 
controllable [pitch] type to provide adequate power for the 
rotor and yet hold down the engine r.p.m. at top speed." 

The potential for autogyro jump 
takeoff that Prewitt suggested must have been 
well received by aircraft advocates. However, at 
this point in time the Henrich Focke 
side-by-side German helicopter, Fig. 1-2, had 
already astounded the world in 1936 and this 
first industry growth step was about to be 
taken in the United States. Clearly, the 



capability Prewitt predicted did not meet the 
U.S. military objective of a vertical takeoff to 
50 feet height—but it did come close. 

2.8.5 Wheatley's Research 

Concluding discussion of jump takeoff 
at this point would dismiss the contribution 
John Wheatley made to this aspect of 
rotorcraft technology. In October of 1936, 
Wheatley [82] published a thorough analysis, 
supported with 10-foot-diameter model 
testing, which gave predicted jump 
takeoff performance a real foundation. He 
began with the statement that 
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vertical acceleration (d2h/dt2) depended on the 



difference between excess rotor thrust (T) and 
aircraft weight (W). He wrote the F - ma 
physics as 

Wd2h 
(2.120) — ^ = T - W 

g dt' 

and proceeded to methodically integrate from 
acceleration to vertical velocity (dh/dt) to 
vertical height (h). The problem, of course, 
requires knowing how thrust varies over the 
integration interval . Thrust depends upon 
vertical velocity and the decaying rotor speed, 
and rotor speed depends on deceleration 
torque, which itself depends on vertical 
velocity. The exact solution is readily 
obtained, given some auxiliary equations, by 
doing numerical integration on a computer. 
However, Wheatley found that the problem 
could be linearized with engineering accuracy. 
His solution provided answers in closed 



form, which is—I believe—always the most 
useful form. 

The variation of thrust and torque with 
vertical velocity and rotor speed is obtained 
from Eqs. (2.48) and (2.49). These equations 
are simplified for the vertical jump takeoff 
problem because advance ratio (p.hp) is zero. 
Because advance ratio is zero and the pilot 
intends to go straight up, both longitudinal and 
lateral feathering (Bic and Aie) are zero and 
there is no flapping (i.e., ais and bis both 
equal zero) . The general equations for thrust 
and torque therefore reduce, with slight 
rearranging to make rotor speed (£2) and solidity 
(a) more visible, to 

(2À21) C^=î^=T{\K+ïQ\ 
and 



(2.122) 

2 
◊+“^‹ Ó 

— Q ^ g C d o ga 
Q p:r.R5n2 8 4 

0 r C Q = _ ^ " " ^ ‹  — - œ ≥  -

Now the inflow (X,hP) to the rotor depends 
primarily on the flight path velocity (VFP) and 
the angle of attack of the hub plane (ahp) as 
Eq. (2.28) shows. In the jump takeoff case, 
the velocity is the vertical climb speed (Vpp = 
dh/dt) and the hub plane is at -90 degrees angle 
of attack. Thus, the rotor inflow becomes 

_ d h _ 

(2.123) K=-^ 
hp Û 

For all intents and purposes, the vertical jump 
takeoff is exactly equivalent to the horizontal 



takeoff of a fixed-wing aircraft. This allows the 
induced velocity (v¡), defined by Eq. (2.38), to be 
simplified to 

(2.124) v , -

2  » ' ) | 
dh 

"dt 
dh/dt v¡ 

V, V 
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Note that the induced velocity equation, 
(2.124), is a quadratic which gives the 
induced velocity directly as 
(2.125) 

Û ~2Î≤ 2 — Ú ‹  + 
( dh/dt ^ 

2 

1 
2 

( dh/dt^ 

I vt J 



The explicit equation for thrust 
coefficient [obtained by substituting Eq. 
(2.125) into Eq. (2.123) and substituting the 
result into Eq. (2.121), which can then be solved 
for (CThp)] is 

(2.126) c,„,=—if—= Ü!L L+í(±)JQIè)- i ti(6) ïfdb/dtWdb/diY 

With rotor thrust known, the decelerating 
torque [obtained by substituting Eq. (2.125) 
into Eq. (2.123) and substituting the result into 
Eq. (2.122)] is 

(2.127) Decel C„= — Q 
pitR'Q2 

oC j . 
S 

crV 
2 

(dh/dti 'fdh/dtf cTbp 
[ t a v j oV 

The variation of thrust and decelerating torque 
coefficients, Eqs. (2.126) and (2.127), with the 
nondimensional climb velocity —-— Lis illustrated in Fig. 2-51.1 chose a rotor solidity (a) 



of 0.1, assumed the airfoil lift-curve slope (a) 
to be 5.73 per radian and its drag coefficient 
(Cdo) to be 0.012, and set collective pitch ( ) to 
10 degrees (0. 1745 radians) . These constants 
correspond to one of Wheatley's 
experimental points. As Fig. 2-51 shows, 
the torque coefficient Wheatley measured was 
somewhat higher (i.e., more decelerating torque) 
than that computed by Eq. (2.127). He included 
a table showing test data versus his calculated 
results. I have included his comparison here, but 
I cannot reproduce his calculated torque 
coefficients. 

Table 2-4. The Wheatley 10-Foot-Diameter 
Model Rotor Static Torque 

Coefficient Comparison 
Pitch Angle 

K deg 
10 
14 
18 

Measured d(l/ß)/dt 
sec/rad per sec 

0,00525 
0.00812 
0.01273 

Measured 
C 0 

-0.000726 
-0.001122 
-0.001760 

Calculated 
Co 

-0.000587 
-0.0096PO 
-0.001460 
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Fig. 2-51. Thrust and torque coefficient trend 
with vertical climb ratio. 

Fig. 2-51 also shows the linear approximation 
to the thrust coefficient versus nondimensional 
climb velocity that Wheatley accepted. He took 
a somewhat roundabout way to arrive at 

(2.128) 

r = - 5 ˘ _ = initial C T h p - ™ ^ . 
T h p p j t R 4 Q 2 T h p 8 Vt 

Wheatley, ever the practical engineer,25 chose 
to assume that the torque coefficient did not 
vary with the nondimensional climb velocity. 
This is clearly a very first approximation to the 
exact trend shown in Fig. 2-51, but he had a 
reasonable rational saying 

"It is proposed that CQ be assumed independent 



of h / Q R at all pitches less than 16°; the 
error introduced by the approximation is 

greater in figure 2 [refer to Fig. 2-51] where the 
solidity is 0.10 but is still reasonably small for 

the lower values of h / Q R . Experimental 
justification for this assumption will 

subsequently be presented." 

25 My opinion: A practical engineer is one who can get 90 
percent of the right answer in 10 percent of the time. 
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The "experimental justification" Wheatley 
used, which I will discuss in more detail in 
a moment, came from tests of a 4-blade, 
10-foot-diameter model. The rotor had a solidity 
(a) of 0.10. The rectangular blades were 
untwisted. His test setup allowed the rotor to 



be spun up, released to climb up vertically, and 
then caught by a safety harness. Time histories 
of several "jumps" showed that I/O varied 
nearly linear with time. 

To begin integrating Eq. (2.120), an 
approximation is first required for how rotor 
speed (£2) varies with time (t). Since the 
decelerating torque coefficient is assumed 
constant at its initial value, Eq. (2.112) is directly 
useable. For convenience, that equation is 
repeated here as 

(2.112) Q t = — 

1-
p(7tR2)R3Cc 

ÿ 

Note that the reciprocal of rotor speed (Qt) is a 
simple linear equation, which Wheatley found 
characteristic during his model testing. 



Knowing how rotor speed varies with time 
from its initial value (Q0) means that thrust is 
known; then the F = ma problem can be 
restated with the linear thrust coefficient 
assumption Wheatley used as 

(2.129) 

Ï£ -0*4) (WIM CnJ-^drtlOffg* - W . 

This equation is a linear second-order 
differential equation, which becomes clearer 
after the time-varying rotor speed from Eq. (2.1 
12) is substituted into Eq. (2.129). Thus, after 
some simplification, the problem Wheatley 
solved is 

(2.130) 
d2h _ g (pitR˘flJ)(lnitial — 

dt 3 W '  ˇ Œ ƒ — . ' 
I 

Ú Ú ) 1 g 
2 8 W 

Îfl3£1„(„‡ 

pxR'ílC„ 
1-≈ ^S-t 

I 

dh 

dt 

Keep in mind that the torque coefficient (CQ) in Eq. (2.130) is that value at time equals zero 

and that it is a deceleration torque coefficient 



where the vertical velocity is zero. That is, for 
this problem 

(2.131) 

r ~ _ ^ _ o V LcThp —Ú¸,= qCJo JïaVfc^J 
Q 8 2 V o-Vo-V 8 2 [Ó2‡\ ' 

There are three constants involved in 
the vertical acceleration equation. Therefore, to 

avoid an unwieldy mess, Wheatley defined 
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U , , Î ˜ pJtR5QC0 

 , = - ^ ( p j t R 3 Q 0 a a ) K2 = - W ° Q 

(2.132) 8 W l 

„ / i ,v, \ Initial T 
K3 = ^{Ô√‡≤ ) (Initial CThp ) = - » g 

and then the vertical acceleration is abbreviated to 



(2.133) Ü * + ^ í * « ^ _ _ g . 
dt2 1+K2tdt (1 + K2t)2 

This equation, as Wheatley notes, "can be 
integrated quite easily. Reference to a text on 
differential equations establishes that" the 
vertical velocity is 

(2.134) 

dh_ K3 g(l + K2t) 
dt (K,-K2)(i+K2t) ( K , + K 2 ) ( 1 + K 2 t ) t 

The time history of vertical height (h) follows 
immediately as 

K, .__, . B l " 2 " 2 - J . C, K*l (2.135) h = — - ^ - l o g ( l + K , t ) — ) — - — - ^ + , 
K , ( K , - K 2 ) *K 2' (K,+K,) ( K , - K : 

where the integration constant (C|) is 

i L 
(1 + K2t)x2-



(i ≥ ˝ ‰ √ _ g ( K i - K 2 ) - K 3 ( K , + K 2 ) 
(2.136) — , - K 2 _ K 2 • 

Wheatley made comparisons of his 
linear jump takeoff theory to the test data 
acquired with the experimental setup shown 
in Fig. 2-52. The rotor was spun up to as 
high as 725 revolutions per minute by a 
25-horsepower electric motor. He makes no 
statement about the ballast spinning, and I 
would guess that it did not because he would 
have mentioned its polar moment of inertia. 
Wheatley was quite concerned about the 
safety harness tension, which lowered the 
actual weight being lifted. He made cable 
tension a test variable but concluded that the 
actual tension during a jump was about 
one-third of the static tension. Test data from 
160 vertical jumps was given in tabular form. 



A moving picture, taken up from below, gave 
rotor speed, and the rotor dragged a cord up as 
it went, which gave the height of the jump. 

The 10-foot-diameter, 3-blade rotor 
used in the experiment had a polar moment 
of inertia (I) of 3.23 slug-feet . The blade chord 
(c) was 0.523 feet and the solidity (a) was 0.10. 
The constant chord blades were untwisted 
and the airfoil was the NACA 0018, which 
is uncambered. The collective pitch was ground 
adjustable and remained "fixed while the rotor 
was being brought up to speed and jumped." 
The tests were conducted in the return section 
of the N.A.C.A. Langley large wind tunnel, 
which provided an enclosed space about 50 
feet by 200 feet, and 70 feet high. 
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Fig. 2-52. The Wheatley jump takeoff test with a 10-foot-diameter rotor [82]. 

Wheatley provided the bulk of the 
160 test results in tabular form giving only 
collective pitch, disc loading, initial rotor 
speed, cable tension (Tc), and maximum 
height attained. His report [82] compares 



theory to test for only 3 of the 160 jump 
takeoff time histories, 2 of which are shown 
here as Fig. 2-53 and Fig. 2-54. The theory, 
Eq. (2.135), shown on the two figures is as 
given in the preceding discussion. However, 
the equations I have written for thrust 
coefficient, Eq. (2.126), and torque coefficient, 
Eq. (2.13 1), are slightly more optimistic than 
what Wheatley actually used. Wheatley states 
that "the influence of the cable tension on the 
jumps was uncertain." Therefore, both Fig. 
2-53 and Fig. 2-54 show theory for the 
influence of initial torque and cable tension. 

The two preceding examples illustrate 
several points that disturbed Wheatley. These 
points were: 

1 . "The figures establish that the allowance that 
should be made for the cable tension is considerably 
less than the nominal value of this variable." Wheatley 
felt, for example, that the nominal cable tension of 12.5 
pounds should really be closer to 3 pounds. As it turns 



out, the broader issue deals with the accurate calculation 
of initial thrust and torque. 
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Fig. 2-53. Theory vs. test: W = 83.3 lbs, 
10°, initial RPM = 700. 
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Fig. 2-54. Theory vs. test: W = 130.3 lbs, 
18°, initial RPM = 600. 
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2. "It will be noted in table III [see Table 2-4 herein] 
that the experimental and calculated torque coefficients 
differ by an appreciable amount." He added that if "the 
rotor pitch angle increased slightly because of the 
dynamic twist of the rotor blades; while this twist should 
be quite small, a twist of approximately Io would explain 
most of the discrepancies between the torque coefficients 
of table III." 

3 . "It is considered possible that the source of 
compensating error is the ground effect, which would 
tend to increase the thrust of the rotor when it was 
near the ground plane at no additional cost in torque." 

4. "The analysis is not as exact at a pitch angle of 18° as at 
one of 10°." 

He concluded that the experiment "served a 
useful purpose in attesting to the validity of the 
mathematical analysis, which can be used 
with more confidence than would have been 
justified without experimental verification." 



The larger body of data from the 
Wheatley jump takeoff experiment gives just 
the maximum height reached (along with 
collective pitch, disc loading, initial rotor 
speed, and cable tension) and is also of 
considerable value . Maximum height 
reached (hmax) is detemiined by only a few 
physical facts. While Wheatley did not extend 
his theory in this direction, a quite simple 
approximation is easily obtained. 

An estimate of maximum height 
reached in a jump takeoff depends on when 
the vertical velocity is zero. Thus, by setting 
(dh/dt = 0) in Eq. (2.134), an estimate of time 
to reach maximum height is 

  2 -   1 + / ^ (   ? -   2 ) 
(2.137) Approximate time to max. height = t „ = —j-——• . 

K.2(K., -K2J 

The rotor speed will decay to 



(2.112) Œ, = — ¡ ^ - P =¡ 
p(jcR2 R3C„ 1_ œ 1 1 Q t 

r Ó max 

and the corresponding maximum height is simply approximated as 

(2.138) 

_-v 
All 160 maximum height test points 

Wheatley tabulated are compared in Fig. 2-55 
to the maximum height predicted by Eq. 
(2.138). At the lower collective pitches, the 
prediction of maximum height by Eq. (2.138) 
is optimistic. The deterioration in accuracy as 
collective pitch is increased above 12 degrees is 
also quite evident. This leads me to the 
calculation of initial thrust and torque. As you 
can see from Eq. (2.138), maximum height 

41 
pjr,R4Ga 



depends on three parameters. The constant term 
depends on just rotor physical properties and 
the density of air (p). This constant is hardly a 
source of major error since it is nothing more 
than the ratio of blade density to air density. 
The second parameter is the ratio of initial 
thrust (T0) to weight (W). Both Fig. 2-53 and 
Fig. 2-54 suggest that this ratio is too large. 
The third parameter is 
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the ratio of initial thrust coefficient (—ÚÓ) to 
initial torque coefficient (CQ0). It is the 
inaccurate prediction of initial (i.e., static) thrust 
coefficient by Eq. (2.126) and, as Wheatley 
tabulated, torque coefficient by Eq. (2.127) that 
drives Eq. (2.138) to its optimistic result. 



You might think that the fixed-wing 
industry would have known all about static 
thrust and torque calculations from their 
propeller design work. However, the 
calculation of propeller static thrust and the 
torque required to produce that thrust was not, 
surprisingly, a burning issue for the fixed-wing 
industry. Their concentration was on designing 
fixed-pitch propellers for maximum efficiency 
in cruise and at maximum speed, as early 
NACA reports by Dr. William Durand and 
Professor E. Lesley [86] and [87] illustrate. In 
1917 and 1918, they accumulated test data from 
nearly 100 model propellers in "the 
aerodynamic laboratory of the Leland Stanford 
Junior University." The school was named by 
Stanford for his son; hence the Junior. At that 
time, Dr. Durand was Chairman of the N.A.C.A. 

When the controllable pitch, constant 
speed (rpm) propeller came on the scene [41], 



propeller blades were still designed for high 
speed. With variable pitch propellers, collective 
pitch was simply adjusted to maximize 
takeoff performance. And so it was left to 
the rotorcraft industry to maximize the 
thrust-to-torque ratio for autogyro jump 
takeoff performance. At the same time, the 
ground work was being laid to maximize the 
thrust-to- horsepower ratio for the hovering 
helicopter. 
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Fig. 2-55. Prediction of jump takeoff 
maximum height. 
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2.8.6 Static Thrust and Torque 

A milestone step in understanding 
rotor static performance was completed by 
Montgomery Knight and Ralph Hefner at the 
Georgia School of Technology in December of 
1937 [88].26 Their initial theoretical and 
experimental work was timely for the autogyro 
jump takeoff performance problem and, of 
course, just as applicable to the helicopter, 
which clearly was becoming the 
second-generation product of the rotorcraft 
industry. Knight and Hefner carefully 
documented application of what is called blade 
element momentum theory.27 Their experimental 
work gathered thrust and torque for rotors 
having two, three, four, and five blades, which 
led them to prove that the fundamental way to 
account for solidity (a) was by scaling thrust 
coefficient by the square of solidity, and 
torque coefficient by the cube of solidity. 



This very fundamental point appears to 
have been lost somewhere during the seven 
decades that followed publication of their 
report. You can regain an appreciation of its 
importance, however, by just rewriting the 
autogyro maximum jump takeoff height 
equation as 

(2.139) 

Í 4T Ì 
IP*R4J 

f 
In 

V 

or rewriting the static thrust coefficient, Eq. 
(2.126), letting vertical velocity (dh/dt) equal 
zero, which leads to 

C T D / M 2 

(2.140) 



or, rather than thinking of decelerating torque, 
think of a powered helicopter rotor in hover, in 
which case Eq. (2.127), becomes 

(2.141) 
ÜQ 8 Q V2ÍCThD> 

öV p7iR5Q2<73a3 
-'Thp 

V o a J 

Knight and Heftier focused their work 
on rectangular, untwisted blades having a 
2.5-foot radius and a 2-inch chord. Their 
blades used the NACA 0015 airfoil and 
were carefully balanced so the section center 
of gravity was at the airfoil 1/4-chord point. 
They noted in their report that "five blades and 
three hubs were used. The blades were identical 
and interchangeable, thus making possible the 
four rotor combinations." The 2-inch chord 
was constant from "the tip to a radius of 5 
inches." Moving inboard, the airfoil 



transitioned to a circular cross section (3/4-inch 
diameter) at the 1 .5-inch radius station. A 
flapping hinge was installed at the 1-inch 
radius station. Their test results were 
provided in tables as well as 

26 Montgomery Knight presented a paper at the first 
Rotating Wing Aircraft Meeting held at the Franklin 
Institute in late October of 1938 [see Appendix F]. His 
session dealt with Research Programs and he spoke in 
depth about "Research at Georgia Tech." 
27 A more up-to-date explanation of blade element 
momentum theory is given by Alfred Gessow and 
Garry Myers in their classic book, Aerodynamics of the 
Helicopter [61]. 
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figures. The agreement between their 
equations for thrust and torque, derived from 



blade- element momentum theory, was quite 
impressive. 

The key results from the 1937 
ground-breaking work by Knight and Hefner 
begin with Fig. 2-56. With 35 data points from 
their 4 separate rotors, they developed the 
relationship that if collective pitch ( ) is scaled 
as 

(2.142) 0 = ^ i e 

a ^ c , 
then 

(2.143) % = • 

— in radians 

32 

\3/2 
1 , 1 0 , ( 1 - « )(1 + 2 ) -1 
2 3 15 2 

When you read the Knight and Hefner report 
you will see that I have altered the structure of 
their equations to be consistent with the 
structure used in this discussion.28 



›„€Ï≤»,*Ó1Õ≥≤Û-<ÿ24 

œ.≥ hliKk..,sr.li.lh.-n.i|«í 
È4€Ô*≥,Ï1»»Û = ≤≤.ÿ9 

+ 5€Ë¿˜,*Óÿÿ = {Ã0«≤ 

Coefficient 

Collective Pitch (degrees) 

Flg. 2-56. Knight and Hefner model test 
results from 1937 [88]. 

2 8 There are a few typographical errors in the Knight 
and Hefner equations [88], however their numerical 
comparisons are quite correct. In sorting out these errors, I 
chose a somewhat simpler form to use here. 
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The thrust coefficient versus collective 
pitch data for the four different solidity rotors 
shown in Fig. 2-56 can be "collapsed" to one 
line when graphed as 

CT 
—7- versus —. 
<r a 

This is done in Fig . 2-57 assuming, as their 
airfoil data showed, that the airfoil lift-curve 
slope (a) is 5.73 per radian for the NACA 0015. 
As you can see, the form that Knight and 
Hefner found theoretically is well supported 
by their simple experiment. Fig. 2-57 also 
includes Wheatley's thrust approximation, Eq. 
(2.140), for the sake of completeness . Either 
equations from Wheatley or Knight and Hefner 



are adequate for the prediction of thrust 
coefficient. 

On the other hand, prediction of 
torque coefficient with Eq. (2.141) is 
totally inadequate. In analyzing the torque 
coefficient, Knight and Hefner wrote, "The 
torque may be divided into three parts 
analogous to the partition of drag on an airfoil 
[i.e., wing]." In the somewhat more commonly 
used terminology today, total torque is the sum 
of: 

1. Induced torque. 
2. Minimum profile torque. 
3. Delta profile torque. 
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Fig. 2-57, Accounting for solidity when 
calculating thrust coefficient [88]. 
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Then, using blade element momentum theory, 
they proceeded to arrive at the following 
equations: 

(2.144) 

Induced —r- = -
& 3,584 

(≥ + 2 ) 3 / 2 -1-« 
384 fCT

N 

' a 2 U 2 , 

(2.145) Min. Profile -f-
G3 Sa2 

(2.146) 

Delta Profile ^ = — 
a3 512 1+≥ +≥ ˜7(≥+2<-Á‰+20> -4 

3 4 42 2 

where, again, — — — in radians. Knight and Hefner acknowledged that there is some 



delta profile torque due to the increase of airfoil 
drag coefficient with airfoil lift coefficient, a 
component that Wheatley ignored in his jump 
takeoff study. Knight and Hefner, from their 
airfoil experiment, chose to account for this 
airfoil drag rise as 

(2.147) 

C d = C d 0 + e a 2 = C d 0 + e i ^ i =Cd 0+SC?. 

From their torque equations, they were 
immediately able to see that induced and delta 
profile torque were both dependent on 
collective pitch. They therefore concluded that 
subtracting minimum profile torque from total 
torque would yield the sum of induced and 
delta profile torques, a torque that could be 
scaled by solidity cubed. Thus, the experimental 
data should be examined in the form 



Q 8_ 
—¡r-2— versus —. 

Fig. 2-58 shows that the blade element 
momentum theory had led them toward the 
right conclusion. They compared two values of 
airfoil drag rise constant (Ô) and finally 
satisfied themselves that a (Ô) of 0.038 was quite 
reasonable considering the small scale of their 
model. I have included the result Wheatley 
obtained from Eq. (2.141) in Fig. 2-58, as well 
as his data from Table 2-4 based on the Knight 
and Heftier minimum airfoil drag coefficient 
(Cdo) of 0.0113. 
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Fig. 2-58. Accounting for solidity when 
calculating torque coefficient [88]. 

2.8.7 Ground Effect 

Wheatley, you will recall, raised a 
question about how "ground effect" might 



have influenced his j u m p takeoff experiment. He 
wrote [82]: 

"It is considered possible that the source of 
compensating error is the ground effect, which would 
tend to increase the thrust of the rotor when it was 
near the ground plane at no additional cost in torque." 

The subject of ground effect on rotor thrust 
and torque coefficients was the second task 
Knight and Hefner took on as part of their 
"research program at Georgia Tech." They 
introduced their report [89] on ground effect 
with: 

"Proximity to the ground has a pronounced effect on 
the aerodynamic characteristics of the lifting airscrew. 
Ground effect is therefore of importance in the study of 
the landing and the takeoff qualities of gyroplanes and 
helicopters. No comprehensive attack on this problem 
has thus far been found by the writers although it has been 
mentioned occasionally in the literature (references 1, 2, 
and 3), and an approximate mathematical analysis has 
been made by Betz (reference 4)."29 



2 9 References from Knight and Hefner are included here 
as references [90], [8], [91], and [92] respectively. 
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Knight and Hefner gave their own 
mathematical analysis of ground effect, 
which they supported with 5-foot-diameter 
model experiments . The models were from 
their early work [88], but this time they only 
used two-, three-, and four-bladed 
configurations. They tabulated their 
experimental results in the coordinates of 

—Ú ^Q g 
—±- versus — and z-̂ — versus —. 
c c c Ò 

Based on the work by Knight and 
Hefner, Fig. 2-59 shows that Wheatley did 



have reason to wonder about how ground effect 
might be influencing his jump 
takeoff experimental results because his 
10-foot-diameter model began its jump takeoff 
at a height (Z)-to-diameter (D) ratio of about 
0.35 [Fig . 2-52] . Wheatley, in writing that 
thrust would increase at "no additional cost in 
torque," clearly anticipated the experimental 
trend Knight and Hefner reported [89] some 5 
years later. 
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Fig. 2-59. At equal collective pitch/solidity 
ratio, thrust increases as the rotor approaches 

the ground, but power is unaffected. 
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Knight and Hefner give a power 
required calculation method based on their 
theoretically derived correction factor. I have 
revised their approach slightly so that 

(2.148) IGE 
oc, ̂ + (DeltaC0) +tanh j-KI I Induced Cn ) 

The initials IGE and OGE stand for in and out 
of ground effect, respectively. 

Using Eq. (2.148) is relatively simple. 
The rotor geometry and flight condition are 
used to calculate the ratio of thrust 
coefficient to solidity squared. With (CT/CF2) 
known, Eq. (2.143) is used to find the 
collective pitch parameter ( ) . Then, Eq, 
(2.146) is used to calculate delta profile torque 
OGE, and Eq. (2.144) is used to calculate 



induced torque OGE. These steps provide the 
information to calculate IGE torque (or 
power, since CQ = Cp). Applying this 
approach to all of the experimental data from 
Knight and Hefner [88, 89] yielded the 
correlation of test and theory shown in Fig. 
2-60. The inverse problem of predicting the 
increase in thrust as the ground is approached 
at equal power is, of course, equally simple 
using the same four equations. It is just a matter 
of finding the collective pitch parameter ( ) 
that makes Eq. (2.148) constant, even though 
the ratio of height above the ground (Z) to 
rotor diameter (D) is decreasing. Each value 
of (Z/D) yields a ( ), which is used to 
calculate thrust with Eq. (2.143) with results 
such as those shown in Fig. 2-59.30 

Despite the theoretical work by 
Knight, Hefner, and Betz, rotor power in 
ground effect—for a given thrust—was strictly 
an empirical-to-semiempirical engineering art. 



It was an art then and still is today, 
unfortunately. However, as I will discuss later, 
enough additional experimental data in and 
out of ground effect was acquired to create 
a fairly reliable, empirical, power-required 
correction [93, 94]. 

2.8.8 Thrust Overshoot 

Besides ground effect, there is another 
facet of jump takeoff that Wheatley did not 
address in his experiment. Cierva, Pitcairn, 
Hafher, and Kellett autogyros increased 
collective pitch from flat pitch (i.e., a 
near-zero-thrust collective-pitch setting used for 
over-speeding the rotor) to a normal flight 
setting. Wheatley powered his 
10-foot-diameter model rotor up to over-speed 
with collective pitch already set at 6 to 18 
degrees. He then sprung a release, and the 
model rose. This is the simple "toy Chinese 
top" problem, and relatively simple equations 



can be used to estimate maximum height. 
With full-scale autogyros, the rapid increase 
in collective pitch from zero to some value, 
(either by the pilot as Hafher and Kellett chose 
or by centrifugal force as Cierva and Pitcairn 
chose), raises a question about how thrust 
varies with a transient change in collective pitch. 
This question was answered by Carpenter and 
Fridovich at the N.A.C.A. in 1953 [95]. 

30 I have used Microsoft® Excel® spreadsheet software 
for this and nearly every other calculation and figure in 
this book. Personally, I think this software is wasted on 
accountants. Of course, the equations included can be 
easily programmed in any other computer language. 
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Fig. 2-6D. Knight and Hefner model rotor experimental OGE data [SS] and IGE data 

[89] predicted with Eqs. (2.144) 
and (2.146), assuming Ô = 0.0447. 

You might be surprised that this 
question was still unanswered nearly two 
decades after the Wheatley experiment 
[82]—and with helicopters well into 
production. The introduction to the report by 



Carpenter and Fridovich provides the answer: 

"One of the methods currently used to get an overloaded 
helicopter airborne is the maneuver commonly referred to 
as the "jump takeoff' or "engine over speed takeoff." This 
maneuver is a takeoff with a flight path initially vertical, 
effected by the release of excess kinetic energy stored in 
the rotor. The rotor is initially accelerated at or near a 
blade pitch angle of 0° to a rotor speed greater than its 
normal speed. At this over speed condition, the blade 
pitch is suddenly increased to its normal value or higher 
and the consequent rotor thrust, being greater than the 
weight of the machine, lifts it vertically from the 
ground. During the takeoff, the rotor decelerates, the 
thrust returns to its normal value, and the pilot must 
gain sufficient forward speed to stay airborne with the 
power available." 

Helicopters flying in 1953 were all 
powered by reciprocating piston engines. 
These engines were, as you will read later in 
Volume II—Helicopters, quite underpowered 
for their weight (even with supercharging) 
and did not give early production 
helicopters much performance. In fact, the U.S. 



Army Air Corps' first helicopter, the Sikorsky 
R-4, could only hover in ground effect when 
loaded to normal gross weight. 
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Carpenter and Fridovich used the 
N.A.C.A. "Langley helicopter test tower" and 
a three-bladed rotor to conduct their 
experiments . This "apparatus" was built 
between 1946 and 1947 and first used in 1948. 
The whirl tower, as this type oftest facility 
came to be commonly called, was described in 
detail by Carpenter [96] . The rotor hub was 
approximately 40 feet above the ground, which 
placed the 38-foot-diameter rotor nearly out 
of ground effect. At that time, the N.A.C.A. had 
two sets of full-scale rotor blades available. 
Sikorsky provided these blade sets in support 
of flight research on the R-4 conducted by the 



N.A.C.A. 

The objective for the 1953 Carpenter 
and Fridovich test [95] with the three-bladed, 
38-foot-diameter, 0.042-solidity rotor was to 
measure the time history of thrust for several 
rates of pitch change from zero to maximum 
collective pitch. Their results quantified the 
"overshoot" in thrust, which accompanied an 
induced velocity that could not keep up with 
collective pitch change . They obtained the 
behavior of the induced velocity during the 
transient period "by measuring the drag of 
balsa-wood paddles (approximately 4 inches 
square) mounted on a horizontal bar about 2 
feet below the rotor blades. The paddles were 
mounted on strain-gage beams and their 
response to a change in induced velocity 
was recorded by an oscillograph." The 
Carpenter and Fridovich data showed that the 
Knight and Hefner basic thrust equation, Eq. 
(2.143) repeated here for convenience, was 



inadequate. 

(2.143) 

— Ú _ ‡ 2 √ ≥ | 1 | ( ≥ - « )(≥ + 2 ) 3 / 2 - ≥ " 

Œ2 32 2 3 15 2 

Carpenter and Fridovich measured 
"thrust over shoot" during pitch change rates 
of 6 to 200 degrees per second. The collective 
pitch was increased from 0 to a maximum of 3, 
6, 9, and 12 degrees. Their data summary chart is 
reproduced here as Fig. 2-61 . At the highest 
rate, probably typical of Cierva and Pitcairn 
Autogiros, the rotor was quite capable of a 
maximum thrust coefficient (Cj max) nearly twice 
that of the final, steady-state thrust coefficient 
(—Ú final)-

An example of the Carpenter and 



Fridovich experimental time history results is 
shown in Fig. 2-62 and Fig. 2-63.1 chose this 
particular test case because, as they said, 

"For a pitch rate of 48° per second [see Fig. 2-62] which 
is thought to be the maximum rate at which a pilot can 
move the controls (based on unpublished CAA and 
NACA tests), the time lag between full induced velocity is 
approximately 0.7 second, whereas at still a slower rate 
of 20° per second the time lag is about 0.4 second. For 
the most rapid rate of blade-pitch increase [200 degrees 
per second], the blade inertia accounts for about 38 
percent of the total maximum thrust and decreases to 
about 2 percent of the total maximum thrust for the 
slowest rate of blade-pitch increase [6 degrees per 
second]." 
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Fig, 2-61, The Carpenter and Fridovich test 
showing the effect of rapid collective pitch 

changes on maximum thrust [95]. 

The rotor thrust coefficient (—Ú) 
variation with time, in response to the collective 
pitch increase from 0 to 12 degrees at a 



48-degrees-per-second rate for one-fourth of a 
second, is shown in Fig. 2-63 . Thrust 
"overshoots" the final steady-state thrust for 
about one-fourth of a second and reaches a 
maximum of 1.35 times the final steady value. I 
have not reproduced the blade coning time 
history Carpenter and Fridovich provided 
because it follows thrust almost exactly. The 
induced velocity exhibits no "overshoot" as Fig. 
2-62 shows. This behavior was characteristic 
of the induced velocity time history regardless 
of the pitch change rates. 

Carpenter and Fridovich present a 
very simple theory to explain the 
experimental results shown in Fig. 2-61 , Fig. 
2-62, and Fig. 2-63. The key assumption of their 
theory is that there is an "apparent additional 
mass of air influenced by the rotor disc." This 
mass of air must be accelerated from zero 
velocity, and this additional force must be 
included in the blade element momentum 



theory. Based on work by Max Munk [97], 
Carpenter and Fridovich defined the apparent 

air mass as 
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lasted for about 0.25 seconds. 
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(2.149) 

Apparent Mass = mair = 0.637p —rcR3 in 

slugs 

and then wrote the blade element momentum 
theory for induced velocity (v) as 

(2.150) 

dv -, 
m " r d t" + 2 j I p 

2Rdß 
3 dt 

= i ( b e a R V f ) í ^ - ^ - l ^ 
6 \ ^ „mc 2 V | ß < J t 

Because the rotor blades were attached to 
the hub with a flapping hinge, Carpenter and 
Fridovich needed to include the effect of 



flapping velocity (dß/dt) on the blade element 
angle of attack. (When you read their report [95], 
you will see that I have reduced his basic 
equation to a rectangular blade and assumed the 
induced velocity to be uniform over the whole 
rotor disc.) 

The Carpenter and Fridovich theory 
required the flapping velocity. To calculate this 
velocity, they wrote the classic, second-order 
differential equation for flapping as 

(2.151) 

U«+,^P.i(pacR.)[e„-^v-l«)-Mw 

where I have again assumed a rectangular blade 
and uniform induced velocity. 



The simultaneous solution posed by 
Eqs. (2.150) and (2.151) was, in 1953, solved 
by an analog computer; they used "the Bell 
Telephone Laboratories X-66744 relay 
computer at the Langley Laboratory." They 
used a time step of 0.02 seconds. Today, 
powerful digital computers, coupled with any 
one of the numerical integration schemes 
available [98], make short work of the problem 
Carpenter and Fridovich faced. 

Once the time histories of induced 
velocity (v) and coning (ß) were obtained, 
they computed the vertical hub force (Thub) 
measured by the whirl tower balance as 

(2.152) 

dv i 
Th u b=ma i r—+2TCPR2 

2Rdß 
v v+ -

3 dt 
‹€Â 2 dt2 



and then converted this force to a thrust 
coefficient by 

(2.153) CT = T""b , . T prcR2V2 

Based on my literature survey, the 
test and analysis by Carpenter and Fridovich 
received very little immediate follow-on 
attention from others in the rotorcraft 
industry. Nearly 20 years passed before their 
problem was studied again. But then, in the 
early 1970s, Peters [99] extended the concept 
of "apparent mass" to help explain rotor 
behavior during other transient conditions. 
Peters' explanatory efforts were quite successful 
and his work came to be known as the 
"dynamic inflow" theory. Most recently, 
Bhagwat [100] published his Ph.D . thesis 
dealing with an advanced free-wake theory 
programmed on a powerful digital 
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computer. This modern analysis brought a 
half-century of accumulated theoretical and 
computer power to bear on what may appear 
as a simple problem. As part of his thesis, 
Bhagwat studied the Carpenter and Fridovich 
problem in some detail. His quite modern 
theory prediction of thrust "overshoot" is 
shown in Fig. 2-61 . The modern theory 
hardly differs from the Carpenter and Fridovich 
result of 1953; however, Bhagwat [101] 
concludes that their apparent mass approach, 
while in good agreement with observed 
behavior, is not the source of the dynamic 
overshoot. The correct source is the complex 
wake springing from behind each blade, the 
induced velocity field about the rotor caused 
by this wake, and the actual lift of each blade 



section airfoil. 

2.8.9 Closing Remarks 

As you can see, prediction of jump 
takeoff trajectories involves several important 
variables that influence the initial thrust and 
decelerating torque . Rotor over-speed, rotor 
inertia, ground effect, and thrust "overshoot" 
are just the beginning. I have found no 
comprehensive study of the autogyro's real 
limits to performing jump takeoffs. However, 
analytical capability does exist today to 
investigate the problem—should the need arise. 

Jump takeoff capability, even to 
heights of 35 feet as demonstrated by late 
model autogyros, did not add enough capability 
to this first generation of rotorcraft. The 
autogyro quickly faded in the face of 
competition offered by even underpowered 



helicopters . In fact, the autogyro is still 
frequently referred to as a short takeoff and 
landing (STOL) aircraft, when fuel efficient 
vertical takeoff and landing (VTOL) aircraft 
with modern jet aircraft cruise speed remains 
the goal. 

Of course, the autogyro pioneers did 
lay the foundation that the helicopter pioneers 
needed in order to expand the rotorcraft 
industry. A perfect example of this foundation 
is the development of rotor blades during the 
autogyro era. 
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The evolution of rotor blades during 
the autogyro era is a fascinating story. On one 



hand, you see the story unfold by studying the 
many aircraft photos and three view drawings 
that exist in popular literature. But these two 
sources give only a feeling about the number of 
blades and their external geometry such as span 
or radius (R) and width or chord (c). On the 
other hand, it is the technical reports and 
papers that provide the facts and figures that 
bring the accomplishments of the autogyro 
pioneers into true focus. 

In a simplistic sense, a rotor blade is a 
rotating wing. In a structural dynamics sense, a 
rotor blade is nothing more than a centrifugally 
stiffened rotating beam—with a cross section 
shaped like an airfoil. However, the planform 
variations among rotor blades, even during the 
autogyro era, are quite interesting. In 
January 1923 the C.4, the first successful 
Cierva Autogiro, had four rectangular planform 
blades (see Fig. 2-5). The blades had a very 
wide chord for their radius as you can see 



from Table 2-5 . Then Cierva developed the 
C.6A, a slightly expanded C.4, which he 
demonstrated in England in 1925. With the 
introduction of the C.6A, the budding rotorcraft 
community almost immediately adopted the 
term "solidity" to describe aerodynamic 
planform geometry. The term solidity that 
Cierva introduced accounted for two reference 
areas that might be used in studying 
rotors—one being the swept disc area (rcR2 ) 
and the other being the physical blade planform 
area (bcR) for a rectangular blade, where (b) is 
blade number. These two areas were formed 
into a ratio referred to as solidity (a ) . This 
descriptive parameter remains in use today, so 
you should remember that 

(2.154) 

bcR be b 
Solidity = ø = 

7iR2 JtR 7i(R/c) 



for rectangular blade 

The ratio of blade radius (R) to blade chord (c) 
is, of course, blade aspect ratio. 

The influence of solidity on rotor 
performance was the basis of early criticism of 
the autogyro. While Cierva enjoyed the praise 
of the overwhelming majority of those who saw 
his C.6 fly in England, he got little 
encouragement from one of the most highly 
respected fixed- wing aeronautical engineers of 
the era. The critic was Herbert Glauert. In 
November 1 926, about a year after Cierva 
demonstrated the C.6, H. Glauert published a 
landmark analysis [13] entitled A General 
Theory of the Autogyro, released as 
Aeronautical Research Committee, Reports and 
Memoranda, Number 1111 (R&M 1111). This 
appears to be the first formally published study 
of autogyro rotor system performance. The 



report by Glauert laid a firm cornerstone for 
all future rotorcraft performance analysis and 
may well be one of the most referenced 
documents in the technical world of the 
rotorcraft industry. 

139 

2.9 BLADES 

Table 2-5. Rotor Solidity Was Greatly 
Reduced in Less Than 10 Years 



Generili 
Model 

Year 
Cross Weight œ€ (lbs) 
Installed Power (hp) (hp) 
GWttp 

Rotnr 
Blades 
Diameter (ft) 
Chord (in.) 
Disc Area(sq ft) 
R/c 
Soliti itv 
Tip Speed (ft/set) 
Blade Airfoil 

Whi t 
Span (it) 
Chord-Root ilt) 
Projected Area (sq ft) 

C.4 

1923 
1,200 

SO 
15.0 

C O A 

1925 
2100 
œŒ 
19.1 

C.19 
Mk. III 

1929 
1450 
IOS 
14.8 

PCA-2 

1930 
2940 
300 
9.E 

C.19 
Mk. IV 

1931 
1450 
105 
14.8 

C.30 
P&A 
1933 
íeoo 
140 
12.9 

KD-1 

1934 
2100 
225 
9.3 

A.R. III 

1936 
Í90 
84 

10.6 

PA-36 

1939 
1.800 
175 
10.3 

4 
32 
18 
803 
6.86 
0.189 
234 

Eiffel 
106 

4 
36 
30 

1,018 
7.20 

0.1768 
260 

GõtL 
429 

4 
35 

IK.6 
962 
11.3 

0.1107 
230 

Gött. 
429 

4 
45 
22 

1,588 
12.3 

0.0976 
340 

Gott. 
429 

3 
34 

18.6 (est.) 
908 
11.0 

0.084 
320 
RAF 
34 

3 
37 
11 

1,075 
20.2 

0.0470 
370 

Gott. 
606 

3 
40 
12 

1.257 
20.0 

0.0478 
420 
Gött. 
606 

3 
32.82 
4.9 
K46 
40.2 

0.0237 
464 
Syrn. 

3 
43 

17fi11 
1.452 
17.2 

0.0444 
450 

NACA 
23012 

None 
na 
Ô‡ 

None 
Ô‡ 
Ô‡ 

20.5 
2.53 
45 

30.33 
4.33 
101 

20.5 
2.53 
45 

None 
na 
na 

None 
na 
na 

None 
na 
na 

None 
na 
na 

In R&M 1 1 11, Glauert captures the 
essence of Cierva's aerodynamic theory, but 
when you read beyond the technical work, you 
will find that he included several rather 
pessimistic statements about rotary wing 
performance. For instance, in the general 
discussion part of his report, he states: 

"The maximum lift drag ratio of rotating wings is poor 
compared with that of ordinary fixed wings; its ordinary 
value is approximately 6 and it is unlikely to exceed 8 in 
any practical case. It occurs at a small value of lift 
coefficient [using disc area, n R2, as the fundamental area 



and the forward speed as fundamental speed] in the 
neighbourhood of 0.05 and so at a speed approximately 
three times the stalling speed The important 
conclusion is reached that as the maximum speed of the 
gyroplane is increased, the loading must also be 
increased in order to maintain a sufficient ratio of tip 
speed to forward speed; and there is a corresponding 
increase of the stalling [speed] Thus, the principal 
merit of a gyroplane, its low landing speed, inevitably 
disappears when high speed of level flight is required, and 
there remains only the absence of a sudden stall to 
counter-balance the very poor efficiency as compared 
with an aeroplane. " [My italics] 

Glauert based his numerical examples and 
statements on an autogyro rotor having four 
blades of 17.5-foot radius and 2.75-foot chord, 
or a solidity of 0.20. His comment at the end 
of Appendix II of his R&M is particularly 
interesting because he noted: 

" A reduction of the solidity leads to improved speed 
of horizontal flight since the power taken by the windmill 
is reduced. Also the best loading falls more rapidly 
than the maximum lift coefficient and hence the higher 



top speed is accompanied by a lower stalling speed. 
The limiting condition for this method offL/DJ 
improvement is clearly the impossibility of making very 
thin [narrow chord with thin airfoil] blades of large 
radius and is a matter of structural strength. " [My italics] 
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What Glauert failed to consider was 
Cierva's, Pitcairn's, Kellett's, and Hafher's 
resourcefulness. In 4 years, as Table 2-5 shows, 
solidity was halved and, 4 years later, solidity 
was halved again. The Hafher A.R. Ill, with a 
rotor solidity of 0.0237, made it quite clear that 
Glauert's use of the word "impossibility" was 
hardly visionary. However, Glauert's view that 
the maximum rotor lift-to-drag ratio was 
"unlikely to exceed 8" was more correct as you 
will read later. 



Cierva used his models C.6 through 
—18 to evaluate several planform geometries 
before selecting the production configuration 
used on the C.19 . Cierva Autogiros—The 
Development of Rotary Wing Flight by Peter 
Brooks [7] contains a photographic chronology 
of the blade planform study. In his Engineering 
Theory of the Autogiro [11], Cierva discusses the 
aerodynamic merits of several planforms . I 
have reproduced a few of his sketches in Fig. 
2-64, Fig. 2-65, and Fig. 2-66. While Cierva 
investigated the effect of blade twist in flight, 
Fig. 2-64, he made no attempt to calculate 
performance for other than untwisted 
rectangular blades. However, in Part IV of his 
Engineering Theory he says that: 

"It is quite certain that a certain degree of [aerodynamic] 
improvement can be obtained by (a) giving the blades a 
wash-in in pitch angle, which diminishes the stalling 
of certain [radial airfoil] sections and (b) tapering the 
tips, with a decrease of the profile losses in that region, 
which is little useful for lift and (c) decreasing the chord 



near the root, where stalling is more pronounced and the 
trailing and leading edges change places in horizontal 
flight." [See Fig. 2-2.] 

Cierva goes on to say that "but, in every case, 
there is a possibility of impairing the efficiency 
by overdoing (a), (b), or (c)." He then concludes 
with: 

"My results, so far, are that not a great degree of 
[aerodynamic] improvement is obtained, either by (a), 
(b), or (c), but, by using shapes such as the types RB 
53 [see Fig. 2-66] and RB 55 [see Fig. 2-65] with a 
considerable parallel (constant chord) portion in the 
optimum region, the best results are obtained. The types F 
1017 and F 1038 are not so good, probably on account of 
the very long tapering and thick tip, and the F 1038 
(modified) [see Fig. 2-64] was slightly worse than the F 
1038 because of the increased tapering and the 
decrease of the wash-in." 

Cierva did not give theoretical results 
for twisted blades with arbitrary planform. 
Instead, he seems confident in using the 
blade-tip pitch angle as the reference angle ( = 



Otip) in his rectangular, untwisted blade 
equations . With respect to planform, he 
recommends his basic equations, but with a 
solidity he defines as (<JShape)- In effect, he 
defines an average chord equivalent to a 
rectangular blade chord. For nonrectangular 
planforms he writes 

(2.155) a ^ A 
["crÆVdr 
Jo ' 

R3/3 
for nonrectangular planform 

where (cT) is the chord variation with radius. Cierva performed the integration required by 

Eq. (2.155) graphically for all but the simplest 
planforms. 
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Fig. 2-<¡4. Cierva rotor blade type F-1038 (modified). Equivalent rectangular blade 

solidity of 0.19 [11]. 
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Fig. 2-65. Cierva rotor blade type R.B. 
55. Equivalent rectangular blade 

solidity of 0.088 [11]. 
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Fig. 2-66. Cierva rotor blade type R.B. 53. 
Equivalent rectangular blade 

solidity of 0.090 [11]. 
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The concept of an equivalent 
rectangular blade solidity for any 
nonrectangular planform has altered slightly 
over the decades. Today, in technical literature 
[61] you will find an equivalent chord leading to 



a thrust-weighted solidity, which is what 
Cierva had in mind. This solidity is calculated as 

(2.156) Thrust weighted oT = — 
i ' c / d r l 

Jo ' 1 

Í'n 
for nonrectangular planform. 

In addition, an equivalent chord leading to a torque- or power-weighted solidity is used 

occasionally and is calculated as 

b f f 'c/dr l 
(2.157) Torque weighted a 0 = \ A ,— f *°„ nonrectangular planform. 

À  .   i 4 1 

When Cierva went into production it was with the C.19 shown in Fig. 2-67 and 

Fig. 2-68. The blade planform, as the top view 
shows, certainly appears to be a derivative of 
the Cierva Type R.B. 53 shown in Fig. 2-66. 
Photos by Brooks [7] of early Pitcairn, Kellett, 
and Buhl machines all show the stamp of the 
Cierva production blade planform. 
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Fig. 2-67. A Cierva C.19 Mk. III In final assembly |7|. 
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2.9.1 Structural Details 



Looking closely at Fig. 2-68, you can 
almost guess the basic blade design from the 
artist rendition. The leading edge of each 
blade is solid white back to about the 
30-percent chord point. Beyond that to the 
trailing edge there are closely spaced lines 
that represent airfoil ribs—some 65 per blade by 
my count. 

Considerably more detail about the 
C.19 blades is shown in Fig. 2-69 and Fig. 
2-70. These informative sketches are from The 
Book of the C.19 Autogiro [50]. The foreword 
states, "The authors of the book [Mr. Sanders, in 
charge of the design staff, and Mr. A. H. 
Rawson, test pilot] are those who have been 
most closely in touch with Senor Don Juan de 
la Cierva, the inventor of the Autogiro, during 
the development of the principle, and in 
particular of the type of machine explained and 
illustrated." 



Fig. 2-68. The Cierva C.19 Mk. III [7]. 
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Fig. 2-69. The Cierva C.19 Mk. III blade with 18.6-inch chord [SO]. 

The description of the C.19 blade that 
Sanders gives is quite complete for a book 
addressed to the uninitiated autogyro enthusiast. 
He writes: 

"The rotor blades, which are the chief 
components of the Autogiro, are designed to give the 



necessary lift to the machine. These are of wood and 
metal construction. Each blade is 17 ft. 6 in. long with a 
chord of 1 8.6 inches (along the main portion) and is of 
"Göttingen 429" section, set at an angle of incidence 
of 2° 10' [Fig. 2-69]. 

The main spar is of high tensile steel tube, 1-3/4 
in. diameter by 20 S.W.G. This spar runs the length of the 
blade (except at the extreme tip) at 0.25 of the chord 
from the leading edge. The ribs are of wood, consisting 
of a mahogany core 5/32 in. thick, faced on each side 
with 1/16 three-ply [Fig. 2-69]. Each rib is grooved along 
its top and bottom edges and drilled to take the sewing 
string fixing the fabric covering. The ribs are very 
closely spaced (3 in. apart) and each one is riveted to a 
flanged clip which is sweated to the main spar. In 
addition, every third rib is bolted to the spar. Owing to the 
close spacing of the ribs the load carried by each is very 
small. 

To stiffen the blade in a horizontal plane an 
auxiliary spar is fitted at approximately midway between 
the main spar and the trailing edge, starting from the root 
end, and continuing to the outer end of the main spar. 
This auxiliary spar is of 1/4 in. thick spruce, 
approximately 7/8 in. deep, and is glued and bradded 
to each rib. The trailing edge is a strip of 26 G. 



duralumin, 2-1/2 in. wide, doubled back over the ribs and 
riveted to each. 
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The nose portion of the blade is covered with 
1/16 in. 3-ply extending back to the centre of the main 
spar. The whole blade is fabric covered, and the outer 
end of the blade, known as the rotor blade tip, is a 22 
S.W.G. aluminum fairing, which is made in halves and 
riveted. To stiffen this fairing two duralumin ribs and two 
channel pieces are fitted inside. One of these ribs is 
bolted to the end of the main spar as a means of 
attachment to the blade. In addition the inner edge of the 
tip is doubled back and screwed to a special thick rib at 
the end of the main portion of the blade. At the root 
end of the blade is another aluminum fairing, stiffened 
with a spruce former, and screwed to the end rib [Fig. 
2-70]. 

Provision is made for draining any moisture that 
may get into the blade by means of six drain eyelets 
spaced at intervals along the bottom surface near the 



trailing edge. 

A machined fork end is bolted and sweated in 
the root end of the main spar, forming an attachment to 
the articulation joints in the rotor hub [Fig. 2-70]. 

On assembly the rotor blades are inter-braced 
with 1 5 cwt. cable, the ends of which are attached to 
friction dampers on the main spar. Turnbuckles are 
provided in this bracing for adjustment. 

The friction dampers [Fig. 2-71] work 
somewhat on the principle of the shock absorbers used 
on cars, and the friction between the steel plates and cork 
disc can be adjusted to give the required stiffness. The 
crank arms of the dampers are designed so as to have 
a certain degree of free movement in a vertical plane, thus 
enabling them to adjust themselves to the rise and fall of 
the blades. The friction dampers are fitted at 8 ft. 3-1/2 
in. from the centre line of the rotor hub. 

A 20 cwt. suspension cable is fitted from the top 
of the rotor hub to a bracket on the main spar at 6 ft. 
6-1/2 in. from the centre line of the rotor hub. This cable 
is of such a length that a relax angle of 8° is allowed. 
Provision for adjustment is also made in this bracing by 



means of turnbuckles. 

Each blade is balanced to a standard weight so 
that all blades of the same type are interchangeable, 
provision being made for correcting weight at the outer 
end of the main spar." 

» v. 

. 

Fig. 2-70. C.19 root end [50]. 
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Fig. 2-71. Lag damper [50]. 
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Sanders [50] points out that cables 
carried damper loads from one blade to 
another. Thus, the blades were free to lead-lag 
as a group, but motion relative to each other 
was restricted. Furthermore, cables were used 
to hold the blades up when they were 
stationary. These cables were referred to as 
"droop" cables. These cables were soon to be 
removed, as I will discuss shortly. 

The main load member for these early 
blades was a constant diameter, constant wall 
thickness, high-strength steel tube . This tube 
is referred to as the blade spar. The "forked" 
extension to the spar, used to capture the 
lead-lag hinge pin, was also high-strength steel. 
This fitting was "sweated and bolted" to the 
main spar. Sanders [50] indicates "every third 
rib is bolted to the spar." Apparently, 



3/16-inch-diameter holes were drilled into the 
spar. The holes were drilled on the inplane or 
chordwise axis of the spar. Even with the stress 
rise correction factors Cierva applied, this 
deliberate damage to such a critical 
load-carrying member would never be 
considered today. 

Very interesting information about the 
Pitcairn PCA-2 blade was included by George 
Townson in his technically oriented book [45]. 
He provides a photograph of a blade before 
covering, shown here in Fig. 2-72. 

On page 23 of his terrific book, Townson 
gives an unmatched detailed description of 
the PCA-2 blade, writing: 

"The rotor blades were generally rectangular in plan 
form. The chord of the blade was of two widths; the one 
outboard being larger than the inboard. Transitional 
section of increasingly longer ribs faired the inner, narrow 



chord to the wider outer chord. The tip was curved with 
its thickness tapering into a rather sharp edge at the tip. 
Drain holes were provided at several places along the 
trailing edge of the blade to ventilate the inside to expel 
any moisture that was present as the result of 
condensation. These holes also prevented air pressure 
being built up from the centrifugal pumping caused by 
the rotation of the blade. The outer chord width was 22 
inches; the inboard 5-3/4 feet had a chord of only 
14-25/32 inches, the transition required three feet from 
inner to outer. The main member was a round tube of 
4130 steel, 2-1/8 inches in diameter straightened to a 
close tolerance, heat treated and hand polished. 
Approximately fifty plywood ribs, an average of three 
inches apart, formed the airfoil. A Pitcairn #4 airfoil was 
developed. It was a modification of the Göttingen 429. 
Ribs were routed from five-ply wood having alternate 
layers of mahogany and birch and were one quarter of 
an inch thick. 

¯¯¯¯Ú¯ & 



Fig. 2-72. Pitcairn PCA-2 blade before 
covering [45] 

(do not let the shadows confuse 
you). 
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Each rib had a stainless steel collar riveted onto one side, 
and these in turn were fastened to the steel spar. Some of 
the early blades had these collars soldered to the spar, 
but this was later changed to spot welding. The welding 
process was especially developed by Pitcairn engineers so 
that the maximum strength in the weld could be 
developed without reducing the strength of the spar tube 
in the process. The blade was covered to a point just aft 
of the spar tube with thin plywood that had been 
preformed to the leading edge shape. The trailing edge 
was formed into a stainless steel "vee" of thin sheet which 
was nailed to the ribs on earlier models. Later a steel tail 
was formed for each rib and the wood rib cut off blunt 
about three inches from the end of the rib. The stainless 
steel trailing edge was provided with slip joints so that 



one section of the trailing edge telescoped into the other if 
the blade flexed fore and aft. As the entire blade was 
finished in doped fabric, the slip joints were covered 
with small leather patches so as not to wear out the 
trailing edge fabric. The fabric was held down to the 
ribs by rib stitching in the same manner as an airplane 
wing." 

Two very important components, used 
by early developmental autogyros and the first 
production models, were "droop" cables and 
blade-to-blade lead-lag limit cables . These 
cables, clearly visible on the Cierva C.19 while 
stationary (Fig. 2-73), are frequently invisible to 
the eye when studying photographs of 
autogyros in flight. The purpose of the 
"droop" cables is, of course, obvious. With the 
flapping hinged blade, some limits to both 
minimum and maximum flap angles are 
required. On early autogyros, these limits were 
rubber pads on the hub spaced below and above 
the blade spar, which allowed for nearly a 
3 0-degree range in flapping. The 



blade-to-blade lead-lag cables were 
designed to keep the blades from 
depatterning in relative azimuth, which could 
lead to ground resonance (recall Fig. 2-14). 

The design requirements for both 
"droop" and lead-lag cables was carefully 
explained by Cierva in Part V of his 
Engineering Theory [11] . Part V is titled 
"Kinematics and Dynamics of the Rotary 
Blades" and covers rotor speed and motions 
about both flap and lag hinges. With respect to 
flapping, he concludes, from three possible 
flight situations, that a "sudden increase in 
speed without change of incidence, such as 
occurs at top speed in strong gusts" will create 
maximum flap-up angles ranging from 13 to 21 
degrees and minimum flap angles around -10 
degrees . In an abbreviated analysis, Cierva 
concludes that the lead-lag angle will range 
from ±2.15 to ±5.2 degrees, but an increase of 
50 to 100 percent on these angles "should be 



allowed for abnormal conditions [such as] 
sudden accelerations, bumpy air, etc." He further 
notes that "the restrictive interbracing should 
give a perfect freedom between consecutive 
blades of about 0.5 to 1 degree, and the 
restriction should be absolute for an angle equal 
to 0.5 +ß0als in order to prevent the stops, 
limiting the movement at the hinge, from 
taking any loads when starting or stopping the 
blades." Cierva is very emphatic about the 
lead-lag cables saying, "If any elastic 
interbracing is used, great care should be taken 
to have it sufficiently slack to not restrict the 
motion in flight, since resonant conditions can 
easily be reached, with the subsequent vibration 
and risk of [blade] failure." 
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Droop 
Cable 

/ 
-; 

_¿~ 

Fig. 2-73. Cierva C.19 Mk, ÿ showing "droop" and lead-lag cables [7], 

While the Cierva C.19 Mk. Ill sold 
in limited quantities, it clearly had several 
imperfections. The "droop" and lead-lag cables 
were right at the top of the list. At this time, the 
rotor startup problem had been solved, but 
direct control had yet to be invented. This 
period does not receive much attention in 
the popular literature, but it deserves, in my 
opinion, a great deal of attention. During this 
interval, roughly between November 1930 and 
June 193 1, Cierva developed the low-solidity, 
three-bladed rotor system having no cables.31 

Brooks [7] recounts the period, writing: 



"While he was in the United States, Cierva had 
also been analyzing Autogiro rotor performance and 
had satisfied himself about the considerable potential 
increase in efficiency that would result if the parasite 
drag of blade suspension and inter-blade bracing cables 
and friction damper arms could be eliminated. Tests were 
conducted at Willow Grove on a C.19 in which damping 
was by means of felt blocks at the [rotating] wing 
roots. Inter-blade cables were eliminated. Short flights 
were made with both four-blade and two-blade rotors 
with this arrangement." 

Cierva returned to Europe, via Paris, to attend 
the First Congress on Air Safety (December 
10-23, 1930) and then went home to Spain. In 
March 193 1 he arrived back in England and 
immediately began development of what was 
called the "cantilevered" blade. The use of 
cantilevered only meant that a "droop stop," 
projecting out from the hub, provided a resting 
spot for the blade flapping hinge assembly (and 
thus the blade spar) when not rotating. 



As Fig. 2-74 shows, the droop stops, 
despite the blade bending or elastically 
drooping, provided ample clearance between the 
blade and the aft fuselage. Note that the two 
rudders were removed, and the single, 
conventional rudder was enlarged. Brooks [7] 
quotes the maximum speed of the C.19 Mk. 
IV as 100 to 102 miles per hour, an increase 
of some 10 miles per hour over the C.19 Mk. Ill 
(82 to 95 miles per hour). Minimum speed 
remained at 25 miles per hour. 

3 1 It is at this point, circa June 1931, that I think the 
modern rotor system was born. The modern control 
system of cyclic and collective pitch came later with the 
Hafner A.R. ÿ. 
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Flg. 2-74. Cierva C.19 Mk. IV with "cantilevered" blades cirea June 1931 [7]. 

The importance of rotor blade droop is 
not always appreciated in rotor blade design. 
Flapwise bending stiffness (EIfiap) in 
pound-feet squared, running weight (wb) in 
pounds per foot, running mass (Ú¸) in slugs 
per foot, and blade radius (R) in feet are, of 
course, key parameters defining droop of a 
"cantilevered" beam.32 But these four key 
structural parameters, along with rotor speed (Ci) 
in radians per second, also define the natural 
vibrating frequencies of the rotating, pin-ended 
(i.e., flapping hinged) beam and, of course, 



vibratory loads and stresses. There is little 
published evidence that the autogyro pioneers 
saw the connection. However, I have run across 
comments here and there about aircraft 
vibration with the three "cantilevered" blade 
rotor system, which never appeared about 
autogyros with four- bladed, cable-supported 
rotor blades. 

Cierva progressed from a four-bladed, 
high-solidity, cabled rotor to a three-bladed, 
low-solidity, "cantilevered" blade rotor using 
the same basic airframe, as Fig. 2-73 and 
Fig. 2-74 show. His calculated performance 
improvement was obtained, so it is natural to 
wonder about the structural dynamics of the two 
rotor systems. 

The structural dynamic behavior of a 
rotating beam subjected to airloads is, to many 
engineers, the most interesting applied 
mathematical problem that rotorcraft offer. 



Fortunately for my discussion here, early 
autogyro blades were constructed as uniform 
beams, so an introduction to rotor blade 
structural dynamics is relatively simple. To 
begin with, think just about the blade deflection 
when the autogyro is stationary, and the blades 
are not rotating. The 

32 The units of many rotor blade parameters are 
frequently NOT given in the pound, slug, foot, second, 
system. For example, structural engineers will quote 
flapwise stiffness in pound-inches squared and dynamic 
engineers denote mass in slugs. In the exchange of data 
between the two groups, a 12 or 32.174 has quite often 
been misplaced, generally to the embarrassment 
of members from both groups. So, remember that weight, 
in pounds, equals mass, in slugs, times 32.174 
feet-per-second squared. 
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C.19 Mk. III and Mk. IV provide two distinct 
examples as Fig. 2-73 and Fig. 2-74 show. In 
both configurations, Cierva appears to allow the 
same minimum clearance of about 12 inches 
between a blade and the airframe. With the Mk. 
Ill, the "droop" cables (according to Sanders) 
were adjusted by turnbuckles to give a 
blade-root slope of -8 degrees. Assuming first 
that there is no elastic bending, the blade tip 
would therefore be hanging some 28 or 29 
inches below a straight-out reference line as Fig. 
2-75 shows. 

This rigid blade deflection (rigid Z r) in feet, 
at any radius station (r) in feet, is calculated 
simply as 
(2.158) 

go 
rigid Zr = (root slope)r = r . 

57.3 degrees/radian 

Note here that degrees are converted to radians 



by the factor 180/ˇ or 57.3 . Elastic bending 
increases this deflection all along the radius. In 
the Mk. IV case, the elastic bending deflection 
of the uniform beam (elastic Zr) in feet, from 
any strength-of-materials textbook [102], is 

(2.159) 

≈≤flƒ4 6 24 J [ E I ^ J I ^ 6 24 J 

where (≈≤Õ‡) is the flapwise bending stiffness 
in pound-feet squared and (Wb) is the running 
weight in pounds per foot. The blade radius (R) 
is measured in feet, and the nondimensional 
radius (x) is the ratio (r/R). 

The elastic betiding depends solely on the beam parameter (WbR4/EInÜF0 or its 
reciprocal (EIfiap/WbR4), which is occasionally encountered in structural dynamic work. Note 

that the beam parameter is not unitless; it has 
the units of feet. This parameter is a major 



factor in designing a blade free of resonance 
vibration behavior, as you will learn shortly. 

Droop 

π 

Œ 
Fig. 2-75. Cierva C.19 Mk. IV "cantilevered" blades drooped |7]. 
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The beam parameter (wbR4/EInap) can be 
estimated first for the C.19 Mk. Ill, and then 
inferred for the Mk. IV, based on information 
that Sanders and Rawson [50] and Cierva [11, 



12] have provided. According to Sanders, the 
Mk. Ill "main spar is a high tensile steel tube, 
1-3/4 in. diameter by 20 S.W.G." High tensile 
steel has an elastic modulus (E) of 29,000,000 
pounds per square inch and weighs about 520 
pounds per cubic foot [77]. Sanders gives the 
"tube" outside diameter as 1-3/4 inches . He 
quotes the wall thickness as "20 S.W.G.," 
which is British Imperial standard wire gage 
equating to 0.036 inches [77]. This makes the 
spar inside diameter (ID) equal to 1.678 inches. 
The spar cross-sectional moment of inertia 
(Iflap) is, therefore, 

(2.160) spar 1À‡ = — ( OD4 - ID4 ) = 0.07122 

inches4 

and so the flapwise stiffness is about 

(2.161) 

spar mfhp=(29,000,000)(0.07122)[ -”=14,340 pound-feet2. 



Cierva, in his detailed calculations of the 
C.30A blade including comparisons to bench 
test results [12], finds that the wooden and 
other parts increase the spar bending stiffness 
by 40 percent. Therefore, 
(2.162) blade EIflap =1.4(14,340) = 20,080 
pound - feet2. 
The cross-sectional area of the spar is 0.1938 
square inches, so the running spar weight is 
(2.163) 

wipar =-(OD2-ro2)(derisity) = {0.1938)(520)[-!T 1 = 0.7 pounds/foot. 

Cierva [11, 12] states that for the C.30A, the 
wood and other parts of the blade weigh about 
85 percent of the spar, so 
(2.164) blade wb = 1.85 wspar = 1.295 
pounds / foot. 



On this basis, considering the radius as 17.5 feet, 

the —19 Mk. Ill beam parameter is (2.165) 

C.19 Mk.HI 

w„R4 (1.295ÏÏ17.5)4 

^ ^ - - ± ^ '- = 6.049 feet. EI flap 20,080 

Given the beam parameter, the elastic 
deflection of the C.19 Mk. Ill blade—without 
the "droop" cable—would be, from Eq. (2.159), 
on the order of 
(2.166) 

f- Ô ≥ Î 
= 0.756 feet = 9 inches. elastic Ztìp = 

WbR4 

EI V " f l a p ) 

(Actually, because of the vertical component of 
cable support tension, the elastic deflection is 
only about 5 inches.) 

http://Mk.HI
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By my estimate, the C.19 Mk. Ill 
blade weight, neglecting the "forked" 
root-end extension, lag damper, etc., is on the 
order of 22.7 pounds . The centrifugal force 
(Fc) at the blade-root end for the Mk. Ill normal 
rotor speed of 125 rpm, or 13.1 radians per 
second, is about 

(2.167) 

Fc at root = - ^ R 2 n 2 =-P^-i(17.5)2(13.1 )2 =1,060 pounds . 

This makes the spar tensile stress 

(2.168) 



Fc stress at root = — — = —'• = 5,460 pounds per inch2. 

Now consider the step from the Mk. Ill 
to the Mk. √ . With reduced solidity, the three-
bladed rotor operated at a higher rotor speed of 
180 rpm or 18.9 radians per second. Assuming no 
other changes, this higher rotor speed raises the 
centrifugal force to 2,060 pounds and more than 
doubles the tensile stress due to centrifugal 
force. It seems most likely to me that Cierva 
would have accepted the higher stress during 
this 6-month prototype phase . Going to a 
thicker-walled tube does not reduce the 
centrifugal force stress appreciably because 
the centrifugal force goes up in proportion to 
area as the preceding equations show. 
Therefore, he would have needed to reduce 
wood part weight. Brooks [7] provides some 
evidence that this redesign did happen, however, 
saying: 



"The three blades of the revolutionary new 
cantilevered rotor, like those of the previously 
cabled-braced type were manufactured at Hamble 
[England] using techniques developed by Avros. They 
had tubular steel spars at about [the] quarter chord. 
Initially, light spruce ribs were bolted to the spar by steel 
clips ("scrivits"). There was an ash leading edge 
member and a much lighter spruce strip at the trailing 
edge. The blades were fabric covered. By late 193 1 , 
however, Cierva had decided on a solid balsa wood 
fairing to the tubular spar with a spruce core, the whole 
assembly being covered with fabric. This type of blade 
remained in use until the introduction of the C.30 direct 
control Autogiro which reverted to built-up blades with 
spruce ribs and plywood covering." 

Brooks' recounting leads me to believe that 
Cierva made only minor modifications to MK. 
Ill blades for the prototype Mk. IV, namely 
reducing the radius from 17.5 feet to 17 
feet. Accepting this view means that the Mk. √ 
had a beam parameter of about 

(2.169) C.19Mk.rV 



w b Rl = (1 .295) (17 .0 r = 5 3 8 6 f e e t 

EIflap 20,080 

The rotor blade parameter can also be 
established for both the Cierva C.30 and the 
Hafher A.R. I l l . As Brooks notes above, the 
next Cierva production Autogiro was the 
C.30A, and the blade for this Autogiro 
followed the built-up design he used on the 
C.19 Mk. III. Cierva provides quite detailed 
technical data about the C.30A blade in his 
Theory of Stresses on Autogiro Rotor Blades 
[12]. Measurements of blade flapwise stiffness 
and mass were made and recorded. Using the 
Cierva data, the blade flapwise stiffness (EIfiap) 
is 3,650,000 pound- inches squared, and the 
blade weight per inch is based on 41 pounds 
for a 222-inch radius or 
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0.1847 pounds per inch (2.216 pounds per 
foot). Therefore, with great confidence you 
can determine the C.30 had a rotor blade 
parameter, (2.170), of about 

(2.170) C.30A 

whR4 (2.216)(18.5)4 

- ^ — = ± '-≤ '— = 10.241 feet. 
EIfl 3,650,000/122 

An estimate of the Hafiier A.R. Ill blade 
parameter is obtained from the blade-tip droop, 
seen quite pronounced in Fig. 2-38. From this 
figure, the droop stop measures about -10 
degrees and the rigid blade deflection is 33 
inches . I measured the elastic tip 
deflection as approximately 23 inches giving a 
total tip deflection of some 56 inches. From Eq. 



(2.159), the maximum elastic droop is a direct 
measure of the blade parameter. That is, since 

( 
(2.171) elastic ZtiD = w.R4Yn 

FT 
V. flaP ) ß) 

it follows that, for the Hafher machine, 

(2.172) A.R.III 

wKR4 

EI 
= 8(elastic Ztip) = 8(23/12) = 15.333 feet. 

flap 

Earlier calculations leading to a centrifugal 
force of 3,400 pounds at 270 rpm rotor speed 
(see footnote, page 90) gave the Hafner blade a 
running mass of 0.03158 slugs per foot, which 
is 1.016 pounds per foot. With a radius of 
16.405 feet, the blade flapwise bending 
stiffness (Elflap) was probably on the order of 



4,800 pound-feet squared or 691,100 
pound-inches squared. 

2.9.2 Vibration Frequencies 

Given this background about rotor 
blade structural parameters, let me proceed to 
the very important subject of vibrating beams. 
This subject bears directly on vibratory loads 
and the shaking forces transmitted through the 
airframe to the pilot or other occupants and even 
to critical components of the machine, such as 
instruments. 

A rotor blade vibrates just like any 
structural beam. Imagine a blade hanging by 
its flapping hinge. If the blade is "plucked" or 
hit with a mallet, it responds by vibrating in 
several shapes, some of which are clearly 
visible. Each shape has an associated 
frequency. The shapes are called normal modes 



of vibration. Simply shaking one end of a 
telephone cord can reproduce a good example 
of this vibration and the associated normal 
modes. The first mode of the telephone cord is 
simply a straight line from the telephone to 
your hand. When you move your end up and 
down very, very, slowly, the cord will remain a 
straight line. The second mode will appear if 
you shake the cord rather slowly. At just the 
right rate of up and down motion, the cord will 
vibrate between a concaved shape on the low 
side and a convexed shape on the high side. If 
you look at the telephone cord from the side, it 
appears just like a jump rope being turned by 
two children, one at each end. If you shake 
the telephone cord much faster, it will appear 
to divide itself into two jumping ropes with 
the middle standing quite still . This is the 
third mode. In the telephone cord examples, 
the shaking you have 
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selected is an up-and-down motion having the 
natural frequency (cycles per second) of a very 
limber "beam." When a rotor blade is struck, 
all normal modes respond, but it takes special 
sensors to record detailed data that you see so 
clearly with a telephone cord. 

If the rotating rotor blade is forced to 
vibrate by an airload, then the responding 
vibratory shape is dictated, in part, by the 
airload distribution along the rotor radius. All 
natural mode shapes will be excited, though 
not in equal proportions. The proportion each 
mode contributes depends on the airload 
frequency and amplitude. 

A crucial rotor blade design question 
arises when the blade has a natural mode 



frequency (OöM), in radians per second, that 
corresponds to an airload forcing frequency. 
Airloads are powerful forces, but, in simple 
cases, they act at integers of rotor speed. That 
is, airloads are periodic (harmonic) forces which 
load the blade at once per revolution, twice per 
revolution, and so on. An example of this type 
of harmonic airload is a blade element of lift 
(dLr>v) written as 

(2.173) dLr ¥=L0+Ll ss in\[ /+Ll c 

cos \|/+L2S sin 2\|/+L2C cos 2y+L3 S sin 3\|/+etc. 

where rotor azimuth (\j/) is in radians and, 
you will recall, is equal to rotor speed (Ci) in 
radians per second times time (t) in seconds. 
Should the blade have a mode frequency (CUM) 
equal to any integer (n = 1, 2, 3, etc.) times 
rotor speed (i.e., nCi), then the airload will 
shake the blade at the blade's natural 
frequency. This, of course, is the case of 



resonance, which must be avoided since it can 
lead to excessive vibratory blade bending and 
premature blade failure due to fatigue if there is 
little or no damping.33 

The calculation of rotor blade 
frequencies and mode shapes is quite simple 
in two specific cases . The first case 
corresponds to the situation where the blade 
is not rotating (Ci — 0). The second case 
corresponds to the situation where the blade is 
rotating but has no flapwise stiffness (≈≤Î‡ = 
0). This second case is, in effect, just a 
rotating chain. Unfortunately, from the point 
of view of a theoretician, real rotor blades fall 
between these two extremes. As you might 
assume, Cierva, in his Theory of Stresses on 
Autogiro Rotor Blades[l2], gives an 
engineering equation to calculate the natural 
frequency of the most critical flapwise mode. 
This critical mode is the second mode of a 
flapping hinged, rotating blade, because it falls, 



for practical blades, above 2.5 per rev and 
below 3.5 per rev. Thus, in a poor design, the 
second mode might have its natural frequency 
right on 3 per rev giving a chance for 
resonance. The equation Cierva derived, using 
beam theory of the day, is 

(2.174) co2= Q 6.4 + 373 ≈ ^  . 
y¡ mb R Ci' 

33 I feel certain that Cierva, with his structural 
engineering background, was quite knowledgeable 
about vibrating beams and fatigue failure. My reference 
[103], which dates back to 1928, deals with the subject as 
part of vibrations of elastic bodies. Unfortunately, a 
centrifugally loaded beam, with one end pinned and the 
other free, does not have a simple solution in elementary 
functions such as sine, cosine, or any hyperbolic functions 
as do the classic beam problems discussed in textbooks. 
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You should immediately notice in Eq. 
(2.174) that the rotating blade natural 
frequency depends on the same beam properties 
as the nonrotating elastic deflection or droop. 

All flapwise frequencies of uniform 
beams hinged at one end and free at the other 
end, such as early autogyro blades with zero or 
near-zero flapping hinge offset, can be 
estimated quite closely with Eq. (2.175).34 

Modes are numbered from M = 1 to however 
high you want to go, but most studies stop at M 
= 5 . The first mode, M = 1, is called the 
rigid-body mode, which has a natural 
frequency of rotor speed (i.e., coi = Ci). In 
the first mode, the blade vibrates without any 
bending and simply flaps up and down as a 
rigid blade. Rigid blade flapping motion is 



completely determined by damping provided 
by the airloads. This is the only mode that acts 
this way. All higher modes (M = 2, 3, 4, 
etc.) have elastic bending. Equation (2.175) can 
be used to calculate the natural frequency 
of each mode. 

mkR4^ 
EI < = 

flap J 
ï (4M-3) + M(2M-1) Ú ƒ À 

EI 
a2 

flap ) 

(2.175) 

+-[ï(4M-3)l arctaJ— (4M-5)(M-l)ln 
nL4 J 12 

where M = mode number =2,3,4--

[f(«-3)] ◊ Â Œ 

Again, notice in Eq. (2.175) that the 
rotating blade mode frequencies depend on the 
same beam properties as the nonrotating elastic 
deflection or droop . This very important fact 
means that the blade frequency parameter [(Ú¸^/≈≤ˆ^Œ2] is related to the beam parameter 
(wbR

4/EIn4,) as 



(2.176) 
m,R4

 Î , Q2 fw.R4 

EI 
Ci¿ = 

flap g EI flap ) 

Because rotor speed (Ci) is in radians per 
second and the gravity constant (g) equals 
32.174 feet-per-second squared, the blade 
frequency parameter has no units. 
Furthermore, [ (mbR4/EIflap )(02

Î] also has no 
units because the natural frequency (ÒÓÏ) is in 
radians per 

second. 

The natural frequency in the two 
limiting cases, (Ci = 0 and EIfiap = 0), are 
directly given by Eq. (2.175). They are 

(2.177) 0& = Î (4M-3) 
4 ^ E I ^ 

mbR
4 



for £2 = 0 (a nonrotating blade) 

3 41 created this frequency approximation for flapping 
hinged blades in the mid-1970s after being inspired by the 
Dave Peters frequency approximation for a rotating beam 
cantilevered at the root [104]. 
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and 

(2.178) 0 ) M = M ( 2 M - 1 ) í 2 2 forEIflap = 0 
(a chain). 

Given the several blade structural 
properties and the ability to estimate the 
natural frequency of a blade from Eq. (2.175), 
it is helpful to summarize the information 
about the four autogyro blades under 



discussion. Table 2-6 shows the progress made 
by the autogyro pioneers developing blades. 
This autogyro blade property summary shows 
that as solidity was reduced, tip speed 
increased. Blade static elastic deflection, or 
droop, increased, and no natural frequency 
ratio was exactly at an integer of rotor speed, 
although several are too close by modern 
standards. That is, the frequency ratio ((ŒÏ/—≥) 
does not exactly equal 1, 2, 3, 4, 5, etc. 
Remember, the airloads are periodic as Eq. 
(2.173) suggests, and if an airload harmonic, say 
L3S sin 3\|/, is large (which it is as you will see 
shortly), then the blade having a natural 
frequency ratio of 3 will experience excessive 
bending, perhaps to the point of early fatigue 
failure. 

There is, of course, an additional 
concern. As you learned from the discussion 
about stick shake with the three-bladed Kellett 
autogyro (recall Fig. 2-30 and Fig. 2-3 1), a 



three- bladed rotor passes 3-per-revolution 
vertical vibration to the airframe. 
Therefore, amplification of 3-per-revolution 
airloads (because the blade has a natural 
frequency ratio too close to 3) will mean the 
airframe is subjected to just that much higher 
vibratory loads. Avery important frequency ratio 
trend from Table 2-6 is, in fact, the second 
mode (i.e., M = 2 or the first elastic mode) 
dropping from comfortably above 3 times 
rotor speed ((ùz/Cì > 3) to uncomfortably close 
to 3 per rev to reasonably below 3 per rev.35 

The blade natural frequencies (COM) or 
frequency ratios ((ŒÏ/Ci) can be presented 
graphically. I prefer the frequency ratio ( ˘ ‡ / — ≥ ) 

form, which is shown in Fig. 2-76.36 Equation 
(2.175), for uniform beams, gives the lines 
in this figure, and the data points are from 
Table 2-6. For the sake of completeness, 
Cierva's recommended frequency from Eq. 
(2.174) is also shown. When a specific 



configuration is selected, say the Cierva —.30A, 
I prefer plotting the frequency ratio versus 
rotor speed, in revolutions per minute, to an 
expanded scale as shown in Fig. 2-77. 

3 5 Rotorcraft engineers rarely say "3 per revolution" or "3 
times rotor speed." They use the shorthand "3 per rev" or 
"N per rev" or write "N/rev" because so many 
conversations deal with vibration and vibratory loads. 
Everyone "just knows" that the blade airloads—in most 
cases—are harmonic integers of rotor speed, and so the 
most asked structural dynamic question is, "What part 
of the aircraft is responding to what airload harmonic, and 
do we have a resonance situation?" 
3 6 The reason the frequency ratio format appeals to me is 
because the proximity to an airload integer, particularly 3 
per rev on a three-bladed rotor, is immediately read on an 
engineering scale. 
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Fig. 2-77 raises the question about rotor 
speed operating range. The C.30A, according to 
Cierva's Theory of Stresses on Autogiro Rotor 
Blades, was designed for the rotor speed range 
of 180 to 210 revolutions per minute. The 
higher rotor speed was associated with low-
speed forward flight at altitude; the lower 
rotor speed was expected during takeoff at 
sea level. Fig. 2-77 shows that the second mode 
is rather close to 3 per rev (by modern 
standards) while the third mode could easily be 
exactly at 6 per rev. Since a three-bladed rotor 
can pass 6-per-rev vibratory loads (as well as 
3-per-rev loads) to the airframe, this high 
frequency vibration might have been noticed by 
a pilot as a buzz. The third way natural 
frequencies are presented (Fig. 2-78) is the one 
most often seen in technical material. 

Table 2-6. Early Autogyro Blade Properties 



Parameter 
Year 
Gross Weight (lb) 
Number of Blades 
Radius (ft) 
Chord (in.) 
Disc Area (sq ft) 
Solidity 
Tip Speed (ft/sec) 
Rolor Speed (ntd/see) 
Blade Airfoil 
Running Weigh! (lb/ft) 
Flapwise Stiffness (Ib-fr) 
Running Mass (slug/ft) 
Blade Weight (lb) 
Centrifugal Force (lb) 
Weight Moment (ft-lb) 
Second Moment of inertia (slug-fr ) 
Lock Number (at sea level) 
wbR

4/E[„„, (ft) 
(mbR'/EInJQ' 

Frequency Ratio Mode 1 eVfi 
Frequency Ratio Mode 2 trh/C˘ 

Frequency Ratio Mode 3 tuj/ñ 

Model 

— 19 Mk. I l l 
1929 

1,450 

4 

17.5 

18.6 

962 

0.1107 

230 

13.14 

Cititi. 429 

1.295 

20.080 

0.04025 

23 

1,060 

198 

71.90 

27.5 

6.049 

32.462 

1.0 

3.69 

9.70 

C.19 M t . IV 
1931 

1,450 

3 

17 

18.6 (est.) 

908 

0.084 

320 

18.82 

RAF 34 

1.295 

20.080 

0.04025 

22.342 

2,060 

187 

65.92 

26.75 

5.386 

59.292 

1.0 

3.21 

7.70 

—.«À¿ 
1933 

1,800 

3 

18.5 

11 

1,075 

0.0470 

407 

22.00 

ŒŒœ. (¡06 
2.216 
25,350 

0.06888 
41.000 
5,700 
379 

145.37 
10.06 
10.241 

154.057 

1.0 
2.79 

5.77 

A.R.III 
1936 
890 

3 
16.41 
4.9 
846 

0.0237 
464 

28.28 
Syrn. 
1.017 
4,800 

0.03161 
16.7 

3,400 
137 

45.66 
8.83 

15.333 
381.137 

1.0 
2.61 
4.S4 

158 

2.9 BLADES 



Naturi l i 
Frequency 

Reti» 

«M. 

n 
\ \ Cltrv* 

It» ^ * * - - - ^ . 
oman. 

.... 

"*""-4,É PlipwbeMade 

• «1* Hu ji wis L' 

. _ " » _ _ i « > 

(Beam Frequency Parameter) Q f e - R 

EI flap 

Fig. 2-76. Rotor blade flapwise natural 
frequency ratios for a uniform beam. 
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Fig. 2-78. Cierva C.30A blade natural 
frequencies. 

2.9.3 Mode Shapes 

The mode shapes I have mentioned 
several times are simply graphs of flapwise 



deflection (Zr), divided by radius (R), and 
normalized to 1.0 at the blade tip . They are 
plotted versus nondimensional radius station (x 
= r/R). Both of the limiting cases have mode 
shapes calculable from simple equations. The 
mode shapes for a nonrotating blade (Ci = 0) 
are calculated, using hyperbolic and trigometric 
sine, as 

V R Àí=l 
and then for M = 2,3,4, etc. and Ci = 0 
(2.179) 

IR 

F1 = ◊ » Î 
Ï 

-À≤4 

sinh(F1/4x) sin(Fl / 4x) 

2sinh(F1/4) 2sin(F1 / 4) 

El or 
flap J 

n = ^ ( 4 M - 3 ) 

The mode shapes for the case of a rotating chain 
(Elfiap = 0) are even simpler because they are 
Legendre polynomials (the odd ones), so that for 



the first several modes 
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(2 180) ^ Ï = ' ^ ^ 2 2 ^ " = ' 8 8 * 
(Zr\ 429 , 693 s , 315 ! 35 , _, . 
\ — \ = x x + x x for EI.„.=0 
U J M = , i6 i6 i6 i6 •» 

Graphs of these two limiting cases are provided in Fig. 2-79 for the second and third modes. 

Autogyro blades, as Fig. 2-80 shows, fall 
between the two limiting cases. (Appendix G 
provides the methodology I used to calculate 
these mode shapes and the corresponding 
frequencies given in Table 2-6.) 

The flapwise axis is, of course, not 
the only axis about which a blade has natural 
frequencies and mode shapes. Both chordwise 
(i.e., inplane or lead-lag) and torsion axis are, if 
anything, even more important than the 
flapwise axis . This is because, unlike the 



flapwise modes, these lag modes have next to 
zero damping to protect the blade from 
resonance response. 

The chordwise natural frequencies are 
quite dependent on the root-end restraint. 
Cierva, in his Theory [12], provides no 
frequency equation and only devotes 1 page 
(out of 149 main body pages) to this subject. 
This one page discusses root restraints such as 
lead-lag dampers of various types. He does note 
that "when plain bearings are used on the drag 
hinge, it is advisable to calculate the additional 
frictional restraint due to centrifugal force 
[and] a frictional coefficient of 0.15 is 
recommended." He does express the view that 
"in the general case, where the superstructure 
has a very high moment of inertia in the 
direction considered, the bending on the spar 
will be negligible at all points except at the root 
and close to it." This statement says that 
chordwise stiffness (EIchord) contributed by the 



trailing edge and skin leads to a chordwise 
stiffness about (in my experience) 10 to 20 
times the flapwise stiffness. If the blade lead-lag 
hinge is similar to the flapwise hinge, and there 
is no lag damper, the chordwise natural 
frequencies of each mode can be estimated to 
the first order with 

mbR
4i a _ -(4M-3) +Ï(2Ï-≥; mbR4 

EI, V *^chord 

ST 

(2.181) 

+ - " ( 4 M - 3 ) | arcran ^(4M-5)(M- l ) ln 

[î(4M-3)] 
where M = mode number=2,3.4...co 

The chordwise mode shapes, in this 
fundamental pinned-free, no-damper beam 
case, are quite similar to the flapwise mode 
shapes . Designing a blade so that chordwise 
frequency placement is between integers of 



rotor speed is not easy. Many a rotorcraft has 
experienced broken trailing edges. Unfortunately, 
the total subject is beyond the scope of this 
volume. 
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The torsion natural frequencies are 



also dependent on the root restraint. The 
direct control rotor systems that Cierva, 
Pitcairn, and Kellett pioneered used a very 
rigid fixing of the blade root to maintain blade 
collective pitch. On the other hand, when 
Hafiier and Kellett introduced the swashplate, 
the blade root was, in effect, connected by a 
reasonably stiff spring, but a spring 
nonetheless. For example, the Hafher A.R. Ill 
(Fig. 2-39) spider arms were hardly a rigid 
connection for a blade's pitch arm. 

The fascinating thing about the 
torsional vibratory modes is that the first 
mode, assuming the root is not restrained, has a 
natural frequency of 1 per rev, and there is no 
elastic twisting from blade root to tip. Because 
this is a resonance condition (coi = Ci), the 
blade can be oscillated about its torsion axis 
with zero force. In the Hafner spider design, 
the spider arms are just gently guiding the blade 
to feather at once per revolution. Hafher 



recognized this fact and designed the control 
system for just the loads required to twist the 
torsion rod. The fact that cyclic pitch, in and of 
itself, creates no control system loads is quite 
remarkable—and rotorcraft have no size 
restraint in this regard. Of course, both 
flapwise and chordwise deflections can—and 
do—affect torsion natural frequencies 
because of the coupling. However, for the 
uncoupled case with a rigid root condition, the 
natural frequencies are found from 

( 2 M - 1 ) | 
2 √ G À 

JeR2> 
for M = 1,2,3, etc. 

where the blade element torsional stiffness (GJ) 
is in pound-feet squared per radian per foot of 
blade, the second moment of inertia (≤ ) is in 



slug-feet squared per foot of blade, and the 
torsion natural frequency ((ŒÏ) is in radians per 
second as is rotor speed (Ci). 

In Eq. (2.182), the second term is the 
nonrotating blade torsional natural frequency. 
This frequency is classically obtained by 
assuming mode shapes of the form 

À„ ; 
= sin 

M 

(2M-l)|x 

for M = 1,2,3, etc. 

where the blade radial station (x) equals (r/R), 
and the elastic twist ( ı) is normalized to one 
unit of the tip torsional deflection ( 1 ≥ ). 

Cierva, in analyzing the torsion axis 
| 12], derives the first mode nonrotating 



frequency by summing potential energy with 
kinetic energy. He calculates both energies 
assuming an approximate first mode shape of 

(2.184) - ^ = —= x 

rather than the more rigorous sin(7ix/2). 
This gives him the first torsion mode 
natural frequency as 
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2 r\2 - 3 (2.185) <ü\=Ci¿ + ' Ó À 
vieR 

versus 



2 /-˜2 «t 

,̨ = Q + — 
GJ 

Cierva analyzed four causes of elastic twisting 
and was satisfied that elastic twisting would be 
governed by 1-per-rev and 2-per-rev loads, and 
"so, if the blade has a natural frequency of 
oscillation in torsion not less than 3 or 4 per 
revolution, dynamic effects can be neglected." 
He then sets an "arbitrary" design criteria for the 
lowest torsion mode frequency as 

(2.186) J - GJ À 

v^R2; 
>3Q 

This criteria means that at the maximum rotor 
speed (ilmax), the first mode rotating frequency 
divided by rotor speed would be at least 
\ƒ0=3.16 per rev, and at lower rotor speeds 



the frequency ratio would, of course, be higher. 

Cierva uses the C.30A blade as a 
numerical example of the torsion natural 
frequency calculation. He found, for example, 
that the "wooden superstructure" increased the 
spar-tube- alone torsional stiffness by 1.25 or 25 
percent. That is, his bench tests show the 1 
8.5-foot-long blade had a blade element 
torsional stiffness of 2,700,000 pound-inches 
squared (1 8,750 pound-feet squared). He 
calculates the spar torsional stiffness using a 
"chrome-nickel steel" 
modulus (G) of 12,000,000 pounds per square inch and a polar moment of inertia (J) of 0,18 
inch , which gives a spar-alone torsional stiffness of 2,160,000 pound-inches squared. Cierva 

recommends that the second moment of inertia 
(≤ ) be calculated for the total blade as 

(2.187) 

Total blade ≤ = (mass of tube) (tube radius) 



-t- 0.15 (mass of superstructure) (blade chord) 

The C.30A dimensions he gives are that the 
"tube" (the spar) is 1.5 inches in diameter, the 
spar weight is 2 1 .1 pounds, the "wooden 
superstructure" weighs 17.9 pounds, and the 
blade chord is 11 inches. With these properties, 
he calculates that 

(2.188) 

Total biade U J b L π Ì + 0.l5(J2*-Yì£fmMm slug-fP 
' ≤32.174À 12 J U2.I74A12J 

which gives, on a per-foot basis, a second 
moment of inertia (≤ ) of 0.00393. 

With respect to rotor speed, Cierva 
designed the C.30A for a "maximum" rotor 
speed of 294 revolutions or 30.8 radians per 
second. Based on the preceding data and the 
design maximum rotor speed versus his criteria, 



he calculates that 
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p.,», M (li '**» 1-145>3(30.8)=93 
V2U.R J p[o.00393(18.5)2J l ' 

which shows the C.30A blade having a satisfactory and significant torsional natural frequency 

margin. 

It is worth noting that the engineering 
approach Cierva took was conservative. Had he 
used the classic frequency solution, the 3/2 in 
Eq. (2.189) would change to TU2/4 = 2.47 and 
rather than 145, he would have arrived at 
1 85. Through my study and use of two 
Cierva design manuals [ 1 1 , 12] I found many 
more conservative engineering approximations. 

2.9.4 Bending Moments and Stresses 



The design of rotor blades is, of 
course, not complete by achieving 
nonresonance frequency placement. The real 
criterion is "Thou shall not break." This 
criteria means designing to calculated blade 
bending moments and forces and, most 
importantly, stresses. Cierva, in Part VIII of his 
Engineering Theory [1 l]37, devotes 25 pages 
and several figures to "Stresses on the Rotor 
Blade." This 1929 design manual addresses 
every component in the blade and a number of 
design conditions, such as on ground, during 
landing, when the rotor brake is applied, and, of 
course, in normal flight. Cierva writes, for 
example, that 

"a load factor of 6 on the combined centrifugal tension 
and torsion at the root, in normal flight at sea level, 
should be sufficient, in my opinion, for machines with 
ceilings less than 22,000 feet, the worst possible case 
being an increase of 50% on the speed of rotation at the 
ceiling, which means an increase in centrifugal force of 
about 400% while torsion will only increase 125%, 



leaving still a factor of safety greater than 1.25. 

These stresses are taken exclusively by the 
central spar of the blade, but combined forces along the 
blade can be distributed between the spar and the 
covering, especially when the blades are covered by metal, 
plywood or timber planking. 

In any case, a load factor of 6 on whichever 
normal flight case is worse, should cover any momentary 
increase in load and the fatigue due to periodical changes 
in the bending." 

As might be expected, this first-ever 
rotor blade loads and stress analysis includes 
many "rules of thumb." Cierva just simply 
lacked blade airloads and the blade response 
that airloads create. His second volume, Theory 
of Stresses on Autogiro Rotor Blades, was, I 
will guess, first printed sometime in 1934. It was 
more polished than the first volume and stood 
on a less empirical foundation. This second 
volume was much more than a theory of 
stresses; in my opinion it was closer to being a 



very comprehensive design manual. This later 
volume includes four appendices of quite 
noteworthy engineering information. 

37 Several figures in this first volume are dated November 
1929 and signed by Cierva. 
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mm I 

Fig, 2-81. The first blade flapwise bending stresses were measured on the Pitcairn 



PAA-1 in January 1931 [photo 
courtesy of NASA Images]. 

The first appendix contains measured 
"extensometer"38 data giving "alternating fiber 
stresses on the upper fiber of the tubular 
spar, the known centrifugal stress having 
been deducted in every case." The Pitcairn 
Autogiro Company of America obtained this 
data, at four radius stations, during a series 
of tests in January 193 1. Cierva notes that 
"special recording extensometers weighing only 
a few ounces were designed and supplied by Mr. 
A.V. de Forest and under his guidance a series 
of flights were done." Brooks [7] records that 
the test, along with bench fatigue tests, were 
done "to obtain useful information as to the 
proper and safe location of spot welds on 
Autogiro rotor blade spars." The test aircraft 
was the Pitcairn PAA-1, shown in Fig. 2-81. 

The first appendix gives the PAA-1 



test weight as 1,550 pounds, the radius as 
18.5 feet, the chord as 18.6 inches, the 
airfoil as the Göttingen 429, the rotor speed 
as 145 revolutions per second, the airspeed as 90 
to 95 miles per hour, the altitude as sea level, 
and the probable in-flight blade pitch at the 
tip as 4 degrees. From the measured flapwise 
bending stress waveforms, Cierva tabulates the 
maximum and minimum stresses (in pounds per 
square inch and with the stress due to 
centrifugal force removed) from two flights. 
Cierva concludes the first appendix to his 
Theory of Stresses on Autogiro Rotor Blades by 
providing blade property data, writing that 

"The weight of each blade, uniformly 
distributed, was of approximately 40 lbs. But a friction 
damper of 3.2 lbs. weight, was attached at about 0.45 
of the radius. The tubular spar of 1 .75 inch outside 
diameter, high properties steel, had a moment of inertia, 
in a normal section, equal to 0.11046 inches4 [Ifiap]. The 
effect of the superstructure, partially three-ply wood and 



3 8 The extensometer came before the strain gage [105]. 
The strain movement was mechanically amplified and a 
scribe scratched a metal plate. The result was similar to 
an oscillograph trace or, in the case of the Pitcairn 
PAA-1, the flapwise bending stress waveform. 
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fabric, was to increase the rigidity [≈≤fl‡] of the tube 
alone by about 20%. Fig. 8 represents graphically the 
distribution of upper fiber stresses along the radius, 
corresponding to the relative maximums given before. 

An application of the theory to this blade 
and comparison with the above [experimental] results 
is given in Appendix II." 

The figure 8 Cierva refers to is 
reproduced here as Fig. 2-82, with 
measurements tabulated in Table 2-7. The data 
is for an advance ratio of 0.5 .1 believe this 
figure is the first graph of experimental flap 



bending stresses the rotorcraft industry ever 
saw. Finally, Cierva had some stress data at the 
outermost fiber of the spar. The figure shows 
that stress at the 
l/3-radius station, not counting stress due to centrifugal force, varied between "compression 
of +23,000 lbs/inch~ [blade-tip bent up] and tension of -7,500 lbs/inch during a rotor 

revolution." 

Table 2-7. Blade Flap Bending Stresses 
Measured on the PAA-1 

Flight 
1 

2 

Radius 
0.333R 
0.491R 
0.724R 
0.875R 
0.49 IR 
0.724R 

Maximum 
22,650 
20,600 
14,800 
5,300 

25,500 
17,650 

Minimum 
-6,750 
-8,700 
-8,100 
-2,700 

-13,600 
-10,950 
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Fig. 2-82. Blade flap bending stresses 
measured on the PAA-1 [12]. 
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In the second appendix, Cierva 
compares his flap bending theory with the test 
data obtained with the PAA-1 from the first 
appendix. He begins with the blade properties, 
which I have converted to the convention used in 
this discussion, as 

EIf l a p= 1.2(29,000,000)(0.11046) = 3,850,000 

lb/in2 =27,7401b/ft2 

mh = -: ^ 7 „ = 0.0672 slug / ft 
b (32.174)(18.5) ⁄ 

145 
Q = (2ˇ) = 15.18 rad/sec. 

60 v ; 

^ C i 2 =65.42 
EIflap 

With these parameters at hand, Cierva 



calculates the spanwise distribution of 
maximum and minimum stresses for a 
worst-case condition and for "normal" 
conditions. From these two cases, he defines the 
design to "values to be taken for fatigue 
stressing, in accordance with the theory, [which] 
are the averages between the worse case and 
normal values." He tabulates and graphs the 
results, and I have included his figure here as 
Fig. 2-83. By mid-1931, Cierva is satisfied that 
his theory of 1929 gives him design 
methodology to calculate fatigue stresses that 
are "in excess of the real ones [test data], 
proving that the assumptions made are on the 
safe side." 
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Fig. 2-83. PAA-1 test data fell below the 
flapwise stress parameters of the 

Cierva theory of design [12]. 
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Cierva clearly shows that he is well 
aware of the fatigue loading that his "design 
to" stresses imply. In the body of Theory of 
Stresses on Autogiro Rotor Blades, he gives 
the equations for steady and alternating stress, 
written here in modern notation, as 

« . S_+S„i, 
Steady stress • - ""—•"• 

(2.190) 2 . 
Alternating stress=-=—•*• 

Furthermore, he closes the second appendix with a brief discussion of the "Periodicity of 

Bending Moment." An enlarged photograph of 
one of the extensometer records is provided for 
the 0.333R radius station. The data was 
recorded in smooth air, normal flying 
conditions. Cierva then does a Fourier analysis 
out to 3 per rev, compares it to what he has 
calculated for 0.4R, and concludes that "the 
resemblance is marked." 

The third appendix included in the 
Theory of Stresses on Autogiro Rotor Blades 



is titled "On Fatigue Stresses of Steel." From 
two German papers published in 1931-1932, 
Cierva concludes that for the proportions of 
steady and alternating stresses on his blade, the 
allowable alternating stress for his 
chrome-nickel steel spar should be no higher 
than one-third of the static ultimate tensile 
stress of the material. For chrome-nickel steel, 
this static stress can range from 100,000 to 
150,000 pounds per square inch [77] . The 
specific value depends on proportions of 
ingredients used to produce the steel and the 
surface finish. Cierva used 145,000 pounds per 
square inch, which means that alternating 
stresses below ±50,000 pounds per square inch 
would indicate a reasonable design. Fig. 2-83 
clearly shows that Cierva evaluated the PAA-1 
blades as satisfactory because the highest 
alternating stress was about ±26,000 pounds per 
square inch. 

In the fourth and last appendix, Cierva 



provides a step-by-step analysis of the C.30A 
blade. By any standard, the 22 pages of 
calculations and tables, plus 8 figures, are 
quite thorough. The summation of all stresses 
in combination, then multiplied by four 
additional safety factors, gives a maximum 
critical fiber ultimate stress (at the 0.2R radius 
station) of 158,000 pounds per square inch for a 
short portion of the blade . This calculated 
absolute total stress exceeded the 145,000 
pounds per square inch he felt comfortable 
with. Cierva, while accepting the C.30A blade, 
says that "it is recommended to lengthen the 
tapered part of the spar to about 0.25R (for 
similar blades) which, as can readily be 
appreciated in figure 8, would result in an 
almost uniform distribution of stresses over 
the first quarter of the tube [length]." 

With all the preceding background, 
you might now be wondering how to 
calculate loads and stresses for a rotor blade 



in flight. The flapwise bending moment 
calculation requires solving the problem 
presented in Fig. 2-84. The equation to solve is 
simply: 
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(2.191) Flapwise Mr t 

=i>-r)d(4.WX. 
-Zjd(C^HVr)d(U-

Equation (2.191), born when propellers 
burst on the scene, has occupied rotorcraft 
engineers for at least seven decades . I have 
absolutely no doubt that 1,000 man-decades, 
if not more, have been spent in obtaining, 
slowly but surely, increasingly accurate 



approximate solutions to this equation. The 
equation does not look too formidable until 
you insert the definitions of blade element lift 
(dL), centrifugal force (dCF) and inertia (dì). 
Then you begin to see the impending 
complexities because 
(2.192) 

(d2Z } 

This is a differential-integral equation, which 
uses the dummy variable, T|. 



"W-'î> 

d(CF) = (mdr)Q2r 

¡ 'ir) ".,;,'•' 

Radius Station, r 
Fig. 2-84. Flapwise forces and bending 
moment on a rotating rotor blade. 
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You can see from Fig. 2-84 and Eq. 
(2.192) that the flapwise bending moment at 
any radius station (r) depends on the sum of all 
moments outboard of the station you are 
interested in. Furthermore, this moment (FMr,t) 
depends on the deflected shape (Zr,t) of the 
blade whose value varies with both radius and 
time, which introduces the centrifugal 
stiffening in the second integral of this classic 
equation. On top of this, a third integral is 
included that accounts for the inertial loads due 
to acceleration. If that were not bad enough, 
the solution depends on airloads, which, you can 
see, also depend on knowing the deflection 
of the blade. 

I often wonder if Cierva had this 
bending moment figure and equation in front 
of him when he was conceiving, designing, 
building, and trying to get his first Autogiro 
(Fig. 2-85) off the ground. 



Cierva did not stop to solve Eq. (2.192) 
while designing his blades . In fact, I do not 
think that he even bothered to try. The only 
thing he wanted from the formidable flapwise 
bending moment problem was the critical 
fatigue stresses the blade would be subjected to. 
He knew that the blade would flex during a 
revolution and, at some point in the revolution, 
the blade would be bent, tip up, a maximum. 
Then, somewhere else in the revolution, the 
blade would be bent, tip down, a maximum. 
Therefore, for his purposes, Equation (2.192) 
only needed to be solved for the peak values 
of moment. From the positive and negative 
peak moments, he could calculate steady and 
alternating stresses according to Eq. (2.190). 



••• \ 
\ 

/ \ 

Fig. 2-85. The Cierva C l , his earliest full-size 
experimental machine [3, 106]. 
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The details of the Cierva engineering 
solution for flap moments became available to 
close associates when his Theory of Stresses 
on Autogiro Rotor Blades was printed. Cierva 
then shared his approach to using Eq. (2.192) 



with a larger audience when he gave a third 
lecture before the Royal Aeronautical Society 
on Friday, March 15, 1935 . A much larger 
group was able to read about his approach in 
the published paper [5]. This paper gives real 
insight into Autogiro development. After 
discussing the Aerodynamical Progress, he 
goes on to Dynamical Problems, beginning with: 

"Perhaps the most irritating of the secondary 
difficulties met with in the autogiro developments have 
been those of a dynamical nature. The dis-symmetry of 
speeds on both sides of the rotor produces periodical 
variation in the lift and drag and in lift and drag moments 
on each blade. The articulations which allow the blades to 
flap, correct the dis-symmetry of the lift moments as far 
as their average value at any rate, and an equivalent 
reason makes practically essential a second articulation 
which permits the blades a certain freedom in their 
relative angular distances from each other. But, while 
the flapping motions are strongly damped by the 
variations in lift they entail, there is no appreciable 
damping in the horizontal oscillations, and this can 
produce important resonant phenomena and 
unpleasant free oscillations of relatively large amplitude 
following any impulsion - a bump for instance." 



He adds more detail about what is today called 
ground and air resonance, and he notes that lag 
damping between each blade and the hub is a 
better solution than blade-to-blade interbracing 
or blade-to-blade damper connections with 
cables. 

In the next section of the paper, The 
Engineering Technique, Cierva begins 
discussing the flap bending problem. He writes 
that 

"considerable progress has been made in the knowledge 
of the strength requirements of the blades. Their proper 
study involves what for a long time appeared to be 
insurmountable difficulties. The tensile stresses due to 
centrifugal force can, of course, be very easily 
estimated, and the torsional stresses (if proper 
precautions to avoid torsional resonances are taken) can 
be minimised to the point where they can be 
neglected, but secondary bending moments of a periodic 
nature are present in the vertical [flapwise] plane." 



After several more background paragraphs, he 
begins describing his approach to "bending 
moments in the vertical plane." (I have included 
all that he wrote.) 

"An analysis of the influence of the several 
parameters affecting the bending moments permits to 
determine the maximum values which any extreme 
maneuvers is likely to produce. That extreme maneuver is 
assumed to be similar to the one which would suddenly 
increase the incidence of the wing of an aeroplane to the 
angle corresponding to the maximum lift coefficient. 

Once the bending moments are calculated on 
the assumption that the blade is absolutely rigid, the 
differential equation representing the deflected shape 
of the blade axis can be established, if the elastic 
characteristics of the blade are given. If that equation 
could be integrated, the radius of curvature at any point 
could be calculated, and from it the true bending moment. 
Unfortunately this is not the case, and I have been 
obliged to devise an approximate method consisting in 
integrating the differential equation on the assumption 
that the blade is perfectly flexible by making the 
product of the moment of inertia of the section by 
the elongation coefficient, or I x E, equal to zero. The 



equation is immediately integrable and the radius of 
curvature of the perfectly flexible blade can be calculated. 
Multiplying it by the I x E product, an auxiliary bending 
moment is found. Calling it BMf, and the bending 
moment for the same point of the blade assumed 
perfectly rigid BMr, it can be shown that the expression 
BMr BMf /(BMf+BMr) graphically represented in Fig. 4 
gives a very close approximation to 
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the true bending moment, particularly for its 
maximum values. The magnification [amplification] 
factor due to dynamic effects can be calculated by 
estimating the period of free oscillation of the blade when 
deflected in the approximate shape it adopts under the 
action of the bending moments, the aerodynamical 
damping introduced and, finally, by expanding the 
periodical bending moment, with time as the 
independent variable, into a Fourier series. The 
magnification factor corresponding to the amplitude 
of each harmonic can then be immediately calculated and 
also the difference of phase of the forced oscillation in 



that harmonic. 

A graphical summation of the harmonics of the 
forced vibration gives a representation of the final bending 
moments, and the ratios of the positive and negative 
maximums to those calculated in the static assumption are 
the corresponding magnification factors. 

This process is of course exceedingly 
elaborate, and a number of simplifying assumptions 
have to be made which are not of a nature that could 
substantially alter the results. Of particular difficulty is 
the calculation of the harmonics of the periodic 
bending moment with any degree of accuracy, since the 
third and even fourth harmonics are of importance but 
this can he done at least in the case corresponding to 
maximum stresses under the limiting maneuvers 
mentioned. 

The most interesting conclusions of this study 
are that maximum bending stresses are almost independent 
of the weight of the machine, being a definite 
characteristic of each design of blade, and that they are 
also almost independent of the moment of inertia of the 
blade spar. 



Measures in flight by means of extra light 
extensometers made by M. de Forest especially for the 
Autogiro Company of America, have substantially 
confirmed the conclusions of my theoretical analysis." 

These several paragraphs from the 1935 
Cierva paper do not do justice to the 
nearly 100 pages of assumptions, inferences, 
simplifications, logic paths, and equations 
documented in his Theory of Stresses on 
Autogiro Rotor Blades. His solution 
technique follows the Rayleigh-Ritz method, 
better known to some as the energy method. 

2.9.5 C.30A Flapwise Bending Analysis 

As fascinating as the Cierva method 
of calculating flapwise bending moments is,39 it 
is even more interesting to compare the results 
of modern day methods to the C.30A results 
Cierva gives in the fourth appendix of his 



Theory of Stresses on Autogiro Rotor Blades. 
(This will take several pages!) 

The first step Cierva took to predicting 
the flapwise bending stresses of the C.30A 
blade, shown in Fig. 2-86 (and which includes 
a modem theory result I will discuss shortly), 
was to define the operating condition. Cierva 
was a pilot; in fact, he was one of a very small 
group of autogyro test pilots. Therefore, he 
selected an operating condition well outside 
of the normal flight envelope. He first 
established the rotor speed (Ci) and advance 
ratio (\i) design condition for the one point 
where he was going to do the calculations. 
(He was not joking 

39 Reading, interpreting, and understanding Cierva's 
work was slow going. First off, I had to translate his 
symbols to those that I have grown up with. For example, 
he uses Í2 for tip speed. On the plus side, his slide rule was 
quite accurate. Most fascinating was his ability to 
accurately infer loads (both radially and azimuthally) from 



very fundamental equations; but his logic was 
difficult—very difficult at times—to follow. Even today, 
I do not think I could fully explain his application of Lord 
Rayleigh's methodology. 
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when he said in his lecture that the 
"process is of course exceedingly 
elaborate.") He determines first that, for a 
collective pitch of 6.25 degrees, the low rotor 
speed would be 19.6 radians per second at a 
light weight of 1,500 pounds and 110 miles per 
hour at sea level, which is an advance ratio of 
0.445 . The high rotor speed at a weight of 1 
,800 pounds (at sea level with the same 
collective pitch) and "in turns or pull ups was 
obtained before as equal to 30.8 [radians per 
second]." From figures relating bending 
moment amplification in terms of damping 



coefficient (pcR/Ú¸) and the blade frequency 
parameter, he concludes that the design point 
should be 

(2.193) m b f ì 2 R 4 = ( ˘ Ë 
EI 
m f l a p 

which, he assumes, is representative of a worst 
case. Since the flapwise stiffness (EIfiap) of the 
C.30A blade is 25,350 pound-feet squared, and 
the running mass (Ú¸) is 0.06888 slugs per 
foot, the rotor speed derived from Eq. (2.193) is 
28 radians per second. This is a tip speed (Vt) of 
518 feet per second making the advance ratio, 
at 1 10 miles per hour, equal to 0.3 1 1 . The 
Cierva design tables and figures go out to an 
advance ratio of 0.5 and beyond, so he selects 
the worst case as .̂ = 0.5 . This becomes the 
design point he uses as the example in his 
fourth appendix. 

The design advance ratio of 0.5 at a 



design tip speed of 5 18 feet per second implies 
a design flight speed of 1 76 miles per hour. 
This speed could only be reached in a dive. 
How many "g's" might be pulled during the 
recovery from this dive is open to question. 
However, an estimate of the ratio of rotor thrust 
coefficient to solidity (i.e., the blade loading 
constant, Cj/a) at the onset of retreating blade 
stall is40 

(2.194) 
1-Ë„-Ë3+?∆-^”-Ë6+‡-”~ 

i + fu + f^ + (^-^)u 4 

onset 

Cierva chose the Göttingen 429 with an airfoil 
maximum lift coefficient of 1.40, so for a 0.5 
advance ratio, the blade loading coefficient 
(—Ú/Ó) at stall onset is 0.0626. The rotor thrust 
is, therefore, at least 

À = 
„ Iblade 
' Alali 

Ò 



T = P K ) V Æ L 
n 10<œ s t a " 
{Z.lyj) onset 

= (0.002378) (Ú„.18.52 ) (S 182 ) (0.047) (0.0626) 

= 2,030 pounds 

which gives a load factor of 1.35 g. This is a 
very mild pull-out from a dive at the weight of 1 
,500 pounds and does not compare to the 2-
or 3-g pull-outs modem rotorcraft can be 
subjected to and are designed for. 

4 0 Eq. (2.194) is an update to the low advance ratio 
expression I included in a 1987 paper [107]. 
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Fig. 2-86. Estimated C.30A blade flapwise 
bending stresses at ̂ , = 0.5 [12]. 

Now with the design condition 
selected, consider a modern day theory 
solution of Eq. (2.192) leading to the prediction 
included in Fig. 2-86 . Since the bending is 



known to be periodic (i.e., harmonic), Eq. (2. 
192) can be rewritten in terms of azimuth 
with the 

1 2 1 
substitutions \|/ = Ci t or — - = Q — 2 t° S^ve 

dt d\|/ 

(2.196) « 

-J ( Z ^ - Z j K t f r O d n - J ( n - r ) ( m „ ) n ^ ^ . j d n 

Solving this equation requires some reasonable estimate of the running airload (dl^, ,/dT|). It 

is, of course, simple enough to write the blade 

element statement that 

( 2 À 9 7 ) ^ = ̂ – ^ ) Ò Î — ^ 

and then say the blade has uniform running 
mass (mtj), the blade has constant chord (c), 
the blade element velocity (V^^) is 
approximately Q T| + VFpsin\|/, and finally to 
invoke linear 
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aerodynamics where the airfoil lift coefficient 
(C{nV) equals the lift-curve slope (a) times the 
blade element angle of attack ( 0 ^ ) . These 
assumptions do simplify the problem 
somewhat because now you have the problem 
stated as 

' a 2 z > 
(EIflap)r —f- ^ p a c ^ - r ^ Q n + V ^ s i n y ) 2 ^ , ^ 

, › ' \ 

(2.198) 

-m„ír (2Î,¥-„≤ ≥ )(Î)*≥+ 
í?a 

(À-„) 92Z n.¥ 
˝Û 

‡Î 



No further significant progress can be made 
without some reasonable estimate of the blade 
element angle of attack. 

The classic expression for the blade 
element angle of attack (available for decades) 
is derived in several rotorcraft technology 
reports [75] and reference books [70], so you 
can write immediately that 

az.„ az„. 
„‰5≥Û- ≥1 - ‡ ^-VppSiny "Tcos4/ 

The increase in the complexity of the flap bending problem should be all too clear now. The 

angle of attack, which gives the airload that the 
blade responds to with deflection (Z), depends 
on the rate of deflection (Ci dZ^^ßvf = 
9Zr,,vÆ>t) and the slope of the bending 
blade (8Zn,v/3T|). Furthermore, the blade pitch 
angle ( œ≥◊/) has its own elastic response, 
which means the solution of the real problem 
requires solving a blade torsion equation at the 



same time blade bending is being calculated. On 
top of this growing list of inner dependence 
(i.e., coupling) between airload and deflection, 
lies the fact that the velocity induced on the 
blade element (vr,j¥) by the trailing wake of 
the lifting rotor is not constant. No wonder 
Cierva sought—and fortunately found—an 
engineering solution that a very small group of 
engineers could tackle with a slide rule! 

As I mentioned earlier, the blade 
flapwise bending problem has been "solved" by 
quite a few engineers and mathematicians over 
the past seven decades. In Appendix H, I 
have included one example of a numerical 
solution using an implicit, finite difference 
integrating scheme.41 The solution is obtained 
by solving the fourth order, partial differential 
equation 

41 This method was first constructed hy Mark Dreier of 
Bell Helicopter in the early 1980s. He did the original 



work for the fun of it, in response to a challenge I 
proposed. Mark never published the work despite my 
encouraging words. Then in 1 992/1 993, after I 
grasped the approach and had a fast, large computer, 
I "programmed" an embellished version of Mark's creation 
on a Microsoft® Excel® spreadsheet. This version used 25 
beam elements. In 2002, Anubhav Datta, then a 
graduate student at the University of Maryland, 
inquired about "my" Excel flapwise only, beam bending 
solver. I sent my notes and the spreadsheet file to Anu 
and he wrote a Fortran code that could handle up to 
100 beam elements. With his code, Anu compared the 
finite difference approach to his much more 
comprehensive, fully coupled (i.e., flap, lag, torsion) 
blade bending solver and confirmed that with 80 beam 
elements, the solution was stable and accurate. 
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form of the moment equation. This fourth 
order equation is obtained by differentiating 
Eq. (2.192) twice and putting it in 



nondimensional form. Then, because the beam 
is assumed to have constant running mass (Ú¸) 
in slugs per foot, constant stiffness (EIfiap) in 
pound-feet squared, and constant chord (c) in 
feet, you have 

(2.200) 

^ « ' R / J ›ı" ›ı 2 «ı 2 ›4√ m^í i 'R 1 ›ı 

where, assuming linear aerodynamics of the 
blade element airfoil, the lift loading is 

1 3L,.„ l f p a c R x>v _ 
mbCi2R2 ›ı 2 V m b J 

(x + p:sin\|;)2ax v 

(2.201) 



. . 3(Z/R) 3(Z/R) 

„ . ,^'-..-4„"-""-4„"Ò°^ 
aad ‡ı, = ı. + : 

You should immediately notice that 
Eqs. (2.200) and (2.201) are completely 
nondimensional . Just as important, the 
solution depends on the reciprocal of the 

blade frequency parameter (m b Q 2 R 4 /EI f l a p ), 
which Cierva set equal to 0.004 in his analysis 
of the 

C.30A blade "vertical bending." The parameter 
(pacR/mb) depends, of course, on the ratio 

of air density to blade density and is, therefore, 
sensitive to altitude. 

Cierva, in his Theory, used the 
nondimensional parameters to construct 33 
pages of tables and some 60 figures to 



facilitate the rapid computation of vertical 
bending fatigue stresses. He provides ways to 
account for nonconstant mass and stiffness, 
including additions of point masses, and ways 
to account for nonconstant chord blades. In 
subsequent historical information that I will 
discuss shortly, it took "six men and a boy" to 
deal with this problem, but I have found no 
elapsed times quoted. 

In contrast to the Cierva approach in 
the 1930s with tables, charts, figures, 6 men, 1 
boy, and slide rules, Appendix H, 
programmed in my personal computer, 
provides converged flapwise bending moments 
in 5 minutes doing 4 rotor blade revolutions in 
2-degree increments while keeping track of 25 
radial stations, albeit for uniform blade 
properties. 

Now consider the results, shown in Fig. 
2-86, when modern day tools are applied to 



Cierva's specific design condition. Equations 
(2.200) and (2.201) were solved by the finite 
difference scheme from Appendix H, for the 
conditions shown in Table 2-8, using C.30A 
blade properties: 
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Table 2-8. C.30A Design 
Conditions 

Parameter 
Flight Speed (ft/sec) 
Tip Speed (ft/sec) 
Density (slug/ft3) 
Blade Number 
Radius (ft) 
Chord (in.) 
Blade Twist (deg) 

Value 
177 
518 
0.002378 
3 
18.5 
11.0 
0 

Parameter 
Flapwise Stiffness (lb-ft2) 
Running Mass (slug/ft) 
Hinge Offset (ft) 
Collective Pitch (deg) 
Cyclic Pitch (deg) 
Hub Plane a (deg) 
Frequency Parameter 

Value 
25,350 
0.06888 
0 
6.5 
0 
7.2 
0.00400 

Cierva did not quote a hub plane angle of 



attack (‡¸) for these inputs. However, he did 
explain that the rotor would have as many 
blade elements operating at the airfoil 
maximum lift coefficient of 1.4 as possible for 
the design condition. I chose the hub plane angle 
of attack of 7.2 degrees as reasonable for a 
nonaerobatic aircraft. At these conditions, 
the rotor produced a calculated thrust of 
3,000 pounds, which means the 1,500-pound 
C.30A is experiencing a 2-g pull-up. 

The bending moments get converted to spar 
stresses, conventionally, as 

(2.202) 
S p a r S ^ ( F M < v ) ( S p a r O D / 2 ) ÍEV 

»" I •"! Sparln,p | R 
32(Z/R) 

›ı2 

(Spar OD/2) 

Spar la 

Cierva uses the elastic modulus (E) as 
29,000,000 pounds per square inch and the 
spar thickness as its outside diameter (OD), a 
constant 1.5 inches. Using blade radius (R) in 



inches gives the spar stress in pounds per 
square inch, which makes structural engineers 
happy. In 
addition. Cierva gives the details that inboard of radial station 0.1R, the spar moment of 
inertia (Ifiip) is 0.1306 inches,4 and outboard of radial station 0.2R, the spar moment of inertia 
is 0.09 inches . The variation is linear between 0.1R and 0.2R. He further makes the point in 

his Theory that 

"in most practical cases, the structure is composed 
of a main spar and some sort of superstructure. In 
this case, the total ≈≤‰‡, which is the sum of EI for all 
structural elements, should be taken for   [a curvature 
multiplying constant] but the individual values of E and 
d [OD/2] should be used in order to calculate the fiber 
stresses on each element In the ordinary type of 
[blade] construction now in use, EIf l a p is approximately 
20 to 40 % greater than [the spar's EI] so that it can 
be seen that the spar receives no real relief from the 
superstructure." 

The preceding pages lead to the 
calculated flapwise bending stress at the 0.65 
radial station varying with azimuth as shown 
in Fig. 2-87. The maximum positive stress, 
which occurs at 260 degrees, and the 
maximum negative stress are two of the 



points plotted on Fig. 2-86. 
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The solid line on Fig . 2-87 has been 
calculated using Appendix H methodology 
built from Eqs. (2.200) and (2.201), however 
several much more comprehensive theories 
have, of course, become available in the last 
several decades. The pace of these 
progressively improving theories has been 
keyed to bigger, faster, digital computers. 
One such theory, CAMRAD, was initially 
created by Wayne Johnson in 1980 and began 
with a calculation of the induced velocity (vX)V(,) 
acting at each blade element based on wake 
geometry provided by Scully [108] in 1965. 
Over time, Johnson incorporated several 
improvements to his program, and in 1993 he 



introduced CAMRAD II [109]. 

The induced velocity is assumed 
constant (i.e., uniform over the rotor disc) and 
the airfoil is linear in lift versus angle of 
attack in the Appendix H solution to Eq. 
(2.201) . Johnson's more comprehensive 
calculation of bending moment, including what 
is commonly called nonuniform downwash 
(i.e., vx,v) and nonlinear airfoil lift and drag 
properties that allow stall, is shown with the 
dashed line in Fig. 2-87. While the maximum 
positive and negative peaks are of similar 
values between the two solutions of the 
beam problem, nonuniform downwash and 
blade stall clearly create several higher 
harmonic loads and stresses . The accurate 
calculation of these higher harmonic loads 
is very important to rotorcraft vibration, as you 
will learn shortly. 



¡f, WH 
Tip Bent Up Maximum 

(—Î˜Ÿ„Âˇˇ‹Ú) 

]• .. ,-. I i j . j . t 

CAM RAD 

LSJ I fer is 
/ V Pul Up \ I 

i 'l Apoerdlxl 1 IJ,Ui.u j i . I . ! . I 
≤ . √ ≤ ≈ 

\ 
Pull Up 1 I 

'• ?,...! 
Flaps.ist' ' I I 

r Bcnmas ' I Slrtis ; 
J 

.»i •√≤√ -≤À9 ..i I ZÌI I ˇ is:. 210 Mi. Ï7II Jill i . , 

À/imii lh (dt']"l 
(Itarin ) .r^Bijo 

\ 
I 

. in,aiMi 

/ N 

X Nepulisc 4 -
I LOW 

\ 

-:»,<-< 

Fig. 2-87. Estimated C.30A blade flapwise 
bending stresses at r/R = 0.65, ˆ = 0.5. 
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Cierva clearly was the first to study 
rotor blade bending in "the vertical plane." J. 
¬. ¬ . Owen was the second man to tackle the 
flapwise bending problem and obtain visible 
results, which were published in 1938 [1 10]. 
Later, on October 6, 1951, at an all-day meeting 
of the Helicopter Association of Great Britain, 
Owen presented a discussion [111] of bending 
moments in both vertical and horizontal planes. 
Interestingly, in 1968, Westland Helicopters 
Limited published a book titled A History 
of British Rotorcraft, 1866-1965 [1 12], and 
Owen contributed a short discussion about 
rotor blade research from 1933 to 1939. 
Owen's first- person summary of 1968 is quite 
interesting. In the opening paragraphs he writes: 

"My first contact [1933] with Autogiros came 
when I joined Mr. H. A. Mettam who was then working 
in this field with Messrs. A. V. Roe at Manchester 
[England] . The blades of these machines were then 
occasionally failing at the root fittings [see Fig. 2-70], 
due probably to corrosion fatigue associated with the 



swetting on of the ends, and I became interested in the 
strength problems associated with this type of aircraft. I 
had access to what I remember as 'black and green' 
volumes, which had been written by Cierva. These if I 
remember correctly, included the bending moment rale 
which he eventually published in the December 1935 
[Royal Aeronautical] Journal. This rule is reproduced in 
equation (36) of R & M 1875 [1 10], where I 
demonstrated that it is very satisfactory except in the 
regions of the blade tip where bending moments are not 
usually important. 

The contribution of R & M 1875 was that 
it shed physical light on what was happening in the 
bending of Autogiro blades and demonstrated the very 
large reduction in the transverse bending moment on a 
blade, due to the centrifugal forces present. Up to this 
time, this had not been generally accepted In this and 
later reports I drew attention to the lack of knowledge 
of the aerodynamic loads on blades " 

The Owen R & M 1875 report from 1938 
was a catalyst to the small rotorcraft industry. 
Owen, of course, had identified the real 
problem—"the lack of knowledge of the 
aerodynamic loads on blades." In 1964 the first 



bit of "knowledge" finally became available. 
In the mid- 1960s, a Sikorsky H-34 was 
instrumented with differential pressure 
transducers on one of its four blades and data 
was obtained—in flight—by NASA . The 
long-awaited data was published by Scheiman 
[1 13] in 1964. The heavily instrumented rotor 
was then removed from the H-34 helicopter and 
tested in the NASA Ames Full-Scale Wind 
Tunnel. Results from that "rotor alone" test 
were published by Rabbott in 1966 [114]. You 
will learn more about this acquisition 
of "knowledge" in Volume II—Helicopters. 

A significant question grew out of 
Cierva's and Owen's work. The question, 
rather simply stated, is this: Are the flapwise 
bending stresses lower with a low flapwise 
stiffness blade (in the limit, a chain or EIflap = 0) 
or with a high stiffness blade (in the limit, 
completely rigid or EIfiap = «)? This question 
is worth answering before leaving vertical 



plane (flap) bending and going on to 
horizontal plane (chord) bending. Let me use 
the flap bending calculator in Appendix H to 
give you an answer. Suppose the C.30A blade 
is the reference point with (a) the spar outside 
diameter constant at 1.5 inches, and (b) the 
superstructure remaining constant. The only 
variable then is the wall thickness of the spar. 
The bench testing by Cierva showed that the 
experimental value of flapwise stiffness was 
3,650,000 pound- inches squared. The tubular 
spar accounts for 2,600,000 pound-inches 
squared of the total, 
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leaving the "superstructure" as 1,050,000 
pound-inches squared or 7,290 pound-feet 
squared. (Frankly, the units of pounds and 



inches preferred by structural engineers are 
handier for this illustration.) Therefore, in this 
example, the blade element flapwise stiffness 
(Elflap) varies with tube-wall thickness (in 
inches) as 

(2.203) E I i b p = E I w l r + i,05O,000 = 29,000,000 —( ≥ .5 4 -»”) +1,050,000 in lb-in2 

where the spar inside diameter (ID) in inches 
equals the outside diameter (OD =1.5 inches) 
less twice the wall thickness of the tube. For 
reference, the C.30A spar wall thickness is 0.08 
inches. In a similar manner, the blade weight 
(Wb) in pounds varies with wall thickness as 

(2.204) 

Wb=JDerisity - ( 0 D 2 - I D 2 ) R + 18.83 ≥ = ≤ Ó . Á √ - ( 0 0 2 - fi 2 ) ( 2 2 2 ) + 18.83≤ 

where the density of steel is taken as 520 
pounds per cubic foot or 0.3 pounds per cubic 



inch. For reference, the C.30A radius of 18.5 feet 
equals 222 inches. 

The Appendix H bending moment 
calculator uses flapwise stiffness in 
pound-feet squared and needs the running 
mass—not total blade weight, which means a 
conversion of 

EIn„„ in l b - i n 2 

≤22 (2.205) E I f l a p = flap in lb- f t 2 

Wb Wb . , . . 
mK = — - = f- „ m slugs / ft 

b gR (32.174)(18.5) 

For this example, the input to Appendix H, 
using the C.30A design condition from Table 
2-8, is given in Table 2-9. Keep in mind that the 
radius, chord, rotor speed, spar outside 
diameter, and "superstructure" remain constant, 



and the thrust is set to 3,000 pounds. 

The influence of spar wall thickness, the only 
variable in this example, is shown in Fig. 2-88 
and Fig. 2-89. Notice in Fig. 2-88 that while the 
flapwise bending moment waveform changes 
substantially, the magnitude of the fatigue 
moment (i.e., the peak-to-peak divided by 2) 
as seen in Fig. 2-89 is relatively independent of 
the large range in blade stiffness. Therefore, the 
fatigue flapwise bending stress increases as the 
second moment of inertia of the spar becomes 
smaller, as Eq. (2.202) dictates. I imagine 
Cierva performed a "vertical bending" trade 
study similar to Table 2-9 to arrive at the C.30A 
spar and "superstructure." 
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Table 2-9. Spar Wall Thickness Study 
Parameter 
Wall Thickness (in.) 
Inside Diameter (¡n.) 
Flap Stintless (Ib-in.5) 
Running Mass (slug/ft) 
Spar 2nd Moment (in.4) 
Lock Number 
Ú ¸ œ ⁄ ≈≤Ô, 

Mode 2 Frequency Ratio 

Mode 3 Frequency Ratio 

Elrbp/Rfiri.-lD) 

ŒŒœ\ (I/in.!) 

Fatigue Moment (in.-lb) 

Fatigue Stress (lb/in.-) 

Blade Weight (lbs) 

S.W.C 25 
0.020 

1.460 

1,771,591 

0.04208 

0.02547 

16.47 

314.09 

2.636 

4.994 

7.980 

29.45 

27,124 

66,570 

25.0 

S.W.C. 19 
0.040 

1.420 

2,451,826 

0.05223 

0.04S92 

13.27 

281.72 

2.654 

5.087 

11,044 

15.33 

27,274 

34,843 

31.1 

S.W.G 14 
0.080 

1.340 

3.65O.O00 

0.07170 

O.O9024 

9.67 

259.76 

2.669 

5.162 

16,441 

8,31 

25,745 

17.831 

42.7 

S.W.G 10 
0.128 

1.244 

4,830,554 

0.09356 

0.13095 

7.41 

256.14 

2.671 

5.176 

21,759 

5.73 

26,130 

12,472 

55.7 

S.W.G 3 
0,252 

0.996 

6,838,836 

0.14253 

0.20020 

4.86 

275.61 

2.658 

5.107 

30,806 

3.75 

26.208 

8,182 

84.8 

S.W.G ÕÃÃ0 
0.500 

0.500 

8,150,759 

0.20794 

0.24544 

3,33 

337.37 

2.625 

4.936 

36,715 

3,06 

22.684 

5,776 

123.8 

2.9.6 C.30A Chordwise Bending 
Analysis 

Now let me proceed to the chordwise 
axis . Cierva, of course, considered spanwise 
bending moments and stresses in the 
horizontal, or inplane, or chordwise plane as 
well. However, in contrast to the considerable 
number of pages devoted to flapwise 
bending moments and stresses, he deals with 



inplane moments and stresses in less than five 
pages . With respect to chordwise loads and 
stresses in forward flight, he writes in his 
Theory that: 

"The only bending moment which can be of 
any importance is the alternat[ing] one which appears 
when there is any restraint to the free motion of the 
blade, either in relation to the others or to the hub. In 
the general case it is imposed by a damper, more 
commonly a frictional one. 

In certain cases there will be no appreciable 
restraint for the small motion of the order of Io to 2° 30' 
either side of the central position, which the blades 
perform in any condition of flight. In other cases, on 
the contrary, the restraint will be obtained even for 
very small motions. 

If the restraint is of the frictional type, it will 
be constant and independent of both rotational speed and 
the amplitude of the motion, but there may be other cases, 
such as friction dependent on centrifugal force or 
hydraulic dampers, where the restraint will increase 
with either centrifugal force or angular speed of the 
oscillatory motion, which will depend directly, everything 



else equal, on the angular speed of rotation. Each case 
will have to be treated on its merits, but it will be 
convenient in any case to assume a constant restraining 
torque equal to the maximum which normally can be 
applied and consider it for fatigue stressing. In certain 
systems, where high exceptional values might be attained, 
this case should also be considered, not as a fatigue case. 

182 

2.9 BLADES 



Flapwise 
Bending 
Slrcss •I IÍR - fc« 
(kW) 

•RpBeMUp ° Will Ukta*»-(MM* In. 
(—Ô˘ËÚˇÌ‹Ô) Wull œÃÕ Õ -QAM ¡n- ICJOA) 

* Willi tllkUllHI -I˘.I i l i l l. A 
• W˘lltMtkiKM-aJ˘llm. i ' \ 

¡F/S» 

\ 

≤ \ 

í % ^^ 
9U 120 15¬ ≤ÿ_ . : . ] > : / - ≥ Î ≥ 1 7 « Ï ≥ 3 » 

Azimuth (deg) 

Fig. 2-88. Flapwise bending moment at j¿ 
0.5 for several wall thicknesses. 
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Fig. 2-89. Fatigue moment and stress at ix = 
0.5 for several wall thicknesses. 
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The distribution along the radius can be 



calculated by equation (1) and (2) (Part I, (2) (b)). All said 
there [in Part I] applies to this case. In the general case, 
where the superstructure has a very high moment of inertia 
in the direction considered [inplane], the bending on the 
spar will be negligible at all points except at the root and 
close to it. In the case of ordinary blade construction, it is 
reasonable to assume that the stresses on the spar 
become negligible at a distance from the first rib equal to 
about 0.1 of the radius. A linear law may be assumed for 
the change. 

When plain bearings are used on the drag 
hinge, it is advisable to calculate the additional 
frictional restraint to centrifugal force. A frictional 
coefficient of 0.15 is recommended." 

Part I, (2) (b) of his Theory that Cierva refers 
to addresses "Stresses On Ground"; subset (2) 
(b) is "Bending in [the] Plane of Rotation" 
during starting. 

The Cierva approach to chordwise 
bending moments and stresses is quite 
interesting. The only loads of interest in forward 



flight are those loads created by the lead-lag 
damper and the frictional moment caused by the 
plain bearings of the lag hinge . In the fourth 
appendix of his Theory Cierva gives the C.30 A 
example along with the explanation that: 

'The blades are restrained in their motions 
relative to the tube by friction dampers, which are never 
adjusted to a torque superior to 15 [pounds force] x 200 
[inches for moment arm] = 3,000 lbs-inches. In addition, 
however, the friction due to centrifugal force on the drag 
pin [pin through the lead-lag hinge], which has a plain 
bearing, will have to be considered. 

The maximum centrifugal force in any 
condition of flight considered will be, at the vertical drag 
pin equal to 

( F c L = 0 - 5 ^ ) ( 1 8 . 5 ) ( 3 0 . 8 ) 2 =11,200 lbs 

The pin diameter is 1-5/8 inch = 1 .625 inch, so that 
assuming a coefficient of friction equal to 0.15, greater 
than any value that can reasonably be expected, the 
centrifugal friction torque will be equal to 11200 x 0.15 x 
1.625/2 =1380 lbs-inches. 



The total maximum horizontal BM [bending 
moment] at the root will be taken as 3000 + 1360 = 
4360 lbs-inches. It will be considered as an alternative 
one, changing once a revolution from + 4360 to -4360 
lbs-inches." 

Using the planform view of the C.30A 
blade, Fig. 2-90, he assumes the ±4,360 
fatigue moment is transferred from the spar to 
the superstructure in a linear manner. At the 0.1 
radial station, the spar takes the full moment; at 
the 0.3 radial station, the superstructure takes 
the full moment. Then he calculates the spar 
chordwise stresses over the root end out to a 
radius station of 0.3R and tabulates the results 
shown in Table 2-10 . 

Table 2-10. The Cierva C.30A Spar 
Chordwise Fatigue Stress Analysis [12] 

Parameter 
Moment (¡n.-lbs} 
Z (in.1) 
Fatigues Stress (≤€Ú.1) 

Point A to r/R = 0.1 
±4.360 
0.1741 

±25.000 

r/R = ».15 
±3.270 
0.1426 

±23.000 

r/R = 0.20 
±2,180 
0.1199 

±18,150 

r/R = 0.25 
±1.090 
0.1199 
±9,075 

r/R = 0.30 
0 

0.1199 
0 
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The symbol Z in this table is frequently used by structural engineers. It is the ratio of 
the second moment of inertia (I), in inches4, to the distance (d), in inches, from the cross-

section neutral axis to the outermost fiber 
being stressed. Thus, Z = I/d, and so moment 
in inch-pounds divided by Z is stress in pounds 
per square inch, in this case, fatigue stress. 

When you look closely at the C.30A 
planform sketch, Fig. 2-90, you will see that 
the basic spar starts out (point A on the 
sketch) as British Imperial S.W.G number 10 
which means a tube having a 0.128-inch wall 
thickness. The outside diameter is 1.5 inches. 
At 20 inches inboard of point B, a tapering-in 
wall thickness begins so that at point ¬ the tube 



is still 1.5 inches in outside diameter but 
has become S.W.G 14, a wall thickness 
of 0.080 inches . This movement to a spar 
having a tapered wall thickness was 
considerably refined in the autogyro era. 

It is fascinating to me that Cierva, in 
his Theory, never discusses stresses in the 
"superstructure" and, in particular, the trailing 
edge. Apparently, he was more than satisfied 
that "the rigidity of the superstructure in a 
horizontal plane is very great" and, therefore, 
the stresses must be quite low. Any thought that 
a chordwise resonance condition might occur is 
conspicuously absent in his design manual. I 
think this confidence must have been obtained 
from other calculations and data suggested by 
Fig. 2-89, which shows that high stiffness 
results in very low flapwise fatigue stresses. 
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Fig. 2-90. A sketch of the C.30A blade drawn 
by Cierva and included in his Theory. 
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2.9.7 C.30A Torsional Bending Analysis 

Cierva provides considerable guidance 
about loads and stresses in the torsion axis. In 
his Theory, Part II, Stresses in Flight, 
Section 6, Torsional Stresses, he lists the 
possible sources of torsional stresses as 
"(1) Transverse offset between the [blade element airfoil] lift and inertia forces acting on the 

blade 

(2) Pitching moments due to camber of the aerofoil 
(3) Transverse offset between the vertical shear due to 
bending in a vertical plane and the 

elastic central axis of the blade 
(4) Secondary torsion induced by bending in a horizontal 
plane combined with deformations 

in bending in a vertical plane." 

and proceeds to derive simple equations for each 
contributor to torsional stresses. 



The first contributor is referred to 
today in shorthand as c.g.-a.c . offset. Fig. 
2-90 shows that the blade element center 
of gravity is located chordwise 32.4 percent 
of chord (i.e., 3.564 inches) behind the airfoil 
leading edge . Since the airfoil lift acts, 
nominally, at the 1/4-chord point (2.75 inches), 
that is to say at 25 percent of chord behind the 
airfoil leading edge, a positive blade element lift 
tends to twist the blade nose up. You will recall 
that Hafher [74] was very careful to keep the 
"superstructure" light so that the blade element 
center of gravity was placed at the 1/4-chord 
point. Hafher specifically intended to reduce 
this torsional moment component to zero. The 
C.30A blade, with its aft e.g., introduced a 
nose-up torsional moment (Tx) along the blade, 
which Cierva calculates (in modem notation) as 

(2.206) c.g.-a.c. offset 



T =— Ìcg.oflbet-±c)pC, cR3Q2 Ì l - x 2 i . 
x i •w.b"" £ J -" w * A /r iman, max V / 

This moment, in foot-pounds, depends on the 
e.g. offset in feet behind the airfoil 1/4-chord 
point (i.e., the airfoil aerodynamic center, a.c.) 
in feet, on the air density (p) in slugs per cubic 
foot, on blade chord (c) in feet, on blade radius 
(R) in feet, and, following Cierva's worst-case 
assumption, on the maximum design rotor 
speed (£W) in radians per second. He 
assumes that in forward flight the blade could 
be operating at the airfoil maximum lift 
coefficient (Cimax) over the full span. The 
nondimensional radial station is (x = r/R). 

Cierva argues, correctly to the first 
approximation, that the torsion moment due 
to c.g.-a.c. offset will "in the case of the 
extreme manœuvre, oscillate between zero and 
the value given by Eq. (2.206)." 



The next torsion moment Cierva 
considers is due to the airfoil pitching 
moment coefficient (Cm). Beavan and Lock 
[57] tackled this moment in 1936 when they 
sought to explain the adverse stick gradient of 
the C.30, as you learned in Section 2.6. They 
credited Cierva's notes for starting them in the 
right direction. In 1937, Wheatley [59] gave an 
even more in-depth analysis at the N.A.C.A. of 
both c.g.-a.c. offset and pitching moment loads 
in the torsion axis. But in the early 1930s, 
Cierva calculated this airfoil 
pitching-moment- dependent torsional moment, 
in foot-pounds, from 
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(2.207) pitching moment Tx 



= p C m c 2 R 3 Q 2 [ i ( l - x 3 ) + u ( l - x 2 ) + ^ ( l - x ) ] . 

The airfoil pitching moment coefficient (see 
Appendix B) is taken about the airfoil 
1/4-chord point. In his torsion analysis [12] 
Cierva includes the situation where the blade 
might have two different airfoils in separate span 
segments of the blade. 

The third torsion moment considered 
deals with the coupling between the vertical 
shear due to flapwise bending and torsion. He 
writes: 

"The shear force studied in (4) will be situated, 
transversely [the chordwise direction] to the blade, at V* Ò 
from the leading edge. If the neutral elastic axis of the 
blade (the axis of the tubular spar in the general case) is 
at a distance dj from the leading edge, it will produce a 
torsional moment equal to 

(T3>*=Sx(ds- ìc) 



By using equation (156) in conjunction with (146), 
(147), (148) and (149), the values of (x3) for any point 
(r/R) or those at the root (maximum), can be obtained. 

The maximum value (absolute) will be for 
(S+)0 which corresponds, as said in ((4)(h)), to y = 
«Î/2 and the absolute maximum of opposite sign 
will be for (S_)0, corresponding to \|/ = 0 and \|/ = ˇ." 

The fourth torsional moment, due to 
simultaneous bending in vertical and horizontal 
planes (he later calls this "torsion due to double 
bending"), causes Cierva to write a very clear 
2-1/2-page dissertation on the real coupled 
bending/torsion deflection and loads he sees 
with rotor blades. He relies on the assumption 
that there will be no inplane bending—if there 
is no lead-lag damper and the lag hinge is 
frictionless—and gives the fascinating 
approximation that the maximumfatigue 
torsional moment due to "double bending" will 
be 



(2.208) 

maximum flap-lag Tx = ± 9 l l+f i i l 3 F ^ 1 1 ^ On' 

where the restraining torque at the drag hinge 
(QR) is that value found from the chordwise 
stress analysis summarized in Table 2-10 (i.e., 
QR = 4,360 foot-pounds). 

To arrive at the total fatigue moments 
in torsion, Cierva simply adds up the four 
contributors. He assumes no dynamic 
amplification and then distributes the torsion 
between spar and superstructure saying, "the 
[spar's] relief due to superstructure will be 
taken into consideration by multiplying the 
values above by (1-1/2)." Then he writes, "we 
have finally" the table (reproduced here as 
Table 2-11) where (X) is the spar polar moment 
of inertia about the spar neutral axis. The torsion 



stress is calculated in the conventional manner 
[102] as 

(2.209) Torsion shear stress 

_ (Torsion Moment) (Distance to outermost fiber) 
J 
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Table 2-11. The Cierva C.30A Spar 
Torsion Fatigue Stress Analysis [12] 

Parameter 
Max + Moment fin.-lbs) 
Max - Moment ( in.-lbsl 
Spar J (≥Ô.Î) 
Max + Shear Stress (lb/in.") 
Max - Shear Stress flb/in. 1 

Point À 
r/R-0.093 

1.8 SO 
-Î.400 

0.261 
5.400 

-6,900 

Point ¬ 
r/R-0.IK6 

1.720 
-2,1*1 

0.1 S 
7.150 

-9.110 

r/R 
- 0 . 3 
1.500 

-1.910 
0.18 
6.250 

-7.950 

r/R 
-VA 
1.290 

-1.060 
0.IÍ 
5.400 

-6,900 

r/R 
- 0 . S 
1.070 

-1,400 
0.1S 
4.500 

-5,830 

r/R 
- 0 . 6 

845 
-1,120 

0.18 
3.520 

-4.∆50 

r/R 
-11.7 
620 

-810 
0.18 
2.580 

-3J70 

2.9.8 C.30A Total Blade Stresses 



The concluding steps in the Cierva 
stress analysis of the spar are reasonably 
conventional, but he does take the most 
conservative path. The resultant flapwise 
and chordwise stresses are first determined 
"assuming altemate maximums occur 
simultaneously." To this table of plus and 
minus maximum stresses, he adds in the 
steady stress due to centrifugal force calculated 
at the maximum design rotor speed of 30.8 
radians per second and accounts for the torsion 
stress (which is minor). 

There is an end to the process Cierva 
described as "exceedingly elaborate" and where 
"a number of simplifying assumptions have to 
be made which are not of a nature that could 
substantially alter the results." The conclusion 
to the process begins with the final summary 
(Table 2-12) of the steady and alternating 
(fatigue) stresses [see Eq. (2.190)]. 



Table 2-12. The Cierva Summary of 
C.30A Spar Steady and Fatigue Stresses [12] 

Parameter 
Steady Stress (lo/in.J) 
Fatigue Stress (ltj/in.;) 

Point A 
r/R-ŒÀ» 

20,390 

±30,650 

Point ¬ 
rïR -I.IBS 

35.300 
±27.600 

r/R 
- O J 
34,025 

±19,825 

„/Õ 
- M 
30,200 

±20,900 

r/R 
- » . 5 
26.525 

±21,825 

r/K 
-0.6 
22,125 

±21.925 

„/Õ 
- 0 . 7 
16.350 

±22.150 

Now Cierva's thoroughness really comes to the 
forefront. He completes the stress analysis by 
introducing four factors that raise the stresses 
summarized in Table 2-12. In paragraph 4 of 
the example from Appendix IV used for the 
C.30A blade [12], he writes [my comments are 
in brackets]: 

"Fatigue Factor Ki . Appendix ≤œ gives for 
nickel-chrome steels with a final stress of 85 tons [British 
tons of 2,200 pounds per ton] (by extrapolation) a ratio 
ofPf/Ps =0.46 [fatigue stress to steady stress]. As the 
ratio Py/Ps [yield stress over ultimate stress, in British 
tons] is taken as 65/85 = 0.765, the factor Ki = 
0.765/0.46 =1.66." [This factor accounts for the damage 
fatigue can do when the altemating stress is occurring 
around a high steady stress.] 



"Form Factor K2. There are holes well spaced, 
3/16 [inch in] diameter, in the [spar] horizontal plane. 
They represent a decrease in section [moment of inertia] 
of about 8 %. For BM [bending moment] in a horizontal 
plane, they represent a decrease in the Z [see Table 
2-10] of the section of about 25 %. As the centrifugal 
tension represents about 50 % of the stress and the BM 
are in planes oblique to the horizontal, a reasonable 
assumption is to take a drop of strength of about 15 % 
(as done in the case of stresses on the ground). As 
fatigue stresses are very important, however, a factor K2 = 
1.3 will be taken." [Each hole creates local stress risers 
that cannot be ignored.] 

188 

2.9 BLADES 

"Safety or Material Factor K3. It will 
be taken, as stated, as equal to 1.5, since the 

material is consider as reliable." [Material 
imperfections and manufacturing defects are a very 

real consideration.] 



"Load Factor K4. Taken equal to 1." 
[Cierva has calculated loads at an extreme point 

in the flight envelope, which makes 1 reasonable 
in my opinion.] 
With these reasonable factors in hand, Cierva 
applies the factors to see if the sum of steady 
and fatigue stresses exceed the maximum 
allowable stress (65 British tons per square inch 
or 145,000 pounds per square inch). He 
calculates this absolute maximum stress as 
(2.210) Absolute maximum stress = K2xK3 
X [Steady + K, X Fatigue] x K4 and gives the 
results tabulated and also graphed, as shown in 
Fig. 2-91. 
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Fig. 2-91. The maximum absolute stress 
results Cierva included in his Theory. 
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In reviewing this summarizing result, Cierva 
writes of the C.30A blade analysis that: 

"It will be observed [from Fig. 2-91] that for a 
short length about Point ¬ the factored stress exceeds the 
value Py = 145000 lbs/in2 so that, strictly speaking, 
the blade is under strength by the criterion laid down in 
the Theory [12]. As, however, the maximum value of 
V/V, in horizontal flight, fully loaded, is very 
appreciably less than the value V/V, = 0.5 maximum 
for which the assumptions of the Theory hold, and as the 
stresses below that value [(A = 0.5] decrease very 
appreciably, the final factor of 0.92 [a negative margin 
of calculated stress divided by Py, the yield stress] can be 
accepted as satisfactory, but in new designs it is 
recommended to lengthen the tapered part of the spar 
to about 0.25 R (for similar blades) which, as can 
readily be appreciated in Fig. 2-91, would result in 
an almost uniform distribution of stresses over the first 
quarter of the tube." 

2.9.9 Closing Remarks 

The Cierva rotor blade loads and stress 



analysis has come down through the decades. 
Perhaps not in the "black and green volumes" 
that Owen recalled [112] or in the somewhat 
illegible two volumes edited by James Bennett 
that Dick Carlson gave me. But with the very 
abbreviated preceding discussion, I believe you 
will agree that Juan de la Cierva knew exactly 
what he was doing in the engineering world, 
not just in the world of invention, building, 
flying, licensing, and selling his own Autogiros. 

I can think of no better way to 
conclude this introduction to rotor blades than 
with those words written by the Pitcairn 
chief engineer, Agnew Larsen, in his 
historical recollections [49] published in the 
first volume of the Journal of the American 
Helicopter Society. He passes on two thoughts, 
the first of which reads as follows: 

"At the very start of the American autogiro engineering 
efforts of both Pitcairn and Kellett, it became apparent 
that little could be done without some working 



knowledge of a "theory" for the whole procedure. 
Consequently, early in the Spring of 1929, a hurried trip 
was made to England by Harold Pitcairn, the author 
[Larsen], and Jean Nicol, the clever designer of the M & 
T Design Co., to acquire this basic design information. 
At this time Mr. Pitcaim urged Cierva to direct his 
efforts toward the accumulation and collating of his 
vast supply of technical data for condensation into a 
workable volume, The [Engineering] Theory of the 
Autogiro [11]. Later in the fall of 1929, when Cierva 
made his first trip to this country, he spent much time on 
it, with Paul Stanley as his assistant. The momentous 
work was compiled and copyrighted, and privately 
published for the benefit of licensees like Kellett, 
Pitcairn's manufacturing company, and for the use 
of proper personnel of the Department of Commerce, 
NACA, Air Force, and Bureau of Aeronautics. Without 
this authoritative guide, no progress could have been 
made, nor could the government authorities have 
granted type certificates required for manufacture of 
autogiros. The Autogiro Company of America's 
recommendations for Approved Type Certification were 
endorsed by them." 

Mr. Larsen could easily have added praise for 
Cierva's second volume, Theory of Stresses on 
Autogiro Rotor Blades. 
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The second thought from Agnew Larsen is even 
more important because he wrote: 

"The direct control of all the original smaller models, 
up to a gross weight of approximately 2500 lbs., as in the 
Kellett KD-1, KD-IB and KD-2, proved to work very 
well indeed. In the still smaller models, like the Pitcaim 
PA-22, the British Cierva C-30, and the French LePere 
jobs, this direct control was, if anything, even better. The 
chief difficulties in all of these direct control ships, 
however, was an uncomfortable characteristic vertical 
bouncing, or a three-per- rev vibration of the whole 
aircraft, to a greater or lesser degree. This was a new 
and most disturbing annoyance which grew out of the 
more rigid, though hinged, [three] rotor blades owing to 
the absence of the droop support cables. The final 
solution of this problem required some two or three 
dozen different, direct-control rotors (tested 
internationally in England, France, and America) and 
between three to four years, before ultimate satisfactory 



solution. The cue to this solution lay in the fact that this 
bouncing fault was virtually non-existent in the two most 
flexible rotors, out of a total of twenty-six that were 
methodically analyzed. This led to step-tapered steel spars 
and the ultimate elimination of bouncing in all rotors 
where proper considerations of bending flexibility were 
applied." 

Clearly, a solution to autogyro 
vibrations—caused by the more advanced, 
three-bladed rotor system—was found by trial 
and error. 
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Vibration has been, and unfortunately 
continues to be, a very detracting feature of 
rotorcraft. The magnitude of vibration, say at 
the pilot seat, is an immediate question asked of 
a test pilot at the end of a first forward flight of 



a prototype. After first flight, there has always 
been (at least in my experience) a vigorous 
effort to reduce vibration throughout the 
machine, until, finally, the first acceptable 
production aircraft is ready for delivery. 
Thereafter, incremental product improvement 
frequently includes a program aimed at 
reducing vibration even further. In retrospect, 
autogyro vibration or "vertical bouncing" as 
Agnew Larsen called it, was a relatively minor 
vibration problem compared to what many 
modem rotorcraft have encountered. Cierva 
wrote in his 1935 paper [5] that: 

"Perhaps the most irritating of the secondary difficulties 
met with in the autogiro developments have been those 
of a dynamical [vibration] nature." 

I believe that a large number of rotorcraft 
engineers would agree that Cierva's words are 
a considerable understatement. 

The Agnew Larsen recollection [49] 



that vertical vibration "was virtually 
eliminated" with "the two most flexible rotors" 
is a direct indication of how important it is to 
tune the blades of a three-bladed rotor system 
well away from a 3-per-rev natural frequency. 
As you learned in the section on blades and 
can see from Fig. 2-93, the early four-bladed 
rotor systems, with their cable support for 
droop, were "rigid" or "stiff." Later, 
three-bladed systems were, as Larsen says, 
"flexible." I have put quotes around the words 
rigid, stiff, and flexible because they are 
extremely inexact engineering terms with which 
to describe blades— or fuselages. These words, 
rigid, stiff, andflexible have no place in the 
study of vibration. 

Vibration depends on the proximity of natural 
frequencies to the frequency of the applied forces and 
moments, and the magnitude of the applied forces and 
moments. To illustrate this point, remember the classic 
dynamics problem given in the first chapter of any text book 
[115] used to study vibration. The fundamental single-
degree-of-freedom problem, Fig. 2-92, shows a mass (m), in 



slugs, hanging on a spring attached to an overhead beam 
(A). The spring stiffness is (k) in pounds per foot. The mass 
is also attached to the beam with a dashpot (a damper). The 
units of the damping constant (c) are pounds per foot per 
second. The system is acted on by an oscillating force (P0 
sin æt) or, more generally, (Fs sin tot + Fc cos æt). The mass 
shakes up and down a vertical distance (x) governed by the 
classic F = ma equation: 

(2.211) m—-+c hkx = E,sinœt + Frcoscot. 
dt2 dt s c 
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Fig. 2-92. Vibration problem. 
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Fig. 2-93. Frequency ratio for the second 
flapwise mode of a uniform beam. 

The classic solution to this second-order 
differential equation gives mass displacement 
(x) in feet as a function of time (t) in seconds. 



The solution is, quite simply 

(2.212) x, •• 
Fs(k-ma>2)+Fc(cü>) 

(Í-meo2) +(ca>)2 sin cot + 
Fe(k- -Fs(om) 

(k-ma>2) +{cco)2 cos cot. 

The mass experiences an acceleration that 
varies with time. This acceleration, which is 
the second derivative of displacement with 
respect to time, is 

(2.213) 
( $ - * 

F s (k-mer) + Fc(co)) 

(k-mur) +(ciû) 

Fçfk-míú^-Fsfco)) 

(k-mur) +{ciû)* 

At some point in time, the acceleration will be a maximum, either positive or negative. The 

magnitude of this maximum acceleration is 
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w ˘ effê+E 
^(k-mo)1)2 +(cco)! 

Now, suppose you are sitting on the mass, seat belt on, but assume your mass is trivial 

compared to the mass of the block (m) you 
are sitting on. Then your body will feel a 
maximum force (Fmax) equal to 

(2.215) Max. body force = Fm 
g 
π. J(k-m<u2) -t-(ct»)3 

This maximum body force is a vibratory force and is a fraction of your weight (\ ¸«≥Û) and, 

therefore, a fraction of the gravity constant (g). 
You could, therefore, express your vibratory 
environment as 

(2.216) 
g U' 

rjig+ig 
^(k-mffl2)1 +(«o) 2 

For example, suppose the vibration is due to 3-per-rev rotor loads. Assume a rotor 

speed (say for the Cierva C.30A) of 180 
revolutions per minute, which is 3 revolutions, 
or cycles, per second. Then the 3-per-rev rotor 
vibratory load is oscillating at 9 cycles per 
second or 18Î radians per second. For this 



example then, ÒÓ=18 .̌ 

Now imagine the block you are 
sitting on is really the Cierva C.30A 
Autogiro weighing 1,500 pounds, which is a 
mass (m) of 46.62 slugs. Suppose the rotor 
shaking force is one-tenth of the gross weight 
(i.e., F s = F C =150 pounds), and assume that 
the spring has a spring constant (k) of 43,750 
pounds per foot. For the sake of discussion, 
assume there is no damping (i.e., Ò = 0). Using 
Eq. (2.216) with this information you calculate 
that 

(2.217) 
(lSjt)2

>/l502 + 1502 

Jí43,750-46.62(18ir.)2)3 + (0xl8nf 

6.4348 ft/sec' 
"32.174 ft/sec2 ' 

0.2g. 

Note that resonance occurs in this classic 
dynamics problem when (2.218) 

Í 
(k-mco2)==0 or 



For this example 

43,750 
(2.219) J — = 932»Ó˝=18ˇ . 

46.62 
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The conclusion from this example is that 
you are experiencing a 0.2g vibration at 3 per 
rev, which, by the way, is much worse than a 
"most disturbing annoyance" as Agnew Larsen 
described. In fact, many rotorcraft test pilots 
have returned from their first forward flight of a 
new prototype with much more forceful words, 
such as "intolerable," "totally unacceptable," 
"couldn't read the instruments," "everything is 
a blur," "won't sell," and "we've got one hell 



of a vibration problem." To a chief engineer 
(like Cierva), a test pilot might be less 
restrained. Of course, when seen in print, 
Cierva's words "most irritating" might be very 
appropriate. 

Keep in mind that the pilot is not the 
only one that is unhappy in this example. The 
beam is reacting to the two forces shown in 
Fig. 2-92 . The spring force is the spring 
constant times the displacement (x), and the 
damper force is (c dx/dt). Taken together, the 
beam is providing a reacting force (R) in pounds 
that amounts to 

[‡[k(k-

f‡[k(k 

1 

mû 2 )+(«) 
(Í-meo2) + 

-muí2)-!-(où) 

(*- m<o2) + 

]+Fc[cm<û!] 

(Ò˛)2 

'J-Fjfcmffl1] 

(Ò˛)2 

This reactive force, at some point in time, will reach a maximum, either positive or negative, 

of 



(2.221) R, =± i ^ - i — — . 
\ ( Í - Ú ˛ 2 ) +(Ò˛)2 

Using the parameter values from the preceding example, you will calculate that the reactive 

force is slightly greater than ±500 pounds. This 
vibrating force, at 3 per rev, requires careful 
attention to the structure because significant 
fatigue damage will occur over the life of the 
aircraft. Just consider the fact that 25 years—or 
longer—is not uncommon for a service life. 
Rotorcraft, say on average, fly 500 hours 
a year. This means 12,500 hours will be 
accumulated on the structure over a typical 
service life. With a rotor speed of 180 
revolutions per minute, a 1-hour flight 
accumulates 10,800 cycles per hour at one per 
rev. However, this ±500-pound load is 
occurring at 3 per rev, which means 32,400 
cycles per flight hour are accumulated. After 
25 years, portions of the airframe will have 
accumulated (32,400 times 12,500 equals) 400 
million cycles (i.e., 400 x 106 cycles) and 
each cycle could be at ±500 pounds on the 



1,500-pound-gross-weight Cierva —.«Œ¿. 

4 2 Many rotorcraft structural elements can be designed 
to withstand a million to 10-million cycles, but I, 
personally, do not believe any material is suitable for 
400-million cycles of fatigue loading. It is simply a 
question of how many times can you bend a paperclip 
before it cracks or breaks. 
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2.10.1 C.30 Vibration Background 

The preceding example adapts the 
classic single-degree-of-freedom vibration 
problem to the world of autogyros. In many 
ways, the example is somewhat extreme. 
Consider the more practical vibration problem 
presented in Fig. 2-94 . To keep things 
reasonably simple, I have assumed that the C.30 



three-bladed rotor system only applies a 
vertical vibratory force (Fz), and a fore and aft, 
or longitudinal, vibratory force (Fx) . Both 
forces are in pounds and are applied at the 
rotor hub . Following Fig. 2-23, the vertical 
force acts behind the aircraft center of gravity 
(e.g.), a distance (c) in feet; the longitudinal 
force acts above the e.g., a distance (a) in feet. 
The pilot sits in the aft cockpit in a seat located 
(d) feet behind the e.g. 

The vertical force will not only shake the 
aircraft up and down, but this vibratory force will 
also pitch the aircraft nose up and nose down 
because this force acts behind the aircraft e.g. 
The longimdinal force will shake the aircraft 
fore and aft (which I will ignore) and also pitch 
the aircraft because it acts above the e.g. The 
pilot will feel the combination of vertical 
displacement (Zcg) of the e.g. and angular 
displacement (öcg) about the e.g. Because he 
sits behind the e.g. a distance (d), his vertical 



displacement (Zpiiot) will be 

(2-222) Z p i l o t = Z c g - d ( 0 c g ) 

where a positive vertical displacement is 
upwards, and a positive angular displacement is 
nose up. The pilot will, therefore, feel an 
acceleration of 

d27 d27 d 2 0 
(2.223) ^ L = ^ L - d ^ . 

dt2 dt2 dt2 

Now, think in terms of F = ma, and 
include in your thinking I d29/dt2 = M, 
because there is a rotation. In this case, the 
moment of inertia (I) is the aircraft moment of 
inertia (≤‰Ò) about the center of gravity and is 
in slug-feet squared. Consider Fig . 2-94 for 
the autogyro versus the classic vibration 
problem of Fig. 2-92. First off, there is no 



obvious spring. Any up and down motion of 
the aircraft e.g. will mean that the hub goes 
up and down an equal amount because the 
autogyro structure is, for all intents and 
purposes, "rigid." Therefore, vertical 
displacement will create a vertical velocity and 
vertical acceleration that each blade feels. This 
is also true for pitching motion. 

Similarly, there is no obvious damper 
to include in the autogyro problem. Thus, any 
spring or damper must appear in the rotor 
blade forces and moments behavior. This 
means that any spring or damper is included in 
the vibratory forces acting at the hub (i.e., Fz 
and Fx). With this logic, the linear and angular 
accelerations at the aircraft e.g. become simply 

dt2 m 



, d 2 0 -cF 7 +aF Y 

and - - -dtJ I AC 

Note that in Eq. (2.224), I have assumed the 
vertical force to be positive upwards and that a 
positive longitudinal force is aft. The 
acceleration that the pilot feels is now known in 
terms of the two forces acting at the rotor hub 
because 
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(2.225) 
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dt2 
m 4 

-cFz+a‡,, 1 dc 
— + — 

Ú Î 'AC J 

da_ 

l * A C . 

You can see here that a vertical shaking force 



will amplify the acceleration that the pilot feels 
because the nose-down motion of the aircraft 
will raise the pilot just as the linear vertical 
motion does. At this point, it is not clear 
whether an upward vertical force will be 
accompanied by a longitudinal force in the 
forward or aft direction. With a longitudinal 
force of the right magnitude acting aft, the pilot 
might feel a rocking motion rather than a 
"vertical bounce." 

There is a little more that can be 
deduced about three-bladed autogyro vibration 
before you (and the pioneers) become stymied. 
The step is to assume the vertical and 
longitudinal forces to be 

F, = F74 sin cot + F,r cos cot 
(2.226) 

Fx = Fxs sin cot + Fxc cos cot 

and, therefore, the acceleration at the pilot seat, 



in feet-per-second squared, becomes (2.227) 

d!Z„llM r_^__dr-cFzs + aFx^js i n t a t + r‡Ÿ_dr-cFzc + a: 
ÿÀ— l !‰— )\ |_mAC I JAC 

^pilol 

dt2 
cos tot . 

Let me now repeat the vibration 
calculation. From the approximate geometry, the 
rotor longitudinal force acts 4 feet above the 
e.g., so a = + 4; the vertical force acts 0.5 feet 
behind the e.g., so Ò = + 0.5; and the pilot seat 
is 3.5 feet behind the aircraft e.g., so d = + 3.5. 
The C.30 A second moment of inertia in pitch (I 
will guess) is roughly 1,000 slug-feet squared, 
so IAC - 1,000, and at a gross weight of 1,500 
pounds, the aircraft mass (Ú‰Â) is 46.62 slugs. 
As in the classic problem, assume that the rotor 
hub forces act at 3 per rev, so ÒÓ = 1 8ˇ radians 
per second. With no knowledge about the forces 
at this time, I will assume that 

F Z S =F Z C =150 lbs and F X S = F X C = 1 5 lbs 



which leads to the result that 

(2.228) 
d2Z 

f^ = [3.22-(-0.0525)]sina>t + [3.22-(-0.0525)]coscot 

The pilot will feel a maximum vibratory 

acceleration of (2.229) 

^L = ± 3.282+3.282=±4.64 ft/sec2 =±0.14g . 
I d t 2 I 
◊ ” max 

The crux of the "vertical bounce" 
problem Agnew Larsen referred to lies, of 
course, in predicting the hub forces (and 
moments).43 

4 3 In the Cierva C.30, the flapping hinge, located a the 
0.00788R radial station, permits hub moments to be 
ignored in this discussion. 
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fe 

Fig. 2-94. The C.30 vibration problem. 

2.10.2 C.30 Vibratory Hub Loads 
Consider first the vertical force (Fz) 

acting at the flapping hinge. From Fig. 2-84 
you can see that centrifugal force cannot 
create a vertical force. Therefore, only the 



blade lift elements (dL) and blade inertia 
elements (di) need be considered. Then, the 
vertical force for one blade is simply 
(2.230) 

One blade Fz =/>(÷,)-ƒ>(!„) = ƒ ^ ] d̂ -J V j ( ^ ) ^ 

Since the blade element loads are known to be 
periodic (i.e., harmonic), Eq.(2.230) can be 
rewritten in terms of azimuth with the substitutions w = i l t or — - = i i 2 — - to give 

dt! dV 

(2.231) One blade 
/-R 

Fz = 
dL 

/•R 

À. 
dr| 

d q - K ) Q S dq. 

A solution to the flapwise bending moment 
problem, Eqs. (2.196) through (2.201), 
provides all the information needed to calculate 
the vibratory vertical force at the hub for one 
blade. 
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The discussion of blades, Section 2.9, 
included an example of flapwise bending 
moments calculated with two modern theories. 
One theory is contained in Appendix H; the 
other, more comprehensive theory, is 
embodied in the computer program called 
CAMRAD [109] . The flapwise bending stress 
calculated with the two solution methods led to 
Fig . 2-87 . Those two solutions at Cierva's 
design condition also provide the comparison 
of vibratory, vertical force (Fz) at the hub for one 
blade, which follows: 

Appendix H Fz = 991 - 687 cos \|/ - 322 sin \|/ -
147 cos 2\|/ - 56 sin 2\|/ 

(2.232) -51cos3\|/-5 



sin «Û - 32 cos 4\|/ -17 sin 4\|/ 

- 20 cos 5\|í+5 sin 5\\f - 9 cos 6\\t + \ sin 
6\|/ 

and 

CAMRAD Fz =984-880cos\|/-1260 sin \ j / -
170cos2\|/+214sin2\|/ 

(2.233) -76cos3y-45 
sin 3\\f - 9 cos 4y -12 sin 4\|/ 

- 0 cos 5\|/+14 sin 5\|/+17 cos 6\|/+ 9 sin 
6\|/ 

These two results show just how large the 
difference between predicted vibratory vertical 
hub loads can be. The vertical vibratory load 
amplitudes of the first six harmonics are 
shown in Fig. 2-95 . The amplitudes are 
calculated in the conventional manner as 



(2.234) Amplitude F. =VlL+lâ 

Note that I have used a semilog scale to 
display the amplitudes in Fig. 2-95. An 
extremely rough rule of thumb is that the 
amplitude decreases as the harmonic (n per rev) 
squared. The contrast, when shown graphically 
as in Fig. 2-95, is a clear indication of just how 
difficult a vibration problem the autogyro 
pioneers were facing and how little could be 
learned from theory of the era. 

The vibratory vertical hub load for one 
blade is not the whole story, of course . The 
total hub load for three blades is the answer 
sought. The total vertical force created by three 
blades was discussed earlier in Section 2.8. 
The process of adding the vertical forces from 
three blades together is quite simple. All that is 
required is the assumption that each blade in the 
set has the identical one-blade vertical vibratory 



force description in a Fourier series. This means 
the total three-bladed vertical hub load is 
computed from 

(2.235) Fz =FZBladel(calculatedat\jf) + FZBladel 
(cal.atv + 120o) + FZBladel(cal.atVK + 240o) 

and the very explicit result of the trigonometry 
is 
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(2.236) FZ=3[F0 + FZ3C 

cos 3\|/+FZ3S sin 3\j/+FZ6C 

cos 6\|/+FZ6S sin 6\j/ + etc]. 

Using Appendix H and the CAMRAD 



Fourier series for one blade (Fz Biade 1) from 
Eqs. (2.232) and (2.233), the immediate results 
for the Appendix H solution are 

(2.237) 

AppendixH Fz = 3[991-51cos3\|/-5sin3i|i-9cos6i|r+lsin6>r'] 

= 2,973 -153 cos «Û -15 sin 3\|/ - 27 cos 6\|/ + 3 sin ·Û 

and similarly, for the CAMRAD solution 

(2.238) CAMRAD Fz = 2,952-
228 cos 3\j/ -135 sin 3\|/+51 cos 6y+27 sin 6\\f. 

It is customary when conveying 
vibratory forces and moments to remove the 
steady force (the zero harmonic, F 0 in this 
example) from the final results. Therefore, in 
Fig. 2-96 you see a comparison of the two 
modem-theory views about the vertical 



vibratory hub load for the 
1,500-pound-gross-weight C.30 Autogiro at an 
advance ratio of 0.5 during a 2-g pull-up. 

With this background in hand, let me 
proceed to a more practical example. I say more 
practical because vibration during a 2-g 
pull-out at an advance ratio of 0.5 (i.e., the 
extreme flight condition Cierva chose for 
stressing the rotor system) can be expected 
to exceed vibration in cruise flight. Therefore, 
consider the cruise situation where the flight 
speed is 110 miles per hour, and the rotor speed 
is 200 revolutions per minute. Assume the 
C.30A is at a gross weight of 1,500 pounds. For 
this example, CAMRAD II [109], a most 
modem theory, is far superior to the calculator 
provided in Appendix H. Therefore, CAMRAD 
II is the source of the calculated vibratory forces 
(Fz and Fx) shown in Fig. 2-94, tabulated by 
harmonic in Table 2-13, and required by Eq. 
(2.225), which is repeated here for convenience 



(2.225) 

dXn,,, E pilot *2 

dt2 -d 
, -cF z + aF x l_ F [ 1 | dc^ 

^AC ) 4.mAC ^AC J -(f 
V ^ A C , 

where, again for the Cierva C.30A autogyro, the 
rotor longitudinal force (Fx) acts 4 feet above the 
e.g., so a = + 4; The vertical force (Fz) acts 0.5 
feet behind the e.g., so Ò = + 0.5; and the pilot 
seat is 3.5 feet behind the aircraft e.g., so d = + 
3.5 .The C.30A second moment of inertia in 
pitch is roughly 1,000 slug-feet squared, so 
IAC = 1,000, and at a gross weight of 1,500 
pounds, the aircraft mass (mAc) is 46.62 slugs. 
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Fig. 2-95. The vertical vibratory force of one 
blade in a three-bladed rotor system. 
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Table 2-13. Vibratory Hub Loads for the 



C.30A in Cruise as Predicted by CAMRAD II 

Harmonic 
Mean 

Cos3\|/ 
Sin3y 
Cos6\|/ 
Sin6y 
Cos9y 
Sin9v|* 

F z (pounds) 

1,500 
-58 
-18 
-16 
-2 
-1 
+1 

F x (pounds) 

81 
-4 

+14 
-3 
-3 
+2 
-2 

The calculation of vertical vibration at 
the pilot seat (d2ZPiiot/dt2) is now, of course, 
quite straightforward. The "vertical bounce," 
as Larsen described it, is quantified with Fig. 
2-97 . Vibration at the pilot seat is about 
±0.05 g's in cruise flight, which is close to 
imperceptible, but during the pull-out at high 
speed, the pilot could easily experience ±0.13 to 
±0.14 g's. At this vibration level, pilots today 
would definitely express dissatisfaction in no 
uncertain terms. 
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Fig. 2-97. Estimated C.30A vertical vibration 
at the pilot seat. 
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This simple introduction to vibration 
created by n per rev (n being 3, 6, and 9 in this 



C.30A example) has only scratched the surface 
of the most vexing rotorcraft problem. The 
rotor system can produce moments and other 
forces that shake the machine, and the fuselage 
will respond with bending over and above 
rigid body deflections. Engines and propellers 
simply add to the vibration problem. Vibration 
caused by airflow interaction between the rotor 
and the airframe can be the most vexing of them 
all. 

2.10.3 C.30 Once-per-Revolution 
Vibration 

There is a second potential vibration 
source that needs to be discussed. This is the 
likelihood of a once-per-revolution 
vibration. A primary source of this 
vibration is mismatched blades. You will recall 
in the discussion about blades, Section 2.9, 
Sanders and Rawson wrote in The Book of the — 
19 Autogiro [50] that 



"Each blade is balanced to a standard weight so 
that all blades of the same type are interchangeable, 
provision being made for correcting weight at the outer 
end of the main spar." 

This balancing only deals with the 
requirement met when balancing, for 
example, an automobile tire . It does not 
address blade mismatching due to blade 
element airfoil differences or blades of 
different twist. Despite tight tolerances called 
out on an engineering drawing, it is unrealistic 
to expect that manufacturing, even with the 
most skillful craftsmen, will produce 
"interchangeable" blades . Furthermore, there 
is little guarantee that a set of blades will 
remain identical over any extended period of 
service. Blades of the autogyro era absorbed 
moisture and warped, and frequent rebalancing 
was often required. 

To appreciate this point about 1-per-rev 



vibration, consider three blades having, for 
some reason, different vertical force harmonics. 
That is, assume 

Fz, = F
0 + ( F i s + A F 1 i s ) s i n ¥ + ( ∆ c + A F 1 i c ) c o s V 

(2.239) FZ 2=F0+(Fl s+AF2l s)sinx|/ + (Fl c 

+ AF2lc)cos\|/. 

Fz3=Fo+(F,s + AF3ls)sinxl/+(Flc 

+ AF3lc)cos\|/ 

In Eq. (2.239), the incremental forces (AFI, 
AF2, and AF3) represent differences of each 
blade from some master blade. An engineering 
drawing or, more likely, some average blade 
from the collection of blades produced by 
manufacturing could define this master blade. 
Now the vertical force sum of the three blades is 



Fz=3F0+(Fl s+AFl l s )s in¥ l+(Fl c 

+ AFl,c)cos\|'| 

(2.240) + (F1S + AF21S ) sin (˘ +120) 
+ (Flc+AF2lc)cos(¥ l+120) 

+ (Fls+AF3ls)sin(x|/1 + 240) + (F1 

+ AF3lc)cos(y,+240) 
1— 

which, with some trigonometry, becomes 
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(2.241) 

AFl , s - i (AF2 l 5 +AF3 l s )-^(AF2 l c -AF3, c ) s in V l 

AFl,c-i(AF2,c + AF3, c )+^(AF2, s -AF3 l s ) cosy, 



Notice immediately that there will be, in the 
practical world, a once-per-revolution vibration 
for any combination of incremental forces 
other than the perfect case where all 
incremental forces equal zero. The only 
practical questions are what the level of 
1-per-rev vibration will be, and will the pilot 
notice it? 

A very real example of unmatched 
blades is seen when the blades have 
unmatched twist. Cierva was quite satisfied with 
the performance of zero twisted blades, but I 
believe that autogyro era blades would have 
been lucky to match twist to within plus or 
minus one degree about zero . However, no 
quantitative data appears to exist. To correct 
the behavior of each blade in an unmatched 
set—at least during a ground run-up—the 
autogyro pioneers developed a tracking 
procedure. This procedure consisted of 



chalking the tips of each blade in the set. Each 
blade tip was chalked a different color. The 
rotor was run up and a ground engineer would 
let the blade tips touch a strip of cloth 
stretched along a tall pole (Fig. 2-98). The 
ground engineer allowed the blade tips to just 
"kiss" the cloth so that a colored chalk mark 
was made. He could then tell if all blades 
were tracking in the same plane. If, say, the 
blue blade was tracking high relative to the 
green and red blades, the autogyro would be 
shut down, and the root-end pitch of the blue 
blade would be adjusted to a lower pitch 
setting. When all blade chalk marks were 
superimposed, the effects of all sources of 
blade 
mismatching were deemed removed. Tracking 
and balancing a set of blades could be a lengthy 
process, although the art was improved with 
experience over time. 

The premise of on-ground tracking is that 



if the tip displacement (a measure of blade 
coning angle) is equal for each blade in an 
unmatched set, then that is good enough. 
Unfortunately, the premise does not hold once 
forward flight is begun. The adverse effect of 
unmatched twist becomes more pronounced as 
forward speed is increased. To see this, consider 
the basic equations associated with the tracking 
procedure. 



Pole moved 
slowly forward 

_ ' ! — ) / \ J-— > 

Blade tracking flag 

Rotor blade 

Elastic cord 

À '//77// 

Fig. 2-98. Blade tracking flag [23]. 
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To begin with, imagine three Cierva 
C.30A blades perfectly balanced but differing 
in twist. Each blade should have zero twist, but, 
unfortunately, blade 1 has a 1-degree washout 
(i.e., the tip pitch angle is nose up 1 degree 
relative to the root reference pitch angle). Blade 
2 has 0.5 degrees of washout, and blade 3 has 
1 degree of wash in. Assume the deviation of 
twist from zero increases linearly from the 
blade root to the tip. To analyze this situation, 
the fundamental blade feathering equation, Eq. 
(2.73), must now be generalized to include a 
radial variation of pitch angle, so that 

(2.242) ı >¥ = 0 +ı , - B 1 C sin\|/-Alc cosy. 

Relative to this blade pitch equation, blade 1 
twist ( ˆ) is + 1.0 degrees, blade 2 twist ( („) is 
+ 0.5 degrees, and blade 3 twist ( Ó) is -1.0 
degrees. Remember that (x = r/R). 



Now, following Wheatley [75], the coning angle 
(ßo) is approximated as 

(2.243) 

H j \ p + ̂ M 1 + ^ U + J 'Í *+ f^P √f^PBi< 

The previous longitudinal flapping angle 
expression [see Eq. (2.76)] must also include 
the effect of twist, but the lateral flapping angle 
[see Eq. (2.77)] remains unchanged, so that now 

(2.244) aI5 

and 

2ŸÀ, +-»„ƒ +2„◊,¿ - 1+-|£ B1C 
12„‚ 

Û{*-˜) 

≥-^Í 



-5 M-hpHo 
12rß 

_Y( R " r ß) . 

1 + ï A 

a i s 

(2.245) b l s = ÷* ^ ^ + A 
ic • 

where all angles are in radians. 

Next, assuming the blades are infinitely 
rigid, the tip deflection (Zt) during a tracking 
ground run-up is simply 

(2.246) Z t =Rß 0 . 

Because each C.30A blade has a slightly 
different twist, the coning angle of each blade 
will be slightly different in turn. The 
assumptions here are, of course, that each 
blade is installed at the same root collective 
pitch ( 0) and that the average inflow ratio 
(X,hp) is applicable to all blades. Of course, 
advance ratio (jihp) is zero because the autogyro 



is on the ground, and there is little, if any, wind. 
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Because, in this example, each blade has 
a twist error relative to the master blade, each 
blade will have a deviation in coning angle and 
blade tip deflection with the 222-inch radius (R) 
C.30A blades. From Table 2-6, the C.30A 
blade Lock number (y) is 10.06. The situation 
facing the ground engineer is tabulated as 

Deviation 
Twist (deg) 
Coning (deg) 
Longitudinal Flapping (deg) 
Lateral Flapping (deg) 
Tip Deflection (in.) 

Master 
0 
0 
0 
0 
0 

Blade 1 
+ 1.0 
+ 1.0 

0 
0 

3.87 high 

Blade 2 
+ 0.5 
+ 0.5 

0 
0 

1.94 high 

Blade 3 
-1.0 
-1.0 

0 
0 

-3.87 low 

This is an excessive out-of-track situation. 
The ground engineer must adjust the root 



collective pitch of each blade to correct the tip 
deflection caused by the twist deviation. If the 
relative coning angle is brought to zero on the 
ground (i.e., |ihp = 0), that means (2.247) 

so that the required ¿ 0 = — ( , deviation). 

The ground engineer would make the root-end 
collective pitch change, do another tracking run 
(or more), and then the pilot could takeoff and 
check 1-per-rev vibration in flight. The rotor 
system as flown would then have the blade 
settings of 

Deviation 
Twist (deg) 
Collective Adjustment (deg) 
Master Collective (deg) 
Flight Collective (deg) 

Master 
0 
0 
4.25 
4.25 

Blade 1 
+ 1.0 
-1.25 
+ 4.25 
+ 3.0 

Blade 2 
+ 0.5 
-0.5 
+ 4.25 
+ 3.75 

Blade 3 
-1.0 
+ 1.25 
+ 4.25 
+ 5.5 



Now calculate, according to Eqs. 
(2.243), (2.244), and (2.245), the flapping 
angles in forward flight, say at an advance ratio 
(Ã-hp) of 0.35 with an inflow ratio (’,Ô) of + 
0.02 . The results for each blade, provided in 
Table 2-14, are 

Table 2-14. Flapping Differences Due to 
Mismatched Blade Twist 

Parameter 
Twist (deli) 
Flight Collective (déni 
Ground Coning 
Advance Ratio 
Inflow Ratio 
Longitudinal Flapping (deg) 
Lateral Flapping (deg) 
Flight Coning (deg) 
Tip Deflection al 180-dcg azimuth (in.) 
Tip Path Plane Split at 180-dcg azimuth (in.) 

Master 
0 

4.25 
0 

0.35 
0.02 
5.08 
3.48 
7.92 

50.37 
0 

Blade 1 
+ 1.0 
+ 5.0 

0 
0.35 
0.02 
4.5Ï 
3,19 
7.26 

45.S7 
-4.50 

Blade 2 
+ 0.5 

+ 5.75 
0 

0.35 
0.02 
4.96 
3.42 
7.77 

45.32 
- 1.05 

Blade 3 
-1.0 
+ 7.5 

0 
0.35 
0.02 
5.58 
3.77 
8.58 

54.86 
+ 4.49 
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The results in Table 2-14 show that the three 
blades are no longer tracking in forward flight. 
The pilot would, in fact, readily see three 
distinct rotor tip planes when looking forward 
(i.e., the 180-deg azimuth position). However, it 
is not at all clear how much 1-per-rev vibration 
he would feel. 

The amount of 1-per-rev vibration due 
only to the vertical force (Fz) from one blade is 
found by solving 

, Î Î . Ó ˜ O n e blade 
(2.248) 

/•R 

Fz = 
'dL-À 

/•R 

n.v 
dq J 

d q - €"2 
(⁄2⁄ > 

. W . 

dq 

= Fzo + F z i s s i n ¥ + FZ1C cos \|/+etc. 
which, upon integration following Wheatley 



[75], gives the 1-per-rev forces (FZiS and FZ]C) 

in pounds as 

(2.249) 
pacRV.2r , . 2 . If. 3 . 1 If, 9 i i „ 1 ™̧  ,2. Fzis = 2 ' „◊/¸+ƒ^Â .+^‚ ,-- ! !-- ! ! ; , ,Ja B -- l l+-uMB 1 ( . ^-4>Ë 

_ pacRV,2 

r z i c T ({
1+|^](‹«-¿1—)-|Ë¸¬1( -, I i • ."√ -2i . •_ '' ≥̂ ' "≤√. I'- í-fc IS 

These equations are applied to each blade. 
The results, calculated using the C.30A as an 
example, are shown in Table 2-15 . The 
C.30A is assumed to be cruising at sea 
level (p = 0.002378 slug/ft3) at 1 10 miles per 
hour with a rotor speed of 200 revolutions per 
minute. The airfoil lift-curve slope (a) is 5.73 
per radian, and the blade running mass (Ú¸) 
from Table 2-6 is 0.06888 slugs per foot. 
Remember that the C.30A was a direct 
control rotor system, so both longitudinal and 
lateral cyclic angles are zero (i.e., Bic and AJC = 



0). 

Table 2-15. Vertical 1-per-rev 
Vibration Due to Mismatched Blade Twist 

Parameter 
Twist ( , in dcg) 
Flight Collective ( <, in deg) 
Longitudinal Cyclic (BIC in deg) 
Lateral Cyclic (A 1— in deg) 
Advance Ratio ( Uilp) 
inflow Ratio (fļ ) 
Longitudinal Flapping (a,s in deg) 
Lateral Flapping (b|S in deg) 
Coning (ßa in deg) 
Vellicai Force Sine (F71S 'w lbs) 
Vertical Force Cosine (FZK in lbs) 
Deviation Force Sine (AFi5 in lbs) 
Deviation Force Cosine (AF!C in lbs) 

Master 
0 

4.25 
0 
0 

0.35 
0.02 
5.08 
3.48 
7.92 

-208.1 
^194.3 

0 
0 

Blade 1 
+1.0 
+5.0 

0 
0 

0.35 
0.02 
4.58 
3.19 
7.26 

-198.3 
^146.4 
-16.25 
+2.97 

Blade 2 
+0.5 
+5.75 

0 
0 

0.35 
0.02 
4.96 
3.42 
7.77 

-208.3 
-182.4 
-6.27 
+0.69 

Blade 3 
-1.0 
+7.5 

0 
0 

0.35 
0.02 
5.58 
3.77 
8.58 

-217.9 
-542.1 
+16.25 
-2.97 
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With the sine and cosine components 
of the deviation forces (AFI is through AF3ic) 
in-hand from the last two rows of Table 2-15, 



and following Eq. (2.241), the 1-per-rev vertical 
vibratory force is 
(2.250) Fz =3F0 +[-36.9] sin Ÿ 
+ [+74.0] cos \|/j. 
This is the vertical vibratory 1-per-rev force 
that is transmitted from the rotor hub to the 
autogyro . The magnitude of the pilot seat 
vibration (in feet-per-second squared) is found 
from Eq. (2.227). The C.30A geometry is, again, 
a = + 4 feet, Ò = + 0.5 feet, d = + 3.5 feet, IAc 
= 1,000 slug-feet squared, and mAc = 46.62 
slugs . I have only considered the vertical 
vibratory force (Fz), so the horizontal vibratory 
force (Fx) is taken as zero. The net results are 
that 
(2.251) 
c\27 

f^ = [-0.86] sin fít + [+1.72] cos Qt 
dt 

Note here that the frequency of the vibration 
(ÒÓ) is once per rev, which means the frequency 



equals rotor speed (Ci) in radians per second. 
Finally, the maximum amplitude of the 
1-per-rev vibration that the pilot feels is then 
simply 
(2.252) 

^ - ^ = ±^(-0.8·)2+(1.72)2 =±1.92 

ft/sec2 = ±0.06g. 

This is a quite unacceptable level of 1/rev 

vibration by today's standards. 

This illustration (using the simplest of 

theory) of how once-per-rev vibration due to 

mismatched blades comes about is, 

unfortunately, quite optimistic. A comparable 

calculation using modem advance methodology 

such as the Johnson CAMRAD II [109] gives 

(2.253) Fz =3F0+[+48.3]siny, 



+ [+127.3] cos ˘. 
The magnitude of the pilot seat vibration (in 

feet-per-second squared) is again found from 
Eq. (2.227) with the result that 
(2.254) 
j 2 rj 

f^ = [+1.12] sin Qt + [+2.95] cos Qt 
dt 

Finally, the maximum amplitude of the 1-per-rev 

vibration that the pilot feels is then simply 

(2.255) 

^ f ^ = ±^/(+1.12)2+(2.95)2 =±3.16 

ft/sec2=±0.098g. 

This 1 -per-rev vibration level based on hub 
vibratory loads predicted with an up-to-date 
comprehensive theory is, of course, totally 
unacceptable. Rotorcraft industry today 



demands considerably tighter tolerances relative 
to blade mismatching, with a considerable 
increase in manufacturing costs. 
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2.10.4 Closing Remarks 

This introductory discussion of 
vibration barely touches the surface of what 
Cierva described as the "most irritating of 
the secondary difficulties" and Larsen 
classified as "vertical bouncing." As you will 
learn in Volume II—Helicopters, the rotorcraft 
industry has continually battled this problem 
with each new machine it has developed. 
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2.11 PERFORMANCE 

The subject of aircraft performance 
is a very dear topic to those engaged in 
aeronautics . Cierva, with his invention and 
demonstration of the autogyro, simply added a 
whole new branch to the subject. His efforts 
in expanding the branch while "selling" his 
aircraft and its performance are easily traced 
using the three papers he presented to the Royal 
Aeronautical Society and the discussions that 
followed his presentations [3-5] . The three 
papers were presented in 5-year intervals and 
form, when supplemented with some equations 
and figures, a very interesting view of 
autogyro performance (and safety) versus 
what airplanes of the era offered. The views 
expressed by both supporters and critics make 
the birth of the rotorcraft industry a fascinating 
technology story.44 



2.11.1 Descent and Landing 

Cierva presented his first paper before 
the Royal Aeronautical Society in October 
1925. It was published, along with audience 
discussion, in the January 1926 issue of the 
Society's Journal [3]. Cierva's paper, you will 
recall, followed the demonstration of his Model 
C.6A (shown in Fig. 2-99) at Famborough, 
England, which many in the audience had 
seen. Cierva made it clear in the first three 
paragraphs of his paper that the autogyro was 
developed to solve the one shortcoming of the 
airplane—stalling at low speed. He notes that 
he and his brother, during 1 91 1 glider 
experiments, "had some rather dangerous falls 
due to loss of flying speed, the most prolific 
cause of accidents to aeroplanes in their present 
form." Cierva continued, saying, 

"In 1918 1 had constructed a large biplane with three 
engines which, after most satisfactory trial flights, was 



wrecked precisely by losing flying speed. The 
accident diverted all my energies to the solution of the 
problem of eliminating this danger; for the possibility of 
losing flying speed and the uncertainties of landing are, 
in fact, the only faults with which we can reproach the 
aeroplane, which otherwise is practically perfect in 
point of speed and manoeuvrability." 

From Cierva's point of view, his aircraft was 
created to improve aviation safety. 

The first questions asked of Cierva 
at the conclusion of the paper came from 
Mr. C. N. H. Lock (who, along with Glauert and 
Wheatley, laid the technology foundation for 
rotorcraft). Lock, after begirming with several 
complimentary remarks, posed five very direct 
questions, asking, 

"First of all are there any conditions which may 
occur in flight which might stop the windmill from 
rotating? Secondly might there possibility be a 
danger of the rotating wings stopping if the machine 
dived very rapidly at a high speed and then checked 
itself by raising the elevators as in an ordinary aeroplane 



when diving and flattening out? Thirdly, what would be 
the actual velocity of descent in a very steep glide? 
Fourthly, would it be possible for the machine to descend 
absolutely vertically at a safe speed apart from 
considerations of stability? 

44 In October 1925, Cierva spoke very little English, and 
his paper was read to the Society by the Chairman, Sir 
Sefton Brancker. Throughout this first paper, Cierva's 
machine is referred to as an autogyro or Autogyro. In the 
second and third papers, the spelling became autogiro and, 
occasionally, Autogiro. 
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Fig. 2-99. The Cierva Model C.6A as 
demonstrated at Famborough, England 

in October 1925 [7]. 

It was the fifth question that Lock 
asked which raised considerable speculation 
and various opinions about the landing 
performance of the autogyro. Lock asked Cierva 



"whether he anticipated that the resistance of the 
Autogyro, in falling vertically, would be very much 
greater than that of a parachute of area equal to the disc 
area of the Autogyro, since a simple calculation indicates 
that a parachute having the same area and loading as the 
Autogyro would fall at a velocity of between 30 and 40 
feet per second." 

Cierva, responding to Lock, said that "in 
vertical descent the speed was about 3 to 4 
meters per second (about 9.8 to 13 feet per 
second); the disc being nearly perpendicular 
to the vertical path." Cierva also added that "the 
landing speed with descent at 30° was about 4 
m./s.[13 feet per second] horizontal, 2 m./s. 
[6.6 feet per second] vertical; the disc being 
nearly 

212 

2.11 PERFORMANCE 



horizontal and therefore about 30° to the flight 
path." Furthermore, Cierva, "in answer to the 
general queries as to area, rotational speed and 
loading of windmill blades, by nearly every 
speaker," gave the following data for the Model 
C. 6A, 

"Blade area = 5.5 x 0.75 x 4 = 16.5 m.2 

Total mass 900 kg. 
Blades 40 x 4 = 160 kg. 
Loading = 900/16.5 = 54.5 kg. /m.2 

Available power 90 h.p." 

In English units, the four blades had a 
diameter (D) of 36.09 feet and blade chord (c) 
was 29.53 inches. The rotor solidity (a) was 
0. 1736. The flight weight (GW) was 1,980 
pounds, and each blade weighed 88.2 pounds. 
The disc area (A = 7iR2) was 1,023 square feet, 
making the disc loading (GW/A) 1.94 pounds 
per square foot. Cierva further noted that "the 



angular velocity remains about constant at 
about 130 r.p.m." This is a tip speed (Vt) of 
245 feet per second. 

The fact that Lock chose to compare 
the autogyro vertical descent performance to a 
parachute is, of course, not surprising. After 
all, the parachute was the only aerodynamic 
device the aeronautical world had in 1925 that 
descended in the manner many in the audience 
had seen demonstrated by the — 6 A. 
Parachutes of the day achieved a measured 
drag coefficient (CD = D/qS) on the order of 1.2, 
to perhaps 1.4,45 which leads to a descent 
velocity (R/D) equation of 

(2.256) R / D = 1-^L. 

A parachute, having an inflated diameter of 
36.09 feet (equal to the C.6A rotor diameter, so 



S = 1,023 square feet) with a drag coefficient 
(CD) of 1.2 and carrying a weight of 1,980 
pounds, has a rate of descent of 36.8 feet per 
second at sea level where the air density (p) is 
0.002378 slugs per cubic foot. Lock said, "a 
parachute having the same area and loading as 
the [C.6A] Autogyro would fall at a velocity 
of between 30 and 40 feet per second." The 
fifth question Lock asked in regards to the first 
Cierva paper [4] inferred that the C.6 A actual 
rate of descent of 10 to 13 feet per 
second—which few in the audience would 
debate having seen the flight 
demonstrations—meant that the C.6A rotor had 
a drag coefficient of 9.6 to 16.3! 

When Lock asked his fifth question he 
had experimental data for vertically descending 
model rotors in hand. This data came from 
France [117], the United States [118], and his 
own tests in England [119]. (Lock had completed 
his work prior to the Cierva demonstration 



of the C.6A, but his formal report came later.) 
These data generally confirmed that a rotor 
would descend at about the same speed as a 
parachute of equal diameter, carrying the same 
load. Just as importantly, the descending rotor 
did not follow the Glauert theory for an 
airplane propeller, which acted in a "normal 
state." This early work [11 7-120] (as the titles 
state) was aimed not at an autogyro, but rather 
at the helicopter and specifically at the vertical 
descent 

45 The drag coefficient of a parachute is rather 
dependent on the porosity of the material as pointed 
out by Hoerner [116]. 
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performance of the helicopter following loss 
of power. What this meant to the rotorcraft 



pioneers of the era was that autorotating rotor 
thrust in vertical descent (rxhP = 90 degrees) 
would be calculated as 

(2.257) Th p=ip(R/D)2(rcR2)CD 

and that Glauert's suggestion for the 
rotor-induced velocity [Eq. (2.38) repeated 
her for convenience] 
(2.258) 

v = hp
 2 

2p ( n R2 ) ̂ ( VFP sin ahp - v)2 + ( VFP cos ahp )2 

had serious limitations when the hub plane 
angle of attack (ahp) was positive, and the 
flight path velocity (VFP) was of certain 
magnitudes. 

Before completing the discussion of 



vertical descent, it is worth taking a moment 
to examine Glauert's suggestion [Eq. (2.258)]. 
Glauert's equation is a quartic in induced 
velocity (v) and therefore has four roots, not all 
roots being meaningful. The quartic is 

(2.259) |v^VppSino,, - v ) 2 +(VFP cosah p ) \ 
2p(;tR 2 ) 

f i ") 

{(Í >)} 

which expands to 

(2.260) v4 - (2VFP sin ochp ) v3 + (V¿ ) v2 - (vh )4 

= 0. 
√~„ 

i is generalized by defining v, - —;—2—- as the reference velocity and then 

dividing through by this reference velocity 

raised to the fourth power. The result is a 

quartic of the form 

(2.261) 



4 

2 ^ s i n a h l l 
Uh y 

3 

+ f v ^ 
V pp 

l V h J Uh> 

2 

and the solution to this quartic for the most 
applicable root for autogyros (and helicopters) 
is given in Appendix I and seen visually in Fig. 
2-100. 

Now consider the autorotating rotor 
in the general sense. The autorotating rotor 
operates with no shaft power input. Therefore, 
from Eq. (2.60), you can write 
(2.262) 

. . pijiR^V.'eC 
PowerS0 = V-(T h | ) s ina h p + HhI>cosahl>)vFI,+-i Ÿ J — t f u ^ ) . 
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Fig. 2-100. The Glauert theory to calculate 
induced velocity. 

In vertical descent, the hub plane angle of 
attack (ahp) is 90 degrees, the hub plane 
advance ratio (\≥˙–) is zero, and the flight path 
velocity (VFP) becomes a rate of descent (R/D), 



in which case Eq. (2.262) reduces to 

(2.263) 

Power s 0 = Thpv - (Thp ) VFP + - i '-

and the rate of descent is calculated as (2.264) 

p(7tR2)Vt

3oCd0 
V F P =R/D = v + ^ '— - . 

8Thp 

The second term in Eq. (2.264), the profile 

power per pound of thrust (a velocity), can be 

partially evaluated based on the dimensions 

Cierva quoted. That is 
 ( ^ ) ,5Ó—‰, (0,002378}(1,023)(245)3(0.1736) ,„ >_,„, ,„ , 

8T„, " 8(1,980) 1«-*J-*«14J. 
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As you can see, the rate of descent required to 
just overcome the blade drag depends on the 
airfoil drag coefficient (Cdo), which, as a 
minimum, is on the order of 0.011.46 On this 
basis, no less than 4 feet per second of 
descent velocity is required to maintain rotor 
speed at 130 revolutions per minute during 
steady-state vertical descent with the rotor 
providing 1,980 pounds of thrust, as in the case 
of the Cierva C.6A. 

The descent rate must also provide 
energy to create rotor thrust. In the ideal case 
of zero airfoil drag (i.e., Cdo = 0), the rate of 
descent required is simply Vpp = R/D = v. This 
is where the Glauert theory fails. A quick look at 
Eq. (2.261) shows that if VFP = v and hub plane 
angle of attack is 90 degrees, the quartic returns 
- 1 = 0 , and no solution exists. To overcome this 



situation, Lock and others turned to 
experiment and empirical methods to obtain 
the autogyro induced velocity in vertical descent. 
The parallel to a parachute was the beginning. 

When an autorotating rotor is in steady 
vertical descent, little, if any, net flow goes 
through the rotor disc just as in a parachute. 
That is, the rotor vertical descent velocity is 
directly opposed by the mean induced 
velocity (i.e., V F P -v = 0 ) . Accepting this 
approximation means that the rate of descent, 
following Eq. (2.256) and assuming a parachute 
drag coefficient (CD) of 1.2, is calculated as 

(2.265) 

V =R/D= ¡∆ = 129\∆1 



and the induced velocity (v) is approximated 
from Eq. (2.264) as 

p(7tR2)Vt
3aCd0 

(2.266) v = R / D - ^ '— -
8 T h p 

Using the Cierva C.6A data, the rate of descent 
is 36.8 feet per second, 4 feet per second of 
which is used to turn the rotor against its own 
drag. Thus, the mean induced velocity (v) is 
about 32.8 feet per second. 

This derived point can be placed on the 
Glauert induced velocity graph, Fig. 2-100, by 
calculating the reference velocity (vh), so that 

(2.267) 



V2p(7tR2) \ 2 (0.002378) (1,023) 

and it follows that 

46 Lock, in a very thorough manner, tested the Cierva 
C.6A rotor blade airfoil. The experimental aerodynamic 
properties of this airfoil, the Göttingen 429, were 
reported [121] in November 1926. The testing covered 
the Reynolds number range from 64,000 to 960,000 
using 4-inch and 1 8-inch chord models. The full-scale 
C.6A rotor blade had a chord of 29.53 inches. At a tip 
speed of 245 feet per second, the Reynolds number of 
the tip airfoil is on the order of 3,855,000. 
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(2.268) J L = ^ i = 1.64 
vh 20 

at Ÿ . 3 M 
vh 20 

This point is shown in Fig. 2-101 as the large, 
solid black circle. 

The Cierva C.6A demonstration—of 
what many though was vertical descent at a 
rate slower than a parachute—provided a 
research challenge to Glauert and Lock. They, 
along with Bateman, Townend, Caygill, and 
Nutt, immediately began an experimental 
program [119-124] in search of explanations for 
the difference between the descent rates Cierva 
quoted and model results. By the end of 1926, 
Caygill and Nutt [124], based on drop tests 
of 2.2-foot- diameter and 10-foot-diameter 



models, drew the conclusion that "no evidence 
has been found of the very high value [of 
equivalent parachute drag coefficient] 
indicated by the full scale [C.6A] demonstration 
flights." Caygill and Nutt also wrote that "no 
further dropping tests are proposed. Further 
wind tunnel tests are being made by the 
National Physical Laboratory, and further full 
scale tests will be made by the Royal 
Aircraft Establishment." In short, truly vertical 
autorotation testing with models consistently 
led to a parachute-like drag coefficient of 1.2, 
No theoretical or experimental explanation was 
found for the vertical descent rates that Cierva 
quoted, and the researchers wanted more flight 
test data and more wind tunnel tests. 

Model rotor testing in vertical descent 
did not end in 1926. In fact, it was not until 
1951, when Castles and Gray at Georgia Tech 
in the U.S.A. provided definitive wind tunnel 
test results [125], that the researchers could, 



with some confidence, empirically describe 
rotor performance in vertical descent. They 
followed the Lock experimental approach [1 
19], but only a portion of the Glauert analysis 
approach [122]. Castles' and Gray's models 
were powered and their tests were conducted 
in an open-throat wind tunnel, a much 
closer approximation to free-air testing than the 
closed-throat wind tunnel Lock used. The 
Castles and Gray models were powered (as were 
Lock's) because their tests encompassed 
helicopters descending at partial power. 
Fortunately, they investigated autorotation and 
extended their investigation into the windmill 
regime where a rotor absorbs energy from the 
wind. 

Castles and Gray, with very careful 
measurements of key parameters, were able to 
establish an experimentally defined trend for the 
induced velocity ratio (v/vh) as a function of the 
flight path velocity ratio (VFP/ ¸ ) for the 



90-degree hub plane angle of attack (ÓÒ̧ )- “Ó 
obtain this trend, they used the Glauert [122] 
simple blade element momentum theory for 
thrust, a refinement to Eq. (2.49), to solve for 
induced velocity. That is, they let 

(2.269) 

where the refinement was to account for the 
actual blade length. The airfoil portion of most 
blades was not apparent until some distance 
out from the centerline of rotation. This radial 
distance was called the root cutout radius (rc = 
xcR). 

Glauert, and Castles and Gray, solved 
Eq. (2.269) for inflow ratio (XhP) with the 
advance ratio (p-hp) set to zero (i.e., vertical 
descent), so that 

Cp _ J>¡ _ a 
CT ~ pbcRV2 ~ 2 
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V -v 5 - H N ) 

and the induced velocity ratioed to tip speed (Vt) is then defined as 

(2.271) ^ = ^ - K -
v t v t 

At this point, the analysis by Castles and Gray 
departed from the Glauert and Lock approach of 
1925.47 From the measured rotor thrust, Castles 
and Gray calculated the reference velocity ( )̧ 
and its ratio to tip speed (Vt) as 

(2.272) 



ZL = J _ I “‹ = I “¸ = E 
Vt Vt^2p(7rR2) ^2p(nR2)Vt

2 V 2 

and this leads directly to the nondimensional 
form of 

(2.273) — = ^ E L — 7 = ^ = . 
vh vh ^ — Ú / 2 

This approach to solving backwards 
for induced velocity was successful because 
(1) the collective pitch ( 0) for the untwisted, 
rectangular blades was accurately measured; (2) 
the test conditions of wind tunnel speed 
(VFP), tip speed (Vt), and density (p) were 
controlled in the open-throat wind tunnel; and 
(3) thrust and torque were accurately recorded 
from a balance . Blades for the Castle and 
Gray models were built with the NACA 0015 
airfoil, and airfoil test results gave the 



lift-curve slope (a) as 5.73 per radian. The 
results of data reduction from the Castles and 
Gray 4- and 6-foot-diameter models (NACA 
TN 2474) are shown with the open-circle points 
in Fig. 2-101. 

Based on the empirical results shown 
in Fig. 2-101, two equations are needed to 
estimate vertical descending rotor performance. 
These two equations allow power required to be 
calculated over a very large range in the flight 
path velocity (i.e., rate of descent). Using 

Eq. (2.263) as a basis, when 0 < ̂  < 1.5 
vh 

47 Glauert and Lock, in an effort to adapt their 
propeller theory of the era to vertically descending 
rotors, introduced two empirical parameters, (1/f) and 
(1/F) that, politely said, were really confusing, at least to 
me. In 1947 [126] Lock tried to clarify their early work, 
but many rotorcraft engineers had come to the conclusion 
that their experiments and analysis from 1925 were 
inadequate or, more probably, just plain wrong. Their 
primary experiment, R&M 1014, was with a two-bladed, 
3-foot-diameter rotor in a 7- by 7-foot, closed-throat 



wind tunnel. This was too much rotor for such a small 
tunnel, and no reliable tunnel corrections were known, 
which cast considerable doubt on the experimental data. 
My analysis of R&M 1014 data following Castle and 
Gray— but making a 1-degree change in collective 
pitch—is shown in Fig. 2-101 with the x symbol. I 
believe that Glauert and Lock did obtain a little 
meaningful data, but their data reduction and analysis 
led to considerable confusion in the decades that followed. 
I also re-analyzed Munk's NACA TN 22 1 [1 18] and 
found that this early test (1922) was quite acceptable as the 
solid black squares in Fig. 2-101 show. 
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(2.274) Power = Thpvh-jl.05 + 0.95| ^ - + . 0 5 ^ 

andwhenl .5£^Lá3 ,0 

(Tjv„+-*-4 

(2.275) 



Fig. 2-101, in one form or another, is 
one of the classic curves that all rotorcraft 
engineers encounter. It is frequently used to 
define a region of vertical descent 
(approximately VFP/ ¸ = 0 to 1.7) where the 
descending rotor becomes increasingly 
immersed in its own turbulent wake. This 
region is commonly referred to as the vortex 
ring state. The vortex ring state is a very 
important avoid region for helicopters, 
particularly when pilots attempt to descend 
vertically from a hover by reducing power (a 
subject I will discuss more completely later). 
Of course, the autogyro is always flying outside 
the vortex ring state (i.e., VFP/ ¸ > 1.7), in the 
region commonly called the windmill brake 
state. 
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Fig. 2-101. Induced velocity of a rotor in 
vertical descent. 
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The preceding, somewhat lengthy, 
introduction to the Glauert quartic equation, 
the efforts to overcome its shortcomings with 
empirical trends [Fig. 2-101], and then 
applying results to estimate induced velocity 
(v) in all regimes of flight [see Eq. (2.262)] is 
still an evolving story. However, autogyro (and 
helicopter) development and flight testing was 
not delayed at all while Glauert, Lock, and many 
others pursued their research. 

Now let me leave the discussion of the 
Glauert induced velocity equation and return to 
the main story about performance. 

2.11.2 Gliding and Landing 

Cierva presented his second paper 
before the Royal Aeronautical Society on 
February 13, 1930 . It was published in the 
Society's Journal in November 1930 [4], 



Introducing Cierva (who then had an excellent 
command of English), the Chairman noted that 
"of the fourteen types which had been produced 
recently in this and other countries, the inventor 
and designer, Senor de la Cierva, had himself 
made all the first tests; so he at least had 
absolute confidence in his own invention." 
When Cierva took the podium, he addressed 
two topics—product development and 
research—saying (my comments are in 
brackets) 

"Today, taking advantage of your kind 
invitation, I come before you to tell you of how the 
crude experimental autogiros of 1925 [the C.6A,] have 
been developed into practical flying machines [the C.19, 
Fig. 2-15, and the Pitcairn PCA-2, Fig. 2-18]. I will also 
deal with a number of theoretical points in justification 
of the assertions I have often made about the qualities 
of the autogiro and in answer to the criticisms of which 
my system has been made the object from time to time." 

With respect to product development, 
Cierva showed two slides of the C.19 and 



pointed out some new features, all in four 
paragraphs of an eight-page paper! Then he 
began to "deal with a number of theoretical 
points." First, he restated a reasonable view 
(in my opinion) of the growing competition 
between autogyros and airplanes of the era, 
saying 

"The autogiros lately produced [the C.19 and the 
PCA-2] have no better performance than the equivalent 
conventional aeroplanes ...[and] ...the comparison in 
performance between existing autogiros of several types 
and best equivalent aeroplanes can be summed up as 
follow :-Top speed, five to ten per cent less. Rate of 
climb, twenty per cent less. Steepness of climb, fifty 
percent more. Minimum horizontal speed, fifty per 
cent less If they [autogyros] fall a little short of 
the best aeroplanes in that rather vague quality which is 
called "performance" they have a performance of their 
own, which is utility and safety." 

He then alerted the audience about the still 
current landing and vertical descent issue, 
saying 



"The landing qualities are so well known that it 
is hardly necessary for me to mention them. In any case, I 
want to state that the present autogiro can, with proper 
handling, be landed in perfectly still air with no run at all 
after touching the ground. In steep descent of about forty-
five degrees the vertical speed of the latest machines is 
not more than 12 to 13 feet per second. I will deal later in 
this paper with the theory of the purely vertical descent, 
one of the more discussed performances of the autogiro." 

Finally, he addressed the general topic 
of autogyro aerodynamics, saying 
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'The aerodynamics of the autogiro is one of the 
most complex problems that can be imagined. A 
considerable number of parameters, both mechanical and 
aerodynamical, make it really awkward to handle from a 
purely theoretical point of view. On the other hand, 
scale effect being astonishingly great, wind channel 
experiments [such as reported by Lock in R&M 1154] are 



of little use to check any approximate theory. Together 
with this, the extraordinary sensitiveness of the autogiro 
to changes in certain parameters, such as pitch and 
profile drag, explains why both eminent mathematicians 
[for instance, Glauert] and experimenters [for instance, 
Lock] have conservatively fixed the best lift-on-drag 
ratio of the autogiro [rotor alone] somewhere near seven 
(in some wind channel experiments it was only three 
point five), its maximum lift coefficient around point five 
[0.5] and its maximum thrust coefficient at about point 
seven [0.7], referred to the disc area. 

I must say that some of the machines I 
produced in the course of the experimental development 
were not much better than what could be expected from 
those conclusions [recall the quite negative views Glauert 
expressed in R&M 1111]. I took more than one false step. 

To continue this discussion of 
performance, let me address the three points 
somewhat out of order. I will continue with 
landing, then move to lift and drag of rotor 
blades alone, and conclude with autogyro 
performance compared to airplane performance 
in the period around 1930. 



One of the reasons Cierva could say that 
"the landing qualities are so well known that it is 
hardly necessary for me to mention them" is 
because of The Book of the Autogiro, written by 
Sanders and Rawson [50]. In the chapter about 
how to fly the C.19 Autogiro, they include three 
topics: gliding and vertical descent, approach to 
landing, and landing. Their instructions, with 
some highlighting (italics) and notes by me, read 
as follows: 

Gliding and Vertical Descent. 

The machine will glide at 55 to 60 miles per 
hour like the normal aircraft. If the "stick" is pulled 
back the forward speed drops and the angle of descent 
increases until the condition, which is popularly termed 
"vertical descent," is reached. With the "stick" hard back 
and throttle shut the machine takes up a nearly 
horizontal position and descends at a steep angle on an 
even keel somewhat like a parachute. The 
horizontal forward speed as registered on the air speed 
indicator in this condition of flight is 25 miles per hour, 



but in actual fact it is considerably less. Turns can be 
made with impunity in this condition of flight, the 
machine taking its own bank, but the response to 
controls, with the exception of the elevator, is 
necessarily somewhat sluggish. 

Approach to Land. 

The approach to land is normally made by 
gliding in at a rather steeper angle with relation to the 
ground than that taken by a normal aircraft, though 
actually the angle of the machine with relation to the 
horizontal is rather flat. If this angle is correctly judged 
the air speed indicator should register 35—40 miles per 
hour. If undershooting the landing mark, ease the "stick" 
forward so as to give the machine an increased speed 
and a flatter angle of glide, and if overshooting, bring the 
"stick" back so as to lose height by decreasing forward 
speed and making a more "vertical descent," but do not 
make the latter manoeuvre as a general rule if the 
machine is less than 50 feet from the ground. There is no 
need to perform an "S" turn in order to land on a mark. 
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Landing. 

Land as near as possible into wind, as any 
drift is greatly accentuated at the low, forward speed 
with which the machine touches the earth. When 5 to 
20 feet from the ground, pull the "stick" back smoothly 
but fairly quickly. The machine will hang against the 
wind and parachute gently on to the ground on an even 
keel, [This is called a flare, which keeps the rotor speed up 
and decelerates the autogyro] provided it is kept straight 
with the rudder, though it is not as liable to veer as a 
normal aircraft. The landing will be light or heavy 
according to the judgment exercised in gauging the 
height from the ground from which the machine is 
allowed to drop, a 5-feet drop being the optimum 
condition. 

" Vertical descent " right on to the ground 
should only be used for landing in case of emergency as, 
though the undercarriage is designed to withstand the 
shock if occasion demands, it is unnecessary to submit 
it repeatedly to the abnormal stresses imposed by a 
landing of this sort. If the wind speed is from 25^10 
miles per hour, it is necessary to land in the manner of a 



normal aircraft to avoid touching the ground with a 
reversed ground speed. Above 40 miles per hour wind 
speed a landing party will be necessary to hold the 
machine on the ground when landing, unless the 
machine is flown close to the ground in the lee of a 
building or other wind-break available. 

Clearly, vertical descents were not encouraged 
in landing the C.19, despite Cierva's position 
that the rate of descent would be about 15 feet 
per second. In his second paper Cierva did not 
include any measured data that supported his 
position, and he was somewhat taken-to-task by 
several members of the Society. 

The first quantitative picture about 
autogyro gliding performance became public 
when John Wheatley's test report on the 
Pitcairn PCA-2 was published by the 
N.A.C.A. in the United States [127]. Wheatley 
tested the PCA-2 at a gross weight (GW) of 
2,940 pounds. Its rotor diameter (D) was 45 feet 
and, with four blades of 22-inch chord (c), the 



PCA-2 rotor had a solidity (a) of 0.0976. The 
disc loading (GW/A) was nominally 1.85 .The 
rotor area (A) was 1,588 square feet, and the 
wing area (Sw) was 101 square feet. The gliding 
performance of the PCA-2, as obtained by 
Wheatley and described in terms of vertical 
descent speed versus horizontal speed, is shown 
in Fig. 2-102. 

The flight test data Wheatley carefully 
obtained illustrates that the resultant of vertical 
and horizontal velocity is constant after the 
descent angle reaches 45 degrees—a very 
useful trend. Thus, the resultant force in slow 
speed gliding is nearly constant for 45 to 90 
degrees of descent angle. The constant is, as we 
know today, the vertical rate of descent 
equivalent to a parachute. Stated more precisely, 
low speed "gliding" performance at descent 
angles greater than 45 degrees is described 
simply by the relationship 



(2.276) (R/D)2
 +(Vhorizonta])2 = - \ , 

where the "parachutai" drag coefficient (CD) is 
reasonably taken as 1.2. 

You will notice two additional sets of 
data in Fig. 2-102—one set shown with open 
triangles and the other with solid squares. 
These data are measured speeds at 
touchdown 
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during landing of the Pitcaim PCA-2 by an 
average pilot in generally low wind conditions. 
It is interesting how this test program came 



about. Shortly after the Wheatley flight 
research program [127], the Bureau of Air 
Commerce (within the U. S . Department of 
Commerce) requested that the N.A.C.A. 
conduct "an investigation to determine the rate 
of descent, the horizontal velocity, and the 
attitude at contact of an autogiro in landings." 
The Bureau wanted data to examine the strength 
and shock absorption requirement for an 
autogyro. The Pitcairn PCA-2 was the test 
aircraft. The flight testing was done at the 
N.A.C.A. Langley and reported by Peck [128], 
who wrote that the results 

"disclosed that the maximum rate of descent at contact 
with the ground (10.6 feet per second) was less than the 
minimum rate of descent attainable in a steady glide 
(15.8 feet per second); that the rates of descent at contact 
were of the same order of magnitude as those 
experienced by conventional airplanes in landings; that 
flared landings resulted in very low horizontal velocities 
at contact; and that unexpectedly high lift and drag 
force coefficients were developed in the latter stages 
of the flared landings." 



Peck drew the conclusion that the rate of 
descent at touchdown was quite dependent on 
when the pilot began leveling off or flaring. 
The when was measured by that height above 
the ground when the stick was pulled back and 
elevator input appeared [Fig. 2-103]. 

A key point that emerged from the PCA-2 
landing tests was that rotor speed remained in 
the range of 129 to 136 revolutions, which was 
only slightly below the normal flight rotor 
speed of 140 revolutions per minute. Peck wrote 
that 

"the reasons for the constant rotor speeds during the 
accelerated portions of the landing approaches and the 
unexpectedly high forces coefficients [CL about 2 . 1 , CD 
about 1.8 based on flight path velocity and rotor swept 
area] prevailing during the flared landings are impossible 
to explain owing to lack of development of autogiro 
theory covering accelerated flight and the influence of 
ground effect on the effective angle of attack. It is 
believed, however, that a major contributing factor toward 
the high force coefficients is a relatively large ground 



effect at the large angles of attack [about 45 degrees] 
and low airspeeds attained in the abruptly flared 
landings." 

The ability of the pilot to flare and not 
stall—while not predictable at the time—was a 
distinct advantage to lowering forward speed and 
rate of descent at touchdown. 

Cierva made it quite clear in his second 
paper to the Royal Aeronautical Society that 
"real vertical descents are difficult, since, by 
construction, the center of gravity of the 
machine is placed in front of the axis of the rotor, 
so that a purely vertical descent can only be 
obtained during a short period " However, 
he devoted nearly two pages to his theory of 
vertical descent trying to construct the trailing 
vortex wake structure of the vertically 
descending rotor. He based his theory on the 
flow visualization data available at the time 
[123, 124, 129] .The more knowledgeable 
audience members did not buy his views, and 



the subject seems to have been dropped. 
Arguments about vertical descents not 
withstanding, the landing of an autogyro was 
unquestionably simple. 

A fitting way to close this discussion of 
the autogyro gliding and landing performance 
comes from the chairman (president of the 
Society) of the meeting on February 13, 1930, 
when Cierva completed his talk. To open the 
discussion, he said that 
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"he had been fortunate enough to be flying one of the 



later models [probably a C.19] on several occasions, and 
he had been amazed at the performance of the machine in 
the air. When one arrived over the aerodrome, say at 
1,000 feet, and one found merely by casually shutting off 
the engine that the machine would ultimately arrive on 
the ground without doing anything else at all, it did take 
one a little time, if one were accustomed to flying the 
ordinary machine [an airplane], to get used to sitting 
perfectly still and admiring the surrounding scenery. But 
that was undoubtedly what happened. The ground simply 
came up in a gentle fashion, as the machine approached 
it at somewhere round 15 ft. per second, which the 
under-carriage was capable of coping with." 

2.11.3 Maximum L/D 

Cierva, in his second paper [4] 
presented before the Royal Aeronautical 
Society on February 13, 1930, addressed the 
subject of autogyro rotor aerodynamics, which 
is, he said, "one of the most complex problems 
that can be imagined." This technical subject, 
along with vertical descent, appears to have 
escalated an engineering difference of opinion 



(between Cierva on the one side, and Glauert 
and Lock on the other) that began, I will 
guess, in the autumn of 1 926. Peter Brooks 
recounted the situation in his book [7] as 
follows: 

"As a result of the British Air Ministry's 
sponsorship of Autogiro development,48 the Royal 
Aircraft Establishment also undertook numerous 
investigations into the Autogiro's characteristics. This 
work was notably done by H. Glauert, C.N.H. Lock, 
J.A. Beavan, P.A. Tufton, J.B.B. Owen, and a number of 
others, their findings being fully written-up in official 
RAE and Aeronautical Research Committee R & M 
reports . On January 20, 1927, Glauert also read an 
important paper before the Royal Aeronautical Society on 
the theory of the gyroplane. Despite the fact that this 
paper correctly defined the mechanism, 
performance, and fundamental limitations of rotors with 
flapping blades, Cierva publicly took strong exception to 
almost every point Glauert made. He rather 
unfortunately gave the impression that he resented 
other investigators in the field he had made his own. 
This attitude, in its turn, probably contributed to the 
antagonism toward the Autogiro which seems to have 
existed in certain official circles and in at least part of 



the British technical press - specifically in The 
Aeroplane, under its controversial and astringent editor, 
the formidable CG. Grey." 

Brooks' recounting of the January 20, 
1927 presentation that Glauert made to the 
Royal Aeronautical Society, and the reaction 
Cierva had to it, does not convey the magnitude 
of the controversy that was stirred up . (I 
can only recommend that you read Glauert's 
published paper [131], and particularly the 
discussion that followed, for yourself.) First of 
all, Cierva did not attend the meeting. Instead, 
he sent a letter asking that it be read "after 
the lecture." In fact, Colonel Semple, 
Chairman of the Society, who presided at the 
meeting concluded his introduction of Glauert 
(who "needs no introduction to you. His 
reputation in aerodynamics is international as 
you well know") saying 

"The papers which have been handed round are copies 
of a letter sent to me by Senior de la Cierva as his 



contribution to the discussion. He excuses himself 
from coming to speak in person on the grounds of his 
difficulty in speaking English. [Cierva had also written 
"owing to the uncertainty of my being in London on the 
date arrange."] I have had these copies circulated so that 
you may appreciate his views and so that time during the 
discussion may be saved." 

48 Cierva was very fortunate to have the support of the 
Air Ministry. Mr. H. E. Wimperis, Director of Scientific 
Research at the Ministry, was instrumental in getting 
Cierva to come to England and was enthusiastic from the 
onset [130]. He remained a staunch supporter of rotorcraft. 
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When Handley Page49 spoke during the 
discussion, he must have captured the mood 
of the audience when he said, 

"I think one of the most interesting things about 
this paper [Glauert's lecture] is the extraordinary 
divergence of opinion among the experts When 



the next paper comes I hope it will be a paper from 
Senior de la Cierva, but I suppose it will be replied to 
by letter from Mr. Glauert, who will be unable to be 
present. I do hope, however, that then we shall have the 
facts of the whole thing." [The next paper was Cierva's 
lecture of February 13, 1930, and there was no response by 
Glauert.] 

Handley Page was, I think, even more 
disgusted than his full discussion remarks 
imply. He had come to Glauert's January 1927 
lecture expecting to see theory developed and 
compared to available test data. Glauert 
presented not one shred of evidence along those 
lines. Three years later, when Cierva responded 
to Glauert with his second lecture [4] in 
February 1930, Handley Page, if he was there 
(no discussion by him is included), would 
have been even more disgusted. Cierva 
presented absolutely no information about his 
theory and no test data. He simply said, 

"My engineering theories, all based on energy 
equations since 1924 and very similar in general lines to 



that developed later by Mr. — N. H. Lock, and published 
by the Air Ministry in the R. & M. 1127 in 1927, were 
not a useful guide to me until, in 1928, I succeeded in 
finding an analytical method of integrating the frictional 
losses of energy, when the aerofoil used is the Göttingen 
429, which gives the average profile drag in any 
conditions and for any value of the parameters defining a 
rotor. The theory [11] completed in this manner has 
allowed me to produce autogiros with the correct 
proportions [recall the reduction in rotor solidity shown 
in Table 2-5] and I can safely say that the present results 
check with amazing accuracy the simple assumptions 
which form the basis of my theory." [Cierva also did 
not give one equation or theory versus test data 
comparison to support this statement!] 

The dominant issue in the 
Cierva-Glauert standoff was the current and 
future performance of the autogyro and—quite 
specifically—the maximum lift-to-drag ratio 
of a rotor. Glauert gave his initial pessimistic 
view in November 1926 with R&M No. 1111. 
Then Glauert used the lecture before the Royal 
Aeronautical Society on January 20, 1927 to 
further put Cierva's invention in its place. 



Understandably, Cierva did not like it. 

Cierva, in the second paragraph of 
his letter, which the chairman had distributed 
before Glauert began his lecture, writes: 

"In the first place 1 must, with respect, record my 
protest against the manner in which Mr. Glauert has 
made assertions in an almost axiomatic form, from 
which the evident conclusion must be drawn that the 
autogiro is, in effect useless. Such assertions are based 
only on very incomplete and uncertain calculations which 
I am able to state are not at all in agreement with the 
experimental results." 

Cierva became even more emphatic as his 
letter went on! In his turn following the 
general discussion, Glauert responded to Cierva's 
letter saying 

49 Handley Page pioneered the development of wing 
trailing-edge flaps and leading-edge slots. These high-lift 
features for a wing lowered airplane landing speeds 
without detracting from high-speed potential. He died in 
1962. 
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"It is rather difficult for me to reply to Senor de la 
Cierva's contribution because on the whole it is a 
simple statement of disagreement and I am not 
acquainted with the particular experiments to which he 
refers. All the experimental evidence which I have seen, 
both model and full scale, indicates that the lift/drag 
ratio of an autogyro and the performance of the aircraft 
is rather less favorable than I should estimate 
theoretically. I hope, however, that I have not given the 
impression that the autogiro is 'useless'. I believe that it 
is less economical than an aeroplane, but that it has 
very considerable advantages as regard safety and 
ease of landing." 

In retrospect, at this point in the development 
of rotorcraft aerodynamics (i.e., 1925 to 1930), 
neither Cierva, Glauert, Lock, or anybody else 
for that matter, had (in my opinion) a solid 
basis for arguing anything. Handley Page, 



clearly a cool head in the unfortunate dispute, 
was quite correct to say that there was "an 
extraordinary divergence of opinion among 
the experts." 

Calculating autogyro rotor drag for a 
given lift in 1930 was, in fact, rather simple, 
but only because the real details necessary for 
an accurate calculation could not be included 
with just a slide rule, pencil, and paper. The 
power required (Preq) by a rotor is correctly 
defined from energy considerations as you 
learned earlier with Eq. (2.60). In its basic 
form, the governing equation is 

P o w = Pr o l=Q^a=±|o
2*|;vr vdTr. ,-(Tl p Sinah p +Hf tcos a i ,)V] T 

(2.277) in 

+f¿n;^)!w 
In the autorotating rotor configuration uset] by Cierva where power required is zero, the rotor 

drag force (DR), that is, the force that the 
autogyro propeller thrust (Tp) must overcome, 
is defined as 



(2.278) Rotor drag = DR = (Thp sin ahp + Hhp 

cosochp). 

Notice here that when the rotor hub plane 
angle of attack (0ChP) approaches 90 degrees 
(i.e., vertical descent), rotor drag becomes rotor 
thrust (Thp). 

Now, in the autorotating rotor, power 
required is zero so, from Eq. (2.277), it follows 
that 

(2.279) 

which brings me to the hard part—performing 
the integrals called for in Eq. (2.279). The first 
integral gives the rotor-induced power that, 



when divided by the flight path velocity (VFP), 
is the rotor-induced drag. Both Cierva and 
Glauert knew that the induced velocity (vr,v) 
was not a constant value. That is, the induced 
velocity varied at every radial station (r) along 
the blade and varied at every azimuthal station 
(\|f) as the blade rotated. However, neither 
pioneer had the computational tools to obtain 
the nonuniform distribution of this velocity. 
Glauert recommended and Cierva—among 
many, many others down through the 
decades—agreed 
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that, until further notice, the induced 
velocity would be assumed constant as 
given by Eq. (2.38), which is repeated here for 
convenience, 



(2.38) 

2p(7üR2)^(VFPsinahp-v) +(VFPcosahp) 

Moving induced velocity outside the integral 
sign as a constant leaves just the integral of 
elemental thrust (dTr,¥), which is total rotor 
thrust (Thp). With an assumed constant induced 
velocity, calculating rotor drag is therefore 
reduced to 

(2.280) 

The remaining integral calculates the profile 
power (that Cierva called "the frictional losses 
of energy") due to airfoil drag. Dividing profile 



power by flight path velocity (VFP) establishes 
the rotor profile drag. This integral, as written, 
assumes that the blade chord (cr) need not be 
constant from blade root to blade tip (i.e., r = 
R). The velocity acting at a blade element (VBE) 
in its simplest and lowest value form follows Eq. 
(2.1), so that 
(2.281) VBE=Vrj¥=Qr+(VFPcosahp)sint|/. 

Airfoil drag coefficients (Ca) for symmetrical 
airfoils such as the Göttingen 429 [121] are well 
known to behave, below stall, approximately as 
(2.282) Cd=Cd m i n+5C2. 

At this point you can guess the next 
step to handling the profile drag integral. The 
blade will have a constant chord (i.e., cr = c), 
the lowest blade element velocity given by Eq. 
(2.281) will be assumed, and the airfoil drag 
coefficient will be no greater than its 
minimum value (i.e., ô = 0), which, it will be 



assumed, does not vary with radius or azimuth. 
Then the profile drag integral is readily 
performed, and the rotor drag (DR) is simply 

(2.283) 

D ^ = : v f + i ? C - { ï Q 3 R 4 + ï Q R 2 ( V - C O S a h p ) 2 } -
Eq. (2.283) is generally considered rather 
clumsy, so some factoring of rotor speed (Ci), 
in radians per second, and radius (R), in feet, is 
quickly done, and then 
(2.284) 

R VFP VFP 2 t 4 J dm'"[ I OR J J 

The final step to obtaining the traditional 
form of minimum rotor drag is to identify 



the conventional parameters of 
bcR = ( 7tR2 ) Ò = Ac, Vt = CiR, 

^VF Pcosah p 

and substitute these definitions into Eq. (2.284) 
to obtain 
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(2.285) 

D - V , 1 P A ° V . 3

C ( 1 + « ˆ 2 ) 
R V V fl Wmm^ + ^Mnp^-

VFP VFP ° 

In the debate that Cierva and Glauert 
were having, at least up to 1930, the rotor 
maximum lift-to-drag ratio was a key autogyro 



performance parameter issue. While they did 
not agree—exactly—on rotor drag (I will 
discuss some differences shortly), they both 
agreed that rotor lift (LR) would be calculated as 

(2.286) Rotor lift = LR = (Thp cos ahp - Hhp sin 

% ) • 

Furthermore, Cierva and Glauert (and Lock) 
were willing to say that, in level forward flight, 
the rotor would be autorotating at a small value 
of hub plane angle of attack (cthP) . Accepting 
this small angle assumption brings considerable 
simplification because: 

1. cosa h p =l and s ina h p - a h p 

2. Thp - LR and Hhp sin ahp « Thp 



L 
3. Vpp sin cchp - v = O so v ~ — 

or v~ ' 

2pAVFPcosahp 

LD 

2pAVpp 

This approach reduces the minimum rotor drag 
expression to 

(2.287) 

D = L« + p A g V ' C Í1 + 3U2 \ 
R 2PAV.P SV,. C ^ l 1 + 3 ^ J 

Glauert Form. 

One thing I should mention is that Cierva wrote 
[11] the minimum rotor drag equation in the 
slightly different form of 



(2.288) 

D = L« + P ^ C Í ^ + 3 V v i 
R 2pAV¿ 8 d r a iÍVF P

 FP 'J 
Cierva Form. 

In their lectures to the Royal 
Aeronautical Society, neither Glauert (on 
January 20, 1927) or Cierva (on February 13, 
1930) showed any test-versus-theory 
comparison, and many in the audience were 
disappointed. Handley Page, for one, wanted 
facts at Glauert's lecture and, while some odds 
and ends of experimental numbers were quoted, 
he hoped that Glauert would "at some time be 
able to add results of a corresponding [to 
Glauert's theory] full scale research work in 
flight." Personally, I think Glauert was 
premature in presenting his paper before Lock 
and Townend had finished the wind tunnel 



testing of a 6-foot-diameter model of the C.6A 
rotor in forward flight [132]. This model test 
began in July 1927, with results reported in 
March 1928, so Glauert really did not have 
comprehensive data in hand. On the other hand, 
Cierva, in his second lecture some 3 years after 
Glauert's lecture, had the chance to show his 
theory in comparison to Lock's model test, but 
chose not to, apparently because he had little 
regard for the scale effects models introduced. 
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Cierva and Glauert could have 
collaborated on a paper in mid-192 8 showing 
Lock's and Townend's model results versus 
theory as given by either Eq. (2.287) or Eq. 
(2.288). Had they joined forces, they would have 
seen the comparisons shown in Fig. 2-104 and 



Fig. 2-105. The baseline results of Fig. 2-104 
are for four blades that modeled the Cierva 
—.6A rotor blades . Lock and Townend also 
tested two blades as shown in Fig. 2-105 
because, as they wrote: 

"In view of the success of the [Cierva] Autogyro 
Company in flying a 2-bladed autogyro, it was decided to 
test the present [4-bladed] model as a 2-blader by 
removing two of the blades. The experiment was 
conveniently made after the accident to the model in 
which one blade was damaged [I never was that lucky]. 
The experiments showed no special features except that 
as expected there was greatly increased vibration due to 
the periodic variation of the drag which necessitated 
additional damping in the drag balance. The vibration 
increased rapidly with decreasing incidence [higher 
speed] and the lowest incidence attained was 4°, 
which was hardly low enough to establish the maximum 
L/D." 

The experimental data and the theory shown in 
Fig. 2-104 and Fig. 2-105 are for blades alone. 
The rotor test stand was built to accommodate 
a 10-foot-diameter model of the Cierva C.6 A, 



but those blades, which were scaled full 
scale including the spar, wooden ribs and 
fabric cover, were unsatisfactory. The testing 
proceeded with 6-foot-diameter, solid-wood 
blades. The drag of the hub and stub roots was 
measured as a tare, and then the drag of the 
assembled rotor system, less the tare, was 
tabulated as blades-alone drag. 

In computing the rotor drag with Eq. 
(2.287), I set the operating parameters and rotor 
lift equal to the Lock and Townend data. For 
the minimum airfoil drag coefficient (Cd min), I 
selected 0.013 for the theory-versus-test 
comparisons . This is a somewhat arbitrary 
choice . Lock tested the Göttingen 429 airfoil 
[121] at both 4-inch and 18-inch chord sizes, 
each wing with an aspect ratio of 6. In the 
standard method of the era, this wing data was 
converted to infinite aspect ratio, which 
corresponds to the airfoil data required by 
blade element theory. The airfoil drag polar 



behaved approximately as 
cd = cdraill(i+c2) 

and its minimum drag coefficient and 
maximum lift coefficient depended on the 
Reynolds number as given in Table 2-16. Lock 
also tested the airfoil with the trailing-edge first 
over a small angle-of-attack range. The drag 
coefficient for trailing-edge first was about 
double that of the leading-edge-first drag 
coefficient. 

In both four- and two-bladed 
comparisons, I have shown a linear regression 
fit to the test-versus-theory data. Obviously, the 
drag of the four-bladed model is rather well 
predicted by Eq. (2.287). That is to say, the 
theory underestimates test drag by about 2 
percent plus the offset of 0.25 pounds (possibly a 
tare). I would think that both Cierva and Glauert 
would have been very encouraged with this 
comparison. However, with the two-bladed 



rotor test versus theory appearing so poorly 
correlated, that encouragement would have 
been short lived. In fact, for the majority 
of two-bladed rotor data, the rotor was 
operating at high advance ratio with a great 
deal of retreating blade stall as you will learn 
shortly. The simple theory is quite inadequate 
if there is significant blade stalling. 
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Fig, 2-104 Test versus theory for four blades 
(prediction with Eq. (2.287)). 
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Fig. 2-105 Test versus theory for two blades 
(prediction with Eq. (2.287)). 
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Table 2-16. Göttingen 429 Airfoil Data [121] 

Reynolds 
Number 

63,940 
85,040 

106,780 
127,880 
148,980 
287,720 
383,630 
575,450 
767,260 
959,080 

Minimum 
Drag 

Coefficient 
0.0160 
0.0154 
0.0146 
0.0137 
0.0134 
0.0112 
0.0108 
0.0104 
0.0102 
0.0102 

Maximum 
Lift 

Coefficient 

0.88 

0.96 
1.00 
1.08 
1.16 

Now let me address the subject of 
maximum rotor lift-to-drag ratio, a seriously 
debated subject between Cierva and Glauert. 
At this point, you might not view the simple 
expression for minimum drag, Eq. (2.287), as 
adequate; nevertheless, the rotor lift-drag ratio is 
approximated by 



(2.289) ≤*- = ä ÷ . 

2PAV¿ 8V„ ü — l 1 + 3 M 

The rotor lift (LR) at which maximum rotor L/D occurs is found in the usual manner, so 

(2.290) for maximum rotor L/D, 

LR = i p A V t
2 ^ h p ( l + 3^p)Cdmin 

or, in the nondimensional form, 

(2.291) for maximum rotor L / D, 

C T = C L = ^ = ^ o n h p ( l + 3 < ) C d m i n . 

The rotor maximum L/D is, therefore, calculated 

simply as (2.292) 
3 2 

(L/D) =2 ' Hhp ÷" 

V ' M a x À ' ( ≤ + « Œ — ^ CT for max. L/D 

This fundamental, very simplified 
theoretical result is compared to the Lock 



and Townend 6-foot-diameter C.6A model test 
results in Fig. 2-106. Glauert's simple theory 
shows that maximum rotor L/D improves by 
reducing rotor solidity (a). Halving the solidity 
from 0.1896, with four blades, to 0.0948, 
with two blades, is clearly beneficial as the 
experimental data shows. 
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As you can see, Fig. 2-106 leaves plenty 
of room to debate what the maximum lift-to-
drag ratio of a rotor might be, at least beyond 
an advance ratio of 0.3. Glauert [13 1] made it 
quite clear when he replied to Cierva's letter that 

"All the experimental evidence which I have seen, both 
model and full scale, indicates that the lift/drag ratio of an 
autogyro [rotor] and the performance of the aircraft is 
rather less favorable than I should estimate theoretically." 



Certainly, the 6-foot-diameter-model rotor 
blades alone were not performing up to 
their calculated potential, never mind the rest 
of the aircraft. Cierva, on the other hand, 
made it quite clear that 

"The autogyro, in spite of its extreme simplicity, is not at 
all an obvious [simple] problem, and any attempt to 
develop its theory as an extension of the aerofoil [wing 
or propeller] theory must perforce be regarded with very 
great diffidence owing to the fact that, in order to avoid 
almost insuperable complications, it is necessary to 
attempt simplification of the phenomena and perhaps also 
to neglect terms which might seem to be of the second 
order whereas in fact they may be, under certain most 
interesting conditions, of the first order." 

So, each had made their case and, I will guess, 
neither man had conferred with the other with 
Fig. 2-106 in hand. 
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Fig. 2-106. Maximum rotor L/D theory versus 
test. 
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A natural question when looking at 
Fig. 2-106 is, "Why did the model perform 
so poorly at high advance ratio, assuming the 
simple theory is approximately right?" A 
partial answer to this question lies within Fig. 
2-107. To obtain lift-to-drag ratios well above 
10 (which would be on-par with nonrotating 
biplane wings of the era), the 
6-foot-diameter-model rotor should have been 
tested to much higher thrust coefficients . But 
the ability of the rotor to produce the necessarily 
high thrust—without many blade element 
airfoils stalling and creating very high drag—is 
not at all clear. Lock offered an opinion about 
blade stall [14] and noted that 

"the order of magnitude of the effect of "[blade] stalling" 
could be determined in any particular case by evaluating 
graphically the integral in equation 29 [see Eq. (2,280)] 
on the basis of the performance data of the airfoil section." 

It would take the rotorcraft industry three more 
decades (and the digital computer) before the 



graphical integration Lock was suggesting could 
be done for just a few "particular cases." 

However, a sense of just where, in 
relation to blade stall onset, the Lock and 
Townend 6-foot-diameter model was tested can 
be obtained from Eq.(2.194), repeated here as 

(2.293) 

onset o n s e t 

This estimate, along with the 1928 model test 
results for an autorotating rotor [1 32], is shown 
in Fig. 2-108. Clearly, the rotor, whether two 
bladed or four bladed, produces thrust well 
outside the estimated blade stall onset boundary 
suggested by Eq. (2.293). But this high thrust at 
high advance ratio is accompanied by a great 
deal of rotor drag and relatively poor rotor 

C T I _ f “≤‘ 1 _ Cfii»: 
I f lpbcRVt

2J»7 6 



lift-to-drag ratios as Fig. 2-106 shows. As you 
will read in Volume II—Helicopters, modem 
helicopter rotor blades have improved rotor 
maximum L/D, but they still do not achieve 
levels much above 10 in the 0.3 to 0.5 advance 
ratio range, primarily because both rotor solidity 
and tip speed were significantly increased over 
autogyro values. 

2.11.4 Minimum Rotor Drag 

It was immediately apparent that the 
simple theory used to predict rotor drag had 
one troublesome factor that bothered both 
Glauert and Cierva in 1928 . The simple 
theory, Eq. (2.287), which I have repeated here 

(2.287) 

D = L * + p A g V ' 3 C í l+«ˆÃ R 2pAV¿, 8V.P Ë — 1 1 + 3 Ã 



Glauert Form 

raised an issue about the factor 3 in the 
(l + 3u,^p) term, which came, you recall, from 
the 

simplified profile power integral. Glauert, in his 
first paper on autogyros [13], pointed out in 
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an appendix of the paper that the blade 

element velocity (VBE) should include the 

radial velocity component (VFPcoscchp)cost)/, 

as well as the tangential velocity 

component Cir + ( VFP cos cchp ) sin \|/. That is, he 

recommended that 
(2.294) 
VBE =Vr,„ =^[£îr + (VFPcosahp)sin\|/]:!+[(VFPcosahp)cos\|/]2 

which compares to Eq. (2.281). This leads to a 
profile power integral that falls in the elliptical 
integral family. Appendix J includes a 
closed-form approximation to this problem. 
What was a constant 3 became a factor (n); but 
then (n) was itself a function of advance ratio. 
Glauert took a shortcut around the elliptical 
integral complication by providing a table. 



The reproduced table, plus a comparison to [1 + 

Advance Ratio Ÿ, 

0 
0.30 
0.40 
0.50 
0.60 
0.75 
1.00 

(≥+Áˆ;) 
1.00 
1.27 
1.48 
1.75 
2.08 
2.69 
4.00 

( 1 + n O 
1.00 
1.43 
1.78 
2.26 
2.88 
4.11 
7.13 

Glauert's n 

4.5 
4.73 
4.87 
5.03 
5.22 
5.53 
6.13 

Cierva, when his theory became available [1 
1], agreed with Glauert that the blade element 
velocity should include the radial flow velocity 
and, with his own approximation, decided that it 
would be satisfactory to replace (1 + 3(i^p J 

with (l + 4¡ij;p). It would be several decades 
(plus the advent of the digital computer and 
several full-scale helicopter rotor system wind 
tunnel tests) before a more accurate picture 



began to emerge about this radial flow velocity. 
A review of this work [133] provided the 
approximation 
(2.295) 1 + 4.·5<+4.15Ï≥-Ã≤ 
which seemed to fit the experimental data up 
to an advance ratio of 1.0 and was, therefore, 
more realistic than (l + 3u.j;p). On this basis, 
the rotor drag would be more accurately 
calculated as 
(2.296) 

D R = — ^ + ^ ^ — ^ ( 1 + 4 . 6 5 ÷ ? , + 4 . 1 5 ˆ « - u f ) . 

R 2 p A V F

2

P 8 V F P

 d m a K h p h p h p ; 

A comparison of this somewhat 
refined rotor drag theory versus the Lock 
and Townend 6-foot-diameter-model data is 
shown in Fig. 2-109.1 kept the airfoil minimum 
drag coefficient (Ca min) at 0.013, so this result 
can be compared to Fig. 2-104. 
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Fig. 2-109. Test versus theory for four and 
two blades (prediction with Eq. (2.296)). 



2.11.5 Autogyro Versus Airplane 

The fundamental issue of autogyro 
versus airplane performance in forward flight 
was not settled with Cierva's second lecture to 
the Royal Aeronautical Society on February 
1 3, 1930. In this lecture, Cierva addressed his 
third point saying, you will recall, that 

"the comparison in performance between existing 
autogiros of several types and best equivalent 
aeroplanes can be summed up as follow:-Top speed, five 
to ten per cent less. Rate of climb, twenty per cent less. 
Steepness of climb, fifty percent more. Minimum 
horizontal speed, fifty per cent less." 

To Cierva, that was the current situation as he 
saw it. In his lecture, he showed his figure 3, 
which I have reproduced here as Fig. 2-110, to 
explain his views. (Major Green said during the 
discussion that "a diagram like Fig. 3 meant 
very little when there was no scale to it."). Of 
course, no one defined "best equivalent 



aeroplane." With this figure displayed to the 
audience, Cierva made a number of points, some 
of which I have summarized as follows: 
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1 . Figure 3 [Fig. 2-1 10] shows power 
required versus speed "for two normal 

equivalent machines." 
a. Both aircraft are at equal weight. 
b. The autogyro rotor diameter and 

airplane wing span are equal, so, at equal 
weight, the induced drags are equal. 

Since power is drag times velocity, 
induced powers are equal for both 

machines. 
Ò "Both machines have the same parasite 

drag." [Equal total drag of fuselage, 
landing gear, rudder and elevator, rotor 



hub, etc.] 
d. Therefore, "the required horse-power 

equations would differ only in the term 
corresponding to profile drag." 
speed.] 

[Profile power when drag is multiplied by 
e . The airplane wing profile power 

increases as the cube of speed, but the 
autogyro rotor profile power rises 

"directly proportional to the speed within 
wide limits." [See Eq. (2.288).] 

2. The airplane has its maximum efficiency 
in the middle speed range, "while the 

autogyro is at its best at both ends [of its 
speed range]." 

3 . The two distinct slopes of power required 
with speed (at high speed) show that the 

autogyro benefits by having 
does. 



increased power available more than the 

airplane 

Required π oc replane 

Rwjuireo1 If autogiro 

-- I À Î≥Ë€Ò π 

V-

Fia. 3. 
Speed 

Fig. 2-110. Cierva's comparison of autogyro 
versus airplane performance [4]. 
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Perhaps a word of explanation about the 
power available lines and their shape versus 
speed in Fig. 2-1 10 is in order before 
proceeding. During this era, propellers were 
fixed pitch. Rather than reflect propeller 
efficiency in power required to obtain engine 
power required (which can then be compared 
directly to engine power available), engine 
power available was reduced by propeller 
efficiency to define a thrust power available 
(which is then compared to thrust power 
required). That is, when you start with 

(2.297) Prop Thrust Required = T = 
Aircraft Total Drag = DAC 

then multiply by flight path velocity (VFP) to get 
thrust horsepower required, you see 



(2.298) Thrust Horsepower Required 

O p _ ^propVFP _ DAçVFP 
^1164- 550 550 

But, the propeller is not 100 percent efficient. 
The propeller efficiency (r[p) was optimized for 
high speed during this era. Therefore, the total 
engine horsepower available (HPeng. avail.) only 
provides available propeller thrust amounting to 

(2.299) 

/^550HP ^ 
Available Propeller Thrust = Tpropavii, = • ^—^ VFP j 

so the available thrust horsepower is only 



(2.300) 

Available Thrust Horsepower HPttaslav.a = i ^ = ( H P „ ) n P . 

Thus, the shape of a thrust horsepower 
available line mirrors the propeller efficiency 
because engine horsepower available is 
considered constant with airspeed. The 
helicopter pioneers did not follow this 
fixed-wing practice. 

A comparison of the 1930s-era 
autogyro to the best equivalent airplane is 
very worthwhile because the debate over 
which machine is better is still going on 
today. To quantify the comparison, let me 
choose the 1930 Pitcaim PCA-2 as the 
representative autogyro and then present 
airplanes of that era in comparison. The 
performance of the PCA-2 was thoroughly 



established by John Wheatley at the N.A.C.A. 
He published PCA-2 flight test results in NACA 
Report No. 434 in May 1932 [127]. Because 
he could not satisfactorily separate the 
rotor-blades-alone performance from the total 
autogyro performance, the full- scale, 
45-foot-diameter rotor system was tested in the 
30-foot by 60-foot wind tunnel at the N.A.C.A. 
Langley. Data from that test was reported in 
NACA Report No. 487 [75] in 1934. These two 
reports are an enormously valuable autogyro 
data base for the rotor-plus-wing configuration 
(including the Cierva C.19) before direct 
control autogyros (such as the Cierva C.30A) 
became available. Both reports provide all the 
experimental data in tables. 
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Wheatley, in the introduction to NACA Report 
No. 434, wrote that 

"The determination of lift and drag characteristics was 
decided upon as the initial step into an extensive program 
of research because of the lack of reliable full-scale 
information on the fundamental aerodynamic 
characteristics of the autogiro and the need to establish 
clearly a datum to which further work will be referred. The 
curves and data contained in the body of this report 
constitute, so far as is known, the first authentic 
full-scale information concerning autogiro characteristics 
that has been published."50 

He goes on to describe the test apparatus (Fig. 
2-1 1 1), and how aircraft lift and drag were 
obtained from a gliding test, shown in Fig. 2-1 
12 . Wheatley included one adverse comment 
about the PCA-2 that affected the performance: 

"The problem of control at the low air speeds and 
high angles of attack attainable in the autogiro demands 
attention [the direct control rotor was the response]. 



During glides at air speeds near the minimum value, 
corresponding to angles of attack from about 35° to 
90°, lateral control was inadequate and the aircraft 
was unsteady. Elevator control, although sluggish, 
remained positive at all times, but ailerons and rudder 
often proved unable to check or delay a tendency of the 
autogiro to roll or yaw [many minor autogyro accidents 
occurred on landing because of this characteristic]." 

Some evidence of controlling the aircraft in trim 
during a glide is, in fact, apparent. However, 
overall, the flight test data is as good, and 
probably better, than data acquired in a wind 
tunnel. 



Rotor Syinbol 
Number of blades b 4. 
Profile of section Göttingen 429. 
Diameter 2fl 45.0 fl 
Blade chord (outer straight portion) Ò 1.833 ft. 
Disk area SD 1,5888 sq. ft. 
Solidity........ ..............................................Tarai blade area/ 

disk area 0.0976. 

Wing 
Profile Modified N.A.C.A.-M3. 
Span 30 ft. 3-5/8 in. 
Chord—root A ft. 4 in. 
Area—projected Sw 101 sq. ft 
Aspect ratio 9.1. 
Incidence......................... 1.7". 

General 
Total area S = SD+Sπ 1.689 sq.ft. 
Gross weight as flown W. 2,9401b. 
Wing loading W/S l,74lb,/sq.ft. 
Engine Wright R-975, 
Power-rated 300 hp 

Fig. 2-111. Pitcairn PCA-2 geometry 
tabulated by Wheatley [127]. 

5 0 Wheatley was right; nothing had been published at the 
time he wrote NACA Report No. 434, but I believe that the 
Royal Aircraft Establishment in England acquired a 
great deal of technical data about Cierva Autogiros, 
specifically the C.6A [37] and the — 1 9 (I will bet). 
There are many references to unpublished T. numbered 
reports in the Aeronautical Research Committee R & M's. 



If those old reports could be recovered, it would add a 
great deal of historical technology to the birth of the 
rotorcraft industry. 
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Fig. 2-112. Aircraft lift and drag obtained 
from gliding tests. 

Wheatley obtained the PCA-2 lift and 
drag from gliding tests with the engine off and 
propeller stopped. One hundred and eighty-four 
separate glides were made in 22 flights . After 
each glide, the pilot restarted the engine, 
regained altitude, and started another glide. 
After each flight, the aircraft was refueled. 
The first glide in each flight began at 
about 2,900-pounds gross weight, and the last 
glide in that flight finished, on average, at 
about 2,760-pounds gross weight. Wheatley 
carefully accounted for the varying gross 
weight, which was caused by fuel bum off. The 
glide angle and flight path velocity were 
measured with a "trailing bomb," which was 
slung by a thin cable some 80 feet below the 
aircraft. Aircraft attitude was measured and the 
hub plane angle of attack was computed and 



tabulated. 

The lift and drag data that Wheatley 
obtained from this ground-breaking flight test 
is shown in Fig. 2-113. The accompanying hub 
plane angle of attack is shown in Fig. 2-114. In 
general, the PCA-2 remained nearly horizontal 
with only a moderate nose-down attitude—but 
still slightly positive angle of attack—to reach 
the higher speeds (over 100 feet per second). 
The rotor speed deviated very little from an 
average of 14.9 radians per second. Wheatley 
accounted for this slight rotor speed variation, 
as well as the hub plane angle of attack, to 
compute advance ratio. In calculations 
requiring air density, he used the density for 
each glide, but the average density was 
0.002103 slugs per cubic foot. Some 
measurements of 
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performance with the engine and propeller at 
flight idled satisfied Wheatley that the drag of 
this stopped propeller was relatively 
unimportant. 

Fig .2-1 13 shows that in vertical descent, the 
flight path velocity (i.e., the rate of descent) was 
35 feet per second. Additional analysis led 
Wheatley to conclude that "the minimum 
vertical velocity when gliding with the stopped 
propeller is 15 feet per second, at an 
airspeed of 36 miles per hour, and at a 
flight-path angle of-17°." He further noted that 

"The maximum lift coefficient, based on the sum of 
wing and swept-disc area [1,689 square feet], is 0.895 
[based on dynamic pressure, not tip speed] . The 
minimum drag coefficient with propeller stopped is 0.015, 
the maximum L/D with propeller stopped is 4.8, and the 
maximum resultant force coefficient is 1 .208 [based on 



dynamie pressure and 1,689 square feet]. 

The fact that the maximum aircraft L/D was 
only 4.8 certainly could not have been very 
encouraging to autogyro advocates. Glauert and 
Lock had probably been getting comparable 
values with Cierva machines in England. In 
my opinion, Glauert's initial pessimism was 
warranted, but without the drive from Cierva 
(plus Pitcaim and Kellett)—and support from 
the Air Ministry in England, specifically from 
Mr. H . E . Wimperis—the rotorcraft industry 
could have easily died in 1930, along with the 
biplane. 

Before bringing performance of 
comparable airplanes into the discussion, it 
is worthwhile to predict the PCA-2 drag using 
simple aerodynamic technology available in 
1930. As Cierva pointed out, the propeller 
thrust must overcome the drag created by all 
components of the aircraft, not just the drag 



created by the rotor blades alone. The rotor 
system hub and the exposed spars (commonly 
referred to as blade shanks) must be accounted 
for as well. Then, in the case of the PCA-2, 
the wing, which carries some lift, creates drag. 
And finally, the fuselage, wheels, vertical 
and horizontal stabilizer, engine, other 
protuberances, etc., must be added to the 
propeller load. 

Now suppose all the drag from all the 
items—except the rotor blades alone—amounts 
to some equivalent parasite drag area (fe) in 
square feet that varies with angle of attack. 
Then the aircraft drag (DAC) is estimated simply 
as 

(2.301) 

Tprop.req.=DAC=ipVF
2

p(fe)(l + K O + DR 



with the autorotating rotor-blades-alone drag 
(DR) estimate coming from Eq. (2.296). Thus, 
the aircraft drag is nothing more than 

(2.302) 

DAC=ipV^(f.)(l + Kc4) + :
 W' 

2 r ^ v e / v n p / 2pAVF
2

pcosahp 

for autogyro. 

+ f is ïrL cd* (l+4-65< + 4 À   -Ï≥) SVpp 
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Fig. 2-113. PCA-2 lift and drag forces 

versus flight path velocity [127]. 
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Fig. 2-114. PCA-2 trim during the 
Wheatley gliding tests [127]. 
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Notice in Eq. (2.302) that I assumed rotor 
lift (LR) equal to aircraft weight (W), which 
implicitly says the wing operates at zero lift. 
Also notice that I have retained cosine oChp in 
the denominator of the induced drag term, which 
extends the equation to higher angles of attack. 

Given the PCA-2 configuration details 
and tabulated data of the flight parameters 
Wheatley provided, you only have to estimate 
or guess the equivalent parasite drag area (fe), 
and its variation with angle of attack, to make 
the answer come out right (i.e., test and theory 
agree). It does help to adjust the airfoil 
minimum drag coefficient for the Göttingen 429 
from the model value of 0.013 to 0.010 for the 
full scale. The specific data leading to the 
drag breakdown lines shown in Fig. 2-115 is: 



Parameter 
Weight, lbs 
Rotor Speed, rad/sec 
Radius, ft 
Tip Speed, ft/sec 
Rotor Area, sq ft 
Solidity 
Density, slug/cubic ft 
^dmin 
Base Parasite Area, £,, sq ft 
Parasite Area Constant, K, 1/sq rad 

Value 
2,825 
14.9 
22.5 

varies 
1,588 

0.0976 
0.002106 

0.0100 
19 
20 

Rational 
Average for test 
Average for test 
PCA-2 
Average for test 
PCA-2 
PCA-2 
Average for test 
Estimated full scale 
Best guess 
Best guess 

Although rather semiempirically 
arrived at, the drag breakdown of Fig. 2-1 
15 illustrates the fact that drag at high speed is 
dominated by base parasite drag area (fe) of the 
configuration and, to a lesser extent, the 
profile drag of the rotor blades alone. Drag at 
low speed is dominated by rotor drag and mostly 
by rotor-induced drag. 

Now consider, in Cierva's words, " a 
normal equivalent machine." Before Pitcaim 
got into the autogyro business, he and his 



company were very prominent in the 
fixed-wing business. His airplane manufacturing 
side developed the "Mailwing" series, which 
refined his PA-5, -6, and -7 into the PA-8 shown 
in Fig. 2-1 16 . The PA-8 was certificated on 
September 19, 1930. Seven months later, the 
Pitcairn PCA-2 autogyro, shown in Fig. 2-1 
17, was certificated. Consider then these five 
points: 

1. both aircraft were built by a well established 
and very reputable company, 2. the two aircraft 
were certificated within 7 months of each other, 
3. both aircraft used the same engine (Wright, 
9 cylinders, J6 having 300 available 

horsepower), 
4. the selling prices at the factory were close 
($15,000 for the PCA-2 in 1931 versus 

$12,500 for the PA-8 in 1930), and 
5. the chief engineer for both aircraft was 
Agnew Larsen. 

I believe that the PA-8 is a satisfactory 



example of an airplane equivalent to the 
PCA-2 autogyro. Of course, the PA-8 was quite 
well developed while the PCA-2 was the first 
in the series . Direct control and the lower 
solidity, three-bladed cantilevered rotor 
technology were yet to come, so the PCA-2 was 
not in the Cierva C.30A class. 
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Fig. 2-115. Estimated PCA-2 drag 
breakdown. 

The comparison of the two aircraft is 
shown in Table 2-17. I have used the summary 
data from two volumes of U. S. Civil Aircraft 
Series by Joseph P. Juptner [134, 135] as the 



source for the comparison. There are, of 
course, some glaring differences that appear 
on Table 2-17 such as range, speed, and useful 
load. These differences cannot be assumed 
away as Cierva tried to do in his definition of 
"normal equivalent machines." He attempted 
to reduce the differences to just profile drag of 
the wing "which increases as the cube of flight 
path velocity" versus the rotor profile power 
which increases "directly proportional to the 
speed within wide limits." [4]. 

Cierva's view in February 1930 was that: 
"top speed, five to ten per cent less [than the 
airplane]." The tabulated comparison gives 1 
18/145, which is more like 20 percent less. 
Cierva said, "rate of climb, twenty per cent 
less." My comparison shows 800/1,100, which 
is 21 percent less. Table 2-17 does not include 
Cierva's "steepness of climb, fifty percent 
more," but many photos support that view. 
Finally, Cierva stated "minimum horizontal 



speed, fifty per cent less." Table 2-17 shows 
20-25 versus 60-miles-per-hour landing speed, 
which is better than 50 percent. Glauert stated 
his belief that the autogyro "is less economical 
than an aeroplane, but that it has very 
considerable advantages as regard safety and 
ease of landing." Obviously, whether vertical 
descent was an issue or not, autogyro 
economics were not then, and I suspect Glauert 
thought they would never be, competitive with 
an "equivalent machine." 
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Table 2-17 shows that the autogyro 
purchase price was only 20 percent more than 
the airplane . Furthermore, the PA-8 got 
roughly 600 miles out of 80 gallons of gas, 
or about 7.5 miles per gallon, while the PCA-2 



got only 5.6 miles per gallon. Fuel economy 
certainly favored the airplane in 193 1. 
(Personally, I am glad that Glauert said he did 
not "think the autogyro was useless.") 

.... 

Fig. 2-116. The Pitcairn PA-8M "Super Mailwing," ¿“— No. 364, Sept 19,1930 [134]. 

-•»-•-



Fig. 2-117. The Pitcairn PCA-2, ¿“— No. 410, April 2,1931 (127]. 
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Table 2-17. Autogyro Versus Airplane 
Comparison in the 1930/1931 Era 



Farameter 
Engine 
Horsepower available 
Length overall 
Height overall (tail down) 
Rotor diameter 
Rotor blade chord 
Rotor blade area 
Rotor blade airfoil 
Wing span upper 
Wing span lower 
Wing chord upper at root 
Wing chord upper at tip 
Wing chord lower at root 
Wing chord lower at tip 
Wing area upper 
Wing area lower 
Total wing area 
Wing airfoil 
Weight empty 
Useful load 
Payload with 52 gal. fuel 
Payload with 78 gal. fuel 
Gross weight 
Maximum speed @ sea level 
Cruise speed @ ses level 
Landing speed 
Climb in one minute @ sea level 
Climb after 10 minutes 
Ceiling 
Gasoline capacity 
Oil capacity 
Cruising fuel flow 
Range at cruising fuel flow 
Price at factory field 

PCA-2 
Wright J6 
300 
23 ft 1 in. (blades folded) 
13 ft Oin. 
45 ft 
22 in. 
159.5 sq ft 
Göttingen 429 

30 ft Oin. 

52 in. 
30 in. 

88sqft 
88sqft 
NACA M-3 modified 
2,093 lbs 
907 lbs 
375 lbs 

3,000 lbs 
118 mph 
98 mph 
20-25 mph 
800 ft 

15,000 ft 
52 gal. 
6.5 gal. 
16 gal. /hr 
290 miles 
S15,000 in 1931 

PA-8 
Wright J6 
300 
24 ft 10 in. 
9 ft 9 in. 

35ftOin. 
31 ft l in . 
58 in. 
58 in. 
52 in. 
52 in. 
161 sq ft 
117 sq ft 
278 sq ft 
Pitcaim -2 
2,294 lbs 
1,706 lbs 

1,008 lbs 
4,000 lbs 
145 mph 
122 mph 
60 mph 
1,100 ft 
7,500 ft 
16,000 ft 
80 gal. 
8 gal. 
15gal./hr 
600 miles 
$12,500 in 1930 



Now let me examine the thrust 
horsepower required and thrust horsepower 
available comparison (recall Fig. 2-1 10) that 
Cierva presented to the Royal Aeronautical 
Society on February 13, 1930. To begin with, 
the PCA-2 aircraft drag (in pounds) from 
Fig. 2-115 becomes propeller thrust horsepower 
required simply by multiplying by flight path 
velocity (in feet per second) and dividing by 
550, the conversion from foot-pounds per 
second to horsepower. The result of this 
rescaling is shown in Fig .2-1 18 with flight 
velocity now given in miles per hour. The thrust 
horsepower available shown in the figure, 
following Eq. (2.300), is 300 horsepower times 
the propeller efficiency (T|P) . The propeller 
efficiency is somewhat of 
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an educated guess [136] for illustration 
purposes.51 Note, however, that this guess 
must at least agree with the PCA-2 maximum 
and landing speeds quoted in Table 2-17. 

The next step in the performance 
comparison is to obtain a 
thrust-horsepower-required line for the PA-8 
airplane . The propeller thrust for airplanes is 
generally determined from the airplane parabolic 
drag polar. That is, the drag coefficient of an 
airplane is well approximated [60]—but only up 
to near stall—as 

(2.303) 

cD=-?-=clb+ia*+B-Sr=^-+ B [ 
qS w TtAR Sw 7iSw I qb w 

and therefore the airplane drag is simply 



(2.304) 

B ' ' V 
Airplane Drag = DA C = qfe + qSwKCL H — 

7iq^bwJ 

where dynamic pressure (q) equals 1/2 pV2, 
(bw) is the wing span, and   and ¬ are 
constants. 

Two estimates of PA-8 performance are 
included in Fig. 2-118. The parasite area (fe) of 
12.5 square feet gives a maximum speed at sea 
level of 145 miles per hour. If the PA-8 had the 
same parasite drag area as the PCA-2 (i.e., fe = 
19 square feet), the maximum speed would only 
be 125 miles per hour, which is not consistent 
with the certificated speed shown in Table 2-17. 
The Munk biplane theory [137] gives ¬ = 0.83 
for the PA-8 biplane gap-to-span ratio. Perkins 



and Hage [60] suggest   = 0.012. The drag rise 
with stall is patterned after the Knight and 
Wenzinger experiments [138]. A maximum lift 
coefficient of about 1.4 set the landing speed at 
60 miles per hour. 

Viewing Fig. 2-118, it should be clear 
that Cierva took a great deal of liberty in 
comparing autogyros to airplanes (recall Fig. 
2-110). In my opimon, I doubt that the more 
knowledgeable audience members bought his 
simplistic explanation. By assuming that "both 
machines have the same parasite drag," he 
completely dismissed hub and blade shank 
drag and tried to make his point based solely 
on blades-alone profile drag. Today, the 
rotorcraft industry is well aware that without 
reducing hub and blade shank drag, very high 
speeds will never be reached without a great 
deal more engine horsepower. Brooks [7] 
notes that the PCA-2 was given the larger 
Wright R-975 E2 engine having 420 



horsepower, and the maximum speed only 
increased to 125 miles per hour. By 
extrapolation, the PCA-2 might have reached 
145 miles per hour with another 120 
horsepower. Perhaps Cierva had on his 
"marketing hat" when he gave his second 
lecture to the Royal Aeronautical Society on 
February 13, 1930. 

51 The applied aerodynamics text I have referred to 
here was taught in my first aero class at Rensselaer 
Polytechnic Institute in Troy, New York, in 1952. It is a 
small, thin, red-covered book—only 23 1 pages counting 
the index. It is also the best book on applied aero that 
I have read, and used, in 50 years. The only other 
comprehensive, applied aerodynamics text for airplanes 
that I have, which is of real value, is Perkins & Hage 
[60]. Of course, Fluid-Dynamic Drag by Hoerner [116] is 
indispensable. 
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Fig, 2-118, PCA-2 and PA-8 performance 
curves. 

2.11.6 Improvements 

Cierva presented his third—and 



last—lecture before the Royal Aeronautical 
Society on March 15, 1935. By this time his 
most advanced Autogiro, the C.30, was in 
low-rate production and doing well in the field. 
Rotor startup with power takeoff from the 
engine had replaced the "scorpion" tail. Direct 
control had significantly improved the C.19 
and PAC-2 low-speed handling qualities, and 
the "cantilevered," low-solidity, three-bladed 
rotor system was improving performance. 
Cierva chose this 1935 opportunity to 
divulged the newest development progress 
[5]—jump takeoff. 

Despite all of this development 
progress, Cierva began the lecture, after 
the introductory paragraph, with the following 
words: 

"One of the characteristics of the development 
has been the great number of difficult secondary problems 
[ground resonance for one] . The very large number 
of parameters and the heterogeneity of the requirements, 



some aerodynamical, some dynamical and some 
structural, make correct compromising-which is the secret 
of all successful engineering-an exceedingly delicate task. 
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In many instances, sacrifices in one direction 
have to be made in order to improve some other point, 
until increased knowledge has permitted to redress 
the balance again. Simultaneous progress all along the 
line is only possible when a final formula is established, 
and the autogiro is only now arriving at that stage. Until 
then it [the autogyro] will necessarily lack that 
refinement of design which can only be attained by 
repeated steps in the same direction." 

From this rather philosophical beginning, 
Cierva used the following two paragraphs to 
respond to his autogyro critics:52 

"Let these considerations [the preceding two 
paragraphs] be my answer to those critics of the 
autogiro who ask, for example, why, after such a 



relatively long development, we have failed to 
substantiate our early and repeated claims about the 
autogiro being capable of competing with the airplane in 
speed. 

We are convinced of the potential truth of our 
claims and, if we had left aside the fundamental 
development, we feel we might have proved them by 
now. However, and we think wisely, we adopted the 
other course. Speed, which incidentally we do not 
consider to be the only criterion of utility of aircraft free 
from some of the limitations of the aeroplane [such as 
stalling and spinning], will come as the result of 
stabilisation of the general conception and of the 
concentrated efforts of a great number of engineers. So 
will useful load, and while we make no claim to 
superiority in every respect, we are convinced that we 
will not be far behind the aeroplane in what might be 
called aeroplane performance." 

Cierva never said who "we" were. As it turned 
out, "we" were the rotorcraft industry, who, 
given Cierva's start, and "with the 
concentrated efforts of a great number of 
engineers [and many, many others]," developed 
the second-generation rotorcraft, the helicopter. 



Of course, as you know now, utility, not speed, 
became the prime objective. 

Let me now interject a remark Mr. 
Manning made during the discussion period 
that followed the second Cierva lecture in 1930 
(which described the C.19 and dealt with 
aircraft maximum lift-to-drag ratios). Mr. 
Manning pointedly said, 

"He thought the loss of top speed was 
important. The only excuse for the aeroplane was that its 
speed was greater than that of any other form of 
transportation. That was an advantage that must be 
pressed. With a good many light aeroplanes, if the 
conditions were slightly unfavorable, say a 20 miles per 
hour head wind, it was probably difficult for the 
machines with passengers and luggage to fly from 
London to Paris without landing to obtain further supplies 
of petrol. The expenditure of petrol in the case of the 
autogiro would be worse, and " 

In 1930, Manning was half wrong about light 
airplanes and all wrong about the growing civil 



aviation transportation system. 

The 1930 to 1935 period, when Cierva 
developed and brought the C.30 to market, saw 
Pitcaim and Kellett make considerable 
progress in the United States . The greatest 
strides in U.S. aeronautical research were made 
by John Wheatley at the N.A.C.A. at Langley 
Field in Virginia. After completing initial 
flight testing with the Pitcairn PCA-2 [127], 
Wheatley investigated the wing loading of the 
production PCA-2 [139] and then the 
influence of 

52 Hermann Glauert was not in the audience. He was 
killed in an accident at Famborough, England^ on August 

4,1934. 

250 

2.11 PERFORMANCE 



varying the load-sharing between rotor and 
wing [140].53 But at this point, after having 
published a classic theory and test report [75], 
there was not much more that Wheatley could 
learn about the rotor system and its drag, 
without a wind tunnel test. In the introduction 
to Full-Scale Wind-Tunnel Tests of a PCA-2 
Autogiro Rotor [141], he described the 
situation as follows: 

"No quantitative evaluation of the interference of the 
remainder of the machine upon the rotor was possible 
[wing loading and interference on the rotor was 
established, but no more could be done], but the most 
serious fault with the results lay in the fact that the drag 
of the rotor, its most important characteristic, could not 
be found. In order to obtain complete and accurate 
information concerning the aerodynamic characteristics 
of the PCA-2 autogiro and to supply data applicable to 
an analysis of the sources of its drag, the rotor was 
removed from the machine and tested alone in the 
full-scale wind tunnel at Langley Field in December 
1933." 



The rotor system was installed in the 30- by 
60-foot, open-throat wind tunnel. The entire 
supporting system beneath the rotor was 
shielded from the airstream to eliminate tare 
drag . The testing procedure was quite 
straightforward as Wheatley explained: 

"The rotor was started by the air stream, no mechanical 
starting gear having been incorporated in the test set-up. 
The rotor was set at about 10° [hub plane] angle of 
attack, the wind tunnel was started slowly by jogging on 
and off the lowest speed switch point, and the air speed 
was gradually increased as the rotor picked up speed. 

Force tests were made by the following procedure: The 
wind tunnel control was set for the lowest airspeed, the 
angle of attack was adjusted so the rotor operated 
steadily at a desired speed, and the necessary readings 
were taken. The angle of attack was then adjusted to 
give other desired rotor speeds, readings were again taken, 
and the process was repeated at other air speeds." 

To ensure reasonably low vibration, 
Wheatley used a variation on the blade 



tracking procedure you learned about earlier. He 
wrote: 

"In order to check the track of the blades, the rotor was 
run [he does not say to what condition] and a paint brush 
was lowered onto the rotor from above until the high 
blades were marked. Indicated adjustments were then 
made and the process repeated until the rotor 
operated smoothly as indicated by the steadiness of the 
balance scales. When the rotor operation was considered 
satisfactory, the blade tips tracked to within 1-1/2 inches." 

With tracked blades and a smooth rotor, 
Wheatley collected 89 data points with the 
production rotor, Table I, [141].54 The points 
fall into 4 sets grouped reasonably close to rotor 
speeds of 100, 120, 140, and 150 revolutions 
per minute. All data were corrected for jet-
boundary and blocking effects and "in addition, 
the drag of the rotor hub was measured with the 
blades removed and subtracted from the rotor 
[plus blades, droop cables, and lead-lag cables] 
data. 



Wheatley presented rotor lift and drag in 
fixed-wing coefficient notation. That is 

53 Both of these reports provide data about the 
performance of what was to become a high-speed, 
compound helicopter. I will discuss these two reports in 
the third volume of this book, Other V/STOLs. 54 His 
report also includes some points where many of the 
droop and lead-lag cable end fittings were faired. He made 
the point though that "the results are of minor practical 
importance because of the current trend toward the use 
of cantilevered blades with no protuberances." 
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(2.305) Rotor C, = -. = b — - ^ and 



Rotor CD =-. - ^ √“-
(XpV^)(7tR2) 

With the hub plane angle of attack (‡^) as his 
reference, he calculated advance ratio in the 
usual manner 

V™ cos a . 
(2.306) i i h p =. " ''* 

V, 

and that became the measure of forward flight 
speed. Fig. 2-119 and Fig. 2-120 show the 
primary results Wheatley obtained. 

All 89 data points shown in Fig. 2-119 
and Fig. 2-120 were obtained with identical 
root collective pitch (0root) . The variables are 
only wind tunnel speed and the approximate set 
of rotor speeds of 100, 120, 140, and 150 
revolutions per minute . The approximate 
corresponding rotor lifts are 1,200, 1,700, 



2,500, and 3,000 pounds . However, knowing 
that collective pitch at the blade tip (today we 
would use collective pitch at the 3/4-radius 
station) was a key parameter in the rotor 
equations, Wheatley was quite concerned 
about what he called "dynamic twist." Today 
dynamic twist is more commonly referred to as 
elastic windup. From PCA-2 flight testing, he 
"established the fact that the dynamic twist is 
about 0.89° at the tip for 1,000 pounds thrust." 
With the blades at rest, the collective pitch at 
the tip, measured with an inclinometer, was 1.9 
degrees. But when rotating, Wheatley felt the 
more correct tip collective pitch would be 3 
degrees for the 100-revolutions-per-minute 
data rising to 4 degrees when the rotor 
speed reached 150 revolutions per minute. I 
have made no distinction in Fig. 2-1 19 or 
Fig. 2-120 for rotor speed, thrust, or 
"dynamic pitch," but Wheatley does in his 
report. 



The prediction of the PCA-2 rotor lift 
and drag requires only six equations . These 
equations, primarily given by Wheatley [75], 
are simply refinements to those equations you 
have encountered earlier. The following 
equations now account, approximately, for 
the reverse flow region as Wheatley derived. 
The radial velocity effect on profile drag is 
accounted for as suggested by Harris [133]. The 
blade flapping motion is described by 

(2.307) ß v = ß 0 - a l s c o s y - b l s s i n y 

and the feathering, by 

(2.308) fl ≥¥ = 0 + ı , - ¬ ≤ — s i n v - A i C c o s y . 

The rotor inflow ratio (Xhp) and advance ratio 
(Uhp) are defined relative to the rotor hub plane 
and calculated as 



Vpp sin ah n - v 
(2.309) ? l h p = - F P ! * — 

Vt 

_VF Pcosah p 

Ã-hp — 

v, 

and, as a reasonable approximation in forward 
flight, the induced velocity (v) is taken as 
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(2.310) v = —-, „Ú . 
2p(7tR2)VFPcoscchp 

The coning (ß0), longitudinal flapping (ais), and 

lateral flapping (bis) are calculated from 

(2.311) 
ß o = : i + å <   + { - A < - ¿ ^ V i ì ‘ - ¡ ^ 

[2^ -|»≤,]◊ +( | 14, + ^ < ) Ó + ( 2 ^ + ¿ < ) . 

(2.312) 
i- |<+¿^ 

Á–◊ + 2 2^~72^J B ] C 

, 1 2 7 4 
1—11-1 + — 1 — 

2 " 2 4 

(2.313) b l s = 

4 
-, M"hpHo 

15ÚÒ h p 

, 1 2 1 4 

i+—M- i , ,—iC 
~ r~hp ~À r~hp 

+ ¿ 1— ' 



The rotor thrust (T) is obtained from 

(2314) ̂  Õ‘>+(Õ^-£‘+(Õ^-Õ^}‡ 

-[|l4p + ̂ <jB,c+(^(<.)a,s 

and the rotor H-force (H) from 

^(0.776÷‹ + 1 . 1 4 4 8 < - 0 . 2 5 9 Œ - | ‰ 1 ’ + | [ 1 - | < ) ‡ À  

- "* ◊&”***$*4&”(A]c "bis) 

+ ^ Ÿ – - ^ ) ( – 2 - À – - ¬ 1 Ò ‡ ‚ ) + ≥ [ ≥ + | ˆ ; ] ‡ ‚ 1 

+ K 1 + è^) a A + ï ( | l h p " ï^) a ' s + ï ( 1 + ï M Î , , ] B , A p 
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aa 

(2.315) 

The preceding five equations allow the 
rotor-power required or torque required to be 



calculated simply as 

(2.316) 

Ò P _ Q" Q - c 

P p(7uR2)Vt

3 p ( 7 i R 2 ) ( Q R ) V t

2 p ( r c R 2 ) R V 2 Q 

= ^ ( 1 + 4 . 6 5 ^  + 4 À 5 ˆ 4  _ ˆ ·  ) _ Ò À  _ — Ì ÷ ¸  

once the rotor solidity (CJ), airfoil lift-curve 
slope (a), and airfoil drag coefficient (Cdo) are 
established. The rotor lift (LR) and drag (DR) are, 
of course, easily calculated from 

L R = rp(rc R 2 )v t

2 ~ | (C T cosochp - C „ sincchp) 
(2.317) L J 

DR = [p (nR2 ) Vt

2 ] (CT sin ahp + CH cos ahp ) 

There is no doubt that the preceding 



path to calculating rotor lift and drag 
represents early autogyro rotor performance 
technology applicable up to, perhaps, an 
advance ratio of 1.0 . However, given just a 
slide rule, pencil, and paper, the calculations 
are rather daunting; but keep in mind that 
rotorcraft pioneers were not put off by the task. 
The fact that reasonable engineering had led to 
equations worth the calculating effort (i.e., 
the elbow grease) was really quite a 
breakthrough. The fact that a comparison of this 
1930s theory could be made to full-scale rotor 
performance data acquired in a very large 
wind tunnel must have made the work both fun 
and exciting. 

The predictive capability (compared to 
Wheatley's experimental results) when using 
Eqs. (2.307) through (2.3 17) is illustrated by 
Fig. 2-121 for lift and Fig. 2-122 for drag. To 
obtain the rotor forces in pounds, I used the 
data Wheatley tabulated for rotor speed, hub 



plane angle of attack, and advance ratio to 
determine flight path velocity (i.e., wind 
tunnel airspeed) in feet per second. Then, 
assuming the air density to be 0.002378 slugs 
per cubic foot, I calculated the dynamic 
pressure (q) . Wheatley gives the reference 
rotor area (TtR2) as 1,588 square feet, so with 
the tabulated lift and drag coefficients, it was 
an easy matter to convert coefficients back to 
pounds (thus, the experimental values shown in 
Fig. 2-121 for lift and Fig. 2-122 for drag). 

The prediction of lift and drag for all 
89 data points was easy after the performance 
equations were "programmed" onto a 
spreadsheet (I used Microsoft Excel). As input, I 
set the collective pitch ( 0) to 1.9 degrees (but 
in radians), which Wheatley says was the tip 
pitch angle nonrotating. I assumed the blades 
were manufactured with zero twist, BUT 
allowed for the "dynamic twist" that Wheatley 
knew existed when the rotor was operating. The 



airfoil lift- curve slope (a) was taken as 5.73 per 
radian. The rotor speed, hub plane angle of 
attack, and advance ratio were set to the values 
Wheatley tabulated for each point. Finally, at 
each point, the blade linear twist term (6t) was 
iterated to the value that zeroed torque, which 
satisfied the condition of autorotation. (I used the 
Goal Seek tool provided by Excel to do the 
iteration.) 
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Using blade twist (0t) as the iteration 
parameter to obtain zero torque was a simple 
way to approximate "dynamic twist," the 
largest unknown that Wheatley addressed in 
his report [141] . The amount of blade twist 
required to zero torque varied from 1.4 degrees 
at low speed to -1.4 degrees at high speed. 
Wheatley used a figure of 0.8 degrees per 1,000 



pounds of lift. However, guided by Eq. (2.42), 
it appears a more rigorous approximation 
found by linear regression analysis would be 

(2.318) , =-0.0000199 Vt
2 

+ 0.00000729 ß0Vt
2 - 0.0000263 VF

2
P . 

In fact, the influence of elastic twisting (both 
steady and periodic) could be pursued more 
thoroughly by following Eq. (2.42) and 
studying the two Wheatley reports on the 
subject [58, 59] . But once the step towards 
including blade elastic twisting is taken, then 
blade bending both flapwise and chordwise 
should be included along with lead-lag motion. 
At that point, a much more comprehensive tool 
such as the Johnson CAMRAD computer 
program [109] is called for. 

The capability of simple performance 
equations to approximate rotor drag is shown in 



Fig. 2-122 . The average airfoil profile drag 
coefficient (do) used for the Göttingen 429 
was 0.0127, which was increased from an 
estimate based on both British [121] and 
N.A.C.A. [142] data to account for droop and 
lead-lag cables (etc.). 

John Wheatley's thorough flight 
testing of the Pitcairn PCA-2 Autogiro 
[127], followed by full-scale, rotor-alone wind 
tunnel testing [141], finally quantified 
practical autogyro performance as it existed 
before Cierva introduced the wingless, direct 
control C.30 . The performance situation is 
simply stated in Fig. 2-123 . The rotor blades 
alone (plus the droop and lead-lag cables, and 
associated fittings) were producing a 
maximum lift-to-drag ratio just under 7 . The 
PCA-2 aircraft reached a maximum lift-to-drag 
ratio slightly over 4.5 at an advance ratio of 0.3. 
By similarity, it is quite likely that the Cierva 
C.19 (see Fig. 2-15) reached maximum 



lift-to-drag ratios comparable to the Pitcairn 
PCA-2 (Fig. 2-123), although I have no flight 
test data to confirm this statement. 

Cierva makes the point in his 1935 lecture, his 
last, that 

"The most efficient rotor produced so far has a maximum 
lift-drag ratio (excluding the drag of the hub) of the order 
of between 13 and 14. This represents an increase of 
some 40 percent on the best rotor of five years ago, and 
perhaps 80 percent on the early autogiro rotors. At the 
same time, the maximum lift coefficients have been 
materially increased. These results have been obtained by 
making the blades cantilevered, suppressing the 
suspension cables, replacing the cumbersome interblade 
bracing by non-reactive dampers at their root 
attachment, using more efficient aerofoil sections, 
replacing the fabric covering which constituted a 
relatively irregular and deformable surface by rigid 
superstructure, and by diminishing the solidity 
considerably." 
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Fig. 2-121. Measured versus predicted 
lift for PCA-2 blades alone. 
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Fig. 2-123. PCA-2 blades alone and aircraft 
lift-to-drag ratios. 

Cierva noted two additional performance 
points in his paper that are quite interesting. 
He writes first that "the symmetrical aerofoil 
makes a very poor autogiro blade." This may 



be true, but the Göttingen 606 airfoil (which had 
a 0.17 thickness-to-chord ratio) he chose for the 
C.30 had a large nose-down pitching moment, 
which caused a fatality and a maximum speed 
restriction to be placed on the aircraft. Second, 
he was of the opinion that the introduction of 
direct control on the C.30 now meant that "a 
fixed wing in present machines [the PCA-2 and 
C.19] would certainly not pay for its extra 
weight." 

When Cierva presented his March 15, 
1935 paper, the Royal Aircraft Establishment 
(RAE) had finally (in 1934) obtained a C.30 
to use to conduct an end-user evaluation. A 
report was ultimately published in March 1939 
[54]. The RAE conducted gliding tests similar to 
those Wheatley did with the PCA-2 [127]. The 
C.30 demonstrated a lift-to-drag ratio that was 
only slightly better than the Pitcairn PCA-2, as 
Fig. 2-124 shows . And—most certainly— the 
performance of the C.30 fell far short of the 



"best equivalent airplane." I cannot help but feel 
that Cierva knew—as he spoke to the Royal 
Aeronautical Society that Friday in 1935— that 
further rotor system improvements were not 
going to close the gap shown in Fig. 2-124. That 
was the position taken by the RAE [54] who 
concluded that 
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Fig. 2-124. Autogyro versus airplane 
lift-to-drag performance. 

"the experiments do not suggest any very obvious 
method of improving performance of the aircraft [the 
C.30] except by reducing the parasitic drag of the 
fuselage. It has been estimated that the reduction of 
solidity and increase of blade angle as compared with the 



C.6 autogiro has increased the L/D ratio of the rotor at top 
speed from 5.9 to 8.8 and it seems unlikely that much 
further improvement in the aerodynamic performance 
of the rotor can be obtained." 

2.11.7 Drag Reduction 

The view of the Royal Aircraft 
Establishment [54] that further autogyro 
performance improvements would come "by 
reducing the parasitic drag of the fuselage" 
was not a new thought in December 1936. 
Airplanes just after World War I55 were not 
"things of beauty" from a drag point of view. 
John Anderson, in his superb book A History 
of Aerodynamics [143], credits the April 1922 
Louis Bréguet paper [144] and, in particular, 
the 1929 MelviU Jones paper [145] as the 
catalysts for drag reduction and improving 
fixed-wing aircraft lift-to- drag ratios. Both 
Bréguet and Jones presented their views 
before audiences of the Royal Aeronautical 



Society. 

55 By 1920, this war was generally referred to as "The 
Great War" or "The War to End All Wars." These were 
just working titles until we could give it a number. 
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To point out just how important 
aircraft lift-to-drag ratio (L/D) was to air 
transport costs, Bréguet displayed the 
now-famous range equation. In modern 
notation, he showed the audience that 
(2.319) 

r Takeoff Wgt.Y 
˜ Landing Wgt.J 

Range = 375 
s.f.c. D 



where range is in statute miles, propeller 
efficiency is (r)p), specific fuel (and oil) 
consumption (s.f.c.) of the engine is in pounds 
per horsepower per hour, and weights are in 
pounds. The constant, 375, is in statute miles per 
pound per horsepower per hour. The landing 
weight (WL) is the takeoff weight (WTO) less 
the weight of fuel (WF) and oil (Wo) used. 
That is, WL = WT0 -(WFuel + W0il ) . This quite 
well known equation applies here to 
propeller-driven aircraft using a reciprocating 
engine.56 

Since fuel and oil weight used is 
generally 10 to 20 percent of the takeoff weight 
(the Lindbergh Spirit of St. Louis is one of 
several exceptions [146, 147]), Bréguet's 
range equation is easily simplified to 
(2.320) 



Range = 3 7 5 - ^ 
s.f.c. D 

Wc + W n 

WT, 
1 + 

i f w F + w 0 i i fw F +w 0 ' 
2{ WT0 J 3[ WTO t 

To simplify this further, aviation gasoline 

weighs about 6 pounds per U.S. gallon, and 

engine lubricating oil weighs about 7.4 pounds 

per U.S. gallon, so 

(2.321) 

Range -375 À– 

s.f.c. D 
6GalFuel+7.4Gal0i] 

W TO 

(1.05). 

Now, oil consumption is about 1/10 of fuel 

consumption by gallon, so (2.322) 

Range -375 œ L 
s.f.c. D 

6.74 Gal Fuel 

W TO 

(1.05) 

which means that stämte miles per gallon of fuel 



is roughly (2.323) 

= 2,650 
St. Miles Î ¿ c n r|p L 
GalFuel s.f.c. D W 

Ú 0 

The message Bréguet sent in 1922 was 
to get busy and (a) raise aircraft lift-to-drag 
ratio from 8.3 to 16.6; (b) raise propeller 
efficiency from 0.73 to 0.775; and (c) reduce 
engine fuel and oil consumption by 25 percent. 
Assuming a new design, these steps would 
nearly double the payload, and the "London to 
Paris passenger fares can then be brought 
down to some 450 or 500 francs—without 
profit for the company. Although very high, 
these last figures are more encouraging and 
nearly workable." 

56 Variations of the Bréguet equation, including its 
derivation, are available in references [60] and [136]. 
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Using the simplified Bréguet range 
expression, Eq. (2.323), autogyros, up to the 
Cierva C.30A, can be compared to light, 
civil airplanes produced and certificated by 
the United States fixed-wing industry in the era 
of 1927 through 1933 . This comparison is 
shown in Fig. 2-125 . The basic trend was 
confirmed—miles per gallon vary inversely 
with takeoff weight, and, just as Glauert 
maintained, autogyros were not "economical" 
when compared to either biplane or monoplane 
airplanes. 

The over 500 data points shown in 
Fig. 2-125 come from the 9-volume U. S. 
Civil Aircraft Series by Joseph P. Juptner, 2 
volumes of which were referenced earlier [134, 



135] . This concise source provides maximum 
still air range (without reserves) in statute 
miles, and total fuel and oil capacity in U.S. 
gallons. The miles per gallon of gasoline were 
calculated from this data. Nearly 240 biplanes 
are shown with an x symbol in Fig. 2-125, 
and shaded circles denote an equal number of 
monoplanes . No seaplane or amphibian 
airplanes are shown. All the aircraft are single 
engine. 



x Biplanes 
Mu nr; pi J 

* Autogyros 

1,000 MIOU 3,001 4,000 íjlti lt 6,001 
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Fig. 2-125. Fuel efficiency of autogyros versus 
airplanes in 1927-1933. 

261 

2.11 PERFORMANCE 



Fig. 2-125 shows three lines of aircraft performance as defined by the factor —": 
S.I.C. D 

used in the Bréguet range equation. The lowest 
line, where the factor equals 6.0, suggests the 
position of the autogyro relative to the 
airplane as representative of the 1927 through 
1933 era. The dashed line corresponds to 
relatively unstreamlined biplanes having a 
factor of 7.2 . The highest line shows the 
evolution of the monoplane through 1933, 
which is a factor of 13.8. Remember, the 
period from 1934 up to World War II was when 
the performance of the monoplane really 
improved. No data from that era is shown in Fig. 
2-125. 

Ignoring Cierva's position that 
autogyros would compete favorably with 
airplanes, I think that by the mid-1930s, 
biplanes were being replaced by monoplanes. 
As Fig. 2-125 shows, the monoplane was 



more fuel efficient than the biplane at any 
takeoff weight. Monoplanes became the 
configuration of the future, and 
single-engine biplanes served primarily as 
light, one- or two-, or sometimes 
three-passenger sport planes . Airplane 
performance was improving by leaps and 
bounds through the 1930s, but real autogyro 
development was just getting started with the 
C.30. Still, many thought the autogyro was just 
another sport plane. 

I think you will agree with John 
Anderson that motivation for fixed-wing 
aircraft performance improvement really did 
come from the 1929 MelviU Jones 
paper—once you have read Professor Jones' 
paper. His paper is titled The Streamlined 
Aeroplane, and it is the most entertaining 
aerodynamic performance paper I have ever 
read.57 Furthermore, his logic is irrefutable. The 
Professor's position was that the "correct 



aeroplane" should have no more drag than 
induced drag (because lift is required) plus 
skin friction drag (because an airplane has a 
surface.) He concedes that propeller efficiency 
of 0.75 "is practical on present-day craft, and 
efficiencies higher than say 85 to 90 per cent 
are unlikely to be achieved in the near future." 
His view on induced drag was that "although 
it is an important item in the power account at 
the lower cruising speeds, it is not the 
predominating factor at speeds above 90 
m.p.h." With respect to skin friction drag, 
Jones concludes—after a very thorough 
discussion of flat plate and minimum airfoil 
drag—that airplanes of the era must have a 
turbulent boundary layer, not a laminar 
boundary layer. 

Based on representative data for 
biplanes of the 1920s, Professor Jones used 
his assumptions for induced drag, skin friction 
drag, and propeller efficiency to calculated 



engine brake horsepower per 1,000 pounds of 
weight for his ideal, streamlined aeroplane. 
Then he chose aircraft from the 1927 edition 
of Jane's All The World's Aircraft to see how 
close they came to his ideal.58 He chose 
installed engine maximum brake horsepower 
as the reference power and top speed as the 
reference velocity, but remarked in a footnote 
that he was "aware that cruising speed is 
of more general interest than top speed, but I 
have used the top speed in computing these 
points because of the difficulty of estimating 
engine power at cruising 

57 MelviU Jones' opening sentence is: "Ever since I first 
began to study Aeronautics I have been annoyed by the 
vast gap which has existed between the power actually 
expended on mechanical flight and the power ultimately 
necessary for flight in a correctly shaped aeroplane." His 
paper just gets better. 
58 Professor Jones said, "I took the figures from Jane to 
avoid argument. Being, as I suppose, a makers' own 
figures, they are unlikely to be pessimistic as regards 
performance." (Now that is straightforward!) 
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speed." Fig. 2-126 is my reproduction of the 
performance assessment that Professor Jones 
presented to the fixed-wing industry in 1929. 
The figure shows that a sorry performance 
situation did indeed exist at the time. No 
wonder the aircraft industry was motivated 
to decrease drag and raise aircraft L/D . The 
progress just from 1927 through 1933 was 
certainly impressive, and development, as you 
know, did not stop then. 

The performance of Cierva, Pitcairn, 
and Kellett autogyros compared to Professor 
Jones' perspective about "aeroplanes" is also 
shown in Fig. 2-126. In retrospect, it appears 
that Cierva was, in fact, improving 



performance and reducing drag—at least 
relative to the first-generation autogyros and 
pre-1930 biplanes . Certainly retracting the 
landing gear would have been a big step 
forward. In fact, if Cierva had not died, he 
could have used his creative engineering ideas 
to further drag reduction, not of the rotor but 
of the rest of the machine. He would have had 
some very useful wind tonnel test results 
provided by the National Physical Laboratory to 
start with. 
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Fig. 2-126. Professor Jones' assessment of 
airplane performance in 1927 versus his ideal 

of the streamlined aeroplane [145]. 
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Fig. 2-127. The NPLperformed wind tunnel tests on this √..10¿ 1/8-scale model [54]. 

The C.30 evaluation [54] by the Royal 
Aircraft Establishment and National Physical 
Laboratory contains a drag breakdown for a 
1/8-scale model (Fig. 2-127) of the C.30A 
autogyro, shown in Table 2-18 . This C.30 
parasite drag baseline was obtained from 
wind tunnel tests . The original data is 



presented as drag in pounds at 100 feet per 
second, a common practice in that era. I have 
converted the data to the modern form of 
equivalent flat plate drag area (fe) in square feet, 
which is drag divided by dynamic pressure 
(i.e., fe = D/q). These data are for the fuselage at 
zero angle of attack. At a 26-degree angle of 
attack, the drag of the complete model was twice 
as high. 

Table 2-18 shows the component 
drags of the Cierva C.30 Autogiro, but it just 
as easily could be relabeled as drag breakdown 
for an early biplane or, for that matter, any one 
of a number of monoplanes. In 1929, Professor 
MelviU Jones admonished the aircraft industry 
to reduce equivalent flat plate drag area 
(fe)—the measurement of parasite drag. As you 
know, the aircraft industry has never stopped 
reaching for the Professor's ideal 
"streamlined aeroplane." To illustrate this 
point, consider Fig. 2-128. I constructed and 



interpreted this parasite drag area chronology 
primarily from the enormously valuable 
technical survey titled Quest For Performance 
[148] by Laurence Loftin. Cierva, Pitcaim, and 
Kellett autogyros had, as you can see, 
considerable room for parasite drag reduction. 
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Table 2-18. C.30 A Drag Breakdown Based on 
1/8-Scale-Model Tests 

Component 
Undercarriage and its wheels 
Engine and exhaust ring 
Fuselage, with vertical fins 
Pylon 
Rotor hub 
Tail plane 
Windscreens 
Tail wheel 
Total 

Drag at 
lOOfps(lbs) 

29 
17 
11 
10 
10 
7 
4.5 
1.5 

90 

Parasite Area 
(fc in sq ft) 

2.44 
1.43 
0.93 
0.84 
0.84 
0.59 
0.38 
0.13 
7.57 

Percent 
32 
18 
12 
11 
11 
8 
5 
2 

100 
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Fig. 2-128. The progress of the aircraft 
industry towards "the streamlined 
aeroplane." 

2.11.8 KeUett YO-60 Predicted 
Performance 



This introduction to autogyro 
performance would not be complete without an 
example of typical engine horsepower versus 
airspeed for a top-of-the-line autogyro. The 
complete performance of "modern" autogyros 
did not depend only on the rotor system L/D, 
of course. The drag of the fuselage, landing 
gear, hub, blade shanks, and other 
protuberances (i.e., everything but the blades) 
were quite important too . The propulsive 
efficiency of propellers was also a dominant 
factor in arriving at the total engine brake 
horsepower required to fly. The example I have 
chosen is the last Kellett autogyro. 
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As Brooks notes on pages 238 and 
239 of reference [7]: "The [one] XO-60 [and 



seven] YO-60's were the last Autogiros 
delivered to the United States Army Air Forces. 
They were extensively tested after delivery but 
their higher initial cost and greater 
maintenance demands, as compared with 
fixed-wing liaison light aircraft, led to their 
rejection for army cooperation work." This last 
autogyro delivery was accompanied by a 
performance analysis [149] of the XO-60/YO-60 
series.59 I have taken some liberty in transposing 
the final data and results into 1990s 
terminology. The XO-60/YO-60 series, 
shown in Fig. 2-129, had the primary physical 
characteristics shown in Table 2-19. 

The estimated XO-60 power required 
versus speed and data necessary to the estimate, 
based on [149], are shown in Fig. 2-130 to Fig. 
2-133. The standard method of relating power 
available and power required in the autogyro 
era was to reduce power available by propeller 
efficiency as discussed earlier. However, in 



Fig. 2-130, I have chosen to increase power 
required by propeller efficiency so that engine 
brake horsepower required (BHPr e q d) becomes 

(2.324) ¬Õ– ,d = D"*°"™ft V F P . 
Ÿ 550ÚÛÓ  



»≤€-‡„≤-–≤^≤Õ 

Fig. 2-129. The Kellett YO-60 [7]. 



59 Wayne Wiesner, a longtime friend and a pioneer in his 
own right, sent me this reference in a private letter. In the 
early 1940s Wayne worked at Kellett under chief 
engineer Richard Prewitt. Wayne later joined Stan 
Hiller's innovative team as Jay Spenser notes in reference 
[150]. 
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Table 2-19. XO-60 Physical Properties 



Parameter 
Design Gross Weight 
Operating Weight Empty 
Normal Fuel 
Main Rotor 

Diameter 
Chord at 70% radius 
Solidity 
Airfoil (root) 
Airfoil (tip) 
Rotor Speed at max speed at sea level 
Rotor Speed at min speed at sea level 

Horizontal Tail 
Span 
Chord 

Fuselage 
Number of Seats 
Overall Length 

Propeller 
Hamilton Standard, constant speed 
Hub Model 
Blade Design 
Diameter 

Engine 
Jacobs I-6MB-A rated at 
Oneratine Sneed 

Value 
2,800 lbs 
2,180 lbs 
36 gal. 
3 blades 
43.2 ft 
12.92 in. 
0.0476 
23016 NACA 
23010 NACA 
241 rpm 
189 rpm 

loft 
30 in. 

2 
21 ft 5 in. 
2 blades 
2150 rpm 
2B20 
6135A-6 
8.5 ft 

300 hp 
2.150 mm 



The reason I have chosen this alternate form is 
to facilitate performance comparisons of the 
late-model autogyros to helicopters, as you 
will see later in Volume II—Helicopters. The 
rotorcraft drag (Drotorcrañ) is estimated at flight 
weight (W) by 

(2.325) 

D „ = fe (0.5pV¿ ) + Dmcr = fe (0.5pVF
2
p )+ J . 

V ' 'rotor 

The parasite drag area (fe) varies with fuselage 
angle of attack (or, alternately, the hub plane 
angle of attack, ÓÒ̧ ) and, hence, with flight 
path velocity (VFP). A longitudinal trim 
analysis must be completed to obtain the angles 
of attack. For the XO-60, this variation is 
shown in Fig. 2-13 l.Note the auxiliary scale 
giving flight path velocity. 



The propeller efficiency for the 
Hamilton Standard constant speed propeller 
was obtained from Hamilton Standard and is 
shown in Fig. 2-132 . With previous Kellett 
flight test data available from the YG-IB, 
Wiesner was able to estimate the blades-alone 
drag for a gross weight of 2,800 pounds and 
altitudes of sea level, 5,000, and 10,000 feet. 
The blades-alone lift-to-drag ratio at sea level is 
shown in Fig. 2-133. Rotor speed and hub plane 
angle of attack varied at each speed, which 
meant that advance ratio could not be based on 
one single defined tip speed. 
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Fig. 2-130. The XO-60 did not have great 
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Table 2-20. Estimated and Guaranteed 
YO-60 Performance Parameters 

Parameter 
Gross Weight 
Design Altitude 
Maximum Speed at Sea Level 
Minimum Speed 
Cruise Speed 
Maximum Range with 36 gal. 
Average Cruising Speed for Max Range 
Endurance at 60% Power with 36 gal. 
Service Ceiling 
Minimum Time to Climb to 10000 ft 
Takeoff Distance (to clear 50-ft obstacle) 
Landing Distance (to clear a 50-ft obstacle) 
Maximum Permissible Diving Speed 

Value 
2,800 lbs 
Sea level 
134 mph 
26 mph 
70 to 94 mph 
210 statue miles 
70 mph 
2.2 hours 
13,750 ft 
16 min 
247 ft 
nil 
154 mph 

Guaranteed 

127 
30 

2.0 

250 

You will note in Fig. 2-133 that there 
are three lift-to-drag ratios that can be quoted. 
The rotor-blades-alone L/D has been discussed 
at length earlier in this volume. The L/D based 
on parasite drag plus blade drag represents 
performance obtainable in a power-off glide. 
This is what Wheatley, for example, obtained 
with PCA-2 testing. The third L/D ratio 



shown in Fig. 2- 133 is, I believe, the most 
meaningful because it is based on engine brake 
horsepower required (EHPreq*d.) in level flight. 
This third L/D ratio is defined here as 

(2.326) WVpp 
)JEPR 550 EHP, req'd. 

Some typical summary performance 
data is provided in Table 2-20. Kellett actually 
based the final tabulated performance summary 
on 320 horsepower available from the engine 
and a gross weight of 2,800 pounds . The 
Kellett Autogiro Corporation guaranteed 
certain YO-60 performance parameters to the 
U.S . Army Air Force and those are also 
shown in Table 2-20. 

The final power required versus 
airspeed performance displayed in Fig. 



2-130 illustrates the penalty of having a propeller 
for forward thrust and a rotor for lift. Both 
devices incur a profile power loss. This 
represents a double loss in profile power. In 
fact, as you will see later, the rotor is quite 
capable of lifting and thrusting forward—very 
efficiently—as the helicopter has demonstrated. 
This aspect of wings, propellers, and rotors will 
be reopened in the discussion about high-speed 
rotorcraft. 
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2.11.9 Closing Remarks 

Despite ongoing efforts by Cierva, 
Pitcairn, Kellett, and others, the autogyro 
never demonstrated airplane-like performance. 
In fact, the majority of autogyro improvements 



dealt with the rotor system and its shortcomings, 
such as the vibration it transmitted to the 
airframe. The reduction in rotor solidity and the 
move to three cantilevered blades certainly 
helped, but hub and blade-shank drag reduction 
were never even addressed. Furthermore, no 
effort to retract landing gear was ever even 
discussed. Rotor-blades-alone maximum 
lift-to-drag ratios much above 10 were never 
realized, and the one attempt at utilizing an 
improved airfoil led to stability and control 
problems that caused a fatality. It almost seems 
to me that the mold was cast for all rotorcraft 
performance during the autogyro era. 

As you will read in Volume 
II—Helicopters, preoccupation with the rotor 
system and its undesirable features permutated 
helicopter development. 
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The autogyro matured with the addition 
of (1) direct rotor control (accompanied by the 
removal of the wings, ailerons, and rudder) and 
(2) auxiliary power drive to pre-spin the rotor 
prior to takeoff (leading to nearly vertical jump 
takeoffs) . Not incidentally, maintenance and 
safety generally improved as Cierva, Pitcairn, 
and Kellett, the industry leaders, developed 
new models. By the time the Cierva C.30 was 
fielded, Reginald Brie [52] was able to list 
rather specific maintenance requirements for 
this most produced autogyro model. Brie 
recommended that grease lubrication be 
periodically performed as shown here in Table 
2-21. 

Brie also prescribed that every 50 flying hours, 
the following points required lubrication: 



a. Engine Controls and Petrol Control Rods 
b. Clutch and Brake Controls in Cockpit 
c. Actuating Gear for Bias Control in Cockpit 
d. Levers for Bias Control on Pylon 
e. Operating Controls and Pins for Dog and Plate 
f. Clutch Controls 
g. Casings in All Bowden Controls Are Well Packed 
With Vaseline and Should Receive Occasional 

Attention 

Table 2-21. Lubrication 
Requirements of the Cierva C.30 



• Rotor System 
1. Grease Flapping Articulation Pin Every 10 Flying Hours 
2. Drag [lead-lag] Articulation PinT Grease Every Flying Day 
3. Grease Hub Every 20 Flying Hours 

• Control System 
4. Grease Longitudinal Hinge Pin [hub pivot] Every 10 Flying Hours 
5. Grease Lateral Hinge Pin on Starboard Side Every 10 Flying Hours 
6. Ball Joint on Top of Control Column, [Grease] Every 10 Flying Hours 
7. Grease Hinge Fork Every 10 Flying Hours 
8. Center of Cross Shaft, Grease Every 10 Flying Hours 

• Pre-Spin Drive 
9. Top Unit-Mechanical Starter [gear box], Grease Every 20 Flying Hours 
10. Grease Top Ball Joint Every 10 Flying Hours 
11. | Groase] Spline in Bottom of Transmission Shaft Every 10 Flying Hours 
12. Grease Bottom Ball Joint Every 10 Flying Hours 
13. Engine Clutch—Grease When Dismantling Only 

• Landing Gear 
14. to 22. Eight Grease Points Done Every Flying Day 
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Maintenance in the rotorcraft world 
uses scheduled maintenance man-hour 

per flight hour as one contributor to operating 
cost per flight hour. Therefore, let me guess 

today 



from Reginald Brie's list that 2 man-hours 
would be scheduled for every 10 hours of 
flying plus 2 more hours for the 50-hour 
lubrication list. This gives 12 man-hours for 
50 flying hours or about one-quarter of a 
man-hour for every flying hour. The cost of 
grease and the lubricant is not included. 

What is left off of Brie's scheduled 
maintenance list is, of course, the 
140-horsepower, Armstrong Siddeley Genet 
Major IA engine (military designation, the Civet 
I), the fuel system and, by the way, the propeller. 
Fortunately, a much more complete picture of 
the Cierva C.30 autogyro maintenance 
requirements is available . The AVRO 
Company delivered several military versions 
of the C.30 to the Royal Air Force . These 
aircraft were known as ROTA gyroplanes. 
Manuals [1 5 1-1 57] were provided for the 
autogyro.60 It is from these manuals that I have 
constructed a much clearer picture of the C.30 



aircraft and its maintenance. 

The Royal Air Force version of the 
Cierva C.30, Fig. 2-134, is describe in Air 
Publication 1490, Volume I [1 52] as a 
two-seater, single engine gyroplane aimed 
at communication duty. Chapters I through VII 
of this primary volume give a specification-like 
description of the fuselage, undercarriage, tail 
units, rotor, controls, engine installation, flying 
equipment (i.e. instruments), and miscellaneous 
equipment. Rigging, Assembly, and Various 
Adjustments are covered in Chapter VIII, 
and Special Flying Notes are provided in 
Chapter IX. 

Volume œ≤ of Air Publication 1490 
[156] provides an index of assemblies by 
drawing number and the breakdown of parts in 
each assembly. This view of the ROTA is 
virtually a drawing tree, which I have 
summarized in table form along with a parts 



count in Table 2-22 . Cierva and the AVRO 
Company organized the ROTA description into 
25 assemblies and, by my count, about 2,800 
parts defined by a drawing were required to 
build-up one ROTA. Of course, shop-floor 
supplies such as standard nuts, bolts, and 
washers, etc., added at least another 2,200 
parts. 

Once assembled, these parts required 
maintenance. The maintenance schedule [1 54] 
called for inspection between flights, and 
inspections (a) daily, (b) every 10 hours, (c) 
every 20 hours, (d) every 40 hours, and (e) 
every 120 hours . The Civet I engine and its 
"airscrew" required inspection as well, of 
course . The engine and propeller inspection 
intervals were identical to the airframe. The Air 
Ministry publication makes it quite clear that 

"This schedule describes the technical detail of the 
maintenance and shows the routine which is considered to 
be necessary in normal circumstances. It is not to be 



interpreted as absolving any persons concerned from the 
responsibility of acquainting themselves with or acting 
upon any circumstances indicating the necessity for 
additional [i.e., unscheduled maintenance] work." 

60 Miss Mary Jane Miliare, Office Administrator of the 
Department of Research and Information Services at the 
Royal Air Force Museum in London, tracked down the 
original manuals and got me a copy. The rotorcraft 
industry, myself included, is extremely grateful. 
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Fig. 2-134. The Royal Air Force C.30 was 
known as the ROTA Gyroplane. 
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Table 2-22. Index of Assemblies 
and Parts Count for the ROTA 



Assembly 
Controls, Rotor Clutch and 
Brake. Wheel Brake 

Controls, Engine 

Controls, Machine 

Controls, Magneto Starting 
Controls, Rotor (really rotor hub 
+ transmission) 

Engine Cowl ins 

Engine Mounting 

Fuel System 

Fuselage, Bulkhead 

Fuselage. Clutch Mounting 

Fuselage, Fairings 

Fuselage. Flooring 

Fuselage, Joints 

Fuselage, Seating 

Fuselage, Skeleton 

Fuselage, Windscreens 

Instruments 

Miscellaneous 

Oil System 

Pylon Structure 

Rotor Blades 

Tail Plane 

Tail Struts 

Tail Wheel 

Alighting Gear (undercarriage) 

Airframe Grand Totals 

Plus One Engine and One Prep 

Drawing 
Number 

TSS6 

0529 

Not Given 

01938 

Not Given 

E735 

0535 

P552 

0532 

C589 

E557 

D529 

Not Given 

N509 

C576 

M5I8 

Not Given 

Not Given 

P546 

J612 

F699 

G550 

G544 

KS49 

K546 

Ó/Î 

Subassemblies 
Per Assembtv 

8 

9 

S 

1 

21 

1 

1 

3 

1 

1 

12 

1 

0 

1 

10 

2 

11 

S 

3 

4 

3 

2 

5 

8 

12 

133 

n/a 

Drawing Parts 
Per Assembly 

79 

52 

191 

16 

435 

13 

65 

86 

51 

19 

151 

20 

0 

4 

SO 

13 

45 

59 

39 

SI 

1,056 

41 

26 

8 

182 

2.S1Î 
n/a 

Shop Parts Per 
Assembly 

86 
65 
128 
45 

297 
69 
36 
72 
IIS 
46 
149 
24 
0 
0 
0 

IIS 
152 
44 
55 
16 

516 
0 

38 
24 
134 

2,229 
a/a 
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Fig. 2-135. The Royal Air Force C.30 lubrication diagram 

(the C.30 had 39 lubrication points). 

For historical purposes, I have 
included both airframe and engine 
maintenance schedules in Appendix K. You 
will see that many of the maintenance 
items required lubrication. The lubrication 
diagram, Fig. 2-135, shows points that accepted 
grease and those that just got a squirt of oil. 

So much for the practical subject of 



maintenance. Now let me proceed to the most 
important autogyro aspect—safety. 
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The proponents of the autogyro argued 
that the first merit of the autogyro was its 
freedom from the dangers of fixed-wing 
stalling at low speed.61 The lift performance at 
low speed was, in fact, better than fixed-wing 
aircraft, and this safety was carried over to 
the helicopter during power-off landings . You 
will recall that Henrich Focke, like Cierva, set 
the number one design criteria for his 
helicopter as safety following power failure. 
For the autogyro, the rotor was unpowered in 
flight so a transition from level to gliding 
flight following power failure was quite benign. 
The autogyro was virtually automatic in going 



into a glide. The reasonable management (by the 
pilot) of potential and kinetic energies available 
from altitude, speed, and rotor inertia became 
the key to successful power-off landings, as you 
will read later. 

By 1938 (about a 10-year span), Brooks 
[7] notes that five people had died in autogyro 
accidents: one in Britain, three in France, and 
one in the United States. By 1938,1 estimate 
that 

• Over 500 autogyros had been built, 
including nearly 50 prototypes 

• More than 50 pilots had been trained 
• At least 100 fixed-wing pilots had 

flown autogyros in the U. S. alone 
• About 40,000 flight hours and over 

2-1/2 million miles had been accumulated by 
the fleet. 

Accepting these estimates leads to a statistic of 
8,000 fleet hours flown for each fatality. The 



fatality rate of the autogyro was, of course, at 
least twice as good as the fixed-wing industry 
was experiencing by 1938 [158]. That does not 
mean though that autogyro crashes were not 
happening. In his eleventh and twelfth 
appendices, Brooks [7] provides manufacturers' 
serial numbers . In his remarks' column, he 
notes that 30 "crashes" had happened, but 
lists no information about the 97 Kellett 
autogyros built by Japan. Therefore, on the 
basis of, say 400 autogyros, about 30 crashed. 
This would be an attrition rate of 7.5 percent, 
which actually is not too bad when compared to 
general aviation statistics. 

Perhaps you will find this additional 
information about aviation safety useful [159]. 
The subject will come up again in the helicopter 
discussion presented in Volume II. 

The gathering, analyzing, and 
reporting of aviation accident data has 



played an important part in making air 
transportation safer. One of the earliest 
examples of this safety improvement activity 
took place in November 1921, at the Premier 
Congrès International de la Navigation Aérienne, 
held in Paris. During this conference, Albert 
Tete presented a review of the status of aerial 
transportation in France [160]. In addition, R. 
Mayo presented a paper entitled Aviation and 
Insurance [161], which discussed the "causes 
of the many accidents which account for the 
high insurance rates." Specifically, he stated: 

61 The more optimistic of autogyro champions strongly 
suggested that forward flight efficiency comparable to the 
airplane would undoubtedly be achieved, however 
airplane development was already so far ahead that the 
lead held by the fixed-wing industry could not be 
overtaken. 
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"The frequent accidents to airplanes 
employed on air routes have been due to 
widely divergent causes. Probably 90% of 
them were due to carelessness and could 
have been avoided, had the necessary 
precautions been taken. The principal causes of 
accidents may be enumerated as follows: 

1. Poor piloting; 
2. Engine trouble; 
3. Lack of system; [organization of personnel] 
4. Poorly adapted airplanes; 
5. Poor airdromes; 
6. Unfavorable meteorological conditions." 

With only minor changes, the Mayo paper 
presented in 1921 could be presented at any 
"aerial transportation" safety conference today. 

In the United States, following World 
War I, the National Advisory Committee on 



Aeronautics (N.A.C.A.), by request of the 
Assistant Secretaries for Aeronautics in the 
Departments of War, Navy, and Commerce, 
established a special commission "to prepare a 
basis for the classification and comparison of 
aircraft accidents, both civil and military." In 
NACA Report No. 308 [162], 13 classes of 
accidents, 4 classes of injuries, and 6 classes 
of damage to material were defined. Categories 
of immediate and underlying accident causes 
were established and an accident form was 
adopted. This approach was used to analyze 
1,432 military and 1,400 civilian accidents that 
occurred before January 1929 [163] .In June 
1936, a further refinement to definitions and 
methods of analysis was established with 
NACA Report No. 576 [164] . That report, 
entitled "Aircraft Accidents, Method of 
Analysis," became the standard United States 
reference on the subject and formed the 
foundation for current National Transportation 
Safety Board (NTSB) aviation accident 



reporting. 

There was an immediate payoff for 
the efforts of the N.A.C.A.-led committee. 
Analysis of the data revealed major 
shortcomings in aircraft design and pilot 
training (e.g., deficiencies in aircraft stability 
and control, and spin recognition and 
recovery) for which corrective actions were 
developed and implemented. It should be 
noted that solving these problems did not 
require computing accidents per flight hour 
or other ratios that are considered important 
measures of transportation safety today. The 
priority then, as now, was to put an end to 
accidents. 

In October 1944, the U.S. Civil 
Aeronautics Administration (CAA), the 
predecessor to the Federal Aviation 
Administration (FAA), published the first 
"Statistical Handbook of Civil Aviation" [158]. 



This first of many CAA handbooks pointed 
out that reported accident statistics were based 
on definitions and classifications established by 
NACA Report No. 576 (although the Statistical 
Handbook incorrectly referenced the NACA 
report as "TR-567"). This document 
summarized aviation statistics dating back to 
1926, including air carrier and private flying 
accident statistics compiled by the U.S. Civil 
Aeronautics Board (CAB), the predecessor to 
the NTSB . In the introduction, the CAA 
acknowledged that "there are some gaps in the 
early statistics because fact-gathering 
machinery had not been fully organized and it 
also was extremely difficult to obtain reliable 
figures from an industry still inchoate." With 
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respect to private flying, the CAA noted that, 
"Because of the dislocation caused by the War, 
statistics on the amount of private flying during 
the war years are incomplete." Despite these 
reservations, the 1944 CAA handbook 
provided early examples of detailed tables 
regarding such aircraft operating statistics as the 
number of hours flown, miles covered, and 
passengers carried. Many of the safety measures 
using these statistics are still used today. 

Today, the NTSB investigates civil 
aviation accidents and has amassed a database 
of coded, as well as narrative, information. Over 
32,000 aviation accidents, which have occurred 
since 1982, are summarized at the NTSB 
website (www.ntsb.gov) and at the FAA Office 
of System Safety 
(http://nasdac.faa.gov./asp/asy_ntsb.asp). The 
FAA Statistics and Forecast Branch publishes 
a yearly "Census Of U.S. Civil Aircraft." The 

http://www.ntsb.gov
http://nasdac.faa.gov./asp/asy_ntsb.asp


census provides details about the number and 
types of aircraft currently operating in the U.S. 
civil aviation fleet, along with other relevant 
data. Fleet-size data are obtained by 
extrapolating data from a survey 
questionnaire mailed to a sample of registered 
owners. The validity of this extrapolation has 
been questioned occasionally. Today there are 
approximately 350,000 U.S . civil registered 
aircraft, which makes updating and correcting 
the census and registration records a daunting 
task. Nevertheless, by combining data from the 
FAA and NTSB, such statistics as accidents per 
100,000 operating hours for each civil 
aircraft grouping are prepared and widely 
distributed. 
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The contributions made by Cierva 
before his tragic, untimely death (he was 
killed December 9, 1936 at the age of 50 in a 
Douglas DC-2 accident at Croydon Airport 
near London, England) cannot be restricted to 
just the preceding, technically oriented 
discussion. Just as importantly, Cierva spread 
rotorcraft technology worldwide—in the most 
direct way— by helping other companies get 
started in the autogyro business. Brooks [7] 
records that autogyros were manufactured in at 
least seven countries, which certainly hastened 
the arrival of a practical helicopter. 

The autogyro era of the rotorcraft 
industry developed from the roots established 
by the Cierva Autogiro Company, Limited, as 
shown in Fig. 2-136. This initial industry base 
was created from the technology developed by 
Cierva and the business strength provided by 
the Weir brothers, in particular James Weir who 



became chairman of the company. In effect, the 
Cierva Autogiro Company was the engineering 
department and business headquarters for the 
autogyro and its development. The A.V. Roe & 
Co., Ltd. became the manufacturing facility for 
the early contracts with the Air Ministry 
of Great Britain. 
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As word of Cierva's success with 
the autogyro spread, Harold Pitcairn saw the 
potential in the United States and initiated a 
strong business tie with Cierva and Weir. This 
led to the Autogiro Company of America as a 
principal licensee. An immediate subsidiary, 
the Pitcairn Aircraft Company, was set up to 
design, develop, market, and produce its own 
line of autogyros. The Kellett brothers obtained 
a license from the Autogiro Company of 
America and became a competing firm with its 
own products. 

In Europe, the initial license to the 
Weymann-Lepere Company passed on to the 
Liore-et-Olivier Company in France, and 
Henrich Focke brought the technology to 



Germany. 

The efforts of these pioneering 
companies, and TsAGI in Russia and Kayabe in 
Japan, were rewarded. Brooks [7] points out that 
the industry developed some 46 different 
autogyro types and delivered about 450 
rotorcraft by the end of World War IL A 
summary of delivered production models 
shown in Fig. 2-137 confirms that the 
Cierva Model C.30 and its derivatives 
dominated the market. 
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Brooks also uncovered (and included in 
his excellent history) enough detailed data to 
construct several other summary charts, 
which capture the accomplishments during 
the autogyro era. For example, the industry 
demonstrated that it had a product at a 
reasonable price. Fig. 2-138 shows that in 
"back-then dollars" these early rotorcraft could 
be delivered for something on the order of $ 
5.50 per pound of empty weight. The most 
produced model, the Cierva C.30, even 
approached $3.50 per pound. Updating these 
prices to 2010 dollars provides an estimate 
of about $50 to $77 per pound of empty weight. 

The industry also made considerable 
progress in reducing the weight empty fraction 
of the autogyro over the two-decade period. 
This structural efficiency measure, the ratio 
of empty weight to maximum takeoff gross 



weight, is shown in Fig. 2-139. As the rotor 
systems improved and other components 
incorporated prevailing fixed-wing aircraft 
technology, the weight-empty fraction dropped 
from about 0.81 to 0.58 . Advanced 
configurations, on the drawing board as the 
era came to close, suggested that the 
structural efficiency would continue to improve 
and that empty weight would be less than half 
of the maximum takeoff gross weight. 

These first successful rotorcraft 
certainly enjoyed a unique position in 
the transportation system of their day. With the 
wealth of technical data provided by Brooks [7], 
it is quite easy to incorporate the autogyro onto 
Gabrielli's and Von Karman's view shown in the 
front piece art of this volume. The future 
position of the practical helicopter that was yet 
to come is shown by the autogyro data in Fig. 
2-140. 



There is one last note I would like to 
make in closing this brief introduction to 
autogyros. In the early 1960s, the Royal 
Aeronautical Society established the Cierva 
Memorial Lecture honor. Dr. James A. J. 
Bennett, who carried on after Cierva's 
untimely death, had the privilege of giving the 
first lecture on February 16, 1961 [80]. Henrich 
Focke, in being honored for developing the first 
practical helicopter, gave the Fifth Cierva 
Memorial Lecture on October 23, 1964 [10]. In 
his introduction, Henrich Focke said, 

"The author was brought to the task of 
making the first practical helicopter because de 
la Cierva did not do it himself." 
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Improvements in Aeroplanos with Rotating Wings. 

I, JUAN DE LA CIERVA, Spanish sub-
ject, of 34, Alfonso XII, Madrid, Spain, 
Engineer, do hereby declare the nature 
of this invention and in what manner 

6 thè ‚‡ÚÂ is to be performed, to ⁄ par-
ticularly described and ascertained in 
aud by the following statement:—' 

An aeroplane with rotating wings as 
hitherto constructed consists essentially 

π of an ordinary aeroplane provided with 
all the elements' necessary for its pro-
gress and steering, such as motor, pro« 
poller, wheels for starting, rudder, etc., 
in which however the wings, instead of 

13 remaining fixed relatively to it, as in the 
ordinary aeroplane, revolve freely- by 
virtue of the supporting reaction of the 
wind, during forward movement upon 
them i round a shaft common, to all of 

20 them and necessorily inclined backward. 
In the accompanying drawings:— 
Viii*. 1 and 2 are illustrations of 

known forms of machine. 
Figs. 3, 4 and 6 illustrate the present 

2n invention. 



Figs. 1 and 2 illustrate two different 
.types of said known apparatus. The »min 
liefer.t of this typo of aeroplane lies in the 
lateral displacement of the centre of pres-

30 euro in the assemblage, of such rotating 
wings all moving in one direction, due to 
the want of symmetry in the velocities 
produced by the wind, an arrangement 
which necessitates the use of two groups 

35; of wings revolving in opposite directions, 
os in Fig. 1,. accompanied by aero-
dynamic and structural disadvantages,-or 
else the counteraction of such want of 
symmetry by producing a lift on the 

40- opposite 'sido', which arrangement makes 
it necessary to arrange the wings with a 
suitable negative inclination with refer* 
once to the rotating^ shaft, and to con-
struct them with .wing sections of low 

45 aerodynamic power. The latter condi-
tion necessitates a verv accurate calcula-
tion and n difficult and uncertain adjust-

u j e « I/-] 



meut, as well as n considerable iuciease 
of the wing surface, Fig. 2, and neither 
system does away with the structural *0 
difficulties inherent in the necessity of 
using shaft tubes capable of resisting 
great bending stresses and consequently 
of great weight and diameter, nor with 
problems of bracing the wings of the °5 
requisite length. 

The improvement which forms the sub-
ject matter of this invention consists in 
arranging the rotating wings on a shaft 
tube, but without the ai,d of stuys or CO 
angular bracing members, in «uch 
manner that they can move freely in ‡ 
plane which passes through the axis of 
rotation, the joint being provided with 
two or more ball or roller bearings. The 05 
bearings required for all the wings ure 



fixed to a common armature or support 
which is itself capable of rotating freely 
on a radial, axial or ball hearing con-
nected to the body of the apparatus ' ° , 
which lies under it by means of -some 
structural device, as for instance, a 
pyramid formed by four tubes. Fig. 3 
shows this arrangement where monoplan« 
wings are used, e being the joints of the 75 
two symmetrical wings a a, r the rein-
forcing braces of the wings, L the base 
or support of the wings which ore 
mounted by bearings on the axis E sup-
ported on the tube pyramid t. The 80 
shaft Figs. 1 and 2, is dispensed with. 
Similar arrangement would apply- to the 
employment of wings for biplanes or 
multiplanes. 

The operation is as' follows:—When 8.5 
the apparatus runs over the starting 
course, the system of wings acquires a 
speed of rotation, due to the reaction pro-
duced on the wing. The speed of rota-
tion generates ‡ centrifugal force F , Fig. 00 
4, applied to the centre of gravity of each 
wing — directed perpendicularly to the 
axis, whilst, the lifting. reaction S is 
directed perpendicularly to the wing, and 
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both forces constantly balance each other, 
ao tl¡at the resultant coincides with the 
straight line which connects the joint E d 
shaft of the wing t with the point P of 

* application of the lifting reaction, the 
consequence being that, under such con-
ditions, the wing behaves as if it were 
rigidly connected with accentrai abaft 

. . tuttu. The joint e is arranged more or 
1 0 less below the wing, according to the 

typt; of each apparatus, in such manner 
that the angle «, which, neiodyiminic-
ally, the wing must form with the axis 
of gy i ¡it io n (approximately a right angle) 

'*> ‡̄Î- be that which is suitable. 
The advantages obtained are as 

follows:— 
'1. The centre of pressure mid nuppdrt 

is mechanical, and not aerodynamical, 
™ Ís automatically centered, as the system 

⁄Û ÚÂÔ˝ÓÔ of its construction cannot 
transmit moments which tend to tip the 
apparatus over. The aerodynamical 
lateral displacement of the centre oi pres-

*•* sure gives rise to an inclination only of 
the means of rotation, Fig. 6, And con-
sequently to tbc deviation of the lifting 
reaction coinciding therewith, by caus-
ing the apparatus to incline sightly, an 

W eltect which may ha prevented by the 
twisting raomeot and which in any cose 
is of no importance, considering the 
Èmuli angle ß ; nini the means of using 
one group of wings only revolving in the 

8 6 same direction, without requiring any 
rigid stay» or soy calculations for the 
adjustment, or running any danger of 
the system getting out of order. 

2. Dispensing with, owing to the 
4‘ absence of bending moments, the heavy 

shaft tube and its support by substitut-
ing a simple and light structural device. 

3. Heang of using wing sections of the 
highest efficiency without any negative 

™ inclination and with the reduction of the 
necessary wing surface resulting there-
from. 

4. Absolutely automatic stability, not 
dynamical, instead oí the conditions 

™ which obtain in aviation machines 
hitherto, inasmuch ‡‚ the invention 
involves no displacement of the frame-
work of the apparatus. The latter is in 
ftct to ‡ cortam extent, supported by the 

M jointe of the wings which cause a tem-
porary displacement of the central axie 
of rotation relatively to the remainder 
at tKa orinara t Ë‚ wndn a ÚÔ≤≤≤ÔÔ mnfinn 

place of the gyroscopic motion which 
occurs in apparatus with wings rigidly 
connected, which is obviously an advmi- Gii 
tage. 

It is dear that the invention is capable 
of modifications in (be details without 
altering its essential character which 
dependa neither upon the aerodynamic 7" 
feature« of the aeroplane with rotary 
vingu, to whli'h it iit ¡≥|Ù1Í'≥1, nor upon 
the relative dimensions of the constituent 
elements of the joint, nor on llip num-
ber of the latter. 7o 

Having now particularly described and 
ascertained the nature of my said inven-
tion and in what manner the some ≥Î 
to be performed, I declaro that what 1 
claim is :— 60 

1. The uee in aeroplanes with rotatory 
wings which revolve freely by virtue of 
the supporting reaction of the wind of a 
pair or a group of auoh wings, mono-
plane or multiplane, all revolving in the B5 
‚‡ÚÂ directum, so mounted on a ring or 
the like or ‚ shaft et the centre in a 
flexible manner, that' they inuy move 
freely in a plane passing through the 
shaft, adopting at every moment the Ml 
position required for the equilibrium 
between the centrifugal force produced 
by the speed of rotation and the lifting 
due to the reaction of the wind an the 
wing. tin 

2. The method in aeroplanes with 
rotating wings which revolve freely by 
virtue of the supporting reaction of the 
wind whereby n flexible mounting for 
«uch wings is effected by means of a UHI 
joint or the like between the wing and 
it« mçans of rotation. 

3. In an aeroplane with rotating wings 
or group of'wingB which revolve freely 
by virtue of the supporting reaction of 10.1 
the wind providing flexible elements on 
or about ics relative centre euch that the 
angle of the winga with relation to the 
asm may deflect during rotation. 

4. The arrangement of the flexible ÌIU 
mean« according to Claims 1. 2 or 3 of 
the wing below the centre of gravity of 
the same, in order to obtain an angle 
approximately aright angle between the 
ehaft of rotation and the wing. ÷À 

6. Rotating aeroplano wings con-
structed and operating substantially as 
described herein with relation to the 
drawings. 



de.iroT« Vb« »lability. The Uftauppiied }. D. BOOTS 4 Co., 
SO according to »aid azia or allait maana of Ajrenta for the Applicant, 

rotation produce» momenta opposed to Thanet House, Temple Bar, London, 
the rolling motion. Thia effect taksatko W.C. 2. 

lUdhill Fiinlad lor Hi. M>jMtj'a Stationen OS», b, Lon.AÕ‡Í‡ÚË‚, Ltd.—19». 
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AIRFOIL LIFT AND PITCHING 
MOMENT 

The aerodynamics of airfoils is a subject 
included in any number of textbooks studied by 
undergraduates. The subject has many degrees 
of complexity. For my purposes here, I 
have sought the least complex discussion and aimed for results, not derivations. To that end, 1 
have turned to my early reference books1''' from which the fundamentals of lift and pitching 

moment of an airfoil in steady flow are crystal 
clear. However, an airfoil embedded in a rotor 
blade experiences unsteady flow, which means 
that this appendix must deal with an additional 
factor beyond introductory considerations. 
The effect of unsteady flow on airfoil lift 
and 
pitching moment is not found in many textbooks. My reference (Helicopter Theory by Wayne 
Johnson) provides the theory using advanced mathematics, which I have reduced to 

elementary terms. 

There are many sketches and photos 
showing how air flows around an airfoil. The 



one I have selected for Fig. B-l is from the thin 
book by L. Prandtl and O. G. Tietjens covering 
Applied Hydro-Aeromechanics. In this photo 
the airfoil is stationary, and streamlines of air 
are shown flowing about the airfoil. 
Fortunately, in studying fluid mechanics, it is 
only the relative motion between the air and the 
airfoil that matters. 

Lift 

Trailing 
Edge 

Stagnation 
Point 

. Free-Stream Air Flow Without 
the Airfoil in the Way ..-

Fig. B-l. Air flow around a cambered airfoil set at positive angle of attack. 

1 L. Prandtl and O. G. Tietjens, Fundamentals 
of Hydro- and Aeromechanics, Dover Publications, Inc., 
New York. 



2 L. Prandtl and 0. G. Tietjens, Applied Hydro-
and Aeromechanics, Dover Publications, Inc., New York.3 

Paul E. Hemke, Elementary Applied Aerodynamics, 
Prentice-Hall, New York, 1946.4 Wayne Johnson, 
Helicopter Theory, Princeton University Press, New 
Jersey, 1980. 
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That is, an airfoil flying in still air is exactly 
equivalent to an airfoil at rest in a moving air 
stream. The particles of air that pass over the 
upper surface of the airfoil travel faster than the 
particles passing along the lower surface of 
the airfoil. The difference in particle velocities 
between the upper and lower surface lead to a 
reduced pressure on the upper surface relative to 
the lower surface. In effect, the airfoil is sucked 
up—which is the force called lift. 



The website 
http://en.wikipedia.org/wiki/Liftforce has a 
rather good, modern discussion of airfoil lift 
should you have the interest, but for this 
appendix it is the calculation of airfoil lift and 
pitching moment I intend to convey. 

Thin Airfoil in Steady Flow 

First imagine that an airfoil, shown as a 
dashed outline in Fig. B-2, is placed in a wind 
tunnel, and the tunnel velocity is (V). 
Following thin airfoil theory, imagine the 
airfoil is reduced in thickness so that it appears 
as a line. In thin airfoil aerodynamics this line is 
called the mean line, and it is upon this line 
that the actual airfoil shape is constructed. 
Figure B-2 shows this mean line to be straight, 
and the outlined airfoil is considered 
symmetrical about this straight mean line. 
However, the mean line can be curved to many 

http://en.wikipedia.org/wiki/Liftforce


shapes in which case the airfoil is classed as 
cambered versus symmetrical (a cambered 
airfoil is shown in Fig. B-l). The aerodynamic 
properties of the cambered airfoil will be 
discussed shortly. 

Physically, the airfoil mean line shown 
in Fig. B-2 can be thought of as a simple flat 
plate inclined in a wind tunnel to the relative 
wind (V) at angle of attack (a). Imagine this 
very thin airfoil to be an elemental portion of a 
wing that has an extremely large wing span. 
Assume the elemental span (dr) to be very 
small, and let the chord (c) of the airfoil times 
the elemental span define the elemental area 
(dS) of this portion of the wing (i.e., dS = cdr). 
Use the coordinate (x) to measure distance 
from the leading edge towards the trailing 
edge at which x then equals Ò The pressures 
on the very thin airfoil produce an elemental 
normal force (dFisi/dr), an elemental chordwise 
force (dFc/dr), and an elemental moment 



about the leading edge (dMLE/dr) . The 
resultant of the normal and chordwise forces 
is the airfoil elemental lift (dL/dr) . In 
aerodynamic theory, the lift force always acts 
perpendicular to the velocity as Fig. B-l shows. 
In simple aerodynamic theory, airfoils of any 
type have no drag, so the lift force is computed 
as 

dL_dFN/dr 
dr cosa 

Imagine now two streams of air 
particles flowing along the velocity vector (V). 
The two streams strike the bottom of the dashed 
line airfoil at a point called the stagnation 
point, which is noted in Fig . B - l . At the 
stagnation point, the two streams separate. 
One stream flows along the airfoil surface: first 
forward, then around the airfoil nose, and then 
back to the airfoil trailing edge. The other stream 
leaves the stagnation point and travels directly 



along the bottom surface of the airfoil to the 
trailing edge. The particles that traveled along 
the stream that traces out the upper surface 
move faster than the particles traveling in the 
stream that 
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dL/dr 

11 dl-Vdr 

/ 

dMLE/dr 

√ dF./dr 

a 

Fig. B-2. Forces and moment on an airfoil. 

traces out the lower surface. This difference in 



stream velocity creates a pressure vacuum on 
the upper surface and a higher pressure on the 
lower surface. In effect, the airfoil is lifted up 
by suction. The velocities of particles in the two 
streams are determined by5 (2) 

f 
Upper surface velocity = uu p p e r = V 

and 

(3) 

Ò — X 
cosa + sin a . ' 

i 

Lower surface velocity = ul o w e r = V 
c - x 

cosa—sma. 
x
 J 

These two velocities create pressures on the 
very thin airfoil. The upper surface experiences 
a large suction relative to the lower surface 
because of the greater velocity of the particles. 
The two pressure distributions are calculated 



using Bernoulli's law as 
(4) 

1 1 
Upper surface pressure = Pupper = P0 + - p V 2 - - p u 2

p p e r 

and 

(5) 

1 2 1 2 
Lower surface pressure = Plower = P0 +—pV —pu 1 ( 

In these pressure equations, (Pü) is the barometric (or static) pressure of the air in which the 
airfoil is immersed. The second temi (l/2pV') is commonly called the dynamic pressure and 

generally denoted by the letter (q). 

SH. J, Stewart, A Simplified Two-Dimensional Theory of Thin Airfoils, J, of the Aeronautical Sciences, Oct. 1942. 
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It is the pressure difference between the 
lower and upper surface that creates a normal 
force on the airfoil. That is, ƒ– = Pi0Wer - PuPPer 
and this pressure differential (ƒ–) varies from 
leading edge to trailing edge as 

(6) AP = ^pV2 
( ! À 

4 sin a cos a. 
V 

This pressure differential is frequently 
parameter (q = i/2pV2) to read as 

nondimensionalized by the dynamic 
pressure 

‰ c —x 
(7) 7- = 4 sin a cos a. 

Xpv 2 V x 

The distribution of the differential 



pressure (divided by the dynamic pressure) 
along the airfoil chord is shown in Fig. B-3. The 
computation offered by Eq. (7) is shown at 5-
and 10-degree angles of attack. Note that this 
theoretical result—from what is called thin 
airfoil theory—shows that the differential 
pressure is infinite at the nose of the very thin 
airfoil when the airfoil thickness is theoretically 
zero. In practical cases the pressure 
differential can be very large, but is never 
infinite. This singularity reflects the behavior 
and velocity of the air particles that must go 
around the zero-thickness airfoil sharp leading 
edge with an infinite velocity. Real airfoils 
have a rounded leading edge, which is acted 
on by pressure, and this creates the chordwise 
force (dFc/dr) shown in Fig. B-2 . This 
chordwise force is created primarily by 
leading-edge suction. 

The differential pressures shown in Fig. 



B-3 act perpendicular to the very thin airfoil 

surface. The pressure distribution acts as a 

suction, which creates an elemental normal 

force (dFN/dr). This force is found by the integral 

(8) 

dR ^=√‰–Óı = 
dr Jo V 

2 K 

/ 
4 sin a cos ‡ c - x Y 

dx 

which, upon integration, gives the elemental 

normal force (9) 

^íL = Í IpV2i(c)(27is inacosa) . 

It then follows from Eq. (1) that the elemental 

lift is (io) 

dL dFN/dr (I - V v /„ . , 
— = ̂ — = - p V (c)(2jisma). 
dr cosa U √ n ' 



Equation (10) is generally rearranged to appear 

as (») EL - = (2îi)sina. 
(}pV2)(cdr) V } 
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Then, by assigning dynamic pressure the 
symbol (q = l/2pV2) and taking the elemental 
area as (dS = cdr), airfoil lift from thin airfoil 
aerodynamic theory is most frequently seen in 
the lift coefficient ( Ce ) form as 

J T 

(12) Cf= = (27t)sina~2^a. 
' qdS 



The lift coefficient is now clearly seen as a lift 
curve slope (2ˇ) times an angle of attack and, 
for small angles of attack, sin a is approximately 
a. 

Thousands of airfoil experiments have 
been performed. The overwhelming conclusion 
from theory versus test comparisons is that 
the airfoil lift coefficient does vary in direct 
proportion to the angle of attack for angles 
of attack up to about 10 to 12 degrees. The 
experiments have shown, however, that the 
slope is not dCf/doc = 2n = 6.28 per radian as 
thin airfoil theory suggests; rather the slope is 
more on the order of 0.1 per degree or 5.73 per 
radian. As the experimental data began to 
accumulate, it became common to write 
dC^/da = ‡ Ï . Even more common was the 
simple statement that 

(13) Cf=aoc. 



A i g l t o f 
¿»‚ÒÍ 

, 1 0 * g . 

y S des-

Chordwise Station ·ı/cì 
Fig. B-3. Differential pressure distribution 
over an airfoil from thin airfoil theory. 
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Now consider the elemental pitching 



moment about the airfoil leading edge 
(dMLE/dr). This elemental moment is calculated 
from the pressure distribution quite simply as 

(14) 

d M L E √« Î„, j 

— = - APxdx = 
dr J o 

-PV2 4 sin a cos a c - x xdx 

which, upon integration, shows that 

(15) 

^=-r>xdx=-g) (1Û.](.,(2 zrcsmacosa ‰‡-

This result states immediately that the 
moment center of the pressure distribution is 
one- quarter of a chord length aft of the 
leading edge . That is, the elemental moment 
about the leading edge is simply the elemental 



force (dFu/dr) times the moment arm (c/4). The 
negative sign arises from the sign convention that 
a positive moment is nose-up. 

It should be obvious that taking 
moments about the 1/4-chord point rather than 
the leading edge results in 

dr 

This very important result leads to the oft 
quoted statement that an airfoil's center 
of pressure is extremely close to the quarter 
chord. Furthermore, thin airfoil theory finds that 
the center of pressure (i.e., the chordwise point 
at which the lift force acts) does not move as 
angle of attack and lift are changed. Advanced 
theories and experiments show these 
conclusions from thin airfoil theory are not quite 
correct as I will discuss shortly. 



Cambered Airfoil in Steady Flow 

Figure B-l uses smoke to show 
streamlines of air particles flowing around a 
cambered airfoil, which is installed in a wind 
tunnel. The wind tunnel free-stream velocity is 
(V). Far ahead, and well above and below the 
airfoil, this velocity is parallel to the wind 
tunnel center line. However, air flow direction 
near the airfoil is increasingly influenced by the 
airfoil as the streamlines show. 

A cambered airfoil has a shape built 
around a curved mean line. A typical example 
is shown in Fig. B-4. The mean line of a 
cambered airfoil is referenced to the trailing 
edge. The ordinate of the mean line is on the 
Y-axis. As Fig. B-4 shows, angle of attack (ccc) 
is measured as the angle between the 
free-stream chord line, which is the X-axis. 
The chord line geometrically connects the 



leading edge to velocity and the chord line. 
The cambered airfoil adds two aerodynamic 
properties to a symmetrical airfoil. The first 
property is the addition of an angle (of attack) 
of zero lift (otoOi which alters the elemental 
airfoil lift equation to 

(17) 

^ = ^ P V 2 J ( c ) C ( = q c [ 2 n a ] = qc[2jc(ac+(-a( 1 L))] = q C [ 2 i i ( a c - a 0 L ) ] . 
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a,L 
Mean Line Chord a Line 

a 



Fig. B-4. A cambered airfoil set at positive 
angle of attack, which is measured between 

the free-stream velocity and the chord line. 

The reason I have expanded the angle of attack somewhat awkwardly is that the 
overwhelming number of cambered airfoils have a negative angle of zero lift. That is, to 

produce zero lift the chord line angle of attack 
(‡Ò) must be equal to the angle of zero lift 
(CCOL) SO that the total angle of attack (a) is zero. 

The second property a cambered mean 
line adds is that the airfoil pitching moment 
coefficient about the 1/4-chord point ( CM ) is 
no longer zero as Eq. (16) shows is true for a 
symmetrical airfoil . That is, Eq. (16) now 
becomes 

(18) SLt.gpv)/..)^ 

and the airfoil pitching moment coefficient ( 
CM ) is not necessarily zero. 



Thin airfoil theory gives relatively 
straightforward equations to calculate a 
cambered airfoil's angle of zero lift (in radians) 
and pitching moment coefficient about the 
1/4-chord point. These integral equations are, for 
angle of zero lift (OCOL), 

1_ 

71 

/•l 

(19) « 0 L = -
( l - x ) V x ( l - x ) 

dx 

and for the pitching moment coefficient, 

(20) 
" y ( 4 x 2 - 6 x + 3/2) 

Ó ‡-^ÎÃ1-*) 
dx 

' Ira H. Abbott and Albert E. von Doenhoff, Theory of Wins Sections, Dover Publications, Inc., New York, 

1959. 
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where the abscissa is a fraction of the chord; 
that is, x = X/c and the ordinate is Û = Y/c. A 
key to performing the integration is to define 
the camber as Û = (l-x)F(x), which cancels 
the quantity (1-ı) in the denominator and avoids 
a discontinuity at the trailing edge where x = 1, 
Since the mean line starts at X = 0, Y = 0, the 
function F(X) must be zero at x = 0 to avoid a 
discontinuity at the leading edge. One general 
construction of the mean line could be 

(21) 

y = ( l - x ) F ( x ) = ( l - x ) [ C 1 x + C2x
2 + C3x3+ ] . 

One of the earliest mean lines constructed 
assumed a general shape of 



(22) y = ( l - x ) F ( x ) = ( l - x ) [ ( C l X ) ( C 2 - X ) ] . 

When this shape is used in Eqs. (19) and (20), 
the angle of zero lift and the pitching moment 
coefficient become simply, for angle of zero lift 
(OOL) in radians, 

(23) a 0 L = - ^ - ( 4 C 2 - 3 ) 

and for the pitching moment coefficient, 

(24) C M i M £ = - ^ ( 8 C 2 - 7 ) . 

A practical example should help 
illustrate the properties of the cambered airfoil. 
You will recall from Section 2.6, which dealt 
with longitudinal trim, that Cierva used a 



cambered airfoil for the rotor blade of his model 
C.30 Autogiro. Symmetrical airfoils had been 
used on all his previous models, but he sought 
an improvement in performance by using the 
German Göttingen 606 . The pitching moment 
coefficient of this airfoil was CM - -0.052 

Ml/4c 

(see table 
on page 56), and the result was severe blade 
twisting at high speeds . Of lesser concern was 
the experimental finding that the angle of zero 
lift was OOL =-2.58 degrees or -0.04503 
radians (see table on page 56). 

Having the answers to Eqs. (23) and 
(24) means that a rational guess of the 
Göttingen 606 mean line shape can be made. 
Thus, 

(25) y = (l-x)[(0.190812x)(1.22198-x)]. 



The Göttingen 606 was quoted by Cierva as 
having a thickness ratio of t/c =0.1 7. 
Therefore, 
it seems reasonable {to me) to approximate the Göttingen 606 airfoil final shape with the 
NACA 0017 thickness7 added to the mean line given by Eq. (25). This may be an adequate 

approximation to airfoil selection during the 
autogyro era. The result of this possibility is 
shown in Fig. B-5. 

From Theory of Wing Sections by Abbott and von 
Doenhoff (pg. 113), the symmetrical NACA 0017 
thickness 
distribution is ± v =_L-(o.296çWx-0.12600x-0.35160x2 + 0.28430xJ0.10150xÍ' 

' 0.20v ' 
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Note that a cambered airfoil having a 
zero pitching moment coefficient is quite 



possible. Referring to Eq. (24), you can see 
that if C2 = 7/8, then CM = 0. This mean line 
does not, however, mean that the angle of zero 
lift is zero, since, from Eq. (23), you have (26) 

OL g 
4 - - 3 

. 8 
_ ^ ≥ 

16 

Maintaining the Göttingen 606 value of Ci = 0. 
190812 leads to a reduction in angle of zero lift 
from -2.58 degrees to -0.683 degrees . A 
NACA 0017 airfoil thickness distribution added 
to a mean line shape of 
(27) y = (l-x)[(0.190812x)(7/8-x)] 
leads to the airfoil shown in Fig. B-6 as the 
dashed line, in contrast to the Göttingen 606 
shown as the solid line. Notice that a slight 
curling-up near the trailing edge was sufficient 
to reduce pitching moment to zero. 



>.15 

> -•• l l f . i l 
U r e 

i i„ 
i ' • i ! ' i •• 1.1 

-«,115 

Fig. B-5. An estimate of the 
Göttingen 606 airfoil shape. 
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Fig. B-6. A revision of the Göttingen 606 
airfoil shape to obtain zero pitching 
moment 

about the 1/4-chord point. Both 
shapes use a NACA 0017 airfoil thickness 

distribution. 



313 

APPENDIX ¬ 

As a final note, recall that Kellett also used the Göttingen 606 airfoil for their KD-1 
rotor blades. Richard Prewitt, the chief engineer at Kellett, noted that: 

"Shortly after the first flight of this autogiro [the KD-1 on 
December, 1934], we found it to be longitudinally unstable 
above eighty m.p.h. We developed a theory of this 
instability, based on the assumption that the slightly 
unstable blade sections caused a negative pitching 
moment when operating on the advancing side of the 
rotor where the velocities are high. This theory proved to 
be correct when small turned-up trailing edge tabs were 
attached at the tips of the blades. In fact the pitching 
moment coefficient of the blade section was over 
corrected to the extent that the pilot reported it required a 
heavy forward load on the stick at high speed. This 
over-correction was rectified by successively cutting 
off the mboard end of the tab section until a desired 
longitudinal stability was obtained. Fortunately, the 
lateral stability was improved with the correction in 
longitudinal stability." 



Thin, Uncambered Airfoil in Unsteady Flow 

Even before the autogyro era began, fixed-wing aircraft quite frequently experienced a 
phenomena called flutter.9 The nutter phenomena can be likened to a stop sign mounted on a 

torsionally soft pole where the stop sign can 
often be seen twisting back and forth in the 
wind. An aircraft wing can easily be twisted 
off the fuselage at high speed should flutter 
be encountered. An airplane wing lift and 
pitching moment can combine with 
inadequate structure in an adverse way, and 
the aeroelastic response can be quite 
catastrophic. The primary blame for flutter was 
traced to aerodynamic forces and moments that 
occurred during a wing's structural deflections. 
This structural deflection created an unsteady 
aerodynamic 
environment, which altered airfoil Ufi and pitching moment properties from those known at 
the time. In 1929, Glauert10 published perhaps the first theory of airfoil lift and pitching 
moment during unsteady motion. Theodorsen provided a more complete theory in 1935, and 
a very comprehensive book—truly a bible—about fixed-wing aeroelasticity was published in 
1955.12 

During the autogyro era, little effort was 



made to transpose fixed-wing unsteady airfoil 
aerodynamics to the rotary wing problem. In 
fact, it took the demonstration of the helicopter 
to motivate a few researchers and 
mathematicians to seriously examine the 
unsteady flow experienced by an airfoil located 
somewhere along a rotor blade. Airfoils in a 
rotary wing environment experience an 
oscillating velocity, a varying pitching motion 
and, with flapping, a vertical rising and falling. 
Including all these unsteady motions seriously 
complicated even the relatively simple problem 
that Glauert solved in 1929. Several key 
reports, papers, and 

5 R. H. Prewitt, The Autogiro, Proceedings of the First 
Rotating Wing Aircraft Mtg., The Franklin Institute, 
Philadelphia, Pa., Oct. 28-29,1938. 
9 A. R. Collar, Aeroelasticity—Retrospect and Prospect, 
J. of the Royal Aeronautical Society, vol. 63, no. 577, 
Jan. 1959. 
10 H. Glauert, The Force and Moment on an Oscillating 
Aerofoil, Aeronautical Research Committee R&M 1242, 



1929. 
11 T. Theodorsen, General Theory of Aerodynamic 
Instability and the Mechanism of Flutter, NACA 
Report No. 496, 1935. 
12 Raymond L. Bisplinghoff, Holt Ashley, and Robert 
L. Halfman, Aeroelasticity, Addison-Wesley, Reading, 
Mass., 1955. 

314 

APPENDIX ¬ 

rotary wing books,13,14,15,16'17 deal with the lift 
and pitching moment of an airfoil in a rotary 
wing environment. 

There is no question that unsteady 
aerodynamics is a complicated subject. The 
theoretical derivation of equations that estimate 
just lift and moment of a flat plate requires 
advanced mathematical skills. The classical 
theoretical results leave the equations in a 



world mixed with complex, imaginary, and 
real numbers . Furthermore, the theoreticians 
derive results using an axis system centered at 
the half chord point, so that the airfoil leading 
edge is placed at (-b) and the trailing edge is at 
(+b) . These notations and number mixing 
easily put off the practicing engineer. Therefore, 
what follows is a translation of rather advanced 
math to practical engineering equations for one 
example. 

For this appendix, "useable" equations have been obtained, I have chosen Johnson's 
April 198D one-page technical note18 as the starting point for one simple example. 

Suppose the airfoil is a thin, flat plate as 
shown in Fig. B-7. The airfoil has a chord (c) in 
feet. The chordwise dimension (x) in feet is 
measured positive aft starting from the leading 
edge. Now suppose the airstream (V) in feet 
per second is not constant, but is varying in a 
sinusoidal manner with time. This would be the 
case of an airfoil somewhere along a rotating 
rotor blade operating in forward flight. 



Furthermore, suppose the airfoil is oscillating in 
pitch (a) in radians about some chordwise 
point (xp) in a sinusoidal manner. This pitch 
angle is measured in radians. Assume for this 
example that the airfoil is not rising and falling 
(h), but stays in the same plane. This example 
assumes that the airfoil is one of many in a 
wing that has an infinitely long span, which is to 
say this example deals with two-dimensional, 
unsteady aerodynamics. Finally, assume that the 
sinusoidal motion of the airstream and the 
airfoil pitch oscillation are occurring at the 
same frequency (co) in radians per second. 
Since the airfoil oscillates through one cycle in 
a time of t — 2Î/ÒÓ, it is common to note that \|/ = 
cot. Thus, one oscillating cycle occurs as \|/ 
goes from 0 to 2Î radians, or, in degrees, u/ 
goes from 0 to 360 degrees. 

Together, the preceding statements say, let: 



I ˘ Wayne Johnson, Helicopter Theory, Princeton University Press, New Jersey, 1980. 
u Rufus Isaacs. Airfoit Theory forFiows ofVariable Velocity, J. of the Aeronautical Sciences, vol. 12.no. 1, Jan, 
1945,pp. 113-118. 
" J . Mayo Greenberg, A irjoil in Sinusoidal Motion in a Pulsating Stream. NACA TN No. 1326, June 1947. 
1 6 Arun I. Jose, et al., Unsteady Aerodynamic Modeling 
with Time-Varying Free-Stream Mach Numbers, J. of the 
American Helicopter Society, vol. 51, no. 4, Oct. 2006. 
17 J. Gordon Leishman, Principles of Helicopter 
Aerodynamics, Cambridge University Press, Cambridge, 
United Kingdom, 2000. 
18 Wayne Johnson, Application of Unsteady Airfoil 
Theory to Rotary Wings, AIAA J. of Aircraft, vol. 17, no. 
4, April 1980. 
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clL/dr 

drVWdr 

Fig. B-7. Geometry of a thin airfoil operating 
in unsteady flow. 

• / ˜ dV , , d2V , . , , 
V = V„ + V, sin( cot ) -> — = ̄  , cos (tot) —> — Y - -co v, sin (cot) 

dt dt 

(28) 
• / .\ da . . d2a 2 . , ˜ 

a = a „ + a , sin(ûJt)-» — = <aa, cos (cut)-»—T- = -Cü a, sinicot) . 0 ' v > d t v ' d t 2 ' v ; 

. 4 é dh . d2h . 
h = constant —> — = 0 —> — - = 0 

dt dt2 



The general pitching moment and lift 

equations offered by Johnson are (after taking 

some poetic license) for an element of pitching 

moment about the chordwise point (xp) 

(29) 

dMx„ ˆÒ: 

dr ~ 4 

( cYd!h „da dVÌ c„d« (9c1 Afa x.— —r+V—+a— —V ex. + x? —-( ' 2¿dt2 dt dt J 4 dt 1,32 • "Jdt3 

where the moment is positive nose-up. For an element of lift acting positive up at the point 

(xp) on the flat plate, 

(30) 

dLxp _jxpc2 

dr 4 

+ÎÒ 

"d2h „ r da dV f c V 2 « 
L V L_/V 1_ -v dt2 1 4 1 VA 1 À „ 

dt dt U p 

"dh „ „ f3c \åa' 
—+Va+ xn — 
dt 1 4 PJ dt 

J d t -J 

} 
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Now, say the airfoil is pitching about 
the 1/4-chord point (i.e., xp = 1áC) and that the 
airfoil neither rises nor falls with time. 
These assumptions reduce the general 
equations somewhat so that you now have, for 
the elemental pitching moment in foot-pounds 
per foot acting positive nose-up at the 1/4-chord 
point, 
(3 1) 
dM %c _ 7 t p c 

dr 16 
3cd2a ^ 7 d a dV 

—2V a — 
8 dt2 dt dt 

and, for an element of lift in pounds per foot 
acting positive up at the 1/4-chord point on the 
flat plate, 
(32) 
dL 

dr 4 
„ d a dV c d2a 
V — + a — + =-

dt dt 4 dt2 
+ rccpV^CK Va + Ò da 

2~dt~ 



Finally, consider converting these 
pitching moment and lift equations into 
practical engineering equations that can be 
evaluated with any calculating tool (even a 
slide rule). Converting the { } term in the dL/dr 
expression, Eq. (32), will be discussed—just for 
the sake of completeness—after the results are 
given. The conversion is made by 
substituting the assumptions given by Eq. (28) 
into the moment and lift equations and then 
collecting the various sine and cosine terms. 
The process is tedious, but simple, with the 
result that, for the elemental pitching moment 
about the 1/4-chord point, 
(33) 

—&-=—-— - —frfa, 1‰̄ („Ã)-(2<È 0‡, +<ûV,a0)cos(ait)- -coya, |sin(2rac) 

and for the elemental lift, the more lengthy 
result is 



dL Ú≥Ò 

dr ~ 4 

—co2a1sin(cot)+(V0(oa1+Vlcoa0)cos(o)t) 

+(Vlcûal)sin(2cot) 

(34) 

+ˇÒ( V„ + V, sin (<flt)) 

/»«o + j Y a J l 

(Voa,+Vl«0)F1-^a,G1 

^cùa,F,+(V0ct,+V,a(1)Gl cos (cot) 

+^Vl«1GJjsm(2cot)-^V,a,F2Jcos(2û>t) 

The constants Fi, Gi, F2, and G2 are obtained 

accurately enough for engineering purposes 
(35) 

from 
F - 1 . 0 - 1.88601019K+ 3.15193950K2-1.95792310K;' 

G = - 0.54533433 K K - 0.72434519K+ 3.21608597Kr' -2.15588120K2 
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using the parameter (K) for Fi and Gi as Ki = 
cco/2Vo, and for F2 and G2, K2 = 2Ki. Equation 
(35) is satisfactory for calculating F and G 
constants as long as   is less than 0.60. 

To illustrate this example, assume 
some parameters approximating the Cierva 
C.30 Autogiro such as 

Parameter 
Chord 
Density 
Steady velocity 
Oscillating velocity 
Steady angle of attack 
Oscillating angle of attack 
Frequency 

Symbol 
Ò 
P 
v„ 
V, 
« 0 

<x. 
˛ 

Unit 
feet 
slug/ft' 
ft/sec 
ft/sec 
radians 
radians 
rad/sec 

Value 
1.0 
0.0023769 
475 
190 
5(it/180) = 0.0872665 
-4.5(jt/ï 80) = -0.0785398 
25.5 

The input of values from this table into Eqs. 
(33) and (34) returns the results that, for 
elemental pitching moment 

(36) 



ûi = +0.008938sin(cot) + 0.690637eos(cot) + 0.266389sin(2cot) 

and for elemental lift 

(37) 
dL„ 
— ^ . = 100.668-29.186sin(tt)t)-l-3.401cos(<ot)-i-3.507siri(2o}t)+38.077ccis(2(ot) 

dr 

+4.804 sin(3<at) - 0.696 cos(3rot) 

These results are illustrated graphically in Fig. 
B-8 for pitching moment and Fig. B-9 for lift. 
The moment and lift are plotted versus azimuth 
angle (\|/ = rot) rather than time since only one 
cyclic is needed. With respect to moment, Fig. 
B-8, you can see that the first harmonic cosine 
and the second harmonic sine dominate the 
waveform in this example. Note that if the 
oscillating frequency were zero, Eq. (33) states 
that the moment would be zero throughout the 



cycle, which is consistent with the known fact 
that a thin, flat plate has zero pitching moment 
about the 1/4-chord point, regardless of angle of 
attack. 

The elemental lift versus azimuth, the 
solid line in Fig. B-9, shows that elemental lift 
is dominated by a steady lift, a first 
harmonic sine, and second harmonic cosine 
in this example. Throughout the autogyro era 
and on up to the late 1960s, unsteady 
aerodynamics was not included in rotary wing 
calculations . The assumption was that the 
oscillations in velocity and angle of attack were 
at a very low frequency. That is, everything 
went on in slow motion. Thus, rot could be 
replaced by \|/ and then co could be set to zero. 
Under this nearly static situation K¡ and K2 are 
zero, Fi and F2 equal 1.0, and Gi and G2 
equal zero. These assumptions reduce Eq. (34) 
to 
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Fig. B-8. Elemental pitching moment for a 
thin, uncambered airfoil oscillating in angle 

of attack while the free stream is varying. 



(38) ^ = ̂ [ 0 ] + J [ c p ( V o + V,smV) 

(39) ^ 1 = ÎÒ 
dr 

[ 0Ó≤,+| 1‡11+[( (≤‡1+ 10(1)]‚Ú{≥|„) 

+[0]cos(oM)- -V,o, cos(2(ot) 

which is easily expanded with sine and cosine terms collected to yield 

^a„Vl,
2+V„V1c(1+iv,2a0j+^a,V0

2 + 2V [ 1 V,a o +|a,vAin V 

-fv.V.a, +ia„V,!jcos(2V) - í ± a , ƒ≥Ô(«≥ |„) 

Thus, for the numerical values of this example 

(40) 

dL 
XL-

át 
105.859-30.581sin(©t) + 41.167cos(2cQt) + 5.293sin(3eot) 

which is the dashed line shown in Fig. B-9. 
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Fig. B-9. Elemental lift of a thin, uncambered 
airfoil oscillating in angle of attack while 

the free stream is varying. 

The dimensional results shown in Figs. 
B-8 and B-9 are frequently seen in modern 
technical literature in some familiar 
coefficient form. The question is, "What do 

http://-t.UU3TMil.piri1


two- dimensional airfoil coefficients, C( and 
C„ , versus angle of attack look like?" The 

Ml/4c ° 

issue depends on how dynamic pressure (q) is 
defined. One possible approach (using this 
example) is to say that dynamic pressure is q = ”„ 

p (V0 + Vj sin \|/) from which it follows from 
classical definitions that 

(41) 

_ dL/dr dL/dr , _ dM1/4c/dr 
* í̂ = = f ◊Î~an" ^Ï = „ ! —̂ Tn—• 

ic |ˇ( ‚+ ,„≥≥≥Û) Jc L̂ p(v0 + v|Siniij) Jc2 

These two coefficients are shown as they 
vary with angle of attack in Fig. B-10. The 
immediate effect of including unsteady 
aerodynamics for an oscillating airfoil is to 
reduce the steady flow, aerodynamic, lift curve 
slope (2TI) of the flat plate and create a small 
angle of zero lift much like a cambered plate. 
There is clearly a sliver of loops in the lift 
coefficient result, but one can argue that these 



"hysteresis" loops are of rather secondary 
importance. 

What is not of minor importance is the 
magnitude of the pitching moment coefficient 
shown with the dashed line in Fig. B-10. 
Recall that the angle of attack is varying as 
ao +aisin((ot), and the first derivative with 
respect to time is da/dt = coaicos(o3t). The 
moment coefficient appears to behave as 
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stream is varying. Coefficients based on 

q=Xp(v0+vlSinur)2. 



(42) CMv4c--K[coa1cos((öt)] 

in that the maximum and minimum moment 
coefficient occur at \\f — cot = 0 degrees and 
180 degrees respectively. 

Now, for the sake of completeness, let 
me outline how the { } term in Eq. (34) was 
obtained from 

(43) ( Ò Í √ <ı + - — 
K 2 dt 

To begin with, it would be a serious mistake for 
you to imagine that on my own I was able to 
transpose Eq. (43) from the world of 
imaginary and complex numbers to the 
practical engineering world. Having little 
residual math knowledge in this regard, I took 
advantage of Wayne Johnson's expertise and 



patience. Wayne continuously guided me as I 
worked with pencil, paper, and MathCad 6.0. 
Thanks to his help, I can write the following: 

1. The first thing to know is that imaginary 
numbers are identified by the letter (i). 

The magnitude of" i " is i = v - 1 , 
and therefore i2 = — 1. 
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2 . A combination of real and imaginary 
numbers is written as a + ib, or, say, 10 + 4i. 

This is a complex number. The letter i 
can be placed in front of the letter b or 

conversely with little resulting confusion. 
In fact, a complex number gives quite 

specific directions . A very simple 
interpretation of 10 + 4i would be: walk 10 



miles East, stop, and then walk 4 miles 
North. 
3. The transposing from imaginary numbers 
to real numbers depends on using 

Euler's relation, which is 
Â≤ = cos +≥ sine and Â"≤ = 

cos9- is in0. 

4. Using Euler's relation, both the familiar 

trigonometric sine and cosine can be 

written in complex number form as 

8≤Ô = -÷Â≤ -Â- ¯ ) = - ^ ( Â ≤ -Â-≤ ) 
2i v ' 2y } 

ÒÓ8 = -(Â ≥ 8 +Â- ≤ ) 

5. The coefficient (—Í) refers to Theodorson's 
function and is classically given as 

C K = F K + i G K . " 



6. The way the coefficient (—Í) is actually used 
is by knowing that 

C K e i e = ( F K + i G K ) e i 8 

C K e - i e = ( F K - i G K ) e - * 

7. It follows from points 4 and 6 that 
CK sin = FK sin + G K cos 
CKcosO = FKcosO-GKsinO 

8. Alternately, 
C^sinQ = yJFl+G2

K sin(9 + tan"lGK/FK) = FKsitie + GKcose 

CK cos = -ß[+Gl COS( + tan"1 GK 

/ FK ) = FK cos - GK sin 

9. There is a distinction and assumption about 
the shed wake created by an oscillating 

airfoil. If, for example, 0 = cot then   = 
cco/2Vo, which implies Kj =l(cco/2V0). 

In this situation F K = F- and GK = Gi. 



When = 2cot then   = 2(cco/2V0), which 
means using F K = F 2 and GK = G2. 

10. After all multiplications are done, then 
throw away any imaginary numbers and 

use just real numbers ! 
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The preceding ten points are enough to transpose < CK Van > into what you 

see within the { } of Eq. (34). First make 

the substitutions for (V), (a), and (da/dt) from 

Eq. (28) to obtain 

(44) 
(v0+V]sin(fflt))(a0 + alsm(o«))+-((aalcos{a>t)) . 

Next, expand the trigonometry within the [ ] 

|_ ,, Ò da 
\—  Va+ } 

1 2 dt f 



ofEq. (44) to get 

(45) {c K [va + f£]} = CK 

í v 0 a 0 + i v , a , J 

+(V0a, +V,a0)sm(o)t)-t- L |cos(cot) 

-[ -V,a, ]cos(2wt) 

Now take the multiplication one term at a time. 

The first term is 
(46) 

(votto+jV.a.j =(F+iG)ívoa0+ivia1j=ívQa0+ivia1JF] 

which is a case where the imaginary term is 
discarded. 
The second term is written directly using point 7 
or 8 
(47) CK [(Xa, + ≥ŒÒ0 ) sin(ö)t)] = (V0a, 
+V,a0)[Gj cos(cot) + Fj sin(cot)]. The third term is 



written directly using point 7 or 8 
(48) 

CK ^ i c o s ( c o t ) c ( , )" l[∆ COS (cot) -G, sin (cot)], 

and the fourth term is written directly using 
points 7 or 8 and 9; but note that with the 
frequency being at 2co,   =  „ so F and G must 
be subscripted by 2. Therefore (49) 

—V,a, ]cos(2ü>t) = - - y a , [Ecos(2fflt)-G2sm(2tût)]. 

When the four terms are added 
together and arranged in the conventional 
Fourier series format you obtain the { 
} term provided by Eq. (34). Note that 
this 
term, JCK VC£ + >, not only appears in the elemental lift equation (30), but also in the 
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pitching moment equation (29) and would be 
included if the airfoil oscillated about any point 
other than the 1/4-chord point. 

Thin, Cambered Airfoil in Unsteady Flow 

The elemental lift and pitching moment 
for the thin, cambered airfoil in unsteady flow 
can be obtained by superposition and 
accounting for the angle of attack for zero lift. 
Thus, do in Eqs. (33) and (34) is replaced by ac 
- ctoL • Then the elemental pitching moment 
about the 1/4-chord point is simply 

(50) 

—oret, sin(mt)-(2mV„al+<uVl(o:c-ci,L))cos(tat)- -mV.a, sin(2œt) 
d M π _ ‚Ò“ 

dr " 16 I 



+^(V 0 + V l S in(œt) ) 2 C M w e 

and the elemental lift becomes 

(51) 

« À 2 + V„V,a, Av? (ac -a„L))+(",V„! + 2V.V, (Â̂ . -„„J+^a.V,2 ]sin V 

-[v,V,0, ¿(ac - a J V ? jcoe(2v)-^0,V,J jsm(3V) 

Results Using Modern Computational Fluid 
Dynamics (CFD) 

This short discussion about airfoil lift 
and pitching moment would be incomplete 
without some very modern theoretical 
results compared to the thin airfoil, 
unsteady aerodynamics, discussed above . The 
modern theory I am referring to is called 
computational fluid dynamics and is simply 



referred to as CFD by the current generation 
of practicing aerodynamists. With the enormous 
help of the digital computer, this generation has 
succeeded in solving two fundamental fluid 
dynamic equations that were derived more 
than 100 years ago. The second and most 
definitive equation accounted for viscous fluid 
forces and became known as the Navier-Stokes 
equation. Prandtl and Tietjens (see footnote 1) 
note on page 259 of Fundamentals 
ofHydro-and Aeromechanics that "The 
equation was first found by Navier in 1827 and 
Poisson in 183 1. Their derivation was based on 
certain theories of intermolecular forces. 
Without using hypotheses of this kind, St. 
Venant in 1843 and Stokes in 1845 found the 
same equation on the assumptions that the 
normal and shear stresses are linear functions of 
the deformation velocities... ." These four men 
finished the derivation of the fluid dynamic 
equation for a fluid having no viscosity that was obtained by Leonhard Euter and published in 
1752, 1753, an 1755.19 It took another two centuries for experts in fluid mechanics and 

applied mathematics to first solve the Euler 



equation, and still longer to solve the Navier-
Stokes equation. 

John D. Anderson, A History of Aerodynamics, 
Cambridge University Press, Cambridge, United 
Kingdom, 1997. 
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In contrast to the incompressible thin 
airfoil theory developed by Ludwig Prandtl 
during World War I—which you are now 
familiar with—the Euler theory from the 
mid-1750s accounted for practical airfoils that 
are thick (e.g., a Göttingen 606) and for 
compressibility associated with Mach numbers 
greater than zero. However, the Euler theory 
assumes that the fluid has no viscosity. The 
Navier-Stokes equation, which came 90 years 



later, improved upon the Euler equation 
because fluid viscosity effects were included. 
To obtain practical results from the 
Navier-Stokes equation required very advanced 
digital computer technology coupled with very 
creative numerical integration methodology. 

Today, Euler and Navier-Stokes 
equations are solved using any one of 
several 
numerical integration schemes called computer codes. One of these codes is called 
OVERFLOW 2.20,2' Two people that are experts in using this particular computer code are 

Marilyn Smith (a Professor at the Georgia 
Institute of Technology in Atlanta, Georgia) 
and Mark Potsdam (a member of the U.S. Army 
Aeroflightdynamics Directorate located at 
NASA Ames Research Center). I was extremely 
fortunate to have these two individuals 
collaborate on the CFD results presented 
herein. The question I posed to them was, 
"What does CFD think about my elemental lift 
and pitching moment curves shown in Figs. 
B-8 and B-9 using the following input?" 



• The airfoil is a NACA 0012 with a 1 -foot 
chord. 
• The pitch axis is located at the 1/4 chord. 
• Temperature and density are for sea level on 
a standard day. • Angle of attack varies as 5.0 
-4.5 sin (cot) in degrees. • Free-stream velocity 
varies as 475 +190 sin (cot) in feet per second. • 
The oscillation frequency (co) is 25.5 in radians 
per second. 

This input is representative of a rotor 
blade element located at the 3/4 radius station 
of a rotor traveling at 190 feet per second (112 
knots) with a tip speed of 633 feet per second, 
which would be an advance ratio (LI) of 0.40. 
The Reynolds number varies between 1 .82 
million and 4.25 million, and the Mach 
number varies between 0.255 and 0.596, 
which correspond to the retreating blade 
azimuth (\|/ = cot = 270 degrees) and the 
advancing blade azimuth (\|/ = cot = 90 degrees), 



respectively. 

A comparison of predictions by thin 
airfoil theory, Euler theory, and Navier-Stokes 
theory for how elemental lift (dL/dr) varies 
with azimuth is shown in Fig. B-ll. It is clear 
from this figure that all three theories 
capture the elemental lift, unsteady 
aerodynamic behavior for this example . The 
primary difference is the change of the average 
elemental lift over the cycle. To explain the 
differences is relatively simple . In the thin 
airfoil case, the average elemental lift has been 
computed with a basic airfoil steady lift curve 
slope of a = 2K per radian and independent of 
Mach number, but reflecting Theodorsen F 
and G functions. The average elemental lift is 
100.9 pounds per foot. 

" Robert H Nichols and Pieter G. Bulling, User 's Mommi for Œ VERFLOW 2. ¡-version 2. It, Aug. 4.2008. 
L Pieter G, Bulling, et el., CFD Approaches for Simulation of Wing-Body Stage Separation, AIAA-20O4-4838, 

AIAA 22nd Applied Aerodynamics Conference, 



Providence, R.I., Aug. 2004. 
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The solution of the Euler equation with 
the example input leads to the upper curve on 
Fig. B-l 1, which has an average elemental lift 
of 129.1 pounds per foot. The Euler solution 
always returns a lift curve slope that depends 

on Mach number as 2À/ 1-Ã 2 in steady 
aerodynamics up to Mach numbers where the flow is Mach 1 somewhere along the upper 
surface of the airfoil. The average Mach number over the oscillation is 0.425, which means 

the thin airfoil average elemental lift (of 100.9 
pounds per foot) should increase by no less 

than ≥ƒ/≥-0.4252 =1.1 . The Euler 
equation, when solved with CFD, more 
accurately accounts for the shed wake, which is 
equivalent to more accurate F and G functions 
during the oscillation. 



The unsteady aerodynamic results 
using the CFD solution to the 
Navier-Stokes equation is the middle line on 
Fig. B-l 1. The average elemental lift is 1 15.1 
pounds per foot. The Navier-Stokes equation 
includes fluid viscosity and accurately predicts 
the typical airfoil lift curve slope of 5.73 per 
radian versus the Euler theory result of 2Î 
per radian. Both compressibility and shed wake 
influences are accounted for in the 
Navier-Stokes and Euler theories. Therefore 
the Euler solution for average elemental lift 
of 129.1 pounds per foot should be reduced 
by approximately 5.73/2ˇ = 0.91, which is 
about the reduction that Fig. B-l 1 shows (i.e., 1 
15.1/129.1=0.89). 
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Fig. B-ll . Thin airfoil theory versus CFD 
predictions for elemental lift. 

22 Hermann Glauert, The Effects of Compressibility on the 
Lift of an Airfoil, R&M no. 1135, 1927. 
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Now consider the elemental pitching 
moment comparison provided in Fig. B-12. 
With 
thin airfoil theory, the moment at the 1/4-chord point does not vary with lift in steady flow. 
This result, however, is not supported by experimental data.23 For the NACA 0012 airfoil, the 

center of pressure moves forward from the 
1/4-chord point as airfoil lift increases . In 
steady flow, the movement is not great but 
sufficient enough that the pitching moment 
about the 1/4-chord point is approximately 

(52) C M I M C =0.0065(C L )+0.0014(C L ) 2 

which says that the center of pressure is only 
at the 1/4-chord point when the airfoil lift is 
zero. To a first approximation then, the 
average elemental pitching moment about 
the 1/4-chord point should increase 
approximately as 



(53) (Ã˘) .0.0065(c)i^i -
I dr Javg

 V \dt)mg 

The average elemental pitching moment for 
the Navier-Stokes result in Fig. B-12 is 0.832 
foot-pounds per foot, and the average 
elemental lift is 115.1 pounds per foot. Recall 
that a 1-foot chord was chosen for this 
example . Therefore, the computation of 
dJVWdL as 0.832/115.1 - 0.00723 adequately 
explains the fact that the Navier-Stokes result 
lays above the thin airfoil curve in Fig. B-12. 
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Fig. B-12. Thin airfoil theory versus CFD 
predictions for elemental moment. 

2 3 Charles D. Harris, Two-Dimensional Aerodynamic 
Characteristics of the NACA 0012 Airfoil in the Langley 
8-Foot Transonic Pressure Tunnel, NASA TM 81927, 
April 1981. 
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What is not so easily explained is the 
approximately 30-degree azimuthal shift in the 
maximum and minimum peaks of the 
elemental moment that the Navier-Stokes 
equation reveals when compared to thin 



airfoil theory. I know of no comparable 
wind tunnel experimental data where the 
free-stream velocity is varied, so a comparison 
of theory to test cannot be made as yet. The 
problem I posed falls in the category of 
rotor airload measurements . A definitive 
rotorcraft experiment in this regard had to wait 
for wide use of the helicopter. 

A benefit of solving the Navier-Stokes 
equation by the OVERFLOW 2 code has been 
the prediction of elemental drag, which is shown 
for my example problem in Fig. B-13. 

The results presented in Figs. B-l 1, 
B-12, and B-13 are completely dimensional 
for the example I chose. The more interesting 
graphs are seen when the loads and moment 
are presented in coefficient form. The 
coefficients are based on the local dynamic 

pressure computed as q = ı/„ p ( V0 + V, sin y ) . 
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Fig. B-13. Only Navier-Stokes theory 
predicts elemental airfoil drag. 
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Figure B-14 shows that both the 



elemental lift coefficient and the elemental 
pitching moment coefficient generally follow 
the oscillating angle of attack, which was 
given as a = 5.0 - 4.5 sin(\|/) in degrees. Note 
the enlarged scale used for the moment 
coefficient because a pitching moment 
coefficient of 0.01 is rather large in the 
rotorcraft world. Rotor blades are long with 
narrow chord and quite torsionally limber, 
which means that the airloads can easily twist 
them. 

Another way to examine the 
Navier-Stokes results frequently used by 
rotorcraft engineers is shown in Figs . B-l5, 
B-l6, and B-l7 . The conventional lift 
coefficient versus angle of attack is provide in 
Fig. B-l5. The slight hysteresis loops caused 
by unsteady aerodynamics are clearly 
comparable to thin airfoil theory as Fig. B-10 
shows. I have added a reference quasi-steady lift 
coefficient versus angle of attack accounting 



for an average Mach number of 0.425 and lift 
curve slope of 5.73 per radian (0.1 per degree). 

The unsteady aerodynamic effects on 
pitching moment coefficient become clearer 
when plotted against lift coefficient as Fig. 
B-l6 illustrates. The center of pressure moves 
forward of the 1/4-chord point with a CFD 
theory that includes fluid viscosity. 
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Fig. B-14. Solution results according to the 
Navier-Stokes equation for the 

example chosen. 
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Fig. B-15. Hysteresis loops in lift coefficient 
versus angle of attack due to unsteady 

aerodynamics according to the 
Navier-Stokes equation for the example 
chosen. 
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Fig. B-16. Hysteresis loops in moment coefficient versus lift coefficient due to unsteady 

aerodynamics according to 
the Navier-Stokes equation. 
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The influence of unsteady motion on 
elemental drag is quite substantial as Fig. B-l7 
shows . Not only are the hysteresis loops 
large, but the average drag coefficient for 
one oscillation cycle is greater than what a 
quasi-steady airfoil experiences . This is a 
factor in computing profile power of rotor 
systems. 

Closing Remarks 

An understanding of airfoil 
aerodynamics began in the 1750s when Euler 
developed a very basic fluid dynamics equation; 
since then numerous outstanding 
individuals—more than one can imagine—have 
contributed to this process. In addition, the 
CFD solutions of the Navier-Stokes equation 
have reduced a dependency on wind tunnel 
testing. Nevertheless, the fundamentals provided 



in this appendix should be beneficial to the 
uninitiated. 

Another purpose of this appendix is to provide 
a basis for calculating blade elastic twisting, 
which is the subject of Appendix D. 
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BASIC DYNAMICS AND GROUND 
RESONANCE 

The purpose of this appendix is to 
provide an analytical sense of ground 
resonance. This was the phenomena that 
destroyed a Kellett XR-2 autogyro (see Fig. 2-1 



1) and became a serious consideration when the 
lead-lag hinge was introduced. 

Without some basic understanding of 
dynamics, a ground resonance analysis is not 
one of lhe easier engineering problems to explain, derive the dynamic equations for, or obtain 
solutions to the equations once they are written.' However, George Townson, in his excellent 
book containing both history and engineering features of autogyros,2 presents the clearest 

illustration of the ground resonance 
phenomena that I have ever seen. His 
illustration (from page 149 of his book) was 
reproduce in this volume on page 33 . In Fig. 
C-l of this appendix, I have included the first 
three parts of Townson's illustration as a 
starting point for the discussion that follows. 

Ground resonance is basically a 
multi-degree-of-freedom vibration problem 
with damping included. Two degrees of 
freedom are the rotorcraft rocking and 
pitching on its landing gear. Since springs and 
shock absorbers were standard equipment for 
all autogyros just for hard landings, these two 



degrees of freedom were well damped. The 
other degrees of freedom come from blade 
lead-lag motion. One degree of freedom is 
written for each blade. The motions of 
rotorcraft rocking and pitching, with the 
addition of each blade leading and lagging, 
have the potential to couple together such 
that one motion can feed all the other degrees 
of freedom. The pioneers found out that blade 
motion definitely needed additional mechanical 
damping. Without damping in all degrees of 
freedom, there can be real problems. 
Fortunately the theory to predict stability boundaries for ground resonance was in place when 
practical helicopters began to evolve. 

BASIC DYNAMICS 

Introduction 

A shortcut in analyzing ground 
resonance can be taken as Fig. C-2 suggests. It 
is the translation of the rotor hub that is the 



dominate aircraft coordinate in most basic 
studies . How the translation occurs is rather 
secondary . The actual rocking motion (which 
could be describe by an angle) and all of the 
dimensions and masses implied by Fig. C-2 
only lead to a natural rocking frequency (œac) 
of the aircraft while sitting on the ground. 
This frequency has the units of radians per 
second. 

1 I learned dynamics from J. P. Den Hartog's Mechanical 
Vibrations, McGraw-Hill Book Co., Inc., New York, 4th 
Ed., 1956. His explanations and solutions are the easiest to 
understand that I have found.2 G. Townson, 
A UTOGIRO—The Story of the Windmill Plane, Aero 
Publishers, Inc., Fallbrook, Calif., 1985.3 Robert Coleman 
and Arnold Feingold, Theory of Self-Excited Mechanical 
Oscillations of Helicopter Rotors with Hinged Blades, 
NACA Report No. 1351,1958. 
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It should be obvious that an autogyro 
landing gear leg uses both a spring and damper 
just like car suspensions use springs and 
shock absorbers . These components allow 
the aircraft to rock when a force is applied at the 
hub. Fig. C-2 shows a simple schematic of what 
could be the Kellett XR-2 autogyro rolled to 
starboard because of a lateral force applied at 
the hub. In rolling to starboard, the hub 
translates along the Y-axis until the landing 
gear spring forces and dampers provide a 
countering force. 

Static Calibration 

The complete aircraft could be statically 
calibrated with a tabulation of deflection (y) for 
successively larger force (F). This data would 
be plotted as a curve of F versus y. The slope 
of this F versus y curve defines the spring 



constant of the autogyro. This spring constant is 
denoted by the letter (k), which is defined as Í -
F/y and is expressed in pounds per foot. 

Blade C.G. ¡ 

120° Between 
Blades 

Net C.G. 
All Blades 

Ï 



¡£2^3Q 

GROUND RESONANCE 

Net C.G 
2 Blades 

| 
Less Than 
120° Between 

Blades 

Fig. C-1. De-patterned blades in the lead-lag 
plane create a potentially destructive force 

that can lead to ground resonance. 
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4 
I 

\ 

Fig. C-2. Autogyro rocking leads to hub translation. 
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Dynamic Calibration 



Since the landing gear assembly includes 
a shock absorber (i.e., a damper), the aircraft has 
a damping coefficient denoted here by the 
letter (c). The landing gear damping creates a 
force proportional to velocity, and therefore the 
damping constant has the units of pounds per 
foot per second. The complete autogyro 
damping constant can also be found by 
experiment. Suppose the hub force (F) in Fig. 
C-2 rocks the autogyro so that the hub is 
deflected an amount (y0), and then the force is 
suddenly released. The expected result is that 
the autogyro would rock over to the port side, 
then back to starboard, and then stop in the 
upright position. This is the exact parallel of 
standing on a car bumper and then jumping 
off—a test to see if the shock absorbers are still 
good because the car does not continue to 
bounce up and down. 

Basic Theory of Dynamics 



Both the static and dynamic experiments 
suggested above can be summed up with one 
mathematical equation. This very fundamental 
differential equation is: 

dV Ë dy 
—f = F-c— 
dt2 dt 

(1) m - ^ - = F-c-^--ky or 

dV dy 
dt2 dt 

m-^Y + Ò-77- + ky = F. 

The first experiment calibrates the aircraft on 
its landing gear by slowly increasing the force 
(F) and recording values of (y). Since the calibration is a static experiment, there is no 
velocity (dy/dt = 0) or acceleration (d y/dt" = 0), and so it follows that the autogyro spring 

constant is Í = F/y. 

The second experiment is not static 
because the force is suddenly released, and 
the resulting oscillation is recorded by some 



instrument. This instrument would record the 
deflection (y) and time (t). Since this second 
experiment occurs with the force (F) being zero, 
the fundamental equation is rewritten as 

(2) Ú§+<ƒ+ÍÛ = 0, 
dt dt 

which is a second order, ordinary, differential 
equation. The experiment begins at time (t) 
equal zero with an initial deflection of y(t = o> -
yo and zero velocity (i.e., dy/dt = 0), and has the 
solution 

(3) 

= ”Ó(Â 2mt)[cos((öt)]. ”(,)=”Ó(Â * j cos t J ; ”-

m 4m 

Theory Application—Case 1 



Now imagine this experiment where 
only autogyro lateral rocking is of concern. 
That is, there can be no autogyro pitching 
because the machine is locked in such a way 
that the hub cannot move along the X-axis in 
Fig . C-2 . Assume the static experiment has 
established that an 8,000-pound force acting at 
the hub (say 13 feet above the ground) will tilt 
the autogyro so 
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that the hub moves one-half foot to starboard 
along the Y-axis. This means that the system has 
a spring constant of Í = F/y = 16,000 pounds 
per foot. For illustration purposes, assume that 
the weight of the autogyro acts as an apparent 
mass at the hub so that m = 1,470/32.17 slugs. 



Suppose this experiment is conducted in 
two parts. For the first part of this vibration 
experiment, disconnect the shock absorbers so 
that there is no damping, which means the 
damping constant (c) is zero. Next, apply an 
8,000-pound force at the hub in the positive 
Y-axis direction so that the hub is set at an 
initial deflection (yo) of yo = 0.5 feet. Now, 
abruptly release the 8,000 pounds . The 
autogyro will rock from starboard to port and 
back again such that the hub translates, following 
Eq. (3), as 

(4) 

y(t)=0.5 cos 
16,000 

À 

I 1,470 ) 
32.17 

J 

= 0.5cos(l8.71t). 

This result, graphed in Fig. C-3 as the light 
dashed line, implies that the vibration will 
continue indefinitely. In fact, some slight 



amount of damping will exist in the real world, 
and the vibration will, of course, eventually die 
out. 

For the second part of this vibration 

experiment, reconnect the shock absorbers, 
which. I will assume, create a damping coefficient (c) at the hub of about 228 pounds per foot 
per second.' With these values (i.e., Í = 16,000 lbs/ft, m = 45.695 slugs, Ò = 228.47 Ibs/fps, 

and yo = 0.5 ft), Eq. (3) becomes 

(5) y(t) =0.5(e"2-5t)cos(18.5445t). 

This result, graphed in Fig. C-3 as the heavy 
solid line, implies that the vibration will 
decrease in amplitude with increasing 
oscillation time. This experimental data, 
recorded for example by an oscillograph, can be 
used to obtain two key properties about the 
aircraft. 

The first property is the damped natural 



frequency, which is, from Eq. (3), 

(6) a=t-ïb-
Notice in Fig. C-3 that the points A, B, and — 
occur as a vibration cycle is completed. That is, 
cos (cot) starts at zero time where the cosine is 
unity and finishes 360 degrees (or 2% radians) 
later when cot = 2% and the cosine again equals 
unity. This is one cycle and amounts to one 
revolution. The time to complete a cycle is 
called a period (T). In this example, Fig. C-3 
shows that the period is about T = 0.34 
seconds. That is, the time between points ¬ and 
A is 0.34 seconds and the time between points — 
and ¬ is 0.34 seconds. The rule is that ¯“ = 2Î, 
which means from Eq.(6), that 

4 The value of Ò = 228.47 lbs per ft/sec chosen for this 
example is perhaps 2 to 5 times lower than practice would 
dictate. A more general estimate would be that Ò 
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Fig. C-3. Autogyro rocking leads to hub 
translation. 



[Í „~ 2Ú≥ 
(7) co=J -7-Ú=—• 

V m 4m T 

An oscillograph trace (such as shown in Fig. 
C-3, particularly when stretched out) can give a 
very accurate value of the period (T) when 
care is taken. This, in tum, means that 

k/m - ( c/2m) is known because 

m ”¿=(

2

”\. 

m 4m2
 I T J 

The second property is the successive 
reduction in amplitude you see in the waveform 
in Fig. C-3 as you follow the heavy solid line. 
This amplitude reduction of point ¬ over point 
A and point — over ¬ yields the parameter 
(c/2m). This is done from experimental data 
by measuring the amplitudes at the 
beginning and end of a cycle. Consider the 



ratio of amplitudes at points A and ¬ . At 
point A, t = 0, and at point B, t = T. At both 
points, the cosine in Eq. (5) is 1.0. Therefore, 
you have 

(9) ^ L = — ^ L = e-” ‚ _ 

”‡ ”Ó 
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and, by taking the natural logarithm of both 
sides, the property (c/2m) is immediately 
obtained as 

(10) - i_ = _ I h i * L = - - l n ^ - . 
2m T yA T yB 



Having the experimental values of period (T) 
and (c/2m), it follows from Eq. (8) that 

(11) ◊-ï+i-ï' 
m {T J {2mJ 

Recall now that the static test established the 
system spring constant (k) so that the apparent 
mass (m) and damping constant (c) are found 
directly as 

(12) m= ; • . and c= — 2m. (k/m) Um J 

Theory Application—Case 2, Constant Rotor 
Speed 

The experiments of Case 1 were 
conducted with the hub not turning, but now 



consider a case where the hub is turning. 
Imagine an experiment where a weight is added 
to the hub. A weight of mass (mw) is attached to 
the end of a weightless rod that is (e) feet long, 
the other end being solidly bolted to the hub. As 
the hub begins to rotate, an unbalance will 
occur. This unbalance will rock the autogyro, 
and the hub will translate along the Y-axis. 
Keep in mind that there will be no autogyro 
pitching because the machine is locked in such 
a way that the hub cannot move along the 
X-axis. This experimental situation is shown in 
Fig. C-4, which constitutes a top view of Fig. 
C-2. 

Equation (1) can now be used to 
describe the vibration of the system with an 
unbalance weight. Thus, 

(13) m h ^ + c ^ + k v h = F = - m w ¿ - . 
h dt2 dt ”¸ w dt2 



At time (t) equals zero, let the hub be at rest (yh 
= 0), and let the weightless rod (e) and added 
mass (mw) be aligned with the X-axis as Fig. 
C-4 shows. Now assume some time has passed; 
the weightless rod has rotated through the angle 
(\|/), the hub has translated to ÛÙ = Û¸, and the 
added mass has moved to 

(14) y w =y h +es in(\ | / ) . 

Equation (13) requires the second derivative of 
displacement with respect to time. Velocity, the 
first derivative, is 
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Weight 

Hub 
Weightless Rod 

Fig. C-4. A top-view of Fig. C-2. 

(15) % = % + ecos(V) 
at at 

d\(i 
~d7 

and acceleration, the second derivative 

of displacement, is ( 16) 



^ ÷ ^ - ^ ÷ ^ + ÂÒÓ˝√Û) 
dt2 dt2 V M V 

~d2y~ 
_dt2_ 

-esin (y) 
"dy" 
. d t . 

The basic dynamics equation that I 
intend to examine in this appendix is obtained 
by substituting Eq. (16) into Eq. (13), which 
yields 
(17) 

K + m w ) ^ + c ^ + k y h : ' M ÈI ~ m » e c o s M dt2 

Notice that no restriction has been placed on 
the rotational angle (y), which for rotorcraft 
problems is generally referred to as the azimuth 
angle. 

Typically, the most common problem 
examined in textbooks on dynamics is the case 
where the rotational speed (a frequency in strict 
dynamic terms) is constant. That is, dy/dt is 
constant, and therefore azimuth (y) equals a 



constant times time. For purposes of this 
appendix, I have chosen a rotorcraft notation where if dy/dt is constant, then dy/dt = Œ and 
d y/dt = dti/dt = 0. The rotational speed (ii) has the units of radians per second, and 

therefore the rotational angle can be written as 
Û — ilt. With this basic understanding in mind, 
consider the behavior of the weight and hub 
shown in Fig. C-4 when the rotor speed is 
constant. 
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When the rotor speed (Si) is constant and 

letting m = Ú ¸ + mw, then Eq. (17) becomes 

(18) m ^ + c % + k y h =m w eQ 2 s in(Qt) 
dt at 

IF Q = constant 

which is solved quite easily. Using classical 



theory, you immediately have (19) 

yh = ^m , e ' r(k-mii2)sin(nt)-(c£2)cos(Ot) 
(k-mi i 2 ) +(c£2)2L 

or, when using a phase angle form, which can be 
used to illuminate the vibration amplitude (20) 

”„ = 
Keß2) 

^(k-m£22)2+(cC2)2 
sin Qt —arctan ( CÍ2 

^k-m£22 

From this solution for displacement, you 
immediately have the hub acceleration, a 
very important result in most practical 
engineering experiences 
(21) 

d 4 
dt2 

^(k-miì2)2 + (ciì)2 
(-fl2) iìt-arctan -

c£ì 
U-mí i 



These results can be used in a very 
practical way. Think of starting up an 
autogyro rotor with the prespin gearing used 
on late model Cierva, Pitcairn, and Kellett 
machines, which were designed for jump 
takeoff. Assume from the preceding 
discussion that the autogyro with the added 
weight on the end of the weightless rod is 
described as shown in Table C-1. 

Using Eq. (19) and the configuration 
from Table C-1, the result of this rotor startup 
calculation is the hub motion time history 
shown in Fig. C-5 . This calculation treated 
the constant rotor speed problem as a sequence 
of quasi-steady conditions to give the graphical 
appearance of an infinitely slow rotor 
startup. You will notice immediately that 
before reaching the operating rotor speed of 
25 radians per second (about 240 rpm), the 
hub translation experiences a resonance at a 



rotor speed of about 19 radians per second. If 
25 radians per second is taken as 100-percent 
rotor speed, then the worst of the resonance 
occurs at about 76 percent of design rotor speed. 

Table C-1. Assumed Autogyro Configuration 

Parameter 
Mass 
Damping coefficient 
Spring stiffness coefficient 
Added mass 
Weightless rod length 

Symbol 
m = mh + mw 

Ò 

Í 
mw 

e 

Unit 
slug 

Ibs/fps 
lbs/ft 
slug 

ft 

Value 
45,695 
228.47 
16,000 
5,2844 

2.5 

APPENDIX — 

ïmk-ï1 

« i »nun ÌË Î ant in » 



-0.8 

•I 

„ "ill 
\ [ ¡.J 

II I 
Rf l td r Speed (red/sEc.) 

'i 
”! IP 

™ ; 

Fig. C-5. Possible resonance vibration during 
a rotor startup. 

The heavy line in Fig. C-5 represents 
the maximum hub displacement if the spring 
force was the only force resisting the 
unbalance weight applied force. That is, from 
Eq. (18), the maximum hub displacement would 
be 

(22) yh = 
m...eŸ2 

EF Q. = constant. 



Notice that up to a rotor speed of about 26 
radians per second, the dynamic system 
amplifies the applied unbalance rotating force. 
However, beyond 26 radians per second rotor 
speed, the dynamic system attenuates the 
response. 

The fact that a resonance is possible 
should come as no surprise. Equation (20) 
presents the fact quite clearly. The question 
is simply, "What rotor speed will cause the 
maximum value of hub deflection (Û¸)?" To 
begin with, no matter what the time (t) is in 
Eq. (20), the maximum hub displacement will 
occur when 

= ±71/2 -> 

sin(±ic/2) = ±1.0. 

ÿ-arctan 

U-ma2 



Therefore, the question becomes, "What value 
of rotor speed (Q) makes the lead coefficient in 
Eq. (20) a maximum?" The usual mathematical 
steps to find the maximum of a function show 
that when 
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(23) Q = . ^ k 

^/2mk-c2 

the largest vibratory amplitude of hub 
displacement will occur. With values for this 
example from Table C-1, Q = 19 radians per 
second. The magnitude of this hub deflection 
will be 



^ . ˜ , , • 2 ¯ ¯ Â Í 
(24) Maximum yh = ±—- .—^ . 

c ^ 4 m k - c 2 

Notice immediately that this result says that if 
there is no damping (i.e., Ò = 0), then the hub 
motion will be ± «>. Fortunately, with values 
for this example, maximum yn = ± 1.092 feet. 

This example leads to very severe vibration. You can see this by 
approximated hub maximum acceleration (d'yi/dt2) from Eqs. (23) and (24) as 

calculating an 

(25) 

Maximum ¿ L = ± ? m " e k œ*=± 4 Ú » Ò ^ 
dt c ^ m k - c 2 c(2mk-c2)V4mk-c2 

In this example, the maximum hub acceleration is 396 feet-per-second squared, which 
is slightly over 12 times the acceleration of gravity (g = 32.17 ft/sec ). While the hub in this 



example is some 13 feet above the ground, the 
pilot is perhaps 7 feet above the ground, so he 
would be feeling on the order of 7/13 times 12 
g's or about 6.6 g's. The pilot would find this 
vibration level—to put it mildly—beyond 
intolerable. 

Using such an extreme example makes 
three points. The first is that you now have 
some appreciation of dynamic technology. The 
second point is to always be on the lookout for 
resonance possibilities. The third point is that 
simple vibrations of the sort discussed above 
should never create more that 0.005 g's at any 
rotor speed. Pilots and passengers, radios, and 
other electronics, etc., are very sensitive to 
vibration. 

Theory Application—Case 3, Varying Rotor 
Speed 



In the rotorcraft world of dynamics, 
there is considerable danger in assuming that 
rotor speed is constant. This is particularly 
apparent for the situation when a pilot is 
bringing a rotor up to speed. To begin with, 
after the engine is started, a rotor clutch may be 
used to start the rotor turning, which could 
introduce a "jerk" into the system. After that, 
the rotor may well be brought up to speed in 
some nonlinear fashion. For this example 
then, I will assume a reasonable rotor startup 
where the instantaneous rotor speed is 

3r_t_Y_j.rO6" 
2W 2^TJ 

where (Í2f) is the final, constant rotor speed to 
be obtained in a time of (T) seconds. Since the 
rotor hub azimuth angle (y) is the integral 
of rotor speed, it follows from Eq. (26) that 

(26) * £ = 0_ 
dt f 

http://3r_t_Y_j.rO6
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iíiT_±íiY~ 
2 ^ T J 1 4 ^ T J 

and the acceleration is simply the second derivative with respect to time, so that 

\TJ~4TJ 

Notice that I have carefully selected an 
approximation so that at time (t) equals zero, 
the instantaneous rotor speed is zero; and when 
time (t) equals the final time (T), the rotor 
speed equals the final rotor speed (Df). 

In the following study, I have 
assumed the rotor will reach a final rotor 
speed of 

(27) V = f ' ^ d t = ÛfT 
Jo dt 

(28) Í X ^ v ' dt2 T 

file:///tJ~4tJ


RPMf = 230 rpm (íif = 24 radians per second) in 60 seconds (T = 60 seconds). This input 
numerically defines y, dy/dt, and dS|#/dr using Eqs. (27), (26), and (28) respectively. The 

basic differential equation (Eq. 17) repeated 
here for convenience, as 

(29) 

(mh+mw)-^!!-+c-^-+kyh =m„esin(v) dv|> 
~dt~ 

i i d V 

can now be solved using the configuration 
defined by Table C-1. 

The solution of Eq. (29) is not easily 
obtained in simple closed form as in the case 
where a constant rotor speed was assumed. Therefore, I must interrupt this discussion to show 
one way of solving Eq. (29) given y, dy/dt, and d y /d r from Eqs. (27), (26), and (2S) 

respectively, with Í2t = 24 radians per second 
and T = 60 seconds. 

Dynamists, by profession, are superb 
applied mathematicians. When faced with a 



problem like Eq. (29), they seem to intuitively 
know that a solution in terms of elementary 
functions3 is likely to be quite involved and of 
doubtful practical use. They most frequently 
rum instead to some numerical integration 
scheme. Today, applied mathematics software 
such as Mathematica and MathCad have tools 
quite capable of solving Eq. (29) in the blink 
of an 
eye. Bui in "the old days" (before digital computers), I depended on some applied 
mathematics book6 to construct a tailored numerical integration scheme that few of us— 

working together as human calculators—would 
solve with slide rules, pencils, and paper. 

In 1991 Dewey Hodges, a professor at 
the Georgia Institute of Technology in Atlanta, 
Georgia, sent me a numerical integration 
approach that I have found very useful over the 
last 20 years. His method (a) is quite simple, 
(b) is very accurate, (c) minimizes 
numerically introduced damping, (d) is well 
suited to programming with spreadsheet tools 
like Microsoft® Excel®, and (e) allows 



time-varying damper and spring terms. It goes 
like this: 

5 Things like sin(x) and ln(x) are rather common, and I 

would call them elementary functions.6 William Milne, 

Numerical Solution of Differential Equations, John Wiley 

6 Sons, Inc., New York, 1953. 
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'dy 

.dt 
(30) 

and 

1-fi2 (At/2)2 

1 +co2 (At/2)2 

(A')/™ 

1 +(‚2 (At/2)2 
F - Ò 

(t) ◊˜ 

fi2 (At) 

1 +ÒÓ2 (At/2) 

dy 

dt 

(”)„ 

Í<„(Û) 

Mb 
(31) 

\ + e>-(Ax¡2f 
(&tf/2m 

\ + ‚?(„Î/2) 

ÉL) l -ro '(At/2)2 

1+» „ (ƒ≥/2) „ (”). 

•…‹4 



Initially Dewey suggested that ki-|> should be of the form ko + Í^ so that ( ù = ^ k „ / m . In 

recent discussions, Dewey could think of no 
reason that the frequency could not vary with 
time. This is an important point when studying 
rotor blade lead-lag motion, where ¯̂  equals a 
constant times rotor speed (œ). 

As applied to Eq. (29), where the mass, 
damper, and spring coefficients are constant, the 
numerical integration proceeds as follows: 

where the constants (i.e., A] through A«) are as observed in Eqs. (30) and (31) and calculated 

using Table C-1, which gives co = y]k0/m orco 
= 18.7122863344901 0 radians per second and 
the damping constant Ò =228.47 pounds per 
foot per second. The constants Ai through A$ in 
Eq. (32) are immediately at hand as provided by 
Table C-2. 

The force is, of course, from Eq. (29) 



(33) 

F(t)=mwesin(y) 

where 
(34) 

dy 
~ät 

•mwecos(y) d_y 
dt2 

Õ )Õ ” ' Õ Ú Ì Û ^ - - Ú - Ú ^ 

Table C-2. Constants ¿„ Through A« 

Al *O.99982494O494325O0000 

A2 -0.35011901135076100000 

A3 +0.0000218824:3820942260 

A4 -π.00099991247024716200000 

A5 +O.99982494O494325O0O00000 

A6 +0.00000001094217687074830 
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To set up Hodges' numerical 
integration, I will use the configuration 
described in Table C-1 and a time increment 
(At) of 0.001 seconds. The solution begins by 



stating the initial conditions at time equals 
zero, which corresponds to N = 0. 
That is, yN=0 = input and ( dy/dt ) = input. 

A simple calculator (like a Microsoft® 
Excel® spreadsheet) makes short work of this 
computation using Eqs. (32), (33), and (34), and advancing time in very small steps. Given a 
column of tN+i = IN + At, and a second column of acceleration as dfydt2 radians-per-second 

squared, the third column calculates the 
instantaneous rotor speed as (dy/dt)w . The 
fourth column calculates the time-varying 
azimuth angle as y N = 0.2t^, and a few more 
columns give a time history of hub motion (yi,) as 
the rotor comes up to speed. 

The hub motion obtained by 
numerical integration during rotor startup 
with the unbalanced weight configuration of 
Fig. C-4 is shown in Fig. C-6. With 
increasing rotor speed, the resonance appears at 
a time (t) of about 48 seconds. At this moment 



in time, the instantaneous rotor speed is just 
under 20 radians per second or about 190 
revolutions per minute . The final rotor speed 
(24 radians per second) is reached in 60 
seconds . There is little practical difference 
between this result and the quasi-steady result 
shown in Fig. C-5. 
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Fig. C-6. Hub motion during rotor startup 



with an unbalanced weight. 
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Closing Remarks 

The preceding paragraphs may well be 
considered "old hat" to many readers. On the 
other hand, those without an intimate daily use 
of these dynamics fundamentals may well find 
them useful. The Dewey Hodges' numerical 
integration scheme should be of considerable 
value to anyone wanting to obtain differential 
equation solutions using spreadsheet calculating 
tools. At any rate, the first half of Appendix — 
provides (in my view) a minimum discussion 
about vibration and the mathematics of 
dynamics that are required to examine 
ground resonance. 



Now let me continue with a 
discussion of the ground resonance 
phenomena that destroyed the Kellett XR-2 
autogyro in nearly the blink of an eye. 
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GROUND RESONANCE 

Introduction 

Technical literature tackles the ground 
resonance problem from many aspects . The 
basic objective has been to define stability and 
instability boundaries. These boundaries are 
quite different for a two-bladed rotor and rotors 
with three or more blades, all configurations 
having a lead-lag hinge or behaving as if they have a lag hinge. Occasionally one hears the 
statement that multi-bladed rotors behave differently than two-bladed rotors.7 All of the 



results I am aware of assume that rotor speed is 
constant. Therefore, let me first show you the 
analysis with a series of constant rotor speeds 
(Q) and then with a normal rotor startup. 

Basic Theory 

The basics of ground resonance can be 
examined rather simply by adding one blade to 
the hub and using the weight from Fig. C-4 as a 
counterweight. This configuration is shown in 
Fig. C-7. The blade is attached to the lead-lag 
hinge, and a viscous damper bridges across the 
hinge. The lead-lag hinge is located outward 
from the hub a distance (e). The blade has 
uniform mass distribution so the blade center 
of gravity is located a distance (rcg) from the 
lead-lag hinge. Therefore, the blade center of 
gravity is located a distance (e + rcg) from the 
centerline of rotation when the lead-lag angle 
(Ç) is zero. The counterweight is mounted to 
what could be a lead-lag hinge for a second 



blade and, therefore, at the same distance (e) 
from the centerline of rotation. 

¬ sidt Center 

U.˘˘-I.ag 
Hinge 

Fig. C-7. A counterbalanced one-bladed rotor 
system. 

I have always thought that the classification multi 
included a two-bladed rotor. 
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The equations of motion for this case, guided by Fig. C-7, require first adding the 
blade mass (Ú¸) times its acceleration (d yt/dr) to Eq. (13) which gives 

(35) 

m 

d 2yh dy„ 
+ Ò ^ ^ + ÍÛÔ =F = -m, 

d2yw m d2y 
h dt2 " dt ' ^ h ~~ "*w dt2 - m b dt2 

However, in addition to this hub vibration 
equation, the blade lead-lag motion must also 
be taken into account. The equation from which 
lead-lag motion (Ç) is obtained comes by solving 
(36) 

cos(y+^) T d2Ç dÇ - 2K 
bdt2 dt 

d V 
v " * * , 

where (≤¸) is the second moment of inertia of 
the blade in slug-feet squared, and (Ò¸) is a 



viscous lag damper constant in foot-pounds 
per radians per second. The inplane natural 
frequency (ÒÓ̧ ) of the blade in radians per 
second is frequently approximated as 

(Á7) *-°!E)-
Notice immediately in Eq. (36) that the lead-lag motion i& dependent on the hub 

acceleration (d Vn/dt ). However, the hub motion ís dependent on the lead-lag angular 

displacement (Ç) itself. The interaction 
(more precisely, the coupling) between the 
two motions occurs because 
(38) yw=yt,+esin(y + 180°) = yh-esin(y) 

”̧  = ”Ì + e s i n (v) + reg

 s i n (V + £) 
It is the second derivative of these two 
displacements (yw and Û¸) with respect to time 
that is required. Thus, for the counterbalance 
weight, the acceleration required by Eq. (35) is 

(39) 



d2yw 

dt2 
d2yh 

dt2 + esin Œ) dy 
~d7 -ecos (¥) 

d2y 
dt2 

The blade acceleration (d2yt>/dt2) required by 
Eq. (35)—while a somewhat longer expression 
because of the lead-lag terms—is simply 
(40) 

‡2”¸_ƒ2”Ë 
dt2 dt2 

•esin(tM-) 
d\|f 
~d7 

rcesin(i|/+π) 

+ ecos(y) 

dpjHJ)"" 
dt 

dV 
dt2 

r^cos^+Ç) "d?(¥ + ^)" 
dt2 

Case 1. One Blade, Counterbalanced, at 
Several Rotor Speeds 

Imagine the pilot starting the rotor up 
with the blade in the lead position shown in 
Fig. C-7, and suppose neither the pilot nor the 
ground crew are aware (for whatever reason) 



that the blade-lag damper has locked up and is 
holding the blade in the lead position. Finally, 
assume that at some rotor speed the lag damper 
breaks free and lead-lag motion is allowed in 
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the normal operating manner. The small 
question is, "Will the pilot sense a vibration 
due to the locked-up blade, get worried, and 
shut the engine down?" The bigger question is, 
"If he accepts the warning vibration, stops 
increasing rotor speed (dy/dt becomes constant 
at dy/dt = Q) to investigate, and then the lag 
damper breaks free, what are the resulting 
blade lead-lag and hub motions?" 

Let me answer the small question first. 
Consider a normal startup with the blade in a 



locked position with a lead angle (Co) of, say, 
0.01 radian, which is just over one-half degree. 
With a fixed lead angle, no angular velocity or 
acceleration can occur, which means that dt/dt 
= 0 and d ^ d t 2 = 0. Now I will again assume a quasi-steady increase in rotor speed so that at 
each rotor speed where data might be taken, d:i|f/dt2 = 0. Finally, let me also assume that the 

lead-lag angle is small for this case, so that 

(41) 

sin(Qt +1%) = sin (£it) cos £+cos (£2t) sin % ~ sin (£it) + Çcos (Ot) 
cos(Ht + ci) = cos(Ot)cos^-sin(nt)sinci = cos(nt)-cisin(nt) 

Now comes the four steps where 
considerable care must be taken. First, 
substitute the weight and blade acceleration 
equations [Eqs. (39) and (40) respectively] into 
the hub motion 
equation, Eq. (35). Second, simplify this result using the small angle assumption given by 
Eq. (41), and set diy/dt = ÍÍ and dV^dt2 = 0. Third, rearrange the results of step two to see 

what further simplification can be made. Fourth, 



make the further simplifications. 

To proceed then, from the first step you have: 

h ^ + c ^ + kyh=-m„fe + esin(v)[fJ-ecos(V)[^] 

^_esin( V )g] +ecoS(V)[5] 

-r̂ sintø+e;) 

(42) 

+rt,cos(t)í+f;) 

Then from the second step (i.e., simplification with assumptions), you obtain 

dw 
1 dt 

' d > 
dt1 

d4 — ft J 
3 ' 

d t 2 . 

m 
dVh^ dyh 

h AC- + c ^ - + kyh=-mv dt2 dt 
d4 
dt2 + esm (¥)[Û]2 

(43) d'y. „(V)[ílf 

-rre[sm(4f)+4cos(v)][£3]! 
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The third step is taken because you see that 
some rearrangement can be made. So 
(44) 

mh ^ √ + Ò ^ + Í”¸ = - ( m w +m b )^r-m w eí2 2 s in( \ | / ) 

+ mb(e + rcg)fí2sin(y) + mbrcgaQ2cos(y) 
Now you can see that both the counterbalance 
mass and blade mass times the hub acceleration 
should be moved to the left side of Eq. (44). 
Furthermore, since the centrifugal force of the 
counterbalance weight equals the centrifugal 
force of the blade, these two forces cancel out. 
That is, 



[-mweQ2sin(y)+mb(e + rc g)Q2sin(y)] = 0. 
Finally, because the blade is locked at a lead 
angle, c; must be replaced with £0 • With these 
finishing touches, you see that the hub is shaken 
by the relatively small unbalance caused by the 
blade being locked in the lead position (c;0). 
Therefore, the hub motion of the locked-blade 
system is described quite familiarly as 
(45) 

(m h +m w 4 - m b ) - ^ + c - ^ + k y h =(mbrc g‡0Q
2)cos(y). 

Now define Ú ¸ + mw + Ú ¸ = m and recognize 

that with a constant rotor speed (y = Qt), the 

solution to Eq. (45) is 

(46) 
ím.ríLQ2) r, . , -, 

y„= V V J k-mft2 coS(fìt) + (ci2)sin(Qt)l 
(k-m£22) +(cß) L J 



or in phase angle form, which illuminates the 
vibration's amplitude, you have (47) 

(mbrcg‡0£22) 
yh = 

^(k-mQ2)2+(cQ)2 cos Qt-arctan - cQ 

Vk-mir 

As the pilot brings the rotor slowly up to 
speed, the unbalance will begin to vibrate the 
hub, rock the machine, and shake the pilot. The 
maximum amplitude of hub acceleration will 
vary with rotor speed as you learned from Basic 
Dynamics. That is, 

(48) Max. i \ . €À*–! 

jfk-rf^lcQ)2 

To numerically study the situation, use the physical properties of the system provided 

in Table C-3 and, since this is a practical 
problem under discussion, let me express rotor 
speed (£1) not in radians per second, but in 
revolutions per minute (RPM = 3QQJTZ). 
Furthermore, I 
will measure hub acceleration not in 



dividing dVh/dt2 by 32.17 ft/sec2. 
feet-per-second squared, but in g's, which 
means 
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Table C-3. Physical Properties 



A u t o g y r o Proper t ies 
A ¡reran weight 

Blade radius 
Hub height above (he around 

Pilot heiçhl above lhe ground 

Lundina Rear spread 

Apparent auttsRvro spring stiffness at the hub 

Apparent autogyro weight at hub 

Apparent autogyro mass at lhe hub 

Apparent damping coefficient o f the autogvro 

DLadi- Propert ies 

Weight 

M a s i 

Spanwise center o f gravity 

Centr in i Ral force 

Lead-Jag hinge location 

Lag frequency per rev 

Running mass (mhl oulboard o f lag hinge 

Lag moment o f inertia 

Lag damper coeff icient 

Coun te rwe igh t Propert ies 

Weight 

Mass 

Radial location 

Counterweight centrifugal force 

Symbo l 
G W 

R 

Õ ˚ » 

Í 
Wb 

Ú ¸ 

Ò 

Wb 

inn 

l'.T 

C F b 

e 

c i ï /Q 

ƒ Ú ‹ ' ' ƒ „ 

I t 

'I 

W„ 
Ú . 

Ò 

C F . 

V a l u e 

1.900 

21.25 

1 3 0 

7.0 

12.0 

16.000.0 

1.300.0 

40.410320 

228.470 

40.0 

1.2433945 

9.3750 

9.22S.3 

2.50 

0.20000 

0.066314372 

211.7656201 

15.00 

190.0 

5.9061237 

2.50 

9.228.3 

UDìCS 

lbs 
n 
n 
It 

À 

Ibs/O 

I t ! 
slURS 

Ibsrtps 

lbs 

sl l lRi 

It 

lbs 

f t 

per rev 

sluE^.'ft 

slufí-fr1 

ft-lbs per radtaec 

lbs 
5≤11÷≤ 

f t 

lba 

The maximum acceleration of the hub 
(and what the pilot feels sitting well below the 
rotor) varies with RPM as shown in Fig. C-8 
when the blade-lag damper remains locked up at 
the lead angle (£,o) of 0.01 radians, which is only 
0.57 degrees. Because the aircraft is assumed to 
be rocking about a point on the ground (see 
Fig. C-2), pilot acceleration equals 7/13 times 
hub acceleration. 



The smaller question was, "Will the pilot 
sense a vibration due to the locked-up blade, get 
worried, and shut the engine down?" I would 
suggest, based on Fig. C-8, that autogyro 
engineers and pilots in this pioneering era 
would have accepted this maximum vibration 
level at the cockpit and would not have been 
unduly alarmed. 

Now consider the bigger question, "If the 
pilot accepts the warning vibration, but stops 
increasing rotor speed to investigate (i.e., Q 
becomes a constant), and then the locked-up 
blade breaks free, what are the resulting blade 
lead-lag and hub motions?" To answer this 
question, imagine that during the Kellett 
XR-2 test (of over-speeding the rotor for 
jump takeoff), ground resonance was 
encountered with this sequence of events: 

a. The rotor speed for jump takeoff has been 



determined to be 230 rpm, 
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Fig. C-8. Vibration caused by a blade 

not being exactly counterbalanced. 



b. The engineers and the pilot agree to 
run the rotor up from 0 to 230 rpm, taking data 

in 5-rpm steps, 
Ò Data taken at each step shows cockpit 

accelerations that follow Fig. C-8. 
d. Everyone has become comfortable 

because whatever was causing the vibration to 
increase up to 0.06 g's at 190 rpm 

has stopped and, at higher RPM points, the 
vibration even appears to be 

decreasing. 
d. When the test objective of 230 rpm is 

reached and the pilot is holding at a constant 
230 rpm, the lag damper, for one 

reason or another, unlocks and completely fails 
to 

provide damping. 
e. Lead-lag motion begins—with a zero 

value for the blade damping constant (Ò¸ = 0). 



f. And, in well under 15 seconds, the 
Kellett XR-2 is destroyed. The blade lead-lag 
motion precipitating the destruction is shown in 
Fig. C-9 and the resulting hub acceleration in 
Fig. C-10. The reason I show destruction within 
15 seconds is because the hub force is so great 
that the autogyro structure that supports the 
rotor is likely to be ripped off the top of the 
fuselage. The maximum magnitude of this force 
is 
(49) 

Max.F = ma = [ ^ ± ^ ± ^ ] ^ = (Wh + Ww +Wb)[^lj. 
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Fig. C-9. Rapid divergence of blade 
motion during ground resonance. 
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Fig. C-10. Rapid buildup in hub vibration 
during ground resonance. 
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From Table C-3, the total weight being 
vibrated is 1,530 pounds, and if the 
maximum acceleration is 10 g's, the vibratory 
force has an amplitude of ±15,300 pounds. It is 
not hard to argue that the machine came apart in 
under 1 1 seconds because of 1,530 pounds of 
force. 



Now, let me explain how the time 
histories displayed in Fig. C-9 and Fig. C-10 
were 
obtained. I started the time history assuming that at time (t) equals zero the rotor speed was 
constant at 230 rpm, so dy/dt = ii = 24.085 radians per second, dV/dt2 = 0, and ˘ = fît. 

Making no small angle assumptions, the 
general hub motion equation, Eq. (42), and 
lead-lag equation, Eq. (36), become 

(50) 

(mh+mw+mb)—^-+Ò-^-+ÍÛ¸ =-m„eii5sin(Qt) + mbeß3sin(iT2t) 

and 

b cg ü3' 
dt 

sin(Qt + π)-mbrCj dt2 cos(Ìit + i;) 

(51) 



≤ ¸ § + — ¸ ¥ + ≤ ¸ ^ = ~ [ Ú ¸ „ ^ ] Ò 0 8 ( ^ + ^ ' 
The calculation was rather simple using the 
previously discussed Dewey Hodges' 
numerical integrator to solve the two 
equations. The Hodges' solver was set up 
using a Microsoft® Excel® spreadsheet. The 
initial conditions came from the locked-blade 
solution so that at zero 
time (1), the blade lead-lag angle was at Ÿa = 0.01 radians, and the hub displacement (yh) was 
zero. The hub velocity (dyi/dt = -0.18 ft/sec) and acceleration (d'yh/dt2 = 0.00562 fVsec!) 

corresponded to the beginning of a cycle when 
Û¸ = 0 at 230 rpm. The first spreadsheet row set 
the initial conditions. The second and 
following rows computed lead-lag angle first, 
and then hub displacement, velocity, and 
acceleration. 

The preceding example leads to a very 
important question dealing with the amount of 
lead-lag damping required for at least neutral 



stability. Neutral stability means the oscillation 
will continue indefinitely, neither growing in 
amplitude nor subsiding. For the results shown 
in Fig. C-9 and Fig. C-10, I selected a rotor 
speed of 230 rpm and assumed that the lag 
damper completely failed. In reality, the 
blade might have unlocked at any rotor 
speed. Therefore, the amount of damping 
required to avoid autogyro destruction at all 
rotor speeds is of considerable interest. Figure 
C-11 shows the amount of damping required to 
ensure at least neutral stability as a function 
of rotor speed. These results were 
calculated using the configuration data from 
Table C-3. 

There is a somewhat general rule 
of thumb as to what rotor speed will definitely 
cause 
ground resonance if the system is under damped. The basis for this rule is well explained by 
Bramwell.11 In equation form, the rule is that when: 

(52) Q-tob=coh —> Í2 = 03h+cob 



there is the potential for ground resonance. 
That is, if the sum of aircraft natural 
frequency (©h) and blade lead-lag frequency 
(a>b) equals the rotor speed (£2), then there is 
an ensured 

A.R.S. Bramwell, Helicopter Dynamics, John Wiley & 
Sons, New York, 1976, pp. 379-382. 
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potential for ground resonance. As Fig. C-12 



shows, this rule is approximately correct, but 
should be considered rather optimistic. The 
potential for ground resonance actually begins at 
a lower rotor speed than Eq. (52) suggests. Only 
a very thorough dynamic analysis offers some 
assurance that a rotorcraft design will be safe 
from the destruction that will occur if ground 
resonance is encountered. Lastly, as you will 
note in Fig. C-12, there is a second branch of 
lead-lag motion that can occur. This second 
branch involves lead-lag motion at a frequency 
of £2 + cub, and this blade motion can coalesce 
with the hub natural frequency. That is, there 
is potential for a forced vibration resonance 
when 

(53) 0 + 0^=0^ -» Í2 = (*>,,-co,,. 

Advanced dynamics study has determined that 
a ground resonance situation cannot occur in 
this branch of the blade-hub vibration problem. 



Case 2. One Blade, Counterbalanced, with 
Rotor Speed Acceleration 

The preceding paragraphs examined just 
the ground resonance branch (i.e., the Í2 -˛¸ 
line) shown in Fig. C-12 . This solution 
branch is associated with the vibration 
mode controlled by the blade lead-lag motion, 
which can create such large forces that the 
whole machine can be shaken to bits in a matter 
of seconds—if there is insufficient damping. 
There is, in fact, a second solution branch 
(i.e., the Í2 + ©b line) shown in Fig. C-12 
where the vibration is controlled by the hub 
motion, and the blade lead-lag motion is a 
simple forcing function akin to the problem 
examined in Fig. C-4 . In both solution 
branches there is the possibility of a resonance, 
but it is only the i l (Db branch that is of real 
concern. I have used a rotor startup example 
so you can see both solution branches and 



associated potential resonances. 

For this case, I will again assume that 
the pilot starts the rotor up following Eq. (34), 
which is repeated here as 

(34) 

^'{ZT1) U4T*/ ' ~dt~{~2TTJ "tïT^J1 ' d?"~[ T2 J ~t T6 J ' 

With a final rotor speed (fìf) of 230 Ù Ú (times Î/30 to get radians per second) reached in T = 
50 seconds, the displacement («ƒ velocity (dy/dt), and acceleration (dV/dt2) describe a 

reasonable rotor startup model for the solution 
of the hub motion equation given earlier as 

( Ú „ + Ú „ + Ú ¸ ) ^ + „ ƒ ¸ - + Í Û , , =• mwecos(y) 4?] 
(54) 
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Of course, the blade lead-lag equation does not 
change, so, to repeat, 

(55) 

. d% d‡ T 2 e ( d2yhi / Â˜ 



Again, the actual calculation was 
rather simple using the previously discussed 
Hodges' numerical integrator to solve the two 
coupled equations, (54) and (55). The solver 
was set up using a Microsoft® Excel® 
spreadsheet. The initial conditions required by 
the two 
equations were simply that the blade was against the lead stop (i.e., in = +5 degrees) and the 
rotor was at rest (yt = d\yd' = d^t/dt2 = 0). Of course, time (t) began at zero. The 

configuration again followed Table C-3, and I 
set the blade-lag damper (Ò¸) to a nominal 
value of 60 foot-pounds per radian per 
second. This is enough damping to bring the 
rotor blade to nearly a straight-out position at 
relatively low rotor speed; but not enough 
damping to avoid ground resonance. The results 
of this calculation are shown in Fig. C-13 and 
Fig. C-14. 

As you can see from Fig. C-13, the 
blade started from a lead stop position of 5 
degrees, which can often be a quite normal 



position after shutting down from the previous 
flight. The lag damper value of 60 foot-pounds 
per radian per second is sufficient to damp the 
oscillating blade motion to a straight-out 
position (£ = 0 degrees) in about 35 seconds. 
(In reality, a more realistic value of lag 
damping would be about 200 to 250 
foot-pounds per radian per second in which 
case the lead-lag position becomes zero in 
about 20 seconds. However, with a higher 
blade-lag damping constant, the time histories 
show no deflections in blade or hub motion after 
1 5 seconds, and my example would be less 
interesting.) 



Lend 

Lead-
L»B 

Monon 
ÔÂ‚ 

i. 

30 35 40 45 50 SS 60 65 70 75 lü 15 ••' I Time (ceel 

Fig. C-13. Blade motion during rotor startup. 
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Notice that the blade motion is 
virtually zero at 35 seconds. In fact, there is a 
very small vibratory amplitude of under ±0.01 
degree between 25 and 35 seconds that is 



sufficient to excite hub motion at the ojh 
frequency intersection with the lead-lag motion 
frequency of Q. + Ó̋ ¸ shown in Fig. C-12. The 
resulting forced hub vibration is visible in 
Fig. C-14. Obviously, the ordinate scale in Fig. 
C-13 obscures this information. This residual 
lead-lag motion serves as enough excitation to 
create the beginnings of ground resonance 
around 50 seconds into the rotor startup where 
the final rotor speed of 230 rpm is reached. 
(From Fig. C-11, at least 130 foot-pounds per 
radian per second of lag damping is required 
just for neutral stability of blade lead-lag 
motion, so my choice of Ò¸ equal to 60 
foot-pounds per radian per second has ensured 
that ground resonance will occur.) 

It is the hub vibration time history 
during this rotor startup example that shows 
both solution branches (i.e., Q. + ‡»̧  and Í2 - ÒÓ̧ ) 
of this dynamics problem. Figure C-14 shows 
the time history of hub acceleration in units of 



gravity. You can immediately see that a 
damped resonance is passed through in the 25-
to 35-second period after rotor startup is 
begun. This is associated with the (Oh 
frequency intersection with the lead-lag, Q + 
ÿ̧  frequency in Fig. C-12. However, with the 
small amount of lag damping and the 
landing gear shock absorber damping, the hub 
acceleration is not greater than ± 0.2 g's. The 
pilot, located well below the hub, would 
probably feel only about ± 0.1 g's and not be 
unduly alarmed. He would quite naturally be 
satisfied that the final rotor speed of 230 rpm 
had been achieved without incident. By 60 
seconds into the startup, I would think the test 
pilot would become aware of a new and 
growing vibration, but by then—without prior 
experience—it would be too late. The 
destruction of the machine would be inevitable. 
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Fig. C-14. Hub vibration during rotor 
startup. 
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Case 3. Three Blades at Several Rotor 



Speeds 

As a concluding example to this 
discussion about ground resonance, I have 
chosen a classic ground resonance problem. In 
this case, the rotor system has three absolutely 
identical blades, which are described in Table 
C-3 . The rotor speed is fixed at a constant 
RPM. The objective is to establish the amount 
of damping required for neutral stability at each 
of several RPMs in order to make a comparison 
with Fig. C-11. 

Before presenting the results of this 
case, it is very important to appreciate that as 
more blades are added, each blade will have its 
own dynamic equation. Thus, the degrees of 
freedom increase from the two degrees (yh and 
£) suggested by Fig . C-5 . Some mathematical 
simplification is obtained by assuming that all 
blades, regardless of the number, are absolutely 
identical . However, in real life, this 



perfection has yet to be achieved. It is 
common manufacturing practice to balance all 
blades against a master blade. This practice 
yields blades of equal weight and gives some 
assurance that the spanwise center of gravity is 
within tolerance. However, I am not aware of 
any production process that checks a blade's 

second moment of inertia jlb = f r2dm 

against a master blade. And finally, in the field operation, 

blade deterioration does not occur equally. 
Perhaps the worst that can happen is that 
blade-lag dampers and landing gear shock 
absorbers degrade, and even fail, which is an 
extremely dangerous matter. 

The equations of motion for this 
case, guided by Fig. C-7, require replacing 
the counterbalance weight with two blades. This 
yields a rotor system where blade one becomes 
the master blade, which is indexed in azimuth 



to \|/i = Qt since rotor speed (Si) is assumed 
constant. Blade two is placed 120 degrees 
ahead of master blade one, and blade three is 
placed 240 degrees ahead of the master 
blade. Thus, each blade has its individual 
displacement of 

”̊  = ”≥, + e, sin (at) + rcgl sin (Qt + £, ) 

(56) 

”¸2=”Ë+Â28ÿ Qt + 
2Î 

+ rcg2sin Qt-A‡ 2 

”̧ Á = ”¸ + Â Á 8 ≤ Ô 4Î 4ˇ Ût + — +r 3sin Qt +—+4. 

Now the hub equation accounting for all three 
blades is 



(57) 

( m h + m b I + m b 2 + m b 3 ) - ^ + c - ^ + k y h = F b l + F b 2 + F b : 

where the force is computed individually for 
each blade (should they not be absolutely 
identical) from 

359 

APPENDIX — 

I =n. . ,c l i l :

S in |Ut)-m l .r . j , COs(Ot)^l-sin(Ût) n+ dt 

(58) 

–12=Ú≥À‡„

5≥œ[£31 + ̂ -¯ ¿ „ |=Ó 8 [Ô≥ + |‹ + ‡ 2 ]^.- ‡ ≥Ô[Ô£ +^+^][£2 + ^ . | 



FB-ml Aa"Sin^Qt+^-mMiW 3 |cM^a+^+a í^_s f a^at +ÍE+ bj |^o+&J 

As noted above, each blade must have 
its own dynamics equation. I have purposely 
written the three blade lead-lag equations so 
that ground resonance with dissimilar blades 
might be studied at some later date. However, 
for this introduction, all blades are absolutely 
identical. Thus 

Ibi-ZT + Cbi-ZL + Ibi«î i4i=-dt dt 
dVb 

m b ' ^ ^ cosfQt+i;,) 

(59) 

dt2 dt 
d 4 
dt2 cos fit + — + £2 



1 ¸ Á ^ + Ò ˛ - ^ + 1¸3^Á=-[Ú¸ Á„— 8Á^]ÒÓÁ√Ô1+Û + ‡Á1 

The calculation was rather simple using the 
previously discussed Dewey Hodges' 
numerical integrator to solve the four 
equations: The Hodges' solver was set up 
using a Microsoft® Excel® spreadsheet, which 
now, admittedly, required many columns. The 
initial conditions came from the earlier 
locked-blade solution for one blade so that at 
zero time (t), the initial 
blade lead-lag angle for all three blades was at £• = 0.05 radians, and the hub displacement 
(yh) was zero. The hub velocity (dy^dt = -0.1 S ft/sec) and acceleration (dVt/dr1 = 0.00562 
ft/sec") corresponded to the beginning of a cycle when Û̧  = 0 at 230 rpm. 

Figures C-15 and C-16 summarize 
the neutral stability boundaries for ground 
resonance of a three-bladed autogyro with 
lead-lag hinges and lead-lag dampers . The 
example is, perhaps, what might have been seen 
by the Kellett engineering department before 
testing began on the XR-2 autogyro—if the 



theory had been developed. Unfortunately for 
the XR-2, a problem was not foreseen as the 
pioneers focused on rotor over-speed for jump 
takeoff and, just as unfortunately, no theory was 
available. 

A comparison of Fig. C-15 to Fig. C-11 
shows a very similar trend. The big difference is 
that each blade in the three-bladed set now 
needs more than four times the lag damper value 
required by just one blade that is 
counterbalanced. 
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Figure —-16 is particularly informative. 
Two points are immediately apparent. First, 
there are unique sets of damping coefficients 
(i.e., blade and landing gear) at any given rotor 
speed that define a neutral stability boundary. 
Second, there is a very small range in rotor 
speed that captures the very maximum of lag 
and hub damping required for neutral stability; 
about 220 to 230 Ù Ú for this configuration 
defined in Table C-3 . This general trend 
exhibited in Fig. C-16 means that serious design 
attention must be given to landing gear design 
details and blade-root-end configuration details 
to say nothing about the rotor speed operating 
range. 

Finally, I have added a most practical 
design criteria (labeled Deutsch Criteria) to both 
Figs. C-16 and C-17. Mr. M. L. Deutsch published some of his work in the Journal of the 
Aeronautical Sciences, Volume 13, Number 5, in May 1946.9 At that time, he was a member 

of the Engineering Division of the Army Air 
Force Air Technical Service Command located 



at Wright Field in Dayton, Ohio. Deutsch's 
ground resonance criteria, now rather well 
known, is simplicity itself. The approximation 
for the maximum required lag damping for any 
given hub damping, so that at least neutral 
stability is obtained, is calculated from 

ï(«î) •-K/Q)' 
°◊/£1 

(Blade first moment of inertia) 

(60) Lag damping constant = -
Hub damping constan! 

where (b) is the number of blades (being three or more). The hub natural frequency (ÓÒ̂ ,) in 

radians per second is equal to Î/k/m , 

and the blade inplane natural frequency ratio 

(˘/Sì) on 
a per-rev basis can be approximated as J— , which is unitless. The blade first moment 

of inertia is calculated as 

which, for a blade having a uniform mass feb 
distribution as in my example, becomes (Ú¸ rcg ) 



in slug-feet. 

Closing Remarks 

The first point to make in conclusion is 
that good engineering practice requires that 
more system damping than the minimum 
required for neutral stability, is mandatory. 
Suppose, for example, that one of two landing 
gear shock absorbers fails. Or what about the 
case of operating from ice—the list of "what ifs" 
is nearly endless. 

9 Wayne Johnson (NASA Ames Research Center), who 
patiently watched over me on parts of this appendix, 
brought Deutsch's work to my attention. Wayne sent 
me a PDF copy of Deutsch's paper. I had my memory 
jogged when I saw the paper. It was a copy of the 
Journal paper that Robert (Bob) Lowey (then Chief of 
Dynamics at Vertol Aircraft Corp.) gave me to read in 
1957 in response to my asking if he would tell me all 
about ground resonance, a new term in my apprenticeship. 
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Secondly, it seems that this particular incidence of the Kellett XR-2 destruction due to 
ground resonance10 opened a door to comprehensive rotorcraft dynamics. The question of a 

similar type of instability with the aircraft 
flying was asked. Then, as ever-improved 
helicopters came on the scene, questions about 
drive-system coupled to rotor-system behavior 
arose. Then blade flapping-motion coupling 
to blade lead-lag-motion was studied in 
considerable detail. 

Both the autogyro in its era and now 
the helicopter are multi-degree-of-freedom 
machines. By multi, I mean between two 
and at least one hundred. The odds of some 
previously unknown instability striking current 
and future rotorcraft without warning are, in my 
opinion, very high. I do, however, expect that 
prominent dynamic engineers will debate me on 



this somewhat pessimistic view. 

Mr. Deutsch writes in his Memorandum Report 
MLD:fbl:51 dated January 23, 1943, titled Theory of 
Mechanical Instability of Rotors that: "Ground 
resonance has been one of the major problems 
retarding the development of rotary wing aircraft. 
Several aircraft have been either destroyed or seriously 
damaged on the ground during rev-up (e.g. the XR-2). It 
was believed, at first, that this phenomena might be a 
result of coupled aerodynamic and mechanical forces 
affected by the proximity of the ground. However, it has 
been understood for some time that a purely mechanical 
system can exhibit - t o a very high degree 
of approximation - the type of instabilities observed in 
actual rotary wing aircraft." 
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CONTROL LOADS 

By the end of the autogyro era, our 
pioneers had learned a great deal about blade 
twisting and control loads. In this appendix, I 
want to discuss control loads in the three parts 
that I consider to be of particular importance. 

Control Loads: Part I—The Basics 

In my opinion, the 1932 blade 
feathering system of E. Burke Wilford (see Fig. 
2-35) and the addition of the pitch change 
mechanism by Raoul Hafher in 1937 (see 
Figs. 2-39, 2-40, 2-41, and 2-43) were major 
steps toward developing today's rotor systems. 
A schematic drawing of what may be considered 
today's control system is repeated here as Fig. 
D-1 . This configuration is a quite adequate 
schematic from which several key points about 
control loads can be made. 



To begin with, all of the torsional 
moments (MT) that the blade can produce 
are resisted by a pitch link force (PLL) acting at 
a moment arm provided by the pitch arm. This 
moment arm is of length (d). That is, 

(1) PLL(d) = MT or PLL = ^ -

where the blade torsional moment is in units 
of foot-pounds, the moment arm is in units of 
feet, and the pitch link load is in units of pounds. 

The Feathering 
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Fig. D-1. Blade feathering and a modern 
swashplate gave the pilot complete control. 
The 

assembly, including swashplate 
actuators, is frequently referred to as the 
upper 

controls; cockpit controls are the 
lower controls. 
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To help in this discussion, consider a 
line drawing in top view of the control system 
as shown in Fig. D-2 . The blade feathers 
about an axis positioned at the azimuth angle 
(vi), which is measured from the X-axis. The 
X-axis forms the fore and aft plane of the 
machine. The pitch arm ends (point D) in a ball 
joint. A pitch link connects point D to the 
rotating ring below in a nearly vertical line 
going into the paper. The bottom end of the 
pitch link ties to a ball joint that is solidly 
attached to the rotating ring. The rotating ring 
has a radius (TPL), SO the moment arm (d) is 
approximately equal to TPL times the sine of the 
angle (A). 

The rotating assembly is held in space 
by the nonrotating ring. This is the swashplate 
assembly, which is basically a ball bearing. The 



nonrotating ring is attached to a slider with a 
centering ball . Control of the swashplate is 
obtained through three actuators located at 
points A, B, and C. The tilt of the swashplate 
in space depends on the individual lengths of 
the actuators. The bottom of the actuators are 
attached to some part of the airframe, 
commonly the transmission in a helicopter. 
Both ends of each actuator end in ball 
joints . I have positioned the swashplate 
actuators (points A, B, and C) in a quite 
arbitrary way; that is, they need not be inside the 
pitch link radius (point D) nor located at the 
azithmuths shown. 
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Fig. D-2. Schematic of the upper controls. 
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Now with the mechanical design layout 
of Fig. D-2, think about calculating the load in a 
pitch link and the three swashplate control 
actuators. Assume that the torsional moment at 
the root (MTV) of one blade can be represented 
by a Fourier series of the form 

(2) MT¥ = M0 + M1S sin \|/ + M1C 

cos vf + M2S sin 2\|/ + M2C cos 2\|/ + etc. 

where a leading-edge-up pitching moment is a 
positive moment with the units of foot-pounds. 
Then the associated pitch link load is 

(3) 
MT 1 

PLLV = —— = — (M0 + M1S sinxy+ M]C C0S4/+ M2S sin 2t|/+M2C cos2t|/+etc.). 



Since the pitch link is shown at an advanced 
angle (ƒ) relative to the blade feathering axis, 
the pitch link will be in tension (which I will 
assume is the positive sign convention) when 
the torsional moment is positive (i.e., nose up). 
Now the pitch link load creates a moment 
about 
the nonrotating X-axis and Y-axis system. 
down moment in the amount of 

(4) M Y =-PLL v [r P L cos(v r r+A)] 
and the moment about the X-axis is 

(5) M x = - P L L v [ r P L s i n ( \ r / + A ) ] . 
Let me interject here that there 

For the moment about the Y-axis, this is a nose-
is an important characteristic of rotary wing 

trigonometry that you should be aware of. The 
pitch link load of Eq. (3) is transferred from the 
rotating system to the nonrotating system by 
multiplying by a cosine function or a sine 



function as Eqs . (4) and (5) respectively 
require. Furthermore, to get the total 
contribution to MY and Mx of two, three, or 
four or more blades, additional trigonometry is 
involved. It is 
possible to complete the trigonometry in longhand as was done in the autogyro era. So let me 
refer you to Gessow and Myers' who include, near the end of their book, some very handy 

tables that show some quite simple results. 

To continue then, these two moments 
(MY and M x ) in the fixed system are reacted by 
the approximately vertical forces (i.e., in or out 
of the paper) at actuator points A, B, and C, 
which are at a radius (r^t). Figure D-2 shows 
these actuator points in the simplest geometric 
positions. That is, the moment about the Y-axis 
must be resisted by an upward force at point A 
and a downward force at point — This puts the 
actuator at point A in compression and the 
actuator at point — in tension. A sign 
convention for actuator loads must now be 
chosen. Let me choose tension as the positive 
sign convention for all actuator loads. Together 



these two actuators (A and C) produce a couple 
(i.e., FA = -Fc) having the moment 

(6) (FA -F c )r a c t =-2Fcract = M Y =-PLL v 

[rP Lcos(\|/+A)]. 

In like manner, the moment about the X-axis 
puts the actuator at point — in compression, 
which is negative load, so you have 

Alfred Gessow and Garry Myers, Aerodynamics of the 
Helicopter, Frederick Ungar Publishing Co., New York, 
3rd Printing, 1952, pp. 316-319. 
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(7) FBract = M x = -PLLV [rPL sin (vi + A)]. 

The preceding discussion accounts for 



fixed-system actuator loads from one blade and 
can be summarized as 

Fc=i^-)pLL,[eos(Nt + i ) ] = -FA 

(8) V W 

FB =-MpLL v [r p l . s in(t | r+ƒ)] 

I will show you the actuator loading for three blades after quantifying three important 

torsional moments. 

Control Loads: Part II—Three Important 
Torsional Moments 

In the discussion of control loads for the 
Raoul Hafher autogyro (see paragraph 2.7.5) you 
have read that he designed the blades so that 
two key assumptions could be made . These 
assumptions, in his words, were that: 

"The blades produce no [torsional] moments about their 
longitudinal [spanwise] or pitch change axes due to 
(a) aerodynamic forces, because the blades are fitted 
with aerofoil sections, the centre of pressures of 

which lie always on a straight line coinciding with the 
pitch change axis; and (b) weight and centrifugal forces, 



because the centre of gravity of each blade lies also in 
this [pitch 

change] axis." 

(Hafner made an implied assumption that the line of shear centers of every blade element also 
is coincident with the pitch change axis. ) Following those assumptions here means that blade 

feathering causes a torsional moment. The 
second torsional moment will come from the 
pitching moment coefficient (—Ï'/4—) • The 
third torsional moment comes from 
unsteady aerodynamics, which was discussed in 
Appendix ¬ . Let me consider these three 
moments in order and later offer numerical 
results using the Hafher A.R. Ill autogyro as an 
example. 

Blade Feathering. Suppose that the blade pitch 
angle ( ), at any radius station (x = r/R) and 
azimuth position (\|/), is described simply as 

(9) ’(1|, = 0 + x9 t -B 1 C sin y - A l c cosy 

then a pitch link is loaded by a moment 



associated with the blade retention components 
and by the feathering inertia of the blade. That is, 

The shear centeris a point about which a section of a 
beam twists. It can be found experimentally by applying a 
perpendicular force at successive chordwise points and 
finding the point where the force only bends the beam 
and does not twist the beam at all. The test would be 
done by hanging a blade by a clamped root end and 
applying the force at several span and chordwise points. 
Early rotor blades were built up on a main spar that was 
circular. To the first approximation, the center of the 
circular spar was the shear center. For a main spar that is 
a C-section to which the rest of the airfoil is attached, it is 
quite likely that the shear center is, in fact, very near the 
leading edge of the airfoil. Thus, a blade might feather 
about the pitch change axis, but twist elastically about a 
different axis. 
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(10) 



Ï Ú = ~ Í (Ö0 -B,csiny- AIC cosy)- '"(-•• ! ? - ' H dr. 

The first moment in Eq. (10) comes from the 
tie rod that Hafner used. In modern designs, 
such a component is called a tension-torsion 
(T-T) strap assembly. The blade is retained 
against centrifugal force, but the T-T strap assembly has a relatively low torsional rigidity (GJ 
in pound-feet2) and is relatively easy to twist. The second moment in Eq. (10) is due to the 

blade's resistance to being feathered in a 
once-per-revolution manner (i.e., 1/rev), 

The second moment in Eq, (10) deserves some discussion. To begin with, the moment 
Dì inertia in pitch is denoted as (Ig) and has the units of slug-feer per foot. This moment can 

be rearranged by assuming that rotor speed 
times time is azimuth (vt = Sit) and defining (dr 
= Rdx). Thus, the total blade length can create a 
root torsional moment (Ã¯^‡ in foot-pounds) 
amounting to 



(11) 

M;r 

r=OV 

I.Ø-I.Q'e dr = 
r' -ì^^-l^XJ^dx.. 

Now make the assumption that the blade has 
a very high torsional rigidity (GJ) so that no 
elastic twisting ( Â) need be accounted for. 
Furthermore, assume that the pitch moment of 
inertia (≤ ) is constant from the blade root to its 
tip. Then Eq. (9) and its second derivative can be 
substituted into Eq. (11) with the result that 

' Y ^ 
Mi n e r t i a=-Ien

2R 
˝ 2 „ \ 

0 V " T 
›Û2 dx 

(12) 
= -I„Ÿ!2R f [( B l c sin \|/ + Al c cos \|/) + ( Ó + ı , - B l c sin y - ¿ | Ò cos Û ) ] dx 

= -Ien
2Rjo

I(eo+x9t)dx 



= -IeQ2R f 1 ì 
e0+-et 

Notice immediately from this result 
that it takes no root-end moment to feather 
the blade at once-per-revolution, which is to say 
that the torsional natural frequency of the blade 
is exactly 1/rev. Secondly, if the blade has a 
built-in twist (0t) that is negative (i.e., washout) 
then there is some root-end pitch angle ( 0) that 
leads to a zero root moment, and no pitch link 
force is needed for this equilibrium position/ 

The proceeding discussion leads to the 
root torsional moment from one blade that a 
pitch link must resist. To summarize then, the 
first root torsional moment is 

(13) 



Ã“ =-  ‚ ( 0 -¬ 1 — s i n V - ¿1— cos x|/)-Ie£í2RÍe0 + ± , 

Wayne Johnson gives a complete discussion of the 
blade torsion problem in his book Helicopter Theory, 
Princeton University Press, Princeton, N.J., 1980, pp. 
403^108. 
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A subtlety—not immediately apparent 
in Eq. (13) or Hauler's design shown in Fig. 
2-43—is that the end fittings of a 
tension-torsion strap can be designed so that the 
steady value of the root torsion moment is zero. 
Thus, an untwisted T-T strap can place the 
blade at the nominal root-collective-pitch angle 
( 0) best suited for cruise flight. This can, 
for an unboosted (i.e., no power steering) 
actuator system, reduce pilot workload. 



Airfoil Steady Pitching Moment. You will 
recall that Cierva sought to improve Autogiro 
performance by using a cambered airfoil. 
Hafher chose a symmetrical airfoil, which, 
theoretically, has a zero-airfoil pitching moment 
coefficient. However, in the rotorcraft world, 
there can be a significant difference between 
theory and a manufactured blade. This real-life 
possibility must admit to a nonzero moment 
coefficient (—Ï yt c)- Therefore, a blade element 
torsional moment can exist of magnitude 

(14) ^ = ( j p V 2 ) ( x + ¡ ism¥)VCM 1 / 4 c 

and the integration of this moment over the 
blade length (r = 0 to r = R) gives 

(15) 



MTv=(jpV,2j(c2RCM]/4c) 1 M- . H o 
— ” — + usinw- — cos2w 
3 2 Y 2 Ú 

Airfoil Unsteady Pitching Moment. When an 
airfoil is oscillating in angle of attack about the 
1/4-chord point in an unsteady relative wind, 
there arises an unsteady pitching moment. 
When this airfoil is one of many in a rotor blade that is rigid and can only flap and feather, 
Johnson4 points out that care must be taken in bookkeeping flapping and feathering. From 

Johnson's Engineering Note,4 he recommends 
that the pitching motion about the 1/4-chord 
point of the airfoil (b =c/2 and a =-1/2 ) be 
calculated as 

d « 
dMK> _ ˇ  Â 3 

1-(#*¬)1ÿÕ] 
Given that the rotor blade is rotating at constant RPM, derivatives with respect to time can be 

replaced with Si d()/d\|/, and then Eq. (16) can be 
factored and simplified to read as 

(17) 



from which it follows from the derivatives that 

(18) 

dr 16 [ dy dv dy 8 {dy2 dy)¡ 

4 Wayne Johnson, Application of Unsteady Airfoil Theory 
to Rotary Wings, AIAA J. of Aircraft, vol. 17, no. 4, 
April 1980. 
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where 

UT =QR(x + |isin\|/)—> 

dr 16 



d U T O D 
L = £iRpcos\|/ 

dv/ de e = eo + xe,-Blcsirn|/-Alccos\|/-> — = -Blccos\)/+Alcsini|/ 
dt|f 

d2e 
di|/2 

= B1C sin \|/+A1C cos \\f 

(19) 
U p = f Ì R 

dU 
dv/ 

p _ 
SiR 

fi dß ˇ ^ 
{ dvj 

d2ß _ . dß - x — ^ + lesinili-ˆ\ — c o s y 
dv/ dv/ j 

ß = ß0 - als cos V|i - bls sin v/ —> 

dß 
—— = a.s sin v/ — bls cos vi 
dv/ d^ß 
dv/ 

= als cos v/ + bls sin \\f 2 "IS 



The blade-root-end pitching moment is 
obtained by substituting Eq. (19) into Eq. (18) 
and then integrating over the blade length from 
r = 0 to r = R. The results are that the root-
blade pitching moment (Mv) in foot-pounds 
varies with blade azimuth as 

f ( ° , s -A l c ) - | ß 0 + | (b , s -Aj -2^ 0 - | ^ (a l s +B l c ) | smv 

+[(a,s + Blc) + Jí-(bls-A,c)-n.(e„+¿e,)]coSi|t 

+y(ä, s + B,c)sin2v|f-^(bls-A,c)cos2v 

In applying Eq. (16) to the rotor 
problem, the rotor tip-path-plane coordinate 
system must be used. In the tip-path-plane 
coordinate system, the fundamental thrust and 
feathering equations, as given by Harris3 for 
uniform induced velocity, are 
(21) 

(20) M„ ftp c'V,3 

16 



ca (2 4 J "* {« 2 9lüJ ' 1̂4 4 32j ' ^2 8 ƒ 'c ' s ' 

F. D. Hams, Rotary Wing Aerodynamics-Historical Perspective and Important Issues, 

National Specialist's 
Meeting on Aerodynamic and Aeroacoustics sponsored 
by the American Helicopter Society Southwest Region, 
Arlington, Tex., 1987. 
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(22) 

(B1( 

l 

2 24 



(23) ( b l s - A l c ) = -

4 ˆ | 1 + 4 3 4 

V Ì5^J 

2 24 

Control Loads: Part III—A Numerical 
Example 

A review of Part II shows that 
blade-root torsional moments include—as a 
minimum—steady terms, once-per-revolution 
terms (i.e., sin v/ and cos vr), and two-per-
revolution terms (i.e., sin 2\|/ and cos 2\|/). 
Let me use the Hafher A.R. III autogyro (see 
sections 2.7.4 and 2.75) as a configuration to 
obtain some numerical and graphical results. 
Table D-1 provides the necessary configuration 
data. Given these aircraft properties, the three 
root torsional moments for one blade are: 



1. Blade feathering 
M¥ =-(3.529+ 1.497)+ 3.676siny-

2.1 lOcosu/. 
2. Airfoil steady pitching moment, —Ï i/4c = 

- 0.005 (as manufactured) 
M v = -1.350 -1.150 sin Û -0.095 cos 2y 

3. Airfoil unsteady pitching moment 
M v =-0.2779-0.1603 siny + 

0.3243cosy + 0.2337sin2\|/-0.1341 cos2y. The 
total of these three contributors to root torsional 
moments for one blade is: (24) Total M T v = 
-6.6539 + 2.3657 siny -1.7857cos vi + 0.2337 
sin 2 y - 0.2291 cos 2 y . Then, using Eq. (1) with 
a pitch link offset (d) of 0.75 feet, the results 
of the pitch link load of one blade is shown in 
Fig. D-3. 

Now consider a three-blade rotor 



system where each blade has the root 
torsional moment given by Eq. (24), which sets 
values in Eq. (2) for Mo, Mis, Mie, M2S, and 
M2C • Let the blades be numbered 1, 2, and 3 
with an azimuthal spacing of 120 degrees, and 
let blade 1 be the master blade. Then blade 2 is 
located at an azimuthal angle of y + 2ÚÒ/3, and 
blade 3 is located at Û + 4ˇ/3. The pitch link load 
for blade 1 will be 
(25) 

Blade 1 PLL¥ =—[M0 +M]S siny + M]C cos t|/ + M2S sin 2\|/ + M2C cos 2y]. 
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Unsteady 
Pitching 
Moment 

Pîlth 
Link 
≤Î‡≥≤ 
for • I " : -

Blade 
FcatbcrliiE 

lbs 

\ 

14 

0 30 60 90 1IC ISO ISO 210 241 ITO 300 330 3¿o 

Azimuth (deg) 
Fig. D-3. Steady, 1/rev, 2/rev, etc,, 

torsional moments create pitch link loads* In a 
similar manner, the pitch link load of blade 2 is 
keyed to the azimuth angle of the master blade 
by replacing \|/ with \|/ + 27„/3 so that 
(26) 



Blade 2 PLL = -
d 

and for blade 3 
(27) 

M0 + M1S sin (ì|f+2ÚÒ/3) + M1C cos (Ë/+ 2Î/3) 

+M2 S sin2(i)f+27i/3) + M2 C cos2(y+2jr/3) 

Blade 3 P L L = -
¥ d 

M0 + M1S sin (i)í+4Î/3) + M1C cos (Y+4jt/3) 

+M2 S sin2(\|/+4;r./3)+M2C cos2(y+47√./3) 

The three pitch link loads, which are in 
the rotating system, transfer their loads to the 
nonrotating system as moments about the 
Y-axis and X-axis according to Eqs. (4) and 
(5). Thus, 
(28) 
My =-Blade 1 PLL¥[rPLcos{v)r+A)]-Blade 2 PLL4,[rPLcos(4> + 2it/3+A)] 

-Blade 3 PLL4,[rPLcos(y+4w/3+A)] 

and the moment about the X-axis is 
(29) 
Mx =-Blade 1 PLLV [r^sinfy+AjJ-Blade 2 PLLf[rPLsin(4r+2jr./3+A}] 

-Blade 3 PLLv[rpLsin(Y+4jt/3 + A)] 



and the results are shown in Fig. D-4. 
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«^__^ , M , " " " ~ - - v ^ ^ 

~ ^ " ~ ~ - ^ . j ' " " ^ ~ ~ - ~ ~ ^ ^ ^ ~ 

Œ 30 61 W I » ISO 188 210 240 270 300 330 «≤Œ 

Master Blade Azimuth (deg) 

Fig. D-4. For a three-bladed rotor, 
once-per-rev pitch link loads become a steady 

moment in the fixed system. Two-per-rev 
loads become three-per-rev moments. 

Table D-1. Approximate Hafner 
A.R. III Autogyro Properties 



P a r a m e t e r 
Flight speed 

Density 
Tip speed 

Thrust 

Radius 
Chord 

N o . of blades 
Solidity 
Advance ratio 

Inflow ratio 
Collective pitch 

Blade twist 
Longitudinal flapping 

Lateral flapping 
T-T strap stiffness 

Torsional 2nd inertia 
Pitch link moment arm 

Pitch link lead angle 
Pitch link radius 
Actuator radius 

Actuator locations 
Airfoil properties 

Lift-curve slope 
Pitching moment 

Pitching moment 

Calculations 
Thrust coefficient 

Longitudinal feathering 

Lateral feathering 

Symbol 
V 

f> 
V, 

T 

R 
Ò 

b 
a 

πÌ 

‡. 
, 

»is 
⁄≥ˇ 

Ki 

I» 
d 

‰ 
TPL 

√ ‚ Ò [ 

a 

CM „.,. 

C M m . 

C T 

ais + Bic 

b i s - A i e 

Value 
153 

0.002378 
464 

900 

16.41 
0.4071 

3 
0.02369 

0.3305 

+0.032 
0.06671 

0.00 
0.00 

0.00 
52.9 

0.00171 
0.65 

60 
0.75 

0.75 

5.73 
0.00 

-0.005 

0.002078 
0.06949 

0.03988 

Units 
ft/sec 

slup/fr1 

ft/sec 

lbs 

ft 
ft 
nd 

nd 
nd 

nd 
rad 

rad 
rad 

rad 
ft-lbs/rad 

slus-ft : 

lì 
deg 

ft 
ft 

per radian 
nd 
nd 

nd 
rad 
rad 

C o m m e n t s 
115 mph 
Sea level standard 
270 rpm 
Gross weight 
A = 846 ft2 

Tip-path plant: 
Tip-path plane 

Zero pitching moment 
Zero rolling moment 
Ilafner data 
Harris estimate 
Fi«. 2-41 
Fig. 2-41 
Fig. 2-41 
Fia. 2-41 
Fis . D-2 

Symmetrical airfoil 
As manufactured 

Eq. (21), T = 900 lbs 
Eq. (22) 
Eq. (23), % = 5.45 deg 
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Notice in Fig. D-4 that there are very 
little vibratory moments in the swashplate 
nonrotating system. What little there is comes 
from the 2/rev unsteady pitching moment and 
from any 2/rev caused by manufactured blades 
not having perfectly "symmetrical" airfoils . In 
Hafner's rotor control system, the pilot had 
direct control of the swashplate (he called it a 
spider) with a rather long control stick. The 
mechanical advantage offered by the long 
control stick would have reduced pilot workload 
to the bare minimum. 

Recall that Hafiier told the Royal 
Aeronautical Society members that "the 
variation of incidence is achieved by a separate 
control linkage which enables the rotor to be 
controlled by light loads on the control column, 
which, as is shown in the mathematical analysis 
of control and as has been proved in flight, is 
free from all parasite loads and vibrations." I 



suggest— based on Fig. D-4—that Hafiier was 
absolutely correct in his description. 

The final step, from the swashplate 
moments of Fig. D-4 to the actuator loads at 
points A, B, and — shown on Fig. D-2, is rather 
simple. By following Eqs. (6) and (7) you have 
the loads as shown in Fig. D-5. 

It is, of course, incomplete to neglect the 
steady actuator loads that arise because of the 
steady pitch link loads. These steady pitch link 
loads appear in Eqs. (25), (26), and (27) as 

(30) Steady PLL = - [ M 0 ] . 
d 



Actuator 
Forée 
(Ibs) i 

Master Blade 
Azimuth (deg) 

Fig. D-5- Actuator loads for a Hafner-type 
three-bladed rotor system. 
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Since there are three blades, the steady pitch 



link loads act together to try and raise or depress 
the swashplate assembly up or down the rotor 
shaft (see Fig. D-1). (Because the pitch links 
are spaced in 120-degree-azimuth increments, 
their steady forces create no moment about 
either the nonrotating X-axis or Y-axis.) Any 
swashplate movement up or down the rotor 
shaft is resisted by the collective force of the 
three actuators . Therefore, there is a total 
vertical force (Fy) with three blades of 

(31) F V = - ^ [ M 0 ] 
d 

which is shared among the three actuators. 
Fig. D-2 shows that the vertical force would 
be split between actuators at points A and C. 
The actuator at point ¬ would support none of 
the vertical force (Fy)—with the particular 
actuator locations I chose. 

You will recall that Hafher gave the 



pilot a "lift lever" to collectively set the blades 
to a desired pitch angle ( Ó) and resist the 
vertical force (Fy) . That lever became the 
collective pitch control in modem helicopters. 

Closing Remarks 

In Hafher's paper about his gyroplane 
(see reference 74), he does not address the more 
general problem of blade element torsional 
moments that, when summed over the length 
of the blade, can create pitch link loads at all 
harmonics. To alert you to how complicated 
the blade torsion problem can be, consider Fig. 
D-6, which contains only a few of the 
multitude of terms to be included. 

Because the blade is flexible, airfoil 
forces and moments that might be reasonably 
located at the 1/4-chord point of a blade 
element are, in fact, displaced from the 



feathering axis both vertically (Z) and inplane 
(X) because of blade flapping, lead lagging, and 
bending, both inplane and out of plane. 
Furthermore, the blade element center of gravity 
can contribute torsional moments due to mass 
times acceleration forces . To top it off, the 
shear center of a blade element is most likely 
not located at the blade element center of 
gravity. Unfortunately, it is not within the scope 
of this volume to quantify all the terms that 
contribute to pitch link and actuator loads. 
However, Fig. D-6 offers a hint as to the 
complexity inherent in the blade torsion 
problem. 

When you compare Fig. D-6 to Hauler's 
assumptions, which were, to repeat, 

"The blades produce no [torsional] moments about their 
longitudinal [spanwise] or pitch change axes due to 

(a) aerodynamic forces, because the blades are fitted 
with aerofoil sections, the centre of pressures of 



which lie always on a straight line coinciding with the 
pitch change axis; and 

(b) weight and centrifugal forces, because the centre of 
gravity of each blade lies also in this [pitch 

change] axis." 
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dFz/dr 

(≥≥(› /«„) '/.Chord 
Center of 
¡•ravrty 

/ ** dFx/dr 

..-ni. „ 

Projection outboard of 
pitch change axis 

Fig. D-6. A few force and moment terms that 
must be included to accurately account for 



elastic torsional deflection, blade 
element pitch angle, blade-root-end 
moments, 

pitch link loads, and actuator loads. 

you can appreciate that he made every effort to 
minimize moments assuming a blade did not 
bend flapwise (Z) or chordwise (X). 
Furthermore, he chose a symmetrical airfoil 
so that aerodynamic pitching moment (dM/dr) 
could be assumed zero. 

Analyses that could capture all of 
the aerodynamics, dynamics, and mechanical 
features that contribute to accurate prediction 
of control loads throughout the flight envelope 
of any rotorcraft only began to emerge in the 
21st century as I will discuss in Volume II— 
Helicopters. This capability has come some 
70 years after Raoul Hafner's A.R. Ill was 
publically demonstrated at the Royal 
Aeronautical Society garden party on May 9th, 



1937. 
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AUTOGYRO ERA ROTOR TRIM 
AND PERFORMANCE EQUATIONS 

All through the 1930s, the theory of 
how to calculate rotor trim and performance 
steadily improved. By 1 937, Wheatley, at the 
N.A.C.A. in the United States, had published 
his last rotorcraft contribution, and Lock, 
Beavan, Owen, and others in Great Britain had 
the 
prospect of World War II to face. Their ground-breaking work was carried on by a translation 
of work by G- Sissingh,1 and by F, J. Bailey, Jr. who worked at the N.A.C.A Langley 
Research Center. Bailey's NACA Report No. 716 is particularly interesting because he 

includes a sentence in the introduction stating: 



"The form in which these expressions have been 
presented is unsatisfactory for practical engineering 
calculations, chiefly because the expressions have not 
been reduced to terms of the two basic parameters: inflow 
velocity and blade pitch." 

The "expressions" Bailey was referring to were 
those that Wheatley had published in NACA 
Reports No. 487 and 591 .As to being 
"unsatisfactory," I would have to agree because 
several times early in my apprenticeship, I made 
all the computations Wheatley required with a 
slide rule, pencil, and paper. One could not be 
sure of the answers without a parallel check 
by a fellow sitting close by. 

In early 2007, Dr. William Warmbrodt, 
Chief of the Aeromechanics Branch at NASA 
Ames Research Center, put me to work 
studying rotor performance at high advance 
ratio (at least up to ˆ = 1). That work, published 
as NASA/CR-2008-215370, dealt with a 
correlation of the most advanced rotor trim and 



performance theories with available 
experimental data. During that effort, I began to 
wonder if we were—today—really doing any 
better than what Wheatley, Bailey, and others 
had done in their era. To pursue that 
evaluation, I carefully re- derived all of the 
pioneer's equations using MathCad software 
and then performed a check by creating an 
EXCEL® spreadsheet to batch process any 
group of inputs corresponding to 
experimental data. Of course, I compared my developed equations to all lhe earlier work and 
found, not surprisingly, some differences.4 These differences were primarily in how higher 

harmonic flapping terms are computed and in 
my including all powers of advance ratio. 

1 G. Sissingll. Contribution to the Aerodynamics of Rotating-Wing Aircraft, NACA Report No. 92], 1937. 
2 F. J. Bailey Jr.. A Study of the Torque Equilibrium of on Autogiro Rotor, NACA Report No. 623, 1938. 
3 F . J. Bailey Jr., A Simplified Theoretical Method 
of Determining the Characteristics of a Lifting Rotor in 
For- ward Flight, NACA Report No. 716, March 17,1941. 
4 In 2006, Ray Prouty told me this story that John 
Wheatley told to him about NACA Report No. 487. Both 
Ray and John worked at Lockheed then. As the story goes, 
somebody at the Bureau of Standards had derived some of 
Wheatley's equations and found an "error." (As Ray 



tells it, the error was a numerical coefficient buried deep 
within one equation and that John thought the fellow 
had too much time on his hands). When this somebody 
brought the matter to Wheatley's attention by letter, John 
replied that he had re-derived that portion of his work 
twice and got different values of the coefficient himself. 
So he, John, was quite prepared to leave the published 
work untouched particularly since it was in widespread 
use. 
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To provide some progress after seven 
decades, I included elastic twisting and a simple 
nonuniform induced velocity function 
attributable to Glauert (see R&M 1111). The 
basic assumptions, parameter, symbols, and 
equations I used parallel Wheatley and 
Bailey. My definitions and symbols are: 

=Go-x0t Blc-sin(n/) Ale-cos (vt) i 



x-9els-sin(\|f) i ı- Âle-cos (y) 
ß ßo als-cos(i)/) blssin(\|f) 
a2s-cos(2-y) b2s-sin(2-\|r) UT 

= x+ |i.-sin(\|/) 
UP = Xs H- 5ll-x-cos(ti/) - x-dßdvj/ 
(j.ß-cos(i|r) 

There are a few key points in the above 
definitions worth noting. 

First, in the blade angle ( ) equation, all 
of the elastic blade twisting is included as a 
linear variation between the root and tip and 
based on the tip deflections (Oels) and ( Â≥Ò), 
which only accounts for once-per-revolution 
twisting motion. The second harmonic elastic 
twisting is not negligible, but I was not 
prepared to carry the derivations to that level. 
The steady elastic twist can be included as part 
of the geometric twist (Gt). 



Second, in the blade flapping (ß) 
equation, the expressions for the higher 
harmonic flapping coefficients (a2s and b2s) I 
used differ substantially from what our 
pioneers used. Lock and Wheatley, for 
example, assumed a Fourier-series solution to 
the blade flapping 
equation. This approach leads to inner harmonic coupling, which requires a solution matrix of 
some magnitude. I, instead, took a page each out of books by Bramwell and Johnson that 

say the net work over a cycle must be zero. 
Adhering to this principle allows all higher 
harmonic flapping to be directly expressed in 
the primary parameters. 

Third, in the out-of-plane velocity 
(UP) equation, I included a triangular inflow 
distribution of induced velocity (Xl) in the fore 
and aft plane. 

Finally, I followed Bailey's approach 
of collecting intermediate steps and output 
parameters in terms of the inflow ratio (Xs). 



This approach leads to a quadratic equation in 
inflow ratio, which, when solved, defines the 
rotor system angle of attack for autorotation. 
This is particularly handy for autogyro 
performance as Bailey suggested. 

The equations and numerical example 
which follow should allow you to create any 
computer code you like—then you can take the 
same trip back in time that I did. I have laid out 
what follows in four parts, which are: 

Part I. The fundamental equations that have 
been integrated 

Part II. The input parameters (including values 
for the sample case) 

Part III. The order in which parameters are 
calculated, which serves as an outline 

Part IV. The several pages of equations that 



perform the calculations 

5 A. R. S. Bramwell, Helicopter Dynamics, John Wiley & 
Sons, New York, 1976.· Wayne Johnson, Helicopter 
Theory, Princeton University Press, New Jersey, 1980. 
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Part I. The fundamental equations that have 
been integrated 
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Part II. The input parameters (including 
values for the sample case) 



Parameter 
Advance ratio 

Uniform inflow ratio 

Nonuniform inflow ratio 

Lock number 

Tip loss factor 

Solidity 

Airfoil lift-curve slope 

Airfoil drag polar 

Minimum drag coefficient 

Drag rise with CI 

Drag rise with CI" 

Root collective 

Twist 

Longitudinal cyclic 

Lateral cyclic 

Klastic twist (sint:) 

Elastic twist (cosine) 

Svin bol 

M-

te 
U 

Y 
¬ 

CT 
‡ 

Cdo 

SI 

52 

Oo 

et 
Bic 

Ale 

Oels 

Â≥Ò 

Sample Case 

0.70 
0,0130 

-0.007287534590767 

19.2 

0.97 

0.0976 

5.73 

0.0120 

-0.0216 

0.0400 

1.9≥ÚÀ80 

-1À€180 

-2.07√À80 
1.0ˇ/180 

-1 .(hr/l 80 

l.Oit/180 

If it its 
na 

Ô‡ 

na 

na 

na 

na 

per radian 

na 

na 

na 

radian 

radian 

radian 

radian 

radian 

radian 

Comments 
Vcosas/V, 

(Vsinas-v)/V, 

{-KvyVt 

pacR4/Ib 

r/R 

bc/iiR 

Part III. The order in which parameters are 
calculated, which serves as an outline 

1. Calculate ßo, als, bis, a2s, and b2s to 
use in all calculations 

2. Calculate Thrust Coefficient, CT 
3. Calculate Accelerating Torque 

Coefficient, CQa 
4. Calculate Decelerating Torque 



Coefficient, CQd (per Bailey NACA Report No. 
716) 

5. Calculate Total Torque Coefficient, 
CQ 

6. Calculate Inflow Ratio for 
Autorotation 

7. Calculate Accelerating H-Force 
Coefficient, CHa, due to CI and inflow 

8. Check CHa due to CI and inflow from 
C H a =- l-(CT-kH-CQa) 

9. 

Calculate H-Force Coefficient, CHd, due to Cd 

10. Calculate Total H-Force Coefficient, 
CH 

11. Calculate Y-Force Coefficient, — Ya, 

due to CL (Y-Force positive to v/ = 90°) 

12. Calculate Y-Force, CYd, due to Cd 



13. Calculate Total Y-Force Coefficient, 
CY 

14. Calculate Shaft Angle of Attack, as, 
positive nose-up 

15. Repeat input (angles now in degrees) 
16. Summarize output 
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Part IV. The several pages of equations that 
perform the calculations 

These equations have been copied 
directly from MathCad and pasted in this 
document. This has, I hope, avoided any 
typographical errors that might have occurred 
were I to have entered the equations in some 



equation editor software. MathCad uses := for 

equations to be calculated and entry values. It 

uses a conventional = for computed values of 

an equation. A number of intermediate 

calculations are made before the final 

parameter is calculated as you can see from the 

calculation of (b2s) below. The final 

calculation of a parameter is in large type, as 

you see for (b2s) below. 
1. Calculate Bo. als, bis. a2s. and b2s to use in all calculations 

Ã0:=(‚ » '‚ 4 - À - Ï Ë. 
6 / \ 2 24 / \3 

]i\ MO =0.542330515448621 

2 „3 88 4Ì ' 2 1 3 -B-[l \l |- 2 - B - | l - - • ( ! 
1.3 315rc / \ 2 

88 
31Sre 
Ml 

Í — 
., 15-ˇ 

Ml = 
M2 

4 
•rl 

3 

•u • 

J2. 
\3 

(B4-

B 4 

2 

64 
•P 

45-ˇ 

7 4 

24 

0.421327574886569 



í l j 2 1 4', , „4 1 „2 2 7 4 2 „3 88 4 8 „˝ 32 4 
•¬÷ ÷ -¡¬ ¬ ÷ ÷ W\l ÷ • W¡i ¡I 

\2 12 2 24 3 315Î ; 'v3 45-jt 

Ã2 =0.558644204651302 
Ã« 
= ( ≥ - ‚ - ^ / ' . Í B ^ . B V - V I V I L 8 8 V • 2 - ‚ , V 

ï3 315-31 2 24 : U 315-ít j \ 12 

Ã« =-0.402978977618712 

. , . ¡2 D3 88 4'', LA 3 D2 2 5 4\ 
M4 — ¬ -u,- —(j, |- |B H — ¬ -u, — ˆ 

\3 ' 315ˇ / \ 2 24 j 

2 n 3 16 4 D4 l j 2 7 4 
— ¬-÷- —÷. |- |B „√-(1 -+-—u, 

1,3 63-ˇ / \ 2 24 

M4 = 0.294929302420598 
M5 

l_4 1 „2 2 7 41 i l „4 1 S'i , 2 n 3 88 4Ï ¡A -S _3 2 128 5 
¬ ¬ ˆ -u h Wo. -Ó ¬ ˆ IL • ¬ W-ˆ a 

2 24 2 32 3 «≤fl„ ,.' 'i5 52*Î 

M5 = 0.22518921202764 

cl = — cl =-0.776883400223281 

MO 
, , Ã2- Ó Ã«-„Í-r- Ã4-¬≤—- M5-0els 
kl : = — 

MO 
k l = 0.032925890146846 

b2s cl-^s i k l b2s 



= -0.043025374349748 
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2 ¬ 2 ˆ - --÷ ' - i 2 B 3 - u - — -u4ì-cl 
„ _ \ 2 ' ',3 45-ˇ / c¿ '• 

„4 1 _2 2 7 4 
¬ ¬ -U -I- ÷. 

2 24 

c2 = 1.920804850449535 

3 45-̌  I \ 12*1 2 

, 4 „5 „3 2 128 ≥\ Î , 
+ ≤--¬ ^ ¬ -'l ˆ j-Oels 

» . _ _ ≤ 5 _ 525-Tt / 

‚ 4 ¿-‚ -
2 24 

Í2 = 0.111195718630495 

APPENDIX E 



5 4\ D 1 (2-3 64 4 \ 1 1 — u . i-Blc- — B u LI i «kl 
24 / 3 45-ÚË 

als c2-As k2 

als =0.136166181686339 
c3 

Î 
2 

i'r.3 2 Á\ 1 /„2 2 1 4\ 1 , 
| B 4 — ˆ | - Ú + - | ¬ - ˆ Ú -ˆ )-—-cl 

3-ˇ / 3 \ 2 8 

2 4' 

—-Ï- ‹2 

\15-ˇ / 
Ò« =3.02348303009608 

Í Á - “ - ‚ 4 ‚ V i — Ì ''‚ -‚ 

8 5 Ot 
•U -

45-ˇ 5 
„2 2 1 4 1 , , ^ 4 4 Ble 2 4 1 „4 1 5 „ , 
¬ -‰ -Ë • kl Wo. | i -̆ ‰ „ Í 2 - ' - - ¬ - ˆ - -‰ -tels 15-ˇ ! 3 15ˇ 



Í« = 0.108608361537353 

ßo =c3*?Ls ¡ Í« 

ßo =0.147913640928602 
_4 1 4 „4 1 „2 2 1 4', /2 „3 32 4 . 2 „3 16 4 

N0 ¬ ‰ • ¬ ¬ ‰ — u - —¬-‰ il • —tf-u ‰ 
12 I 2 24 1,3 315-ít j \3 45-Ô 

N0 = 0.82816538423059 
N1 

I'2 „3 32 4 4 „3 16 41 ≥-Î 1 „2 2 1 4 1 „2 2 1 4 -¬-‰ -‰ • ¬ ‰ ‰ - ¬ +--¬^‰ ‰ • - ¬ - ‰ ‰ 
\3 315fl ≤\3 45-Ô 2 24 2 12 

N1=0.148417503634094 

  2 = ( ‚ ≤ - ‚ - - ÷ 4 ] ^ ¬ 3 . ˆ 

\ 2 24 / \3 
N2= 0.161366193052923 



,4 1 ^2 2 1 4\ lì „4 
N3 - ¬ ¬ LI LI • ¬ LI 

\ 2 24 / \2 
N3 =0.017063134116859 

32 4, 2 „ 3 32 4 í 4 1 * 
H | --tf-ni ˆ -|B -i —-u | 

315lt I 3 315-Jt . 24 

1 s\ (2 Ô Á 32 4\ :4 „i 1 „3 2 64 s\ 
•|i — —-¬-ˆ. -u, • -¬ : -B-u —u. 

96 ;' 13 315-it ; \5 3 1575« 
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. N l c 3 
c4 = 

N0 

c4 =0.541845641162371 

_ Nl-(k3) + (N2)-iU + (N3)-6elc 



NO 

k4 = 0.020524325285051 

a2s =c4-^s-k4 
a2s =0.027568318620162 

-^-^”˜«-^‚ ^ ÷ 
. [3 45-ˇ / ' 3 45-ˇ 

Ò5 : = - — 
_4 1 „ 2 2 1 4 
¬ ≥- — ‚ -u u 

2 24 
Ò5 =2.59873326749403 

4 ¬ 3 ‰ 1 6 -ÀË- ¬4 V i - " * |¬4 , -¬ - Vl-Alc 
3 45-ˇ \ 24 j \ 2 24 ' 

. : 2 „ Á 16 4 , , 4 „5 1 „Á 2 64 5 0 1 + ¬ ‰ ‰ Í4 ¬ ¬ ‰ ‰ Â≥Ò 
3 45-≈ .' 5 3 1575fl / 

Í5 

Î 4 1 „ 2 2 1 4 
¬ •+-—¬ ˆ — . 

2 24 

Í5 = 0.103925113983945 

b i s C5-A-S i Í5 



bis =0.137708646461368 

2. Calculate Thrust Coefficient CT 

Tl-(--¬2 4 - V ) + ”‚-÷2 

\2 4 ¡ U 
8 Á\ , /l Á\ . •÷ -cl i I -u. -c2 

15-ˇ / \≤ j 

Tl = 0.628228860960388 

T2 = [i-B3 4 i-B-u2 4 -u3 - Ó *- i1-¬4 ƒ ‚ ” 
≤« 2 9-fl / » 4 

—-IJL* ¡e t - Í - - B 2 - L l - -LL3 -BIC ... 
32 / \2 8 / 

4-Í--B-H2- —-Li3i-kl4- |'--ˆ3|-Í24- - ¬ 3 ˆ i—-u4 - Â‹ 
'4 15 ÚÒ ƒ 8 / ',3 45-̌  / 

“2 = 0.022545430221145 

CT = — -(Tl-Xs t “2) 



CT = 0.008587925651381 
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3. Calculate Accelerating Torque, CQa 

Î , /1 À2 1 2Ì /1 _2 3 Á\ „ / 8 3\ , 
Al :- —¬ LI i 4- i—¬ -LI ˆ -Ò2Ú- | LI -cl 

\2 4 j \2 8 j ,,5-̌  / 

Al = 0.597723756350029 

¿2 

= Í--B3r — -÷3≥- Ó+ --B4+ — -LI4''-et 4- í--B2-u- -LL3|-k2... 
'3 9-7C / 4 32 / \2 8 / 

+ 8-ˆ3-Í1 ≥^-‚ X -u.3|-Blc LB3M. 4 -̂ 4≥!- Â1Á 
\5-it / \4 16 j .6 45-Ë / 

A2= 0.026722839863594 

A3 I ^¬ 2-^2 - —-ˆ4≥|-Ò1- Ó Ì- -?—LL4ì-c2-9o 
\8 16 j \15-ˇ I 

file:///5-it


A3= 0.000449019030451 

A4 = Í--B2-Li2- —-|ƒ.4!-Í1- 0 4- |'_?_.Li4j.k2-9o 
\8 16 j ÷5-ˇ j 

A 4 = 0.000008964376402 

A5 := — -B
3
-Ll

2
- ̂

2
--LM-cl-Ott- — -Ll5î-c2-et 

\12 315-̌  / \48 / 

A5 =0.000314241300393 

I 1 ˇ 2 32 s\ I 1 s\ 
A6 = I — -B-U, - y^-\i i-kl-Ot4- I —-Li -k2-et 

\12 315-ˇ ! 148 / 
A6 =0.000011497770935 

¿ 7 , | ≥ ‚ 4 4 - ¿ . ‚ - ^ . ^ . — 2 2 4 - ' ≤ ¬ 3 . ˆ , 
\S 16 192 / \6 

56 4' 
-^--H |-clc2 A7 =0.29260799957433 
45-ˇ / 

A8 = fl-B4 3 ‚ ” - ̂ .‰41Ò2.Í2^ fi.B4 ! -¬2-‰2 ,- -^/Ì-Blcc2 ... 
4 8 96 ; 8 16 192 

4 ^-‚ '-‰ 5 6 -‰4 (c lk2 1Ò1-Ò2) ' ¬5 ' -‚ 9 2 ‰ 5 -9els-c2 
6 45-ˇ j '10 24 1575 Î: 

¿8 =0.034827654259352 



A9 

W 3-‚ 2 9 ” - ; 1 ‚ 4 1 - ‚ ” ≥ ‚ ˚ ‡ . . . 
1.8 16 192 ; .8 16 192 

+ ^-¬3.÷ , 5 6 / - k l - k 2 ^ ¬ 5 ^ ¬ 
\6 45-ˇ ; \fi 24 

92 5', 
•Li i-6els-k2 ¿9 =0.001035569893085 

1575ˇ / 
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AIO ¡ V i ^ ‚ ” l /|-Ò52 /A-rf-m 
8 16 192 ' 3 

4 41 / 1 3 4 41 
——il |-Ò«-Ò5- - ¬ - ˆ —Í—p, |-c4-c5A10 = 
45-ˇ / 'i 6 45-ˇ /' 

0.933498451064171 



All 

1 4 1 ? 2 1 4 '' I 1 fl 4 4 
- --¬ -i - i r - ˆ - —-u. |-c5-k5- - ¬ -tl,—^--÷ -(c3-k5 i Í«-Ò5) ... 

i, 4 8 96 j ' 3 45-ˇ ;' 

+ 0 - - B V — -u. 4 | (c4k5 ¸ Í 4 Ò 5 ) - Í - ¬ 4 - — -|u.4j-M-c5 
1.6 45-Ë j ' 4 96 / 

4 0 - i V L B V J-VÌ-Alc-cS+t'-B5 L-nV 8 . À ˚ Â ˜ È 
8 16 192 ; 10 24 157571 I 

¿Õ =0.073120778920482 

. l n i'' 1 „ 4 1 „ 2 2 1 4l . À 1 _3 
¿12 -¬ i - ¬ ˆ ˆ j-k5 - B u 

\8 16 192 j \3 

4 Î\ Il ˜ 4 4i 
— - L I 1-Í«-Í5- -B-Li — - L I i-k4-k5... 
45-ˇ i 6 45-ˇ j 

, I 1 _4 1 4'; , , . , i 1 _4 1 _2 2 1 4 . , . , 
+ ¬ -u. -Ä.l-k5 - ¬ i — -B̂ -Ll -u. -Alc-k5... 

U 96 j 8 16 192 j 

+ | — B5 + — ¬ 3 ˆ 2 — - ˆ 5 ≥ - Â1Ò-Í5 
10 24 1575ˇ / 

¿12 =0.001431248082753 

¿13 - B V - —-ˆ4 -Ò«2- -B2-Li2---u.4 -Ò4-Ò« 
\4 16 \4 6 / 

¿13 =0.793198255860955 



A14 '-¬2-‰2 '-ƒ4 -Ò«-Í« '-¬2-‰2 ' V -(Ò4-Í« Í4Ò«) ... 
\2 8 ,' 4 6 I 

+ ' ‚ ' - ‰ 2 -‰4 ¿≤ÒÒ« '-¬ 3‰ 8 ‰41-*.1-Ò« |√≤-¬4-‰ ' ‰ 5 - Â≤Ò-Ò« 
6 45-ˇ '3 45-ˇ j 8 192 

¿14 =0.062801733980362 

¿ Õ - À ‚ ' ‰4 -Í«2 '-¬2-‰2 ' ‰ 4 -Í‘Í«... 
1,4. 16 4 6 

+ ' ‚ 3 - ‰ 2 ‰4 -Alc-Í« ' ‚ ' ‰ 8 ‰4 -ƒÀ-Í« | '.¬4-‰ ' -‰5 - Â≤Ò-Í« 
6 45-̌  3 45-ˇ 8 192 ,' 

¿15 =0.00123242642384 

¿ 1 6 = ¡ - - B 3 - L I - - ^ — LL4Ì-X1-C4 
\6 315Î / 

¿16 =-0.00033614537052 

¿17 

1 _4 1 4 , 2 1 „4 1 4 
•¬ ƒ -il i - ¬ - ƒ -¿≤—-Ã 

8 64 ¡8 192 .' 

+ — ¬5 + ——• Ë5 ¡- Â≥Ò-Î≥ 
[W 525-Î j 

¿17= 0.000003794843514 

1 Ô Á 88 41 , . , , 
•¬ ‰ — ‰ -Ã-Í4... 

6 315-Jt 
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. , „ 1 . 4 1 „ „ 2 25 41 .2 
A18 - i -¬ i ¬ u -U ¡c4 

'i 2 8 192 
A18 =0.137700818005821 

i d 1 ? ? 25 4' i l i 2 4i 
A19 J B V - B - u ' - — -H '-c4-k4 + |— -B-u. -u -Alc-c4 

\ 4 96 ' \12 45-ˇ I 
A19 = 0.010547237964583 

. * Î ' L i 1 ^ 2 25 4, , .2 1 _3 2 4 , , , . 
A20 ¬ -B^u. -u k4 ¬ u u. -Alc-k4 

'i 2 8 192 / \12 45-JC / 
A20 = 0.000201943073982 

A2S =A18Âs24A19-Xs + A20 A2S = 0.000362328605764 

A21 ^ 2 - ‚ ≤-‚ - — È 4 Ò 1 2 

\2 8 192 ,' 
A21 =0.257410609783993 

/ 4 1 2 2 59 4\ ' 1 3 
A22 B i ¬-÷ -u l-cl-kl • B3|X 

4 96 / U2 
A22 =0.022437551769387 

. . . /1 D4 1D2 2 59 4, . Î / 1 Ú‡3 A23 = - ¬ Ì—¬ -u u -kl i- ¡—¬ ˆ 
12 g 192 ' 12 

A23 =0.00048857866363 



A24 A13 i Al r A7 + A21 i- A18 AIO 
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/ l n 4 5 S\ a ì . 

•¬ (J, jx -0elc-c4 
\ 16 768 / 

— ¬ 4 ÷ — -p5 - Â1ÒÍ4 
16 768 / 

8 4; _ , . 1 _,4 23 5\ _ , . 
•|j. Blc-cl -B -JI- —jm Geisel 45-fl / \16 768 

8 Vl-Blc-kl - ¬4ˆ, 23-^5¡-9els-kl 
45-7C / ,16 768 

A24 = 1.145142988510958 

A25 : - A3 + A14 +- Al 1 + A8 •+- A5 -+- A22 + A2 •+- Al 6 



A19 A25 =0.083745315816218 A26 A9i-A15-A20 

4-¿4 4-¿17 4^¿·4-¿12 4-¿23 A26 = 

0.001526008522803 

CQa 1-—-(A24-àS2 I A 2 5 à S A26 
CQa = 0.000785247608898 

4. Calculate Decelerating Torque. CQd (per Bailey NACA TR 716) 

DO = 1 4- ˆ 2 - --LL4 DO = 1.4599875 
8 

CQCdo ^ ^ ( D O ) 
8 

CQCdo = 0.00021374217 

Dl = - 4- l--LL2i-cl D l =0.285749225069657 
3 \S i 

D2 



= Í-+---M2lft»+- - + --u.2|-et+ í - -u 2 l -k l - - -u -B le - ≤--÷ -Oels 
4 4 j \5 6 j 'S j 3 \4 / 

D2 = 0.010510389934695 

5Î1 

CQÔ1 ^—-(Dl -^s D2) 
2 

D3 = i - - V i 4- ' I I I - --A-t2 + [ J - .ti3].cl 
2 4 / \ 2 * 8 ,' \5-ˇ ' 

D 3 = 0 . 6 6 7 0 0 5 6 0 4 6 8 1 5 7 8 

ÚÎÎ 2 4 3 « ;! 3 3 ' i , - , i'1 1 A ût D4 — L L Ó +- — u . u. i-k2— —i u -Ot 
[3 9-Î / \2 8 ; \2 16 / 

^ / 1 8 4 D , 
+ — ˆ LI Oels 

\3 45-ˇ / 
D 4 = 0.040477649727351 

' 4 4'¡ 1 2 1 4' 
D5 ÷. |-Ò2- Ó - LI LL |-Ò1- Ó 

\15-Î / \4 8 I 
D 5 = 0.001084551607357 

CQÔ1 = 0.000014994424883 



1 8 I , /1 1 Á Ú‡1 •\L k l — ¡UL—\i : B l c 
5-71 / \ 2 8 / 

D6 := - + --Li2 — -ˆ4;- Ó 2 - -÷2 --ˆ4 -kl- Ó 
U 4 32 / i4 8 j 

i 9 fl ‡ 

¡—÷.4-- —ˆ. -¬≥Ò- Ó ... 
\3 45-̌  ) 

+ |-4-~-‰2 ' 6 ‰5 -et-9o- j ' — •̂ 4 Í2- Ó-„-≥'-1-‰≥ '-‰ 5 - Â≥‚- Ó 
≥,5 3 225Ô j 15-̌  ,,' '2 48 j 

D6 = 0.000403020328445 

D7 := Í--LL2- -^—LL5|i-cl-Gt4- Í—-u5l-c2-et 
\6 315ˇ j 124 

D7 =0.000725182624363 

D 8 : = [ - 4 - V - — •M6i-8t24-í--Li2 

≤6 8 192 j [6 

— ≥/≥-Í≤- ≥ - i—-i/ -k20t... 
315-̌  j 24 /' 



+ 0 --IH- — H5]Blc-et+ ≤ - - ÷ - ≤ - — -LI6 Oels-et 
\2 48 / 'i 5 5 2 5 Î 

D 8 = 0.000033390251961 

™ M 56 4 , „ /1 3 2 29 4] „2 
D9 I -Li i [l i-cl-c2 i i -LI -JX |-c2 

[6 45-ˇ /' i,8 16 192 / 

D9 = 0.350339463220244 
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DIO l i 3-LL2 2 9 -ˆ 4 .-Í2-Ò2 (---ii-i 
4 8 96 / 6 

56 4', . . . \ 56 4, , , . 
— L I -kl-c2-H | —÷.4- - Lì c l k 2 . . . 

45-Î / i, 6 45-ˇ / 

+ - -÷. - Li -Blc-c2 — u 4 - — ÷ -ftels-c2 
4 8 96 / \5 12 1575JI /' 

DIO = 0.037179490667527 



Ú-̃ ,, 1 3 2 29 4;,_2 ,1 1 2 7 4 \ _ , . „ 
DI 1=1 —i U ‡ -Í√ i ! - I l t — U !-¬1ÒÍ2... 

8 16 192 ; U 8 96 I À 1 56 4 . , , _ ,' 1 1 2 
+ —÷4-- LI k lk2 — L I -

6 45-7C j 'i 5 12 1575Î 
Dl 1 = 0.000978244279056 

—-LL5 |-eels-k2 

D12 1 1 2 1 41 .2 '1 4 4 . , 1 4 4', „ , 
--I ‰ u -Ò5 - -ƒ-- ƒ Ò4Ò5- i - i l t Il Ò«-Ò5 
8 16 192 .,! 6 45-̌  ; 13 45-̌  .; 

D12= 0.998889293401722 

D13 

/1 

-Ì—(J, ˆ ]-Í5-Ò5- ≥ — L I - — j i |-Í4Ò5 
4 8 96 ƒ \6 45-ˇ j 
4 4 

ˆ -Li |-Ò4-Í5... 
\6 45-ˇ / 

, 1 1 4', ,, , , 1 1 2 1 4 , , . ƒ 4 4'i . , . 
4 - -‰ -À≥-Ò5 -Ì—U U |-¿1Ò-Ò5- - 4 -u -Í«-Ò5 , 

4 96 \4 8 96 ; 3 45-̌  

, fil 4 41 . . . Il 1 2 16 5≥ _ , . 
+ 0 L I - Ò « - k S - i • L I i i - Â 1 Ò Ò 5 

3 4 5 - ˇ 

D13 =0.079775516833123 

5 12 1575ˇ 

I 1 2 1 4 ,À 
•\L -il -Ìt5 

1 '- | l4 Àlk5 ' ‰ . 4 -‰" Í«-Í5 ' ‰ 4 ‰" Í4Í5.. 
4 96 3 45Î 6 45-ˇ 

Î 1 1 2 1 4 . . . , 1 I I 16 s n , . , tO ; • -u -il -Alc-k5 -il -li - Â≤Ò-Í5 
14 S M ≤5 12 15751 I 



D I 4 = O.O0159279S9S1 

„ 1 e /1 2 1 4Ì .2 ¡1 2 1 4\ . , 
D15 = — Li JJ. |-c3 - —(i |i j-c4-c3 

\4 16 / .4 6 
D15 = 0.847519465037623 

D 1 6 - Í ƒ -‰ ≤-Í«-Ò« -‰ -|x 1-¿.≤-Ò« i I -u i ‰ - A l c - Ò « . . . 
2 8 ; 3 45-ˇ i,3 45-ˇ 

, n ' 1 2 ≤ 1 | ^ ≥ 1 ! 1 À . . . i l 1 5 „ . , 
4 0 i ‰ ‰ Í4Ò« -‰ ‰ Ò4Í« i -‰ ‰ Â≤ÒÒ« 

,4 6 ,4 6 '4 96 
D16 = 0.068810250513425 

™-, I 2 1 4 i J II 4 4 A , . , 1 2 1 4 . . . . 
D17 = — u. ‰ Í« - I - - I Il ≤-¿1ÒÍ3- -ƒ LI -Í4Í« ... 

\4 16 \3 45'7t ;' i,4 6 

+ 0 - f i 1 - — -LL4j-Âl-k3- --LL4-— .ˆ5!- Â1ÒÍ« 
3 45-ˇ / \4 96 

D17 = 0.001378167972134 
/ 
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™ Ó (1 ! 2 25 4 Î D18 .= - i — u u. -c4 
\2 8 192 j 

D18 = 0.155602427515047 

√Ã√◊ / 1 8 8 4 ' 1 1 A / 1 4 4 i A1 À 

D19 = —Li LI I-A.1-C4- I--iL- —Li -Alc-c4 , 
\6 315Î ..' 6 45-Î 

, /i 1 2 25 4, . . . li 5 5, - , . 
+ 114—u. —÷ -k4-c4 --Li- — u - Â1Ò-Ò4 

\ 4 96 j \8 384 / 

D19 = 0.011643891219549 
™« i'1 ! 2 2 5 4 i i Î2 /1 8 8 41 n u 
D20 = - H — u - — u -k4 4- - - u - — L I -Al-k4.. 

\2 8 192 j U 315Î j 

il 4 ‡\ '''1 5 sì 
+ |—(i- —LI |-Alc-k4- -p. —u |- Â1Ò-Í4 

\6 45-Î / \8 384 / 
D20 = 0.000217797757309 
_.., /1 1 2 59 4\ .2 
D21 - i- --u -u, 1-cl 

'i 2 8 192 j 
D21 = 0.294211014530486 



i-vio í ! 1 6 4 Ì m 1 i 1 2 5 9 4 √ 1 1 
D22 (i | i ¬≤——≤+ 1 LI ˆ -kl-cl 

'i 6 45-Î / \ 4 96 / 
D22 = 0.026315483963901 
“À-œ I 1 1 2 5 9 4i l i 2 ,' ! 1 6 4 D I 1 1 

D23 -4- -u, -u -kl t | -U -u -Blc-kl 
\ 2 8 192 ƒ ,6 45-ˇ j 

D23 = 0.000586831067933 
m . /1 1 2 1 4; . . 2 /l 1 4\ », A 1 D24 - - + — ˆ -LI |-Ale - + — u NXl-Alc 

'i 8 16 192 / '4 96 / 
D24 = 0.000005944658361 

' l 2 3 A 0.1 i 
- JUL —ju, -Øels-cl \8 384 ' 

—u, LI -Øels-kl 
18 384 

1 ! 2 1 6 5 Ì û 1 Al 
• H h - L I — j i | - Â 1 Ò - ¿ 1 Ò 

5 1 2 1 5 7 5 Î / 



D25 

D25 = 

D26 

1 3 2 
- 4 - ÷ 
8 16 

5 4\ 
ri 

192 
•Blc2-

=0.000062145391563 

1,8 64 

12 

4 1 n 2 

\L |-À≤ 

1 2 
— ˆ -
32 

/l 
"t- -

1 5 

1 

1536 

i 

\5 

1 2 

8 5 
•v-

525-Î 
6 

Ë i • Â ≥Ò 2 

32 5 
'M-

525Î 

;- Â1Ò-: 

12 

• Â≤‚¬≤Ò 

U ... 

3 2 
— 1 1 -
32 D26 = 0.00005013802977 

D27 -D21H-D18) D15 D3 D12 D9 

D28 D5 D161 D22t D19+ D 4 - D13i- DIO i D7 

D29 D201 D171 D26 D6 D l l D8 D23 D25 
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•Li löels 
1536 / 

D27= 1.315788681583257 
D28 = 0.104291880275636 



4D14+D24 D29 = 0.00205610025161 
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CQÔ2 : = : í i = . ÎD27-AS D28-AS - D29 
2 

CQÔ2 =0.000070940813416 
D30 := i—¡-D27 D30 = 0.025684195064505 

\ 2 ; 

D31 := Í — i-Dl + --rj-52-D28 

D31=0.001734574959819 

\ 2 ) 2 

D 3 2 = ^ Ì . D 0 4 - ( ^ 1 Ì - D 2 +¡°*\D29 
8 \ 2 / \ 2 I 

D32 = 0.000242798455089 



CQd =D3(>A.s2 D31-A.S D32 

CQd = 0.000269688558533 

5. Calculate Total Torque, CQ 

OQ = D30 — 1-A24-Xs24 D31- l '— i • A25 lia 4 D32- — A26 
'i. 2 ;' 1 2 / ≤ 2 ! 

CQ = 0.000515559050365 

6. Calculate Inflow for Autorotation (may be applicable! 

F = ÍD30- --o-a-A24i F =-0.294525267954883 
I 2 / 

D ID31 1-CT-a-A251 D = 0.021682625229975 
\ 2 / 

H := ÍD32 --a-a-A26i H =0.000183910152091 
I 2 / 

CheckCQ = F-As2 + D-As ; H CheckCQ = 



0.000515559050365 

AsRootONE: 1 •( Di -jD2 4-F-H 
2-F 

A,sRootONE = 0.063837329578679 

1 AsRootTWO : = — \ D \ D ¿ 4-F-H 
2-F 

AsRootTWO = 0.009781566961283 

7. Calculate Accelerating H-Force, CHa 
H l 

l' '-‰≥-te2 '-¬-‰ 2 - ‰ 2 - Ó-te ' ‚ ! ˆ ! ‰3 - ≥-Xs i | ^ B 2 i --ƒ l-BloAs ... 
2 2 3-fl 4 16 4 16 

4 3 . B 2 — -ji'i-als-Ai- '-B-|i 1 2 ‰ 2 b2s is '-B 3 8 ‰ 3 - Â‹-≥‡ 
4 16 '4 5-Ë 6 45-Î 

Hl =0.000409126548125 

i ? V\ '3 s ◊1 

H2 = - - B 3 - — - L I -als- Ó „ -B2-jx — ˆ -b2s6o 
\3 9-71 I \8 ' 48 / 



H2= 0.001181845724661 

Õ«: - Í ¬ -Li -als-et -¬3-ˆ ÷ -b2s-9t 
U 32 / 4 105 Í 

Õ3= 0.000432624523905 

Õ4= - ¬ 2 ˆ —-Li3i-als2- -B2LL — L I 3 -Ble-als 
'4 16 I \4 16 j 

+ j--B3-Li-—-^¡-Sels-als 
6 45 ni 

H4 = 0.002642035801963 

H 5 : = t B 3 4 - ^ ¿ ) - a 2 s - b l s - t B 3 4 - l . ¿ : . P o - b l S 
',4 21 ˇ/ \6 45 <̌' 

H5 =-0.002253792891716 

3 

-•¬ — !-b2s-als ... 
4 105 TI 



¬ -ja [i ì-Àl-bls 
16 96 

3 1 . „ Á 

H6 ' ‚ 2 ^ V W - '-B3 2 - ÷ l-Alc-ßo !B3 2.^ 'j-JU-po 
4 16 '6 45 iti 6 9 icJ 

1
 D2 5 3 -, Ó ¡ l n 4 1 4 
•B -li, ÷ 

2 24 

H6 = 0.002336080274585 

+ 0- --B2-LL- — -u3 -a2s-Bo- --B4r—-LL4ì-9elcBo 
2 24 i \8 192 ! 

I Á\ 
H7 = Í--B2LL — -LL3ì-a2s2- - ¬ 3 - — -±U-Alc-a2s 

\8 64 / 4 21 ni 

— - B 4 H — - u 4 -0elc-a2sH7= 0.000015799961115 
116 256 / 
t r a i ' - B 2 ^ 2$-o -b2s2 '-B3 3 2 - ƒ b2s.Blc 3 . B 4 3 5 -‰" -b2s-eels 

8 64 4 105 Î 16 768 

H8= 0.000355409798295 



rB^-i-BV-AAlc-M 5 -¬» " » " ' Ë « '.‚'-‰ 4 V - Â≥Ò-€ V i u ' 
16 9È 12 315 it 24 315 Î, ' 48 

H 9 = 0.000070081855597 
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CHa ° ' a - ( H l H2 H3 H4 H5 H6 H7 H8 H9) 

CHa = 0.000962292250614 

8. Derive CHa due to CI and 

inflow from CHa 
1(CT-A,s H- CQa) 

CHaCheck- » CT-A^ CQa) 



CHaCheck = 0.000962292250614 

Double Check Ï-—Õ¯- (CT-Xs +- CQa) = Œ 

9. Calculate CHd due to Cd 

Í-.TJ/-.J cr-Cdo L 1 3 CHCdo := —¡2-LiH—ˆ 
8 \ 2 ) 

CHCdo = 0.0002300676 

CHSl =o-6l! I-V-Asi |'--|ı'≥- Ó -i '--‰ -et Í—-‰2 -Ble... 
\4 j 1,4 ; \6 / \16 

L/ 1 A , ' ! ì v-. ! n, ! , i' 1 3 2 „. , 4 — ‰ -als- ‰ b2s -Ble als + — + — ‰ Oels 
16 ,' 1,16 j 12 12 16 32 

CH8l= 0.000010478826666 

Õfi -1 -Ui-Äs u -als-As i i -u -u -OtAs • [u -u - Ó-As 
',2 I i 2 8 1,2 8 3-ˇ / 

, i'l 8 21 . . , 1 3 2 ^ , , , . , /l 16 3, „ , , 
4 - - ÷ ‰ b2s-Xs -÷ -Blc-As 4 - -i |X -øels-Xs 

2 3-71 ' i 2 8 ;,3 45-71 



HIO = 0.000121323401491 

Õ» = ≥ - ‰ -” -¬Ó2 2 -‰- 8 -‰4 . ≤- Ó ' '-ƒ2 2 S \í .als- Ó ... 
1,2 8 1,3 45-Î 3 4 45-Ë : 

4 0 ' ‰ 7-‰ 3-‹25- Ó 1 3 -‰ 2 3 2 -‰3 -Blc- Ó 1 5 tí « ‰ 2 -ecls- Ó 
4 24 ,3 4 45-fl 1,4 96 S 

Õ » - 0.00052016543129 

„Ô^ Il 1 s L Ó 1 1 2 7 41 , -, /1 16 t L , £ 

H12 -‰≥ -‰ -et -‰ i ‰ -als-et ‰ -‰ Ms-ôt 
4 96 ,' 4 8 96 '6 45-7√. ., 
+ 0 ' 3-‰2 5-n4l!-Blc-et i i 1 4 X-\i 3 2 -a5 -eeis-et 

\4 8 96 ; 1,5 4 525-Ti ' 

H12 = 0.000317427243898 
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„,,. lì Á\ 0 2 / l 1 3 _ R / l 2 
H13 -÷ |-ßo i '— |X ˆ '-a2s-ßo i -LI 

\8 / \2 4 / \4 
— -LL3'i-bls-ß0 ... 
15- n j 



. /1 2 4 31 , , „ 4 31 , , „ í 1 4 1 2)_ , „ 
4 ‰ -‰ -Alc-ßo — ‰ \ |-W-po4 — ˆ . |l Â≥Ò-ßo 

'4 15-JC j 15-ˇ j 48 8 / 

H13 = 0.000240672049834 

„ , . /1 1 2 584 Á . . . /1 11 Á\ , 2 
Õ14 -I---U. -̂ . !-b2s-als -u. -u. -als ... 

\3 4 31S71- ) S 48 / 

l'I 1 31 ' l 64 41,i 
+ —JJ. ÷ |-Blc-als- —JJ. (j. -Oels-als 

\4 6 / \6 315-7√ / 

H14= 0.001969318014698 
. Ú . . l'1 1 3 L , 2 I 52 3 „ . . 1 1 3 i l L 1 1 1 3 A 1 . , 
H15 -u -Li -€Á (1 -a2s-bls -il Ë -A.l-bls -11 Ë -Alc-bls ... 

8 48 3 315 « • 8 48 4 24 

/l 8 4 
+ 1 ÷ -fi ¡- Â≥Ò-bls 

\6 315fl ; 
H15 = 0.000210416370366 

H16 := l' — -u3 -b2s2- : — -LL3-a2s2 

\96 ; \96 / 

Hl 6 = 0.000330570070475 

T,.- , ¡3 5 3, _.. 2 1 1 2 
H17 = — i n il -Blc + | u. 

\8 48 / i3 4 



2 5 6 -LI3 -b2s-Blc... 
31S7C I 

j ' 1 1 3
 A, 2 II 52 3, „ À 1 

+1 -÷ -Li -Ale ju -a2s-Alc 
'8 48 j [3 315-ît / 

H17 = 0.001011177876538 

H18:=[—-ˆ3)-¿12- - - ^ ˆ 3 -a2s-Al- --÷ 
48 / 3 315-ˇ / \8 

LL '-¿≤—-À≤ 
48 I 

H18 = 0.000069490620782 

H19 ' ' ƒ 8 ” - Â≥Ò-À≥ '-ƒ 8 -‰4 -‚Â≤Ò-Alc 1 6 -‰4 '-ƒ -OelsBlc. 
12 315« 6 315« ƒ 105« 2 

, 3 7 5 „ , 2 1 1 5 „ , 2 
4 ‰ ‰ Bels ‰ ‰ Â≥Ò ... 

16 768 ) 16 768 
4 0 ≥ 1 V ' 5 ^ 4 ¡ -ee ls -b2s ' ' -‰" -6elc-a2s 

1,4 8 48 4 48 
Õ19= 0.00Œ493ŒŒ484576 

—Õ82 

= — - ( H 1 0 4 Hl 14 H124 Õ≤«4 H144- H15+ Õ≤64 H174 Õ≤84 H19) 
2 

—Õ82 =0.000013301136051 



CHd - CHCdo 
CH81 CHÔ2 

CHd = 

0.000206287637283 
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10. Calculate Total CH 
CH CHa-CHd 

CH = 0.001168579887897 

11. Calculate CYa due to CL fY-force positive to w = 90 degl 

1 7 5 ≥ '3 ? 7≤ /l 14 51 

Yl = --B -—-ƒ |-bls-As- --¬-‰- =-‰ -ßo-As -¬-‰ ' ˜ - ‰ i-a2s-As ... 
14 16 / i,2 ÚÒ 4 15-jt ¡ 



1 T 1 ? 1 1 1 Œ l' 1 1 ? Vi 

+ ! -¬ - -‰ ¡-Al-As- I-¬Ì -— -‰ -Ale-As- - B i — - ‰ - Â≥Ò-As 
2 8 1,4 16 / ,6 45-̌  

Yl=0.000124005711733 

Y2 Í--B3 4 --B-u,2 4 -ˆ3 -bls- Ó 3-¬2-ˆ 
13 2 9-7’ j » 

3 3 ' fj D 

LL l-ßo- Ó 
16 

i' jy | i' - | Î 

+ 0- i'--B2-u,4-— -LL3l;-a2s-eo+ i -B3+—-LL -Î≤- Ó 
'.S 24 / \ 6 45-ˇ / 

Y2= 0.000762255150436 

Y3 l-B4 i ^ ‚ ^Li^i-bls-Ot ^ ‚ ≥ 
÷ 4 32 i 12 

2 4-
•LL -ßo- ≥ ... 

15-fl / 
+ 0 í - -B 3 -u+^—u 4 -a2s-et+ --B4+ — -LI4i-Âl-et 

i4 fi5ˇ j \S 192 j 
Y3 = 0.00015180487599 

Î ' l n 3 „ 2 68 3 n /1-2 11 3' .„ „ 
Y4.= -B ¬ˆ H ˆ |-als-ßo- -B^-LH \i -b2s-po 

6 45-ˇ / \ 2 24 / 



4 l-BJ- '-¬-‰2 2 2 ‰ 3 -Blcßo '-B4 '-‚ 7 -‰4-Sels-ßo 
6 2 45-̌  j 8 4 192 

Y4= 0.001266285819158 

Y5 :=(--¬2-ˆ+ — -LI3;-als-bis- í ' - r f t - V - -^-LL3''-a2s-als 
14 16 / 'i,4 2 105Î / 

/ 7 D2 11 3', . . . /l „2 
+ —¬^-ˆ. Li l-ll-als- —¬ u, 

16 96 / 4 

•̂  -Alc-als i --B -|LLH (i -Oelc-als 
16 / i6 45-Tt j 
Y5 = 0.005161236802228 

Y6 - ¬3 ¬ ˆ H -b2s-bls ¬ 2 ˆ a Blc-bls 
.4 2 21-Jt i i,2 8 

Y6= 0.001006158164124 

Y7 -\i |-b2s-a2s i -B3 i -B-u -u -Blc-a2s ¬ 4 

'\ 32 ; 4 4 ' 35-ˇ j \l6 
Y7= 0.000298358384238 

/l 3 4 4\ 
•¬-ˆ — • |i Gels-bls 

\3 45-JC / 



1 -.2 2 7 4 \ 
i -¬ \i |X -9elsa2s 

8 768 / 
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Y8 = i—-B34 -^-ˆ≤-¿≤-‹„‚ - (-•¬3 + -¬-ˆ2- — -n3!-Alc-b2s 
,12 315„Â j ,4 4 35-fl / 

+ I— -B4+--B2-(l2- — -Li4ì-0elc-b2s 
\ l6 8 768 /' 

Y8 = 0.000207494277531 

/ 1 i 4 4''' / 1 ? 1 3Ì 
Y9 = I — ¬ a —^—u. -Bels-Al - ¡ — -LL-B - —-u. BloAl 

24 315ˇ ) \1· 96 ;' 

Y9= 0.000006300274309 

CYa °'a-(Yl Y4 Y2 Y3 Y5 Y6 Y7 Y8 Y9) 
2 

CYa = 0.000644584735924 

12. Calculate CYd due to Cd 



CYCdo =0 
CY51 
= »™.|í' - V •«« ' - -˚. ' ' Ë ! Ë . ' m o ' J . ù - 1 U 

2 6 8 6 8 8 16 14 / 8 6 
CYÔl =0.000000645796793 
”10= -4--ƒ2]-€>->‡- II- 4 u1 (So-As ¡≤-ƒ- — ƒ1 |-i2a-As - ~-‰ 2 Ale As ... 

2 8 i, 3-ı 2 «Î 1,2 16 

+ ' V -M-Xsi-i-T-—-ƒ3 - Â≥Ò-te 
2 8 3 45-ft 

YIO-0.000024304101028 

Yli - ' ‰ ‰ - Ó-bls ‰ ‰ - Ó-ßo ‰ ‰ 0o-a2s 
3 4 45-ÚÒ 2 16 4 24 ' 

4 0 ' '-ƒ2 8 -‰3 - Ó-¿≤Ò ' • 2 -ƒ› - Ó-¿≤ ' 1-‡? ' ‰4 - Ó-ŒÂ≥Ò 
3 4 45-Î 3 45-Î 4 8 96 

Y l l= 0.00008715682354 

Y12 ' • ' ‰ 2 ' -Ó -et-bls ' ‰ 2 ‰* ≤-ßo '-ƒ 2 -‰4 -et-.i2s ... 
4 8 192 3 45-fl , 6 45Ô 

+ 0 - ¡ - - - - ‰ 2 - - . ‰ 4 ' | . ¿ 1 Ò ≥ ' ' ‰ 4 ≤-¿≤ ! - ' ‰ 2 1 6 Ó5 ≥-ŒÂÍ 
4 8 96 U 192 5 12 1575Î 

Y12= 0.0000266251S5014 

1 \≥ 2 il1 Ó¬≤Ò ! 3 ƒ ! ' 6 \≥ poi ls '-J1 ' ¡í [lo-t>2s ' j l 2 '-ˆ4 .fels-Po 
4 15Î 4 IS-IT. 2 4 S 96 

Y13= 0.002688705597424 
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„ , . /l 1 3 , . , 1 1 2 368 3 , „ 
Y14 -1 —-JJ.-I ˆ -als-bis 4 - -t- --(i li |-als-a2s 

\4 12 j \3 2 315Î 

+ - L I | i '-als-A.14- '— LI4- LI -als- Â≤Ò 
•8 48 / 6 63-ˇ ,' 

Y14= 0.005117767180249 

Y15:-i-4---ii - — -u. bls-b2s | - l i +- — LLi-bls-Blc 
1,3 4 63-ˇ j ,4 48 j 

Y15= 0.001943681093466 

APPENDIX E 
1 1 3 Í 1 À1 

i -u. i u -als-Alc ... 
U 24 / 

1 4 4 ' U 1 O 1 
- • | H - — J U L - b i s - G e l s 

\6 315Î 

„ , , I 26 3'; „ „, il 1 4i „ . , ,13 3 .„ „ 
Y16 -̂  -a2s-Blc -‰, |-a2s-6els i ˆ -b2s-a2s 

'3 315-ˇ / i4 96 ;' 48 j 



Y16= 0.000318138388903 
1 88 Á . , , . I 1 2 8 Á u„ , , 1 1 2 1 4',. 
- 4 ‰ -b2s-A.l ‰ -
3 31511 3 4 

Y17= 0.000214119551942 

i r — -n3i-b2s-X1 —--ƒ 2 - —‰3'-‹2‡-¿1Ò+- ≤- + --ƒ2- —-‰" -b2s-9elc 
3 315-it j 3 4 63-it 4 8 96 

Y18 í ] -Ï- 4 -̂ .4≤-Àƒ- Â1‚ l'-÷ 1 ˆ3 Xl ¬ 1Ò 
.12 315ˇ j \8 96 / 

Y18= 0.000014053554352 

Y19 =|--‰ + —-‰3 -Ale-Ble '-‰ 8 -‰"-¿≤Ò- ÂÕ '-‰ 8 ‰4-¬≥Ò- Â≥Ò ... 
14 24 6 31S1E '6 315-ˇ 

+ Í--LH li 'i-Oels-Oelc 
\8 384 I 

Y19 = 0.000033720559476 

CY82 :=[ 1 - — j - ( Y 1 0 + Y l l ^ Y 1 2 ^ Y 1 3 + 

Y14-I- Y15+ Y164- Y17-I- Y18- Y19) 
2 

CYS2= 0.000004765020584 

CYd = CYCdo i CYS1 Ì-
CYd= 0.000004119223791 



13. Calculate Total CY 
— Y CYa CYd 

CY52 
CY=0.000640465512133 
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14. Calculate Shaft Angle of Attack (radians) 

/Xs 1 CT \ 
as atan i i 

V 2 I 2 - 2 , 

as = 0.027326303405535 
15. Repeat Input (angles now in degrees) 

|A = 0.7 As =0.013 M= 0.007287534590767 



Û = 19.2 ¬ =0.97 0 = 0.0976 
a =5.73 

„ 1 8 0 . _ .. 180 , _, 180 _ . , 180 . 
Ó- =1.9 Ot- = 1 Blo = 2 Ale- =1 

Jt 7C À 7t 

Cdo =0.012 51= 0.0216 82=0.4 

16. Summarize Output 
1Rfl 1 flœ 

ßo- =8.474827357622401 als- =7.801747523038808 

1 Q A 
a2s-— = 1.579548305207202 

Q.1 1 8 0 1 0.1 1 8 0 1 
Øels— = 1 Â≥Ò— = 1 

Í Í 

1 Of) 

b i s - — = 7.890124244695535 
Í 



1 80 
b 2 s - — = 2.465172362211013 

Í 

CT = 0.008587925651381 CH = 0.001168579887897 
CY=0.000640465512133 

CQ =-0.000515559050365 

1 80 
as-—=1.565681854831141 

RotorCL CT-cos ( a s ) - CH-sin(as) 

RotorCD = CT- sin( as ) Ë- CH- cos ( as ) 



RotorCY -CY 

AirplaneCL = —(RotorCL) 
2 
2 AirplaneCD = —(RotorCD) 
2 

CY 
AirplaneCY 2 — 

2 
400 

RotorCL = 0.008552790439016 
RotorCD =0.001402790666605 
RotorCY = 0.000640465512133 



AirplaneCL = 0.034909348730678 
AirplaneCD = 0.005725676190225 
AirplaneCY = 0.002614144947481 
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AIRCRAFT MEETING 

Sponsored by 

PHILADELPHIA CHAPTER 
INSTITUTE of the AERONAUTICAL 
SCIENCES 

Friday and Saturday, October 28 and 
29, 1938 

Lecture Hall, THE FRANKLIN 
INSTITUTE 
Benjamin Franklin Parkway at 20th 

Street 
Philadelphia 

This Rotating Wing Aircraft Meeting 



was the f i r s t f ree discussion 
in th i s f i e ld of science open to a l l 

engineers in the a i r c r a f t 
industry. A complete two day program 

was arranged and a se r i e s 
of papers presented by experts and 

pioneers thoroughly acquainted with the 
various problems in t h i s branch of 
the aeronaut ical 
sciences. The scope of the meetings 

cover Uses, Developments and Relation 
to the Future of Heavier-than-Aircraft 

The Philadelphia Chapter i s grateful 
to the Franklin I n s t i t u t e and the Aero 
Club of Pennsylvania for t he i r help 
and cooperation extended for meetings. 

All delegates were invited to attend 
specia l l e c tu r e a t regu- l a r meeting of 
The Franklin I n s t i t u t e on Thursday, 
October 27th, at 8:15 P.M. 



"PRINCIPLES OF ROTARY AIRCRAFT" 
by Dr. Alexander Klemin, Professor, 
Daniel Guggenheim School of 
Aeronautics, New York University. 

For the regular meetings all 
delegates and visitors assembled in the 
Hall of Aviation of the Franklin 
Institute. It was rather fitting that 
registration take place in this large 
hall devoted to a splendid collection 
of aviation exhibits and particularly 
in view of thç fact, hanging from the 
ceiling is the first autogiro built in 
this country. 

Mr. E. Burke Wilford, President of 
the Philadelphia Chapter acknowledges 
his gratefulness to the committee 
consisting of 

Agnew E. Larsen 



W. Laurence LePage 
Richard H. Prewit t 
James G. Ray 
Ralph H. McClarren, Secretary 
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FRIDAY, OCTOBER 28, 1938 

INTRODUCTION by E. ¬ÿ ≈ TtfltFORD, 
Chairman 

Gentlemen, I want to welcome you a l l 
h e r e in t h e name of t h e 
P h i l a d e l p h i a Branch of I n s t i t u t e of 
A e r o n a u t i c a l S c i e n c e s , and t o say t h a t 
we a p p r e c i a t e t h e c o - o p e r a t i o n which 
t h e I n s t i t u t e of A e r o n a u t i c a l Sc ience s 
has given us in o r g a n i z i n g t h i s meet-
ing . 



As this is probably the first rotary 
wing aircraft conference occurring in 
the world, we hope to make a little 
history here, and the only way that we 
can do that is for everyone to say what 
he thinks. Don't be :sfraid of hurting 
anybody'u feelings, or departing from 
the conventional procedure. That's 
what this meeting is for, and we hope 
that it will be the start of a real 
boom in the rotary wing aircraft 
industry. We hope to see that within 
the next ten years, there will be at 
least 10,000 men working in this 
industry. To all you young men that 
are here, why, this is the line to 
work in, because it is going places. 

I want to introduce Mr. Ralph H. 
McClarren, who has only spent about the 
last two months working on this 
meeting, and we ap- predate the fact 
that the Franklin Institute is 
allowing him to assist us, and he will 
open the meeting with a general dis-
cussion of rotary wing aircraft. 



"Review of Rotating Wing Aircraft," 
Ralph H. McClarren, The Franklin 

Institute. 

Mr. Chairman, Members of the 
Institute of Aeronautical Sciences 
and Guests — The title of my paper, 
assigned to me for this meeting was, 
"Review of Rotating Wing Âireraft". 
Any of you who 
were so fortunate as to be present 
last night and hear the most 
excellent paper presented by Dr. 
Alexander Klemin, of New York 
University, would realize that it 
would be hopeless for me to 
attempt, in the eleven minutes that 
I have left, to give you 
any comprehensive review of rotating 
wing aircraft. I hope 
that Dr. Klemin's paper will be 
published, and if so, we will 
try to supply most of you who have 
registered here, with copies 
of that paper when it is published. 

I have a few little demonstrations 
that I would like to make, when we 



t h i n k of r o t a t i n g wing a i r c r a f t , o r , 
in f a c t , when we t h i n k of anything, we 
t r y t o go back t o n a t u r e t o f i n d some 
example i n n a t u r e of t h e methods or 
s c i e n t i f i c machines t h a t ˘˘ ha.s 

developed, to s e e i f we can f ind an 
example. We d o n ' t have to go very f a r 
for r o t a t i n g wing a i r c r a f t . Here i s a 
l i t t l e maple seed model, of oourse larger than the maple seed 
i t s e l f , but l e t ' s see what i t does. (Demonstration) The 
maple seed s p i n s as i t f a l l s t o t h e 
ground. That i s r e a l l y a 

404 

APPENDIX F 

3. 

rotat ing wing a i r c r a f t , and the autogiro, 
gyroplane, converta- plane, and so on, vary 
but l i t t l e in pr inc ip le of rotat ion from 
t h i s l i t t l e maple seed. 



The Australian hunters were rather c lever , 
and they developed th i s form of ro ta t ing 
wing a i rc ra f t ,— the boomerang. (Demon-
s t ra t ion) Of course, if you missed the 
bird on your f i r s t shot, you get your 
weapon back again to take another crack at 
i t . The boomerang i s r ea l l y a ro ta t ing wing 
a i r c r a f t . 

Then we have the hel icopter , which we are 
going to demonstrate on the pr inciple of 
the jump-off autogiro . Le t ' s assume that 
th i s i s the rotor of a jump-off g i ro , and 
we place i t on the spool, decreasing the 
angle of incidence, of course, so we don't 
take off when we f i r s t spin i t , then put a 
l i t t l e b i t of power into i t , and up i t 
goes. (Demonstration) So you say that 
even l i t t l e Chinese toys that were 
developed about n thousand years ago show 
that there i s r ea l ly nothing new in the 
world, and i t ' s jus t how we put them 
together. 

Take the actual autogiro. I am indebted 
for t h i s model to Mr. Paul Stanley, of the 
Autogiro Company of America. Ho made th i s 



many years ago, and wondered what happened 
to it. Well, i can tell Paul now that I 
have had it for the last three and one-half 
years. This demonstrates very nicely the 
auto-rota- tion of rotors on rotating wing 
aircraft. Just move it through the air a 
little bit, and it spins around, whether I 
walk along with it, or whether I just wave 
it back and forth. (Demonstration) Of 
course, the minute you stop motion, it will 
stop turning. 

Let's go back a little bit, to the 
beginning of the 16th cen- tury. Lenardo 
da Vinci was one of those versatile chaps, 
scientist as well as artist, that delved 
into the problem of flight, and he 
developed probably one of the first 
machines to imitate the bird method of 
flight. Here we have a model ornlthopter. 
(Demonstration) That is one way to 
conquer this problem of vertical flight, 
not by rotating, but by flap- p i n g wings. 



I have a few motion pictures that I would 
l ike to show you, of ‡ „ Â ‡ 1 hovering f l i e r , 
one t h a t I don ' t think we wi l l ever equal 
in control and maneuverability and in 
f l ight character- i s t i c s , but I think we 
might use as our goal the control and 
maneuverability of l i t t l e bumming bird in 
f l i g h t . (Moving pictures shown.) There 
you see him in his natura l f l i g h t . This 
picture was taken with an ordinary camera. 
His wings go back and forth about f i f t y 
times a second. Dr. Harold E. Edgerton, of 
the Massachusetts I n s t i t u t e of Technology, 
develop- Q¿ a special highspeed camera, 
taking 1800 p ic tures to the sec- 0nd, and 
being interested in slowing down the 
motion of these rapidly moving things to 
where he might observe then, he took some 
pictures of t h i s l i t t l e fellow in f l i g h t . 
You can rea l ly 
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see how the l i t t l e bumming bird moves his 
wings. Those wings operate on a scull ing 
pr inc ip le . That i s , he reverses the 
incidence of the wing on each s troke. 
Forward, i t has one in- cidence, pos i t ive , 
and when he comes to the backward stroke, 
he flops the wing over, moves i t back, 
doing that a hundred times a second. That 
i s why he con keep h is body about 
v e r t i c a l , and he can hover and f ly 
stat ionary in the a i r . I think he wil l 
back away from his perch in a moment, 
showing you tha t he can also f ly backward, 
as well as forward. There i s a good 
example of backward f l i g h t . 

We ask ourselves t h i s question: Why i s i t 
that the humming bird can f ly in t h i s 
remarkable manner? Lot 's look a t i t from Q 
sc ien t i f ic point of view. The muscle 
weight in a humming bird i s 55$ of the 
weight of h is body. That i s the answer. 
Man's muscle weight i s Only &fo of h is 
body, so how in the world can we expect a 
man, with so l i t t l e muscle, to f lap wings, 
as Lenardo da Vinci proposed, and many 
others up u n t i l we had the p rac t i ca l fixed 
wing aeroplane and successful hel icopter? 



You notice how the tail moves there, 
stabilizing or controlling his flight. I 
believe that is a good example of a goal 
for the rotating wing aircraft fliers to 
try to reach. 

I have a few more models here that I would 
like to show. We use some of this 
equipment in the Franklin Institute 
traveling air show. This particular one is 
what we call an endurance type of flier, 
and I think a good example of fixed wing 
flight. (Demonstration) 

Then we have another very interesting 
fixed wing flier, the soaring type of 
glider, or slow flier, large aspect ratio 
wing, and he makes a pretty nice flight, 
as you let him go. Just to bring in a 
little variation as to these various types 
of fixed wing aircraft that depend upon 
forward motion to sustain them in the air, 
to create enough lift to keep them up. 
(Demonstration) 

Here is a little model that I had hoped to 



have completed to actually demonstrate to 
you vertical flight, — not like the 
autogiro or the gyroplane, all types of 
which you will hear of later on, but this 
helicopter type. The model contains all 
the essential principles of a single rotor 
helicopter, — the rotor to be power 
driven. There is a torque reaction to 
counteract, so we would rev this prop up a 
little bit or change the pitch of it, to 
counteract the torque. When we want to go 
forward, we change the pitch, and have 
both props turning, use them to help our 
forward propulsion, tilt the rotor, and 
also use the forward component or sine 
angle, Theta, to help in the forward 
propulsion. 

There is another little trick we might do 
that the model doesn't show. To 
effectively use these two little 
propellors for forward propulsion, we could 
put a small wing on one side of the 
fuselage, another wing or slot wing effect 
on the other side, aft, and then in forward 
flight, there would be enough 
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enough speed and enough l i f t i n g force on 
those, to counteract the torque caused by 
the power put into the ro to r . We had hoped 
to have th i s f lying, and I am sorry i t 
wasn't finished in time. 

I have a short demonstration to make using 
what might be called a wind tunnel. In my 
work here and in the t ravel ing a i r show, to 
make things evident and easier to 
understand, we generate a v i s ib le stream of 
a i r . This is accomplished by placing a few 
pieces of dry ice into luke-warm water, 
which produces a stream of vapor that makes 
i t possible for us to see the direct ion of 
flow. (Demonstration) To demonstrate t h i s 
physical a i r flow, that i s , to demonstrate 
something in i t , I have a model ro to r . You 
might say th i s i s the Herrick ro to r , 
because i t can ro ta t e e i ther way; i t is a 



symmetrical section fore and aft of the 
ve r t i ca l center l i n e . I w i l l place t h i s 
rotor In the wind stream, turn on the fan, 
that produces a stream of a i r through the 
tunnel. Of course, the wing wi l l not 
ro ta te unless we s t a r t i t , and that is 
t rue of a l l auto-rotat ing ro to r s . But as 
soon as we give i t a l i t t l e s t a r t , i t 
continues to ro ta te as long as a i r moves 
thru i t* you can now see the general effect 
in the a i r flow above the ro to r . Pull ing 
the a i r stream down a b i t , we would say, 
with the wing, tha t the wing was s ta l led 
through here, but that i s not t rue with the 
ro to r , because i t turns , the blades turn 
at a high enough speed so that you don' t 
s t a l l , tha t i s , the individual section, 
except on a portion of the down-wind blade. 
You can ' t see the detailed flow pat tern; 
close observation, however allows one to 
study the individual flow charac te r i s t ic on 
the up-wind blade. Now I am going to move 
i t over to the down-wind blade, and you 
notice how much freer the air moves through 
t h i s portion of the ro to r . Of course, 
tha t is under- standable when we take our 
veloci ty vectors through the disc of the 
individual blade elements. 



Here i s a very in teres t ing thing, though, 
that I would l ike to point out in 
pa r t i cu l a r . Many people l ike to say that 
the rotor is similar to a wing, 
par t icu lar ly at the low angles of f l i g h t . 
I am going to step up the speed just a b i t , 
and we wil l place our rotor at a low angle 
of at tack. N©w, you wi l l not ice that we 
are unable to get much a i r to flow through 
the d isc , especially on the up-wind blade. 
But as we increase the angle, we change 
from that down force charac ter i s t ic to 
another one at the high angles, where we 
merely block the flow of a i r ra ther than 
having a down-flow cha rac te r i s t i c . 
(Indicating) And that t rans i t ion point i s 
the one in which the aeronautical engineer 
has to make his best guess when developing 
the theory of rotor operation. 

There i s a lo t more that I might point 
out, but my time i s just a few minutes gone, 
and we would l i ke to s t a r t the regular 
session promptly. 
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• Ralph H. bfcClarren, AeE. 

übe F r a n k l i n I n s t i t u t e 
Following t h e adjournment of 

t h e meet ings on Saturday morning many 
of the delegates had luncheon together and later availed themselves of on 
opportunity to see some ÚÂ„Û interesting flight Demonstrations at the Phila-
delphia Airport. About 10% of the 24£ total registered at the meetings 
saw John M. Miller put a Kellett KD-1 autogiro through i ts paces. He pro-
duced some spectacular flying from the direct-control, wingless Autogiro, 
making very qufck take-offsT almost vertical climbs, practically hovering 
against the King and landing withcut rolling a wheel» 

Alsot a fine demonstration of Crop rusting was made by George 
Townson, flying „‡Â of the Siro Associates Pitcairn Model P.c.A. -S Autogiros. 
I t exemplified the use of rotating wing aircraft in the important field of 
agriculture. 

Keen appreciation was expressed by many of those attending the 
meetings and a l l agreed that every effort should be made to have such a 
meeting a yearly affair. I t is understood that a rotary wing aircraft meet-
ing will be held this ÛÂÌ„ in Septerober at the Daniel Guggenheim School of 
Aeronautics, New York University In connection with the International Air-
craft Congress at the H". T. Vor ld F&ir. 

The offici*Oe of The franklin Ins t i tute hope that suitable ar-
rangements can be made to again hold such a meeting in Philadelphia and 
extend a. cordial invitation to a l l in the a ircraft industry. 
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In the late 1950s, while working at the 
Vertol Aircraft Company located in Morton, 
Pennsylvania, I was told to get familiar with the flapwise bending moment equation for a 
rotating blade.' I became entranced with Fig. G-l, bowled over by Eq. (1), and quite doubtful 

that I could find a solution. My 
apprenticeship up to then only included the 
"facts" that blades 
were rigid and flapped, and that I could calculate all the rotor performance with just these 
ground rules. The book Aeroelasticity,2 and specifically pages 95 through 98 that show how 

to solve Eq. (1), became a bible 
for the rest of my career. 



d ( L ) - d L d r 
* ' dr 

d(CF) = (radr)Q!r 
Hladc Out 

H j n i . l F f l 
ÜL'tWllUIl 

di l l = m dr 

Radius Station, r 

Fig. G-l. Flapwise forces and bending 
moment on a rotating rotor blade. 

1 I thought of myself as an aerodynamics engineer and 
was bent on learning my trade. My boss then was Joe 
Mallen and he said, "Go to the library, check out 
Bisplinghoff s book on Aeroelasticity, and learn the first 



100 pages." Joe was my first mentor and later became 
Boeing Helicopter Division manager. I owe him a great 
deal; certainly more than I can thank him for. 
2 Raymond L. Bisplinghoff, Holt Ashley, and Robert 
L. Halfman, Aeroelasticity, 2nd Ed., Addison-Wesley 
Publishing Co., Reading, Mass., 1955. 

APPENDIX G 

409 

(1) 
Flapwise Ã Ï =(≈≤ fl ‡ ƒ 

›„2 

= Jr

R(T1-r)d(4.)-Jr

R(Zn..-Zr..)d(CFn..)-r(Tl-r)d(ln,) 

The solution to Eq. (1) begins by 
differentiating it twice with respect to radius 
(r). For 
a uniform mass and stiffness beam (i.e., m is constant from root to tip in the units slugs per 
foot, and ELfcp is constant in units of pounds-feet2), the result is 



(2) 

EI-
d4Z, 

W) mii2 

›„4 ( * 
r 2 \ a Z ( M ) 

' ›„ 

a2z„ 
-m-

› € 
9t2 ›„ 

This is a fourth-order partial differential 
equation, which can be separated into two, 
ordinary differential equations. One equation 
accounts for the radial deflection of the blade, 
and the other accounts for blade behavior 
with time. The separation is done by 
first nondimensionalizing by radius (R) so x = 
r/R and defining the rotational azimuth of the 
blade as \|/ - Qi, where the rotational speed (Í2) 
is constant. Next, the assumption is made that 
an infinite series of the following form is 
reasonable: 

zr,t=R¿zn 
f z 

m=l 

tip 

R 



(3) 

= R- tip 

R R 

Substituting Eq. (3) into Eq. (2) results in a 
radial deflection (z*) equation and a blade-tip 
deflection (ZtiP/R) equation that is time 
dependent. Both equations are dimensionless 
because of the substitutions that x = r/R and IL/ 
= ßt. The summation operator in Eq. (3) says 
that the result depends on an infinite sum 
of radial times time functions . The two 
equations that must be solved for each vibration 
mode (m) in the summation are, for the radial 
behavior 

(4) 

d4z 
dx 

limfl2R4 

~l{ EI 
d2z 1-x'P v ' dx 

√ÔÍÓ∆' 
" ( X ) 



and, for the time behavior 

(5) 
d2(z,ip/R) . f X Y f O 1 f'= dL 

dY
2 U J ^ R J mR2n2j;(z(x))2dxJo W dx 

Notice that radial deflection must be obtained 
first from Eq. (4) before the time equation can 
be solved. This is because the right-hand side 
ofEq. (5) contains integrals of the deflection. 
The solution of Eq. (4) gives the normal 
modes (i.e., radial deflections) and 
associated frequencies for the rotating uniform 
beam—the blade . It is customary to scale 
the mode shapes so that, at the blade tip where x 
= 1, the deflected shape (zx) gives zx=i exactly 
to unity. 
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The mode shape equation, Eq. (4), 
requires boundary conditions. A blade with a 
flapping hinge is classified as a pin-free beam. 
This means that the root boundary conditions 
(i.e., the pinned end where the flapping hinge is located) are that at x = 0, 
Ztø> = 0, and d2Z(s/dx2 = 0. The tree end of the beam is the blade tip at which x = 1, and both 
moment (d2z<x/ax2) and shear (cfzm/dx3) are zero. Autogyro blades fall in this classification. 

This appendix gives the solution to Eq. 
(4), which I have used in this volume about 
autogyros. I chose to recast this normal 
modes and associated frequencies equation 
to illuminate two key parameters upon which the 
solution depends. That is, I defined 

g = 
mn2R4 

and f = nWR 2 T H 

EI EI 
so that the normal modes and frequencies 
equation to be solved becomes (6) 

/ ? 4 d z 
(1-ı 2 ) 

dx 4 2 ^ dx dx -(fK)=0 



Both g and f have no units, so Eq. (6) is 
completely nondimensional. 

I took the simple Frobenius solution 
approach, which is a power series method. The 
assumption is that 

(7) z ( x ) = A 1 ¿ K n x n + A 3 ¿ M n x \ 
n=l n=l 

First, the three derivatives are easily obtained 
and substituted into Eq. (6). Next, the expansion 
is collected in ‡   series and an M series. 
Then the coefficients of each xm are set to 
zero. Finally, the recursion formulas for the   
and M series are created. The result for the   
series is 

(8) 

4 f-f(—«)(—3) n(n-l)(n-2)(n-3) n(n-l) Nn-2] 

where n proceeds as n = 5, 7, 9, etc., and Ki = 



1 and K3 = 0. Similarly, for the M series, the 
result is 

(9) 
Mn=[f-|(n-4)(n-3) 

n(n-l)(n-2)(n-3) 
M(->+f n(n-l) M (n-2) 

where n proceeds as n = 5, 7, 9, etc., and Mi = 
0 and ÃÁ = 1/6. Notice that both series have 
exactly the same mathematical form. The 
difference between the two is the first 
coefficient values, Ki,  Á and Mi, ÃÁ . Both 
series behave as hyperbolic sine functions. 

The coefficients Ai and A3 required by Eq. (7) 
are given by 
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ï>(n-l)Mn 
(10) A, 

0=1 

" N N N N 

XK„Xn(n-l)Mn -XM„^n(n - l )K n 

n=l n=l n-1 n=l 

and 

-l¿n(n-l)Kn 

(11) A3 
n=l 

' N N N N 

XK„Xn(n-l)Mn -XMDXn(n-l)Kn 

n=l n=l n=l n=l 

The final key to the solution is the 
transcendental equation, which says that for 
any 
value of g = there is a corresponding value of f = — such that 

EI " EI 



N N 

N N ( 1 2 ) 

2(n-l)(n-2)KnXn(n-l)(n-2)M„ -Xn(n-l)(n-2)K„Xn(n-l)M0 =0. 
n=l n=l 

11=1 n=l 

The computational process is quite 
straightforward and can be carried out using 
a spreadsheet program such as Microsoft® 
Excel®. For a given value of g, various values 
of f must be selected. With each value of f, the 
  and M series are constructed using Eqs. (8) 
and (9). Then the transcendental equation is 
tested for a value of f that gives zero . The 
value of f that makes Eq. (12) zero leads to 
the natural frequency for that particular mode. 
This step defines the exact values of Kn and Mn 

for that mode. Finally, the lead coefficients, A] 
and A3, are calculated with Eqs. (10) and (11). 

I set the whole problem up in Excel® 
and used the goal seeking tool to find the 



f value for any selected g value that made the 
transcendental equation zero. One example of 
the behavior of the transcendental equation is 
shown in Fig. G-2, which was obtained with 
g = 600. Notice that the transcendental 
equation crosses zero at successive values of 
the parameter (f). Each crossing of zero defines 
a mode frequency and, therefore, a solution to 
Eq. (6) . For this result, I obtained 
satisfactory convergence of the mode 
shapes and frequencies using   and M series 
created as n = 5, 7, 9, on up to n = 139. 
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Ì.Ô‚Ë.ÔÓÓ 
Transcendental 

Equation 
Ï‡ÏÂ Ó 

Eq.nl 

Mode 
3.923.1S? 

I lu r i Merit 
r-i:,sss/„H 

Fig. G-2. Transcendental equation. 
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EQUATION SOLVED BY FINITE 
DIFFERENCE METHOD 

This appendix shows one way to solve 
the rotating beam out-of-plane response to 
simple blade-element lift. The solution 
approach is one that could have been done in 
the autogyro era—if the pioneers had decided to 
spend the resources . I have include this 
appendix because it is a special piece of work 
that was just plain fun. But first, a little 
background. 

While at Bell Helicopter Textron,1 I 
sent a memo, dated August 24, 1987, to the 
technology department and computer support 
staff that said, in part: 

On Enclosures ¿, ¬ and — I have written 
out the simple equation for flap bending. I would 
like to see this equation solved without using normal 



modes. Hopefully, there is a "canned" partial 
differential equation solver that can be used. 

As you know, I believe future rotor analysis 
will become finite element based rather than normal 
mode based. This does not mean I see the 
Myklestad/C-81 analysis disappearing because 
knowledge of blade natural frequencies, for example, 
will always be important. However, when I read a 
paper such as the one included at the end of this 
memo,2 I begin to think the structural 
representation of the blade by "simple modal 
equations" may not be worth the trouble. And, 
therefore, a more direct approach of feeding the 
rotor design group's tabulated blade properties 
into a finite element analysis could easily yield 
more correct results . The big question to me is 
one of absolute accuracy as a function of total 
turn-around time. 

Please make sure the staff 
understands that I am not advocating 
discarding C-8 1 . What I want is to lay the 
foundation to a new, finite element approach that 
will grow as computer power grows and that can 
incorporate CFD progress. Perhaps in ten years 
the C-81/COPTER approach will be used in 



preliminary design of rotor systems and the finite 
element approach will be used for detailed design. 

On October 15, 1987 I received a memo back 
from Mark Dreier (then a Senior Computing 
Project Engineer working in the Scientific 
Systems department) that showed a finite 
difference solution that worked like a charm.J 

It was a beautiful piece of work that I hold in 
high regard 

1 At that time I reported to Bob Lynn, Senior Vice 
President for Engineering, as the Deputy for Technology 
and 
Advanced Development. 
2  . ¬ . Subrahmanyam, et al., Nonlinear Vibration 
and Stability of Rotating, Pretwisted, Preconed Blades 
Including Coriolis Effects, AIAA J. of Aircraft, vol. 24, 
no. 5, 1987, pp. 342 -352. 
3 My first encounter with numerical solutions in 
rotorcraft problems came when we began using the 
N.A.C.A. method in the late 1950s. This groundbreaking 
analysis was developed by Alfred Gessow and Aimer 
Crim and published in January 1955. The report, NACA 



TN 3366, is titled A Method for Studying the Transient 
Blade- Flapping Behavior of Lifting Rotors at Extreme 
Operating Conditions. The method numerically solved 
the rigid blade-flapping, ordinary differential equation 
with real airfoil properties. Mark Dreier's extension 
allowed flap bending to occur with the fourth order, partial 
differential equation. 
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After retiring from Bell in January of 
1991, I decided in 1992-1993 to "program" 
Mark's solution method in Microsoft® Excel® as 
part of my research about autogyros that has 
culminated in this volume . It took about a 
month of very enjoyable spare time. The 
solution approach that follows is Mark's memo 
in my words and nomenclature. 

From Appendix G, you learned about the flap 



bending equation, which is 

Flapwise M r t = (EI f l a p \ 

=j;^-r)d(4 l)-Jr

R(zn,t-zr,t)d(CFn,l)-j;(n-r)d(in,t) 

This solution to Eq. (1) begins by 
differentiating it twice with respect to radius 
(r).4'5 For a 
uniform mass and stiffness beam (i.e., m is constant from root to tip in the units slugs per foot 
and ELfiap is constant in units of pounds-feet2). The second step is done by 

nondimensionalizing by radius (R) so x = r/R 
and defining the rotational azimuth of the blade 
as \|/ = fit, where the rotational speed (Q) is 
constant. The last step is to scale out-of-plane 
deflection by rotor radius (R) so that z = 
Z/R. The results of these steps is the partial 
differential equation: 

a 2 z r 
›„2 



(2) 

E I a y » , H ) ^ ^ ^ . 1 ‰ (   ) 

míi2R4 ›ı4 2 ›ı2 ›ı ›Û2 míi2R2 ›ı 

This equation is fourth order in space (x = r/R) 
and second order in azimuth (vi) (i.e., time). 
Again, the equation applies to a blade with 
uniform mass and stiffness, and rotating at a 
constant tip speed of Vt = HR. 

The airload—the right-hand side of 
Eq. (2)—is expanded with a very simple 
representation as 

(3) 
, \ (ı+Ë.5≤ÔÛ)„( + ı , -Blcsmiy-Alccosi|/)+(x+u.sin\|r)u.. 

mfì3R~ dx 6 Lfx + MsinyJ-^l^-ncoswix + Msjnw)—^^ 
a " ' - ' ›ı 

yL 

dv/ 

Damping Term 
-À. 
Spring Term 

which follows previous models and symbols discussed in this volume. The Lock number (y') is 
defined as pacR4/Ib. 



It is entirely feasible to solve this differential-integral 
equation directly. This was demonstrated by Joe Stuart in 
his paper titled A Tabular Method of Propeller Blade 
Stress Analysis. This paper was presented at the Power 
Plants and Propeller Session of the Eleventh Annual 
Meeting of the Institute of the Aeronautical Sciences, 
New York, Jan. 25-29, 1943 . The work was later 
published in the J. of the Aeronautical Sciences, vol. 10, 
no. 4, pp. 115-118, April 1943. This approach easily 
accommodates nonuniform blade geometry and 
structural properties. 
5 The paper The Bending of Rotor Blades by Al Flax 
published in the J. of the Aeronautical Sciences, vol. 14, 
no. 1, Jan. 1947 provides a rather comprehensive review 
of several solution approaches. 
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My Excel® solution approach begins by 
assigning columns to blade segments that go 
from i = -2, i = - 1, i = 0, i = +1, etc, on up to 



iniax = tip, imax+1 imax+2 • I used a segment length 
of Ax = 0.05. This means that 21 columns are 
used for the blade, 2 more columns are used for 
root boundary conditions and 2 more are used 
for the tip boundary conditions, which makes a 
total of 25 columns. Then 25 rows were used to 
construct 25 equations (shown shortly) in 25 
unknowns. Each equation, constructed based on 
the current azimuth (n), is used to predict the 
deflection at the next azimuth (n+1) . This 
gives the time marching portion of the 
solution. This is a relatively simple matrix 
algebra game. 

The 25 equations in 25 radial points are 
created using finite difference approximations 
for all derivatives of the deflection. The 
approximations must be tagged with a space 
counter (i) and an azimuth counter (n). I have 
made the space counter a subscript and the 
azimuth counter a superscript. On this basis, any 
one of the 25 equations is found from: 



(4) ( K 4 ) z - - ( K 7 ) z -
+ (K6 +K1)zr1-(K5)z-4(K4)zr+

+
2

1 = RHS 
where the right-hand side (RHS) is 
(5) RHS = ∆" -(K4)zr+2+(K5)zr+1+(K6-K2)zf 
+(K7)zr_1-(K4)z^-K3zr1. 
The coefficients (Ki through K§) are obtained 
from the input data, the radial station (x¡), and 
azimuth (\|/n) with which Eq. (4) is identified. 
Thus, 

K = 1 , [|(x + usiny)|n 

1 (‰¥)2 \ 2(AV) I 
K, = 7 

1 _ [Kx + LtSiny)]' 
(ƒ )2 j 2(ƒ ) I 

El/mQ2R4 

2(ƒı)4 



„ „El/tr.n2R4 f 1-ı2 1 √ Y/ \/ • \≥√ 

E l / m Q ^ f j - ı ≥ √ 
(¿ı/ 12(ƒı)2|; 

Tjr El/mQ2R4 f 1-ı2 1 √ V, w . .lì" K7=2— Á—+i 5-+^—„ ı+—(ucoswllx+usinw) ^ (ƒı)4 [4(ƒı)2 4(Ax)L ·^ ƒ * *'][ 

Note that actually only K2 and K4 are constants; 
Ki, K3, K4, K5,  ·, and K7 all depend on the 
radial station counter (i) and azimuth counter 
(n) under calculation. The forcing function ( F" ) 
required by Eq. (5) is calculated as 
(7) jf 
= ̂ {(x+H-sinv)2 ( 0 +ı , -BIC siny-A1C cos\|/)+(x+usiny)Xhp}" • 
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The solution of 25 equations in 25 unknowns (i.e.t x¡_2 through ’ˆ˘+„) was 
accomplished in Excele by creating ‡   matrix. A sample of this matrix in Excel« form is 

shown in Table H-l . The calculations at 
azimuth counter (n) are used to calculate the 
radial deflection at azimuth counter (n+1). In 
matrix algebra shorthand notation, the 
operation is written as 

(8) z ^ s f K " J 1 ( r a s c -

hi Excele this operation is performed by 

creating (from the Insert menu) the function 

named 
MMULT(MINVERSE(C60:AA84),AC60:AC84). 
The MINVERSE function inverts the Kn 

matrix to give [ "]"1, and the MMULT function 
does the multiplication that Eq. (8) requires. As 
I set the problem up, the   matrix occupied the 
cells from column C, row 60, to column AA, 



row 84. The RHS occupied the cells in column 
AC, row 60 to row 84. I put the results for 
deflection at azimuth n+1 in cells occupying 
column AF, row 60 to row 84. 

The solution of Eq. (4) at the 25 radial 
stations required a Macro to advance azimuth in 
steps of A\|/ = 2 degrees starting at \|/ - 0. 
The initial deflection was set to zero (i.e., a 
straight line from root to tip) . The slope, 
curvature, and azimuth derivatives were all zero. 
The analysis then proceeds to march around the 
azimuth solving 25 equations in 25 unknowns 
at each azimuth using trailing azimuth data to 
calculate deflection at the new azimuth. Both 
deflection at azimuth counters (n-1) and (n) 
are saved, but progressively overwritten in 
preparation for the next time step. The blade 
motion converges quite rapidly because of the 
damping, and I found that the fourth 
revolution repeated results from the third 
revolution within engineering accuracy. 



Given the deflection at every blade 
radial station and any given azimuth, the 
following important derivatives were calculated 
as 

z = z n 

¿(ı. ) Ai 

gz(x,¥) = ‰„; = z i + 1 - z M 

›ı ›ı 2 ( ¿ ı ) 

_ ^«.v) _ d2z" _ zi\l _ 2 z " + Z"-1 
›ı2 " › ^ " - (ƒı)2 

›ı3 ›ı3 2(ƒı)3 

g V v ) _ › _ z^2 -4z°+1 -t-6z," -4z1!, + z ^ 2 

›ı4 ›ı4 (ƒı)4 



6 The whole problem can, of course, be solved using a 
FORTRAN code or any one of a number of mathematical 
software applications on the market. 
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Table H-l. The   Matrix 

Note: The sum K6 + KI forms the diagonal of 
this matrix. Even though K4 and -K7 and -K5 and K4 
are placed in adjoining cells on the same row, all 

coefficients are calculate using the same radial 



station (i.e., x¡) as the  · + Kl sum. 

i — ' 

x 
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Sample Case 1. Analysis Versus CH-34 Wind 
Tunnel Test 

Mark and I had a check case for the 
analysis he created. The check case was for a 
Sikorsky CH-34 rotor. This rotor was tested in 
the NASA Ames 40- by 80-foot wind tunnel in 
September 1964 . The primary data became 
available when Jack Rabbott (et al.) published 
A 
Presentation of Measured and Calculated Full-Scale Rotor Blade Aerodynamic and 
Structural Loads in July 1966 as USAAVLBS TR 66-3l.7 The 56-foot-diameter rotor had one 

>3 
m 
2 
a 



of its 4 blades heavily instrumented (for the 
time) . This blade had strain gages for loads 
and pressure taps for airfoil data. The full-span 
trailing-edge tab on the instrumented blade 
had zero deflection for spanwise stations r/R = 
0.25, 0.40, 0.55, 0.75, and 0.95; the trim tab 
was 
deflected upward 4 degrees over stations r/R = 0.85 and 090, Two-dimensional airfoil data 
was available.8 The flapping and lagging hinges were coincident and offset from the center of 

rotation by one foot. The check case had the 
input provided here in Table H-2, and note that 
the flapping hinge offset was zero. 

Table H-2. Input for Sample Case 1 (V = 110 
kts, aS = -5 deg, thrust = 8,250 lbs) 



Configuration and Test 
Parameters 

Radius 
Chord 
Root cutout 
Blades 
Tip speed 
Blade flap inertia 
Flap hinge onset 
Density 
Hub plane angle of attack 
Foiward speed 
Blade running weight 
Blade flap stiffness 
Collective pitch 
Twist 
Longitudinal cyclic 
Lateral cyclic 

Calculated Input 
Farameters 

Advance ratio 
Inflow ratio 
Lock number (x = 0 to 0.20) 
Lock number (x = 0.2 io 1.0) 
EtømfctfR4 

Symbol 
R 
Ò 
Xe 

b 

Vr 
≤̧  
„‚ 
D 

«bn 

V 

» b 

EI, 

e, 
, 

Bic 
A,r 

Symbol 

Pbn 

^≤≤œ 

Yr 

” 
none 

Value 
28.0 

1.366666 
0.20 

4 
650 

1,360 
0.0 

0.002378 
-5.0 
110 

0.50 
15,000,000.0 

14,0(11/180) 
-8.0{it/180) 
6.0(lt/180) 
2.4(Í/180) 

Value 
0.2847431 

-0.03153197 
0.0 

8.417 
0.001687682 

Units 

ft 
ft 

nd 
nd 

ft/sec 
slug-ft2 

ft 
slug/ft3 

deg (nose down) 
knots 
M D . 

lb-io.2 

radians 

radians 
radians 
radians 

Units 
nd 
nd 
nd 
nd 
nd 

7 
The rotor was first tested in flight; data from that 

experiment was published by James Scheiman and titled 
Tabulation of Helicopter Rotor-Blade Differential 
Pressures, Stresses, and Motions as Measured in Flight, 
as NASA/TM-X-952 in March 1964. 
8 Anon.: Two-Dimensional Wind-Tunnel Tests of an 
H-34 Main Rotor Airfoil Section. TREC Tech. Rep. 
60-53 (Contract DA 44-177-TC-657), U.S. Army 



Transportation Research Command (Fort Eustis, Va.), 
Sept. 1960. 
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Table H-3. Fourier Flapwise Stress 
Coefficients 

(V = 110 kts, os — 5 deg, T = 8,250 lbs) 

N 

0 

1 

2 

3 

4 

S 

· 

7 

8 

9 

IO 

I - 0 J 7 S 

Cosine 

-243 

- S I I 

124 

-140 

- 3 9 

67 

-11 

29 

30 

4 

- 7 

Sine 

942 

-571 

-204 

-72 

-38 

-25 

-6 

1') 

30 

1 

1 - 0 . 4 5 

Cosine 

-395 

-80') 

191 

-133 

-12 

60 

15 

- 9 

28 

-16 

- 2 2 

Sine 

1060 

-565 

-259 

-51 

-55 

2 

2 

7 

28 

3 

x - 0.65 

Cosine 

-881 

-1105 

586 

94 

171 

-14 

30 

-51 

-21 

0 

17 

Sine 

1297 

-459 

^ 7 4 

-1 

37 

66 

17 

-24 

-27 

- 4 

’ - 0 À 0 

Cosine 

-1555 

-470 

590 

181 

325 

-68 

-71 

13 

-13 

27 

0 

Sine 

701 

-266 

-515 

-27 

119 

23 

4 

11 

26 

3 

The test data used in the comparison 
between the finite difference analysis and test 



came from reconstituted flapwise stress 
waveforms from Fourier coefficients provided 
by Rabbott as Table XXVIIIa on page 126 
ofUSAAVLBS TR 66-3 1 .This table of 
experimental data reduced to Fourier coefficients 
is shown here as Table H-3. 

The finite difference solution provided 
the nondimensional curvature derivative 
(3 2 z x / › ı 2 ) . This derivative was converted to 
CH-34 flapwise bending stress in pounds per 

square inch according to 
(10) 

Flap M 
Flap Stress^ = -

’À— 

t/2 

Hap 

1 /2 
c

i EI Flap ›22 

Ÿpiap V R ›ı2 

tE 
2R 

(ïi d2z x,i4< 

›ı2 

(I.95in)(l0xl06 lb-ft2) 

2(336) 

(•& ⁄-1 
›ı2 

X,l(l 



in order to show the waveform comparisons in 
Figs. H-l through H-4. 

The comparisons, a "correlation" if 
you prefer, is what I imagine could have 
been produced in the autogyro era. In fact, the 
actual waveforms probably would have been 
of 
secondary interest to Cierva. What he wanted was some confidence that the 
magnitude' of the flapwise bending stress was approximately correct This 

vibratory 
vibratory 
magnitude comparison, shown in Fig. H-5, 
indicates that this simple finite difference 
analysis with a simple airload overpredicts the 
actual measured flapwise stresses by a safe 
margin. It is worth noting that a jump in airloads 
due to the absence of an airfoil (i.e., a root 
cutout) causes a distortion in the radial flapwise 
vibratory stress distribution. 



9 The vibratory magnitude is frequently referred to as (1) 
peak-to-peak divided by two, or (2) one-half peak-to-
peak. In either case, the steady stress is often of little 
interest. 
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Fig* H-l. Prediction of flapwise 
stress at x = 0375 R versus CH-34 test 
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Fig. H-5. Vibratory flapwise stress 
prediction by finite difference using simple 
airloads 

appears conservative in this 
comparison (CH-34 at V = 110 kts, as = -5 
deg, and 

T = 8,250 lbs). 



Sample Case 2. Finite Difference Analysis 
Versus Exact Result 

The comparison shown in Figs . H- 1 
through H-4 points out a significant difference 
in phase angle as well as waveform shape. 
The differences are, based on knowledge 
today, caused by an inaccurate airload. In short, 
Eq. (7) is quite inadequate . These differences 
will be discussed further in Volume II, 
Helicopters. 

The question can be asked, of course, 
if the waveform differences between test and 
analysis might not be caused by the finite 
difference solution being inaccurate. 
Fortunately, 
there was an exact solution to Eq. (2) available with which to lest the accuracy of the finite 
difference method.111 This test case was constructed in an inverse manner, in a problem that 

requires solving for acceleration given mass 
and force (i.e., a = F/m), it is sometimes more 
informative to specify the acceleiation desiied and solve for the force and mass required to 
produce the desired acceleration." 



10 Franklin D. Harris, The Rotor Blade Flap Bending 
Problem—An Analytical Test Case, J. of the American 
Helicopter Society, vol. 37, no. 4, pp. 64-67, Oct. 1992. 
11 A.R.S. Bramwell provides a very good example of 
specifying a helicopter hovering maneuver that is desired 
and then solving backward for the control motion that 
the pilot must provide. He is discussing the influence of 
hinge offset on roll control. See Helicopter Dynamics, 
John Wiley & Sons, New York, 1976, p. 243. 
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The application of this inverse thinking in this 
appendix goes like this: 

From Eqs . (2), (3), and (7), the spring and 
damper terms in the elemental lift can be moved 
to the structural side of the equation. This 
exposes the basic forcing function (F) . The 



result of this rearrangement is 

(») 

_ EI a4z(ti¥) ( 1 - ı 2 ) › \ , Û ) 3z 92z(Xi¥) 

m£î2R4 ›ı4 2 ›ı2 ›ı ›Û 2 

| ( ı + ) 1 È . ) ^ ≥ + 
i l c o s y ( x + Llsin\|/)—^^f 

Damping Tenn 
I. 

Spring Term 

Now constants of EI/mi22R4 = 1/600, y = 8„ and p = 2/7 can be selected and a specified 

deflection can be defined such as 

„ , ,„ u | l 8 io 16 n 8 12, Z (cos(O-w))- x — x — x — x 
20 90 110 132 I 

t-sinO-y)-
1 4 i 8 6 4 j 

i X X + X X 
16 60 W 126 

. ,Î , 1 1 S 1 6 1 7 
r sin( 2-lir)-1 XH X X H X 

300 40 30 34 

-SÍH(3\(f>- I I t 7 J 7 in 
1680 ' 32 144 360 

(cos(l-vO). ' x 9 x ! - — x6 + 
.80 160 240 

(cos(2w))- ' x ' x' ' x' 
570 30 20 

/ ., ... 1 1 10 1 IL 
6640 108 66 

9 7 
X i ... 

336 

360 

792 

-sin(4w)0i (cos(4w))- í—-ı- — x 1 1 - — - x 1 2 - - 7 x13 

9900 330 198 468 



Then derivatives can be taken and the force (F) 
required by Eq. (11) is obtained by careful use of 
algebra (which I did using MathCad symbolic 
software) . This is the essence of the AHS 
Journal paper referenced in footnote 1 0 of this 
appendix. 

The resulting expression from the 
preceding arithmetic created a forcing function 
(F) that I used in place of the CH-34 example, 
Eq. (7), and then the finite difference analysis 
was rerun. The resulting comparisons to exact 
values (of the finite difference predictions of 
root slope, tip slope, tip deflection, and 
curvature at the 0.65R radial station) are 
shown in Figs. H-6, H-7, and H-8 . Note that 
finite difference results are shown as symbols 
at 2-degree azimuth increments while the exact 
results are shown as a continuous line. It is 
more than an aside to say that the blade flapping 
angle (Fig. H-6), which is generally measured 



at the root, is not representative of actual 
blade motion outboard of the root and 
certainly not representative of tip motion. 

These comparative results confirm that 
the structural response to an airload can be 
accurately predicted even with a quite simple 
structural analysis that solves the fourth order, 
partial differential equation. The problem the 
pioneers faced was that predicted airloads— 
available during and well beyond the autogyro 
era—were totally incorrect. This situation was 
not—in my opinion—corrected until the 21st 
century began as you will learn in Volume II, 
Helicopters. 
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Fig* H-6. Accurate blade slopes can be predicted given accurate airloads. 
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Fig. 11-7. Accurate blade-tip deflection can be predicted given accurate airloads. 
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Fig. H-8. Accurate blade loads can be 
predicted given accurate airloads. 
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INDUCED VELOCITY IN 



PARTIAL-POWER DESCENT 

During and well beyond the autogyro 
era, the rotorcraft industry used the Glauert 
assumption to calculate the uniform induced 
velocity (v or v; or voiailert) created by the wake 
of a lifting rotor. This hypothesis took the form 
of a quartic equation as shown in Eqs. (2.258) 
through (2.260), which resulted in 
(2.261) 
' v * 
4Vh> 

-sina. tpp 
Kyoj 

—ii 
Í ,y 

-1 = 0. 
^hj 

Figure 1-1 repeats the graphical form that results 
from solving the Glauert equation. 

There was little the industry could 
do to theoretically challenge the Glauert 
assumption until the digital computer came along. Experimentally, however, Walter Castles 
and Robin Gray obtained data leading to empirical results for vertical descent. This 

comparison was shown in Fig. 2-101, which 



indicated a significant difference between test 
results and the Glauert theory. 

dauert 's Annuitili 
À 

i : h ì . - \ 
Œ „ ‰ ‡ - ^ Œ P √+ i 

JT2pÃ 
+so 

*7S 

+70 

> 

i <M 

+45 

+30 

£] i » ]v 

-3D 
-VU 

:•. 
π :> 

U ' ' * * * 1 ' 
0,t ŒÀ i." l,S ZA î.i «À 

V/Vh 

Fig. 1-1. The Glauert 
assumption for rotor-induced velocity. 
1 Walter Castles and Robin Gray, Empirical Relation Between Induced Velocity, 

Thrust, and Rate of Descent of a Helicopter Rotor as 

Determined by Wind-Tunnel Tests of Four Model Rotors, 



NACA TN No. 2474, Oct. 1951. 
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Over the years, two things have bothered 
me about Fig. I-l. The first bothersome thing is 
that I never really stopped to solve the quartic 
equation for the useful root. The second 
bothersome thing is that no testing comparable 
to the vertical descent experiment by Castles 
and Gray has been published for partial-power descents at tip-path plane angles of attack 
between 0 and 90 degrees. This appendix—to some extent—removes these two bothersome 

things. 

Solution of the Glauert Quartic 

The ratio of induced velocity (v) to 
ideal hover-induced velocity ( ¸) depends on 
the ratio of the flight path velocity (Vpp) to 
ideal hover-induced velocity, and the tip-path 



plane angle of attack (a^p in radians). Suppose, 
for shorthand purposes, that 

_ v - Vra 

V = — , V: - —^- and vh = 
¸ 

2(ˇfl 2) 

then Eq. (2.261) becomes v4-(2sinoc^Vjv3 

+ ( V 2 ) v 2 - l = 0, and the applicable root is 

computed as follows: 
G = V8 cos2 octan -V4 -18V4 cos2 aten +27V4 cos4 OL, tpp tpp tpp 

+ 16 

F = V3 
'V4 -18 + 54 cos2 a tpp 

1,728 
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B = 3/F-H 

c_V2(3cQS
2a l p p - l ) 

12 

D = J 2^(A+B)2+C(A + B) + C2-3AB -(A + B+2C) 

v - D + y s i n a ^ - ^ A + B j - C 

Note that when the tip-path plane angle of 
attack equals exactly 90 degrees, the induced 
velocity ratio is calculated more directly with 
the equations shown in Fig. I-l . A straight, 
vertical line connects the two solution branches 
at Vpp/vh = 2.0. 

2 That is not to say an effort has not been made. See for 
example: 

a. Washizu, K. et al., Experiments on a Model 
Helicopter Rotor Operating in the Vortex Ring State, J. 
of 



Aircraft, vol. 3, no. 3, May-June 1966, pp. 225-230. 
b. Washizu, K. et al., Experimental Study on the 

Unsteady Aerodynamics of a Tandem Rotor Operating in 
the 

Vortex Ring State, Proceedings of the 22nd Annual 
National Foram, American Helicopter Society, May 

1966, pp. 215-220. 
Ò McLemore, H. — and Canon, M. D., Aerodynamic 

Investigation of a Four-Bladed Propeller Operating 
Through an Angle-of-Attack Range From 0° to 18(f, 

NACA TN No. 3228,1954. 
d. Sheridan, P. F. et al., Math Modeling for Helicopter 

Simulation of Low Speed, Low Altitude, and Steeply 
Descending Flight, NASA CR 166385, July 1982. 
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Application of the Glauert Assumption in 
Partial-Power-Descent Angles 

Castles and Gray reported their 
experimental results in NACA TN 2474. These 



tests dealt solely with vertical descent. The 
experimental data was provided in both 
tabulated and graphical forms. One of the rotor 
sets tested was a 6-foot-diameter rotor with 
constant chord, untwisted blades . Two graphs 
for this model are reproduced here as Figs. 1-2 
and 1-3 . From these data, Castles and Gray 
solved the simple thrust equation 

2C 11 V v ì i 
ca 2^V t V j 3 

backwards for induced velocity (v) using the 
experimental data for blade loading (Cj/a), 
collective pitch at the %-radius station ( 0.751Œ 
in radians, vertical descent velocity ( ) in 
feet per second, and tip speed (Vt) in feet per 
second. In solving backwards for the induced 
velocity, they calculated (for the NACA 0015 
airfoil per Table VTII of their report) that the 
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Figure 4.- Blade angles for 6-foot-diameter rotor with 
untwisted blades. 

constant-chord* 

Fig. 1-2. Experimental data establishing the 
vortex ring and windmill brake states 

for a rotor operating in vertical descent. 
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airfoil lift-curve slope (dCi/da = a) was a = 5.95 per radian for testing conducted at 1,200 Ù Ú 
(RNo.75R = 256,000, Vt = 377 ft/sec2) and a = 6.07 per radian for the rotor speed of 1,600 rpm 
(RNO7SR = 341,000, Vt = 502 ft/sec2).3 Castles and Gray determined that torsional moments 
would twist the blade so that root collective-pitch measurements would not be representative 

of blade angle at the %-radius station. The 
correction they applied for the 6-foot-diameter 
rotor with constant chord, untwisted blades were 
00.75R = 0.820 (8r o o t ) at 1,600 rpm 
e0.75R = 0.890 (Oroot ) at 1,200 rpm. 
From the experimental data they obtained and 



the engineering calculations (i.e., a and OO.75R) 
they made, they obtained comparative results 
to the assumption made by Glauert. This 
comparison is shown in Fig. 2-101 of this 
volume. 
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Figure 8.- Variation of torque 

.12 

V/Í1R 
coefficient for ·-foot-diameter rotor 

with constant-chord, untwisted blades. 

Fig. 1-3. Behavior of rotor power in vertical 

descent. 
3 These lift-curve slopes correspond to the incompressible slope (a =5.73 per radian) corrected for Mach number 
at the W-radius station using Prandtl-Glaucrt theory ^‡-573/ ≤-Ã J. 
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There is a very important observation 
made by Castles and Gray in the middle of page 
10 of their NACA TN 2474 report. They wrote: 

At the larger rates of power-on descent the 



thrust and torque fluctuated in an irregular 
manner. An attempt was made in each such 
case to read the average values. [My italics] 

This is the key characteristic of what is known 
today as the vortex ring state. It is, therefore, to 
be expected that mean values of thrust and 
torque may be found that somewhat follow the 
theory Glauert assumed. However, the 
magnitude of force and moment fluctuations 
about the mean values are of much more 
practical importance to the control and 
stability of all rotorcraft in partial-power 
descent. 

Given this background, the question I 
raise is this, "What are the mean and fluctuating 
values of forces and moments for an isolated 
rotor at descent angles less than vertical?" 
Suppose, for example, the Castles and Gray 
6-foot-diameter rotor with constant chord, 
untwisted blades had been tested at other 



tip-path plane angles of attack, such as 0, 30, 45, 
and 60 degrees. In my opinion, a real gap in 
rotorcraft technology results from a very 
controlled 
experiment thai has not been carefully documented in the six decades since Castles and Gray 
published NACA TN 2474." 

This appendix can, however, take a 
small step towards answering the preceding 
question. A prediction of mean thrust and 
torque at several partial-power-descent angles 
of attack is made using the Glauert theory and 
following the Castles and Gray test procedure. 
This prediction, using the Glauert assumption 
according to Eq. (2.261) with an empirical 
correction, and the geometry provided in Table 
I-l, is shown in Figs. 1-4 and 1-5. 

Table I-l. Model Rotor 
Configuration for Partial-Power-Descent 
Study 



Parameter 

Blade number 

Radius 
Chord 

Solidity 

Twist 

Root cutout 
Flapping hinge offset 

Lagging hinge offscl 

Stiffnesses 
Lock number 

Aifoil lift-curve slope 

Airfoil minimum dran coefficient 

Airfoil drag rise with (a[1( ) : 

Tip speed 

Density 

Symbol 

b 

R 
Ò 

ff 
ft 
Xc 

Í * 

& 
EI.OJ 

T 
‡ 

\ 
8, 

Value 

3 

36.0 
1.884955592 

0.05 

0.00 

0.135 
0.0 

0.0 

Rigid 

Infinite 
6.05 

0.013 

1.25 

50Í.654Í246 
0.0023769 

Unit 
nd 

inches 
inches 

nd 
degrees 

ofR 
ofR 
ofR 
Ô‡ 
nd 

per radian 

nd 

per radien2 

fps 
slug/fl' 

Comments 

Constant 

Untwisted 

Blade straight out 

Blade straight out 

No elastic dellections 
No conine 

No stall. Mach no. corrected 

Author's guess 

No stall 

Sea level standard 

4 It can be argued, of course, that so many experimental 
and production helicopters have flown throughout this 
region with only minor troubles (other than mapping 
out the "dead man's" regions and understanding power 
settling or settling with power) that there is no reason to 
bother with further study. 
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The predictions assume a propeller-type 



model rotor hub with three, very stiff blades. A 
control system provides collective pitch, as well 
as lateral and longitudinal cyclic pitch, so that 
mean rotor hub moments can be brought to zero 
at each test point. 

A prediction of collective pitch at the 

%-radius station for a mean —Ú/Ó- = 0.08 thrust 

coefficient (CT =T/pAVt

2 ) is given in Fig. 1-4. 

This prediction was made using Eqs. (2.47) and 

(2.49) to solve for collective pitch at the 

%-radius station and several flight path 

velocities (Vpp) holding descent angle of attack 

(ahp) constant. That is, from Eq. (2.49) you have 

(2) 

2 C T _ 1 . If. 3 œ . 1 _, 

^ 2 ^ + Á { 1 + 2 ^  ~ 2 ^ ¬ ≥ Ò 

and, from Eq. (2.47) with zero longitudinal 



flapping (ais)—so hub pitching moment is 
zero— you have 

(3) ‚1 —= Á ^ . 
1+2^ 

Then substituting (Bic) from Eq. (3) into Eq. (2) yields 

,4) ^ ≥ ^ ” ^ Õ ≤ ‹ ^ Ã 
I ' H-hji T . Klip J 

Notice in this result that the inflow ratio (X\l?) now contains ‡Î empirical factor ( Œ times the 

Glauert induced velocity. I have used this factor 
to make the 3/4-radius-station collective-pitch 
angle agree with the Castles and Gray value 
at hover where VFP/Ví = 0. This factor then 
remains constant for all descent points. 

A prediction of the rotor torque (i.e., power) coefficient (C0 = Q/pAVt
:R) less the 

profile torque coefficient ‡·ƒ≤+÷^≤/« is shown in Fig. 1-5. This prediction was made 

following Eq. (2.48) as 



A C Q = C Q - ^ ( l + < ) 

(5) 

= oS, 
1 5 2 

,p ≤^Ô+ ≥Û + ^" 
41 

ÿ |4p90.75R +1 T + TT^hp lö0.75R 

aa 2 1 

which assumes there can be no rolling moment 
if lateral flapping (aie) is zero. Furthermore, if 
coning (ßo) is zero, no lateral cyclic (Aie) is 
required according to Eq. (2.46). Both of these 
assumptions only apply if the induced velocity is 
uniform over the rotor disc. 
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Cito = Ó. I B 

Kj = 1,05 

u - 6J>S ̃ -

—Ó ceti v? 

Fig. 1-4. Prediction of blade angle to maintain constant thrust for descent angles 

other than vertical. 



Fig. 1-5. Prediction of ACQ to maintain 
constant thrust for descent angles 

other than vertical. 

435 

APPENDIX I 

Closing Remarks 



In looking closely at the preceding 
figures, it is important to note that the vortex 
ring state extends from near-zero rates of 
descent up to the point where an abrupt 
change in the data trends occur. This change 
varies with the rotor blade loading 
coefficient (Cr/a) as Figs. 1-2 and 1-3 show for 
vertical descent. What is not so clear is where 
the vortex ring region is for tip-path-plane angle 
of attacks less than 90 degrees. Furthermore, it 
is by no means clear what definition(s) might be 
used for the vortex ring state. 

The one report that provides at least 
some thrust data (but only in graphical form 
and with no corresponding power data) at 
several descent angles came when Paul 
Yaggy and Ken Mort published Wind Tunnel 
Tests of Two VTOL Propellers in Descent as 
NASA/TN-D- 1766 in 1963. I suggest that, as a 
minimum, the advanced theories today be 



compared to this 1960s-era data. 

Finally, keep in mind that autogyros 
never flew (or fly today) in the vortex ring 
region. By definition, the autogyro rotor is 
always operating at a zero-torque coefficient, 
which is autorotation. This requires the rotor to 
operate beyond a Vpp/vh of 2.0 following the 
Glauert theory. This region is commonly 
called the windmill brake state. Fig. 1-5 
shows that— ignoring the minimum torque 
coefficient—the flight path velocity ratioed to 
tip speed of at least 0.08 in vertical descent is 
required to obtain ACQ = 0. Accounting for a 
minimum torque coefficient for this model 
rotor of approximately 0.0001 means that 
autorotative vertical descent would occur at 
VFP/Vt = 0.09, and VFP/Vt could reach 0.14 
for a descent angle of 30 degrees—if the 
Glauert assumption were correct. 
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MINIMUM PROFILE POWER, 
H-FORCE, TORQUE, Y-FORCE, 

AND THRUST 

The airfoil at any given blade element of 
a rotor blade has a minimum drag coefficient 
(Cdo) • At the very least, this airfoil drag 
coefficient must equate to a skin friction 
drag. However, there is also some form drag 
(i.e., pressure drag). This blade element drag 
is classically resolved in a specified direction, 
summed over the rotor blade span, and then 
averaged over a blade revolution to give a force 
at the hub. Based on this integration using a 
value of Cdo that is constant over the whole 
rotor disc, minimum values of profile power 
coefficient (Cp0), H-force coefficient (—ÌÓ), 
Y-force coefficient (Cy0), torque coefficient 



(CQO), and thrust coefficient (Cj0) can be 
defined and calculated. The fundamental 
relationship that connects four of these 
coefficients is 
(1) P0=ÛQ0+(Vcos|a|)H0+(Vsm|a|)T0. 
To avoid any confusion about the sign 
convention of angle of attack (a) in this 
appendix, I have used the absolute value of angle 
of attack as you will notice in Eq. (1). 

In rotor coefficient notation [i.e., divide Eq. (1) 
through by p AVt

3 ] you have 

(2) CP=CQo+pCHo+ÀCTo 

where advance ratio (p.) is defined as V 
cos|a|/V, , and inflow ratio (X) is taken as 
Vsin|ct|/Vt . Airspeed (V) is the reference 
forward flight speed, and the rotor tip speed 
is (V, = QR). The angle of attack (a) is 



frequently referenced to the rotor shaft, which is 
perhaps more correctly the angle between the 
plane perpendicular to the shaft and the 
airspeed. Thus, when angle of attack is zero, the 
rotor is in edgewise flight. When lal = 90 
degrees, the rotor is in axial flight and is 
generally called a propeller. 

The following paragraphs summarize the 
classical theory for the five coefficients. 

Profile Power 

As you know, Cierva and then Glauert 
(R&M 1111) were the first to state that (in my 
notation) 
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√ - g C d o P 

(3) where 

1 f 2 î t f l √ 2 2 I 3 ' 2 

V ) = ^ J 0 J 0

4 [ ( x + I x s i n v ) +(HCOS\|/) +X 2 J dxd\|/. 

= — f "f 4[x2+2xu.sin\|/H-p2+X2] dxd\|/ 

The assumptions associated with this 
fundamental problem are (1) the blades are 
constant chord, untwisted, and have no root 
cutout, and (2) the blade element drag 
coefficient is constant over the disc. 
I found it convenient to let IJ = ˆ2 + A,2 = 
(V/Vt)2 in all of the equations that follow. 

The integration of Eq. (3) falls in the 
elliptic integral world, but less exact and 
simpler approximations are available. Using the 



software called MathCad, I found that 
integrating with respect to radius first (which is 
exact) and then approximating the azimuthal 
averaging gives 

(4) 

PM=ViTjJ 5 „ . 3. 2 4+7JJ + 4JJ2 

1 + - J J + -U. 
2 8 

-0* +-XY+—ˆ41 in 
2 16 

(1 + JJ)2 16(1 + JJ) 

' ≥ + Î/1 + JJÌ 

V VJJ 

In the special case where X = 0 and p < 0.4, the 
proceeding lengthy expression reduces to (5) 

–

( ( 1 < 0 . 4 À = 0 ) = 1 + 2 ^ + ^ ^ 
5 i Mnl - 35 6 , 9 2 

+ U* = l + -Ll2 

64 2 

which confirms the approximations that both 
Cierva and Glauert obtained. 

When the rotor is in edgewise flight (X -
0) at high advance ratios on the order of p > 1.5 
on up to u. = t», Eq. (4) has the very useful and 



quite adequate approximation that 
(6) ‡=Ó)=«÷ + 4ˆ.3. 

In fact, Eq. (6) is the asymptotic behavior of the 
profile power function P, x = 0 ) . 

The propeller case is defined by a = -
90 degrees (or + 90 degrees) so p = 0 and the 
flow ratio (X) becomes V/Vt because I have 
used the absolute value of angle of attack. For 
the propeller case, Eq. (3) has the exact solution 
of 
(7) 

P^ii^x0Vfn7+W1 + V^ 
(Ë-Ó‰) I 2 J 2 

438 

APPENDIX J 



At high propeller advance ratio on the 
order of X > 1.5 up to X - °o, Eq. (7) has the 
quite adequate approximation for engineering 
purposes of 

(8) \^>h5)=^- + 2X + 4V, 

which has the identical asymptotic behavior of 
the rotor profile power function. That is, both 
Eqs. (6) and (8) behave as 4(V/V,)J in the final 
limit where tip speed goes to zero. 

The reason for this equality is rather 
easy to understand. In the limit where either 
rotor advance ratio or propeller inflow ratio is 
infinite, the shaft rotational speed (Q) is zero. 
In either case the profile power is, from Eq. 
(1), either VH0 or VT0. In either case the 
force (i.e., H0 or T0) is total blade area times 
drag coefficient times dynamic pressure. The 
rotor case represents a stopped rotor. The 
propeller case represents a set of feathered 
blades. 



H-Force 
In the general rotor case, there is an 

H-force acting perpendicular to the shaft and 
in the downwind direction. This force in rotor 
notation is 

„ - CTCd° Ë 
'--ÌÓ - g n(a,x) 

(9) where 

Õ ( Ï À ) = — f ƒ 4[x2+2xu^m\|/ + u2+A,2]sin(\|/+A)dxd\|/ 

= — J ƒ 4[x2 +2xnsin\|/+^2 + X2](sinycosA+cos\rfsinA)dxd\|i 

Now the sine and cosine of the sweep angle (A) 
are simply 
n m . A pcos\|/ 
(10) sinA = 

cosA = 

7x2 +2xpsin\|/+p2 +X2 

x + ps iny 
^ ı 2 + 2xpsin\|/+u,2 +X,2 



sothat 

(») 

H(lU) =—ƒ" J0'4[x2 + 2xusinv+n2 +X2J2 [xsin \|/+|x]dxdvr 

and the approximation to the H-force integral is 
(12) 

4÷ (l + jj)2 \√ 4* ) { À J H(,,4=VÜJJ 

In the special case where X = 0 and p < 0.4, this 
lengthy expression reduces to (13) 

H i 3 
(Ë.<Ó.4ƒ=Ó) - « ÷ + ÷ 

5 + «≤Ô 
foY 

U. 
+ — „ ¿ 

16 
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Another interesting case occurs when X 
= 0 and p approaches infinity. In this case, the 
rotor approaches a stopped rotor in edgewise 
flight. The H-force in this case is the drag of 
nonrotating blades, and at high advance ratios 
on the order of p > 1.5 on up to p = <*>, Eq. 
(12) has the very useful approximation that 

(14) Õ ( ( 1 > 1 , Î = 0 )=1 + 4 2 . 

In fact Eq. (14) is the asymptotic behavior of the 
H-force function, H. 1 = 0 ) . 

This minimum H-force component of 
rotor drag can be expressed in the form of drag 
(D) divided by dynamic pressure (q). Since 

(15) D = H 0 = P ( 7 ü R 2 ) V 2 ^ H M 5 ) X = 0 ) 

it follows that the equivalent parasite drag (fe = 
D/q)is 



(16, ˜ " 

D_H0_p(«R')V,YbcR')CJ 

ìpv2 U R J J « I " > ' U "° ) 

Keep ín mind that some sort of propulsive device must be used to drag the edgewise rotor 

through the air. This 100-percent-efficient 
device requires power equal to VD. In the special 
case where p = 0, which is the propeller case, 
the exact solution of Eq. (11) is (17) "-(^=Ó x) 
= 0. 

Y-Force 
In the general rotor case, there is a 

Y-force acting perpendicular to the shaft and 
perpendicular to the free-stream velocity. This 
Y-force is positive towards the right wing tip 
when the rotor rotation is counterclockwise as 
viewed from above. This force in rotor notation 
is 

aC„ P — '"""'do V 



(18) where 
”(ÌÀ) = — i "j 4[x2+2xusin\|f + u2+?l2]cos(x|f+A)dxdi|' 

= —f f 4[x2+2xij.siin|/+|i2+A,:!][cosvr'cosA-sin\(/sinA]dxd\|/ 

Substituting the sine and cosine of the sweep 
angle (À) relationships from Eq. (10) yields 
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(19) 
Y(M) " ^ C í o 4 [ x 2 +2xHsin\)/+|x2 + ?i,2]1/2 [xcos\|/]dxdv 
from which it follows that for all advance ratios 
and all inflow ratios, (20) Y, . j = 0 . 

Torque 
In the general rotor case, a torque must 



be applied to the shaft to maintain rotor speed. 
This torque might be obtained from an 
engine if the rotor is not in autorotation (or 
the propeller is not windmilling). The required 
torque in rotor notation is 

(21) 

Ò =^”Ó 

1 r2» where Q ( M ) = — f f 4 [ X 2 + 2 X U , S ü H | í + | 1 2 + X 2 ] (x+|lsiin|()xdxd4/ 
2Î J» 

and the approximation to this torque integral is 

(22) 

(ÃÀ) 

, 1 Ú Ú 1 2 4 + J J - 4 J J 2 3 ˆ4 

1 + - J J + - U — + -
2 8^ (1 + JJ)2 16(1 + JJ) 

fl + Vl + Jj"1 

- 44¿A,V+¿| i 4 | ln I 
2 

In the special case where X = 0 and p < 0.4, this 
lengthy expression reduces to (23) 



0 ^ < 0 . 4 ¿ = 0 ) = 1 + 2 ^ 2 - ^ ^ 4 £((1<0.4ƒ=0) 5 + 31Ô +—pD 

64 ^ 

In the special helicopter rotor case where 
X = 0 and advance ratio approaches infinity (24) 

Q(U>,.5,X=0)->2H-

Note that CQ 0 goes to infinity as advance 

ratio approaches infinity, but, in fact, the 

actual torque goes to zero for the stopped rotor or 

propeller. You can see this by writing (25) 

w , 
~4~ 

Q0=p{itR2)V^^^ Q{tl>..5^o)=P(bcR)RCd 

This last result applies equally well to a 

feathered propeller because, as the tip speed 

goes to zero, the torque goes to zero. 

In the special case where p = 0, which is 

the propeller, the exact solution to Eq. (21) is 
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(26) 

) 
1+%/1+JL 1 1 ◊ ,^Î ,=Ú(2+^)Î/ ≥+fl 2 --√≥Ô 

At high propeller advance ratio on the order of X > 1.5 on up to X = °=, Eq. (26) has 

the very useful and quite adequate 

approximation of 

(27) Q( M = L u>, .5)=-^+3^ 

Thrust 
In the general rotor case, when there 

is an inflow (i.e., X is not zero), there is a 
component of minimum blade element drag 
in the shaft axial direction. This force is a 



negative thrust (a drag if you prefer) and is 
given by 

(28) C T 0 = ^ T ( M where 

.1/2 

V) = ^r ío l 4 [ x 2 + 2 x ^ s i n v + ^ + À 2 r d x d v 

and the approximation to the thrust integral is 
(29) 

I+VT+JT T( i a )=WiTjJ 2 + -÷ 
2 (l + Jjy 

+^'V)b(i±f-

Obviously, if inflow is zero then —ÚÓ is zero. 
But, in the special case when p — 0, which 
corresponds to a propeller, then the exact 
solution to Eq. (28) is 
(30) 



“(‰=ÓÎ) = 2ÎÎ/≥ + Î.2 + 2’⁄ In 
f 1+4Ï+X2 

v 

At high propeller advance ratio on the 
order of X > 1.5 up to X = «>, Eq. (7) has the 
approximation that 

(31) (ˆ=0ƒ>1.5) 
2 
3 

1 
10^2 

- + 4À.2 

It is of interest to see how the drag of the 
feathered propeller is approached as the shaft 
rotational speed approaches zero. In this 
progression towards the limit, the equivalent 
parasite drag (fe) form is 

(32) 
T„ p(«R2)v,YbcRlQ 

LpV2 t.JiR2 (ˆ=—„ƒ-»«>) KbcR)c,.(i+JL-JL) 
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Equivalent Drag in Edgewise Flight 

It can be very helpful to express the 
minimum profile power from Eq. (3) as an 
equivalent parasite drag area (i.e., D/q) 
parameter. That is 

m i Q/q - Po/qv - i p 
C J J ) (bcR)Cd0 ( b c R ) C d o " 4 p 3 ^ = 0 ) ' 

This form shows that in the limit of infinite 
advance ratio when the rotor is stopped, the 
minimum drag area parameter is 

(34) r - ^ - = 1 . 
(bcR)Cd0 



The variation of this equivalent drag area 
parameter with advance ratio is illustrated 
with Fig. J-1 and, in an enlarged view, with Fig. 
J-2. 

P./4V 

Advance Ratio 
Fig. J-1. Equivalent drag decreases with 
advance ratio. The limit is the drag of 

stopped blades. 
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p..qv 1.6 

Mc, 

Advance Ratio 
Fig. J-2. There is relatively clear indication of 
diminishing return to high advance ratio. 



A Proof 
The preceding results are connected by 

the fundamental, total energy per unit time 
equation, which is 
(35) Po=QQo+(Vcos|a|)H0 + (Vsin|a|)T0, 
and in rotor coefficient notation (i.e., after 
dividing through by pAVt

3 ) you have (36) CPo 

=cQo+pcHo +xcTo-
A simple "proof of the above relationship can 
be seen by using the approximation equations 
for the edgewise flying rotor, Eqs. (23) and 
(13), which are the series expansions from the 
preceding paragraphs. Thus, when X = 0 and p < 
0.4, 
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C P o = C Q o + u C H n = 

(37) 

°—* í, 3 ! ! «√« ,i f2ï 
= ^ l + - i r li* 5 + «≤œ — 

8 \ 2* ”[ UJ. 

aC, Œ—, 
= —— O + 

g (̂ ƒ.Œ) T

 g 

— ^ ( ˆ ƒ - Œ ) 

+ ^ 1 + ^ " ÎJI+-M.' 
4 

5+«≤Ô 
16 

^{¡”≥-””€ÿ^” 
=£^äs.J l + u - i r 

8 2 16 
5 + «≤Ô 

35 « 

and you can see by inspection that Eq. (5) has 

been reproduced. 

Azimuth Integrals 

For the sake of completeness, the 

azimuthal averaging approximations I used were 

(38) 



I0 = — f2,tVl+2(isinv|/+JJ d\(/ = Vl+JJ--p2 

27TJo 2 
i j 

(39) 11 = — f sin \fA\ + 2p sin y+JJ 
¿tåb 

i 
2(1+ JJ) 

d\|/--p 

(40) 

Î/1 + JJ 

12=—J (sin\)/)27l + 2(isinv + JJ dy = -Vl + JJ 
2Î J

o 

(41) 

1 √ 2 fl . , 3 i ; 3 
13 = — I (siny) ÎÛ1 + 28≤Ô¿|/ + À dy = - p 

— Il Ó 

(42) 

Î/l + JJ. 

14 = — f (sin\|/)4

iyi + 2psin\)/+JJ d\|/ = -Vl + JJ 
2Î J° 



(43) 

L0 = — 
27t 

(44) 

In 
.y/l + 2ˆ sin 

Vu 
\]/ + JJ+l+(lSÌn\ |M 

J+|isin\(r J 
d\|i = ln 

Vl + JJ+√ 

L2 = -
2Î 

,2, (Jl + 2usinvií+JJ+l + Ltsinwl , 1, fi/l+JJ + 1̂  
smw) in -ï --√ - 3- dw =—In = = — 

' { ,/Jj + u.siny J 2 ^ VÏJ J 
(45) 

L4 
1 f , . .4, f 4/l + 2usinw+JJ + l+Lisinwl , 3, fVT+JJ + 1 

= — (sunir) In J r-T - duf = - l n f=— 
2itJo

 v ' y VjJ + usin\|r ) S { Jn 

The use of these approximations leads to 
numerical results that are, at most, 1.1 percent 
in error with the MathCad numerical integrations. 
The greatest error is when p = X = 1.0. 
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AIR MINISTRY MANUALS FOR 
THE ROTA GYROPLANE 

This appendix provides a few key 
publications by the Air Ministry of Great 
Britain applicable to the Royal Air Force fleet 
(RAF) of Cierva C.30 Autogiros. To the RAF, 
the Cierva C.30 was designated as the ROTA 
Gyroplane and was powered by the CIVET I 
reciprocating piston engine. The civil version 
of this engine was the Genet Major MK. LA. I 
have included these manuals because they are, 
in my view, of great historical significance and 
have resided in the RAF Museum Library for 
far too long. The rotorcraft industry (myself 
included) must express our most grateful 
appreciation to Miss Mary Jane Miliare, 
Office Administrator of the Department 



of Research and Information Services at the 
Royal Air Force Museum in London. At my 
request, she tracked down the original manuals 
and got me a copy. 

The manuals captured in this appendix 
are organized in four publications . The first 
publication (pages 448 to 490) provides a 
general description of the aircraft with quite 
detailed dimensions in several areas . The 
document is a First Edition and is dated 
December 1934. Chapter IX, which begins on 
page 475, gives some special flying notes 
that are of particular interest. 

The second publication (pages 491 to 
5 12) provides quite specific maintenance 
procedures to be followed in order to keep a 
ROTA in safe flying condition. This document 
is also dated December 1934. I have added 
two amendments (pages 513 to 517) to the 
maintenance manual dated June 1936 and May 



1938 respectively. 

The third publication (pages 5 1 8 to 
529) is a flight training manual for the ROTA. 
This document is titled "Notes on the Handling 
of the ROTA Gyroplane in the Air and Upon the 
Ground." The few pages are packed with very 
clear instructions. The weight statement on page 
527 gives the weight empty of a ROTA as 1,228 
pounds and the maximum all-up weight as 1,800 
pounds. 

The fourth publication (pages 530 to 
561) is a collection of modifications that the 
Air Ministry published. The airspeed restriction 
of 130 mph (because of the inability to recover 
from a dive at higher speeds) was removed July 
20, 1935 (see page 542). Blade life was set at 75 
hours by modification A.P. 1490/P.5 as seen on 
page 549. 
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≥ Ê  ¯ · PARTICULARS 
Dirty _ _ Oomminicationa 
˘„Â | Two-seater single-engined 
gyroplane 

Main dimensions 

(Gyroplane i n r igging pos i t ion) 

Diameter of rotor disc 
Span of tail plane 
Length overall 
Height overall 
Rotor hub, range of movement 

Incidence of rotor blade 
Incidence of tail plane 

Areas 



Tai l plane 
upturned t i p (Both) 
Upper f in 
Lower f in 
Rotor blades (Each) 
Rotor blades (Total of 5 per gyroplane) 

Undercarriage 

Track 

Engine 

Type 

Airscrew 

Type 
Drg. No. 

Tankage 



Fuel tank 
Oil tank 

Note to Official Us ers-

Air Ministry Orders and Volume II Leaflets 
as issued from time to time will effect the 
subject matter of this publication- It 
should be understood that Amendment lists 
are not always issued to bring the 
publication into line with the Orders or 
Leaflets and it is for holders of this hook 
to arrange the necessary linking-up. 

TThere an Order or Leaflet contradicts any 
portion of this publication, an Amendment 
List will generally he issued, hut when 
this is not done the Order or Leaflet must 
be taken as the overriding authority. 

37 ft. 0 in0 

10 f t . 2 in. 
19 ft . 8 in. 
10 ft, 10 Hb 

2≤° forward 



7Ì° a f t 
5° r i g h t hand 
3° U t hand 
20 40 « 

+1¿° t o +20 

15.6 sq . f t . 
8, 55 sq.* f t . 

12.9 sq. f t . 
3.38 sq.. f t . 

15.6 sq. f t . 
46 .8 sq. f t . 



9 f t . 5 i n . 

Civet I 

∆≥„ÂÛ-Reed metal 
95193/A/X2 

23 g a l l s . 



(3,3 galls, oil 
( 1 gallo a-ir 

¿Ÿa 
6 
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ÏÚÌÓ¯ÒÚÍÏ 

1. The Hota is a two-seater gyroplane fitted 
with a Civet I engine and is intended as a 
Communications Gyroplane. It is mainly of metal 
construction although the tail plane is built up 
with spruoc spars and ribs« The oleo undercarriage 
is of the split axle type and a tail wheel is fitted. 

CHAPTER I - FUSELAGE 

453 



General 
2. The fuselage structure, with the 

exception of the engine mounting, is constructed of 
steel -tube to B.S. Specification T.45, with butt 
welded joints, wire bracing being employed in the 
top and bottom panels aft of the cockpits. The 
structure may be considered as three separate 
assemblies, - engine mounting, centre portion at 
cockpits and rear portion, <the centre and rear 
portions being welded together to form the fuselage 
structure proper* 

Engine mounting 

3. This is built up as a complete unit and is 
detachable as such from the fuselage. The ring is a 
12 s.w.g. mild steel angle sec-tion and is attached 
to the fuselage by eight struts. At the fuse- lage 
end the eight struts are bolted JJQ pairs to four 
lugs provided in the ends of the top and bottom 
longerons by special H.T.S. bolts. The front end of 
the struts are bolted to the outer side of the 
engine ring with mild steel bolts. 

4. The struts are mild steel tubes reinforced 
at each end with external sleeves and web plates. 
Eight lugs are provided on the engine ring to receive 
the dowels on the forward portion of the cowling, 
and four lugs to take the cowling formers» 



Centre portion 

5o The centre portion of the fuselage from 
the engine mounting attachments to the aft end of the 
second cockpit is constructed of mild steel tubes to 
B.S. Specification T.45. The Joints consist of 
plain butt weldso The side and bottom hays are 
cross braced with tubes and no wire bracing is fitted 
in this portion of the structure. 

6» All three bays in the top longerons are 
open, the first hay accomodates the fuel tank and 
clutch gear and the second and third hays form the 
two cockpits. A cross tube welded to the diagonal 
side and bulkhead struts forms a mounting for the 
fuel tank and clutch mechanism. 

7. A fireproof bulkhead consisting of a 
sandwioh of asbestos between 24 S.W.G. aluminium 
sheets is clipped to the first bulkhead of the 
fuselage, It is reinforced to carry the oil tank 
whioh is situated in the engine mounting bay, 

8. Brackets are welded to the top longerons 
for bolting on the deck, and further brackets are 
provided on the bottom longerons for the 
attachment of the floors, 
cockpit. 

and side members of s l iding door in front 50387-1 
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9. The four sockets to tate the pylon atrutg are located at the 
four romera of the front cockpit, and are f ornad by an extension of 
the fuselage aide struta with a distance tube welded in, and are 
wedled integral with the top longeron. Outrigger etruts are alao 
welded Lo the top and bottom longerons at the front end of the fuaelage 
on either side to form the attachment for the olea leg. Sockets are 
welded to the undereide of the bottom longerons, for the attachment of 
the ajclea and radius roda* 

10. On the port aide of the frame at the front cockpit, the top 
longeron is out away to aocomaiodate a large door which gives easy 
access to the cockpit between the pylon struts. A special bracing is 
made in the side frame at this point to allow for the longeron being 

out away* 

Sear portion 

11- The rear portion of the fuselage is 
constructed of mild steel tubes to B»S. Specification 
T.45 and the top and bottom panele are wire braced. 
The wire bracing is of the loop type, the wire being 
pasa ed round a pair of comer tubes and the ends 
joined by a turnbuckle. The body of the turnbuckle ia 
stamped from mild steel plate, the two enda being 
held toget-her by a ferrule and the other end formed 



t o be a 
snug f i t for the spherical seated nut which i s provided with f l a t s to 
take a 3/16 i n . jaw spanner and. four 1/8 in . tomai/ bar holes through 
which a looking wire i s passed a f t e r adjustment has 
been made. The mila s t e e l eye i s threaded 4 mm. 
metr io . The wires are 14 S.W.G. H.T.S. and are 
attached t o the turnbuckles by bending i n t o a loop 
S e -
cured by an oval wire ferrule , tho free end of-the wire being bent back 
over the ferrule. ïribre pads are f i t ted a t a l l wire crossings. 

12 . At t h e r e a r p o r t i o n of t he frame, upper and 
lower v e r t i c a l f inia, 
constructed of small diameter tubes, are welded integral with the fuse-
lage. The front end of each fin ia attached to wooden fairing 
formera. At the end of the fuselage proper, lugs 
are provided on the top and bottom longerons for the 
attachment of the tail wheel telescopio leg. 

Datum points 

13. The datum points for longitudinal levelling 
of the fuselage consist of small tubes welded, to 
fuselage vertical members, and will be found 
projecting through the fabric of the port rear 
portion of the frame. 

Floor 

14.' -The flooring, which extends over the two 
cockpits, is con- struoted of plywood stiffened at 
the edges and also longitudinally and transversely by 
spruce members. It is made in three sections and 
bolted to small plates, which are welded into the 
corners formed by the bottom longeron and cross tubes. 



Seats 

15. The ¡seats are practically identical in 
construction except for differences in the method of 
mounting and are not adjustable. The seat itself is 
welded up from sheet aluminium and takes the 
standard seat type parachute. Safety belts are 
fitted in each cockpit. The front one is ̂ secured by 
Italian hemp cords to the joints on the top longeron 
immediately aft of the seat, but in the rear 

cockpit, the cords run to the second joint aft of the 
seat and are connected by a tensioned elastic cord. 
7his latter is to prevent the belt, when not in use; 
from ¡fouling the brake and rotor controls. The 
front seat has clipe riveted on to its front face, 
which pick up a tube running across the fuselage ¡and 
attached to the side fuselage' members • On the back 
of the seat are riveted brackets which belt on to 
lugs on the top cross strut between the two cockpits. 
The rear seat sits in a well out out of the top of 
the looker, and is bolted to the latter and the 

floor, 203P7-1 2 
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through a tongue which is riveted to the front face 
of the seat. The seat is also fastened to a top 
cross member of the fuselage in a similar manner to 
the front seat. 

Cowling 

16» The aluminium cowling extends from the 
engine mounting ring to the front bmlkhesd of the 
front oookpit. At the engine ring the panels are 
provided with dowels, which sit in lugs em the ring, 
and, at all other places, with spring turnbuttons. 
The panels are independently detachable. 

Decking 

17, The decking is constructed of plywood and 
spruce, and extends from the cowling to the rear 
bulkhead of the rear cockpit and finishes flush with 
the top longerons« The latter have small lugs 
welded on, to whioh the decking ≥Á bolted. 

Fairing and locker 

18, The remainder of the body exterior consists 
of doped fabric on a framework of plywood and spruoe 
formers which are clipped to the top and bottom 
longerons, and spruce longitudinal stringers. 
Eyeletted duralumin lacing strips are fitted along the 
bottom longeron, the front cockpit door, and at the 
juncture with the cowling, out these aré sub-
sequently doped down, and no open joint is 
discernible in the fabric covering the whole of the 



body, the decking and the f ins . Low down in the 
fabric, on the starboard side of the rear cockpit, i s 
a door giving access to the locker, on which, i t has 
been previously noted, the rear seat i s mounted. The 
similarly s i tuated door in the port side i s for the 
inspection of Drake and rotor clutch control levers . 

Arrangement of cockpits 

19. In general, i t has ⁄ÂÂÔ arranged that only 
the actual handles of the various controls are in the 
cockpits, while the r e s t of the control runs between 
the fuselage proper and the fair ing. A map case, 
various pipes and labels e to . are also mounted in the 
f a i r i n g . On t h e r i g h t 

hand s i d e of t h e r e a r oockpit, 
stowage box. 

50387-1 
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—≤ÿ“¡Õ I I - uTIIERCARRIAGE 

G e n e r a l 

20. The undercarriage i s of the divided, axle -rjpe with an oleo leg 
to the "bottom outer Joints of the outrigger structure, and axles and 
radius rods running to shackles on the bottom longeron. Falmer low 
pressure a i r wheels, type 431/B. (480 m m x laom m) end 7 in, diameter 

Bendix brakes are fitted. 

Axles and radius rods 

21. The axle tubes, which are of nickel 
chrome steel, are pinned and sweated into the wheel 
hub forging. This forging has a flange to whioh 
the brake torque plate is tolted, and integral lugs 
for the oleo leg attachment. The eyeüolt through 
these lugs to secure the oleo leg, aiso serves the 
radius rod, which is to 3.3. Spécification T.45. 
The upper ends of the tubes are fitted with 
fork-ended sockets secured with ferrules and tie 
rods. The axles and radius rods have wooden tail 
fairings bound on with glued fabric. 

Oleo leg 



22. The oleo legs are of the coil spring and 
hydraulic loading -type. The oil alone would, under 
suitable loading, allow a gradual movement of the 
leg over its whole range, but the main spring 
limits the range of movement and forms a cushion to 
take the static load or when taxying. When the leg 
is fully extended, as on assembly, there is no load 
in the main spring. When a landing is made, the-
energy of the moving mass of the gyroplane is 
absorbed in compressing the main spring and in 
foroizg oil at high pressure through amali orifices. 
The energy taken up ⁄Û the spring, lessened ⁄Û 
friotioned losses, forms the potential energy for 
the reooil which is again damped by oil flow¿ "The 
lég consists of two tubes, the top one acting as a 
piston in the bottom one. The outside Joint is 
maintained oil-tight "by a gland nut and packing. The 
piston tube has a male-ended socket and the 
cylinder tube a female- ended socket. These 
sockets are sweated in position and secured with 
grub screws. No universal block is fitted at 
these joints as they transmit the brake torque when 
the engine is "being run-up on the ground. 

23. A socket made from a steel forging is 
sweated and secured with grub screws to the top of 
the "bottom, cylinder tube. This socket is tapped to 
receive the gland nut, which also acts as a stop to 
the leg when fully extended. A stop collar is 
fitted to the piston tube for this purpose. A 
filler cap is fitted on the "bottom tube for filling 
the leg with oil. 



24. At the "bottom end of the top tube is 
fitted the piston and valve unit« The actual 
duralumin piston which is secured by grub screws to 
the tube, has two brass piston rings of the 
constant pressure type and is tapped to reoeive the 
piston end oap, which acts as the abutment for the 
main spring and also the clack valve» The piston 
incorporates a spring loaded poppet valve, whioh is 
eet to lift at a load of 75 lb. 

25. The whole of the piston and -valve unit is 
immersed in the oil and; on landingy the oil is 
forced under pressure through three radiused leak 
holes in the clack valve. Under a heavy landing 
this would not dissipate the energy quickly enough, 
and so, at a predeter- mined pressure, the valve 
lifts and passes oil through the orifioe around its 
stem until the pressure has dropped. After the 
leg has 
compre seed 4 i n . the Ïˇ̂ ≥Î spring comes into action and movement oontin— 
ues u n t i l the spring goes solid after a further 5 in . t rave l on o i l and 
spring. The t o t a l range of the leg ia thus 7 in. On the recoil, 
the olaok v a l v e l i f t s from i t s ocat , end a l lows tho 
o i l to flow "back 
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quickly through twelve holes whioh i t had 
previously covered, d r i l l e d in the p i s ton. This 
flow and reflow of the o i l w i l l continue u n t i l a l l 
the s tored up energy of the gyroplane's descent, has 
been absorbed by the 
work done by foroing the oil through the orifices, assisted by friotionsl 
losses. 

26. The fairings are made from 20 S.W.&, 
aluminium sheet, with reinforced ends. They are 
attached with screws to the top and "bottom, sockets 
respectively and the "bottom fairing is, in addition, 
attached to the stop sooket

0
 When checking the oil 

level the top fairing has to he slipped down until 
the filler cap is exposed through an opening in the 
wall of the lower fairing. 

Brakes 

27. The brakes are of the two shoe type in 7 
in. diameter drums and are operated ⁄Û a hand lever 
in the rear oockpit,. The cable enters the torque 
plate and connects to the cam lever by a shackle. 
The adjustable link, which connects the two shoes, 
consists of a bar, in the middle of whioh is a 
serrated disc, one end of the bar being screwed 
left hand and the other end right hand. The length 
of the link is adjusted by rotating the serrated 
disc by means of a screw-driver inserted through 
the hole in the torque plate, after turning open the 
torque plate. The brake lever and a rotor clutoh 
lever are mounted in a position convenient to the 
pi- lot's left hand on a quadrant on the rear 
cockpit floor, the brake lever being the inner» It 



is provided with a ratchet and the brakes can be 
locked on. The brakes are applied by cables 
simultaneously on each wheel a n d cannot be applied 
differentially. Their purpose'is purely for the 
function of holding the gyroplane stationary on the ground whilst the 
rotora are being run from the engine, and they are not intended for ohooto-
ing enj forward run arter iTãndíngT " " 
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CHAPTER III - TAIŸ UNIT 

General. 

28. The t a i l u n i t i s of unconventional design 
compared with a normal aeroplane, i n that i t has no 
surfaces which are movable i n f l i g h t . There are 
two v e r t i c a l f ins and a horizonta l f i n 
character ised by up-turned t i p s , ‰ s t e e r a b le t a i l 
wheel i s f i t t e d i n a Dowty fork and oleo leg. 

Horizontal fin. 



29. The horizontal fin is constructed almost 

completely of woodj 
the only metal parts being the tubes for the leading and t ra i l ing edges 
and various clips* The turo spars are of spruce, the r ibs of plywood and 
spruce, and the Tï-type drag bracing consista of spruce members t o the 
top and bottom face3 of the spars. The t ips are a t 45° to the main 
horizontal fin and are constructed in a similar manner to i t , the spars 
of the t ip s being "tongued." in to the main spara» The r ib section on 
the l e f t hand half of the main f i n i s inverted, to provide a reversed 

moment to that of the airscrew. In the trailing 

edges of the two halves ^ a a l s o the tips are 

adjustable trimming flaps. They are hinged to the 
main portions and further connected with an adjustable link and strap-
On the top aurface of the left hand half and on the bottom surface of the 
right hand, incidence blocks will be found projecting through the fabric. 
The frant spar is attached to the fuselage by two male lugs which pick 
up female lugs welded on to the top longerons. At the rear spar, 
female luge pick up eyebolts which are screwed into lugs projecting 
from the side of the longeron and locked with nuts» ¿r adjusting these 
eyebolts, the rear spar will rotate about the pins securing the front 
spar and alteration to the angle of incidence of the horizontal fin will 

be made* 

50« The horizontal fin is braced by four 

adjustable raking struts, 

i»e- , two each side« They are bolted together t o a f i t t i n g on the 
bottom longeron and, from there, run upwards and. outwards, one t o each 
spar- The s t ru t s axe of s teel tube, the bottom end being flattened 
and bent to a lug, whilst the top has a screwed plug «bioh receives an 
eyebolt and thus allows the length of the strut to 

be adjusted* 

Vertical fins» 

51. There are two vertical stabilising fins, 



the main one' and a 
much smaller one underneath the body» They are constructed ent i re ly 
from mild s t e e l tube and are welded i n t e g r a l with the fuselage* To 
the t r a i l i n g edge of the main v e r t i c a l f in* a trimmer i s f i t t e d on 
two hinge c l i p s - A b o l t running through these hinge c l i p s i s 

t ightened to lock the trimmer by friction*. 

T a i l wheel. 

52> The t a i l wheel i s a Palmer No*448(2TO mm. x WO nm.) and i s 
f i t ted to a fork and oleo leg. The top of the oleo leg has an internal 
socket with a male-ended lug which i s bolted into a bracket welded to 
the fuselage cross member« The bottom attachment i s by means of a 
socket which encircles the oleo tube and picks up two eyebolts which 
are bolted to the bottom longeron. The bottom tube of the oleo leg 
is free to rotate inside the top tube and carries, a lever which i s 
connected with cables to the steering bar in the cockpit- Check cables 
are f i t ted from the lever to the fuselage to prevent excessive wheel 
movement. 
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¯ËÚ‡ iv - THE ROTOR 

General 
33. The r o t o r i s of the three blade -type with 

d i r e c t control from e i t h e r cockpit. The blades are 
aerofoi l s and supply a l l the l i f t necess- necessary 



to keep the gyroplane in the air, "but do not play 
any part in inducing forward velocity, which is 
obtained in the usual manner by air- screw thrust 
from a tractor engine. The initial rotation of the 
rotor is by shaft drive from the engine, but this is 
merely to get sufficient revolutions to enable the 
gyroplane to take off and, is in no way for use 
in flight. Once energised, the rotor maintains 
its rotation by aero- dynamic action. In flight the 
attitude of the blades is decided by the action of 
combined lift and centrifugal force, and normally 
the blades cone slightly upwards in their rotation, 
but it is quite impossible for them to fold up or 
cone aboye a certain angle. Even when all forward 
motion has been lost, there are still forces aoting 
on the rotor blades which keep them moving at a high 
speed, and although the gyroplane drops on an even 
keel, its rate of descent is not high enough to 
involve danger. The rotor is also the sole 
directional control, any desired manoeuvre being 
effected by tilting the rotor head by means of the 
control column. On the ground, the rotor blades may 
be unpinned and folded back along the longitudinal 
axis, to reduce the overall width when it is 
desired to house the gryoplane. 

Rotor blade 

54. The rotor blades have a single apar consisting of a 1? ≥Î . x 
14 s.w.g. nickel chrome steal tube (Specification D.T.D.64 A), which, at 
the inner end, i s sweated and secured with ferrules and t i e rods to a 
larga √Ó„≥Ò end. fenica ribs a t «≤ in. pi tch are threaded on to the spar, 
secured with ferrules and t i e rods, and then the 
whole covered with a plywood skin, The r o t o r t i p 
consists of a block of shaped balsa wood; which i s 
recessed t o f i t inside the plywood skin and then 



glued and secured w i t h woodscrews. The whole i s 
then mvRTRrl in-ì -‹⁄ -–‡⁄ Ú≥ „ „-«Î 
C l a s s i f i c a t i o n o f r o t o r b lades 

54A. Owing t o manufacturing d i f f e r e n c e s the 
weight of the rotor b l a d e s v a r i e s s l i g h t l y . , as a l s o 
does t h e p o s i t i o n of t h e centr e o f g r a v i t y along the 
blade* Vhen f i n i s h e d the rotor b l a d e s are 
balanced, c l a s s i f i e d i n t o Class "A", "B", "C", " D " , 
etc» and marked at the inner end accordingly« I t i s 
e s s e n t i a l t h a t only rotor b ladee of t h e same c l a s s 
are used on a p a r t i c u l a r gyroplane. 

NOTE,— 

It should he understood that the c lass i f icat ion refers only 
to the weight (If). see gig» 11« In a l l other respects such 
as method of construction, dimensiona, etc« the different 

c l a s s e s of r o t o r b lades are a l ike« 
MB« Each p a r t i c u l a r gyroplane i s suppl ied 

with three rotor b lades of t h e same o l a s s ard spare 
or replacement r o t o r b lades should be requisitioned 
only of the ‚‡¯Â c l a s s as the ones o r i g i n a l l y 
suppl ied. 

S4C. Before assembling a new rotor blade, the existing rotor 
blades should be checked for balance (weight V) and adjusted, together 
with the new rotor blade, to give the same value for (W). This pre" 

caut ion i s necessary owing t o a d d i t i o n a l fabr ic and 
e x t r a coats of dope 
on rotor blades which have been i n serv ice for any length of t ine, 
probably causing a variation in the value (Vf). 



Method of balancing r o t o r blades 

34B. Set up the ro tor blade with the 
knife-edge of the balancing block on a hard f l a t 
surface. Support the outer end of the rotor blade 
at a point exactly 16ft. -6 in. from oentre of fulcrum pin on a weighing 
machine (see Fig. 11). The oalanbe weights, -«nich sre positioned be-
neath a tear-off patch at the outer t i p , should then be adjusted to give 
the value (W) as given i n the ooluinn for the particular class of rotor 

blade to whioh it belongs. 

NOTE:- See Vol.3, Part III, of this publication, 
Chapter 5j, para. 2« 
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b o l t s are of large diameter and are mounted on 
Hbfftaan needle bearings (4) e ^ Â end play for both 
these b o l t s should not exceed 0.002 in, 3 
and, i f i t ia found that th±3 clearance ia exceeded Á‹≥‰· may be added 
to take up the excess. On the T-lieaded bolt (5) i s carried the rotor 
hub complete, irtiich i s secured by retaining nut (l&). 

Rotor bub 

57. This consists of a base plute (≥«) to which ia bolted a manganese 
bronze casting ÍS) with bolts which also pick up the housing (·} for ball 
races (22) and (is). These ball races receive the hub axle (7)> which is 
secured with the retaining nut (s). The spur wheel (9) for the revolution 



drive is secured to the hub axle and retaining nut. 
The main crown wheel 
(lO) is bolted to the hub ‡Á≥Â. The inside of the crown wheel is machined 
out to form a brake drum and inside it is fitted a conventional type of 
two shoe internal expanding brake (ll); it is not, 
however, of the servo 
or self-energising "type as this would be too fierce and subject the pylon 
structure to rather high torque load. To the hub axle are pinned the 
three rotor links (12). 

Mechanical starter 

58. The drive for the mechanical starter unit 
is taken from the rear en¿ 0f the engine through a 
special crankshaft extension with a splined end. A 
short transmission shaft, free to slide on the 
spline on the crank- ahaft extension, carries the 
power into the main clutch, which is mounted on a 
cross strut in the first fuselage hay and braced 
back to the longerons with struts. This clutch is 
of the dry, single plate type, the driving plato 
being an aluminium casting bolted to the driving 
shaft and lined with ferodo, whilst the driven 
plate is machined from a mild steel bar rein- forced 
with welded steel webs. The driven plate is free 
to slide along a 
eplined shaft and is pressed against the driving plate by means of two cams 
which bear directly on to one fnùn of a single thrust hearing, the othei face 
being held against the driven plate. One 
concentric coil spring forces the two plates apart as 
soon as the load is taken off. In this respect the 



clutch design is the reverse of normal motor oar 
practice. At the back end of the clutch is a gear 
box containing two bevel gears, whioh con- stitute 
the first speed reduction in the ratio 1.5 to 1. 
The vertical transmission shaft from the clutch to 
the rotor head is free to "move in a splined fitting 
at the lower end and has two universal couplings of 
the Mollart ball and claw socket type. A special 
shear pin is driven through the shaft and. coupling 
at the bottom end and is designed to shear at about 
I5 times the normal load thus putting a limit to 
•the load which can be put o n the rotor structure. 

59. At the too of the vertical transmission 
shaft, the drive is trans- ferred to a bevel pinion, 
which gears with the main crown wheel and so turns 
the rotor. The ratio of this final drive in the 
transmission is 
5.3 to 1. The pinion is contained in a cast aluminium housing which is 
bolted to the front of the manganese bronze seating (5) in fig. 2, and 
also incorporates an automatic dog-clutch. The 
operation of both the f r i c t ion c lu tch and ro to r 
brake i s by bowden cable from a s ingle lever in the 
rear cockpit. The lever i s designed to operate 
one of two quadrants : 
by depressing the lever and engaging it in the near side quadrant the 
clutch is operated and a similar operation but engaging the offside quadrant 
operates the rotor brake; thus only one of these 
un i t s can be operated a t a time and the clutch 
cannot be engaged with the rotor, brake on and v ice -
versa. Attached to the operating levers of the fr ict ion clutch are two 
strong return springs, which operate the dog-clutch. 'flith the friction 
c lutch disengaged the i n i t i a l tension in these 
springs i s suff ic ient to tension a small bowden 
cable and free the dog-clutch against the p u l l of a 



light spring. "Rhen tho friction clutch is 
operated, the first movement of the levers relieves 
the tension in the dog-clutch bowden cable and the 
light spring immediately engages the dog clutch 
before the main clutch is fully engaged. 
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Quick-release lever 

40. On the left hand vertical member behind 
the front seat and in the rear cockpit, is mounted 
the quick release lever for the wheel brakes and 
clutch and rotor brake controls. The lever is 
connected by a rod to the quadrant in which the 
control levers are mounted on the floor, and when 
the lever is pushed forward it releases the wheel 
brakes and rotor clutch or brake by disengaging 
their ratchets. On the rear instrument board is a 
spring loaded clip for the control column and with 
this is incorporated a locking lever. from this 
locking lever to the quick release lever is a bowden 
cable which operates a plunger stop on the quick 
release gear. This stop is so arranged that when 
the control column is locked, the quick release gear 
is also locked, i. e. the con- trol column must be 



unlocked before the quick release lever can be 
operated to free the wheel brakes and clutch, 
îurthermore, until the quick release lever has been 
pulled back, the wheel brakes and rotor brake or 
clutch cannot be engaged. 

Rotor revolution indicator 

41. À rotor revolution indicator is fitted to 
the instrument board 
in each cockpit. A flexible drive i s taken from the rotor bub to a 
gear boar, (ratio l : l ) which i s clipped to two fuselage side members in the 

front cockpit and from it a flexible drive is taken 

to each instrument. 
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CHAPTER V - CONTEOLS 

G e n e r a l . 

42. 'Eoa main controls consisting of a control column and engine 
controls are duplicated in each cockpit and the gyroplane may be flown 
from either. .In addition; a tail'wheel steering bar and fuel cook con-



trol is fitted in each cockpit. The wheel.brake 
control, the rotor clutch and brake control and the 
two bias controls are fitted in the rear cockpit 
only. 

Control column¿ 

43. The flying controls consist merely of an 
inverted control 
column hinged universally on a cross bar, whioh is 

mounted', on the rear 
struts of th© ¡pylon structure. Above this hinge 

the control column is 
continued and ¡coupled to a short stiff lever by 

means of a "ball joint« 
This short lever is attached directly to the base 

of the rotor, hub, below 
. the lateral and longitudinal hinges. Therefore, 
when the control column is moved by the pilot in 
the cockpit, it turns about the universal hinge, 
pushes the ball joint in the opposite di reetion, 

and so tilts the rotor • 
hub. On examining the ball joint it will be 

found that the ball is 
surrounded by a bronze cap which screws on to a 

hollow socket, fitted in 
the end of the' control column. Inside this 



socket, a floating cup-shaped 
bearing with ‡ thick rubber washer beneath it, 

supports the end of the 
ball. This device gives minimum friction and no 
play when the "bronze 
cap is screwed: down the correct amount. The cap 

is then looked in posi-
tion, by a thin, nut below it. 

44. A fey inches below the ball joint the 
universal hinge is situa- ted, and at this point the 
control column is hinged on a pin between the Jaws 
of a fork which allows it to move in a fore and aft 
direction. The shaft of this fork is fitted into a 
cross-⁄‡„ and free to turn. The whole of this unit 
can also rotate about the axis of the cross bar and 
is attached to the pylon struts by two large clips 
to which are welded screwed, studs, the plain portion 
of these studs forming a bearing inside the cross 
bar, the threaded portion screwing into bronze bushes 
that are riveted inside it. Therefore, to adjust 
the lateral position of the universal hinge all that 
is necessary is to rotate this unit, and owing to 
the action of the screws the whole will move to the 
right or left, as the case may "be. Actually, the 
cross bar is designed to turn slightly with the 
controls, in order to compensate for the rise and 
fall of the ball joint due to the movement of the 
hub. After long service

f
 slight play may develop 

at the control column) ball joint; this can "be 
rectified by giving the bronze 



cap half a turn or so to take up the slackness. If this does not cure 
it or the cap appears to be badly worn, it should be renewed. To do 
this it will "be necessary to take out the bolts at the bottom of the top 
control lever and withdraw the ball, before the cap 
can be taken off. The floating bearing and the rubber 
washer beneath it should, if necessary, be replaced 
at the same time. 
Bias control. 

45. Just ¡below the rotor head and inside the 
head fairing, it will "be noticed thai; there are four 
coil springs attached to the top control lever, by 
means of a socket that is flanged up at right 
angles, so that the pull from the springs acts on 
the centre of the ball joint. These constitute the 
control bias, and their use is to centralise the 
control column and alter the trim of the gyroplane 
for all conditions of flight. A large 
U-shaped:welded tube bracket is bolted to the rear 
pylon struts, and a short crqss tube is mounted 
between the two front struts to take the other ends 
of the four springs with four trunnions as the 
points of attachment. Into each of these trunnions 
is fitted the screwed shaft of a forked eyebolt to 
whioh is pinned the eye end of each spring. 
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To increase the tension on any of these ' spr ings , 
draw the eyebolt out- "wards with the nut on the back 
of the trunnion and then lock up with 
the lock nut provided. Each of these springs i s 

given i n i t i a l tension to give the p i l o t a control 
" fee l " . This tension i s a l so variable from 
the cockpit during f l i g h t by r o t a t i n g the trunnion 

a few degrees in e i t h e r d i r e c t i o n . The arrangement 
i s simply a shor.t length of tube 
s l i d i n g over one of the tubes comprising the. 

U-braoket and free t o turn; the sleeve for t h e 
l a t e r a l b ias being-on the starboard side of the U-
bracket and on the front cross s trut for the longitudinal b ia s . To one 
end of these tubes are welded web plates carrying the trunnions and to 
the other end ≥ Á welded a short plate lever* Control cables run from 
these levers down the r e a r pylon s t r u t on the 
starboard side in f a i r - lead tubes, guided a t the 
bottom to the separate controls i n the r e ar cockpit, 
by small pul leys . 

46. , The la te ra l bias i s operated from the rear cockpit by a hand-
wheel on the starboard side of the instrument board and the gyroplane i s 
made to turn t o the r i g h t when the handwheel i s 
turned t o the left" i . e . i n an anti-clockwise 
d i r e c t i o n . Very f ine adjustment can be obtained 
frqm t h i s c o n t r o l , i t being possible to turn the 
handwheel through approximately 36 t u r n s . This 
applies tension on the contro l cable through a 
Borewed spindle that i s pul led backwards by the 
female shaft of the handwheel. A thrus t race i s 



incorporated to prevent the mechan- ism becoming 
stiff when under load. A lever acting on a. 
ratchet in a quadrant on the starboard side of the 
iear pilot f orms the longitudinal bias control and 
when pulled backwards, tensions the control 
cable, thus, making the gyroplane"become tail heavy 
and vice-versa. The ratchet has a series of 
inverted serratione, whioh are engaged by a pawl in 
the centre of the lever and operated from a press 
button on top of the handle. Wheel brake and clutch 
and rotor brake control 

47. Mounted on the floor on the port side of 
the rear cockpit is 
a quadrant with two l eve r s . The outer levage opérâtes the cables for 
the wheel brakes' (see para.- 27) . ' The^lanaip aqiwr .operates e i t h e r the 
ro to r brake or the two olutohes^ase^para. 39) À ^ ^ ^ l e u a j r t u l M o L ' i ç é c . i n v o e r 

^”^ a > Í A + u m , r A í o i «¿uS˘ f l u i 
Sromd s teer ing ⁄‡„‚. . u Af \tatxr. n e o t W «¿e, 3 . , . VJc¿rw -fvr-lbJb-seaí. » , I 
—— — - ' ^ ^ ^ ^ ∆ ≥ ^ – * { « ' í w w w r ' " * • n i . . 1 

48, The ground Steering ⁄‡„¬ ¿re i d e n t i c a l in construction and the 
foot pedals are adjustable to s u i t varying log lengths . Saca bar i s mounted 
on a pedestal made from an aluminium spinning, whioh i s bol ted to the 
floor. Heel rubbing plates are also screwed to 
the floor to 'avoid undue wear. The right hand 
halves of the bars are connected with a steel 
tubular strut and the central spindle of the rear 
bar carries' á lever which'is attached with cables to 
the lever on the tail wheel. 
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CHAPTER YI - «Õ ÿ≈ I^TAILATIGH 

G e n e r a l 

•tí). The power unit i s a Civet I air-oooJLed rad ia l engine of 140 
¬.fl.–. a t 23Ò0 E.P.M. (153 B.H.P. at 2*20 ≈.–.€,'). The. fuel supply i s 
ent i re ly by gravity and i a carried in a 23 gallon tank immediately 
behind the bulkhead. 

Fuel tapk 

50» Thf fuel tank of 23 gallona capacity rents on. the firot top 
cross strut of the fuselage and on a cross tube connecting the fuselage 
aide diagonals. The tank is held down to the top longerons "by two 
steel straps ] which are adjustable in length. The tank ia constructed 
of 18 s.w.g. j aluminium sheet (B.S,Specification L. 16), welded and 
anodised, and is -fitted with a standard filler oap .and a Stnpa' •type 
contenta gauge. ' A sorbo packing is inserted between the tank and fire-
proof "bulkhead to locate it against end creep and prevent chafing. 

Fuel system 

51. Thö feed pipes from the bottom of the two naives of the tank 
(the l a t t e r '%s out away I n the centre to olear the ólutoh) are led into 
a tee-piece which, i s connected to a Viokers cook; From the coak one 
feed pipe i s led into the standard type f i l t e r and then to the engine. 
All the above:pipes are Superflexit tubing,. A Ki-gasa priming pump i s 
mounted on the lef t band lower engine mounting strut} i t i s fed by a 
copper, tube from an elbow in the top of the f i l t e r . The Vickers cook 
can. be operated by means of a torque shaft from aither ooakpit. 

Oil tank 



52. The i: o i l tank ¿ e ire Me d up from 18 s.w.g. 
aluminium sheet , i t s 
capacity "being S.3 ‰"" 1 1 " " " of o i l and 1 gallon a i r , übe f i l l e r i s on 
the l e f t baad side and incorporâtes a graduated dip rod ⁄Û which the 
.amount of rail contained i n the tank ia readi ly ascertained. A d r a i n 

plug, vent pipe, thermometer flange and return and feed connections are 
f i t ted, — the l a s t named incorporating <*m Internal stack pipe. The tank 
la mounted Ó‰' the front face of the fireproof DUlkhead ⁄Û two steel 

s t r a p s , w h i c h a r e a d j u s t a b l e i n l e n g t h . 

Oil system 

53. The circulation of oil is maintained by 

the engine pumps. The feed and return pipes are "both 

Superflexit tube. Copper pipes 

l/4 in. od. x So s.w.g. are led from the pressure connection on the 
engine, and from the temperature connection on the tank to their 

respect ive instruments i n the rear cockpit. 

Engine c o n t r o l s 

54. The: t h r o t t l e and mixture c o n t r o l levers 
a r e m o u n t e d o n f u s e -

lage members on the port side. The control lever assemblies are similar 
in both cockpits, the quadrante and levers are l ight alloy castings and 
integral luga on the levers ensure that tho mixture control i s closed 
with the throt t le . The quadrant i s bolted to the fuselage and the 
spindles are concentric, the mixture spindle heing between the throttle 
spindle and'the quadrant and using them both as hearings. The hand 

levers are attached to tiie spindles with "bolts 
which engage slots in the 
spindle. 



55, “‹Â̂  outer levers are attached to the 
spindles "by a similar 
"bolt in the:case of the mixture lever and a split 

taper pin for the 
throttle lever. lhe outer levers in the front 

cooKplt are connected 

with adjustable rods to the corresponding levers 
in the rear cockpit. 

30587-1 12 

465 

APPENDIX   

Additional rods, which are also adjustable in 
length, from the front 
cockpit levers, pass through sliding glsnns in the fireproof oulkhead 

‰ÎÀ operate levers on ooncentrio horizontal countershafts, whioh are 
mounted on the lower side engine mounting struts. The mounting clips 

inoorporate a leather lined adjustable friction hearing. Additional 

levers on the counterahafts operate the oarburettor ⁄Û means of ad-

justable rods. 

Engine speed indicator 

56, . An engine speed indicator i s f i t ted to 
the r e a r cockpit, and 



driven direct from the engine with a flexible 

drive. 

Exhaust manifold 

57. The exhaust manifold is in two portions 

attached by a flanged joint at the top and 

terminates in a single short vertical tail pipe. 
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CHAPTER VII - ¡‰ÿ»¬Ú‡ 

Flying Equipment 

Air speed indicator.. 

58. The pressure head tubes are welded 
into a streamlined tube 



whichia clipped a t the bottom of the r igh t hand 
outrigger tube, running 

from the outer joint to the top longeron, and they are parallel to the 
fuselage datum line. The —£ in. aluminium connecting tubes pass up 
the inside tail fairing of this outrigger tube to two T-pieces, from 

which oohneetions Eire taken to the front and 
rear airspeed indicatore 

on the instrument boards. 

Altimeters 

59= Altimeters are fitted to the instrument 
board in both cockpits. 

Cross level 

60. A cross level is fitted to the rear board only. 

Compass 

' 61» A compass (Type P. 6, Stores ref.rjà/0.367J 
i s f i t t e d in the rear coûkpit to a base plate which i s 
clipped to the vee bulkhead "bracing: s t ru t s behind the 
rear sea t . 

Equipment 

Fire extinguisher 



62. A fire extinguisher, methyl bromide No. 5, 
is mounted to the right hand fuselage diagonal ÚÂÎ‹Â„ 
in the rear cockpit, close to the seat. The nozzle 
of the extinguisher fits into a coupling on the 
bracket,, from which a pipe line is taken forward and 

throuî i the fireproof "bulkhead, terminating in a 
nozzle directed to spray on the 'carburettor. when 
the fire extinguisher is to be used in this manner for 
dealing with a carburettor it is to be operated by a 
hand lever acting against the extinguisher knob

5
 the 

safety catch being first turned aside out of 
engagement. Por. use by hand the extinguisher 
can he removed from the bracket and operated in the 
usual rønner. 

larachutes 

63ii Both seats are arranged to take the 
seat-type Irving parachute. 
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CHAPTER V I I I - RIGSDTG,AS5EMBEi & VASTÓOS 

ADJUSTMENTS 



Rigging fuselage. 

64« The fuselage should be supported on 
trestles, one at the jacking points on the front 
bottom fuselage cross member and one at the tail 
wheel» Special packing blocks will be required 
at the rear, to enable the lower fin to clear the 
trestle, and at the front to clear the fireproof 

bulkhead and axles, if in position« The position 
of the rear jacking points will be found marked on 
the fairing. The fuselage may be checked for 
rigging position, transversely by straightedge and 
level across the longerons in the rear cockpit, 
using the under side of the tubes, and 
longitudinally across the datum points which will 
be found projecting through the rear fairing on the 
left hand side* 

Routine check. 

65. Owing to the welded tube type of 
construction of the fuselage> the frame is so stiff 
that no rigging operations by altering wire 
tensions may be carried out. The fuselage 
structure should be 
examined periodically, för whioh purpose the covering must he unlaced 
and all Joints and members carefully examined. The cross hraaing vires 
should be checked, and, if necessary, adjusted to 
an even tension; care must be taken that the wires 
are normal to the attachment tubes, other- wise a 
slight movement and consequent slackening of the 
wire may take place in service« 



Engine mounting and engine. 

66. Raise the engine mounting and support it 
while the tubular struts are being secured to the 
fuselage attachments. The struts are fixed to the 
engine ring and fuselage by special bolts. 
Suitable lifting tackle, capable of dealing with a 
load of about a ton, should now be prepared, and a 
sling attached to the lifting eyebolt on the 
engine« The engine can then be bolted into the 
mounting- Before releasing the sling, a weight 
should be attached to the tail end of the fuselage 
to prevent any tendency for it to tip up on its 
nose. 

67« After the engine has been secured to the 
mounting-, the following operations should be 
carried out:-

(i) Pit the exhaust manifold. 

(ii) lit the carburettor and connect up the 
engine controls. 

(iii) Complete the ignition system wiring. 

(iv) Connect up oil and fuel pipes. 

(v) Thoroughly check the installation« 



(vi) K.t engine cowling. 

Undercarriage. 
68. The points of attachment for the shackles of the -axles and 

radius rods will he found on the bottom longerons, and the attachments 

can be made without any difficulty. The oleo 
legs can now be f i t ted ⁄Û attaching the lug at the 
top and bottom to the jaws on the outrigger 
j o i n t and the axle socket respectively. Final ly, l i b e r a l l y grease 
the axles and f i t the wheels. Care must he taken t o ensure that the 

axle caps and a l l pins are securely f i t ted and 
that sp l i t pins, where required, are in position. 
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Checking oil level in oleo leg. 

69. It will be ÔÂÒÂÁÁ‡„Û to verify the oil 
level in the oleo leg at intervals, and this may be 
carried out with the legs supporting the gyroplane, 
i.e. it is not necessary to "jack up." The screws 
securing the 
top fairing should be removed and the fairing s l id down the leg to expose 
the f i l l e r cap. A mixture of 70^ treated oastor o i l , Stores Eef. 54-1/5 
or 34 k/i$, and 30?S paraffin should be used, and the leg f i l led unt i l i t 
overflows from the filler capo 



Adjusting wheel brakes* 

70. The routine adjustment for wear on the 
brake shoes should be carried out by means of the 
adjustable link, as follows:-

(i) Jack up both wheels and see that the hand 
brake lever is in the off position with the ratchet 
in the last notch of the quadrant. 

(ii) Expand the shoes until the brakes just grip by 
rotating the serrated disc on the adjustable link by 
a screw driver, inserted through the slot in the 
torque plate, rotating the ¡«≥ÁÒ so that the 
serrations nearest the hand move downwards. 

(iii) Slacken off the adjustment until the wheels 
will just move freely. 

The bowden operating cables are 
adjustable at either end, and, in addition, further 
adjustment can be effected by moving the actuating 
lever on the serrated cam spindle. 

Tyre pressure. 

71. The tyres should be kept inflated to 20 
lb. per sq.. in. and must be checked by gauge, a s a 
visual check is liable to be misleading. 



Lubrication of wheel hubs. 

72. Care must be taken not to over lubricate 
the wheel hubs, as excess lubricant m i l be thrown 
outwards on to the brake drums and reduce the 
effectiveness of the brakes. 

Preparation of new wheels. 

73. New wheels drawn from Stores will be 
found to have the brake drums coated on the inside 
with grease and this should be carefully 
wiped off before the wheels are fitted. Care must also be taken to see 
that there is 1/16 in. clearance all round between the «heel and the 
brake casing« I f required, s t e e l shims can be 
f i t t e d on the axle before f i t t i n g the wheel t o give 
this clearance« 

Removal of undercarriage. 

74. The gyropf.ine should be supported on trestles as already des-
cribed (see para. 62) and the rear of gyroplane tied down to a weight on 
the floor. The brake cables should be 
disconnected at the top of the axle and then the 
bolts at the ax'ie and radius rod attachments to 
fuse- lage and at the oleo leg universal blocks may 
be knocked out and the two units removed separately. 

Tail unit. 



75« The horizontal f in and i t s i n t e g r a l 
up-turned t i p s are secured by four lugs on the under 
side of ths spars t o f i t t i n g s on the top 
longeron. The incidence i s variable by adjusting the eyebolt at the 
rear attachment and should be set from +1„° t o +2°. Incidence blocks 
for this- purpose w i l l be found projecting through 
the fabric on the top surface of the l e f t hand and 
the bottom surface of the r ight hand port ion. 
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This h o r i z o n t a l f i n i s stayed ⁄Û four s t r u t s which are a l l adjustable 

f ©jr -length. The two struts on each aide are 
bolted to a common fitting oh the bottom longeron, 
from which they run upwards and outwards, one to 
éa|ch apar, to projecting lugs on the under surface. 
The strut lengths should be adjusted until the front 
and rear spars are horizontal laterally, wiien 
checked with a spirit level. • 

Checking oil level in tail wheel oleo leg. 



76. This ia the same procedure as for the 
main oleo legs« Remove plug in the leg and fill 
slowly with oil of the same composition until it 
; overflows. 

Tyre pressure for tail wheel« 

;77. The tyre should be kept inflated to 30 
lb. per sq. in« and nust be checked by gauge« 

Rotor blades. 

78. The attachment of rotor blade to the 
rotor link, including the friction damper assembly, 
has been described in para. 35. The articulating 
pin, which secures the link to the rotor hub, runs 
in special Hoffman 
needle bearings and is secured with a special washer and .greaser bolt. 
The square ended stop pin is then inserted with its -washers and holt and 
the l a t t e r locked with 'wire t o the greaser bo l t i n 
the a r t i c u l a t i n g p in . 
The l a t t e r and the l ink pin securing the -rotor blade should be well 
greased on aesenbly and" the grease obambers f i l l e d by the grease gun 
before the gyroplane ' is flown. Thé lubr ican t t o 
be used i s Texaco ÌMarfak Grease Mb.8. 

Checking f r i c t i on damper. 

79. After the three blades hare been 
assembled the "pu l l off" of the f r i c t i o n dampers on 
each should be checked as follows:— 



Put on rotor brake and lock the control 
column. Set the rotor to be ohecked in line with 
the fuselages in such a position that the total 
movement of the blade is equally divided-on-e ach 
side of the centre line of gyroplane« Next place a 
piece of tapé round the rotor blade across, the 
centre of the oblong recess where the balance 
weights are fixed, i.e. about 12 inches from the 
tip. The tape should be tied so that the hooked 
end of the spring balance supplied with the tool 
kit can he attached« Now move the blade over to 
the left to the extent of its free movement and 
attach the tape from the trailing edge to the 
spring balancé whioh is tied or secured in any 
convenient manner. It will facilitate the 
operation now if another person will steady the 
rotor by taking hold of one of the other' two 
blades. The blade being checked 
i s gently pulled to the r ight and the reading on the spring balance 
noted. With the blade extended to the right unt i l up against the stop, 
the operation should be reversed with the tape pulling off the leading edge. 
I t will usually be found that the two readings vsiy elightly and the 
friction damper should be adjusted unti l the -mean of the teo readings ia 
consistant at approximately 13 lo° and then looked'. 

Adjusting f r i c t i o n dampS3fv(see fig» 1) 

60» Loosen the lock nut on the top of the 
damper and adjust by 
turning the bottom nut to the right to increase the pressure and to the 
lef t to decrease i t - when the correct pressure has been obtained, seoure 
the adjustment by means of the lock nut above the 
adjusting nut. 

Changing a rotor blade. 



81. The r o t o r blades a re divided i n t o three 
categories by their- weight. The iceight c l a s s of 
any blade i s i d e n t i f i e d by one of the l e t t e r s "A", 
"B" or "C" appearing at the end of t h e s e r i a l 
number pr inted 
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"Folding the ro tor blade E 

. 81Á; ¡¡ When the rotor blades are being folded with the contrai 
if1 i t n ^011^01 l o c l c e d t° i t s ofttcb on the instrument board there i s a 
De main conàiderehle load tending to pull the column out of engagement, 
category and ¡should the column be freed through the inadvertent release of 

• *U ï ^ t t l e i c* t o n ‰ ‡ Î Â ^ ‡ „ Û Ï ‡ ” result to the occupant of the coclcpit,-
˘ V • ** ^ s therefore imperative that the column i s not eo looked 

.f"?1 1 5..1^!! whilst the operation of folding the blades ≥‚ "being performed. 
The blades should be supported when folded ao that they do not 

4. damagB the t a i l unit . This may be effected by means of slings 
univers troia the hangar roof or ⁄Û planks placed across t reat ies 
f™1 !J°D'' situated on each aide of the fuselage." 
and ¯ Ó ^ J i »I ter the f lying position or the ÓÓıË¯.. 



One complete tum will give a 3hift of 
approximately 1 inch at the hands• 

Should less movement be required, the fork can 
be removed, the cross bar 

given half a turn and the fork and shims 
replaced exactly as before. 

It will be found on some gyroplanes that shims 
are fitted between the 

hinge fork and ithe bearing in the cross shaft. 
These shims vary the 

ratio between t|he diving and climbing control 
and should in no account 

be touched. .ín' case the control is ever taken 
down and the correct 

shimning forgotten it should be remembered that 
a shim between the fork 

and the bearing will give more diving control. 

Adjustment of fore and aft bias. 

83B. The initiai'adjustment of the bias i s maue'wrth the blades 
taken off the ^iub. The'control column should.-be. unlocked and the lever 
for the fore and aft bias placed centrally in .the quadrant. In this 
position the lever on the cross tube carrying the eyebolt.of "the front ' • 
longitudinal spring should alao be central. Now push tha control column 
forward, and adjUBt the rear spring so that i t s full .length ≤¬ taken 
up without any! tension.. Adjust the front spring on i t s eyebolt unt i l 
the tension is ' sufficient'tb'hold the control column at a distance, of 12 in, 
from the fuseliage cross tube immediately .below the dashboard.' The 
compensating spring on the longi tudinal b i a s contro l i n the cockpit 
should now be ¡adjusted by pul l ing the hand lever fu l ly back and 

at taching the [spring with a small i n i t i a l tension. 

Adjustment of ¡ l a te ra l bias» 



84. 
j j; 

The ihandwheel should be set i n i t s cen t r a l pos i t ion , 
that is, 
lfi turna fromieither way and the leyer on the r ight hand s ide of the 
O-hraoket should then also be cen t ra l . Push the oontiol" column hard 
over to the r ight and i n this- pnaition the l e f t hand spring should be 
adjusted to hkve'á small i n i t i a l tension. Leave the control column 
free and adjust the r igh t hand spring with i t s eyebolt un t i l , the con-
t r o l column takes up a posi t ion about 1.5 i n . tô the r igh t of the 
centre l i ne ojf gyroplane. 

I ! !! 
85. The! two above positions for the control oolumn are the 

i n i t i a l grrranpL eettinga and further adjustments' ÒÂÎ be mads in. f l ight . . 
IPurfcher, as lis, the case with a l l springs, those forming the bias wi l l i 
no doubt. become "tired*1 i n time and some readjustment wil l be necessary. 
I t should be ¡remembered in making these adjuataænfcs that ÔÓ˝∏.‹Â‡ ≥ÔÂ‚‚ 

• can ⁄ corrected by putting Ì˛ıÂ tension on the .«jiSìrspring. I f the A*-f-
'iejsl" of the ¡controla i s too l igh t r ‹Â‡Ú≥ÔÂ‚‚' oan he added by adding * 
an equal tension t o opposite springe • The two. b i a s c o n t r o l cables 
may, i n timej s t r e t c h a l i t t l e . l o r t h e l a t e r a l ⁄≥‡‚À an adjusting screw 
i s f i t t e d i n [the centre of the soreirtd spindle} and the s l o t may be 
reached ÚÚÿ≥≥ÂÔ ordinary sore* driver inserted down the ⁄Ó„ of the 
hand-nbeel- ! To t ighten the cable» the screw dri-ifer should "be turned 
to tha left» • Õ „̋ the longitudinal control , the l i n k p la te inserted 
between t h e cable and the hand l e r e r bas a series of holes dr i l led i n 
i t , by which.! any slack jbay be taken Up» : 
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Changing a rotor drive shaft 

86. • If,at any time the vertical driving 
shaft from the engine friction 

oiiitòh to the rotor dog clutch is dismantled or a 
new one fitted, the 

following précautions should be observed:-

i±) 'The corresponding f o r t members or ears on the two ¿o in t s must be 
i n ¡tha same p lane , as otherwise , the t ransmiss ion w i l l not ue" uniform, r e -
s u l t i n g i n a very uneven ve loc i ty .and overheating a t the b a l l j o i n t s . 

( i i - ) - i n assembling-component partS'-of t r a n s m i s s i on s h a f t s , i t ' i a 
a b s o l u t e l y impera t ive t h a t t he se should be o o - r e l a t e d one t o . the o t h e r , 

"01? ¡bo "0" as marked. 

Adjustment of clutches 

187- The clutch lover handle In the quadrant 
on the f loor in the rear oojtfjpit should be engaged 
iñ the th i rd notch i n the ratchet ancLohen the 
horden cab le fo r t h e dog c l u t c h adjuatad u n t i l t he dogs a re j u s t meshing-
This may be a s c e r t a i n ed by the f a c t t h a t , when.turned by hand, tho shaf t 
íB¡ ¿ r e e - t o move i n one d i r e c t i o n only . The c l u t c h c o n t r o l handle 'should 
⁄Â≥ pulled up to the sixth notch and the friction 
clutch cable adjusted 
uoitil i t i s impassible t o t u r n t h e ehaft by hand, thus . indicat i ï ig t h a t tha 
c lu t ch ' p la tea ' aro ful ly 'engaged. 'in addi t ion t o t h i a , . the Ò&˙≥ operat ing 
th'e(dÕS"clutah!'Bhould'be. s lack . • Ehe bo-sue» cable con t ro l s are -adjustable-, 
by means "of 'adjusting '‚ÓÚÓ≥Ú‚ a t c i t h e r end, . 



¬≤«ÿ∆“≤ƒÿ 

Éùtìì t a n k 

ÖS.- The fuel tanie ie removed' by removing tho top -bowling., over i.tbi 
the two feed 'pipes' and undoing tho straos /which secure i t to the' top.'' 
lirjàgeron. 

C o n t e n t s ' gauge 

0.9, .This can ⁄‡ removed after freeing tho flange a t the top. "When 
replacing." the ] gauge care must ÂÂ taten that the guide tube for the float 
5.a; properly 'looated in 'the hole in "'the bridge picca on thé tank bottom,-

•!<fel t a n k 

90. To remove t h e o i l t a n k t h e f o l l o w i n g i s 
t he sequence of ¿ o p e r a t i o n s í -

. . ( i ) Eamove t h e p o r t and. s t a r b o a r d a ide pane l s 

o f - t h e engine oowling. 

^ii).Disconnect feed, .return, thci?mometer and drain connections at 
b i l tan3c3-the patrol f i l t e r vrith i t s pipe's to elbow on bulkhead and to 
carburettor. 

(≥≥≥) ≈ÂÁÔÓ engins controls cross shaft. 

(iv) Unlock tank strup and remove sideways. 

Ÿ dismantle rotor head (see fig.Z) 



91* 'The following is the sequence of 

Ó‡Órations:-

(i) Remove the three rotor "€‡‡ÂÁ asd their 

links'. To do this, 

c?ut the looking vrire at tha horisontal lint pins, remove the studs and 
special crashers in the ends of the stop pins (14) the greaser bolt and 

¡rasher for the horizontal a r t i cu la t ing oin, and 
knock out the l a t t e r with 
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(ÁÂÚ) Out the brass locking wire, unacruw stud securing revolution 
indicator drive spur- wheel and remove the lat ter . Note; On ‡‚‚Â¯€Û, i t 
may be neoeaaary to adjust tha head of tho stud unt i l the hole for looking 
wire lines up with the holes in the spur wheel. Remove locking screw (IB) 
and unscrew retaining nut (8) "with special 3-prong spanner* This will 
gradually press out the single bal l race (‰˝) and the retaining nut can then 
be screwed right off. The hub axle can then be extracted with an extractor 
¡tool. I t must not be hanmtered out, as th i s method i s l iable to damage 
tøie "ball races, This wi l l free the langite sealing washer (SO). On 

re-assembling, this item, should be coated with graphite and grease. The 
bal l race (22) and the distance piece (2l) can now be pressed oat with an 
Extractor tool. On re-assembling j the housing (â) and ba l l races should 

be packed in grease, and it is essential that the 



retaining nut i s t ight. 
^..special spanner i s provided for this purpose. If replacements have been 
made, the unit should be assembled without the mounting plate (õ) and the 
jgap between the housing (6) and the base plate (15) checked with feeler 
¡strips. The unit can then be stripped and the distance piece (21) adjusted 
¡in thickness until the hall races are locked. 

(xvi) The hevel gear (lO) can he stripped 
from the stub axle (7) by . remo vi Tig the twelve 
holts, nuts and split pins. 

Ë "When re-asseribling, the process should 
"be reversed. It should 
be noted that the above is for a complete detailed stripping down, andj 
in many cases, it will be found convenient to leave various items (e.g. 

the drain plug and pinion) in place. The grease 

to he used for packing ¡ hall races, rotor huh end 
articulating pins, eto. is Texaco Marfak Brease 
Np. 2. 
lEriction clutch housing 

92. (i) Remove "bowden cable ⁄Û slacking off 
and clearing nipples 

from swivelling bracket. 

(ii) Disconnect "both horizontal and vertical 

driving shafts from "Hardy" 

couplings and universal joints. 

( i i i ) DiBoormeot securing boltö holding housing to frame members 
j and remove clutoh. 



Airscrew and hub 

95. A special spanner is supplied in the 
engine tool kit for this purpose, which fits over 
the airscrew locking nut. On examination an inner 
stub piece will be observed, and on the spanner 

being forced right home, this stub presses in the 
serrated looking device which secures the locking 
nut in position, thus freeing it. Whilst the 
spanner 'is held in this position give the handle a 
sharp blow with a hammer, thus freeing the locking 
nut on the crankshaft. Still pressing the 
spanner inwards, unscrew the looking nut in an 
anti-clockwise direction off the crankshaft, this 
action at the same time releasing both halves of 
the front cone. The !airscrew and hub are now free 
to be withdrawn from the engine, "but it will be 
found, most probably, that the hub is still tight 
on the airscrew, but ;if tapped at the back by hand 

it will free itself and the hub slide- off. 

Replacing airscrew and hub 

94, Careful examination of the splines on 
the crankshaft -will show 
'that two form a master spline by means of a 

small peg Joining them to-
gether, and a similar inspection of the inner 

surface of the airscrew hub 
•will also reveal a master spline formed by a 



spline having been machined 
[away. The lining up of these two master 

splines will ensure that the j ¡¡airscrew hub is 
always fixed in the same position, and will allow 
it to 
¡Islide freely on the crankshaft. 
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The ¡correct procedure i s as follows:-

(i) 
Replace.rear split cone cm crankshaft, making sure that its ̂ aws 
engage,, the* doga on the crankshaft lock-nut. 

( i i ) Plaoe hüb and airscrew; ≥‰ fi‡‚ˇÀÍÓ‚Î with "the above instructions, 
on the crajikahaft, 

( i i i ) ¬Â≥‡ÒÂ the two halves of the front cone on the flange of the 
. look-nut and insert "on the crankshaft ‡‚ a uni t . 

30387-1 
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CHAPTER I ï - SEEGIAL FLUNG NOTES 

Engine starting procedure 

95. "Wien starting up the engine the 
following instruction will 
serve as a guide to the amount of priming required. »„Â number of 
Ki-gass pump strokes quoted are full strokes of the ‰̆  af ter the 
fuel has cc;3nsnced to enter the cylinders. Standing beside the engine 
the fuel can be heard entering the cylinders. 

( i ) "When s t a r t i n g from cold - S 

s t rokes . ' (x i) ifflien engine i s warm -

4 s t rokes . 



( i i i ) When engine i s hot - 2 s t rokes . 

but i f engine f a i l s to s t a r t , open t h r o t t l e wide 
and blow out two complete tu rns . 

( iv ) Mien engine i s hot and day 

temperature i s a l so high, fø ˘-^ u s e Ki-gass but 
giye two o r three pumps on t h r o t t l e lever when 
sucking i n . 

Ground handling and taxying 

96o The control column must be locked i n i t s 
crutch, the 
quick ralease set , and the rotor brake on, töten stationary or 
taxying. I t i s not advisable to have a rotor blade immediately 
over e i the r the nose or t a i l . The fore and af t 
b i a s control lever should be approximately mid-*way 
or s l i g h t l y forward. The gyroplane x a taxied 
e n t i r e l y by the t h r o t t l e and the s tee r ing bars 
control l ing the t a i l wheel. The wheel brakes must 
not be used while the gyro— plane i s moving (see 
para .27) . I f the wind i s very strong avoid taxying 
into i t except a t a very slow r a t e . 

S ta r t ing up r o t o r ~ normal conditions 

97. ( i ) Head in to wind.. 

( ü ) Set fore and a f t b i a s about — down. 



(iii) Lock wheel brakes hard on. 

(iv) Open throttle slightly. 

(v) Release rotor brake. 
(vi) Move rotor control lever inwards 

towards seat and slowly engage it.. The more gently 
the clutch is let in, the smoother beooues the 
initial rotation of the 'rotor. This smooth 
engagement can easily "be checked by watching the 
tips of the.blades. If the clutch is let in fiercely 
it is possible that the engine may be stopped, but 
more important is the fact that the rotor pylon is 
unduly stressed. Finally, pull the clutch lever 
up as far as it will go, otherwise the clutch will 

slip. 
(vii) Slowly open throttle. 

(viii) When rotor revolution indicator 
shews 120 r.p.m. release the catch holding the 
control column in its crutch but continue to hold 
the control column forward. At this 3tage the 
engine revolutions 
should tie S60 and the rotor 120, i.e. a ratio of 8 
to 1, and this shows the clutch is fully engaged. 
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(ix) . Open throt t le slowly u n t i l rotor ¿hows ISO r.p.m. 
l i t t l e oc no wind th is can be increased to 200 or 210 r.p.m). 

(In 

(x) Helease quick release lever, thus 
freeing wheel brakes and dutch. Keep control 
column forward. 

(xi) Open throttle fully, wait two 
secondi!., and ease control column pack until the 
gyroplane lifts off front wheels first and until 
an air speed of from. 20 to 25 m.p.h. is reached. 
During the take-off keep'a ifirm pressure on the 
right steering pedal, to correct a tendency to 
swxdg.lett. 

(xii) When clear of the ground ease 
control column forward. 
The best «Î¬ÈÁ i s 55 imp.h. with normal load and 65 .̄,⁄.* -with f u l l 
load. 

( x i i i ) TOien well away from the ground, 
the quick release should be re—set» 
Starting1 up rotor - wind velocity over 25 m.p.h. 



981 (i) Turn about 100°  to wind, 
with wind on starboard side. 

(ii) Engage wheel brakes and clutch as 
before and get rotor spinning to about 100 to 110 
r.p.m» 

; ( ü i ) Balease wheel ⁄„‡≥ÈÁ‚ and olutch by the hand levers 
(leaving quick release en^xged) and swing into wind on the t h r o t t l e and 

t a i l wheel control, leaving engine about 1,100 
r.p.m. 

(•iv). Put on wheel brakes and engage 
clutch rapidly. 

(v) Run up rotor to 175 r„p.m. (no 
more) and then caruy on as bef pre. 

Should the wind be very gusty or 
variable, be ready to s l i p quick release and take 
off even s l ight ly before 175 rotor r.p.m. 

Hints ¡on start ing 

9.9., ( i ) I f the clutch sl ips and the 
th ro t t l e i s opened too fas t ˜ÿ the rotor 
spinning, t h r o t t l e back a t once. There i s a 
danger of the t a i l r i s ing and the gyroplane 
nosing over. 

( i i ) If, for any reason, the quick 



r e l e a s e f a i l s t o work the ˜È≥ÂÂ≥ b rakes and c l u t c h 
can be thrown, o u t independently, 

( i i i ) Eotor r e v o l u t i o n s w i l l drop 
anything up to 50 to 40 r . p . m . e s p e c i a l l y i n a 
calm, b u t w i l l b u i l d up a s t h e gyroplane moves 
forward. They ¡should,, however, not be allowed to 
drop below ahout 150 r . p .m. 

Table of approximate r o t o r and engine 
r e v o l u t i o ns 

fo r any given vrind speed 

Wind Botor r e v s . 

Engine r e v s , Ó - jLO m»p,h. 200 o r a l i t t l e over 

(solo 195) 1,600 

10 - ¡L5 m.p.n. 
1,520 
15 - Ÿ rn.-p.li. 

1,480 

20 -f (25 m.p.h. 

1,440 

25 -i j30 m.p„h. 

1,400 

190 

185 

180 

175 

http://rn.-p.li
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General flying 

100. The gyroplane responds to controls i n the same way as a nomai 
aeroplane. I f the control eolusEi pul ls e i ther r i g h t or l e f t , th is may 
be corrected by use of the l a t e r a l b ia s . Absence of rudder wil l not be 
noticed but a change in direction, particularly a t high speeds, wil l be 
apparent i f the t a i l wheel i s put hard over. At slower speeds of 
20 - 40 m.p.h. a s l ight lag wil l be noticed in the fore and aft control, 
which may be a l i t t l e disconcerting u n t i l one i s used to i t . Slow 
flying should be practised a t a reasonable height before attempting i t 
near the ground, and a point sborda a lso be made of doing this practice 
into ttie wind, as the effects of the l a t t e r are very noticeable. Try 
out the effect of opening and closing the t h r o t t l e suddenly, as t h i s 
may prove disconcerting i f using engine during a landing. $4ill use 
should be made of the fore and aft b i i s to get the best "feel" on con-
t r o l . I f nose heavy the trimming levar should be sat back s l ightly, 
and i f t a i l heavy, i t should ho set formrd. Eich gyroplane wil l vary 
sl ightly, ofdng to varying adjustments on the bias springs. 

101. Ef a " Braying" or vibration is felt on the ground, when 
starting up rotor, i t is usually due to the friction dampers being set 
unevenly.- I t will tend to smooth out when the rotor revolutions 
approach 100-130 r.p.m* and the blades become stabilised. If i t does 
not, the rotor should be stopped and the friction aampers cilecked over. 
This same defect will produce a alight "once per revolution" pulsation 
on the control column in flight« If a noise like a machine gun ia 
heard from the rotor head, -rilen the engine i s throttled back, i t is a 

sign that the dog clutch is out of adjustment 
and that the dogs are 
rubbing. Another cause of pulsation can be due to slackness in 
fore-and-aft h a l l j o i n t , or the l a t e r a l pin of control column, and a 
feel ing of "looseness" w i l l be. experienced when handling the control 

column. Usually, however, a pulsation fe l t on 



the control column 
will be due to the rotor blades being out of 
static balance. This may 
be due to one blade getting slightly damaged 
or being re-doped excessive-
ly. Another cause of slackness is play in the 
lateral and longitudinal 
rocking pins at the pylon head. 
Gliding 

102. The gyroplane has a final glide with 
normal load, of 45 m.p.h. plus wind speed and 
gliding turns can be executed in the normal 
nanner. 

Hovering with engine on 

105. This is accomplished by running the 
engine at about 2000 r.p.m. 
and easing the control column slowly back. 

Note an object on the 
ground and continue to ease back the control 

column until the object 
appears stationary. This manoeuvre should 
also be practised into wind 
at a reasonable height. The position of the 
nose in relation to the 
ground will vary with the wind strength. 
Vertical descent 



104. The engine should be throt t led down 
and the control column, eased slowly back u n t i l an 
object sighted on the ground appears to „Í¯‡≥Ô in 
the same re la t iv e posit ion. Hie r a t e of 
ver t ica l descent then remains constant a t about 
16 - 18 f t . per second. I t - i s not possible to 
judge a ver t ica l descent by the relat ionship 
between the nose of the gyroplane and the 
horiaon, as this depends upon the strength of the 
wind. Vertical descent should not be 
exaggerated in a calm. The fore and af t trimming 
bias can be used to advantage in both hover- ing 
and v e r t i c a l descent. 

30387-1 È Ó 
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Approaching to land and landing 

105. Until one i s accustomed to the gyroplane 



it is as well to approach very much like a normal 
aeroplane. bater on the. vertical descent can be 
used as a means of losing height in a plane just 
behind the intended landing nark, until about 70 ft. 
from the ground. The control Ò‡≤„̄ Ú. is then eased 
for-ward until an indicated gliding speed of about 40 
m.p.h. is attained and the landing, carried out in 

the usual manner by easing the control column back 

and finally touching the ground slightly tail first. 

A landing made in this manner, with a little forward 

speed, eases the gyroplane as a whole from excessive 
shook and the landing run is barely noticeable. 
When landing the 
feet should be kept braced on the s teer ing bar to hold the t a i l wheel 
steady* 

After landing 

ioe. , ! | | ) 
Put control column forward and lock in crutch. 

(ii) Wien stationary turn to port 'until 

about 120° to wind. 

(iii) Apply rotor brake gently and stop 

rotor. 

(≤≥ ) Bo not taxy until rotor is at rest. 

When landing in a ötrong wind, the gyroplane should 
have a definite forward speed and a "dead stop" 

landing must not be attempted. Inadvertent' 



applicat ion of r o t o r brake or clutch 

107. The roteo? brake or clutch should not be 
applied in the a i r , but i f they are a jpl ied in error , 
no serious r e s u l t s are l i k e l y to 
happen* The r o t o r "brate has bee‡ designed to-avoid, being too f ierce 
i n act ion, and i t should be adjusted so t h a t i t s appl icat ion w i l l 
r e s u l t inj a posit ive but gradual decelerat ion, so 
that any undue torsion on the r o t o r s t ructure ≥ Á 
avoided. I f the r o t o r brake i s applied in f l i g h t , 
the gyroplane w i l l tend to turn to the starboard, "but 
there! i s no marked ≤ÓÁÁ in r o t o r r.p.m. I f the 
gyroplane i s taken off ¡ the ground with the clutch 
engaged i t wi l l swerve to por t , the take-öff run w i l l 
be shortened and the i n i t i a l r a t e of climb improved,j 
but the engine r .p.m. w i l l be down. I f the engine 
should f a i l in these circumstances, the dog-cuutch of 
the mechanical dr ive wi l l overj-ride, and the ro tor 
w i l l free-wheel a t i t s normal r a t e of ro ta t ion . ' ;' I t 
w i l l be obvious t h a t , although mechanical f a i lu re 
w i l l not take [place .when the clutcäi or rotor brake i s 
applied in the a i r , there i s an element of r i s k 
attached when the p i l o t i s a novice, especial ly when 
taking off, and care should be taken to avoid their 
misapplicat ion. 

Bal last ing 

108. No provision i s made for ba l l a s t i ng . 

Setting t a i l trimming flaps (see f ig . io ) 



109. 
f l a p s : -
The following i s the average s e t t i n g of the t a i l trimming 

( ¿ . 1 . - down s l i g h t l y * 
High ¡speed t r i m ( 

(A. 2 - up s l i g n t l y , 

(B.I - up slightly. 
Torque:; trim f 

(‚.2 - down slightly. 

Slow! speed trimmer — - slightly right. 
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Having — central, A.l down and A.2 up 

about 15°, B,1 and B.2 neutral, proceed as 

follows:-

( l ) Trimning t a i l as a -»hole. Siring with C.G. i n average position, 
t a i l incidence must be s e t ' to make "the gyroplane slightly t a i l heavy, 
when opening t h r o t t l e a t any speed. If too t a i l heavy, inoreaae inci-
denoe and vice-versa. Approximate angle of incidence +1¿° t o +2°. 

( i i ) angine torque correct ion a t slow speeds. The incidence of 
each side should be made equal by adjusting the s t r u t s . Ply a t ƒ5 -



40 m.p.h. a t f u l l t h r o t t l e and adjust both b ias springs t o fly "hands 
off. " Thrott le ‹‚‚Í slowly and release control column. The gyroplane 

should continue to be well trimmed la tera l ly . 
If, after throt t l ing back, there i s a tendency to 
turn r ight, the engine torque i s over corrected 
and the horizontal f in should be adjusted to 
decrease in- oidence on the starboard and increase 
i t on the port side, and vice- versa. Pine 
adjustment i s by means of the torque flaps B.l 
and B. 2. 

(iii) High speed trimming. If there is a 
tendeaoy to turn right at high speed, adjust A.1 
down slightly and A.2 up slightly, and vioe-
versa. This adjustment is fine and even a slight 
amount will have quite a large "rudder action." 

(iv) slow speed trimning. If there is a 

tendency to turn left at 

slow speed with engine oh, adjust the v e r t i o a l f i n f lap 0 s l i g h t l y 
r ight and vice-versa. Hefer back to ( i i ) , t r y thiB at high speed and 

adjust B. l and B. 2 so t h a t the gyroplane f l i e s l e v e l a t a l l speeds, 
ignoring any s l i g h t t u m ( i f t h e r e i s any). The gyroplane should 

tilt slightly to port after throttling back. 

(v) Centralising control column. All the 
above adjustments are made without regard to the 
control column position. "When the tail trimming 
has been corrected to the satisfaction of the 



pilot, the 
position of the control ooluinn may be corrected. 

20387-1 27 
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FRICTION DAMPER FOR ROTOR BLADE FIG. I 
‰ÓÙÌ^Ïˇ‰Â Î≥˜„‚ÌÔ*« 
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PYLON STRUOTURE AND TOP JOINT 

APPENDIX   
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DIAGRAM OF OIL SYSTEM. FIG, 4 
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PORT MAfiNETO Q n 
/ ~ \ ST/WBOARD MAGNETO 

FUPIL'3 SWITCH ≤ À À 
(REAR COCKPIT) 

MASTER SWITCH 
(FRONT COCKPIT) Ö <\ WSTRUCTOR SWITCH 

-V (TRONT COCKPIT) 

'EARTH 
fON E N G I N E ) 



IGNITION WIRING DIAGRAM. ≤œ5. 5 ~ 
 », . ≥ ≥ ˜ ˜ . i- 3 Of rr-
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POG CLUTCH UNIT 

VERTICAL DRIVING SHAFT. . 

POE CLUTCH CABLE. 

PLATE CLUTCH UNIT. 

HOaZONTAL 
DRIVING SHAFT 

PLATE CLUTCH 
CABLE. 

FRONT COCKPIT 

i ROTOR BRAKES 
BLŸ 

REAR COCKHT 



MECHANICAL STARTER. FIG. S. 
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NOTE--
(… THE CCBflE5prjMON6 FORK MEMBERS OR EARS ON THE 

TWO JOINTS MUST BE IM THE SAME PL AME, AS OTHERWISE, 

THE TRANSMISSION M L NOT BE UNIFORM RESULTING 

IM A VERV UNEVEN VELOCITY AND OVERHEATING AT THE 

BALL .jrjNTS, 

0 0 IN ASSEMBLING COMPONENT RARTS OF TRANSMISSION 

SHAFTS, √“ 13 ABSOLUTELY IMPERATIVE THAT THESE 

SHOULD BE CO-RELATED ONE TO THE OTHER 

'O'TO ' O ' , A 3 MASKED. 

CORRECT. 

(ILLUSTRATION I.) 



INCORRECT. 

(ILLUSTRATION g ) 

VERTICAL DRIVING SHAFT. [FB. 8. 
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A - HIGH SPEED 
“ œ ≥ ” Ã ≥ Õ … 



L J 
FLAPS. 

TRIMMING. 
Al. 

T A L TRIMMING FLAPS |Flû 10. 
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MAINTENANCE SCHEDULE 

1. This schedule describes the technical 
detail of the maintenance and shows the 
routine which is considered to be necessary 
in normal 
circumstances. It is not to be interpreted as absolving any persons 
concerned; from the responsibility of acquainting themselves with or 
acting upon any circumstances indicating the necessity for 
additional work. 

2. Fot purposes of convenient reference, the aeroplane is divided 
into a number of assembly groups, each having the distinguishing 
reference letters given below :— 

Airframe 
Uc. Undercarriage. 

Co. Cockpits. 
Fu. Fuselage. 
Ta. Tail unit. 

PL Rotor. 
Ge. General. 



Engine and Installation 

Ig. Ignition. 
Pe. Fuel system. 
Ol. Oil system. 
Cy. Cylinders. 
As. Airscrew. 
Cn. Controls. 

St. Doping and starting. 
Ge. General. 

3. The principal feature of 
maintenance consists of adequate 
periodical inspection, the frequency of which will depend upon the 
nature of the assembly group and its duty. 

4. The details of the inspections are 
given in progressive form, and f or any 
period, the complete detail will be 
obtained by adding 
the corresponding detail for all the shorter periods. 

5. The sequence of operations is to be 
followed as far as possible, 



and where the inspections are spread over the allowable periods 
the appropriate tradesman is responsible that no operation is 
missed. . . , . 

6. It'lis desirable, but not essential, 
that the hours at which periodical 
inspections are due should be made to 
correspond with 
the flying hours of the airframe, engine, etc., e.g., that 10-hour 
inspections should occur at 10, 20, 30, 40, etc., hours, that 20-hour 

inspectiohs should occur at 20, 40, 60, 
80, etc., hours ; and that the 40-hour 
mspections should occur at 40, 80 and 120 
hours. 
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Amendments.—Amendments m a y be deletions from or additions 
to the schedule. They may be circulated generally by the Air 
Ministry or they may be made locally as the result of accumulated 
experience or to meet peculiar local conditions. They are to be added 
in red ink on the schedule (and on the drawings), and are to be 

numbered in their proper sequence. 
Where a deletion is made, the 
existing number is to be cut out ; it is not to be used to represent 
alternative work. Where an addition is made, it is to be numbered 
by means of a letter suffix to the number immediately preceding 
(e.g., P1.29.a, etc.). The Air Ministry is to be notified in April 
of each year through the usual channels of all amendments found 
necessary, together with the reasons for their adoption. This will 
make it possible to circulate information to other units concerned 
and will ensure that subsequent reprints of the schedule embody the 
results of accumulated maintenance experience. 
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MAINTENANCE SCHEDULE FOR 
ROTA 

WITH CIVET I ENGINE 

AIRFRAME 

INSPECTION BETWEEN 
FLIGHTS 
Group. 
Ref. 

Note.—The details of this 
inspection need 

not be entered on the Aircraft 
Maintenance 

1-
Form. 
See any reports on the Aircraft Maintenance 
Form. 

2:; Inspect the undercarriage for 
damage and see 

that the tyre pressures appear normal. 



Examine the pressure head for damage. 
4≤ Examine the rotor blades at the 

tips and the 
leading edges fór wear to the 

fabric, thinness 
of dope, or damage. 

'5¡* See that the rotor will turn 
easily without any A.P.1490, 

signs of " picking-up " or binding. 
For this Vol. I, 

operation it will be necessary to 
ensure that para. 40. 

the rotor brake and clutch are 
disengaged. 

6. Examine each rotor blade in turn 
for freedom 

of movement in a vertical plane. 
% Examine the tail wheel for 

damage and see 
that the tyre pressure appears 

normal. 



3'. Examine the safety pins of the 
Sutton safety A.P.I 182/ 

belt, in each cockpit, for distortion or 
fracture. B.3. 

9, See that all loose 'articles and the 
locker lid K.R. & 

are properly secured. 
A.C.I.. 
para. 704. 

10. Report to the next pilot before he ' ' 
takes off." 

INSPECTION DAILY. (DÍA.) 
Notes.—See any reports on the 

Aircraft Maintenance Form. 
The lubricant to be used at all points 

where A.M.O. grease nipples are provided is 
Texaco Marfak N.545/34. No. 2. I t is also 
to be used for packing the rotor hub, 
packing the ball races and greasing 
articulating pins, etc., throughout the 



rotor system, when reassembling after 
dismantling. 
In all other cases the types of lubricant to 
be used are laid down in A.P.1464/D.68. 

Details of the aeroplane are given 
in A.P.1490, Volume I, 1st Edition. 
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5 

Group. 
Ref. 

Undercarriage. (Uc.1/4.) 
Uc.l. 
See that the undercarriage attachments are 
secure. 
Uc.2. See that the wheels are properly 
secured. Uc.3. See that the tyre pressures 



appear normal and 
examine the tyres for cuts and 

other damage. Uc.4. Check the 
functioning of the oleo leg by 

rocking the aeroplane. 

Cockpit rear. (Co.1/11.) 

Co.l. See that the steering bar can be 
operated 

without excessive backlash. 
Co.2. Operate the control column both 
transversely A.P.1490, 

and longitudinally and see that 
full and free Vol. I, 

travel is obtainable without 
backlash. para. 43. Co.3. 
Check the action of the fore and aft bias control 

gear and see that it moves freely. 
Co.4. Check the action of the lateral 
bias control 



gear and see that it moves freely. 
Co.5. See that the fire extinguisher is 
properly 

secured in its fitting. 
Co.6. Inspect the safety belt and its 
anchorages for 

security. 
Co.7. See that the windscreen is secure. 

Cockpit, front. 

Co.8. See that the steering bar can be 
operated 

without excessive backlash. 
Co.9. Operate the control column both 
transversely 

and longitudinally and see that 
full and free 

movement is obtainable without 
backlash ; in 

particular at attachment to the 
rear control 

column. 



Co. 10. Inspect the safety belt and its 
anchorages for 

security. , Co.ll. 
See that the windscreen is secure. 

Fuselage. (Fu.l.) 

Fu.l. See that the fabric covering and 
fabric lacing 

are undamaged. 
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6 
Group. 
Ref 

Tail Unit. (Ta.1/5.) 
Ta.l. 



Inspect the top and bottom vertical fins, and 
the horizontal fin and tips for external damage. 
Ta.2.¡ Inspect the bracing struts of the 
horizontal 

fin for damage. 
Ta.3. See that the tail wheel is properly 

secured. Ta.4., See that the tail wheel 
tyre pressure appears 

normal and examine the tyre for 
cuts or other 

damage. 
Ta.5.': Check the functioning of the tail 
oleo leg by 

lifting or rocking the aeroplane. 

Rotor. (Pl.1/6.) 
Pill. ; Inspect the tips and leading edges 
of the rotor 

blade for damage, wear of fabric 
or thinness 



of dope. 
PL2. 

See that the rotor will tum easily without any A.P.1490, 
sign of " picking-up " or binding. For this, Vol. I, 
it will be necessary to ensure that the rotor para.40. 

brake and clutch are disengaged. 
P1.3. Examine each rotor blade in turn 
for freedom 

of movement in a vertical plane. 
PL4. 

Inspect and lubricate vertical and horizontal A.P.1490, 
articulating pins. Vol. I, 

Note.—Tecalemit nipples are fitted. fig. 9, 
reís. 3 & 4. 

P1.5. Lubricate the rotor hub axle. 
A.P.1490, 

Note.—A Tecalemit nipple is fitted. 
Vol. I, 
fig- 9, 



5. 
Check the setting for the friction dampers A.P.1490, 
(the " pull-off ") for each rotor blade. Vol. I, 

para. 77. 

General. (Ge.1/4.) 
Ge.il b See that all cowling panels and 
inspection 

doors are undamaged and 
securely fastened. 

Note.—Turnbuttons should all 
be in the line ¡ of night. 
Gé.2¡; 
See that all loose articles are properly secured. K.R. & 

A.C.I., 

para. 704. 
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Group 
Ref. 

General. (Ge.1/4)—cora. 
Ge.3. Keep the aeroplane and cockpits 
clean. 
Ge.4. 

Make the necessary entries on the Aircraft K.R. & 
Maintenance Form. A.C.I., 

paras. 669 & 671. 

INSPECTION EVERY 10 
HOURS. (10LA.) 

Undercarriage. (Uc.21/85.) 
Uc.21. Lubricate the shackle bolts at 
the fuselage A.P.1490, 

ends of the axles and radius rods 



and see that Vol. I, 
they are securely locked. 

Note.—Tecalemit nipples are fitted, 
fig. 9, 
refs. 7 & 8. 
Uc.22. Lubricate the bolts at both ends 
of the oleo A.P.1490, 

leg and see that they are securely locked. 
Note.—Tecalemit nipples are fitted. 

Vol. I, 
fig. 9, 
ref. 9. 

Uc.23. Lubricate the bolts at the bottom 
end of the A.P.1490, 

radius rod and see that they 
are securely Vol. 5, 

locked, 
fig. 9, 

ref. 10. 
Uc.24. See that all axle, radius rod 
and oleo leg 

fairings are secure. 
Uc.25. Lubricate the wheel bushes. 



A.P.1490, 
Note,—Tecalemit nipples are fitted. It Vol. I, 

will be necessary to remove the wheel failing fig. 9. 
disc to obtain access. ref. 1. 

Cockpits. (Co.21/26.) 
Note,—The following inspection 

should be 
carried out in the rear cockpit. 
Operate the brake lever to 

correct 
functioning of brake control. 

Co.21. 
ensure 

Co.22. 
Operate the rotor brake and then the rotor A.P.1490, 
clutch lever to ensure their correct functioning. Vol. I , 

para. 
85. 

Co.23. 

Check the operation of the quick release lever 
by locking on the wheel brake lever and either 
the rotor brake or clutch lever, and ascer-

taining that it releases them. Also check 
that , with the control column locked in i ts 



crutch, the quick release lever is 
locked. 
Co.24. Inspect the four seat attachment 
points for 

security and damage. 
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Group. 
Ref. 

Cockpits. (Co.21/26)—coni. 

The following inspection should 
be carried 

put in the front cockpit. 

Co.25. Lubricate the bottom universal 
ball joint on A.P.1490, 

. the vertical transmission shaft. 



Vol. I, 
Note.—A Tecalemit nipple is fitted. Access fig. 9, 

is obtained by removing the clutch cover. ref. 2. 

Co. 26. Inspect the four seat attachment 
points for 

security and damage. 

Fuselage. (Fu.21/24.) 
Fu.2L Lubricate the splines at the 
bottom of the A.P.1490, 

vertical transmission shaft. 
Vol. I, 

Note.—A Tecalemit nipple is 
fitted. Access fig. 9, 

is obtained by removing the top 
cowl panel. ref. 11. 
Fu.22i 

Inspect the top and bottom attachments of 
lithe tail wheel oleo leg to the top and bottom 

llongerons and see that they are 
secure. 

I Note.—Access is obtained 



through an in-
'spection door at the end of the 

fuselage. 
Fu.23. ¡Check the correct relationship 
between the A.P.1490, 

friction clutch and the dog clutch. 
Ensure Vol. I, 

that the dog clutch engages before 
the friction para. 85. 

iclutch. 
¿√Ó¿Á.—Access to the control 

quadrant is 
[| obtained through a door in the 

fairing on the 
left-hand side of the rear cockpit. 

Fu.24. Lubricate the gland in the 
bulkhead for the A.P.1490, 

clutch drive. 
Vol. I, 

fig. 9, ref. 12. 

Tail Unit. (Ta.31/27.) 



Ta.21. ¡I Inspect the four points of 
attachment of the 

horizontal fin to the fuselage for 
security. Ta.22. Inspect the horizontal fin 
stay tube attach- ments to the 
horizontal fin and fuselage for 

security. 
Ta.23. Lubricate the tail wheel bushes. 

A.P.1490, 
Note.—A Tecalemit nipple is 

fitted. Vol. I, 
i 

fig. 9, 

ref. 15. 
Ta. 24.; |j Examine tail wheel check cables 

for damage. 
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Ref. 

Tail Unit. {TB,.21¡27)—coni. 

Ta.25. 

Inspect and lubricate the pins at the tail A.P.1490, 
wheel lever and examine the external run of Vol. I, 

cable for corrosion and fraying 
where they fig. 9, 

pass through fairleads. 
ref. 16. 

Ta.26. Inspect the trimmers on the 
horizontal fin 

and tips for damage and security. 

Ta.27. Inspect the vertical fin trimmer 
attachments 

for damage and security. 



Rotor. (PLSl/29.) 
Note.-—It will be necessary to remove rotor 

head fairing for these inspections. 

P1.21. Inspect the attachments of the 
pylon struts 

to fuselage and rotor head for 
security. PÎ.22. Inspect the attachments 
of the control 

columns for security. 

P1.23. Inspect for security and lubricate 
each side A.P.1490, 

the longitudinal hinge pin. Inspect 
for any Vol. I, 

backlash or wear. The clearance 
between para. 36, 

the nut and huh must not exceed 
•002 in. fig. 9, 

Check with a feeler gauge, 
ref. 17. 

Note.—A Tecalemit nipple is fitted on each 
side. 



PI.24. Inspect for security and lubricate 
the lateral A.P.1490, 

hinge pin. Inspect for any backlash 
or wear. Vol. I, 

The clearance between the nut and 
hub must para. 36, 

not exceed -002 in. Check with 
a feeler fig. 9, 

gauge, 
ref. 18. 

Note.—A Tecalemit nipple is 
fitted on the 

right-hand side. 
P1.25. Lubricate the ball joint at the 
top of the A.P.1490, 

control column. 
Vol. I, 

Note.—A Tecalemit nipple is 
fitted. fig. 9, 
ref. 19. 



P1.26. Inspect for security and lubricate 
the hinge A.P.1490, 

fork pin for the control column. 
Vol. I, 

Note.—A Tecalemit nipple is 
fitted. fig. 9, 

ref. 20. 
P1.27. Inspect for security and lubricate 
the bah A.P.1490, 

socket for the fork on the cross shaft. 
Vol. I, 

Note.—A Tecalemit nipple is fitted, 
fig. 9. 
ref. 21. 

(24230) 
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Ref. 

Óiotor. ( P ≥ . 2 1 / 2 9 ) — c o n i . 

P1.28, Inspect for security, damage or 
wear, the four 

bias springs and their anchorages. 
P1.29. Lubricate the top 
universal and ball joints on A.P.1490, 

the vertical transmission shaft. 
Vol. I, 

Note.—Tecalemit nipples are 
fitted. ref. 6. 

INSPECTION EVERY 20 HOURS. (20 
I.A.) 

Undercarriage. (Ue.81/33.) 

Uc.31. Check the oil content of the oleo 
leg. A.P.1490, 

; Note.—See the instructions on 



the oleo leg Vol. I, 
iairing. 

para. 67. Uc.32. Check the tyre pressures 
by gauge. 

Note.—The correct pressure is 
201b. per 

square inch. 
Uc.33. Try the brakes for 
simultaneous operation and 

ehsure that the shoes are not 
rubbing when 

the brake lever is released. 

Cockpit. (Co.31/40.) 

The following inspections should 
be carried 

opt. in the rear cockpit. 
Co .31. Inspect the steering bar for 
security and A.P.1490, 

lubricate the pivot pin. 
Vol. I, 



Note.—A Tecalemit nipple is fitted, 
fig. 9, 
ref. 22. 
Co.32. 

Inspect for security and lubricate the con- A.P.1490, 
necting rod at the joint between the front and Vol. I, 

\ rear steering bars, 
fig. 9, 

ref. 23. 
Co.33. Inspect the fore and aft bias lever 
and spring A.P.1490, 

for security and lubricate the pms. 
Examine Vol. I, 

: the cable splice and shackle for 
security and fig. 9, 

'• lubricate the pin. 
ref. 24. Co.34. Examine the cable for 
wear and fraying, A.P.1490, 

especially where it runs over 
the pulley. Vol. I, 

Lubricate the pin through the 
pulley. fig. 9, 

ref. 24. 



Co.35. Inspect the connecting rod from 
the quick A.P.1490, 

release lever to the brake and the 
rotor control Vol* I, 

quadrant for damage and lubricate the pins. fig. 9, 
ref. 25. 
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Cockpit. {Co.31/40)—cont. 
Co.36. 

Inspect for security and take up any slack in A.P.1490, 
the Bowden cable from the quick release lever Vol.. I, 

to the control column crutch. 
Lubricate the fig. 9, 

slide and spindle of the quick release gear. ref. 26. 
Inspect the control column locking crutch 



and the clip for security. 
The following inspections should 

be carried 
out in the front cockpit. 

Co.37. 

Inspect the steering bar for security. Lubri- A.P.1490, 
cate the steering bar pivot pin. Vol. I, 

Note.—A Tecalemit nipple is fitted. fig. 9, 
ref. 27. 

Co.38. Inspect for security and lubricate the con- A.P.1490, 
necting rod at the joint between the front and Vol. I, 
rear steering bars. fig. 9, 

ref. 23. 

Co.39. Inspect for security and lubricate the lateral A.P.1490, 
bias gear mounted at the front of the rear Vol. I, 
instrument board on the right-hand side. fig. 9, 
Inspect the cable for wear and fraying, especi- ref. 28. 

ally where it runs over the two 
pulleys. Lubri-

cate the pins through the pulleys. 



Co.40. Inspect for security the attachments 
of the 

Bowden cables to the clutch lever. 

Fuselage. (Fu.31/34.) 
Fu.31. Inspect the wheel brake, rotor 

clutch and A.P.1490, 
brake control quadrant for security 

and lubri- Vol. I, 
cate the ratchet gear and all pins. 

Inspect for fig. 9, 
security and take up any slack in 

the Bowden ref. 29. 
cables at the quadrant. 

Note.—Access is through a 
door in the 

fairing on the left-hand side of 
the rear 

cockpit. 
Fu,32. 



Inspect the rear steering bar attachment bolts A.P.1490, 
for security. ' Inspect the cable splices, pins, Vol. I, 

and shackles for wear, damage 
and security fig. 9, 

and lubricate the pins, 
ref. 30. 

Ißspect and take up any slack in the Bowden 
cables. 

Note.—Access is by a door in 
the fairing 

under the cockpit. 
(24230) 
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Fuselage. (Fu.31/34)—cont. 
Ref. 

¡Fu.33. Inspect the front steering 



bar attachments 
for security. 

Note.—Access is through a 
door in the 

fairing under the cockpit. 
Eu.34. 
Check the air speed indicator pipe lines for A.P.1275, 
leaks. Vol. I, 

chap II, 
para. 

27. 

Tau Unit. (Ta.31/35.) 
Ta.31. Check the correct oil content of 
the tau wheel A.P.1490, 

oleo leg. 
Vol. I, 

Note.—See the instructions on 
the leg. para. 74. Ta.32. Check the 
tyre pressure by gauge. 



Note.—The correct pressure 
is 30 lb. per 

square inch. 
Ta.33. Inspect the tail wheel lever for 
damage and 

security. 
Tia.34. See that the bolts securing the 
tail wheel are 

secure. 
Ta.35. Inspect the tail wheel fork for 
damage and 

security. 

Rotor. (PL31/38.) 
f 1.31. 

Inspect the pylon strut attachments to the 
fuselage and rotor head for corrosion and see 

that they are secure and properly 
locked. 



PI. 32. Inspect for wear, damage and 
security the A.P.1490, 

friction damper plates and 
discs, studs and Vol. I, 

spigot for each blade, 
para. 35, 

Note.—The grease well is to 
be filled with fig. 1. 

lubricant when replacing. 
P1.33. Lubricate the dog clutch. 

À.P.1490, 
Note.—A Tecalemit nipple is 

fitted. Vol. I, 
fig. 9, ref. 31. 

Pl.34. Inspect the rotor brake 
Bowden cable for A.P.1490, 

security and take up any slack. 
See that the Vol. I, 

brake shoes are not rubbing 
when the brake fig. 9, 

lever is released. Lubricate the 



pin at the ref. 32. 
lever and see that it is secure. 
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Rotor. (Pl.31/38)—cont. 

P1.35. Inspect the dog clutch Bowden 
cable for A.P.1490, 

security and take up any slack. 
Lubricate Vol. I, 

the pin at the lever and see that 
it is secure, fig. 9, 

ref. 32. 

P1.36. 



Inspect for security and lubricate the pins A.P.1490, 
securing the four bias springs. Vol. I, 

fig. 9, 

ref. 34. 
P1.37. Lubricate the bearings of the 
levers actuating A.P.1490, 

the fore and aft and lateral bias 
springs. Vol. I, 

Note.—Oil holes are provided, 
fig. 9, 
ref. 35. 
P1.38. Inspect for stretch or fraying 
the control A.P.1490, 

cables for bias spring levers. 
Examine cable Vol. I, 

splices and pins for wear, damage and security, fig. 9, 
and lubricate the pins. ref. 36. 

INSPECTION EVERY 40 HOURS. (40 
I.A.) 



Undercarriage. (Uc.61/64.) 
Uc.61. Remove the wheels and inspect 
the axle stub A.P.1490, 

for damage. 
Vol. I, 

para. 72. 

Uc.62. Examine the brake linings for wear 
and cracks A.P.1490, 

and lubricate the working parts 
of the brake Vol. I, 

gear in the drum very sparingly. 
para. 70, 
fig. 9, 

ref. 37. 

Uc.63. Examine the bearings and see that 
the wheels 

are replaced securely and with the nut 
and split 

pin in position. 



Uc.64. See that there is no excessive 
slackness of the 

wheels on the axle stub. Check 
that there 

is no side play on the wheels. 

Fuselage. (Fu .61.) 

Fu.61. Inspect the engine ring, struts 
and attach-

ment fittings at the fuselage, 
including all 

bolts, for security. 
Note.—The cowling must be 

removed. 
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Group. 
Ref. 

Tail Unit. (Ta.61/64.) 
Ta.61. 
Remove the tail wheel and inspect the axle for A.P.1490, 
damage. Vol. I, 

para. 62. 

Ta.62. 

Examine the bearings and see that the wheel 
is replaced securely with the nuts and split 

pin in position. 
Ta.63. See that there is no excessive 
slackness of the 

wheel on the axle. 
Ta.64. Inspect the horizontal and 
vertical fins 

externally for signs of internal 
damage. 



Rotor. (Pl.61/63.) 
P1.61. Inspect for wear the horizontal 
and vertical A.P.1490, 

articulating link pins for each blade. Check Vol. I, 
that with the blade removed the rotor link paras. 34 

will just drop by its own weight 
and that there & 76. 

is no " play " in any of the pins. 
Check that 

no " picking-up " has taken 
place between 

the jaws of the rotor head and 
the fork end 

on the rotor blade. 
Note.—This only applies to 

the earlier 
gyroplanes, as on later types a 

bronze wearing 
washer is fitted at these points. 

In carrying 
out the inspection special care 

should be taken 



when driving out the pins 
holding the rotor 

blade to the rotor head. 

P1.62. Check the movements of the 
rotor head and A.P.1490, 

inspect for any signs of " play/1 

Vol.1, 
fig. 7. 

P1.63. Inspect each rotor blade 
externally for any 

sign of internal damage to the 
ribs, leading 

and trailing edges or of the 
attachments of 

the tip or the fork at the root. 

INSPECTION EVERY 120 HOURS. 
(120 I.A.) 

Fuselage. (Fu.101/103.) 



Fu. 101. Remove or fold back the fuselage 
fabric and A.P.1464/ 

inspect the fuselage members 
for bowing, D.29. 

damage and corrosion, and check 
the security 

of the fairing and decking clips 
on the longeron. 
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Fuselage. (Fu.101/103)—cont. 
Fu. 102. Check the tension of all bracing 
wires and the 

locking of stringers. 
Note.—Before any 



adjustments are made, 
the aeroplane must be put 

into the rigging 
position. 

Fu.103. Dismantle the clutch and examine the plates A.P.1490, 
for wear, damage or security. The plates Vol. I, 
should be dry and any signs of grease removed, paras. 86 
They are to be packed with grease and the ball & 90. 

. races lubricated, avoiding excess of lubricant. 
For this inspection the fuel tank must be 

removed. 
Rotor. (Pl.101/103.) Pl. 101. 

Inspect the pylon struts for any 
bowing. 
signs of A.P.1464/ 

D.29. 

PI. 102. 



Dismantle the rotor head and inspect for wear, A.P.1490, 
damage and security. Vol. I , 

para. 89. 

P1.103. 

Inspect the rotor blades for any signs of bowing 
and check the weights to ensure they, are still 

in static balance. 

General, (fåe.101.) 
Ge. 101. Carry out a check on the rigging of the com- A.P.1490, 

plete aeroplane. Vol. I, 
fig. 7. 
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CIVET I ENGINE 

INSPECTION BETWEEN 
Group. 

FLIGHTS 
Note.—The details of this inspection need 
Ref. 

not be entered on the Aircraft 
Maintenance 

Form. 
1. 

See any reports on the Aireraft Maintenance 
Form. 

2. See that the switches are " off." 

3. Inspect the airscrew for damage. 
4. Make a general examination of 

the fuel and A.P.1490, oil systems 
for obvious leaks. Vol. I, 



para. 49. 
5. Replenish the fuel and oil tanks if 
necessary A.P.1464/ 

and see that the filler caps are properly secured. 
G.24. 

A.P.957, 
para. 

52. 
6. See that no cowling panels appear 
loose or 

cracked. 
7. Report to the next pilot before he " 
takes off " 

and state the approximate amount of 
fuel and 

oil in the tanks. 

INSPECTION DAILY. (D.I.E.) 
Note.—See any reports on 

the Aircraft 



Maintenance Form. 

Ignition, (fe.1/2.) 
Ig.l. Inspect the switches for correct 
mechanical A.P.1490, 

functioning and see that they are 
" off." Vol. I, 

fig. 
5. Ig.2. See that all H.T. leads and 
sparking plug 

connections are secure and the 
plugs un-

damaged. 

Fuel System. (Pe.l.) 
Pe.l. 
Inspect the unions and pipe lines for leaks. 
A.P.1490, 
Vol. I, 

para. 49. 
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Oil System. (01.1.) 

01.1. 

Inspect the pipe lines and unions for security A.P.1490, 
and for leaks, particularly on the suction side Vol. I, 
of the pressure pump. para. 51. 

Cylinders. (Cy.1/4.) 
Cy.l. 



See that the sparking plug and other cylinder 
joints are tight. 

Oy.2. Inspect the valve springs for 
fractures and the 

rocker arms for damage. 
Cy.3/ Check (without feelers) for 
excessive valve 

clearance. 
Cy.4. Inspect the exhaust manifold for 
security. 

Airscrew. (As.l.) 
-As.l. See that the airscrew hub is 
tight upon the 

airscrew shaft. 
Note.—After initial 

attachment the air-
screw should be examined for 

tightness at the 
end. of each of the first one or 



two nights. 

Controls. (Cn.l.) 
Cn.l. Test the throttle and mixture 
controls from 

both cockpits for freedom of 
movement. 

General. (Ge.1/5.) 
Ge.l. Remove oü and dirt. 
Ge.2. Replenish the fuel and Óƒ tanks 
if necessary, A.P.1490, 

and see that the filler caps are firmly secured. Vol. I, 
Note,—The fuel filler is in the centre of the paras. 48 

top aluminium panel aft of the 
bulkhead. & 50. 

Access to the oil filler is 
through a hand A.P.957, 

hole on the left-hand side 
alumimum panel in para. 52. 

front of the bulkhead. 
A.P.129, 



para. 167. 
Ge.3. See that no tools or rag are left 
lying On the 

engine. Ge.4. Inspect the 
engine cowling for security. 

Note.—All tumbuttons must 
be in the line 

of flight. 
Ge.5. Make the necessary entries on 
the Aircraft K.R. & 

Maintenance Form. 
A.C.I.. 

paras. 669 
&671. 
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INSPECTION EVERY 10 



HOURS. (10. LE.) 
Group. 
Ref. 

Fuel System. (Pe.21/23.) 
Pe.21. Remove and clean the filter on the 
bulkhead. 

Note.—When the filter is 
dismantled, see 

that the gauze is not damaged ; 
and do not 

use rag for cleaning. Ensure 
that the filter 

is locked when it is reassembled. 
Pe.22. Check for flooding of the 
carburettor under 

the pressure of the normal working head of 
fuel. 

Pe.23. Inspect the tank for security and 
leaks. 

Oil System. (01.21/23.) 
01.21. Remove and clean the scavenge 
pump filter. 01.22. Remove and clean the 



pressure filter. 
Note.—When the filters are 

dismantled see 
that the gauze is not damaged and 

do not use 
rag for cleaning. Ensure that the 

filter base 
is locked when it is reassembled. 

01.23. Inspect the tank for security and 
leaks. 

Cylinders. (Cy.21/25.) 
Cy.21. 

Inspect for wear at the rocker sockets and 
their enclosed steel thrust pads and at the 

corresponding ends of the tappet 
rods. 

Cy.22. Inspect the steel striking pins at the 
valve ends 

of the rocker arms for wear. 



Cy.23. 
Check the valve clearances with feelers. 
Cy.24. See that the locking ring on each 
cylinder is 

tight ; avoid overtightening the 
bottom ring, 

which may deform the cylinder or 
crack the 

'ring. 
Note.—After initial 

attachment the rings 
should be checked up at the end of 

each of the 
first one or two flights. 

Cy.25. 
Inspect exhaust manifold for excessive burning 

or cracks. 

Airscrew. (As.21.) 
As.21. See that the hub bolts are secure 
and properly 

locked with the tab washers. 
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Controls. (Cn.21/24.) 
Cn.21. Examine the connecting rods of 
the throttle A.P.1490, 

and mixture controls and see that they are Vol. I, 
secure ; lubricate the pivot points, fork ends fig. 9, 
and fireproof bulkhead slides. ref. 38. 

Note.—On the left-hand side of 
the fuselage. Cn.22. Lubricate the bearings 
of the engine control A.P.1490, 

hand-levers. 
Vol. I, 

Note.—On the left-hand side of 



the fuselage, fig. 9, 
Tecalemit nipples are fitted, 

ref. 39. Cn.23. Inspect for security and 
lubricate the bearings, A.P.I490, 

fork ends and pins of the fuel cock 
control. Vol. I, 

Note.—On the right-hand side 
of the fuse- fig. 9, 

lage. 
ref. 40. Cn.24. Inspect for security and 
lubricate the bearings A.P.1490, 

of the engine control countershafts. 
Note.—On the lower side struts 

engine mounting. 

INSPECTION EVERY 20 HOURS. 

Ignition. (Ig.31/35.) 
Ig.31. Remove and clean the sparking plugs. 



Vol. I, 
of the fig. 9, 

ref. 41. 
(20 LE.) 

Re-set A.P.1464/ 
the gaps and test the plugs at a pressure of B.12. 
100 lb. per square inch. 

Note.—Graphite should be 
used on the 

screw threads when refitting the 
plugs. Ig.32. Check the gap between the 
magneto contact 

breaker points and see that the 
rocker arm 



is free and that the points are 
securely locked. 

Note.—When carrying out this 
check see 

that the rocker arm is riding on 
the highest 

point of the cam, and apply 
finger pressure 

to ensure that the contact 
breaker is home 

in its housing. 
Ig.33. Clean and examine the 
distributor and con-

tact breaker covers for cracks, 
and see that 
Ig.34. 
the connections to each are tight. 
Inspect the runs of the H.T. cables 
for 

damage ; the cables must not 
be tightly 

stretched. 
Ig.35. See that the run of the L.T. 
cables is free 



from oü, that it is secure against 
fire in any 

part of the airframe, and that 
it is not in 

contact with any parts likely to 
become hot. 
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Fuel System. (Pe.31/33.) 
≈Â.«≤. Break the pipe connection at the 
carburettor 

and check that the fuel flow is not 
restricted. Pe.32. Inspect the superflexit 
between the tank and A.P.1464/ 

filter and the filter and the engine 



for kinking D.59. 
or damage. 

Pe.33. Remove the jet wefl plugs of the 
carburettor A.P.1464/ 

and flush out the wells. 
C.15. 

Oil System. (01.31/33.) 
01.31. Inspect the superflexit feed and 
return pipes 

from the tank to the engine for 
kinking or 

damage. 
01.32. See that afl pipes are secure 
and test the A.P.1490, 

metal connections with an 
approved spanner. Vol. I, 

fig. 4. 
01.33. Examine the ou gauge and 
thermometer lines 

for security and damage. 



Cylinders. (Cy.31/32.) 
Cy.31. Inspect the push rod return 
springs for 

fracture. 
Cy.32. Check the compression of each 
cylinder. 

Airscrew. (As.31.) 
As.31. Check the airscrew for track. 
A.P.1464/ 

D.17. 

Controls. (Cn.31.) 
Cn.31. Inspect the controls for wear and 
for excessive 

play in the connecting rods, and 
check the 

settings of the throttle and mixture control 
levers. 

Doping and Starting. (St.31.) 
St.31. Uncouple the pipe connections and 
check the 



flow of fuel from the priming 
pump ; then 

check the pipe line for leaks. 
Note.—On the starboard 

lower engine 
mounting strut, remove the cowl 

panel for 
access to the pump connections. 

General (Ge.31.) 
Ge.31. Check the engine bolts at the cone 
mounting 

for security. 
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INSPECTION EVERY 40 
Group. 



HOURS. (40 I.E.) 
Ref 

Ignition. (Ig.ei.) 
Ig.61. Lubricate the magnetos. (B.T.H. 
S.G.7-1.) 

Fuel System. (Pe.61.) 
Pe.61. See that the fuel pipes are 

adequately sup- A.P.1490, 
ported against 

vibration with packing between Vol. I, 
the clips and the pipes. Also 

see that they fig. 3. 
are not touching any parts of 

the aeroplane 
in a manner likely to cause 

wear. 



Ou System. (01.61.) 
01.61. Drain the ofl from the system, 
flush out the A.P.1490, 

tank and pipe lines and refill with 
fresh ofl. Vol. I. 

Note.—The tank should be 
drained when fig. 4. 

the ofl is hot. 

A.P.1464/ 
C.20. 

Cylinders. (Cy.61/63.) 
Cy.61. Lubricate the steel thrust pads in 
the rocker 

sockets and the corresponding 
ends of the 

tappet rods. 

Cy.62. Lubricate the rocker arm bearings. 
—Û.63. ' See that the holding down nuts of 
the rocker 

arm brackets are tight. 



Airscrew. (As.61/62.) 
As.61. 
Inspect the splines in the hub and on the A.P.1490, 
airscrew shaft for signs of wear. Vol. I, 

para. 91. 
As.62. Inspect the front and rear hub 
centring cones 

on the airscrew shaft, and the 
hoflow flanged 

plug in the end of the shaft. 

INSPECTION EVERY 120 
HOURS. (120 I.E.) 

Ignition. (Ig.101.) 
Ig. 101. Check the L.T. leads for 
continuity and 

serviceability. 
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Ref 

Fuel System. (Pe.101.) 
Pie. 101. Drain the fuel tank, and if 
necessary clean the A.P.1490, 

interior. 
Vol. I, 

Note.—The tank should be 
removed. para. 86. 

Oil System. (01.101.) 

01.101. Calibrate the transmitting 
thermometer. A.P.1275/ 

D.2. 
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AIR MINISTRY 

„ 

FOR OFFICIAL USE ONLY 

Amendment List No. 1 
to 

AIR PUBLICATION 1490 



(VOLUME œ), PART 2 
fune, 1936 

MAINTENANCE SCHEDULE No. 
42.—ROTA WITH 

CIVET I ENGINE 

(1) Page 3. Para. 7, lines 10-15. 
Delete " T h e Air 

Ministry " to end of 
paragraph and substitute :— 

" The procedure for the 
co-ordination of 

aeroplane maintenance and maintenance 
schedules is laid down in A.M.O. A.232/35." 

(2) Page 6. Add at end of clause 
P1.1. :—" and see 

that the eyelet drain holes are free from 
any obstruction ". 

Add ref. " A.P. 1490/P.2 " . 
(3) Page 10. Clause P1.29. Delete ref. 

and substitute 



" A.P. 1490, Vol. I, fig. 9 ". 
(4) Page 10. Clause Uc.32. Add ref " 

A.P. 1490, Vol. I, 
para. 7 1 " . 

(5) Page 12. Clause Fu.34. Delete ref. 
and substitute " A.P. 1275/B.9". 

(6) Page 12. Clause ta .32. Add ref " 
A.P. 1490, Vol. I, 

para. 77 ". 
(7) Page 17. Airscrew. Delete " (As.l) " 

and substiUite 
" (As.1/2) " . 

(8) Page 17. 

Delete clause As.l and substitute :— 
" As.l. Test the airscrew for tightness of the K.R. 
& 

boss on the shaft. 
A.C.I., Note.—For these tests the airscrew 

must para, be gripped above the red 
band. After 715 (4). initial attachment the 

airscrew should be examined for tightness 
at the end-of each of the first two or three 



flights. 
As.2. Examine the airscrew 

for damage and A.P. * deep 
scratches and the blade sheets for 1464/ 

signs of fracture in the region of the 
D.17. identification marks ". 

(9) Page 17. ClauseGe.2,ref. Delete"A.P. 
129, para. 167" 

and substitute " A.P. 
1464/G.24 " . 
(10) Page 18. Fuel System. Delete " 

(Pe.21/23)" and 
substitute " (Pe.21/22) " . 
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(11) Page 18. Delete clause Pe.22. 
(12) Page 18. Renumber clause Pe.23 as 



Pe.22. (13) Page 19. 
Ignition. Delete " (Ig.31/35) " and substitute 

" (Ig.31/34) " . 

(14) Page 19. Clause Ig.31. Delete ref 
and substitute 

'" A.P. 1464/B.47 ". 
(15) Page 19. Delete clause Ig.34 and 

substitute :—-
"Ig.34. Inspect the H.T. 

and L.T. ignition A.P. 
cables for serviceability ". 

1464/ 
C.27. 

(16) Page 19. Delete clause Ig.35. 
(17) Page 20. Clause Pe.32. Delete ref 

and substitute " A.P. 1464/D.84 '*. 
(IS) Page 20. Delete clause As.31 and 

substitute :— 
" As.31. Remove the 

spinner nose cap and A.P. 
examine the front side of the blade sheet 

1464/ within the boss blocks for signs of 
fracture". D.17. 



(19) Page 21. Airscrew. Delete " (As.61/62) 
" and substitute 

" (As.61) " . 
(20) Page 21. Delete clauses As.61 and As.62 

and substitute : 
" As.61. Remove the 

airscrew from the hub A.P. 
and the spinner from the 

airscrew and 1464/ 
examine for signs of fracture both sides 

D17. and both edges of the blade sheet in 
the region normally covered by the spinner ". 
(21) Page 21. Ignition. Delete " (Ig.101) " 

and substihtte " (Ig.101/102) " . 
(22) Page 21. Delete clause Ig.101 and 

substitute :— 
"Ig.101. Check the gap 

between the brush 
and segments of the distributor and see 

that the vent holes are clear. 
Ig. 102. Check the L.T. leads 

for continuity ". A.P. 
1464/ 

C.27. 



(23) Page 22. Fuel System. Delete « 
(Fe.101) » and 

substitute " (Pe.101/102) " . 
(24) Page 22. After clause Pe.101 insert new 

clause :— 
"Pe.102. Examine the 

flexible pipe between A. P. 
the fuel filter and the carburettor for date 

1464/ of manufacture and replace, if necessary 
D.84. 

(25) Page 22. Qause 01.101. Delete ref 
and substitute 

" A.P: 1275/D.6 " . 
(26) Page 22. After clause 01.101 insert 

new assembly 

group :— 
"Airscrew (As.101). 
As. 101. Dismantle the 

airscrew, clean, the A.P. 
parts and examine for defects 

1464/ 
D.17. 
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MAINTENANCE 

Amendment List No. 2 
to 

AIR PUBLICATION 1490 
(VOLUME œ), PART 2 

May, 193S 

SCHEDULE No. 42.—ROTA WITH 
CIVET I ENGINE 

(27) Cover, lines 11-13. Delete " This 
schedule para. 669 ". 

(28) Remove 



and destroy pages 2 and 3, and 
attached new pages 2 and 3. 

substitute 

(29) Page 4. INSPECTION BETWEEN 
FLIGHTS, note, 

lines 1 and 2. Delete " need not " and 
substitute " are not to ". 
(30) Page 6. Clause P1.6. ref. Delete " 
para. 77 " and sttbstitute " para. 35 ". 
(31) Page 7. Delete clause Ge.4 and 
substitute ;— 

" Ge.4. Make the necessary 
entries and sign A.P. 

the aeroplane maintenance form ". 
1574, paras. 6S-101. 

(32) Page 15. Delete clause PI. 102 and 
substitute ;— 

" P I . 102. Dismantle the 
rotor head and A.P. 



inspect for wear and damage, paying par-
1490, ticular attention to the T-piece for 

the Vol. I control hinge ". 
para.89, A.P. 1490/ 

D.I. (33) Page 16. INSPECTION 
BETWEEN FLIGHTS, note, 

fines 1 and 2. Delete " 
need not " and 

substitute " are not to ". 
(34) Page 16. Clause 5, ref. After " 
G.24" add " a n d G . 6 2 " . 

(35) Page 16. Clause Ig.l. Add to ref " 
A.P.1095/J.14 ". 

(36) Page 17. Clause Ge.2. Add to ref. " 
and G.62 ". 

(37) Page 17. Delete clause Ge.5 and 
substitute :— 

" Ge.5 Make the necessary 
entries and sign A.P. the 
aeroplane maintenance form ". 
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(38) –‡&Â 19. Delete clause Ig.31 

and substitute ;— 
" Ig.31. 

plugs. 

Remove and clean the sparking 
Reset the gaps and test ". 

(39) Page 19. Clause Ig.32, line 3. After " the points are " 
insert " clean, free from oil and not pitted. 
The points are to be ". Add ref. " A.P. 

1374/C.6 ". 



(40) Page 21. Ignition. Delete 
" (Ig.61/63) ". 

" (Ig.61) " and substitute 

(41) Pa£e 21. After clause Ig.61 
insert new clauses :— 

" Ig.62. Lubricate the contact 
breaker and A.P. cam group. 

1374/ D.7. 
Ig.63. Clean the 

central brush of the mag-
neto. See that the holder is clean 

and 
that the brush has free movement. 

Note.—This is the brush of the 
hand-

starting magneto lead connection '*. 
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FOR OFFICIAL USE ONLY 

AIR MINISTRY AIR PUBLICATION 1568 

July 1936 

NOTES ON THE HANDLING OF 

THE ROTA GYROPLANE IN THE 

AIR AND UPON THE GROUND 

Tríese notes should be read in conjunction with A.P. 
1490, Vol. I. They are intended to amplify that publication, 
for the guidance of pilots of the C.30 Autogiro. 

The contents are arranged in normal sequence of training. 
For ease of reference, certain parts of A.P. 1490, Vol. I, 

have been included with alterations to suit the context. 



Promulgateci for the information and guidance of all concerned. 

By Command of the Air Council, 

DONALD BANKS. 
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1. Checking the Friction Dampers 

The "pull-off" of the friction dampers 
on each blade should he cheoked as follows:-

•;;Bit on the rotor "brake and lock the 
control column. Set the blade to be checked in 
line with, and directly over, the centre line of 
the fuselage. Next place a loop of tape round 
the rotor blade tip across the centre of the 



recess where the balance weights are housed. 
Hook the spring balance to the loop, and move the 
blade over to the left to the extent of its free 
movement - an assistant is required to hold one of 
the other blades steady. Next, pull the blade 
being checked gently to the right and. note the 
reading on the spring balance. With the blade 
extended to the right until up against -the stop, 
the operation should be reversed with the tape 
pulling from the leading edge. The readings may 
vary slightly; the friction damper should be 
adjusted until the mean of the two readings is 
consistent at approximately 12-lb, and then 
locked. To adjust the friction damper, loosen 
the lock nut on the top of the damper and adjust 
by turning the bottom nút to the right to increase 
the pressure, and to the left to decrease it. 
When the correct pressure has been obtained, 
secure the adjustment by means of the lock nut 
above the adjusting nut. Repeat this process 

with each blade. 
2. Engine Starting 

: The airscrew swinging a r i l i lain dam in A.P. 12B (Hying 
öïdmng bianual, Part I) i s to tie' followed under normal circumstances unen 
starting^up the engine. If, however, there is 
no one available to assist when starting up, the 
following procedure should be followed:-

(i)* Place the Rota tail to wind; wheel 
chocks are not required. 



(ii)i! Put on the wheel brakes. 

(iii):- Tum on the fuel cock. 

(iv). Switch off all switches. 
(v)¡ Turn on the dope cock and pump the 

primer four times if 
the engine is cold, twice if 

slightly warm, and not at all 
if the engine is hot. 

(yi)j Turn off the dope cock and screw the 

primer home. 

(vii) Spin the airscrew over With both 
hands to suck in until it is 

considered that sufficient mixture 
has entered the cylinders, 

' Care must be taken to avoid being 
struck by the airscrew and 

gloves should be worn to avoid 
cuts from the trailing edge, 

(viii); Switch on the front switches and 
the left, or outboard, switch 

'in the rear cockpit, set the 
throttle slightly open. 

(i*). 



Swing the airscrew with a follow through movement and step 
clefLT. 

(x) When the engine starts, switch on the 

remaining switch in the 

rear cockpit, and adjust the throttle so 

that the engine 

"ticks over" at 600 r.p.m. 

(xi) Should the engine fail to fire and the 
cause be considered to 

. be too rich a mixture, turn the switches 
off, open the 

throttle and blow out by turning the 
airscrew backwards. 

'• Care must be taken to avoid being struck 
by the airscrew 

should it ⁄ÓËÔÁÂ off compression. 

22743-1 1 

520 

APPENDIX   

5. Taxying 



Before taxying, place one blade 
forward, and slightly to the right of the engine. 
In thi3 position there is less tendency for the 
blades to soar against the wind. Taxy slowly 
at all times as rough ground, or excessive speed, 
will cause bending stresses in the blades greater 
than those encountered in flight. If the wind 
is in excess of 20 m.p.h. do not taxy into wind as 
this will cause the windward blade to soar and 
strain against its stop. When it is necessary to 
taxy while the blades are revolving, (e.g. avoiding 
a landing aircraft) make sure that the rotor brake 
is fully OK? or the Hota will tend to swing to the 
right-. The wheel brakes, of a necessity being 
extremely positive in their action, should not be 
used to stop the Rota running. If it is 
necessary to employ them in order to prevent 
running down hill, or to avoid an obstacle, the 
brake lever should be worked on and off with a 
very gentle touch, at the same time moving the 
tail wheel from side to side. This causes the 
brakes to have a more gentle action in arresting 
the aircraft. The control column should always 
be locked when taxying, whether the rotor is 
stationary or, for some special reason, revolving 

slowly. Whenever the control column is looked 
the fore and aft bins control lever must be set 



fully forward to release the strain on the locking 
mechanism. It is also advisable to keep the 
right .band resting on the control column, as a 
twisting movement, caused by travelling over rough 
ground, may allow the control column to 
become unfastened and swing back into the pilot' 
s face. In order to preserve clear vision of the 
taxy path, it is necessary to turn slightly from 
side to side. Since each wheel can be seen and 
the wide range of the tail wheel allows of very 
free turning, it is easy to taxy accurately in 
close proximity to ground obstacles. This is 
made: the more easy if the pilot unfastens the 
belt and adopts a half standing attitude; a clear 
view oan then be obtained while still re- taining 

qòntrol of the tail wheel bar. 

4. The Take-off - Normal 

To take-off in normal wind conditions, 
the following sequence should be adopted:-

(i) i. Having taxied into position, move forward 
slightly until the 

tail wheel bar is straight and the Rota is 
facing squarely 

into wind. 

(ii)- Apply the wheel brakes fully by 
pulling up the lever as far as 



it will go: a strong pull is 
required. 

( i i i ) . : Place the fore and aft "bias lever a l i t t l e fortraxd of thB half-
w a y m a r k , 

(iv)i Run the engine up to 2,000 r.p.m., testing 
each magneto at 

1,200 r.p.m. 

(v):: Allow the engine to settle down to 950 
r.p.m. 

(vi). Take off the rotor brake and pull up 
the clutch lever very 

slowly at the same time watching a 
blade tip. Just before . the blade 
begins to move a click will be heard as the dog 

clutch comes into mesh. By 
watching the rotor blades as 

the clutch lever is pulled up the 
initial acceleration of 

the rotor can be made smooth, 'When 
rotation becomes too 

fast to watch, the engagement should 
oontinue notch by notch-

by a steadily increasing pull on 
the lever until the 

clutrih is fully home. By keeping 
the thumb clear of the 



ratchet button the engagement of 
each notch can be heard. 
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(vii) Open the throttle progressively, 
but very slowly," at the 

same time observing that the rotor 
and the engine r.p.m. 

counters are increasing their 
reading in sympathy. Should 

the rotor r.p.m, counter be 
lagging slightly, force the 

clutch lever into one more notch 
on the ratchet. This will 

overcome the tendency for the 

clutch to slip. (As the 
engine is turning eight times to 

one revolution of the rotor 
system, marks at sympathetic 

intervals should be made on 



the two r.p.m. counters to facilitate the quick checking 
of clutch slip}. If a swaying or vibration ≥ˇ felt when 

running up the rotor, it is 
usually due to the friction 

daaipers being set unevenly. It 
will tend to smooth out 

when approaching 120 r.p.m., at 
which rate the blades should 

become balanced. If the pulsation 
does not smooth out 

the rotor should be stopped and the 
friction dampers checked 

.oyer again. 

(viii) At 120 rotor r.p.m. unclamp the 
control column and hold it 

forward. 

(ix) 

Continue opening the t h r o t t l e slowly u n t i l the des ired r a t e 
of r o t o r r .p.m. i s reached (normal wind 185 - 190.) 

(x) ; Operate the quick release, open the 
t h r o t t l e ful ly and, 

keeping the tail straight, hold the control column forward 

for about three seconds until the Bota has gathered way (a 

little right "rudder" is required at the 



commencement of 
the -take-off to counteract tha tendency to swing to the 
left). Ifj on gaining the required rotor revolutions, 
the quick release does not function, the 

Rota may be taken 
off by releasing the clutch and brake 

levers, in that order. 
If this method is adopted, care must be 

taken that the 
rotor revolutions are not allowed to die 

down below the 
minimum necessary. 

(xi) Ease the control column fully back 
straight and centrally, 

hold it there until the front wheels 
rise from the ground. 

"When the Rota has taken off, the nose 
will be pointing 

upwards at a steep angle; the control 
column should be 

eased forward slightly to prevent the 
nose from continuing 

to rise and to allow the airspeed to 
increase. The initial 

climb should be made at 45 to 50 m.p.h. 
followed by a steady 

climb at 60 m.p.h. using 2150 engine 
r.p.m. The fore and 

aft'bias lever should be adjusted to 



facilitate this. 
(xii)' The quick release should be reset after 
taking off. If 

this is not done it will be found that 
the rotor brake and 

the wheel brakes are not operative after 
the landing. The 

control column clamp should be left in 
the undamped posi-

tion when in the air; it can easily be 
reset immediately 

after landing. 

(xiii) Whenever there is a good run for the 
take-off, 190 rotor . r.p.m. is sufficient 
for calm conditions. 180 rotor r.p.m. 

is required for wind strengths of 15 
m.p.h. and for every 

increase of wind strength of 5 m.p.h. 
the rotor speed may 

be decreased by 5 r.p.m. It is better 
to take a longer 

run for the take-off than to 
over-aceelerate the rotor in 

strong wind conditions, However 
strong the wind, the 

minimum rate should not be less than 
165 r.p.m. . The Rota 



• t 
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•'i will take-off readily if the 
control column is eased back 

in the early stages of the run. 
A longer take-off will 

' result if the control column is 
held too far forward or 

for too long. 

(xiv) : To get accustomed to having no 
rudder it is found to be an 

advantage to remove the feet from 
the tail wheel bar when . 

; the aircraft leaves the ground. 

5. 

The iTake-off in Strong Wind (exceeding 20 m.p.h.) 

(i) When taxying into position for a 

take-off in strong wind con-

ditions do not face the wind, or the 



windward blades will 
soar. Taxy slowly down, or down and 

across wind. 

(ii) i; :!Pace the Rota lOOo to the left of the wind 
direction and 

apply the wheel brakes. 

(iii)! After testing the engine, engage the 
clutch and run the rotor 

up to 120 rotor r.p.m. 

(iv)/ Leaving the control column clamped, 
disengage the clutch 

and the wheel brake levers by hand, allow 
the engine to 

run at about 1100 r.p.m. and turn to the 
right into wind. 

(v)' Put on the wheel brakes and engage the 
clutch smoothly but 

'. fairly quickly. 

(vi);: Garry on as for a normal take-off but 
disengage the quick 

; release at about 175 rotor r.p.m. 



(vii)^ To avoid ballooning in a strong wind 
take-off, the control 

column should not be eased back quite so 
far as in a normal 

take-off j and greater speed i s necessary for the i n i t i a l 
climb. 

(viii) A turn down wind should not be attempted 
at a low altitude 

until full speed is reached, as at slow 
speeds the result-

ant loss in height is relatively greater 
in strong wind 

than in normal wind conditions. This 
applies in greater 

measure to a right hand turn than in one 
to the left. 

6. Normal Plying 

The Rota handles best at medium speeds, 
therefore, after taking off, the engine should be 
throttled down to approximately 2,000 r.p.m. or 
less. An increase of engine r.p.m. can then be 
used to assist in turns. It will be found that 
a variation of engine r.p.m. is necessary for 
comfortable and-easy flight. • Also, the fore and 
aft: bias lever should be worked so that the 
control column is light to move:at all times. 
The lateral bias lever is not very effective; 
once set it may be left unaltered. 



7.. High Speed Flying 

The Rota will perform all normal 
manoeuvres at high speed. It is, however, draughty 
and uncomfortable to fly, the control column being 
very heavy to move and the aircraft reluctant to 
alter course. Diving at high speed should not be 
attempted until thoroughly practised on >the type-

8. ; Turns with Engine 

" 
When turning to the left there is a marked tendency for the 

nose to
:
 drop; this must be counteracted by a 

backward movement of the 
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control column. This may be facilitated by an 
adjustment of the fore and aft bias lever before, 
or during, the turn. When turning to the right the 
nose tends to rise; in holding the control column 
forward to 



counteract this there is a slight tendency for the aircraft to over-
hank. This makes it difficult to execute a neat turn when turning 

down a strong wind. Increased engine power 
should be used to avoid loss of height when near 
the ground. 

9. ThevClimbing Turn 

j
!
 The climbing turn is a strong feature 

of the Rota's perform- ance; it may be carried 
out equally effectively either to the left or to 
the right. It is, however, more comfortable to 
climb to the right, as once the Rota is placed at 
the correct angle of climb and bank for a right 
handed climbing turn it tends to remain in that 
position as long as a little forward speed is 
maintained. 

10. Hovering 

• '≤ The Rota will not hover in still air, 
but it is possible to remain over the same piece 
of ground, when facing the wind, by bringing the 
nose up and increasing the engine r.p.m. as the 
Rota sinks. The aircraft will lose height, and 
a distinct lag is noticeable before this movement 
can be arrested. It is therefore necessary to 
open up the engine and ease the control column 
forward and so anticipate this effect. When 
attempting to hover into wind, forward speed 
should be gained before turning down wind. 
Though the Rota is in full control, a marked loss 
of height will occur, and the time lag in 
recovering from a slow down wind turn is more 
noticeable at very slow speeds. 



11. Gliding 

1 'l The Rota is capable of various gliding 
angles ranging from a semi-stalled descent, 
approaching the vertical, to a gliding angle of 1 
in;:7 at 65 m.p.h. Therefore, by employing a 
method of sinking and gliding alternately, it is 
possible to make accurate approaches from 
varying heights without recourse to gliding turns 
or an application of engine. In order to allow 
for the time lag when sinking with little forward 
speed, the air speed should not be allowed to 
drop below the correct pre-landing speed of 40 
m.p.h. when below 150 feet from the ground. 
When sinking vertically, or nearly so, care must 
be taken to avoid stopping the engine. There is 
little forward speed to assist the airscrew in 
turning, and insufficient air enters the 
carburet- tor.intake, therefore the engine should 
be set so as to tick over audibly when coming in 
to land, or when throttling down during a flight. 
Should the engine stop, the airscrew cannot be 
restarted by diving from normal'heights. Owing 
to the time lag in recovering from a dive the Rota 
should not be dived near the ground. When 
gliding down to land it is best to:manoeuvre into 
a position facing the wind and as nearly over the 
desired landing point as will allow a view of it. 



Then, by easing the control column back, height 
may be lost in nearly vertical descent. When doing 
this, the aircraft should be turned slightly 
from Á≥‡Â to side so;; that clear vision below may 
be maintained. When sinking with no forward 
:speed the Rota must not be allowed to slide 
backwards at a low altitude as a stall may result. 

12. Stalling 

Gentle stalls should be practised at a 
safe height. To do 
this, throttle dcwn the engine and slowly ease the control column ⁄‡ÒÍ, 
in the fore and aft line, until an engle of approximately 45° ia reached 

and a l l forward speed i s l o s t ; the Rota wi l l 
begin to slide backwards, the nose wil l drop and 
spin round to the r ight . Control i s regained 
when the Rota has faced about 180° from the 
original direction. The 
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loss in 'height increases with the steepness of 
the angle of entry into the stall. Stalling from 
an angle approaching the vertical should not be 
attempted as the Rota will execute a side loop 



with great loss of height and recovery may prove 
extremely difficult. 

! The reason that the Rota usually 
twists righthanded from the stall is thought to be 
due, firstly to the collapse of torque correc-
tion when stalled, and, secondly to the tendency 
for the fuselage to follow the direction of 
rotation of the blades. That the Rota should 
be reluctant to emerge from a steep dive is 
thought to be due to a change in, the centre of 
pressure on the aerofoil section of the rotor 
blade, possibly caused by the essential 
flexibility of this unit. When practising 
manoeuvres, or operating the various controls of 
Rota aircraft, manual strength must not be 
despised; indeed, a marked firmness is necessary 
in most phases of gyroflight. 

13- Landing - Hbrmal 

On approaching to land at a noimal 
gliding speed of 40 m.p.h., 

the tail wheel bar must be held in the 
central position with the feet, 

and the Rota must be headed directly into 
wind, the fore and aft bias 

lever should be set back and when at about 
10 feet above the ground, the 

control column should be eased back slowly 
and centrally until nearly 

all forward speed is lost and the Rota lands 



tail wheel first on an 
even keel. On landing, the control column 

must be pushed forward 
centrally so that the lift from the rotor 

may be reduced and the rotor 
may spin horizontally. If an immediate 

takë-off is not desired, the 
control Column should be clamped and the 

Rota turned to -the left through 
an angle of at least 100°- The rotor brake 

may then be applied as soon 
as the blades begin to slow their rate of 

turning. The blades should . be finally 
arrested so that one blade ia forward, and 
slightly to the 

right, of the engine. This is the normal 
taxying position. 

14. Landing with Engine 

•* If it: is desired to land gently without forward speed, the 
engine r.p.m. must be increased as the nose is 
brought up until the Rota drops with the tail 
wheel touching the ground. An application of 
full engine power is necessary to lower the Rota 
gently to the ground. ; With practice, this form 
of "Power Descent" can be carried out from any 
height the chief point to remember being to keep 
some reserve throttle: as the ground gets nearer ‚Ó 
as to be able to check the rate of descent during 

the final flattening out. The "Power Descent" 
is useful.when landing in confined spaces or in 



close proximity to trees or buildings. As the 
Rota has no fixed wing, other than the differen-
tial tail unit to counteract engine torque, it 
must be remembered that a sudden increase of 
engine power will cause the Rota to twist to the 
right, and a sudden cessation of engine power 
will cause an equal twist to the left. This may 
be disconcerting when near the ground, but it is 
easily obviated by gentle use of the throttle, 
or counteracted by means of ! banking in 
anticipation of the movement. Ef drift becomes 
apparent as the Rota is landing, the pilot 
should not attempt to correct it, but by 
increasing the attitude of the rotor head the 
landing can be carried out without any forward 
speed. Though drifting noticeably, a 
safe landing can be made in this manner. 

15. banding in Strong Wind 
:; Should the -wind strength exceed 25 

m.p.h.j the point selected for a landing should 
be up wind of the place where it is desired to 
park the;: Rota. It should also be clear of 
buildings and trees, as these obstacles may create 
•differences in wind strength and direction that 
may not be apparent until the Rota is about to 
touch down. To avoid ballooning near the ground 
the approach should be made with engine. 
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followed by a three point landing with increased 
forward speed. As soon as possible after landing, 
the Rota should be turned down wind to the left. 
After a bad landing, a burst of engine will tend 
to smooth out any oscillation in the head. In 
the event of the necessity to land without engine 
in a strong wind, the landing should be made with 
sufficient speed to enable the Rota to turn left 
as soon as it has landed. If there is 
insufficient way on the Rota to do this, the pilot 
should jump out after landing and turn the Rota 
down wind by hand. 

16. ! -Landing on Rough Ground 

Rough ground should, if possible, be 
evoided when landing. The wide undercarriage when 
earning in contact with ground irregular!- ties at 
the moment of landing may cause a swing to either 
side which, once commenced, cannot be corrected. 
To avoid this, a landing on rough ground should be 
made tail wheel first, and without forward speed. 

Landing on the side of a hill, or downhill, 
should be avoided, but a safe landing can be 
carried out against a gentle uphill slope. 



Hilly ground should not be selected for a landing 
as , even if the landing presents l i t t l e 
diff iculty, the ensuing take-off will be 
impaired, 

17. Fárkinp; 

Bearing in mind the necessity for 
turning to the left after landing, and the 
desirability'of taxying down wind, a final 
landing should; be made up wind of the chosen 
parking place. The Rota should be parked facing 
down wind with the wheel brakes on. If the wind 
is blowing strongly and the shelter is poor, the 
rotor brake should be released so that the blades 
may revolve freely. Before leaving the Rota, the 
fuel cock and all switches should be turned off' 
and the airscrew turned until the bottom exhaust 
valve is open. Should it be considered neoessary 
to picket the Rota, it should be lashed to screw 
pickets from the handles at each side of the 
tail, and from each front -wheel' axle. If the 
Rota is to be left in darkness, a lamp should be 
placed so as to reveal the rotating blades, 
otherwise injury may be caused to personnel 
approaching the aircraft. 

18. Slow Flying 



Slow flying is useful when making detailed examination of 
ground, features, or when flying in mist, or fog. 
Until thoroughly practised, slow flying should be 
carried out only into wind. The method lies in 
adopting alternately an attitude of stalling and 
slight forward flight. The nose should be kept 
well above the horizon and the throttle worked so 
as to prevent the Rota either sinking or climb-
ing. :" Controlled turns can be made at very slow 
speeds, but the engine speed should be increased 
when turning down wind near the ground. Thé time 
lag in the Rota's response to the engine and to 
the control column should be anticipated when 
approaching obstacles or when about to make a 
tum. Wien flying slowly near the ground a 
reserve of engine power should be kept in hand so 
that speed may be picked up without losing height. 

19¿ Load 

The performance of the Rota i s 
regulated primarily by i t s a l l up weight. 
Endurance, therefore, should be sacrificed to 
load. Ihe Rota 'responds the more readily to the 
controls when flown as a single seateir, and for 
a l l f l ights other than long cross country f l ights 
a Biaxiirium of 15 gallons of petrol wil l suffice. 
Vihen i t i s necessary to take a- passenger on a long 
f l ight , fuel quantities must be reduced should the 
pi lo t and passenger weigh more than 326 lb . 
together. 
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The maximum all-up weight is made up as 
follows:-

1,228 l b . 
172.5 l b . 

33 . 

Tare weight 
Fuel (23 galls) 
Oil (3.3 galls) 

Two parachutes 40, 

1,475.5 lb. 

Maximum all up weight 

1,800 lb. 
1,473.5 

526.5 



The Rota pilot must therefore know his 
own weight, the weight of his passenger, and of 
any luggage or equipment that is to be carried, 
fuel load being adjusted to ensure against 
exceeding 1,800 lb. all up weight".;! 

20. Bad Weather 

• Heavy rain or hail should be avoided, 
since they rapidly cause 
damage to the fabric of the leading edges of the ûladea, in view of the 
unprotected nature of the blades, and the speed at which they t rave l . 
The speed of the tips is in excess of 200 m.p.h. 
Plight in clouds or in mist, when no view of the 
ground can be gained, should not be carried out 
until thoroughly practised on the type. Plying 
accurately by compass in clouds is difficult; 
the Rota is reluctant to make small changes in 
direction and inclines towards a curved rather 
than a straight path. 

21. Trimming the Rota 

Looking at the tail from the rear of 

the Rota, four flaps may be seen at the trailing 
edge of the tail plane. Reading from left to right 
these are Al, Bl, 32 and A2, the vertical flap 
at the extremity of the fin being "C". The 
following is a normal setting for flaps;-



(i) Por high speed trimming - Al down slightly, 

A2 up slightly, (ii) Por torque correction - Bl 

up slightly, B2 down slightly. 

(iii) Por slow speed trim - "—" slightly to 
the right. 

(iv) The tail incidence must be set to make 
the Rota slightly 

tail heavy when opening the throttle 
at any speed. If 

tail heavy, increase incidence and 

vice versa. 

1° Approximate angle of incidence plus I2 
Ó 

to plus 2 . 

m 
Engine torque correction at slow speeds 

The incidence of each side should 
be made equal by 

adjusting the struts. Ply at 35 to 
40 m.p.h. at full throttle 

and adjust both bias springs to fly 
"hands off". Throttle 

back slowly and release control 
column. The Rota should 

continue to be well trimmed lateraliy. 
If, after throttling 



back, there is a tendency to turn 
right, the engine torque 

is over-corrected and the horizontal 
fin should be adjusted 

to decrease incidence on the right, 
and increase it on the 

left side, and vice versa. Pine 
adjustment is by means of 

the torque flaps Bl and B2. 
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(vi):! High speed trimning 

If there is a tendency to turn right 

at high speeds 

adjust Al down slightly and A2 up 

slightly, and vice versa. 

This adjustment is fine, and even a slight 

amount will have 

quite a large "rudder action." 

(vii) Slow speed trimming 



If there is a tendency to turn left 
at slow speed with 
engine on, adjust the ver t ica l f in , f lap "0", s l igh t ly r igh t , 
and vice versa. Refer hack to (v) , t r y th i s a t high speed 

and adjust Bl and B2 so that the Rota f l ies level a t a l l 
speeds, ignoring any slight turn ( i f there i s any) . The 
Rota should tilt slightly to the left 

after throttling back. 

(viii) Central i sing control column 

All the above adjustalents are made 
without regard to 

the control column position. When the 
tail trimming has 

been corrected to the satisfaction of the 
pilot, the position 

of the control column may be corrected. 
The control column 

pivots about a hinged fork which is 
mounted universally on 

a cross bar bolted across the rear pylon 
struts. The posi-

tion of the hinged fork is adjustable 
laterally along the 

cross bar, and also in a fore and aft 
direction by the inser-

tion of shims; these adjustments, of 
course, alter the 

flying position of the column. 

22. 



Elementary theory of the working of the rotor sy‡tem in flight 

The Rota is airborne by rotating 
wings of conventional aero-
foil section; these wings, or blades, are 

hinged at a common axis so 
that they may move, within limits, both in the 

horizontal and in the 
flapping plane. This articulation overcomes 

the gyroscopic action 
associated with a rigidly mounted rotating 

system. While the lift 
forces tend to raise the revolving blades, 

centrifugal force controls 
them in equilibrium. This position of 

equilibrium is known as the 
CONING/ angle. The rotor system is said to be 

a stable surface, and 
gives pendular stability in a vertical descent. 

When descending 
vertically, or nearly so, the coning angle of 

each blade is equally 
disposed about the hub; when flying forwards 

the coning angle of 
the blade approaching the front increases and 

that of the retreating 
blade decreases. In effect, this is a 

flapping movement and is due 
to thé advancing blade having a greater 

relative speed than the one • which Is retreating. 
In this manner the blades automatically adjust 
themselves to differences in airflow. Were 



the blades unable to flap, 
the Ròta would yield to the greater lift upon 

the left hand side and 
would tend to roll to the right. As the 

advancing blade is free to 
rise as it moves forward, it presents less 

effective incidence at the 
greater resultant air speed than the retreating 

blade, which is 
descending at greater effective incidence at leas resultant speed* 
This eliminates disayiaetiy of lift. (Note - The "blades do not fona a 
true "cone" excepting in a vertical descent in still air). The rate 
of rotation of the rotor varies according to 

load and speed of the 
aircraft. It will decrease as the forward 

speed of the rotor drops, 
and will increase as the speed rises. The 

rate of rotation may vary 
throughout the Rota's speed range by as much as 

20 per cent. As in 
a fixed wing aircraft the loading increases 

with the rate of turn. 
As the loading increases, ÁÓ the rotor 

automatically speeds up, and 
thus -.compensates for the increased load. The 

lift imparted by the 
rotor system being independent of forward 

speed, the degree of stability 
and control remains unchanged. When lightly 

laden the normal rate 
of rotation lies between 170 r.p.m. at minimum 

and 210 r.p.m. at 



maximum speed. With full load the rotational 
speeds shew an increase 
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of 10 rLp.m. throughout the range* The rate of rotation is seldom 
constant during flight. * The lift and centrifugal forces, holding 

the rotor in a state of equilibrium, immediately 

counteract distur- bance by a proportional 

increase or decrease in the rate of rotation of 

the hladea. This, combined with the flexibility 

of the rotor 
system,; has the effect of assisting 
keel ≥Ô≥⁄¯ÌÛ weather. 
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Air Publication 14B0 
(Vol. œ) 

.OP Y 
—• -Rota—-Oleo-Leg^Lockirj^ oí Gland Body to Outer Tube 

L O G B O O K N o . 2 . ( ¿ ¸ Ú Â ‚ ‡ Ú Í Ê N o . R O T A / 1 7 9 . ) 

(Class œ.) 



(370282/34.—9.3.35.) 

1. To provide a definite locking of the oleo 
gland body, which is screwed in the top end of the 
outer tube, two 4 B.A. screws are to be fitted on 
aeroplanes numbers K.4231 to  .423 inclusive. 

2. The following is the sequence of operations, 
see Drg. No. A.P. 1490/ 
B.1/S5 :— 

(i) Extract the four acrewä at the top end of the upper oleo leg 
fairing. 

(ii) Slide the top fairing down over the 
bottom fairing so that the 

gland nut — and gland body A are fully 
exposed. 

(iii) Drill and tap two holes for the 
locking screws, Part No. 

30K.1366. - • 
-(iv) Screw in the locking screw, Part No. 

30K.1366, and lock in 
position with wire, brass (Stores Ref. 

30B/325). 
(v) Replace the top fairing in position and 

secure with set screws 
as before. ~ 

3. The undermentioned parts are required and are 

‡ ‡ƒ‡€ at No. 3 
Stores Depot :— 



Stores Ref. Part No. 

2 6 H / — 30K.1366 

24968—12) Wt. 8040/6020 500 
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Class 
Nomenclature. No. off. of 

Store. 
Screws, locking ... ... 4 — 
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DRILL » T¿P 4 EiA. THREAD 
%r\ DEEP TOR LDCKING 

TOP ENO 
DF LOWER 
FAIRING 

go G, LOCKING WIRE: PASSED 



T H R p L H j H BOTH SCfl_EW HEAD5 

SECTION THRO' LOCKING SCREWS. 

DRG. N? A.P 1490/‚.j/35. 
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Rota—Tai˘ Wheel “ÛÚÂ—Inflation 
(442165/35.—26.10.36.) 

L To facilitate inflation" of the tail wheel tyre, 
an extension piece for the tyre inflation valve has 

been introduced. 
2. The extension piece is to be screwed direct 

on to the tyre valve, after removal of the cap. 
. 8. The undermentioned part is required and is 

available a t No. 3 Stores Depot : — 

Stores Bef. Nomenclature. 

Valves, tyre, aeroplane :— 
Type 6860 : — 

27A/1113 ExteiisioiL piece. 



No. off. 
2 per night 

or 
2 for each four gyroplanes on 

charge 
or 

2 per unit if less than four 
gyroplanes on charge. 
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¿.–. 1490/¬.« 

Rota—Tail Wheel Equipment 
(374863/34.—26.10.35.) 

1. When existing stocks of tail wheels and 
corresponding covers outer and tubes inner are 



exhausted, a new type tail wheel equipment will he 
issued. 

2. This equipment will ensure a path to earth of a resistance not 
exceeding 20,000 ohms, and when fitted will make the use of the earthing 
chains unnecessary. 

3. Details of ' the new wheels, covers outer and 
tubes inner, are as 
follows :— 
Stores JR&f. Nomenclature. 

Wheels aeroplane :— 
Pa t t . G i— 

27A/1100 Ful l low pressure, type A.H.0.1249, 
a i r i , x 3 } i n . 

27A/1101 Covers outer, 4 in . X 3J in. (non-
insuláting). 

27A/1102 Tubes inner, 4 in. X 3^ in 



, Ú Î. Glass of 
No- °ff- Store. 

1 ¬ 

1 ¬ 
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A.P. 1490/D.l 

Rota—Control Hinges—JT Piece—Improved 
LOG B O O S N O . 8. (MOD. N O . ROTA/13.) 

(Class I.) 
(600109/37.—11.3.37.) 

1. This modification introduces an improved 
design of T piece for the control hinge. 

2. The following is the sequence of operations :-
(i) Dismantle the rotor head in accordance 

with the instructions given in Air Publication 
1490, vol. I, para. 91, part I to ’ ÿ . The outer 
race of the hearing at the aft end of the pin need 
not be removed. AU needles must be retained. 

(il) Fit the new central distance piece, Part Ko. 4/J.792 and the 
new needle race, modified to Part No. 3/J.792, taking care that the 



chamfering is on t h e outside edge. Arrangements for chamfering 
should be made wi th t h e No . 3 E q u i p m e n t Depot , quot ing Air 
Ministry let ter 303397/S4/E.1 da ted 13th November , 1936. 

(iii) Fi t the new T ¡piece, Par t No. 2/J.792 and adjust the thickness 
of the distance washer. Par t No. 24/J.Ö 1Ü until the required clearance 
is obtained between the nut, Par t No. 7/J.612 and t h e hub . Shims 

may be used if required. 
(iv) Fit the nut, Part No. 7/J.612 and look 

with split pin, Part 
No. A.G.S.784/21. 

(v) Assemble the rotor head in the 
reverse manner to which it was 

dismantled. 
3. The undermentioned parts are required and 

are available at No. 3 
Equipment Depot :— 
Stores Ref. Part No. 
Nomenclature. No. off. g˘0re 

26H/5654 1/J.792 T piece, group ... 
1 ¬ 28/5045 A.G.S./784/21 Pin, 

split 1 — 28/6046 
A.G.S./784/22 Pin, split 1 
— 

4. Parts rendered redundant by the 
incorporation of this modification are to ⁄Â disposed 
of in accordance with current authorised procedure. 

(30107—80) Wt. 8063/6010 250 3/87 E v . (Gp. 377) 
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A.P. 1490/F.l 

Rota—Ignition Circuit—Master 

Switch in Front Cockpit—Position 
(544872/36.—15.8.36.) 

1. The master switch in the front cockpit must 
be kept permanently in the I N position. This gives 
control of the ignition from either of the 
ignition switches, front cockpit or rear cockpit. 

2. The system must be treated in these 
circumstances as the usual dual control 
arrangement, the pilot operating the switch in 
whichever cockpit he is occupying, the other switch 
being normally a t ON. 



(33125—25) Wt. 8063/6010 250 8/«‚ Hw. (Öp. 377) 



539 
APPENDIX   

1 * U l ^ í i . Air PubUoation 1490 

! J.1 

¯Í-" Höta^tttton Harness replaced ⁄Û Safety Belt 
Loa HOOK NO. 3. 



(Class ÿ.) 

(370283/34.—9.3.35.) 
1. The Sutton harness in aeroplanes numbers K.4231 to K.423G 

inclusive is t o be replaced by belts, safety, standard type (Stores Ref. 6F/4). 

2. The following is the sequence of operations, 
J.l/35. 

see Drg. No. A.P. 1490/ 
(i) Remove the Sutton harness, leaving the attaehment fitting^ 

in position. 
(ii) F i t eyebolts complete with rings, Par t No. 4.Z.935, through 

the existing distance tube at joints immediately aft of the front seat. 

(iii) Fasten the belt by No. 4 Tine looped 
through the 'rings. 

(iv) Fit the clips complete with rings, Part 
No. 3.Z.935, on the 

cross member immediately aft of the rear seat 
at 18 in. centres. 

(v) Fasten the belt by No. 4 line passed through the rings and 
looped round the bracing tubes at top joint of the second bay aft of 

the rear seat. 
(vi) Connect the two lines securing the separate halves of the rear 

belt by a length of J in. dia. elastic cord (Stores Ref. 32C/60) lashed to 
each line approximately 12 in. from the point of attachment to the 
belt. This cord should have a free length of 8 in. Its function is to 
lift the belt, quick release, catch clear of the brake and oluteh control 

when the belt is not in use. 
3. The undermentioned parts are required and 



are available at No . 3 Stores Depot ;— 

Class 
Stores Bef. 
26H/— 
26H/— 

Part No. 
3.Z.935 
4.Z.935 

(24908—13) Wt. 8010/6020 500 8/35 

Nomenclature 

Clip, complete 
Eyebolt, complete 

No. off. of 
Store 

2 — 
... 2 Œ 
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U. À ü. 
Ø l "*Vj.JS32K. 

ios..ptatÌng 

cmm 

A.P. 1490/ J.2 

iSiffled during Dive—Removal 

ss œ.) * 

>.—20.7.86.) 



;: The Ò̂À≤Ó œ«ÿÕ"̂ "≤‡„‡Ú*‡‚*≥̂ ^ .board in the front ooakpifc, which 
. states that the diving ‚ÂÂÒ≥ ≥‚ limited t o ISO ¯..⁄., is to be removoä. 

Hw. :(Gp. 377) 
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Air Publication 1490 

€ (V0Ln> P . 
• 

1 
Strengthened 

Tibte^fcaifemisaion Clutch Rotor; Starter ßear—Coupling-

LOG BOOK No. 1. 

{Class œ.) 

(364696/34.—14.2.35.) 



1. The chitah coupling, Pa r t No. 7 T.641, is to be repiaoed by a stronger 
coupling, Par t No. 8 T.S46. 

2. The following is the sequence of 
operations, see Drg. Wo. A.P. 1490/P.1/36 7̂= 

(i) Remove the cowling over the tank, 
(ii) Remove the fuel tank by unfastening 

straps that secure it to 
top longeron and disconnecting the two feed 

pipes, 
(iii) Remove the guard over the transmission 

shaft if fitted. 
(iv) Remove the Hardy discs, 
(v) Remove the taper bolts securing the 

socket on the clutch shaft 
and withdraw the socket from the shaft. 

(vi) Fi t the new socket, opening out the 
holes to suit the holes in 

the clutch shaft. 
(vii) Refit the taper bolts and secure, using 

new washer, Part No. 
A.G.S.160/0, with the hole opened out to £ in. 

dia. 
(viii) Re-assemble in the reverse order. 

3. The undermentioned 



Stores Dépôt :—• 
Stores Bef. Part No. 

26H/— 8 T.546 

part is required and is available at No. 3 

Nomenclature. No. off. ßtore 

Socket for flexible coupling 1 — 
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FUEL TANK 

APER BOLTS 

CLUTCH 

FIREPROOF BULKHEAD 

\ 

. / / 
\ O R G . N? 

'No.UTCH SOCKETS 

A.P.149 0/r.l/3S. 
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Air Publication 1480 
(Volli) 

P.S 

V 
Ròta—Rotor-Blades—Maintenance 

" " " ' (411078/35.—«≤.·.«·.) 

1. The eyelet drain-holes, near the root and 
at the tip of the rotor blades, a t the trailing edge, 
are to be kept open and free from any obstrue- tion 
such as fabric or dope which may be used in repairs. 

2. Under the centrifugal force generated by the 
revolving blades, the pressure of air entrapped in 
the blade, through the drain-hole at the tip 
being obstructed» ís sufficient to burst open the plywood a t the tap and. cause 
serious damage whiòh may reader the gyroplane unstable and, in certain 

circumstances, beyond control. 
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L m> ^2 

JS 
A J . 1490/P.3 

es—Removal oÓ fhe Cufl 
£oo Booa No. ¡. 

(Class ÿ.) 

uaûaï87
,afe=^2i.9.36.) 

—-—-I.""Failures due to the cuff or fairing-piece at 
th© root of the blades, 

either splitting or lifting at the junction with the 
blade itself, have been 

experienced. As the cuff is of little aerodynamic 
value, and it is prone to 

these defects, it is to be removed as fouows :— 



(i) Sût the cuff open with a chisel, or sharp 
knife, beginning near the inner end, and cut 
outwards carefully, until the innermost rib of the 
blade is encountered. "When this has been 
located, cut the cuff off all round the inner face of 
this rib. 

(ii) Dope a fabric patch over the exposed end 
of the rib to cover the lightening holes. Care must 
be taken to see that all three patches for a set of 
three blades are the same dimensions to maintain 
correct balance. 

(iii) Paint on the blade the maker's number 
and identification marks as stencilled on the cuff, 
in order tha t they may be available for reference 
a t any future daté. 

546 
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AJP.1490/P.4 

.... -pt^rafi#in—Location Bolts—Elastic Stop 
J a Nuts*-b ĭxoduetion •• 

" Loo BOOK No. 6. 

(Class œ.) 



(395169/35.—23.11.35.) 
1. 

When the next insp ection is made in accordance with A.P. 
1464/D.17, pa ra . 7, t he existing location bolts, nu ts 
and washers are to be replaced in serviceable 
airscrews b y new bolts, elastic stop nu t s and 
washers, ü b e washers as shown in Drg. No. A.P . 
1490/P.4/35 are to be manufactured from P a r t No. 
A.G.S.160B. 

2. The underment ioned par te are required and 
are available a t N o . 3 Stores Depot :— 

Stores Bef. Part No. Nomenclature. 
, Ú ¯ Class of 
No-°ff- Store. 

28/136 A.1.G.30 Bolt, steel, mild -& in. B.S.I\ 
by 3 in. 

26H/— F.S.90/5 Elastic stop n u t 
Ref. G.P. 

26H/— — Washer, steel (to be manu-
factured from Part" No. 
A.G.S.160E). 
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A.P. Ì490/P.S 

Rota—Rotor Blades—Flying Liîe Limited 
(526255/36.—26.6.36.) 

1. The flying life of each rotor blade is t o be limited to 76 hours in 
all, and on completion of this period the blade is to be surveyed locally 
and reduced to produce. 

2. When a blade which has rendered flying 
service is fitted to a gyro- plane, the number of 
hours the blade has been flown is to be entered 
against t ha t particular blade in the chronological section of the log book 
of the gyroplane to which the blade is fitted. 



3. I t is necessary, therefore, when both 
serviceable arid repairable blades are dismantled 
from gyroplanes, that a durable label recording 
the frying hours already ' rendered be prepared 
and securely attached to each blade. This label is 
to remain with the blade until the flying hours 
entered on it are'recorded, on fitment of the blade 
to a gyroplane, in the appropriate log book. 

4. Spare blades, or sets of blades, issued by No. 
3 Stores Depot are to be labelled to show the flying 
hours already rendered by the blades. A " Nil " 
label is to be attached where appropriate. 

5. H a unit is doubtful as to the flying hours 
rendered by any blade, or blades, the matter is to 
be reported for investigation to the Secretary, 
Air Ministry. 
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A.P. 
1490/P.6 

Rota—Clutch and Rotor Brake Control 
Quadrants—Improved 



LOG BOOK No. 7. (MOD. N O . 
ROTA/2.) 

(Class V.). 

(612733/36.—5.11.36.) 
1. To improve the -wearing properties of the packing plates attached 

to the inner quadrants of tho clutch and rotor brake control unit* new 
packing plates in high tensile steel, B.S. specification S.2 are to be fitted. 
These plates are t o be riveted to the existing quadrants. Pa r t ïTo,. 7.T.530 
and 8.T.530, replacing the. present packing plates, Par t No. 7D and 
SD/√.¡«Œ. 

2. The following is the sequence of operations :— 
. (i) Remove t h e inspection door situated o n the p o r t side of the 

gyroplane, adjacent t o t h e left h a n d side of tho rear seat, which gives 

access t o t h e clutch,' ro tor a n d wheel brake control unit, b y detaching 
t h e hinges. Open t h e fabrio covering,.iee Drg. N o . A . P . 1490/P.6/36, 

sheet 1. Remove the wooden former 
situated irnmediately below the 
inspection door by detaching it from the body 

fairing and the bottom 
longeron. 

(ii) Remove the three mounting bolts on 
the fuselage frame, 
P a r t N o . A1/E.18, A1/B.18 a n d A1/B.16, t h e anchorage bolt, P a r t No. 
A1/E.12 a n d 2 B.A. s teadying bolt, P a r t N o . Al/0.12, o n t h e locker. 

(iii) Detach the quick release rod at the top end, 

by removing the ¿r in. split pin, Par t No. 3 
A.Gr.S.784 and the -fa in. dia. solid pin, Part No. 



C6/SP4. securing i t to the lever, Part Ko, 4.T.566. 
' (iv) Detach the clutch and the rotor brake 

control cables by the following method :— 

Remove the cable guard plates, Part No. 
22.T.530, which are attached to the inner quadrants 
by 4 B.A. bolts. Release the tension in the cables 
by slackening off the cable stops. Release the cable 
nipples from their sockets on the inner quadrants, 
thus freeing the cables. 

(v) Detach the wheel brake 
control cable by the following method :— 

Release the tension in the cable by 
slackening off the cable 

stop, mounted on .the underside of the control 
unit. Remove the 

two inspection covers situated on the underside of the fuselage, 
immediately below: the front seat. This gives access to the 
forward connection of the brake cablo, and the linkage, can bo 

'disconnected by removing a -jg in. split pin, Par t No. 3.A.G.S.784, 
and a •& in. dia. solid pin, Part No. B.11/SP4. The cable being 
freed will permit the control unit to be moved bodily forward, 
thus malting it possible to release the cable from the wheal brake 
lever by removing the ^ in. split pin, Part No. 3.A.G.S.784, and 
t in. dia. solid pin, Par t No. DG/SP4 securing the link. 

(vi) Remove the control unit bodily from the gyroplane. 

(vii) Remove the shdiug pin, Par t No. 22.T.566, 



to which the quick 
release device, quadrants, springs, distance tubes and ratchets are 
attached. Biemove the two ¿ in. dia. mounting bolts, Part No. 
A1/E.60, and the two 2 B.A. guiding bolts, Part No. A1/C6, and 
bushes, Part No. 12.T.530. The inner quadrantB are now free. 
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(viii) Embody the modification to the inner 
quadrant as follows :— 

(a) Remove by filing the weld securing 
the packing plate to 

quadrant, see Drg. No. A.P. 1490/P.6/36, 
sheet 2. 

(b) Remove the packing plate with a small 
chisel. 

(c) Dress the quadrant, filé np . 

(a) Position the modified packing plate. 
File the packing 



plate to suit the profile of the quadrant. Using the packing plate 
as a template locate the rivet, holes on the quadrant. Drill the 
quadrant, morse No. 41 to suit ƒ in. dia. mild steel rivets, in 
position as shown in the drawing. 

(e) Bivet the packing plate in position, using $¡ in. dia. mild 
steel rivets" and forming the heads as'shown in the drawing. 
(ix) Reassemble the control unit. 

(x) Check the rotor brake and clutch control lever for alignment and 
for correct engagement with the modified inner quadrants. , 

(xi) Fit the control unit in the gyroplane by the. following 
procedure :— 

(‡) Connect up the wheel brake control 
cable. 

(·) Connect up the clutch and rotor brake 
control cables. 

(c) .Replace the cable guards on the 
quadrants. 

(d) Instali the.mounting_bolts.and secure 
the control unit in 

the correct position.. 
• "(e) Connect up the quick release device. 

(xii) Adjust the dutch, rotor and wheel 
brake control cables by use of thè cable stops. 
Adjust the quick release device. " • 

(sdii) Check the control cable circuits throughout. —Ô‚ÒÍ tha 
controls, dutch, rotor arid wheel brake, quick release device, for 

http://the.mounting_bolts.and


smooth and correct operation. 
(xiv) Refit the wooden former, securing it to 

the bottom longeron and the bódy fairing. -
(xv) Lace up and repair the fabric covering in 

an approved marnier. 
3. The undermentioned parts are required and are 
available a t No. 3 
Stores Depot :— 
Stores Bef. 

26H/— 
26H/— 

Part No. 
65/T.556 
67/T.556 . 

Nomenclature 
Plate, packing 
Plato, packing 

(34271—26) ÿ. 8063/0010 260 11/36 ÕÎ . (Gp.377) 

À √ Î nix Glass of 
No' °ff' Store, 

1 — 
1 — 
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CAREFULLY PVtL. FABRIC OFF 
FAIRING ft FORMERS. 

REMOVE FOOTSTEP GUARD 

| , APPRO* 54 

-REMOVE SERRATED EDGE TAPE S UNLACE 
FABRIC COVERING. 



SKETCH SHOWING THE NECESSARY 

AMOUNT OF UNLAQNG TO CARRY 
OUT MODIFICATION. 

fe«ao) son, eso,r ¡'¿Â‰Á˚Ò≥ˆ ae 

DRG.N9 A.R 1490./ R6./36. 
SHEET I 
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EXISTING PACKING PLATE fe 
WELD REMOVED INI REGION 
OF NEW PACKING PLATE. 



„ 

•'•*• 

'SECTION RR. 

Q 

4FILE TO SUIT PROFILE 
OF QUADRANT. 

SKETCH SHOWING PACKiMG 



PLATE 
65 OR 67/T. 556 RIVETED IN 
POSITION OEM INNER 

QUADRANT. 

DRG.N9 AR 1 4 9 0 . / R 6 . / 3 6 . 
SHEET 2 . 
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A.P. 1490/P.7 

Rota—Pawl Springs for Brake Lever and 
Clutch and Rotor Brake 

Lever—Strengthened 
LOG BOOK No. 9. (MOD. N O . 



≈ , Ó ¯ ‡ / 1 4 . ) 

(Glass œ . ) 
(585822/36.—26.6.37.) 

1. T h i s modification introduces a s t rengthened 
t y p e of pawl spring in t h e b r a k e lever a n d t h e 
clutch a n d rotor b r a k e lever. 

2. T h e following is t h e sequence of operat ions 

(i) Unscrew t h e locking piece, P a r t N o . 
8T.556, from t h e p u s h rod, 

P a r t N o . 10T.556 in t h e brake lever a n d also 
from P a r t N o . 42T.54S 

in t h e clutch a n d r o t o r brake lever, a t t h e t o p 
of t h e levers. 

(ii) Unscrew t h e press s tud, P a r t N o . 
7T.556, from t h e p u s h rod . 

(iii) Remov e t h e spring, P a r t N o . 12T.566. 
(iv) F i t new spring, P a r t N o . 69T.556. 
(v) Befit press s t u d a n d locking piece. 

3. T h e underment ioned p a r t s are required a n d 
are available a t N o . 3 
E q u i p m e n t D e p o t : — 

Stores Bef. Pari No. 



Nomenclature. No. off. ßtm-e 
26H/5669 69T.556 Spring 
. . . 2 ¬ 

4. P a r t s rendered r e d u n d a n t by t h e 
incorporat ion of t h i s modification are t o b e disposed 
of i n a c c o r d a n c e w i t h c u r r e n t a u t h o r i s e d p r o c e d u r e . 

(36914—58) m . 8035/4506 250 6/37 
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À,P. 1490/P.8 

. . Rota—Friction Dampers, 
Extended—New Type 

LOG BOOK No. 10. (MOD. No. 
≈ÓÚ‰/15.) 



(Class II.) 
(604212/37.—14.1.38.) 

1.- This modification introduces new extended 
friction dampers to relieve the local bending 
stresses set up by the anchorage of the present 
.type friction dampers. 

2. The sequence of operations is as follows :— 
(i) Remove the rotor blades and their 

links by the following 
procedure :— 

(a) Cut-the locking wire that secures the 
link stop pin bolt and 

the'greaser bolt, in the horizontal 
articulation pin. 

(b) Remove the link stop pin bolts, Part 
No. A.1/C.4, and the - special washers, Part 
No. 53/J.610. 

(c) Remove the greaser bolt, Part No. 
20/J.610, in the end of 

the articulation pin, by relieving the tab washer ; 
attached washer, Part No.21/J.610. 

also remove the 



(d) Knock out the horizontal articulation 
pin, Part No. 17/J.610, with the special drift 
that is supplied in the tool kit, and the blades 

complete with drag links and friction 
dampers are free. 

(e) Secure the inner portion of the needle 
bearings with a piece 

of soft wire, as it ig quite free to fall out 
and the needles are very 

troublesome to replace. 
(ii) Support the blades on felt-covered 

benches or trestles and 
proceed as if to dismantle the friction 

dampers in the following 
sequence .— 

(a) Release the two locking nuts, Part 
No. 14/J.555, and remove 

the washer, Part No. A.G.S.160/H. 
(b) Remove the cap, Part No. 6/J.611, 

covering the friction 
dampers, 

. (c) Remove the rubber washer, Part No. 
17/J.611. 

(a) Remove the friction damper plates, 
Part No. 19/J.1388 and 

18/J.1388, also the ferodo discs, Part No. 
30/J.611. 

(e) Remove the spigot, Part No. 
3/J.1388, to which is riveted 

the plate, Part No. 14/J. 1388. -



(iii) Remove the packing block on the 
adaptor, Part No. 8/J.1388, 

by releasing the split pin, Part No. 
A.G.S.784/12, slotted nut, Par t 

No. A.l/J.S., and bolt, Part No. 27/J.13S8. 
These last three items 

are to be scrapped. 
(iv) Pit new items, bolt, Part No. 41/J.77B, 

saddle washers, Part 
No. 42/J.778, nut; Part No. A.1/J.S., and 

split pin, Part No. 
A.G.S.784/3, in the hole which was previously 

used for securing the 
packing block on the adaptor. 

(v) Release the plate, Part No. 14/J.1388, 
from the spigot, Par t 

No. 3/J.1388, by removing the rivets. The 
snap heads of the rivets 

are to be filed off and the rivets themselves 
punched out. 

(vi) Fit new type base plate, Part No. J.779, 
to the spigot, Part No. 3/J.1388, in the following 
manner :— 

(a) Remove from the spigot any burrs round 
the rivet holes. 

(b) Olean and then position new base plate 
on the spigot as 

shown in Urg. A.P. 1490/P.8/38. 
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(Ò) Drill the base plate through rivet holes in the spigot and 
countersink holes on the top face of the base plate. 

(d) Remove any burrs on the base plate 
caused by drilling. 

( e) Rivet the base plate to the spigot, using i in. dia. countersunk 
head X J in. long dural rivets, Part No. A.G.S.269/18, snap heads 
being formed on spigot bottom face. The countersunk head of the 
rivet must be flush with the base plate to ensine smooth operation 

of the dampers. 

(vii) Fit to tho baso plate, inner braaket, Part No. 8/J.778, with 
bolts, Part No. 11 and 12/J.778, and nute, Part No. A.1/B.T. The 

bolts to be riveted over the nuts. 
(viii) Pit to the base plate, pressure pad, Part 

No. 7/J.778, using nuts, P a r t No. A.l/E.T. 
(ix) Fi t the block on the spar tube, assemble 

by the following procedure : — 
(a) Mark out the position of the holes to be 

cut in the blade. 
(b) Carefully cut out the holes with a sharp 

penknife. 
(c) Clean the spar locally in the way of the 

block. 



(d) F i t the block, Part No. 6/J.788, on the 
pressure pad, Part 

No. 7/J.778. 
(e) Fit the top plate, Part No. 4/J.776, on the block, Part No. 

6/J.778, with bolts, Part No. A.1/B.4, and look the heads with 
18 s.w.g. tinned soft iron looking wire. 
(x) Fib the base plate complete À ÿ≥ spigot and block, on the blade 

and spindle of the friction damper and proceed to assemble friotion 
damper plates, ferodo discs, rubber washer, cap, washer and locking 
nuts. Trie face of the spigot in oontaot with the friotion plates is to 

be smeared with graphite. 
(xi) Position the block, Part No. 5/J.778, centrally about the pres-

sure pad and then fit the bottom cop, Part No. 6/J.778, with bolts, 
Part No. A.G.S.748/4/G, locking the heads of the bolts with 18 s.w.g. 
tinned soft iron locking wire. This block and cap must be a tight lit 
on the spar tube, to prevent rotation during flight. 

(xii) Assemble the rotor blades and then* links to the rotor hub 
axle by fitting the horizontal articulation pins, special washers, tab 
washers, greaser bolts and link stop pin bolts. Lock with 18 s.w.g. 

tinned soft iron wire. 

(xiii) Adjust and check the friotion damper by the procedure laid 
down in Air Publication 1490, Vol. I, Chapter “ ÿ , para. 79 and 80. 

(xiv) Dope on serrated edge patches, Part No. 
60/J.778, over the holes in the rotor blade. 

3. The 'undermentioned drawing is required : — 
Drg. No. J.778, assembly of extended friction 

damper. 

. 4. The undermentioned parts are required and 
are available at No. 3 
Equipment Depot : — 



Stores Bef. 

Nomenclature. 

26Õ/6‚‚8 
2‚Õ/‚‚¬8 
2‚Õ/66…Œ 
26Õ/665… 
26H/6661 
26Õ/6 62 
20H/6883 
26Õ/6‚‚4 
26Õ/·‚‚5 
26Õ/5‚‚6 

Part No. 

No. off. 

1/J.778 
6/J.778 
41/J.778 
11/J.778 
3/J.778 
6/J.778 
7/J.778 
4/J.778 
12/J.778 
42/J.778 

Class of 
Store. 

Base-plate 
Block 
Bolt 
Bolt 
Bracket 
Cap 
Poti 
Plate 
Screw 
Washer 

. 3 

. S 

. S 

. 6 

. S 

. 3 

. 3 

. 3 

. 3 

. · 

Ò 
Ò 
Ò 
Ò 0 

Ò 
Ò 
Ò 0 

Ò 
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·. The undermentioned A.G.S. parts are also 
required : — 
Stares Bef. Part No 

12 
A.G.S.749/4/G Bolt 

A.1/B.4 
— 28/— 

Nomenclature. 

Bolt 

6 



Ò 
28/776 28/772 
... 15 
... 3 
Pin, split 
Rivet 

A.1/E.T. 
A.l/J.S. 
— 28/5032 
— 28/1670 

... •*• 
* ... ... 

Nut, lock 
Nut, slotted 

A.G.S.784/3 
A.G.S.259/18 

3 — 
36 — 

6. The undermentioned parts are to be made up 

locally as required :— 

Stores Bef. Part No. 
.., „ Glass of 
No-°ff- Store. 

32B/147 50/J.778 
30A/1038 — 

Patch fabric ... ... 6 
Wire, looking, 18 s.w.g. as 

Nomenclature. 

— 
— 

reqd. 
7. Parts rendered redundant by the incorporation of the modification 

are to be disposed of in accordance with current authorised procedure. 
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¿.–. 1490/Z.l 

Rota—Modification • 



(471409/35.—21.1.36.) 
The following modification has been approved 

from 1st November, 1935, to 30th November, 1935 

ÿÓ‰, No. Description. 

Rota/3 Removal of rotor blade eufb 

(29578-50) Wt. 8104/6022 250 1/36 HIT. (Gp.377) 
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Extent of Whether 
appli- order is 
cation, being issued. 

B. Yes. 
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¿À–. 14Ô0/Z.8 

Rota—Modification 
(471409/35.—5.2.36.) 

The following modification has been approved 
from 1st December, 1935, to 31st December, 1935 

Mod. No. Description. 

Rota /2 . Improved design. clutch and 
rotor brake control quadrants. 



(2›¡78—160) Wt. 8104/6022 260 1/86 Hw. (Op. 877) 

Extent of Whether 
a/pjpli- order is 
cation, being issued. 

B. Yes. 
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A.P. 1490/Z.3 
Rota—Modification 

(471409/35.—30.1.37.) 

Tho following modification has been 
1936, to 31st December, 1936 :— 



approved froJß 1st December, 

Mod. No. . Description. 
Kota/13 Introduction of improved T piece 

for control hinges. • 

560 
(35120—79) Wt. 8063/eOlO SfiO 1/37 Hw. (dp. 877) 



Extent of Whether 
appli- order is 
cation. being issued. 

¬ Yes 
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1490/Z.4 
Rota—Modifications 

(471409/36.—9.4.37.) 

The fofiowing modifications have been 

approved from 1st February, 
1937, to 28th February, 1937. 



Mod. No. Description. 
Rota/14 Introduction of pawl spring for 

brake and clutch levers. 
Eota / lS Introduction of pawl spring for 

brake and du tch lever. 



{35405—≤9) Wt. 8035/4506 250 4/37 Hw. (Gp.377) 

Extent of Whether 
arppli- order is 
cation, being issued. 

¬ Yes 
¬ Yes 

561 
562 



A.V. Roe & Co. Ltd, 28, 44, 274, 283 
advance ratio, 

hub plane, 27, 58, 252 
tip path plane, 27 

Aeronautical Research Committee, 4, 139, 225, 240 
aircraft, 

angle of attack, 44, 52 
descent angle, 212, 220, 221, 222 
design criteria, 3, 164, 279 
drag, 242, 247 
drag coefficient, 242, 248, 255 
drag reduction, 259 
equivalent flat plate drag area, 264 
equivalent parasite drag area, 242, 244 
flare, 222, 223 
flight path velocity, 22, 52 
fuselage angle of attack, 52, 264, 267 
gliding, 220,221,222, 224, 241, 242, 243,258 
glide angle, 49, 50, 212,241 
jump takeoff, 31, 82, 94, 99, 102, 103, 104, 105, 107, 

108, 109, 110, 111, 112, 113,114, 115, 116, 120, 
121, 123, 124, 125, 128, 129, 130, 131, 132, 137, 



249 
landing, 1, 3, 7, 10, 30, 33, 35, 49, 50, 52, 65, 103, 

129, 137, 140, 165, 211, 212, 220, 221, 222, 223, 
224, 226, 227,238, 240, 245, 248, 250, 260, 263, 
265 

longitudinal trim, 51, 52, 54, 55, 57, 60, 62, 64,267 
maximum L/D, 242 
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